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A B S T R A C T 

An advisor discloses evidence about an object to a potential buyer, who doesn’t know the object’s value or the profitability of its sale (the advisor’s 
motives). I characterize optimal disclosure rules that balance two goals: maximizing the overall probability of sale, and steering sales from lower-

to higher-profitability objects. I consider the implications of a regulation that forces the advisor to always reveal her motives to the buyer. I show 
that whether such policies induce the advisor to disclose more evidence about the object’s value hinges on the curvature of the buyer’s demand for 
the object. This result refines our understanding of effective regulation of advisor-advisee communication with and without commitment.

1. Introduction

People frequently take advice from advisors with hidden motives: broker-dealers and other financial advisors counsel investors, 
but also receive sales commissions from financial product providers; digital influencers provide product reviews to their followers, but 
these are often sponsored content; doctors inform patients of the effectiveness of different drugs and procedures, but may be rewarded 
by pharmaceutical companies; magazines and newspapers selectively publish pieces of reporting that align with their editorial bias. In 
all the mentioned settings, information receivers understand that information providers may be biased, but do not know the extent of 
the conflict in each interaction: clients understand that brokers receive sales commissions from some product providers, but may not 
know the size of the commissions on each product; in the social media context, followers understand that influencers post sponsored 
content, but may not know which exact publications are paid advertising.

In this paper, I propose a model where a potentially biased sender informs a receiver about an underlying state. The sender 
communicates with the receiver by committing to a policy to disclose information about the state. The main results are twofold. First, 
I characterize features of optimal communication, and relate them to the sender’s tradeoffs between informing the receiver about the 
state and steering them towards the sender’s preferred action. In the context of social media marketing, I relate this characterization to 
influencers’ strategic usage of two information tools, ``reviews'' and ``endorsements''. Second, I compare the informativeness of advisors 
with hidden motives to a benchmark in which conflicts are made transparent to their advisees. This transparent benchmark can be 
interpreted as arising from regulatory interventions or as a ``direct marketing'' counterpart to influencer-intermediated marketing. 
I find that transparency need not make the receiver better off; indeed, depending on the primitives, the receiver may obtain better 
information from a sender whose motives are hidden.

Section 2 introduces the model. The sender is an advisor who communicates about an object’s value to a buyer, who then chooses 
whether to acquire the object. Apart from its value to the buyer, the object is also described by the profitability of its potential sale 
to the advisor. This profitability, which determines the extent to which the advisor wishes to ``push'' the object’s sale, is unknown to 
the buyer and therefore corresponds to the sender’s hidden motives. Prior to the realization of the object’s value and profitability, 
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the advisor commits to a rule to disclose evidence that conveys the object’s value to the buyer. This rule, which can depend on 
the object’s profitability, assigns to each evidence realization a probability that it is disclosed to the buyer. In the context of social 
media influencers, we can interpret a disclosed signal as the provision of a truthful review of the object, and non-disclosure can be 
interpreted as an endorsement of the object by the influencer, who ``brands'' it with their approval stamp without providing any direct 
information about its value. Considering that setting, we can therefore view the sender’s problem as that of choosing the optimal 
endorsing-versus-reviewing strategy.

The buyer is Bayesian and updates their belief about the object’s value based on any information the advisor reveals or fails to 
reveal (since strategic non-disclosure is itself a signal of the object’s value). The probability that the buyer purchases the object is 
given by their ``demand function'', which is increasing in their posterior expectation of the object’s value. This demand function is 
taken as a primitive of the model, but in Section 2.1, I provide a possible micro-foundation in which the demand function as arises 
from the buyer choosing between the object being offered by the advisor and one or more alternative outside options. The proposed 
micro-foundation introduces a possible interpretation of the curvature of the demand function as a measure of competition in the 
market to which the advisor belongs. Specifically, a ``more convex'' demand function would arise in a more competitive market, 
where the buyer has access to more potential outside options.

In Theorem 1, I show that optimal disclosure rules feature aligned disclosure: the object’s value is conveyed to the buyer (only) 
when the interests of the advisor and buyer are aligned. This happens either when both the object’s value and its profitability are 
high, or when both are low, where high versus low values and profitabilities are defined by optimally chosen thresholds.1 Conversely, 
the advisor chooses no disclosure after observing misaligned object realizations �- either profitable objects with low value or high 
value objects with low profitability. By committing to an aligned disclosure rule, the advisor induces an ambiguous meaning to ``no 
disclosure:'' the advisee cannot fully disentangle whether ``no news'' means ``bad news about the object’s value (and that the object’s 
sale is profitable), or whether ``no news'' means ``the object’s sale is not profitable to the advisor'' (and good news about the object’s 
value). The advisor profits from this ambiguity, steering purchases from low- to high-profitability objects.

In section 4, I compare the advisor’s optimal disclosure policy to that in a benchmark in which their motives are made transparent 
to the receiver, that is, a setting in which on top of observing any information about the object that is willingly disclosed by the advisor, 
the buyer also sees the object’s profitability to the advisor. The goal in this comparison is to assess whether the buyer is better off when 
receiving information from a sender with hidden or transparent motives, a question that is relevant from a perspective of regulating 
advice markets.

Proposition 1 shows that making the advisor’s motives transparent can increase or decrease the informativeness of the optimal 
disclosure policy, depending on features of the buyer’s demand function. Under a concave demand, the advisor voluntarily discloses 
some evidence to the buyer when their motives are hidden, which makes them more informative than in the transparent benchmark 
in which the optimal policy is to not disclose any information. The opposite is true when the buyer’s demand function is convex: 
the transparent advisor optimally discloses all evidence, and is therefore more informative than in the case of hidden motives. 
Propositions 2 and 3 further describe the relation between features of the buyer’s demand function and the comparison between the 
transparent and hidden motives settings.

From a theoretical perspective, this result illustrates that, in a model of communication with commitment, the ‘alignment between 
sender and receiver preferences’ and the ‘opaqueness of the sender’s motives’ are distinct objects; and it is not necessarily true that 
regulations that reduce the latter would also make the sender’s interests more aligned with those of the receiver. In terms of a 
regulatory takeaway, these results argue that the effectiveness of a transparency policy can depend on the curvature of the buyer’s 
demand function, highlighting that there is no ``one size fits all'' policy to optimally regulate advice markets. Rather, it is important to 
fit the regulation to specific features of each market. Using the interpretation introduced in section 2.1, which relates the curvature 
of the buyer’s demand function to the degree of competition in the relevant market, we learn that mandating transparency is an 
effective policy in very competitive markets, but may not be so in markets where the buyer does not have many alternatives to the 
object being offered by the advisor.

To further contrast the theoretical distinction between the (mis-)alignment of sender and receiver preferences and the opaqueness 
of the sender’s motives in a communication model with commitment, in section 5, I consider a variation of the environment, in which 
the advisor makes disclosure choices without commitment. In this case, unlike in the commitment setting, Propositions 4 and 5 show 
that a transparency policy is effective in increasing the information provided to the buyer.

This paper contributes to the literature on strategic communication by considering a ``disclosure with commitment'' communica

tion protocol, combining (simple) evidence disclosure, as in Grossman (1981) and Milgrom (1981), with the timing of committed 
communication typical of the Bayesian persuasion literature following Kamenica and Gentzkow (2011).2 A recent paper that similarly 
combines these two ingredients is Antic and Chakraborty (2024). Our papers differ in that we consider different sender and receiver 
preferences, as well as distinct evidence structures. More broadly, disclosure with commitment is connected to a literature studying 
constrained information design. These are problems where the sender is subject to additional constraints, beyond Bayesian plausibil

ity, when choosing a signal structure. For example, Mensch (2021) and Onuchic and Ray (2023) consider monotonicity constraints 
(see Doval and Skreta (2024) and references therein for other examples).

1 The Theorem, along with its Corollaries 1 and 2, describes how the thresholds that define optimal disclosure policies are determined by a key primitive of the 
communication environment, the curvature of the buyer’s demand function.

2 Both Grossman (1981) and Milgrom (1981) consider disclosure games with a richer evidence structure (in which the sender can use any truthful message of the 
type ``the state belongs to set 𝐷''). The evidence structure in my model is what Hagenbach and Koessler (2017) refer to as ``simple evidence'', where the sender simply 
chooses between a fully informative message (disclosure) or a fully uninformative message (no disclosure).
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My paper, like Rayo and Segal’s (2010) work, departs from most of the literature on information design in that it considers a 
problem with a multidimensional state. And it differs from Rayo and Segal (2010) both because I consider a disclosure communication 
protocol, which allows me to characterize optimal policies when the buyer’s demand function is not linear, and because I study the 
introduction of policies that make the advisor’s motives transparent.3 Most of Rayo and Segal’s (2010) characterization results apply 
to the linear specification. With nonlinear demand functions, the optimal disclosure rule in my model sometimes ``pools ordered 
prospects'' -- in Rayo and Segal’s (2010) language, ordered prospects are two objects whose values and profitabilities are ordered 
in the same way. One of Rayo and Segal’s (2010) main results is that, in the linear benchmark, optimal signals never pool ordered 
prospects.

In terms of regulation of advice markets, Matthews and Postlewaite (1985) show that mandatory disclosure can lead a seller to 
acquire less information and thereby worsen information sharing. In my paper, the seller does not acquire information, and mandated 
transparency is about her motives, not the object’s value. Other works that consider disclosure with costly information acquisition 
are Che and Kartik (2009), Kartik et al. (2017), and Libgober (2022).4

In section 5, I also consider a model in which the advisor makes disclosure choices without commitment. If the object’s sale is 
always profitable or always unprofitable to the advisor, unraveling ensues as in Grossman (1981) and Milgrom (1981). However, 
if the object’s sale is sometimes profitable and sometimes unprofitable, then equilibrium disclosures are only partial. The existence 
of partly-uninformative equilibria as described in Proposition 4 is in line with Seidmann and Winter’s (1997) observation that in 
disclosure environments where the sender’s preferred action depends on their type, there may exist equilibria in which their type is 
not always revealed in equilibrium.5 I use this characterization to argue that, absent commitment, mandated transparency always 
makes the buyer (weakly) better off.

Finally, this paper also relates to previous work studying cheap talk models in which the sender has hidden motives. For example, 
Sobel (1985), Morris (2001), and Morgan and Stocken (2003), study environments with cheap talk communication in which the 
receiver does not know whether the sender’s preferences are aligned with their own. My paper is most related to Li and Madarász 
(2008), which studies a version of Crawford and Sobel’s (1982) cheap talk environment, with the additional assumption that the 
receiver does not know the size or direction of the sender’s bias. Like me, Li and Madarász (2008) ask whether instituting a policy 
that mandates the transparency of the sender’s motives (their bias in that case) is gainful for the receiver, and find that such mandated 
transparency policy may be ineffective.

2. Environment

An advisor wishes to sell an object to a buyer who does not know their value for the object, or how profitable the object’s sale is 
to the advisor. (The advisor could be the original seller of the object, for example, or a salesperson who obtains a commission from 
influencing the buyer to purchase the good.) The object’s value to the buyer, denoted 𝑥 ∈  = [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥], and its profitability to the 
advisor, denoted 𝑦 ∈ = [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥], with 𝑦𝑚𝑖𝑛 ⩾ 0, are drawn from a joint distribution commonly known by advisor and buyer.

Before the buyer decides whether to purchase the object, the advisor can disclose to them some evidence conveying the object’s 
value (see below for details on the communication protocol). After observing any conveyed information, the buyer forms a Bayesian 
posterior belief about the object’s value, with some expected value 𝑥̂ ∈  . Given their posterior 𝑥̂ about the object’s value, the buyer 
purchases the object with probability 𝑝(𝑥̂), where 𝑝 ∶  → [0,1] is a strictly increasing and continuously differentiable ``demand 
function''. If the object is purchased, the advisor receives a payoff equal to the object’s profitability, 𝑦. Otherwise, the advisor’s payoff 
is 0. 

Information Disclosure Protocol. The advisor has access to a piece of evidence that conveys the object’s value.6 I denote by 𝐹 be 
the joint distribution over  ×  of the object’s value and its profitability. 𝐹𝑌 is the marginal profitability distribution, and 𝐹𝑋|𝑦
denotes the distribution of values conditional on a profitability 𝑦 ∈ . I assume that distributions 𝐹𝑌 and 𝐹𝑋|𝑦, for each 𝑦 ∈ , have 
strictly positive densities 𝑓𝑌 and 𝑓𝑋|𝑦 for each 𝑦.

At an initial stage, the advisor commits to a rule to disclose evidence to the buyer. A disclosure rule is a measurable map from 
the object’s realized value and its profitability into a probability that the realization is disclosed, 𝑑 ∶  ×  → [0,1].7 Note that the 

3 In section 5.2, I briefly comment on a variation in which the seller can commit to signaling structures more general than simple disclosure policies. That variation 
corresponds to the problem considered in Rayo and Segal’s (2010).

4 See also Shishkin (2023) and DeMarzo et al. (2019) about information acquisition by the sender in a Dye (1985) framework. And see Szalay (2005) and Ball and 
Gao (2024) about information acquisition by a biased agent in a delegation context. An earlier version of this paper also shows that the introduction of a transparency 
policy can hinder the advisor’s incentives to acquire information about the objects value; and therefore also affect the informativeness of their advice through that 
channel.

5 Mezzetti (2025) makes a similar observation.
6 The analysis extends to the case in which the evidence does not fully reveal the object’s value. In that instance, the evidence is a signal 𝜋 ∶  × →Δ, which is 

a measurable function mapping the object’s value and profitability to a distribution of messages in a measurable set of possible messages, . All the results hold under 
the additional assumption that knowing the profitability of the object conveys no additional information about the object’s value; that is, 𝔼(𝑥|𝑚,𝑦) = 𝔼(𝑥|𝑚) = 𝑥̂(𝑚). 
In other words, if an agent observes message 𝑚 from signal 𝜋, they interpret it as ``the object’s expected value is 𝑥̂(𝑚)'', independently of their belief about the object’s 
profitability.

7 Or more explicitly, a disclosure policy is a signal 𝐷 ∶  × →Δ( ∪{𝑁𝐷}) (where 𝑁𝐷 denotes no disclosure), with the restriction to simple evidence disclosure, 
so that 𝑠𝑢𝑝𝑝(𝐷(𝑥, 𝑦)) ∈ {𝑥,𝑁𝐷}.
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disclosure decision depends both on the evidence realization and on the profitability of the object, so in practice the advisor commits 
to rules to disclose the object’s value, conditional on its profitability.

If a piece of evidence indicating the object’s value 𝑥 is disclosed, the buyer’s posterior mean after observing it is, by definition, 
exactly 𝑥. If otherwise the evidence is not disclosed, the buyer’s posterior mean is computed using Bayes’ Rule, accounting for the 
disclosure strategy. Formally, if ∫ ∫ [1 − 𝑑(𝑥, 𝑦)]𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦) > 0,8

𝑥𝑁𝐷 =
∫ ∫ 𝑥 (1 − 𝑑(𝑥, 𝑦))𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦)

∫ ∫ (1 − 𝑑(𝑥, 𝑦))𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦) 
, (1)

which is the expected value conditional on non-disclosure. The average object profitability given that a realization is not disclosed is 
analogously given by

𝑦𝑁𝐷 =
∫ ∫ 𝑦 (1 − 𝑑(𝑥, 𝑦))𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦)

∫ ∫ (1 − 𝑑(𝑥, 𝑦))𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦) 
.

2.1. Micro-foundations for the ``demand function'' 𝑝

Throughout this paper, I regard the buyer as a passive agent, a ``receiver'' who sees (or does not see) information about the object, 
forms a belief about the object’s expected value, and buys it or not according to some exogenously given ``demand function'' 𝑝. A 
possible micro-foundation for this demand function, which follows the description in Rayo and Segal (2010), is given below. 

Privately-known outside option. A risk-neutral buyer chooses between acquiring the object being sold by the advisor or taking 
an outside option. An example of an outside option would be of buying another object somewhere else, or refraining from buying 
altogether. The value of the buyer’s outside option 𝑥𝑜 is private information, distributed according to 𝐹𝑜. Once the buyer sees all the 
provided information about the object’s value, and forms belief 𝑥̂, they purchase the object if 𝑥̂ > 𝑥𝑜 and do not purchase it otherwise. 
From the advisor’s perspective, a purchase then happens with probability 𝐹𝑜(𝑥̂), the probability that the expected value of the object 
is greater than that of the outside option. In this case, the ``demand function'' 𝑝 coincides with the distribution of outside option values 
𝐹𝑜.

9 The assumption that 𝑝 is increasing and continuously differentiable requires then that the cdf 𝐹𝑜 be continuously differentiable. 

Competing sellers. A different micro-foundation, in the spirit of Hwang et al. (2023), describes a buyer who has access to the object 
being offered by a seller and to various potential outside options, perhaps referring to objects being sold by alternative sellers. The 
value of the product sold by each of the outside sellers is unknown to the inside seller, but each is distributed according to 𝐹𝑜 , and 
value draws are independent across inside and each of the outside objects. Therefore, if there are 𝑛 outside sellers, the best outside 
option available to the buyer, max(𝑥𝑜) is distributed according to max(𝑥𝑜) ∼ (𝐹𝑜)𝑛. The buyer purchases the inside object then if the 
expected value of the inside object, 𝑥̂, is greater than max(𝑥𝑜). This happens with probability (𝐹𝑜)𝑛(𝑥̂). In this case, the ``demand 
function'' 𝑝 therefore coincides with (𝐹𝑜)𝑛. Again, the assumption that 𝑝 is increasing and continuously differentiable requires then 
that the cdf 𝐹𝑜 be continuously differentiable.

Note moreover, that an increase in competitiveness, in the sense of an increase in the number of competitors 𝑛, maps into an increase 
in the convexity of the demand function. Formally, if 𝑛′ > 𝑛, then demand function 𝑝′ = (𝐹𝑜)𝑛

′
is more convex than demand function 

𝑝 = (𝐹𝑜)𝑛, because the former function is a strictly increasing and convex transformation of the latter. And moreover, if additionally 
𝐹𝑜 has a derivative bounded away from 0 and 𝑛 is large enough, then the demand function 𝑝 = (𝐹𝑜)𝑛 is a convex function in the 
entirety of its support.

The results stated in the paper show that the characterization of optimal disclosure rules, and policy implications in terms of trans

parency mandates, depend on the curvature of the demand function. Once these results are stated, I refer back to this interpretation 
of the convexity of the demand function as related to the competitiveness in the market to which the advisor belongs.

3. Optimal disclosure

Suppose the advisor commits to a disclosure rule 𝑑. The probability that the object is sold, conditional on its profitability being 𝑦
is

𝑃 (𝑦, 𝑑) = ∫


[
𝑑(𝑥, 𝑦)𝑝(𝑥) + (1 − 𝑑(𝑥, 𝑦))𝑝(𝑥𝑁𝐷)

]
𝑑𝐹𝑋|𝑦(𝑥). (2)

To understand (2), first remember that 𝐹𝑋|𝑦 is the distribution of evidence realizations given that the object has profitability 𝑦. 
Suppose a realization 𝑥 is disclosed, which happens with probability 𝑑(𝑥, 𝑦). Then the object is sold with probability 𝑝(𝑥), which 

8 Otherwise, non-disclosure is ``off-path'', and we fix 𝑥𝑁𝐷 at some value in  .
9 Alternatively, one may think that the advisor communicates with a population of possible buyers, and each buyer decides between making a purchase from the 

advisor and taking their own private outside option. In that case, 𝐹𝑜 is the distribution of outside options in that population of buyers, and 𝑝 = 𝐹𝑜 describes the amount 
of sales to be made by the advisor when they induce a certain posterior belief about the object’s value on the population of buyers.
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Fig. 1. Building disclosure rule 𝑑 from disclosure rule 𝑑: in each panel, the colored areas representing zones of no disclosure and the white areas representing zones 
of disclosure. The left-hand side panel illustrates a possible disclosure rule 𝑑 that does not have a ``threshold structure''. The right-hand side panel depicts a disclosure 
rule 𝑑, which has a threshold structure and is an improvement over 𝑑, derived from 𝑑 according to (6), (7), and (8).

is reflected in the first term inside the integral of (2). As for the second term, with probability 1 − 𝑑(𝑥, 𝑦) the realization 𝑥 is not 
disclosed. In that case, the object is sold with probability 𝑝(𝑥𝑁𝐷), where 𝑥𝑁𝐷 is as given in (1).

The advisor’s expected payoff from committing to disclosure rule 𝑑 is then

Π(𝑑) = 𝔼 [𝑦𝑃 (𝑦, 𝑑)] = 𝔼(𝑦)𝔼 [𝑃 (𝑦, 𝑑)] + Cov [𝑦,𝑃 (𝑦, 𝑑)] . (3)

In (3), I split the advisor’s payoff into two terms, expressing that the advisor’s objective can be seen as twofold. According to the first 
term, the advisor wishes to maximize the overall expected probability of sale, which is multiplied by the average profitability. Per the 
second term, they seek to maximize the covariance between the object’s profitability and its probability of sale. This covariance term 
reflects the advisor’s desire to steer the buyer from purchasing low-profitability objects to purchasing those with high profitability. 
These two objectives are sometimes at odds, and the characterization provided below illustrates how optimal disclosure balances the 
two goals.

The first result, Theorem 1, provides a description of disclosure rules that maximize the advisor’s value, showing that they feature 
aligned disclosure. There is a threshold value 𝑥̄ such that evidence is classified as either good news, if 𝑥 is larger than 𝑥̄, or bad news, 
if 𝑥 < 𝑥̄. For a good news realization 𝑥 > 𝑥̄, there is a profitability threshold 𝑦̄(𝑥) such that the evidence is disclosed if and only if 
the object’s profitability is above that threshold. Conversely, each bad news realization 𝑥 < 𝑥̄ is disclosed if and only if the object’s 
profitability is below the threshold 𝑦̄(𝑥).

Theorem 1. An optimal disclosure rule exists and every optimal rule 𝑑∗ features aligned disclosure: There is a threshold value 𝑥̄ ∈  and 
a threshold profitability 𝑦̄ ∶  → such that 𝑑∗ almost everywhere satisfies 𝑑∗(𝑥, 𝑦) ∈ {0,1} and

𝑑∗(𝑥, 𝑦) = 1⇔ (𝑥− 𝑥̄)(𝑦− 𝑦̄(𝑥)) ⩾ 0. (4)

The threshold value satisfies 𝑥̄= 𝑥𝑁𝐷 , and, for 𝑥≠ 𝑥𝑁𝐷 , the threshold profitability 𝑦̄(𝑥) satisfies

𝑦̄(𝑥) = 𝑦𝑁𝐷

[
𝑝′(𝑥𝑁𝐷)(𝑥𝑁𝐷 − 𝑥)

𝑝(𝑥𝑁𝐷) − 𝑝(𝑥) 

]
. (5)

A complete proof of Theorem 1, including the characterization of the threshold profitability function 𝑦̄(⋅) is provided in the 
Appendix. For intuition, let’s see that any disclosure rule which leads to no disclosure with positive probability and does not satisfy 
the threshold structure described in (4) can be improved upon by a rule that does satisfy (4). Start with one such disclosure rule 𝑑
according to which no disclosure happens with positive probability, and which does not satisfy the threshold structure. (For example, 
the disclosure rule depicted in the left-hand side panel of Fig. 1.) Let 𝑥𝑁𝐷 be its implied non-disclosure posterior mean. Define then 
an alternative rule, 𝑑, that discloses each realization 𝑥 with the same probability as 𝑑, but has a threshold structure. Taking the 
case in Fig. 1, this means maintaining the ``size'' of the pink no-disclosure segment for each value 𝑥, but adjusting the profitability 
levels for which the realization is disclosed or not disclosed �- 𝑑 is plotted on the left-hand panel and the ``improvement'' 𝑑 is in the 
right-hand panel. For 𝑥 ⩽ 𝑥𝑁𝐷 , the no disclosure region is not adjusted, it remains corresponding to high-profitability realizations. 
As for 𝑥 > 𝑥𝑁𝐷 , under 𝑑, some realizations with high profitability are not disclosed; instead, under 𝑑 , no disclosure is assigned to 
realizations with low profitability. Formally, if 𝑥 ⩽ 𝑥𝑁𝐷 , let

𝑑(𝑥, 𝑦) =

{
1, if 𝑦 ⩽ 𝑦̂(𝑥)
0, if 𝑦 > 𝑦̂(𝑥)

(6)
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Fig. 2. Left-hand panel: optimal disclosure rule when 𝑝 is a�ine. The gray areas represent evidence that is optimally concealed by the advisor, and white areas are 
optimally disclosed. The right-hand panel illustrates that, in this case, the object is classified as either a high-profitability object or a low-profitability object. For the 
former, values are disclosed if and only if they are ``good news'', whereas for the latter values are disclosed if and only if they represent ``bad news''.

Fig. 3. Optimal disclosure rule when the buyer’s demand function is convex (left panel) and concave (right panel). These images correspond to the optimal disclosure 
rules corresponding to the examples in sections 3.2.1 and 3.2.2, respectively. The gray areas represent evidence realizations that are optimally concealed by the 
advisor, and the white areas are optimally disclosed.

and if 𝑥 > 𝑥𝑁𝐷 , let

𝑑(𝑥, 𝑦) =

{
0, if 𝑦 < 𝑦̂(𝑥)
1, if 𝑦 ⩾ 𝑦̂(𝑥),

(7)

where the thresholds 𝑦̂ are calibrated such that, for each realization 𝑥,

∫


𝑑(𝑥, 𝑦)𝑑𝐹𝑌 |𝑥(𝑦) = ∫


𝑑(𝑥, 𝑦)𝑑𝐹𝑌 |𝑥(𝑦), (8)

where 𝐹𝑌 |𝑥 is the profitability distribution conditional on value 𝑥. Condition (8) implies that 𝑑 and 𝑑 induce the same 𝑥𝑁𝐷 , and so 
𝑑 satisfies (4), with 𝑥̄ = 𝑥𝑁𝐷 .

By moving from 𝑑 to 𝑑, the advisor shifts the disclosure probability of bad news to low profitability objects and of good news to 
high profitability objects, while maintaining the distribution of posterior mean values that is induced on the buyer. It is easy to see 
(and I argue formally in the Appendix), that: Claim 1. 𝑑 and 𝑑 produce the same overall probability of sale, because the distribution 
of posterior mean values is unchanged; and Claim 2. 𝑑 induces a strictly larger covariance between sales and profitability than 𝑑, 
because the change increases the probability that very profitable objects are sold, and decreases that probability for less profitable 
objects. These facts imply that 𝑑 yields a strictly larger expected advisor payoff than 𝑑, as desired.

The value and profitability thresholds described in Theorem 1 partition the value-profitability space into four ``quadrants'' �- see, 
for example, Figs. 2 and 3, which illustrate the quadrants defined by the optimal disclosure rules. The first and third quadrants repre

sent regions where the advisor and buyer have aligned interests, either because both value and profitability are high or because both 
value and profitability are low. Evidence realizations in these ``alignment'' regions are optimally disclosed to the buyer. Conversely, 
the second and fourth quadrants represent areas of misalignment between advisor and advisee, and therefore these realizations are 
optimally concealed.
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Aligned disclosure rules still encompass the possibility of full disclosure �- if 𝑥𝑁𝐷 = 𝑖𝑛𝑓 () and 𝑦𝑁𝐷 = 𝑖𝑛𝑓 () or 𝑥𝑁𝐷 = 𝑠𝑢𝑝()
and 𝑦𝑁𝐷 = 𝑠𝑢𝑝() �- or no disclosure �- if 𝑥𝑁𝐷 = 𝑖𝑛𝑓 () and 𝑦𝑁𝐷 = 𝑠𝑢𝑝() or 𝑥𝑁𝐷 = 𝑠𝑢𝑝() and 𝑦𝑁𝐷 = 𝑖𝑛𝑓 (). Proposition 6, 
stated in Appendix B, proposes three conditions on primitives that guarantee ``interior solutions'', ensuring that both disclosure and 
non-disclosure happen with positive probability in the optimal disclosure rule.

Steering and Credibility of Optimal Disclosure. The characterization of optimal disclosure rules highlights the steering logic 
behind optimal advice in for advisors with hidden motives. By committing to a threshold disclosure rule, the advisor can induce an 
ambiguous meaning to ``no disclosure:'' the advisee cannot fully disentangle whether ``no news'' means ``bad news about the object’s 
value (and that the object’s sale is profitable), or whether ``no news'' means ``the object’s sale is not profitable to the advisor'' (and 
good news about the object’s value). By creating such ambiguity, the advisor can profitably steer the advisee’s purchases from low-

to high-profitability objects.

In this model, steering is made possible because the advisor is able to commit to a disclosure rule, and therefore influence the 
buyer’s interpretation of ``no disclosure''. But is it reasonable to expect such commitment power from the advisor? A recent paper 
by Lin and Liu (2024) proposes a notion of credibility for information design problems: A disclosure policy is credible if the sender 
cannot profit from tampering with her messages while keeping the message distribution unchanged. Their reasoning is that if a sender 
“deviates'' from an information policy in a way that keeps the marginal probability of sending each message unchanged, then that 
deviation would be ``undetectable''; and if a policy is such that there are ``undetectable'' deviations that would benefit the sender, 
then such policy is not credible. According to this definition, the optimal disclosure rules described in Theorem 1 are credible.10

3.1. Linear demand

Sections 3.1 and 3.2 now provide further characterization of optimal disclosure under different assumptions about the buyer’s 
“demand function'' 𝑝. Corollary 1 applies Theorem 1 when 𝑝 is a�ine.

Corollary 1. If the demand function 𝑝 is a�ine, then the thresholds defining an optimal disclosure rule satisfy 𝑥̄ = 𝑥𝑁𝐷 ∈ int () and 
𝑦̄(𝑥) = 𝑦𝑁𝐷 ∈ int () for all 𝑥 ∈  .

When the demand function 𝑝 faced by the advisor is a�ine, all disclosure rules yield the same overall probability of sale. That 
is, for any two disclosure rules 𝑑 and 𝑑′, 𝔼 [𝑃 (𝑦, 𝑑)] = 𝔼

[
𝑃 (𝑦, 𝑑′)

]
. This fact is an implication of the martingale property of posterior 

beliefs: we know that the expected posterior belief of the buyer about the value of the object has to equal the buyer’s prior belief 
about the object’s value. Because the probability of sale is an a�ine function of such posterior belief, the expected probability of sale 
has to equal the ``ex-ante probability for sale''.

Consequently, in choosing a disclosure policy, there is no scope for the advisor to increase or decrease the overall probability that 
the buyer purchases the object. Rather, the advisor solely distributes this constant sale probability between high and low profitability 
objects. In order to optimally steer sales from low- to high-profitability objects, the advisor uses a constant threshold 𝑦̄(𝑥) = 𝑦𝑁𝐷 , 
thereby effectively assigning the object to one of two classes high profitability, with 𝑦 > 𝑦𝑁𝐷, and low profitability, with 𝑦 < 𝑦𝑁𝐷 . 
Such an optimal disclosure rule is depicted in Fig. 2; its right-hand panel illustrates that, for high-profitability objects, the object’s 
value is disclosed if and only if it is ``good news'', while the opposite is true for low-profitability objects.

3.2. Nonlinear demand

If the demand function 𝑝 is not a�ine, then the amount of information disclosed by the advisor impacts the overall probability 
of sale. Observation 1 below states that increasing the amount of information about the object’s value that is disclosed to the buyer 
increases the overall probability that the object is sold if the demand function is convex, and decreases it if the demand function is 
concave. To formally state this result, we say that a disclosure rule 𝑑 has more disclosure than a disclosure rule 𝑑′ if 𝑑(𝑥, 𝑦) ⩾ 𝑑′(𝑥, 𝑦)
for all 𝑥 ∈  and 𝑦 ∈ ; strictly so if this inequality is strict for a subset of  × with positive measure.

Observation 1. Suppose 𝑑 has more disclosure than 𝑑′. Then if 𝑝 is strictly convex (concave), 𝑑 yields a higher (lower) sale probability than 
𝑑′; and strictly so if 𝑑 has strictly more disclosure than 𝑑′.

With a nonlinear demand function, the advisor transfers sales from low- to high-profitability objects at the expense of the total 
probability that the object is sold. If the advisor faces a convex demand function, he wishes to disclose more information in order to 
maximize the sale probability; but maximizing the covariance between profitability and probability of sale requires the concealment 
of some realizations. Conversely, if the demand function is concave, overall sale probability increases when information is concealed 
from the buyer, but to improve the covariance between sales and profitability, the advisor must disclose some value realizations. The 
following corollary describes features of optimal disclosure in these cases.

10 To see, note that any disclosure rule other than the optimal rule as given in Theorem 1, but which induces that same marginal distribution over messages, must 
invariably swap the disclosure of a realization (𝑥, 𝑦) and a different realization (𝑥, 𝑦′); that is, two states with the same evidence realization 𝑥. But as per the argument 
in the proof of Theorem 1, if one such ``undetectable swap'' were available and were indeed profitable, then the starting disclosure rule must not have been optimal 
in the first place.
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Corollary 2. If 𝑝 is strictly convex (concave), an optimal disclosure rule has a strictly decreasing (increasing) profitability threshold function 
𝑦̄(𝑥), satisfying 𝑦̄(𝑥𝑁𝐷) = 𝑦𝑁𝐷 .

For an illustration, see Fig. 3, which depicts optimal disclosure rules in Examples 3.2.1 and 3.2.2 below. In each panel, the 𝑥-axis 
represents the expected value of the object induced by a realization of the evidence, and the 𝑦-axis represents the object’s profitability. 
The threshold 𝑥̄ divides good-news and bad-news evidence realizations; and the function 𝑦̄(𝑥) is the optimal profitability threshold 
dividing disclosure and non-disclosure regions. The left panel of Fig. 3 illustrates optimal disclosure when the buyer’s demand for 
the object is convex. In that case, the advisor can maximize the overall probability of sale by disclosing all evidence realizations; but 
optimally chooses to conceal some realizations in order to steer the buyer from low- to high-profitability objects. As a consequence, 
extreme evidence realizations (very bad news or very good news) are always disclosed, but some bad news are concealed when the 
object’s sale is very profitable, as are some good news if the object is less profitable. This description is summarized by the optimal 
profitability threshold being a decreasing function of the value of the evidence realization. Conversely, if the buyer’s demand for the 
object is concave, then the optimal profitability threshold is an increasing function �- as depicted in the right panel of Fig. 3. When 
demand is concave, this shape is a result of balancing the advisor’s desire to maximize overall sales by concealing all realizations; 
and to steer sales towards high-profitability objects by selectively disclosing some evidence.

3.2.1. Example: optimal disclosure under convex demand function

An object’s value and its profitability are independently distributed, each distributed according to the uniform distribution 𝑈 [0,1], 
so that 𝐹𝑌 =𝑈 [0,1] and 𝐹𝑋|𝑦 =𝑈 [0,1] for each 𝑦 ∈ [0,1]. Further, let the demand function be given by 𝑝(𝑥) = 𝑥2.

From Theorem 1, we know that the thresholds defining the optimal disclosure rule should satisfy:

𝑥̄ = 𝑥𝑁𝐷, and 

𝑦̄(𝑥) = 𝑦𝑁𝐷

[
2𝑥𝑁𝐷(𝑥𝑁𝐷 − 𝑥)
(𝑥𝑁𝐷)2 − 𝑥2

]
= 𝑦𝑁𝐷

[
2𝑥𝑁𝐷

𝑥𝑁𝐷 + 𝑥

]
.

Moreover, given these thresholds, 𝑥𝑁𝐷 and 𝑦𝑁𝐷 must indeed correspond to the Bayesian posteriors implied by no disclosure: 
𝑥𝑁𝐷 = 𝔼(𝑥|no disclosure), and 𝑦𝑁𝐷 = 𝔼(𝑦|no disclosure). Numerically, I find that there is a unique pair (𝑥𝑁𝐷, 𝑦𝑁𝐷) ∈ (0,1)2 that 
satisfies these conditions. The pair is given by

𝑥𝑁𝐷 = 0.5824 and 𝑦𝑁𝐷 = 0.5098.

Because there is a unique such pair, we know that it must correspond to the thresholds in the optimal disclosure rule. The expected 
payoff to the advisor under full disclosure equals 1∕6. The expected payoff under no disclosure is 1∕8. And the expected payoff under 
the optimal disclosure rule just described equals 0.1885.

3.2.2. Example: optimal disclosure under concave demand function

Again, the object’s value and its profitability are independently distributed, each distributed according to the uniform distribution 
𝑈 [0,1], so that 𝐹𝑌 =𝑈 [0,1] and 𝐹𝑋|𝑦 =𝑈 [0,1] for each 𝑦 ∈ [0,1]. But now consider the following concave demand function: 𝑝(𝑥) =
2𝑥− 𝑥2.

In this case, the thresholds defining the optimal disclosure rule should satisfy:

𝑥̄ = 𝑥𝑁𝐷, and 

𝑦̄(𝑥) = 𝑦𝑁𝐷

[
(2 − 2𝑥𝑁𝐷)(𝑥𝑁𝐷 − 𝑥) 

2𝑥𝑁𝐷 − (𝑥𝑁𝐷)2 − (2𝑥− 𝑥2)

]
= 𝑦𝑁𝐷

[
2(1 − 𝑥𝑁𝐷) 
2 − 𝑥𝑁𝐷 − 𝑥

]
.

Again, it must be that 𝑥𝑁𝐷 = 𝔼(𝑥|no disclosure), and 𝑦𝑁𝐷 = 𝔼(𝑦|no disclosure). Numerically, I find that there is a unique pair 
(𝑥𝑁𝐷, 𝑦𝑁𝐷) ∈ (0,1)2 satisfying these conditions, and therefore corresponding to the thresholds in the optimal disclosure rule, is

𝑥𝑁𝐷 = 0.5397 and 𝑦𝑁𝐷 = 0.5402.

In this example, the expected payoff to the advisor under full disclosure equals 1∕3. The expected payoff under no disclosure is 3∕8. 
And the expected payoff under the optimal disclosure rule just described equals 0.3907.

4. Transparent motives benchmark

Consider a policy intervention that makes the motives of the advisor transparent to the buyer. Such transparency policies are 
common in advice markets.11

11 For example, financial advisors are often required to disclose professional affiliations with securities issuers, sources of compensation received beyond service 
fees, and other potential or existing conflicts of interest. As for social media advertising, the FTC and the UK CMA mandate digital influencers to mark their posts as 
“paid content'' when they are sponsored by brands, and take other steps to clarify their relation with product producers to their content consumers.
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In the model, the transparency policy imposes that when the buyer observes the ``advice'' �- either the disclosed evidence or non

disclosure �- they also perfectly observe how profitable the object’s sale is to the advisor. Naturally, anticipating that the buyer will 
see the profitability of the object, the advisor optimally uses a disclosure strategy that differs from the payoff maximizing disclosure 
rule without transparency. Indeed, with transparency, the advisor’s problem becomes a continuum of separate disclosure problems, 
one for each profitability. This fact is stated in Theorem 2, along with a characterization of optimal disclosure under mandated 
transparency.

Theorem 2. With mandated transparency, the advisor chooses for each 𝑦∈ a policy 𝑑(⋅, 𝑦) ∶  → [0,1] to maximize 𝑃 (𝑦, 𝑑(⋅, 𝑦)), where

𝑃 (𝑦, 𝑑(⋅, 𝑦)) = ∫


[
𝑑(𝑥, 𝑦)𝑝(𝑥) + (1 − 𝑑(𝑥, 𝑦))𝑝(𝑥𝑁𝐷

𝑦
)
]
𝑑𝐹𝑋|𝑦(𝑥)

and 𝑥𝑁𝐷
𝑦

=
∫ [1 − 𝑑(𝑥, 𝑦)]𝑥𝑑𝐹𝑋|𝑦(𝑥)
∫ [1 − 𝑑(𝑥, 𝑦)]𝑑𝐹𝑋|𝑦(𝑥) . (9)

Under mandated transparency, any optimal disclosure rule 𝑑∗ almost everywhere satisfies

𝑝(𝑥) > 𝑝

(
𝑥𝑁𝐷
𝑦

)
+ 𝑝′

(
𝑥𝑁𝐷
𝑦

)(
𝑥− 𝑥𝑁𝐷

𝑦

)
⇒ 𝑑∗(𝑥, 𝑦) = 1, (10)

and 𝑝(𝑥) < 𝑝

(
𝑥𝑁𝐷
𝑦

)
+ 𝑝′

(
𝑥𝑁𝐷
𝑦

)(
𝑥− 𝑥𝑁𝐷

𝑦

)
⇒ 𝑑∗(𝑥, 𝑦) = 0. (11)

Under transparency, the advisor cannot use strategic disclosure in order to steer sales across objects with different profitability 
levels. Rather, Theorem 2 shows that they separately maximize the probability that the object with each profitability level gets sold. 
The optimal disclosure rule may differ across objects with different profitabilities because 𝐹𝑋|𝑦 may depend on 𝑦, which therefore 
implies the optimal value of 𝑥𝑁𝐷

𝑦
�- which determines the optimal disclosure rule, as per (10) and (11) �- varies with 𝑦.

4.1. Curvature of 𝑝 and the effectiveness of mandated transparency

Proposition 1 below is a direct consequence of Theorem 2, and shows that mandating transparency of the advisor’s motives 
may increase or decrease the amount of evidence the advisor voluntarily discloses to the buyer, and that this effect depends on the 
curvature of the buyer’s demand function 𝑝.12

Proposition 1. Let 𝑑 and 𝑑′ be optimal disclosure policies to the advisor under mandated transparency and hidden motives, respectively.

1. If 𝑝(⋅) is strictly convex, mandated transparency improves evidence disclosure, that is, 𝑑 has more disclosure than 𝑑′.
2. If 𝑝(⋅) is strictly concave, mandated transparency harms evidence disclosure, that is, 𝑑 has less disclosure than 𝑑′.

If the demand function is convex, then the mandated transparency policy increases the set of evidence pieces that the advisor 
would voluntarily choose to disclose to the buyer. In fact, given that demand regime, any optimal disclosure policy under mandated 
transparency involves the voluntary disclosure of all evidence -- so that the optimal 𝑑 involves full disclosure, regardless of the object’s 
profitability. To see this, note that for any value of 𝑥𝑁𝐷

𝑦
, strict convexity of 𝑝 implies that the condition on the right-hand side of (10) 

is satisfied strictly for any 𝑥 ≠ 𝑥𝑁𝐷
𝑦

. An optimal disclosure rule must therefore satisfy 𝑑∗(𝑥, 𝑦) = 1 almost everywhere.

Conversely, if the demand function is concave, then mandated transparency has the opposite effect on evidence disclosure: the 
optimal disclosure policy is for the advisor to not disclose any of the realized evidence. Again, this can be seen directly from (10). 
Because 𝑝 is strictly concave, then for any 𝑥𝑁𝐷

𝑦
, the condition on the right-hand side of (10) fails for all 𝑥 ≠ 𝑥𝑁𝐷

𝑦
, which implies that 

almost all evidence is optimally concealed from the buyer.

Does mandated transparency help or hurt the buyer? To answer this question, I consider how transparency affects the Blackwell 
informativeness of the advice. (A virtue of this approach is that it is agnostic about the buyer’s objective, so long as the buyer’s posterior 
mean is a sufficient statistic for his welfare.) Denote the transparency policy by 𝜏 ∈ {0,1}, with 𝜏 = 1 indicating the mandated 
transparency environment, and 𝜏 = 0 the hidden motives environment. Given a disclosure rule 𝑑 and transparency policy 𝜏 , let 
𝐹𝐵(⋅, 𝑑, 𝜏) be the distribution of posterior means observed by the buyer.13 We say the pair (𝑑, 𝜏) is more informative than the pair 
(𝑑′, 𝜏′) if 𝐹𝐵(⋅, 𝑑, 𝜏) is more informative than 𝐹𝐵(⋅, 𝑑′, 𝜏′) in the Blackwell order.

12 If the demand function is a�ine, a case that is not contemplated in Proposition 1, then under mandated transparency, the advisor is indifferent between all 
disclosure rules, including full disclosure and no disclosure. The effect of mandated transparency on disclosure is therefore indeterminate.
13 For a given 𝑑 and 𝜏 , 𝐹𝐵(𝑥,𝑑, 𝜏) is equal to

∫


∫
[𝑥𝑚𝑖𝑛 ,𝑥)

𝑑(𝑥̂, 𝑦)𝑑𝐹𝑋|𝑦(𝑥̂)𝑑𝐹𝑌 (𝑦) + ∫


∫


(1 − 𝑑(𝑥̂, 𝑦))1
{
𝑥𝑁𝐷
𝑦

⩽ 𝑥
}
𝑑𝐹𝑋|𝑦(𝑥̂)𝑑𝐹𝑌 (𝑦),

where for every 𝑦∈ , 𝑥𝑁𝐷
𝑦

= 𝑥𝑁𝐷 as given in (1) if 𝜏 = 0; and 𝑥𝑁𝐷
𝑦

is as defined in (9) if 𝜏 = 1.
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Corollary 3. 

1. If 𝑝(⋅) is strictly convex, the advisor is more informative under mandated transparency.

2. If 𝑝(⋅) is strictly concave, and 𝔼[𝑥|𝑦] = 𝔼[𝑥] for every 𝑦∈ , then the advisor is less informative under mandated transparency.

Proposition 1 and its Corollary 3 show that the effectiveness of mandated transparency as a regulatory policy depends on the 
curvature of the demand function 𝑝. Returning to the micro-foundations provided in section 2.1, one possible interpretation of the 
curvature of the demand function is as a measure of the competitiveness in the market to which the advisor belongs. Specifically, if 
there are sufficiently many ``competitors'' to the considered advisor, then the demand function 𝑝 is convex, and mandated transparency 
is an effective policy. Conversely, if competition is not sufficient, then 𝑝 may be concave, implying that mandated transparency is 
not a good policy tool. An interpretation is that competition with outside sellers is a sufficient motivator for the seller to provide 
information to the buyer �- this point is indeed made by Hwang et al. (2023). But, in case there is lack of competition, allowing sellers 
to profitably steer buyers (by keeping their motives hidden) can provide the necessary incentives for the disclosure of information 
about the object’s value.

4.2. Local effects of mandated transparency

The results in section 4.1 concern extreme cases where 𝑝 is strictly concave or strictly convex. ``Local versions'' of those results 
hold, which depend only on the local curvature of the demand function around the expected value 𝑥𝑁𝐷 . From (9), we know that 
under mandated transparency, a value 𝑥 for an object with profitability 𝑦 is disclosed if

𝑝(𝑥) > 𝑝

(
𝑥𝑁𝐷
𝑦

)
+ 𝑝′

(
𝑥𝑁𝐷
𝑦

)(
𝑥− 𝑥𝑁𝐷

𝑦

)
, (12)

and 𝑥 is not disclosed if the opposite inequality holds. Without mandated transparency, we know from (a rewriting of) the charac

terization in Theorem 1 that a value 𝑥 for an object with profitability 𝑦 is disclosed if

𝑝(𝑥) > 𝑝
(
𝑥𝑁𝐷

)
+ 𝑦𝑁𝐷

𝑦 
𝑝′
(
𝑥𝑁𝐷

)(
𝑥− 𝑥𝑁𝐷

)
, (13)

where remember that 𝑦𝑁𝐷 is the expected profitability conditional on no disclosure under the optimal disclosure rule. Again, the 
value 𝑥 is not disclosed if the opposite inequality holds.

Suppose optimal disclosure rules with and without mandated transparency are such that, for some profitability level 𝑦, we have 
𝑥𝑁𝐷 = 𝑥𝑁𝐷

𝑦
. And further suppose that 𝑝 is locally strictly convex around 𝑥𝑁𝐷 . In that case, condition (12) must hold for realizations 

𝑥 sufficiently close to 𝑥𝑁𝐷 , meaning that such ``local realizations'' are disclosed to the buyer. In comparison, consider the optimal 
policy when the advisor has hidden motives. For high-profitability objects (𝑦 > 𝑦𝑁𝐷) and ``local bad news realizations'' (𝑥 ↑ 𝑥𝑁𝐷), the 
opposite inequality to (13) must hold; so that such local bad news are concealed. Analogously, for low-profitability objects (𝑦 < 𝑦𝑁𝐷), 
“local good news realizations'' (𝑥 ↓ 𝑥𝑁𝐷) are concealed from the buyer. This argument implies that, if 𝑝 is locally convex around 
𝑥𝑁𝐷 , then mandated transparency implies a local increase in disclosure. This result is formally stated below in Proposition 2, along 
with an opposite result for the case when 𝑝 is locally concave.

Proposition 2. Suppose 𝑑 and 𝑑𝑚 are optimal disclosure rules with hidden motives and under mandated transparency, respectively. And 
suppose, for all 𝑦 ∈ , it holds that 𝑥𝑁𝐷(𝑑) = 𝑥𝑁𝐷

𝑦
(𝑑𝑚) =∶ 𝑥̃ ∈ 𝑖𝑛𝑡().

1. If 𝑝 is locally strictly convex around 𝑥̃, there exist 𝑥′ and 𝑥′′, with 𝑥′ < 𝑥̃ < 𝑥′′ such that 𝑑(𝑥, 𝑦) ⩽ 𝑑𝑚(𝑥, 𝑦) for almost all (𝑥, 𝑦) with 
𝑥 ∈ (𝑥′, 𝑥′′); and strictly so for an open subset of such (𝑥, 𝑦).

2. If 𝑝 is locally strictly concave around 𝑥̃, there exist 𝑥′ and 𝑥′′, with 𝑥′ < 𝑥̃ < 𝑥′′ such that 𝑑(𝑥, 𝑦) ⩾ 𝑑𝑚(𝑥, 𝑦) for almost all (𝑥, 𝑦) with 
𝑥 ∈ (𝑥′, 𝑥′′); and strictly so for an open subset of such (𝑥, 𝑦).

Also from conditions (12) and (13), we can see that, compared to the benchmark with hidden motives, mandated transparency 
implies a weak increase in the disclosure of bad news, and a weak decrease in the disclosure of good news, about objects with high 
profitability. To see, if the object’s profitability is high (𝑦 > 𝑦𝑁𝐷), and a realization is ``bad news'' (𝑥 < 𝑥𝑁𝐷), then condition (13) 
holding implies that condition (12) holds as well. This means that if such bad news are disclosed under hidden motives, then they 
are disclosed as well under mandated transparency. Conversely, for ``good news'' (𝑥 > 𝑥𝑁𝐷), condition (12) implies condition (13), 
so that their disclosure under mandated transparency implies that they are also disclosed under hidden motives. Proposition 3 states 
this result formally, as well as an analogous result for low profitability objects (𝑦 < 𝑦𝑁𝐷).

Proposition 3. Suppose 𝑑 and 𝑑𝑚 are optimal disclosure rules with hidden motives and under mandated transparency, respectively. And 
suppose, for all 𝑦 ∈  , it holds that 𝑥𝑁𝐷(𝑑) = 𝑥𝑁𝐷

𝑦
(𝑑𝑚) =∶ 𝑥̃; and let 𝑦̃ ∶= 𝑦𝑁𝐷(𝑑). The following statement holds for almost all (𝑥, 𝑦) ∈

 × :

𝑑(𝑥, 𝑦) ⩾ 𝑑𝑚(𝑥, 𝑦)⇔ (𝑥− 𝑥̃)(𝑦− 𝑦̃) ⩾ 0.
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Both Propositions 2 and 3 start from the assumption that optimal disclosure rules with and without mandated transparency lead to 
the same beliefs of no disclosure 𝑥𝑁𝐷 = 𝑥𝑁𝐷

𝑦
(for all profitability levels 𝑦 ∈). If the value distribution 𝐹𝑋|𝑦 is independent from 𝑦, 

then we know from Theorem 2 that in the optimal disclosure rule under mandated disclosure, we have that 𝑥𝑁𝐷
𝑦

is also independent 
of 𝑦. Moreover, as the distribution of profitabilities becomes more centered around its expected value, it must be that the value 
𝑥𝑁𝐷 in the optimal rule under hidden motives approaches such value 𝑥𝑁𝐷

𝑦
. Indeed, in the limit as the distribution 𝐹𝑌 becomes the 

degenerate distribution, it must be that these two values coincide.

5. Alternative communication protocols

The model makes two main assumptions regarding the communication protocol. First, the advisor can commit to a disclosure rule, 
prior to the object’s profitability or the evidence about its value being drawn. Second, the advisor can use only disclosure policies, 
either revealing or not revealing a realized piece of information about the object’s value, rather than committing to more general 
signal structures. In this section, I consider variations of the model, which drops the commitment from the communication protocol. 
Under that new protocol, I investigate whether mandating transparency about the advisor’s motives improves the informativeness 
of their advice to the buyer. Next, I briefly comment on a variation of the model in which the advisor can commit to more general 
signal structures.

5.1. No commitment disclosure protocol

A direct reading of the results in section 4 is that they delineate conditions under which a policy maker should or should not institute 
a transparency policy: such decision should be made based on the curvature of the buyer’s demand for the object. But beyond this 
normative implication, the results also refine our theoretical understanding of regulation in advice markets. Specifically, I highlight 
that in information design models with commitment, the ‘alignment between sender and receiver preferences’ and the ‘opaqueness 
of the sender’s motives’ are distinct objects; and it is not necessarily true that regulations that reduce the latter would also make 
the sender’s interests more aligned with those of the receiver. And even in contexts where transparency does improve the alignment 
between the advisor and advisee’s interests �- such as when the demand function is convex, in the model �- it does so because, as 
a byproduct the transparency of their motives, the sender’s effective objective function becomes ``more convex'', therefore inducing 
them to optimally disclose more evidence. This is in contrast with what happens in a disclosure environment without commitment 
— discussed below �- in which the transparency of the advisor’s motives induces the unraveling of uninformative equilibria.

To see this contrast, I introduce a version of the model where there is no commitment in the communication protocol. In this 
section, we allow the support of the object’s profitability to include negative profitability values, so we may have 𝑦𝑚𝑖𝑛 < 0 < 𝑦𝑚𝑎𝑥,14

in which case the buyer is unsure whether the profitability is such that the advisor wishes to maximize the object’s probability of sale 
or to minimize it. Consider the following disclosure protocol with no commitment: First, the advisor observes the object’s profitability 
and value. After that, the advisor chooses whether to disclose the value to the buyer. The buyer observes the disclosed evidence -- 
or the fact that no evidence was disclosed -- and forms a posterior mean about the object’s value, taking into account the advisor’s 
equilibrium strategy. As before, the buyer does not observe the object’s profitability. The equilibrium notion is Perfect Bayesian 
Equilibrium.

Proposition 4. For any demand function 𝑝, an equilibrium exists, and any equilibrium disclosure strategy 𝑑∗ has a threshold structure: 
𝑑∗(𝑥, 𝑦) ∈ {0,1} and15

𝑑∗(𝑥, 𝑦) = 1⇔ (𝑥− 𝑥̄)𝑦 ⩾ 0,

for some 𝑥̄ ∈  , satisfying 𝑥̄= 𝔼 [𝑥|(𝑥− 𝑥̄)𝑦 < 0] if {(𝑥− 𝑥̄)𝑦 < 0} ≠∅.

Suppose the object’s profitability is always positive (𝑦𝑚𝑖𝑛 ⩾ 0), and conjecture a threshold equilibrium with some evidence con

cealment -- that is, suppose 𝑥̄ ∈ (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥). Then, because 𝑦 is always greater than 0, it must be that 𝑥̄ > 𝔼 [𝑥|(𝑥− 𝑥̄)𝑦 < 0], and 
thus the equilibrium condition in Proposition 4 is not satisfied. Such a conjectured equilibrium would unravel: the buyer’s posterior 
upon observing non-disclosure would be 𝔼 [𝑥|(𝑥− 𝑥̄)𝑦 < 0], which is strictly smaller than 𝑥̄. Consequently, when the advisor draws a 
realization just under 𝑥̄, they strictly prefer to reveal it to the buyer, which is inconsistent with the initially conjectured equilibrium. 
An analogous unraveling argument applies if the object’s profitability is always negative (𝑦𝑚𝑎𝑥 ⩽ 0). However, when profitability can 
be both positive or negative, so that 0 ∈ (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥), then any equilibrium involves partial disclosure. There is some interior threshold 
𝑥̄ such that the advisor discloses (only and) all ``good news'' about the object (𝑥 ⩾ 𝑥̄) when profitability is positive, and (only and) all 
“bad news'' (𝑥 ⩽ 𝑥̄) about the object when profitability is negative. Partially uninformative equilibria do not unravel, because, upon 
observing non-disclosure, the buyer does not know whether the advisor has ``good news'' but negative profitability or ``bad news'' but 
positive profitability.

Note also that equilibrium disclosure strategies as described in the proposition are independent of the shape of the demand 
function 𝑝 -- in contrast to the model with commitment, where the shape of optimal disclosure rules depends on the curvature of 𝑝. 

14 Note that the characterization of optimal disclosure rules under the commitment protocol, given in Theorem 1, also applies when 𝑦𝑚𝑖𝑛 < 0.
15 Assuming that, when indifferent, the advisor discloses the evidence.
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This happens because the advisor makes their disclosure decision only after seeing the value; and at that point their best response is 
guided solely from comparing the given realization to the buyer’s belief of no disclosure. If the profitability of the object is positive, 
then, because the demand function is strictly increasing, the best response is to disclose good news (better than the belief of no 
disclosure), and conceal otherwise. If instead the profitability of the object is negative, the best response is to disclose bad news, 
and conceal otherwise. This implies that the ``threshold profitability'' is always 0, which divides positive profitability objects from 
negative profitability objects.

Now return to the question of whether mandated transparency incentivizes the advisor to disclose information about the object’s 
value to the buyer. Proposition 5 shows that, in contrast with the benchmark with commitment, in this case mandated transparency 
induces the advisor to reveal all their evidence about the object’s value; and this result holds independently of the curvature of the 
buyer’s demand function.

Proposition 5. Under a mandated transparency policy that reveals the object’s profitability to the buyer, full disclosure is the unique equilib

rium of the disclosure game with no commitment.

5.2. Unconstrained signaling technology

The usual assumption in information design models is that a sender (the advisor, in this case) commits a signal a map from states 
of the world (the object’s value and profitability) into distributions of messages to inform a receiver (the buyer) about the state. 
The sender’s choice of such a map is unrestricted. Contrastingly, in this paper, I assumed that the sender is restricted to a class of 
“signaling strategies:'' the class of simple disclosure rules, in which the sender’s message either fully conveys the information in a 
piece of evidence, or is ``silent''. Such silence is a message in itself, which conveys to the receiver that the state of the world is ``one 
of the value-profitability pairs that would lead the sender to stay silent''.

In the constrained information design problem I study, Theorem 1 provides quite a complete characterization of the advisor’s 
optimal messaging strategy. In comparison, a characterization of the sender’s optimal signal in the equivalent unconstrained design 
problem is elusive -- Rayo and Segal (2010) provide a partial characterization of the optimal signal when the demand function 𝑝 is 
a�ine. Regardless, some of the results in this paper also hold in the ``unconstrained design version'' of the problem. For example, 
Proposition 1, and its Corollary 3 would still be true, so that transparency may be detrimental to the advisor’s incentives to relay 
information about the object’s value to the buyer, depending on the curvature of the buyer’s demand function.
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Appendix A. Proofs

Statements and Proofs of Claims 1 and 2. This section completes the proof in the main text, showing that any disclosure rule that 
does not satisfy the threshold structure described in (4) can be improved upon by a rule that does satisfy (4). To that end, consider 
𝑑 and 𝑑 as in (6) and (7). I prove the following two claims used in the main text.

Claim 1. 𝑑 and 𝑑 produce the same overall probability of sale.

Proof.

𝔼[𝑃 (𝑦, 𝑑)] − 𝔼[𝑃 (𝑦, 𝑑)] =

= ∫


∫


[
𝑝(𝑥) − 𝑝(𝑥𝑁𝐷)

] [
𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦)

]
𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦)

= ∫


[
𝑝(𝑥) − 𝑝(𝑥𝑁𝐷)

]
∫


[
𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦)

]
𝑑𝐹𝑌 |𝑥(𝑦)𝑑𝐹𝑋 (𝑥) = 0

where 𝐹𝑌 |𝑥 is the profitability distribution conditional on value 𝑥 and 𝐹𝑋 is the marginal value distribution. The first equality uses 
the definition of 𝑃 (𝑦, 𝑑) and the third is due to 𝑑 and 𝑑 disclosing each realization with the same probability, as in (8). □

Claim 2. 𝑑 induces a larger covariance between sales and profitability than 𝑑.

Proof.

Cov
[
𝑦,𝑃 (𝑦, 𝑑)

]
− Cov

[
𝑦,𝑃 (𝑦, 𝑑)

]
= 𝔼

[(
𝑃 (𝑦, 𝑑) − 𝑃 (𝑦, 𝑑)

)
(𝑦− 𝔼(𝑦))

]
= ∫


∫


[
𝑝(𝑥) − 𝑝(𝑥𝑁𝐷)

] [
𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦)

]
[𝑦− 𝔼(𝑦)]𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦)
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= ∫


[
𝑝(𝑥) − 𝑝(𝑥𝑁𝐷)

]
∫


[
𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦)

]
[𝑦− 𝔼(𝑦)]𝑑𝐹𝑌 |𝑥(𝑦)𝑑𝐹𝑋 (𝑥) (14)

By the definition of 𝑑, for 𝑥 < 𝑥𝑁𝐷 , 𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦) ⩾ 0 when 𝑦 < 𝑦̂(𝑥) and 𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦) ⩽ 0 when 𝑦 > 𝑦̂(𝑥). We thus have, for 
𝑥 ⩽ 𝑥𝑁𝐷 ,

∫


[
𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦)

]
[𝑦− 𝔼(𝑦)]𝑑𝐹𝑌 |𝑥(𝑦) = ∫



[
𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦)

]
[𝑦− 𝑦̂(𝑥)]𝑑𝐹𝑌 |𝑥(𝑦) ⩽ 0,

where the equality follows from the fact that the expected difference 𝑑(𝑥, 𝑦)−𝑑(𝑥, 𝑦) is 0 (as given by (8)). Analogously, we can show 
that

∫


[
𝑑(𝑥, 𝑦) − 𝑑(𝑥, 𝑦)

]
[𝑤− 𝔼(𝑦)]𝑑𝐹𝑌 |𝑥(𝑦) ⩾ 0,

when 𝑥 > 𝑥𝑁𝐷 . Moreover, these inequalities are strict for a positive measure of realizations. These observations, along with the fact 
that 𝑝 is strictly increasing, deliver that the expression in (14) is strictly positive. □

Proof of Theorem 1. 
Step 1. Suppose 𝑑 is a disclosure rule such that no disclosure happens with positive probability �- that is, ∫ ∫ [

1 − 𝑑(𝑥, 𝑦)
]
𝑑𝐹𝑋|𝑦(𝑥) 

𝑑𝐹𝑌 (𝑦) > 0 �- and suppose 𝑑 does not satisfy the characterization in Theorem 1. Then 𝑑 can be strictly improved.

For any disclosure rule 𝑑 such that no disclosure happens with positive probability, the advisor’s value is given by

∫
𝑦 

𝑦𝑃 (𝑦, 𝑑)𝑑𝐹𝑌 (𝑦) = ∫
𝑦 

𝑦∫


[
𝑑(𝑥, 𝑦)𝑝(𝑥) + (1 − 𝑑(𝑥, 𝑦))𝑝(𝑥𝑁𝐷)

]
𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦),

where 𝑥𝑁𝐷 =
∫ ∫ 𝑥 (1 − 𝑑(𝑥, 𝑦))𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦)

∫ ∫ (1 − 𝑑(𝑥, 𝑦))𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦) 
.

For 𝑦 ∈ and 𝑥 ∈  , we can take a derivative of the sender’s value with respect to 𝑑(𝑥, 𝑦), to get

𝜕Π 
𝜕𝑑(𝑥, 𝑦)

=𝑦
(
𝑝(𝑥) − 𝑝(𝑥𝑁𝐷)

)
𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦)

+
⎛⎜⎜⎝∫ ∫


𝑦̃ [1 − 𝑑(𝑥̃, 𝑦̃)]𝑑𝐹𝑋|𝑦̃(𝑥̃)𝑑𝐹𝑌 (𝑦̃)

⎞⎟⎟⎠𝑝′(𝑥𝑁𝐷) 𝜕𝑥𝑁𝐷

𝜕𝑑(𝑥, 𝑦)

Now from the definition of 𝑥𝑁𝐷 , we get

𝜕𝑥𝑁𝐷

𝜕𝑑(𝑥, 𝑦)
=

∫ ∫ (𝑥̃− 𝑥)(1 − 𝑑(𝑥̃, 𝑦̃))𝑑𝐹𝑋|𝑦̃(𝑥̃)𝑑𝐹𝑌 (𝑦̃)(∫ ∫ (1 − 𝑑(𝑥̃, 𝑦̃))𝑑𝐹𝑋|𝑦̃(𝑥̃)𝑑𝐹𝑌 (𝑦̃)
)2 𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦)

Substituting this into the previous equation, we have

𝜕Π 
𝜕𝑑(𝑥, 𝑦)

=
[
𝑦
(
𝑝(𝑥) − 𝑝(𝑥𝑁𝐷)

)
− 𝑦𝑁𝐷𝑝′(𝑥𝑁𝐷)(𝑥− 𝑥𝑁𝐷)

]
𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦), (15)

where 𝑦𝑁𝐷 is the average object profitability given non-disclosure. It is easy to check that, if 𝑥 < 𝑥𝑁𝐷 ,

𝜕Π 
𝜕𝑑(𝑥, 𝑦)

⎧⎪⎨⎪⎩
> 0, if 𝑦 < 𝑦𝑁𝐷

[
𝑝′(𝑥𝑁𝐷)(𝑥𝑁𝐷−𝑥)

𝑝(𝑥𝑁𝐷)−𝑝(𝑥) 
]

< 0, if 𝑦 > 𝑦𝑁𝐷
[
𝑝′(𝑥𝑁𝐷)(𝑥𝑁𝐷−𝑥)

𝑝(𝑥𝑁𝐷)−𝑝(𝑥) 
]

Conversely, if 𝑥 > 𝑥𝑁𝐷 ,

𝜕Π 
𝜕𝑑(𝑥, 𝑦)

⎧⎪⎨⎪⎩
> 0, if 𝑦 > 𝑦𝑁𝐷

[
𝑝′(𝑥𝑁𝐷)(𝑥𝑁𝐷−𝑥)

𝑝(𝑥𝑁𝐷)−𝑝(𝑥) 
]

< 0, if 𝑦 < 𝑦𝑁𝐷
[
𝑝′(𝑥𝑁𝐷)(𝑥𝑁𝐷−𝑥)

𝑝(𝑥𝑁𝐷)−𝑝(𝑥) 
]

Now take disclosure 𝑑, which does not satisfy the characterization in Theorem 1. That is, 𝑑 does not have a threshold structure as in 
(4) with 𝑥̄ = 𝑥𝑁𝐷 and profitability threshold satisfying

𝑦̄(𝑥) = 𝑦𝑁𝐷

[
𝑝′(𝑥𝑁𝐷)(𝑥𝑁𝐷 − 𝑥)

𝑝(𝑥𝑁𝐷) − 𝑝(𝑥) 

]
.
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Then it must be that either 𝑑(𝑥, 𝑦) ≠ 0 when (15) is negative or 𝑑(𝑥, 𝑦) ≠ 1 when (15) is positive. In each case, 𝑑 can be strictly 
improved.

Step 2. Suppose instead that 𝑑 is the ``full disclosure'' rule �- that is, 𝑑(𝑥, 𝑦) = 1 almost everywhere. Then there are two possibilities. 
First, it may be that full disclosure is a rule that satisfies (4), (5), and 𝑥̄ = 𝑥𝑁𝐷 �- for 𝑥𝑁𝐷 = inf() and 𝑦𝑁𝐷 = inf() or 𝑥𝑁𝐷 = sup()
and 𝑦𝑁𝐷 = sup(). In that case, full disclosure satisfies the necessary conditions for optimality, as given by the Theorem.

If instead full disclosure is not a rule that satisfies the necessary conditions given in the Theorem, it must be that the disclosure rule 
implied by (4), (5), and 𝑥̄ = 𝑥𝑁𝐷 , with 𝑥𝑁𝐷 = inf() and 𝑦𝑁𝐷 = inf(), is such that no disclosure happens with positive probability. 
For this to be the case, there must exist 𝑥 ∈  such that

𝑝′ (inf()) (𝑥− inf())
𝑝(𝑥) − 𝑝 (inf())

> 1.

Similarly, it must be that the disclosure rule implied by (4), (5), and 𝑥̄ = 𝑥𝑁𝐷 , with 𝑥𝑁𝐷 = sup() and 𝑦𝑁𝐷 = sup(), is such that no 
disclosure happens with positive probability. For this to be the case, there must exist 𝑥′ ∈  such that

𝑝′ (sup())
(
𝑥′ − sup()

)
𝑝(𝑥′) − 𝑝 (sup())

< 1.

When such 𝑥 and 𝑥′ exist, we know from Proposition 6 and Lemma 2 that the optimal disclosure rule must be interior, and so that 
no disclosure happens with positive probability. Therefore, 𝑑, the ``full disclosure'' rule, is not optimal. □

Proof of Theorem 2. 
Part 1. Statement of the advisor’s problem.

Suppose the advisor chooses disclosure rule 𝑑. Upon observing non-disclosure and profitability 𝑦 (under mandated transparency), 
the buyer’s mean posterior is

𝑥𝑁𝐷
𝑦

=
∫ [1 − 𝑑(𝑥, 𝑦)]𝑥𝑑𝐹𝑋|𝑦(𝑥)
∫ [1 − 𝑑(𝑥, 𝑦)]𝑑𝐹𝑋|𝑦(𝑥) .

And so the probability of sale of object 𝑦 is

𝑃 (𝑦, 𝑑) = ∫


[
𝑑(𝑥, 𝑦)𝑝(𝑥) + (1 − 𝑑(𝑥, 𝑦))𝑝(𝑥𝑁𝐷

𝑦
)
]
𝑑𝐹𝑋|𝑦(𝑥).

Note that the probability of sale of object 𝑦 is thus independent of the disclosure rule used for objects with profitability 𝑦′ ≠ 𝑦. And 
so the advisor’s problem is separable across profitability levels. Therefore maximizing Π(𝑑) over 𝑑 ∶  × → [0,1] is equivalent to 
maximizing, for each 𝑦 ∈ , 𝑦𝑃 (𝑦, 𝑑(⋅, 𝑦)), over 𝑑(⋅, 𝑦) ∶ → [0,1].

Part 2. Characterization of optimal disclosure rule.

We proceed similarly to the proof of Theorem 1. Fixing some 𝑦 ∈ and 𝑥 ∈  , we can take a derivative of the sender’s value with 
respect to 𝑑(𝑥, 𝑦), to get

𝜕Π 
𝜕𝑑(𝑥, 𝑦)

=𝑦
(
𝑝(𝑥) − 𝑝(𝑥𝑁𝐷)

)
𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦)

+
⎛⎜⎜⎝∫ 𝑦̃ [1 − 𝑑(𝑦̃, 𝑥̃)]𝑑𝐹𝑋|𝑦̃(𝑥̃)⎞⎟⎟⎠𝑝′(𝑥𝑁𝐷

𝑦
) 𝜕𝑥𝑁𝐷

𝜕𝑑(𝑥, 𝑦)

Now from the definition of 𝑥𝑁𝐷
𝑦

, we get

𝜕𝑥𝑁𝐷
𝑦

𝜕𝑑(𝑥, 𝑦)
=

∫ (𝑥̃− 𝑥)(1 − 𝑑(𝑥̃, 𝑦))𝑑𝐹𝑋|𝑦̃(𝑥̃)(∫ (1 − 𝑑(𝑥̃, 𝑦))𝑑𝐹𝑋|𝑦̃(𝑥̃))2 𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦)

Substituting this into the previous equation, we have

𝜕Π 
𝜕𝑑(𝑥, 𝑦)

=𝑦

[(
𝑝(𝑥) − 𝑝(𝑥𝑁𝐷

𝑦
)
)
− 𝑝′(𝑥𝑁𝐷

𝑦
)(𝑥− 𝑥𝑁𝐷

𝑦
)
]
𝑑𝐹𝑋|𝑦(𝑥)𝑑𝐹𝑌 (𝑦). (16)

If 𝑑 is a disclosure rule that induces no disclosure with positive probability and does not satisfy (10) and (11) as given in the Theorem, 
then there is a positive measure of (𝑥, 𝑦) such that (16) is strictly positive but 𝑑(𝑥, 𝑦) < 1 or such that (16) is strictly negative but 
𝑑(𝑥, 𝑦) > 0. This means that 𝑑 can be strictly improved, and cannot be a solution to the advisor’s problem.

Now we must consider the possibility that the solution is ``full disclosure''. For each 𝑦̂ ∈  , and for each 𝑥̂ ∈  , let 𝑑𝑥̂(⋅, 𝑦̂) be 
defined by

𝑝(𝑥) ⩾ 𝑝 (𝑥̂) + 𝑝′ (𝑥̂) (𝑥− 𝑥̂)⇒ 𝑑𝑥̂(𝑥, 𝑦̂) = 1,
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and 𝑝(𝑥) < 𝑝 (𝑥̂) + 𝑝′ (𝑥̂) (𝑥− 𝑥̂)⇒ 𝑑𝑥̂(𝑥, 𝑦̂) = 0.

First suppose for every 𝑥̂ ∈  , 𝑑𝑥̂(⋅, 𝑦̂) implies that an open interval of realizations in  are not disclosed. Then the map Γ𝑦̂(𝑥̂) =
𝔼
(
𝑥| no disclosure region implied by 𝑑𝑥̂(⋅, 𝑦̂)

)
is a continuous self map in the compact convex set  ; and therefore has a fixed point. 

As in Lemma 1, we can show that the disclosure rule implied by this fixed point is a strict improvement over full disclosure. If instead 
there exists some 𝑥̂ ∈  such that 𝑑𝑥̂(⋅, 𝑦̂) implies almost all realizations are disclosed, then full disclosure is a disclosure rule that 
satisfies the necessary conditions given by in the Theorem. □

Proof of Proposition 1. 
If 𝑝 is strictly convex, then full disclosure is the only disclosure rule that satisfies the necessary conditions (10) and (11) in 

Theorem 2. It is therefore the optimal disclosure rule for the advisor under mandated transparency; which trivially has more disclosure 
than the optimal disclosure rule for the advisor with hidden motives.

If 𝑝 is strictly concave, then no disclosure is the only disclosure rule that satisfies the necessary conditions (10) and (11) in 
Theorem 2. It is therefore the optimal disclosure rule for the advisor under mandated transparency; which trivially has less disclosure 
than the optimal disclosure rule for the advisor with hidden motives. □

Proof of Proposition 2. 
Proof of Statement 1. If 𝑝 is locally strictly convex around 𝑥̃, there exist 𝑥′, 𝑥′′ ∈  with 𝑥′ < 𝑥̃ < 𝑥′′ such that

𝑝(𝑥) > 𝑝 (𝑥̃) + 𝑝′ (𝑥̃) (𝑥− 𝑥̃) .

From Theorem 2, we therefore know that 𝑑𝑚(𝑥, 𝑦) = 1 for almost all (𝑥, 𝑦) with 𝑥 ∈ [𝑥′, 𝑥′′]. Consequently, 𝑑(𝑥, 𝑦) ⩽ 𝑑𝑚(𝑥, 𝑦) for almost 
all (𝑥, 𝑦) with 𝑥 ∈ (𝑥′, 𝑥′′). Further note that, for each 𝑦 > 𝑦𝑁𝐷 (the expected profitability of no disclosure implied by 𝑑), there exists 
𝑥̂(𝑦) such that if 𝑥 ∈ (𝑥̃, 𝑥̂(𝑦)),

𝑝(𝑥) < 𝑝 (𝑥̃) + 𝑦𝑁𝐷

𝑦 
𝑝′ (𝑥̃) (𝑥− 𝑥̃) .

Therefore, by Theorem 1, almost all such realizations (𝑥, 𝑦) are optimally concealed. And therefore there is an open set of such (𝑥, 𝑦)
with 𝑥 ∈ [𝑥′, 𝑥′′] such that 𝑑(𝑥, 𝑦) < 𝑑𝑚(𝑥, 𝑦).

Proof of Statement 2. The proof of the second statement is analogous. □

Proof of Proposition 3. 
Suppose (𝑥, 𝑦) is such that (𝑥− 𝑥̃)(𝑦− 𝑦̃) > 0. Then if

𝑝(𝑥) > 𝑝 (𝑥̃) + 𝑦̃

𝑦
𝑝′ (𝑥̃) (𝑥− 𝑥̃) ,

it must be that

𝑝(𝑥) > 𝑝 (𝑥̃) + 𝑝′ (𝑥̃) (𝑥− 𝑥̃)

also holds. Therefore, if (𝑥 − 𝑥̃)(𝑦 − 𝑦̃) > 0, 𝑑𝑚(𝑥, 𝑦) = 1 implies 𝑑(𝑥, 𝑦) = 1; and so 𝑑(𝑥, 𝑦) ⩾ 𝑑𝑚(𝑥, 𝑦). If instead (𝑥, 𝑦) is such that 
(𝑥− 𝑥̃)(𝑦− 𝑦̃) < 0, then

𝑝(𝑥) > 𝑝 (𝑥̃) + 𝑝′ (𝑥̃) (𝑥− 𝑥̃)⇒ 𝑝(𝑥) > 𝑝 (𝑥̃) +
𝑦̃

𝑦
𝑝′ (𝑥̃) (𝑥− 𝑥̃) .

Consequently, in that case 𝑑(𝑥, 𝑦) = 1 implies 𝑑𝑚(𝑥, 𝑦) = 1; and so 𝑑(𝑥, 𝑦)⩽ 𝑑𝑚(𝑥, 𝑦). □

Proof of Proposition 4. 
Assume 𝑦𝑚𝑖𝑛 < 0 < 𝑦𝑚𝑎𝑥. (The case where all profitabilities are positive or all profitabilities are negative is discussed in the main 

text.)

Suppose the buyer’s mean posterior about the object’s value after observing non-disclosure is 𝑥̂ ∈  . Then an advisor with prof

itability 𝑦 > 0, upon observing 𝑥, will choose to disclose it if and only if 𝑥 ⩾ 𝑥̂ (assuming that the advisor discloses when indifferent). 
Conversely, an advisor with profitability 𝑦 < 0 will disclose 𝑥 if and only if 𝑥 ⩽ 𝑥̂. An advisor with profitability 𝑦 = 0 is always 
indifferent between disclosing and not disclosing, and we resolve this indifference with disclosure.

And so Bayesian consistency requires that, in this equilibrium,

𝑥̂ = 𝔼 [𝑥|(𝑥− 𝑥̂)𝑦 < 0] ,

where we note that the set {(𝑥− 𝑥̄)𝑦 < 0} has positive probability, because the joint distribution of values and profitabilities has full 
support.

Regarding existence, I remark that there exists some 𝑥̂ satisfying

𝑥̂ = 𝔼 [𝑥|(𝑥− 𝑥̂)𝑦 < 0] .
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To see that, note that 𝔼 [𝑥|(𝑥− 𝑥̂)𝑦 < 0] ∈ (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) for both 𝑥̂ = 𝑥𝑚𝑖𝑛 and 𝑥̂ = 𝑥𝑚𝑎𝑥 (both because the joint distribution of values 
and profitabilities has full support). And so, by continuity of 𝔼 [𝑥|(𝑥− 𝑥̂)𝑦 < 0], there must be some solution to 𝑥̂ = 𝔼 [𝑥|(𝑥− 𝑥̂)𝑦 < 0]. 
Given such 𝑥̂, it is easy to see that 𝑑∗(𝑥, 𝑦) ∈ {0,1} and 𝑑∗(𝑥, 𝑦) = 1⇔ (𝑥− 𝑥̂)𝑦 ⩾ 0 defines an equilibrium disclosure strategy. □

Proof of Proposition 5. Under mandated transparency, the buyer forms mean posteriors about the object separately for each prof

itability level 𝑦. It follows from a standard unraveling argument (reproduced below) that there can be no concealment in equilibrium.

Suppose for some 𝑦 ∈ , 𝕏 ⊆  is the set of evidence realizations that the advisor does not disclose to the buyer; that is, so that 
𝑑(𝑥, 𝑦) < 1 if 𝑥 ∈𝕏. And suppose 𝕏 is a set with positive probability according to 𝐹𝑋|𝑦. Then upon seeing no disclosure, and that the 
object’s profitability is 𝑦, the buyer’s ``no disclosure'' belief is

𝑥𝑁𝐷
𝑦

=
∫ 𝑥(1 − 𝑑(𝑥, 𝑦))𝑓𝑋|𝑦(𝑥)𝑑𝑥
∫ (1 − 𝑑(𝑥, 𝑦))𝑓𝑋|𝑦(𝑥)𝑑𝑥 

.

From this construction, it must be that there is a positive probability that 𝑥 ∈𝕏 and 𝑥 > 𝑥𝑁𝐷
𝑦

. And therefore, if one such 𝑥 realizes, 
the advisor’s best response is to disclose it to the buyer, thereby deviating from the candidate equilibrium strategy 𝑑(𝑥, 𝑦) < 1. We can 
therefore conclude that, for each 𝑦, any 𝑑(⋅;𝑦) such that no disclosure happens with positive probability according to 𝐹𝑋|𝑦 cannot be 
an equilibrium disclosure strategy.

And so it follows that the unique equilibrium disclosure strategy is full disclosure. □

Appendix B. Additional results

B.1. Interior vs. corner optimal disclosure rules

Theorem 1 shows that an optimal disclosure rule is such that, for some 𝑥̂ ∈  and 𝑦̂ ∈ ,

(𝑥− 𝑥̂)(𝑦− 𝑦̄(𝑥)) ⩾ 0⇒ 𝑑𝑥̂,𝑦̂(𝑥, 𝑦) = 1, (𝑥− 𝑥̂)(𝑦− 𝑦̄(𝑥)) < 0⇒ 𝑑𝑥̂,𝑦̂(𝑥, 𝑦) = 0,

where 𝑦̄(𝑥) = 𝑦̂

[
𝑝′(𝑥̂)(𝑥̂− 𝑥)
𝑝(𝑥̂) − 𝑝(𝑥) 

]
.

And the following system of two equations must hold:{
𝑥̂ = 𝔼

[
𝑥|no disclosure region implied by 𝑑𝑥̂,𝑦̂

]
𝑦̂ = 𝔼

[
𝑦|no disclosure region implied by 𝑑𝑥̂,𝑦̂

] (17)

But note that, if 𝑥̂ = inf() and 𝑦̂ = inf(), or 𝑥̂ = sup() and 𝑦̂ = sup(), it is possible for the no disclosure region implied by 𝑑𝑥̂,𝑦̂ to 
be empty.16 In that case, the expected values on the right hand side of the equations in (17) are not defined by Bayesian updating. 
For convenience, I take the stance that the buyer’s ``off-path'' beliefs of no disclosure are such that (17) is vacuously satisfied. This 
means that, if the no disclosure set is empty at one or both corners �- 𝑥̂ = inf() and 𝑦̂ = inf(), or 𝑥̂ = sup() and 𝑦̂ = sup() �- 
then these ``corner solutions'' with full disclosure are candidate optimal disclosure rules.

Lemma 1 and Proposition 6 below delineate conditions so that the optimal disclosure rule does not involve full disclosure and 
does not correspond to one of the two potential corner solutions. Specifically, Lemma 1 shows that if system (17) has an interior 
solution, then such solution must imply a disclosure rule that yields strictly higher payoff to the advisor than full disclosure.

Next, Proposition 6 proposes three conditions that guarantee that system (17) has an interior solution. The first condition guaran

tees that, for any 𝑥̂ ∈  and 𝑦̂ ∈ , the implied disclosure rule 𝑑𝑥̂,𝑦̂ induces no disclosure with positive probability; in that case, I show 
that (17) must have an interior solution. This first condition is satisfied, for example, if the demand function 𝑝 is strictly concave; but 
it can also hold for non-concave demand functions. The second condition states that (17) also has an interior solution if the demand 
function 𝑝 is a�ine. Finally, condition 3 shows that the same holds if 𝑝 is ``close enough'' to being an a�ine function; specifically, this 
condition guarantees that the optimal disclosure rule is interior for strictly convex demand functions that are ``not too convex''. (In 
section 3.2.1, I work out an example where the demand function 𝑝 is convex and the optimal disclosure rule is interior.)

Lemma 1. If system (17) has an interior solution, with 𝑥̂ ∈ 𝑖𝑛𝑡() and 𝑦̂ ∈ 𝑖𝑛𝑡(), then the optimal disclosure rule is interior and such that 
no disclosure happens with positive probability.

Proposition 6. 

16 For any other ``corner cases'', in which 𝑥̂∈ {inf(), sup()} or 𝑦̂∈ {inf(), sup()}, the implied disclosure rule 𝑑𝑥̂,𝑦̂ is necessarily such that no disclosure happens 
with positive probability. In the proof of Lemma 1, I argue that these corner disclosure rules cannot be solutions to the advisor’s problem, as they do not satisfy system 
(17).
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1. If there exist 𝑥,𝑥′ ∈  such that

𝑝′ (inf()) (𝑥− inf())
𝑝(𝑥) − 𝑝 (inf())

> 1 and 
𝑝′ (sup())

(
𝑥′ − sup()

)
𝑝(𝑥′) − 𝑝 (sup())

< 1,

then the optimal disclosure rule is interior and no disclosure happens with positive probability.

2. If 𝑝 is an a�ine function, then the optimal disclosure rule is interior and no disclosure happens with positive probability.

3. If 𝑝 = 𝛼𝑝1 + (1− 𝛼)𝑝2, where 𝑝1 is an a�ine function, then there exists 𝛼̄ ∈ (0,1) such that if 𝛼 > 𝛼̄, the optimal disclosure rule is interior 
and no disclosure happens with positive probability.

B.2. Proof of Lemma 1

Suppose system (17) has a solution with 𝑥̂ ∈ 𝑖𝑛𝑡() and 𝑦̂ ∈ 𝑖𝑛𝑡(), and let 𝑑𝑥̂,𝑦̂ be the corresponding disclosure rule defined by 
such 𝑥̂ and 𝑦̂. 

Step 1. Showing that 𝑑𝑥̂,𝑦̂ yields strictly higher value to the advisor than full disclosure.

For each 𝛼 ∈ [0,1], define the following alternative disclosure rule:

1 − 𝑑𝛼(𝑥, 𝑦) =

{
1 − 𝑑𝑥̂,𝑦̂(𝑥, 𝑦), if 𝑑𝑥̂,𝑦̂(𝑥, 𝑦) = 1
𝛼
(
1 − 𝑑𝑥̂,𝑦̂(𝑥, 𝑦)

)
, otherwise

Note that, because for all 𝛼 > 0, the probability of no disclosure implied by 𝑑𝛼 is proportional to that implied by 𝑑𝑥̂,𝑦̂, it must be 
that these rules imply the same 𝑥𝑁𝐷 and 𝑦𝑁𝐷. Therefore, because 𝑑𝑥̂,𝑦̂ is such that 𝑥̂ and 𝑦̂ solve the system (17), we know that 
as 𝛼 decreases, there is an increase in disclosure for realizations (𝑥, 𝑦) such that 𝜕Π∕𝜕𝑑(𝑥, 𝑦), as given by (15), is strictly negative. 
Therefore, the value of 𝑑𝛼 to the advisor is strictly increasing in 𝛼. Moreover, full disclosure corresponds to the case of 𝛼 = 0, which 
is therefore dominated by 𝑑𝑥̂,𝑦̂.

Step 2. Showing that any ``corner disclosure rule'' 𝑑𝑥̃,𝑦̃ defined by 𝑥̃ ∈ {inf(), sup()} or 𝑦̃ ∈ {inf(), sup()} such that no disclosure 
happens with positive probability cannot be an optimal disclosure rule.

For any disclosure rule such that no disclosure happens with positive probability, it must be that 𝔼(𝑥| no disclosure) ∈ 𝑖𝑛𝑡()
and 𝔼(𝑦| no disclosure) ∈ 𝑖𝑛𝑡() �- because 𝐹 has full support over  × and no mass points. Therefore, if 𝑥̃ ∈ {inf(), sup()} or 
𝑦̃ ∈ {inf(), sup()}, the system (17) is not satisfied, and by Theorem 1 disclosure rule 𝑑𝑥̃,𝑦̃ can be strictly improved.

□

B.3. Proof of Proposition 6

For each 𝑥̂ ∈  and 𝑦̂ ∈ , define 𝑑𝑥̂,𝑦̂ by

(𝑥− 𝑥̂)(𝑦− 𝑦̄(𝑥)) ⩾ 0⇒ 𝑑𝑥̂,𝑦̂(𝑥, 𝑦) = 1, (𝑥− 𝑥̂)(𝑦− 𝑦̄(𝑥)) < 0⇒ 𝑑𝑥̂,𝑦̂(𝑥, 𝑦) = 0,

where 𝑦̄(𝑥) = 𝑦̂

[
𝑝′(𝑥̂)(𝑥̂− 𝑥)
𝑝(𝑥̂) − 𝑝(𝑥) 

]
.

Proof of Statement 1. Suppose there exist 𝑥,𝑥′ ∈  such that

𝑝′ (inf()) (𝑥− inf())
𝑝(𝑥) − 𝑝 (inf())

> 1 and 
𝑝′ (sup())

(
𝑥′ − sup()

)
𝑝(𝑥′) − 𝑝 (sup())

< 1. (18)

Note that, because (18) holds and 𝑝 is continuously differentiable, for all 𝑥̂ ∈  and 𝑦̂ ∈  , 𝑑𝑥̂,𝑦̂(𝑥, 𝑦) = 0 for some non-empty open 
subset of  × . Therefore, 𝔼

[
𝑥|no disclosure region implied by 𝑑𝑥̂,𝑦̂

]
and 𝔼

[
𝑦|no disclosure region implied by 𝑑𝑥̂,𝑦̂

]
are well defined. 

Consider the following two continuous functions

Γ1(𝑥̂, 𝑦̂) = 𝔼
[
𝑥|no disclosure region implied by 𝑑𝑥̂,𝑦̂

]
− 𝑥̂

and Γ2(𝑥̂, 𝑦̂) = 𝔼
[
𝑦|no disclosure region implied by 𝑑𝑥̂,𝑦̂

]
− 𝑦̂.

For a disclosure rule such that no disclosure happens with positive probability, 𝔼(𝑥| no disclosure) ∈ 𝑖𝑛𝑡() and 𝔼(𝑦| no disclosure) ∈
𝑖𝑛𝑡() �- because 𝐹 has full support over × and no mass points. Consequently, for every 𝑦̂, Γ1 (inf(), 𝑦̂) > 0 and Γ1 (sup(), 𝑦̂) < 0. 
Similarly, for every 𝑥̂, Γ2 (𝑥̂, inf()) > 0 and Γ1 (𝑥̂, sup()) < 0. Therefore, by the Pointcaré-Miranda Theorem, there exist 𝑥̂ ∈ 𝑖𝑛𝑡()
and 𝑦̂ ∈ 𝑖𝑛𝑡() such that both Γ1(𝑥̂, 𝑦̂) and Γ2(𝑥̂, 𝑦̂) are simultaneously equal to 0; which are solutions to system (17). □

Proof of Statement 2. Suppose 𝑝 is a�ine. The proof uses the following claim.
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Claim 3. Let 𝑥𝜖 = inf() + 𝜖 and 𝑦𝜖 = inf() + 𝜖. Then

lim 
𝜖→0

𝔼
[
𝑥|no disclosure region implied by 𝑑𝑥𝜖,𝑦𝜖

]
> inf(),

and lim 
𝜖→0

𝔼
[
𝑦|no disclosure region implied by 𝑑𝑥𝜖,𝑦𝜖

]
> inf().

Proof. Because 𝑝 is a�ine, 𝑦̄(𝑥) = 𝑦𝜖 , so no disclosure happens if and only if either (i) 𝑥 < 𝑥𝜖 and 𝑦 > 𝑦𝜖 , or (ii) 𝑥 > 𝑥𝜖 and 𝑦 < 𝑦𝜖 . 
Therefore, 𝔼

[
𝑥|no disclosure region implied by 𝑑𝑥𝜖,𝑦𝜖

]
is given by

inf()+
⎡⎢⎢⎢⎣

𝑦𝜖

∫
inf()

Δ 

∫
𝜖

𝑥𝑓𝑋|𝑦(inf() + 𝑥)𝑓𝑌 (𝑦)𝑑𝑥𝑑𝑦+

sup()

∫
𝑦𝜖

𝜖

∫
0 

𝑥𝑓𝑋|𝑦(inf() + 𝑥)𝑓𝑌 (𝑦)𝑑𝑥𝑑𝑦
⎤⎥⎥⎥⎦

×
⎡⎢⎢⎢⎣

𝑦𝜖

∫
inf()

Δ 

∫
𝜖

𝑓𝑋|𝑦(inf() + 𝑥)𝑓𝑌 (𝑦)𝑑𝑥𝑑𝑦+

sup()

∫
𝑦𝜖

𝜖

∫
0 

𝑓𝑋|𝑦(inf() + 𝑥)𝑓𝑌 (𝑦)𝑑𝑥𝑑𝑦
⎤⎥⎥⎥⎦
−1

,

where I use the notation Δ= sup() − inf(). To assess the limit of this object as 𝜖 → 0, I use L’Hospital’s rule. The derivative of the 
numerator is

𝜕NUM

𝜕𝜖 
=

Δ 

∫
𝜖

𝑥𝑓𝑋|𝑦𝜖 (inf() + 𝑥)𝑓𝑌 (𝑦𝜖)𝑑𝑥−

𝜖

∫
0 

𝑥𝑓𝑋|𝑦𝜖 (inf() + 𝑥)𝑓𝑌 (𝑦𝜖)𝑑𝑥

−

𝑦𝜖

∫
inf()

𝜖𝑓𝑋|𝑦(inf() + 𝜖)𝑓𝑌 (𝑦)𝑑𝑦+

sup()

∫
𝑦𝜖

𝜖𝑓𝑋|𝑦(inf() + 𝜖)𝑓𝑌 (𝑦)𝑑𝑦.

The derivative of the denominator is

𝜕DEN

𝜕𝜖 
=

Δ 

∫
𝜖

𝑓𝑋|𝑦𝜖 (inf() + 𝑥)𝑓𝑌 (𝑦𝜖)𝑑𝑥−

𝜖

∫
0 

𝑓𝑋|𝑦𝜖 (inf() + 𝑥)𝑓𝑌 (𝑦𝜖)𝑑𝑥

−

𝑦𝜖

∫
inf()

𝑓𝑋|𝑦(inf() + 𝜖)𝑓𝑌 (𝑦)𝑑𝑦+

sup()

∫
𝑦𝜖

𝑓𝑋|𝑦(inf() + 𝜖)𝑓𝑌 (𝑦)𝑑𝑦.

Therefore we have

lim 
𝜖→0

𝔼
[
𝑥|no disclosure region implied by 𝑑𝑥𝜖,𝑦𝜖

]
= inf() +

lim𝜖→0
𝜕NUM

𝜕𝜖 
lim𝜖→0

𝜕DEN

𝜕𝜖 
=

= inf() +
∫ Δ
0 𝑥𝑓𝑋| inf()(inf() + 𝑥)𝑓𝑌 (inf())𝑑𝑥 

∫ Δ
0 𝑓𝑋| inf()(inf() + 𝑥)𝑓𝑌 (inf())𝑑𝑥+ ∫ sup()

inf() 𝑓𝑋|𝑦(inf())𝑓𝑌 (𝑦)𝑑𝑦
> inf(),

where the inequality is due to 𝑓𝑌 and 𝑓𝑋|𝑦, for each 𝑦, being strictly positive densities. The second part of the second observation �- 
that lim𝜖→0 𝔼

[
𝑦|no disclosure region implied by 𝑑𝑥𝜖,𝑦𝜖

]
> inf() �- can be shown analogously. □

By Claim 3, we know that there exists some 𝛿 > 0 such that Γ1(inf() + 𝛿, inf() + 𝛿) > 0 and Γ2(inf() + 𝛿, inf() + 𝛿) > 0. 
Moreover, we have that for any 𝑦̂ > inf() + 𝛿, it also holds that

𝔼 [𝑥|no disclosure] > 𝛿, and therefore Γ1(inf() + 𝛿, 𝑦̂) > 0

(This is true because, as 𝑦̂ increases, the ``no disclosure'' region with 𝑥 > 𝛿 becomes larger and the ``no disclosure region with 𝑥 < 𝛿

becomes smaller.) Consequently, for all 𝑦̂ > inf() + 𝛿, Γ1(inf() + 𝛿, 𝑦̂) > 0. Analogously, for all 𝑥̂ > inf() + 𝛿, Γ2(𝑥̂, inf() + 𝛿) > 0.

Now consider the following claim (stated without proof, as it is analogous to that of Claim 3).

Claim 4. Let 𝑥𝜖 = sup() − 𝜖 and 𝑦𝜖 = sup() − 𝜖; then

lim 
𝜖→0

𝔼
[
𝑥|no disclosure region implied by 𝑑𝑥𝜖,𝑦𝜖

]
< sup(),

and lim 
𝜖→0

𝔼
[
𝑦|no disclosure region implied by 𝑑𝑥𝜖,𝑦𝜖

]
< sup().
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By Claim 4, we know that there exists some 𝛿′ > 0 such that Γ1(sup() − 𝛿′, sup() − 𝛿′) < 0 and Γ2(sup() − 𝛿′, sup() − 𝛿′) < 0. 
Moreover, we have that for any 𝑦̂ < sup() − 𝛿′, it also holds that Γ1(sup() − 𝛿′, 𝑦̂) < 0. (As 𝑦̂ decreases, the ``no disclosure'' region 
with 𝑥 < 𝛿′ becomes larger and the ``no disclosure region with 𝑥 > 𝛿′ becomes smaller.) Consequently, for all 𝑦̂ < sup() − 𝛿′, 
Γ1(sup() − 𝛿′, 𝑦̂) < 0. Analogously, for all 𝑥̂ < sup() − 𝛿′, Γ2(𝑥̂, sup() − 𝛿) < 0.

Putting all together, there exists a convex compact subset ̃ × ̃ of  ×  , defined by ̃ = [inf() + 𝛿, sup() − 𝛿′] and ̃ =
[inf() + 𝛿, sup() − 𝛿′] such that for all 𝑦̂ ∈ ̃ ,

Γ1(inf(̃), 𝑦̂) < 0, and Γ1(sup(̃), 𝑦̂) > 0.

Similarly, for all 𝑥̂ ∈ ̃ ,

Γ2(𝑥̂, inf(̃)) < 0, and Γ2(𝑥̂, sup(̃)) > 0.

Therefore, by the Pointcaré-Miranda Theorem, there exist 𝑥̂ ∈ 𝑖𝑛𝑡(̃) and 𝑦̂ ∈ 𝑖𝑛𝑡(̃) such that both Γ1(𝑥̂, 𝑦̂) and Γ2(𝑥̂, 𝑦̂) are simulta

neously equal to 0; which are solutions to system (17). □

Proof of Statement 3. Let 𝑑𝛼
𝑥̂,𝑦̂

be the disclosure rule implied by thresholds 𝑥̂ and 𝑦̂ when the demand function is given by 𝑝 =
𝛼𝑝1 + (1 − 𝛼)𝑝2. Because 𝑝2 is continuously differentiable, regardless of its curvature, the disclosure rule 𝑑𝛼

𝑥̂,𝑦̂
induces no disclosure 

with positive probability, except perhaps if (𝑥̂, 𝑦̂) = (inf(), inf()) or (𝑥̂, 𝑦̂) = (sup(), sup()).
Moreover, for each 𝑥̂ ∈ 𝑖𝑛𝑡() and 𝑦̂∈ 𝑖𝑛𝑡(), the values

Γ𝛼
1 (𝑥̂, 𝑦̂) = 𝔼

[
𝑥|no disclosure region implied by 𝑑𝛼

𝑥𝜖,𝑦𝜖

]
− 𝑥̂

and Γ𝛼
2 (𝑥̂, 𝑦̂) = 𝔼

[
𝑦|no disclosure region implied by 𝑑𝛼

𝑥𝜖 ,𝑦𝜖

]
− 𝑦̂

are continuous functions of 𝛼. We know by Statement 2 that, for 𝛼 = 1, there is an interior point (𝑥̂, 𝑦̂) such that Γ𝛼
1 and Γ𝛼

2 are 
simultaneously equal to 0. By continuity, it must be that there exists 𝛼̄ ∈ (0,1) such that if 𝛼 > 𝛼̄, then there is an interior point (𝑥̂′, 𝑦̂′)
such that Γ𝛼

1 and Γ𝛼
2 are simultaneously equal to 0 as well. □

Alternative Proof of Statement 2. This is an additional argument showing that full disclosure is not an optimal disclosure rule when 
𝑝 is an a�ine function. In that case, the optimal disclosure rule must conceal realizations with positive probability, and therefore 
induce 𝑥𝑁𝐷 ∈ int () and 𝑦𝑁𝐷 ∈ int (). By Theorem 1, 𝑥̂ = 𝑥𝑁𝐷 and 𝑦̂ = 𝑦𝑁𝐷 must therefore be a solution to system (17).

The demand function is a�ine, given by 𝑝(𝑥) = 𝑎 + 𝑏𝑥. For any disclosure rule 𝑑, the first term in the advisor’s payoff expressed 
in (3) must be 𝔼(𝑦)𝔼[𝑃 (𝑦, 𝑑)] = 𝔼(𝑦) [𝑎+ 𝑏𝔼(𝑥)]. (This is a straightforward consequence of the martingale property of beliefs, or 
“Bayesian plausibility''.) Therefore the overall probability of sale is independent of the disclosure rule.

Now let 𝑑1 be the full disclosure rule; and take any other disclosure rule 𝑑𝑥̂,𝑦̂, defined by interior thresholds 𝑥̄ and 𝑦̄. It must be 
that, for 𝑦 < 𝑦̄, 𝑃 (𝑦, 𝑑) < 𝑃 (𝑦, 𝑑1) and, for 𝑦 > 𝑦̄, 𝑃 (𝑦, 𝑑) > 𝑃 (𝑦, 𝑑1). Consequently, the covariance of sales and profitability is larger 
under 𝑑 than under 𝑑1; and thus 𝑑1 is not an optimal disclosure rule. □

Data availability

No data was used for the research described in the article.
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