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Correlation concern

Andrew Ellis 1

A B S T R A C T 

In many choice problems, the interaction between several distinct variables determines the payoff of each alternative. I propose and axiomatize 
a model of a decision maker who recognizes that she may not accurately perceive the correlation between these variables, and who takes this 
into account when making her decision. She chooses as if she calculates each alternative’s expected outcome under multiple possible correlation 
structures, and then evaluates it according to the worst expected outcome.

1. Introduction

In many decision problems, the overall payoff of each alternative depends on multiple, distinct variables; for instance, the return 
of a stock portfolio depends on the return of the underlying stocks. Understanding the correlations between these underlying objects 
is difficult both conceptually and econometrically.2 Concern about her own (or another agent’s) lack of a good understanding of these 
interdependencies can materially change the behavior of a decision maker (DM).

An individual may choose an index fund over the corresponding stocks because she does not recognize their connection and is 
uncertain about the correlation between the stocks. A financial institution may choose a suboptimal loan portfolio in order to pass a 
stress test that ensures it is not subject to too much systematic risk. A principal may offer a simple contract to ensure that it is robust 
to the agent’s perception of the correlations between the payoffs it offers, the agent’s own information, and the private information 
and actions of other agents.

I propose and axiomatize a model of a DM who recognizes that she may not accurately perceive the correlation between the 
underlying sources of uncertainty, and who takes this into account when making her decision. The DM expresses preferences over 
(lotteries over) portfolios of assets whose payoffs all depend on a common state space, known to the modeler but not necessarily the 
DM. I consider a DM who may misperceive the correlation between assets, and propose axioms that characterize a preference for 
alternatives with payoffs that do not depend on the correlations. As in Ellis and Piccione (2017) (henceforth, EP), misperception of 
correlation is identified by a strict preference over two portfolios that always yield the same consequence, but, unlike EP, the DM is 
averse to her uncertainty about these correlations. The main result shows that a DM’s behavior satisfies the axioms if and only if she 
can be represented as if she considers a set of possible correlation structures between the actions and evaluates each alternative by 
the worst expected utility in that set.

To illustrate the setting and approach, consider a DM choosing between collections of assets whose returns depend on tomorrow’s 
high temperature. This common source of uncertainty defines an objective relationship between them, and if they are all expressed in 
Celsius, then understanding their correlations is easy. However, if some are expressed in Celsius, others in Fahrenheit, and still more 
in Kelvin, then a DM who does not remember how to convert between units may be uncertain about how strongly correlated some are 
with others. I identify whether the DM understands these connections from her choice between two portfolios that lead to the exact 
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same payoff for every high temperature using the correct conversions, but where the first contains a single bet and the second several 
bets expressed in both Celsius and Fahrenheit. For example, she may choose between a bet that pays $100 for sure and a pair of bets, 
one paying $100 if and only if the temperature is above 30◦ Celsius the other paying $100 if and only if it is below 86◦ Fahrenheit. 
If the DM expresses a strict preference for one or the other, then she reveals that she is uncertain (or has incorrect beliefs) about the 
conversion between units and so the correlation between the bets. For a more realistic choice, an agent may strictly prefer an S&P 
500 index-tracking fund to a portfolio of the 500 underlying stocks of the S&P 500 (in the right proportions and without transaction 
costs) because she does not recognize their connection and is uncertain about the underlying correlations between the stocks.

The novel Negative Uncorrelated Independence axiom captures concern about correlation in the alternatives. Intuitively, it says that 
if she prefers an alternative where correlation matters over one where it does not, then introducing potential correlation to both 
without making either better or worse does not lead to a preference reversal. Formally, I capture this by introducing lotteries and 
weakening the independence axiom. If the DM prefers a portfolio 𝑃 (such as the pair of bets above) to an individual asset 𝑎 (such 
as a sure amount of money), then she also prefers a lottery between 𝑃 and a second portfolio 𝑃 ′ to a lottery between 𝑎 and 𝑃 ′. I 
also impose EP’s Weak Monotonicity axiom that requires that whenever one portfolio is better than another for every possible joint 
distribution over outcomes, that portfolio is preferred.

These two axioms, jointly with other standard axioms, are necessary and sufficient for the DM’s preference to have a Correlation 
Concern Representation (CCR). The representation consists of a set of joint distributions over the payoffs of assets, each consistent with 
the same underlying distribution when restricted to a given asset. She evaluates each portfolio by its worst expected utility according 
to one of these distributions. When the DM understands sufficiently rich subsets of assets, then her perception of possible correlation 
structures can be uniquely recovered from her choices.

More formally, I take as given an objective state space Ω that pins down both the possible returns of each asset and how they are 
correlated with each other (in the above example, Ω is the temperature). A DM with a CCR acts as if she considers a larger, subjective 
state space rich enough to express correlations between assets not captured by Ω. Following EP, I use a state space that has many 
copies of Ω where the return of each asset is determined by one copy (the temperature in Celsius, in Fahrenheit and in Kelvin). Any 
belief about correlations between assets can be represented as a probability measure on such a state space. A set of these probability 
measures, each with the same marginal distribution over every copy of Ω, captures the DM’s uncertainty about correlations. Her 
choice of profile maximizes the minimum expected utility across the set, as in the literature on ambiguity aversion. When enough 
assets are mapped to the same copy, the set can be uniquely identified from these choices.

A DM with a CCR is not probabilistically sophisticated (Machina and Schmeidler, 1992), even on the larger state space. This is 
important because, as noted by Epstein and Halevy (2019), probabilistic models of correlation misperception (including Eyster and 
Weizsäcker (2010); Levy and Razin (2015); Enke and Zimmerman (2018); EP) do not allow ``awareness of the complexity of her 
environment and self-awareness of her cognitive limitations [to] lead the decision-maker to doubt that her wrong beliefs are correct.'' 
In contrast, a DM with a CCR may recognize that she does not understand certain correlations and choose accordingly; for instance, 
she may refuse to take either side of a trade that she does not understand, or she may pay a premium to avoid more complex prospects 
that require her to evaluate more correlations.

The paper concludes by studying how the CCR captures some behavior of particular interest. Consider a DM who always prefers 
an individual action to a profile that yields the same outcome in every state. This DM prefers ``simpler'' alternatives that do not 
require her to think about correlations. A CCR captures this behavior when the set of priors includes the correctly specified one. The 
components of the CCR reflect patterns of behavior in the natural way. For example, one DM is more concerned about correlation 
than another if whenever the first prefers a profile to an action, then so does the second. This is equivalent to the first considering a 
larger set of probability measures than the second, once the two are projected onto a state space in which they are comparable.

1.1. Related literature

This paper extends and generalizes EP. The setting, detailed in Section 2, is essentially identical to theirs. EP allow the DM to ex

press uncertainty about the objective but unknown relationship between actions, but they require her to do so in a manner consistent 
with expected utility. My model allows the DM to be averse to this source of uncertainty to capture concern about potentially misun

derstanding correlations. To do so, I replace the standard independence axiom with the novel Negative Uncorrelated Independence 
axiom discussed above. The other axioms and definitions in Section 3 have counterparts in EP. In particular, Weak Monotonicity, 
the key new axiom of EP, is exactly the same, and I strengthen non-singularity slightly relative to EP. Theorems 1 and 2 generalize 
their counterparts in EP (Theorems 1 and 2) in the same way that Gilboa and Schmeidler (1989) generalizes Anscombe and Aumann 
(1963): they deliver representations on a subjective state space capturing all possible correlations where the DM maximizes her min

imum expected utility across a set of priors, as opposed to maximizing her expected utility for a given prior. More explicitly, EP is 
the special case of CCR where the set is a singleton and is distinguished by satisfying the independence axiom (Corollary 1).

There is ample experimental evidence for correlation misperception, including Eyster and Weizsäcker (2010), Rubinstein and 
Salant (2015), Enke and Zimmerman (2018), and Hossain and Okui (2024). Experimental evidence that agents are aware of and 
concerned about correlation can be found in Epstein and Halevy (2019). They study an environment with explicit uncertainty about 
the correlation between two events whose joint realization determines the payoff of a bet. A majority of subjects are inconsistent with 
a probabilistic model of correlation, and a majority of that majority at least weakly prefer bets that do not depend on correlation. 
Indirect evidence comes from theoretical study of asset markets. In this context, Jiang and Tian (2016), Liu and Zeng (2017), and 
Huang et al. (2017) consider such a model and show it explains some stylized facts including under-diversification and limited 
participation in the market.
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Epstein and Seo (2010, 2015) explore axiomatically the consequences of introducing ambiguity in the classic exchangeable model 
of de Finetti. An exogenous product state space describes the outcome of a sequence of experiments that are indistinguishable and 
possibly related but not identical. They provide a model where the DM perceives ambiguity about the relationship between experi

ments. The functional form, especially in the 2010 paper, is similar to the one I consider, but acts depend exogenously on a collection 
of experiments.

Epstein and Halevy (2019) consider a related model. They argue that, in the setting above, an ambiguity averse agent may prefer 
bets on only a single experiment to bets that depend on multiple experiments. As noted above, they conduct an experiment that 
confirms that a number of subjects have this preference.

Heo (2020) provides a different perspective on DM averse to acts that depend on different components of an (objectively given) 
product state space, or issues. He argues that such a DM may strictly prefer an act that depends on a single issue to a mixture of that act 
with an equally good act that depends on a different issue. As a consequence, she may violate the classic uncertainty aversion axiom. 
Adapted to this setting, NUI requires that a DM who prefers a multi-issue act to a single issue act does not reverse that preference 
when both are mixed with a common third act. Moreover, a DM with a correlation concern representation satisfies the uncertainty 
aversion axiom, though I do not explicitly impose it. These approaches provide complementary perspectives on the issue.

To apply the above papers that take a product state as given, the modeler must know what the DM perceives the state space to 
be and observe her ranking of acts on this state space. In settings where she misperceives her options, this may be more difficult. For 
instance in the thought experiment in Section 3.1, this modeling requires that the DM can be observed to rank bets on impossible 
events like ``temperature is greater than 0 ◦𝐶 but lower than 32 ◦𝐹 .''

Concern for robustness has other applications in mechanism design. For instance, Carroll (2017) considers a seller uncertain 
about the correlation between the buyer’s values of different goods that can be bundled. The CCR captures the behavior of such a 
principal nicely. Another strand of the behavioral mechanism design literature focuses instead on a principal concerned that the agent 
does not correctly understand the game that she is playing. Most notably, Li (2017) considers obviously strategy proof mechanisms: 
mechanisms played correctly even agents who do not understand the relationship between the other agents’ actions and information 
with her own payoff. This is conceptually connected to the results herein, but in the CCR an agent evaluates each mechanism with 
the ``worst'' beliefs about the relationship to others. One can model this by considering incomplete preferences and maintaining 
independence instead of maintaining completeness and NUI.

Levy et al. (2022) and Laohakunakorn et al. (2019) consider an agent who is exposed to information from multiple sources. She 
considers all priors ``close enough'' to a benchmark when making her decision. As in this paper, she considers the worst of these priors 
when evaluating acts. The benchmark is full independence.

2. Primitives

There is a set  of actions, with typical elements 𝑎, 𝑎𝑖, 𝑏, 𝑏𝑖. Each action results in an outcome or consequence in 𝑋 =ℝ, with typical 
elements 𝑥, 𝑦, 𝑧. This outcome is determined by a state of the world drawn from the finite set Ω, with typical elements 𝜔,𝜔′. I interpret 
the state space Ω as a description of the ``objectively possible'' joint realizations of the outcomes of any set of actions, against which 
the DM’s subjective perceptions of joint realizations are evaluated.

A map 𝜌 ∶ × Ω→𝑋 describes the relationship between actions, states, and outcomes, with the action 𝑎 yielding the outcome 
𝜌(𝑎,𝜔) in state 𝜔. The set  includes every Savage act, i.e. for any 𝑓 ∶ Ω→𝑋 there is an action yielding the outcome 𝑓 (𝜔) in state 
𝜔 for every 𝜔∈Ω. Slightly abusing notation, I write 𝑥 ∈𝑋 for an action that yields 𝑥 in every state.

An action profile (or profile) is a finite vector of actions for which the order does not matter -- i.e., a multiset of actions. A profile 
that consists of taking the 𝑛 actions 𝑎1, ..., 𝑎𝑛 is denoted ⟨𝑎1, ..., 𝑎𝑛⟩ or ⟨𝑎𝑖⟩𝑛𝑖=1. To save notation, the range of indices is omitted when 
the number of actions is unimportant, i.e. ⟨𝑎𝑖⟩ instead of ⟨𝑎𝑖⟩𝑛𝑖=1. An agent who chooses the profile ⟨𝑎𝑖⟩𝑛𝑖=1 receives the outcomes of 
all 𝑛 actions 𝑎1, ..., 𝑎𝑛, that is, she receives 

∑𝑛
𝑖=1 𝜌

(
𝑎𝑖,𝜔

)
in state 𝜔. Let  be the set of all action profiles.

The DM chooses by maximizing a preference relation ≿ over probability distributions on  having finite support, the set of 
which is denoted by Δ . A typical element of Δ is 𝑝 =

(
𝑝1, ⟨𝑎1𝑖 ⟩; ...;𝑝𝑚, ⟨𝑎𝑚𝑖 ⟩), interpreted as the lottery where profile ⟨𝑎𝑗𝑖 ⟩ occurs 

with probability 𝑝𝑗 . As usual, the symbol ∼ denotes indifference and ≻ strict preference. The set of lotteries over actions, Δ =
{𝑝 ∈ Δ ∶ 𝑝(⟨𝑎𝑖⟩𝑛𝑖=1) > 0 only if 𝑛 = 1}, plays an important role in the axioms, and includes as a subset the lotteries over outcomes, 
Δ𝑋 = {𝑝 ∈Δ ∶ 𝑝(⟨𝑎⟩) > 0 ⟹ 𝑎∈𝑋}. It will be convenient to write 𝑝(⟨𝑎𝑖⟩) > 0 for the set of profiles ⟨𝑎𝑖⟩ in the support of 𝑝. Given 
𝑝, 𝑞 ∈Δ , a mixture 𝛼𝑝+ (1− 𝛼)𝑞, 𝛼 ∈ [0,1], is the lottery in Δ in which the probability of each profile in the support of 𝑝 and 𝑞 is 
determined by compounding the probabilities in the obvious way.

Endow Δ with the weak* topology for the space  endowed with metric 𝑑 defined as follows. Let 𝑋∗ = {⟨𝑥⟩ ∶ 𝑥 ∈ 𝑋}. The 
metric 𝑑 is discrete on  ⧵𝑋∗ and agrees with the usual metric on 𝑋 on 𝑋∗. That is, for any ⟨𝑎𝑖⟩𝑛𝑖=1, ⟨𝑏𝑖⟩𝑛′𝑖=1 ∈  , 𝑑(⟨𝑎𝑖⟩𝑛𝑖=1, ⟨𝑏𝑖⟩𝑛′𝑖=1) = 1

when 
{⟨𝑎𝑖⟩𝑛𝑖=1, ⟨𝑏𝑖⟩𝑛′𝑖=1} ⊄𝑋∗ and ⟨𝑎𝑖⟩𝑛𝑖=1 ≠ ⟨𝑏𝑖⟩𝑛′𝑖=1, 𝑑(⟨𝑥⟩, ⟨𝑦⟩) = |𝑥− 𝑦|, and 𝑑(⟨𝑎𝑖⟩𝑛𝑖=1, ⟨𝑏𝑖⟩𝑛′𝑖=1) = 0 only if ⟨𝑎𝑖⟩𝑛𝑖=1 = ⟨𝑏𝑖⟩𝑛′𝑖=1. According 

to 𝑑, a sequence of profiles converges only if it is eventually constant, or every profile therein is a single, constant outcome, and the 
sequence of outcomes converges.3

3 A sequence of profiles (𝐹𝑛) 𝑑-converges to the profile 𝐺 only if there exists 𝑁 so that either 𝐹𝑛 = 𝐺 for all 𝑛 > 𝑁 or 𝐹𝑛 = ⟨𝑥𝑛⟩ for all 𝑛 > 𝑁 , 𝐺 = ⟨𝑦⟩, and the 
sequence (𝑥𝑛)𝑛>𝑁 approaches 𝑦 in the usual sense.
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3. Foundations

This section begins by presenting a thought experiment illustrating the novel behavior the model captures. It then introduces 
and discusses the axioms on the DM’s preference relation invoked by the main result. Finally, the assumptions necessary for the 
identification result are introduced.

3.1. Illustration of behavior

Consider a DM choosing between bets that depend on 𝜏 , tomorrow’s high temperature. The DM can have either $100 or the sum 
of the outcomes of bets 𝑏𝐶 and 𝑏𝐹 , where 𝑏𝐶 pays $100 if 𝜏 is less than 30◦ Celsius ($0 otherwise) and 𝑏𝐹 pays $100 if 𝜏 is at least 
86◦ Fahrenheit ($0 otherwise). On another occasion with the same weather forecast, the DM must choose between 𝑏, which pays 
$100 if 𝜏 is less than 30◦ Celsius and −$100 otherwise, and the combination of 𝑏𝐶 and −𝑏𝐹 , which is a ``short'' position on 𝑏𝐹 that 
pays −$100 if 𝜏 is at least 86◦ Fahrenheit ($0 otherwise). Formally, the DM makes a choice from each of the sets {⟨100⟩, ⟨𝑏𝐶 , 𝑏𝐹 ⟩}
and {⟨𝑏⟩, ⟨𝑏𝐶 ,−𝑏𝐹 ⟩}. As 30◦ Celsius equals 86◦ Fahrenheit, a DM who knows this and easily converts Fahrenheit to Celsius expresses 
indifference in both choices. However, a DM who does not know exactly how to convert from one unit to the other may not exhibit 
such indifference and reasonably express ⟨100⟩≻ ⟨𝑏𝐶 , 𝑏𝐹 ⟩ and ⟨𝑏⟩ ≻ ⟨𝑏𝐶 ,−𝑏𝐹 ⟩.

A probabilistic approach to correlation can capture only one of the two preferences. For instance, a risk-averse DM with consistent 
probabilistic beliefs may express ⟨100⟩ ≻ ⟨𝑏𝐶 , 𝑏𝐹 ⟩ because she believes that 𝑏𝐶 and 𝑏𝐹 may not be perfectly hedged and thus riskier 
than $100 for sure. However, that same DM believes that 𝑏𝐶 and −𝑏𝐹 are negatively correlated and thus less risky than 𝑏. Hence 
under expected utility, ⟨100⟩ ≻ ⟨𝑏𝐶 , 𝑏𝐹 ⟩ implies ⟨𝑏𝐶 ,−𝑏𝐹 ⟩ ≻ ⟨𝑏⟩. This section outlines restrictions on behavior consistent with the 
thought experiment and equivalent to a representation of a DM concerned about correlation.

3.2. Preference for avoiding correlation

The key axiom reflects a DM who dislikes exposure to correlation. It weakens the Independence Axiom, which holds that for any 
𝑝, 𝑞, 𝑟 ∈Δ and 𝛼 ∈ (0,1], 𝑝 ≿ 𝑞 implies that 𝛼𝑝+ (1 − 𝛼)𝑟 ≿ 𝛼𝑞 + (1 − 𝛼)𝑟.

Axiom 1 (Negative Uncorrelated Independence, NUI). For any 𝑝, 𝑞, 𝑟 ∈ Δ and 𝛼 ∈ (0,1], if 𝑝 ≿ 𝑞 and 𝑞 ∈ Δ, then 𝛼𝑝 + (1 − 𝛼)𝑟 ≿
𝛼𝑞 + (1 − 𝛼)𝑟.

NUI requires that preference between two lotteries remains the same when both are mixed with a third lottery only when the less 
preferred lottery attaches probability exclusively to single action profiles. To illustrate, suppose that the DM is indifferent between ⟨𝑎, 𝑏⟩ and ⟨𝑐⟩. While her evaluation of ⟨𝑎, 𝑏⟩ depends on her perception of the correlation between the two stocks, ⟨𝑐⟩ does not 
involve any correlation at all. Hence, the absence of exposure to correlation by ⟨𝑐⟩ exactly offsets a better expected outcome from ⟨𝑎, 𝑏⟩. After mixing both with an arbitrary lottery 𝑟 over profiles, evaluating either lottery requires computing correlations. Moreover, 
neither alternative becomes objectively better: the mixture changes the expected utility of both profiles in the same way for any given 
correlation between actions by standard usual independence axiom arguments. Nonetheless, the ``simplicity'' advantage that ⟨𝑐⟩ had 
is lost. A DM who dislikes thinking about correlations should (weakly) prefer the mixture of ⟨𝑎, 𝑏⟩ and 𝑟 to the mixture of ⟨𝑐⟩ and 𝑟.

NUI implies that violations of independence do not occur when comparing lotteries over actions. Moreover, any violation of inde

pendence favors a lottery over profiles. Fixing a correlation structure, there is no expected utility based reason to reverse preference 
after mixing, as the mixture should not change the relative desirability of the two alternatives. However, mixing with a lottery over 
profiles may hedge against the possibility of a different correlation structure being realized. This hedging is potentially valuable in a 
lottery over profiles but not in one over actions, since the outcome of the former does not depend on the correlation.

A similar logic to NUI underlies axioms that appear in Gilboa et al. (2010), Dillenberger (2010), and Cerreia-Vioglio et al. (2015), 
with certain or unambiguous alternatives playing the role of uncorrelated profiles. The first assumes that the DM defaults to certainty: 
if an act is not objectively better than a lottery, then subjectively it should not be better. The other two assume that the DM prefers 
sure outcomes: if a lottery is not objectively better than a sure outcome, then a mixture of the lottery is better than a mixture of the 
sure outcome.

3.3. Basic axioms

The first two remaining axioms are standard.

Axiom 2 (Weak order, WO). The preference relation ≿ is complete and transitive.

Axiom 3 (Continuity, C). For any sequences 𝑝𝑛, 𝑞𝑛 ∈Δ , if 𝑝𝑛 → 𝑝, 𝑞𝑛 → 𝑞, and 𝑝𝑛 ≿ 𝑞𝑛 for all 𝑛, then 𝑝 ≿ 𝑞.

The DM can compare any pair of lotteries over action profiles, and her pairwise comparisons are sufficiently consistent with each 
other to form an ordering. Moreover, the ranking is sufficiently continuous. According to the topology introduced in Section 2, it is 
continuous in probability (and only probability) when the lotteries involve profiles that have non-constant payoffs, but it is continuous 
in the usual sense when restricting to lotteries over constant payoffs. In particular (1, ⟨𝑥𝑛⟩)→ (1, ⟨𝑥⟩) whenever 𝑥𝑛 → 𝑥.
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Misperception of correlation occurs whenever the DM violates Monotonicity. In this context, Monotonicity holds if(
𝑝
(⟨𝑎𝑖⟩𝑛𝑖=1), ⟨ 𝑛 ∑

𝑖=1 
𝜌(𝑎𝑖,𝜔)⟩)

𝑝
(⟨𝑎𝑖⟩)>0

≿

(
𝑞
(⟨𝑎𝑖⟩𝑛𝑖=1), ⟨ 𝑛 ∑

𝑖=1 
𝜌(𝑎𝑖,𝜔)⟩)

𝑞
(⟨𝑎𝑖⟩)>0

for every 𝜔 ∈Ω implies that 𝑝 ≿ 𝑞. EP suggests a weakening that allows the behavior in the thought experiment, yet rules out other 
violations that cannot be attributed to misperception of correlation, such as expressing ⟨49,50⟩ ≻ ⟨100⟩.

Stating the axiom formally requires some notation. For any finite subset of actions {𝑐1 , ..., 𝑐𝑛} = 𝐶 ⊂ , the set of all plausible 
realizations of 𝐶 equals

𝑟𝑎𝑛𝑔𝑒(𝑐1) × 𝑟𝑎𝑛𝑔𝑒(𝑐2) × ... × 𝑟𝑎𝑛𝑔𝑒(𝑐𝑛).

I denote by 𝑥𝑐𝑖 the value that 𝑥⃗ takes in the coordinate corresponding to 𝑐𝑖. A vector of outcomes 𝑥⃗ is a plausible realization of the 
lotteries 𝑝 and 𝑞 if it is a plausible realization of the set of all the actions included in profiles that are assigned positive probability by 
either 𝑝 or 𝑞. For a plausible realization 𝑥⃗ of 𝑝 and 𝑞, 𝑝 induces the lottery

𝑝𝑥⃗ =

(
𝑝
(⟨𝑎𝑖⟩𝑛𝑖=1), ⟨ 𝑛 ∑

𝑖=1 
𝑥𝑎𝑖⟩)

𝑝
(⟨𝑎𝑖⟩)>0

in which the constant action yielding the outcome 
∑𝑛

𝑖=1 𝑥
𝑎𝑖 has probability 𝑝

(⟨𝑎𝑖⟩𝑛𝑖=1).

Axiom 4 (Weak Monotonicity, WM). For any 𝑝, 𝑞 ∈Δ , if 𝑝𝑥⃗ ≿ 𝑞𝑥⃗ (respectively, 𝑝𝑥⃗ ≻ 𝑞𝑥⃗) for every plausible realization 𝑥⃗ of 𝑝 and 𝑞, then 
𝑝 ≿ 𝑞 (respectively, 𝑝 ≻ 𝑞).

In words, if the DM prefers the lottery induced by 𝑝 to that induced by 𝑞 for all of their plausible realizations, then she prefers 𝑝 to 
𝑞. To illustrate, consider three actions, 𝑎, 𝑏, 𝑐, and consider a DM who must choose between the profile containing 𝑎 and 𝑏, denoted ⟨𝑎, 𝑏⟩, and the one containing only 𝑐, denoted ⟨𝑐⟩. In this case, if the minimum payoff of action 𝑎 added to the minimum payoff of 
𝑏 exceeds the maximum payoff of 𝑐, then ⟨𝑎, 𝑏⟩ is preferred to ⟨𝑐⟩. The axiom thus implies that ⟨100⟩ ≻ ⟨49,50⟩ ∼ ⟨99⟩. However, it 
does not require that $100 for sure is preferred to the combination of 𝑏𝐶 and 𝑏𝐹 in the thought experiment, since the latter could also 
yield $200 (or $0).

Finally, the DM makes comparisons between (lotteries over) actions without difficulty.

Axiom 5 (Simple Monotonicity, SM). For any 𝑝, 𝑞 ∈ Δ, if (𝑝(⟨𝑎⟩), 𝜌(𝑎,𝜔))𝑝(⟨𝑎⟩)>0 ≿ (𝑞(⟨𝑏⟩), 𝜌(𝑏,𝜔))𝑞(⟨𝑏⟩)>0 for all 𝜔 ∈ Ω, then 𝑝 ≿ 𝑞, 
strictly whenever the preference is strict for each state.

This is a standard Anscombe-Aumann monotonicity condition. It only applies to lotteries over profiles consisting of a single 
action. These profiles correspond to Savage acts, and lotteries over them to Anscombe-Aumann acts. Restricted to these objects the 
DM behaves as a standard expected utility maximizer.

3.4. Understanding and richness

The previous axioms are necessary and sufficient for the representation theorem. With the goal of identifying a ``coarsest'' state 
space and a unique set of beliefs, I introduce an assumption about what the DM understands. When a DM accurately perceives 
the correlations within a subset of actions, she rules out implausible realizations. Specifically, if a DM understands the connections 
between actions in the set 𝐶 , she should disregard any plausible realization of 𝑝 and 𝑞 that fails to align the outcomes for actions in 
𝐶 as dictated by 𝜌 and Ω. Formally, say that a plausible realization 𝑥⃗ is 𝐶 -synchronous if there exists 𝜔 ∈Ω such that 𝑥𝑎 = 𝜌(𝑎,𝜔) for 
all 𝑎 ∈ 𝐶 .

Definition 1. The preference ≿ understands 𝐶 ⊆ if for any 𝑝, 𝑞 ∈Δ , 𝑝 ≿ 𝑞 whenever 𝑝𝑥⃗ ≿ 𝑞𝑥⃗ for all 𝐶 -synchronous plausible realizations 
𝑥⃗ of 𝑝 and 𝑞.

The definition builds on Weak Monotonicity. A DM who understands 𝐶 only needs to consider 𝐶 -synchronous plausible realiza

tions, not all plausible realizations. That is, the logic behind the usual Monotonicity Axiom applies for actions in that subset. For the 
identification result, I require that every action belongs to a rich, understood set of actions. Richness is defined as follows.

Definition 2. A set 𝐵 ⊂ is rich if for any function 𝑓 ∶ Ω→𝑋, there exists 𝑎∈ 𝐵 with 𝜌(𝑎,𝜔) = 𝑓 (𝜔) for all 𝜔 ∈Ω.

A rich set contains an action that has an outcome agreeing with any given function from states to outcomes. That is, 𝜌 maps a 
rich set of actions onto the set of all acts. This is a slightly stronger definition than that used by EP, which held that a set is rich if it 
contains every function measurable with respect to a given algebra. I can now state the assumption.
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Assumption 1 (Non-Singularity). Each 𝑎∈ belongs to a rich, ≿-understood subset of actions.

Non-Singularity is in the vein of the Savage (1954) assumption that the domain of preference contains all possible acts. It ensures 
that the choice domain is for any two DMs with different representations but the same understanding, there exists some pair of 
lotteries that the two rank differently. It is a joint assumption on both the preference ≿ and the set .

4. Representation

4.1. Correlation concern representation

A DM who misperceives correlation perceives additional uncertainty beyond that captured by Ω. The DM is represented using a 
subjective state space rich enough to capture her perception of uncertainty. Formally, let Ω =

∏
𝑎∈Ω be the Cartesian product 

where one copy of Ω is assigned to each action in , Σ = ⊗𝑎∈𝜎 (𝑎) be the product 𝜎-algebra on Ω where 𝜎(𝑎) is the smallest 
algebra by which 𝑎 is measurable, Ω𝑎 be the copy of Ω assigned to 𝑎 ∈, and for any 𝜔⃗ ∈Ω, 𝜔𝑎 be the component of 𝜔⃗ in Ω𝑎. The 
DM is represented as if she considers events in the larger state space Ω . Every 𝜔⃗ ∈Ω determines a joint realization of the outcomes 
of the corresponding actions, with 𝑎 yield 𝜌(𝑎,𝜔𝑎), 𝑏 yielding 𝜌(𝑏,𝜔𝑏), and so on. Hence, all additional uncertainty corresponds to 
the perception of correlations.

Definition 3. A preference ≿ has a Correlation Concern Representation (CCR) if there exists

• a continuous utility index 𝑢 ∶𝑋 →ℝ,

• a probability measure 𝜇 on Ω,

• and a closed, convex set of probability measures Π on 
(
Ω,Σ)

whose marginals agree with 𝜇: for any 𝑎∈ and all 𝜋 ∈Π,

∫
Ω

𝑢(𝜌 (𝑎,𝜔𝑎))𝑑𝜋 = ∫
Ω 

𝑢(𝜌 (𝑎,𝜔))𝑑𝜇

such that for any 𝑝, 𝑞 ∈Δ , 𝑝 ≿ 𝑞 ⟺ 𝑉 (𝑝) ≥ 𝑉 (𝑞) where

𝑉 (𝑝) = min
𝜋∈Π ∫

Ω

⎡⎢⎢⎣
∑

𝑝
(⟨𝑎𝑖⟩)>0𝑝(⟨𝑎𝑖⟩𝑛𝑖=1)𝑢

(
𝑛 ∑

𝑖=1 
𝜌
(
𝑎𝑖,𝜔

𝑎𝑖
))⎤⎥⎥⎦𝑑𝜋. (1)

While she acts as if she maximizes expected utility with probability measure 𝜇 when comparing individual actions, she does not 
when comparing profiles. When evaluating them, she considers a set of possible joint distributions possible, represented by the set 
Π. A lottery over profiles is evaluated by its expectation according to the measure that minimizes the resulting expected utility, as in 
Gilboa and Schmeidler (1989). Consequently, she acts as if she is averse to uncertainty about correlations but not about the returns 
of individual actions.

Because the mapping between the objects of choice and the product state space is subjective and derived from behavior, the model 
captures correlation misperception endogenously. With an objective rather than subjective state space, a similar model could only 
capture aversion to correctly perceived correlations. Most notably, Epstein and Seo (2010, 2015) use non-expected utility models with 
an objective product state space as above to capture ambiguity about the relationship between distributions of different variables. 
While their agent is averse to uncertainty about correlation, that correlation is determined by the objectively given mapping from 
components of the state-space to the act’s outcome.

The axioms introduced above are necessary and sufficient for the DM’s behavior to be represented by a CCR.

Theorem 1. The preference ≿ satisfies Weak Order, Continuity, Weak Monotonicity, Simple Monotonicity, and Negative Uncorrelated Inde

pendence if and only if it has a correlation concern representation.

The properties of the representation relate naturally to the axioms imposed. Simple Monotonicity and NUI imply that the DM 
acts a standard subjective expected utility maximizer when dealing with single action profiles. Weak Monotonicity allows the DM 
to misunderstand correlation between actions, as captured when the representation has a 𝜋 ∈ Π so that 𝜋(𝜔𝑎 ≠ 𝜔𝑏) > 0 for some 
𝑎, 𝑏 ∈. It nonetheless implies that the DM ignores ``implausible'' outcomes, so each probability measure in the set Π attaches zero 
probability to such outcomes, e.g. ⟨𝑏𝐶 , 𝑏𝐹 ⟩ yielding $300 or −$400, as captured by the subjective state space Ω. The representation 
captures recognition and dislike that the DM does not understand correlation by allowing Π to be a non-singleton set. As shown by 
Corollary 1, this follows from NUI.

Corollary 1 (Ellis and Piccione (2017)). The preference ≿ satisfies Weak Order, Continuity, Weak Monotonicity, Simple Monotonicity, and 
Independence if and only if it has a CCR where Π is a singleton.
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The result highlights that NUI implies a concern for correlation not captured by the independence axiom. A consequence of the 
violation of independence is a strict preference for randomization. Formally, there may exist lotteries so that 𝑝 ∼ 𝑞 but 12𝑝+

1
2 𝑞 ≻ 𝑞. 

This occurs in much of the ambiguity aversion literature and underlies the logic of the uncertainty aversion axiom. In the CCR model, 
preference for randomization follows from NUI. Here, the randomization is explicit since the ordering of the horse-race and roulette 
wheel is reversed relative to the usual Fishburn (1970) formulation of the Anscombe-Aumann model.

While CCR provides a simple model equivalent to the axioms, the set of priors is not unique, nor is the state space. The next 
subsection develops a representation on a subjective state space with fewer dimensions for which the set of priors is unique. The CCR 
state space is canonical, in the sense that any joint distribution over the returns of actions can be expressed by a probability measure 
on it. The representation is thus an ``as if'' one, as opposed to a literal description of how the DM thinks about uncertainty. Other 
state spaces may make more sense in a given context, and these can be embedded in the CCR state space. For example, the thought 
experiment has one-dimensional uncertainty, namely the temperature, so the DM should realize that higher temperatures in one 
unit correspond to higher temperatures in another. An alternative representation could have one component representing the ``true'' 
temperature and other components representing the possible conversions. For example, the subjective state space Ω∗ =ℝ× 𝔽 , where 
𝔽 is a set of increasing functions such as {𝑥↦ 1.8𝑥+ 32, 𝑥↦ 2𝑥+ 30}, directly captures uncertainty about both the temperature and 
the conversion between units: the first component is the temperature in Celsius and the second is the how it converts to Fahrenheit. 
That is, the return of 𝑏𝐶 equals 𝜌(𝑏𝐶 , 𝑥) and the return of 𝑏𝐹 equals 𝜌(𝑏𝐹 , 𝑓 (𝑥)) in state (𝑥,𝑓 ). This state space can be embedded into 
the appropriate coordinates of the CCR state space via the mapping (𝑥,𝑓 )↦ (𝑥,𝑓 (𝑥)).

The formal proof of Theorem 1 can be found in the appendix. The following outlines the main arguments showing sufficiency 
of the axioms for the representation. NUI implies independence for lotteries over individual actions, which allows identification of 
a utility index and the marginal probability measure 𝜇 by following Anscombe and Aumann (1963). Each lottery over profiles is 
mapped to a real valued act on the product state space Ω . A utility value is assigned to each by setting the utility equal to that of an 
action equivalent, with Weak Monotonicity and Continuity insuring that one exists. By NUI, this utility function is homogeneous of 
degree one and superlinear, but is defined only on a convex subset of acts on Ω. The key step extends it to all bounded, measurable 
functions while maintaining the above properties. Arguments following Gilboa and Schmeidler (1989) then establish the result.

4.2. Identification and rich representation

This section proposes a more tractable special case of CCR with a more parsimonious state space that has a unique set of priors. 
The DM acts as if she undergoes the following procedure. First, she groups together certain actions that she understands as per 
Definition 1 into an understanding class. The classes are revealed from her choices. Then, she forms beliefs about the return within 
each class. Finally, she constructs a set of beliefs about the potential relationships across classes. When comparing any two profiles, 
she evaluates each according to the worst of its possible expected utilities from these beliefs. The main result of this section shows 
that this representation exists whenever the DM exhibits the behavior implied by the correlation concern representation as long as 
there exist sufficiently rich subsets of actions that the DM understands. Moreover, the components of the representation are unique 
for most utility indexes, unlike the CCR.

The understanding classes are contained in a correlation cover  for ≿; formally,  is a collection of subsets of  so that  covers 
, each 𝐶 ∈ is understood by ≿, and no 𝐶 ∈ contains a distinct 𝐶 ′ ∈ . The correlation cover  is rich if each 𝐶 ∈ is rich. 
If for any 𝐶 ′ ∈ ′, there exists 𝐶 ∈ so that 𝐶 ′ ⊂ 𝐶 , then  is coarser than  ′. This mirrors the definition of when one partition 
is coarser than another (though the elements of  may intersect one another).

In principle, multiple correlation covers could represent the same preference. I focus on the coarsest rich correlation cover  : a rich 
correlation cover for which no other is coarser than it. The coarsest rich correlation cover has the largest (in the sense of set inclusion) 
understanding classes, and so captures a maximal view of the DM’s understanding of connections. Examples of correlation covers 
include {{𝑎} ∶ 𝑎 ∈} and {}. The former is always a correlation cover but never rich, while the latter is the coarsest rich correlation 
cover provided that  is understood. EP show that there exists a unique coarsest rich correlation cover under non-singularity.

Beliefs are defined on the subjective state space Ω =
∏

𝐶∈ Ω, with the 𝐶 -coordinate denoted by Ω𝐶 , endowed with the product 
𝜎-algebra Σ =⊗𝐶∈ Σ. All actions in the same class are assigned to the same copy of Ω, so the possible joint realizations within 
a class are identical to the objective ones. Given a state 𝜔⃗ ∈Ω and a class 𝐶 ∈ , 𝜔𝐶 denotes the component of 𝜔⃗ assigned to 𝐶 , 
and given an event 𝐸 ∈ Σ , 𝐸𝐶 is the projection of 𝐸 onto the 𝐶 component.

Definition 4. A preference ≿ has a Rich CCR (𝑢,𝜇, ,Π) if

• 𝑢 ∶𝑋 →ℝ is a continuous utility index,

• 𝜇 is a probability measure on Ω,

•  is the coarsest rich correlation cover for ≿,

• and Π is a closed, convex set of probability measures on 
(
Ω ,Σ )

where the marginal of every 𝜋 ∈Π on every 𝐶 ∈ equals 𝜇

such that for any 𝑝′, 𝑞′ ∈ Δ , 𝑝′ ≿ 𝑞′ ⟺ 𝑉 (𝑝′) ≥ 𝑉 (𝑞′) where

𝑉 (𝑝) = min
𝜋∈Π ∫

Ω

⎡⎢⎢⎣
∑

𝑝
(⟨𝑎𝑖⟩)>0𝑝(⟨𝑎𝑖⟩𝑛𝑖=1)𝑢

(
𝑛 ∑

𝑖=1 
𝜌
(
𝑎𝑖,𝜔

𝐶(𝑎𝑖)
))⎤⎥⎥⎦𝑑𝜋 (2)
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for any 𝐶 ∶→ with 𝑎∈ 𝐶(𝑎) for all 𝑎 ∈.

If one assumes Non-Singularity, then the CCR axioms hold if and only if the DM has a Rich CCR.

Theorem 2. Under Non-Singularity, the preference ≿ satisfies Weak Order, Continuity, Weak Monotonicity, Simple Monotonicity, and Neg

ative Uncorrelated Independence if and only if it has a Rich Correlation Concern Representation. Moreover, 𝜇 and  are unique, 𝑢 is unique 
up to a positive a�ine transformation, and if 𝑢 is not a polynomial, then Π is unique.

A DM represented by a rich CCR behaves according to the same axioms as one who has a CCR. Non-singularity plays an analogous 
role to the usual assumption in decision theory that every act is conceivable and ranked by the DM. This allows construction of a 
richer representation in which the parameters are unique. As standard, the DM’s risk preference is identified from her preference over 
lotteries. But here her perception of possible correlations is identified uniquely as well, unless her risk attitude is such that she does 
not care about it. This allows cleaner interpretation of the set of probability measures in the representation.

4.3. Other non-expected-utility models

Other non-EU models are also compatible with the rankings in Section 3.1. One could consider either a more general model, such 
as one derived from variational preferences (Maccheroni et al., 2006), or a non-nested model, such as one based on non-additive 
probabilities (Schmeidler, 1989) or smooth ambiguity (Klibanoff et al., 2005). The axioms, in particular NUI, justify the preference 
having a Correlation Concern Representation.

To illustrate, consider a version of the above model where, following Schmeidler (1989), a Choquet integral replaces the minimum 
over a set of measures, called Correlation Concerned Choquet Expected Utility, or CCCEU for short.4 A capacity 𝜈 on Ω is a set function 
so that 𝜈(∅) = 0, 𝜈(Ω ) = 1, and 𝐸 ⊂𝐸′ implies 𝜈(𝐸) ≤ 𝜈(𝐸′). Say that ≿ is CCCEU if there exists a strictly increasing utility index 𝑢, 
a rich correlation cover  , and a capacity 𝜈 on Ω so that for any 𝑝, 𝑞 ∈Δ , 𝑝 ≿ 𝑞 ⟺ 𝑊 (𝑝) ≥𝑊 (𝑞) where

𝑊 (𝑝) = ∫
Ω

⎡⎢⎢⎣
∑

𝑝
(⟨𝑎𝑖⟩)>0𝑝(⟨𝑎𝑖⟩𝑛𝑖=1)𝑢

(
𝑛 ∑

𝑖=1 
𝜌
(
𝑎𝑖,𝜔

𝐶(𝑎𝑖)
))⎤⎥⎥⎦𝑑𝜈 (3)

for any 𝐶 as in Definition 4 and the integration is a la Choquet.

CCCEU can accommodate the behavior in the thought experiment when there are two understanding classes,  = {𝐶,𝐹 }, the 
bets in Celsius belong to 𝐶 , and the bets in Fahrenheit belong to 𝐹 . There are four relevant events: 𝐸1 = {𝜔⃗ ∶ 𝜔𝐶 < 𝑘&𝜔𝐹 ≥ 𝑘}, 
𝐸2 = {𝜔⃗ ∶ 𝜔𝐶 < 𝑘&𝜔𝐹 < 𝑘}, 𝐸3 = {𝜔⃗ ∶ 𝜔𝐶 ≥ 𝑘&𝜔𝐹 ≥ 𝑘}, and 𝐸4 = {𝜔⃗ ∶ 𝜔𝐶 ≥ 𝑘&𝜔𝐹 < 𝑘}. One can find a capacity 𝜈 and a utility 
function 𝑢 that explain the choices; for instance, 𝑢(𝑥) = 𝑥 for all outcomes and 𝑣(𝐸𝑖) =

1
4 , 𝜈(𝐸𝑖 ∪𝐸𝑗 ) =

1
3 and 𝜈(𝐸𝑖 ∪𝐸𝑗 ∪𝐸𝑘) =

2
3 for 

any distinct 𝑖, 𝑗, 𝑘 ∈ {1,2,3,4}.

However, a CCCEU ≿ that satisfies NUI cannot explain these choices (provided that ≿ understands all actions expressed in the 
same temperature scale).

Proposition 1. Under non-singularity, a CCCEU preference relation ≿ that satisfies NUI cannot exhibit the choices in the thought experiment. 
Moreover, if 𝑢 is not a polynomial, then 𝜈 is additive.

The result, along with the example above, establishes that CCR and CCCEU are non-nested models. While the above example shows 
that CCCEU can explain the thought experiment when 𝑢 is linear, CCR cannot: risk neutral agents do not care about correlation, so 
being uncertain about correlation does not affect behavior. At the same time, CCR satisfies NUI whiles CEU satisfies it only if it 
also satisfies independence and thus exhibits no aversion to uncertainty about correlation. Intuitively, NUI implies that the DM acts 
as a standard subjective expected utility maximizer when prospects do not involve correlation, and that mixing with uncorrelated 
prospects preserves preference. These put enough additivity requirements on the capacity to reduce it to a probability measure. I 
leave a full behavioral characterization of CCCEU, as well as other models, to future work.

5. Special case and comparatives

This section begins by exploring a special case of the model where an agent considers the true correlation structure but is nonethe

less concerned that there may be a different one. Then, a notion of more concerned about correlation is introduced. One agent is 
more concerned about correlation than another if she understands fewer connections and whenever she prefers an action profile to 
an individual action, the other also does. The former is represented by a larger set of priors, representing more possible ways in which 
actions are related to one another.

Throughout this section, I assume without explicitly mentioning that every utility index is not a polynomial and that all correlation 
covers are countable or finite.

4 Thanks to a referee for suggesting this.
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5.1. Concern about correlation

Consider a DM who prefers to avoid ``complex'' profiles whose evaluation requires her to compute correlations in favor ``simple'' 
profiles that would yield the same outcome if all correlations are understood. In its simplest manifestation, this DM expresses

⟨𝑎⟩ ≿ ⟨𝑏, 𝑐⟩
whenever 𝜌(𝑎,𝜔) = 𝜌(𝑏,𝜔)+𝜌(𝑐,𝜔) for every state 𝜔. If the DM understands the correlation between 𝑏 and 𝑐, then the two alternatives 
always yield the same outcome and she would be indifferent. However, the single-action profile has no exposure to correlation whereas 
the multi-action profile might. A DM who does not understand the correlation between 𝑏 and 𝑐 may strictly prefer to choose 𝑎 and 
thereby avoid this exposure.

I capture this in general with the following axiom.

Axiom (No False Hedging). For any 𝑝∈Δ and 𝑞 ∈Δ , if

(𝑝(⟨𝑎⟩), ⟨𝜌(𝑎,𝜔)⟩)𝑝(⟨𝑎⟩)>0 ≿ (
𝑞(⟨𝑎𝑖⟩),∑

𝑖 
𝜌(𝑎𝑖,𝜔)

)
𝑞(⟨𝑎𝑖⟩)>0

for all 𝜔 ∈Ω, then 𝑝 ≿ 𝑞.

No False Hedging requires that the DM opts for a lottery over actions over any lottery over action profiles whenever the lottery 
over actions yields at least as good an outcome in every state of the world according to the true structure. To interpret the axiom, 
note that the lottery 𝑝 involves no proper profiles, only individual actions. In this sense, 𝑝 is less complex than 𝑞. Moreover, 𝑝 yields 
at least as good an outcome as 𝑞 according to the true model. The axiom says that these two advantages are sufficient for the DM to 
prefer 𝑝 to 𝑞. Note that Monotonicity implies No False Hedging which in turn implies Simple Monotonicity.

A DM with a rich CCR satisfies No False Hedging if and only if the true correlation structure belongs to her set of possible priors.

Proposition 2. Let ≿ have a rich CCR (𝑢,𝜇, ,Π). Then, ≿ satisfies No False Hedging if and only if there exists 𝜋′ ∈ Π so that 𝜋′({𝜔⃗ ∶
𝜔𝐶 = 𝜔∗ for all 𝐶 ∈ }) = 𝜇 ({𝜔∗}) for every 𝜔∗ ∈ Ω.

The claimed measure 𝜋′ can be thought of as the correctly specified probability distribution. It attaches zero probability to realiza

tions of actions not possible according to the objective state space. Therefore, the DM takes into account the true correlation structure. 
No False Hedging cannot be exhibited by a DM who takes a probabilistic approach to correlation unless she correctly perceives every 
lottery. Such a DM necessarily overvalues some misunderstood profiles while overvaluing others. For instance, consider a risk averse 
DM who misunderstands the connection between two stocks 𝑎 and 𝑏. She overvalues the profile ⟨𝑎, 𝑏⟩ whenever she underestimates 
their correlation, and undervalues it when she over estimates the correlation. But if she overestimates the correlation between 𝑎 and 
a long position on stock 𝑏, she underestimates the correlation between 𝑎 and a short position on 𝑏. Consequently, she overvalues one 
if and only if she undervalues the other.

5.2. Comparatives

The DM’s perception and attitude towards the correlation between actions is captured by two objects,  and Π. In this section 
I discuss the behavior associated with changes in these parameters. In particular, I provide behavioral definitions of when DM1 
understands more connections than DM2 and of when DM1 is more concerned about correlation than DM2. The first definition 
implies that DM2’s correlation cover is coarser than that of DM1, and the second that the set of probability measures entertained is 
larger in the sense of set inclusion when projected onto a suitable space.

I first provide a definition of when one DM understands more connections than another.

Definition 5. Say that ≿1 understands more connections than ≿2 if, for any rich 𝐵 ⊆, ≿2 understands 𝐵 implies that ≿1 understands 
𝐵.

This definition relates to the representation in the natural way.

Proposition 3. If each ≿𝑖 has a Rich CCR (𝑢𝑖, 𝜇𝑖,𝑖,Π𝑖), then ≿1 understands more connections than ≿2 if and only if 1 is coarser than 
2.

When DM1 understands more connections than DM2, her correlation cover is coarser (as defined in Section 4.2). A DM who 
satisfies monotonicity and so is represented with  = {} thus understands more connections than any other DM. Note that the 
comparison does not imply anything about the relationship between the two DMs’ tastes or beliefs.

When the definition holds, ≿1 can be represented with the same correlation cover as ≿2, namely 2. More formally, if a rich 
correlation cover  is coarser than  ′ and ≿ has a Rich CCR (𝑢,𝜇, ,Π), then there exists a unique set of probability measures Π′
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on 
(
Ω ′

,Σ ′
)

so that ≿ also a representation analogous to Definition 4 with  ′ replacing  and Π′ replacing Π. Call such a Π′

the projection of Π onto Ω ′
. This follows from the arguments in Theorem 2, which apply to any rich correlation cover for ≿, not 

just the coarsest one.

I now provide my definition of more concerned about correlation.

Definition 6. Say that ≿2 is more concerned about correlation than ≿1 if for any 𝑝 ∈ Δ , 𝑞 ∈ Δ, 𝑝 ≿2 𝑞 (𝑝 ≻2 𝑞) implies that 𝑝 ≿1 𝑞
(𝑝 ≻1 𝑞) and ≿1 understands more connections than ≿2.

Consider two DMs, DM1 and DM2, and profiles ⟨𝑎, 𝑏⟩, ⟨𝑐⟩. As above, evaluating ⟨𝑎, 𝑏⟩ requires taking a position on how 𝑎 and 𝑏
are related to each other, while evaluating ⟨𝑐⟩ does not. If DM2 is more concerned about correlation than DM1 is, then whenever 
she prefers ⟨𝑎, 𝑏⟩ to ⟨𝑐⟩, so should DM1. The above extends this logic to lotteries and formalizes it. The definition adds one condition 
to the above, namely that DM1 must understand more connections than DM2. That is, whenever DM1 views a profile as involving 
unknown correlations, so does DM2. Adding it to the definition allows us to establish the following characterization.

Proposition 4. If each ≿𝑖 has a Rich CCR (𝑢𝑖, 𝜇𝑖,𝑖,Π𝑖), then ≿2 is more concerned about correlation than ≿1 if and only if 𝜇1 = 𝜇2, 
𝑢1 = 𝛼𝑢2 + 𝛽 for some 𝛼 > 0 and 𝛽 ∈ℝ, 1 is coarser than 2, and Π′

1 ⊂Π2 where Π′
1 is the projection of Π1 onto Ω2 .

When DM1 is more concerned about correlation than DM2, the former perceives less uncertainty about correlation. Her set of 
probability measures is smaller in the sense of set-inclusion after they are projected onto the same state space. This means that 
every probabilistic relationship between actions considered by DM1 is also taken into account by DM2. Nevertheless, the two rank 
individual actions in the same way, so they have the same tastes and the same priors about actions.

Notice that an increase in concern for correlation leads to both a finer correlation cover and a larger set of priors. The former is 
necessary for the latter. Otherwise, the support of the larger set of priors would not include the support of the smaller set. One could 
strengthen the comparative static to require that both preferences understand the same sets of actions. Then, they would have the 
same correlation cover and one would have a larger set of priors.

A preference with a Rich CCR satisfies No False Hedging if and only if it is more concerned about correlation than some preference 
with a Rich CCR that satisfies Monotonicity. Intuitively, a DM satisfies Monotonicity only if she understands all connections or is 
completely unconcerned with correlation, e.g., because she is risk neutral. Such a DM trivially has the coarsest possible correlation 
cover. By Proposition 4, the projection of the measure 𝜇 belongs to the set representing the more concerned preference.
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Appendix A. Proofs

Throughout the appendix, I sometimes write 𝑝𝛼𝑞 instead of 𝛼𝑝+ (1 − 𝛼)𝑞 for two lotteries 𝑝, 𝑞 and 𝑎(𝜔) instead of 𝜌(𝑎,𝜔).

Lemma 1. Under Axioms 2 and 3, the set {𝛼 ∈ [0,1] ∶ 𝛼𝑝+ (1 − 𝛼)𝑞 ≿ 𝛼𝑝′ + (1 − 𝛼)𝑞′} is closed for all 𝑝, 𝑞, 𝑝′, 𝑞′ ∈ Δ .

Proof. Follows from observing that 𝛼𝑛𝑝 + (1 − 𝛼𝑛)𝑞 → 𝛼𝑝 + (1 − 𝛼)𝑞 according to the weak* topology whenever 𝛼𝑛 → 𝛼. See e.g. 
Theorem 15.3 of Aliprantis and Border (2006). □

Lemma 2. Under Axioms 1-4, for any 𝑝, 𝑞, 𝑟∈Δ and 𝛼 ∈ (0,1], if 𝑟 ∈Δ, then 𝑝 ≿ 𝑞 ⟺ 𝛼𝑝+ (1 − 𝛼)𝑟 ≿ 𝛼𝑞 + (1 − 𝛼)𝑟.

Proof. Fix any 𝑟∈Δ and 𝛼 ∈ (0,1].
First, 𝑝 ≻ 𝑞 ⟹ 𝛼𝑝+ (1− 𝛼)𝑟 ≻ 𝛼𝑞 + (1− 𝛼)𝑟. If not, then 𝑝 ≻ 𝑞 and 𝛼𝑞 + (1− 𝛼)𝑟 ≿ 𝛼𝑝+ (1− 𝛼)𝑟 for some 𝑝, 𝑞. Axioms WO, C, and 

WM imply there exists 𝑝′ ∈ Δ with 𝑝′ ∼ 𝑝. By NUI and WO, 𝑞𝛼𝑟 ≿ 𝑝𝛼𝑟 ≿ 𝑝′𝛼𝑟. Let

𝜏 = sup{𝛽 ∈ [0,1] ∶ 𝑞𝛽𝑟 ≿ 𝑝′𝛽𝑟}.

By Lemma 1, 𝑞𝜏𝑟 ≿ 𝑝′𝜏𝑟. Since 𝑝′𝜏𝑟 ∈Δ, (𝑞𝜏𝑟)𝛽𝑞 ≿ (𝑝′𝜏𝑟)𝛽𝑞 and (𝑞𝜏𝑟)𝛽𝑝′ ≿ (𝑝′𝜏𝑟)𝛽𝑝′ by NUI for any 𝛽 ∈ (0,1).5
Observe (𝑝′𝜏𝑟) 1 

1+𝜏
𝑞 = (𝑞𝜏𝑟) 1 

1+𝜏
𝑝′. By WO,

𝑞
2𝜏 

1 + 𝜏
𝑟 = (𝑞𝜏𝑟) 1 

1 + 𝜏
𝑞 ≿ (𝑝′𝜏𝑟) 1 

1 + 𝜏
𝑞 = (𝑞𝜏𝑟) 1 

1 + 𝜏
𝑝′ ≿ (𝑝′𝜏𝑟) 1 

1 + 𝜏
𝑝′ = 𝑝′

2𝜏 
1 + 𝜏

𝑟.

Thus 𝜏 ≥ 2𝜏∕(1 + 𝜏), which can hold only if 𝜏 = 1 or 𝜏 = 0. Since 𝜏 ≥ 𝛼 > 0, 𝜏 = 1. But then 𝑞 = 𝑞𝜏𝑟 ≿ 𝑝′𝜏𝑟 = 𝑝′ by Lemma 1, implying 
that 𝑞 ≿ 𝑝 since 𝑝 ∼ 𝑝′.

5 The remainder of the argument is based on one that appears in Shapley and Baucells (1998).
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Now, 𝑝 ∼ 𝑞 ⟹ 𝛼𝑝+ (1 − 𝛼)𝑟 ≿ 𝛼𝑞 + (1 − 𝛼)𝑟.6 Fix any 𝑝 ∼ 𝑞, and pick a lottery 𝑥 ∈Δ𝑋 s.t. 𝑥 ≻ 𝑝𝑦 for all plausible realizations 𝑦
of 𝑝. For all 𝜖 ∈ (0,1], 𝑝𝜖𝑥 ≻ 𝑞 by WM and WO, and so by the above, (𝑝𝜖𝑥)𝛼𝑟 ≻ 𝑞𝛼𝑟. By C and sending 𝜖 to 0, 𝑝𝛼𝑟 ≿ 𝑞𝛼𝑟 as well.

Now, one has that 𝑝 ≻ 𝑞 ⟹ 𝑝𝛼𝑟 ≻ 𝑞𝛼𝑟 and 𝑝 ≿ 𝑞 ⟹ 𝑝𝛼𝑟 ≿ 𝑞𝛼𝑟. The second, combined with the contrapositive of the first and 
completeness, is that 𝑝 ≿ 𝑞 ⟺ 𝑝𝛼𝑟 ≿ 𝑞𝛼𝑟. This completes the proof. □

Lemma 3. Under Axioms 1-4, if 𝑝, 𝑞 ∈Δ𝐴 and 𝑟 ∈Δ𝐹 , then

𝑝 ≿ 𝑞 ⟺ 𝛼𝑝+ (1 − 𝛼)𝑟 ≿ 𝛼𝑞 + (1 − 𝛼)𝑟.

Proof. Pick 𝑟′ ∈ Δ𝐴 with 𝑟′ ∼ 𝑟; this exists by WO, C, and WM. Observe 𝑝𝛼𝑟 ∼ 𝑝𝛼𝑟′ and 𝑞𝛼𝑟′ ∼ 𝑞𝛼𝑟 by Lemma 2. Then, 𝑝 ≿ 𝑞 ⟺
𝑝𝛼𝑟′ ≿ 𝑞𝛼𝑟′ also by Lemma 2. By WO, 𝑝𝛼𝑟′ ≿ 𝑞𝛼𝑟′ ⟺ 𝑝𝛼𝑟 ≿ 𝑞𝛼𝑟. □

Lemma 4. Under Axioms 1-4, there exists a continuous, convex ranged 𝑢 ∶ 𝑋 → ℝ so that for any 𝑝, 𝑞 ∈ Δ𝑋, 𝑝 ≿ 𝑞 if and only if ∑
𝑝(⟨𝑥⟩)>0 𝑝(𝑥)𝑢(𝑥) ≥∑

𝑞(⟨𝑥⟩)>0 𝑞(𝑥)𝑢(𝑥).
This follows from the above lemmas and Grandmont (1972).

Proof of Theorem 1. Necessity is trivial. For sufficiency, assume that ≿ satisfies the axioms. Let 𝑢 be utility index shown to exist 
by Lemma 4. Normalize so that 𝑟𝑎𝑛𝑔𝑒(𝑢) ⊃ [−1,1], and that 𝑢(0) = 0. Recall that 𝐵0(𝑌 ,Σ) is the simple, real-valued, Σ-measurable 
functions on the set 𝑌 . For any 𝑝∈Δ define 𝑓𝑝 ∈ 𝐵0(Ω,⊗𝑎∈𝜎(𝑎)) so that

𝑓𝑝 = 𝜔⃗↦
∑

𝑝(⟨𝑎𝑖⟩)>0𝑝
(⟨𝑎𝑖⟩𝑛𝑖=1)𝑢

(
𝑛 ∑

𝑖=1 
𝑎𝑖(𝜔𝑎𝑖 )

)
.

By WM, 𝑓𝑝 ≥ 𝑓𝑞 (resp., 𝑓𝑝 ≫ 𝑓𝑞) implies that 𝑝 ≿ 𝑞 (resp., 𝑝 ≻ 𝑞).

Define 𝑊 = {𝑓𝑝 ∶ 𝑝 ∈Δ}, noting that 𝑊 is convex. For 𝜙 in 𝑊 , define 𝐼(𝜙) = ∫ 𝑢(𝑥)𝑑𝑟 for some 𝑝 ∈Δ s.t. 𝑓𝑝 = 𝜙 and a lottery 
𝑟 over 𝑋 satisfying 𝑟 ∼ 𝑝. Such an 𝑟 exists for every 𝑝 by Weak Monotonicity, Completeness, and Continuity, so 𝐼 is well-defined. 
Denote 𝑓(1,⟨0⟩) = 0.

The function 𝐼 has the following properties for any 𝛼 ∈ (0,1], 𝜙 = 𝑓𝑞 , 𝜓 = 𝑓𝑟 and 𝑔 = 𝑓𝑝 with 𝑝 ∈ Δ, 𝑞, 𝑟 ∈ Δ , 𝑥 ∈ Δ𝑋 with 
𝑢(𝑥) = 𝑥 and 𝑓𝑥 = 𝑥.

• 𝐼(⋅) is normalized: 𝐼(𝑥) = 𝑥 by construction. Based on this, I abuse notation slightly by also identifying 𝐼(𝜃) with a lottery over 
𝑋 that yields utility 𝐼(𝜃) for any 𝜃 ∈𝑊 .

• 𝐼(⋅) is monotone: 𝜙 ≥ 𝜓 implies 𝐼(𝜙) ≥ 𝐼(𝜓). Follows from WM.

• 𝐼(⋅) is action invariant: 𝐼(𝛼𝜓 + (1 − 𝛼)𝑔) = 𝛼𝐼(𝜓) + (1 − 𝛼)𝐼(𝑔). To see this, note that by Weak Monotonicity and Continuity, 
there exists 𝑧, 𝑧′ ∈ Δ𝑋 such that 𝑟 ∼ 𝑧 and 𝑝 ∼ 𝑧′; for this 𝑧, ∫ 𝑢(𝑥)𝑑𝑧 = 𝐼(𝜓). By Lemma 3, 𝑟𝛼𝑝 ∼ 𝑧𝛼𝑝 ∼ 𝑧𝛼𝑧′. By transitivity, 
𝑟𝛼𝑝 ∼ 𝑧𝛼𝑧′. Since 𝑧𝛼𝑧′ ∈ Δ and 𝑓𝑟𝛼𝑝 = 𝛼𝜓 +(1−𝛼)𝑔, 𝐼(𝛼𝜓 +(1−𝛼)𝑔) = 𝐼(𝑓𝑧𝛼𝑧′ ) = 𝛼𝐼(𝑓𝑧)+ (1−𝛼)𝐼(𝑓𝑧′ ) = 𝛼𝐼(𝜙)+ (1−𝛼)𝐼(𝑔).

• 𝐼(⋅) is concave: 𝐼(𝛼𝜙 + (1 − 𝛼)𝜓) ≥ 𝛼𝐼(𝜙) + (1 − 𝛼)𝐼(𝜓). To see this, note 𝑞 ∼ 𝐼(𝜓). By NUI, 𝑟𝛼𝑞 ⪰ 𝑟𝛼𝐼(𝜓). Since 𝐼 is action 
invariant and normalized,

𝐼(𝛼𝜙+ (1 − 𝛼)𝐼(𝜓)) = 𝛼𝐼(𝜙) + (1 − 𝛼)𝐼(𝜓).

• 𝐼(⋅) is Homogeneous of Degree 1: 𝐼(𝛼𝜓) = 𝛼𝐼(𝜓). This follows from action invariant and normalized.

• 𝐼(⋅) is supnorm continuous. Suppose 𝜙𝑛 → 𝜙 for some sequence 𝜙𝑛 and 𝜙 that belong to 𝑊 . Let 𝑥𝑛 = max𝜔⃗[𝜙𝑛(𝜔⃗) − 𝜙(𝜔⃗)] and 
𝑦𝑛 =max𝜔⃗[𝜙𝑛(𝜔⃗) − 𝜙(𝜔⃗)]. Pick 𝜅,𝜅′ ∈ Δ𝑋 with 𝑢(𝜅) = 1 and 𝑢(𝜅′) = −1. For 𝑛 large enough that |𝑥𝑛|, |𝑦𝑛| < 1,

𝐼
(
𝑦𝑛[

1
2
𝜙+ 1

2
𝑓𝜅′ ] + (1 − 𝑦𝑛)[

1
2
𝜙+ 1

2
0]

) ≤ 𝐼
(1
2
𝜙𝑛 + 1

2
0
)

and

𝐼
(1
2
𝜙𝑛 + 1

2
0
) ≤ 𝐼

(
𝑥𝑛[

1
2
𝜙+ 1

2
𝑓𝜅′ ] + (1 − 𝑥𝑛)[

1
2
𝜙+ 1

2
0]

)
since 𝐼 is monotone. By continuity and that

𝑧𝑛

[1
2
𝑞 + 1

2
𝜅′′

]
+ (1 − 𝑧𝑛)

[1
2
𝑞 + 1

2
0
]
→

1
2
𝑞 + 1

2
0

for any 𝜅′′ ∈ Δ𝑋 in the weak* topology whenever 𝑧𝑛 → 0, 𝐼(𝜙 1
2 0) = lim𝐼(𝜙𝑛 1

2 0). Action invariance of 𝐼 establishes the result.

6 A symmetric argument obtains indifference.
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Given the above and that 0 ∈𝑊 , extend 𝐼 to the cone generated by 𝑊 (which is simply denoted by 𝐼 and 𝑊 for convenience) 
using the identity that 𝐼(𝛼𝜙) = 𝛼𝐼(𝜙). Clearly, all the above properties are maintained. The set 𝑊 is a convex cone contained in the 
vector space 𝐵(Ω,⊗𝑎∈𝜎(𝑎)) =𝑊 ∗, the bounded, ⊗𝑎∈𝜎(𝑎)-measurable functions. Extend 𝐼 to 𝑊 ∗ as follows.

For any 𝑥 ∈𝑊 ∗, define

𝐼(𝑥) = sup
{
𝐼(𝑤) ∶ 𝑥 ≥𝑤, 𝑤 ∈𝑊

}
.

The function 𝐼 inherits the following properties from 𝐼 :

• 𝜙 ∈ 𝑊 implies 𝐼(𝜙) = 𝐼(𝜙): First, 𝜙 ∈ 𝑊 and 𝜙 ≤ 𝜙 immediately imply that 𝐼(𝜙) ≥ 𝐼(𝜙). Second, 𝑤 ≤ 𝜙 immediately yields 
𝐼(𝑤) ≤ 𝐼(𝜙) by monotonicity of 𝐼 , so 𝐼(𝜙) ≥ 𝐼(𝜙) also.

• 𝐼 is concave: fix 𝜙,𝜓 ∈𝑊 ∗ and 𝜆 ∈ (0,1). For any 𝜖 > 0, there exist 𝑤1,𝑤2 ∈𝑊 with 𝑤1 ≤ 𝜙 and 𝑤2 ≤ 𝜓 such that 𝐼(𝑤1) >
𝐼(𝜙) − 𝜖∕2 and 𝐼(𝑤2) > 𝐼(𝜓) − 𝜖∕2. Now, 𝜆𝑤1 + (1 − 𝜆)𝑤2 ≤ 𝜆𝜙 + (1 − 𝜆)𝜓 . Then, 𝐼(𝜆𝜙 + (1 − 𝜆)𝜓) ≥ 𝐼(𝜆𝑤1 + (1 − 𝜆)𝑤2) ≥
𝜆𝐼(𝑤1) + (1 − 𝜆)𝐼(𝑤2) > 𝜆𝐼(𝜙) + (1 − 𝜆)𝐼(𝜓) − 𝜖. Letting 𝜖 go to zero establishes the result.

• 𝐼 is Monotone and 𝐼(𝑥) < ∞ for all 𝑥: Monotone is trivial. Since 𝑦 = min𝜔 𝑥(𝜔) ≤ 𝑥 belongs to 𝑊 , 𝐼(𝑥) > 𝐼(𝑦) = 𝑦. Letting 
𝑧 =max𝜔 𝑥(𝜔), for any 𝑤 ∈𝑊 with 𝑥 ≥𝑤, 𝑧≥𝑤. Thus 𝑧= 𝐼(𝑧) ≥ 𝐼(𝑤) by monotonicity; hence 𝐼(𝑥) ≤ 𝑧.

• 𝐼 is Homogeneous of Degree 1: fix 𝑥 ∈𝑊 ∗ and 𝛼 > 0. If 𝛼𝐼(𝑥) > 𝐼(𝛼𝑥), then there is 𝑤 ∈𝑊 such that 𝑥 ≥𝑤 and 𝛼𝐼(𝑤) > 𝐼(𝛼𝑥). 
Observe that 𝛼𝑤 ≤ 𝛼𝑥, 𝛼𝑤∈𝑊 and so 𝐼(𝛼𝑤) = 𝛼𝐼(𝑤), immediately leading to a contradiction; reversing the argument leads to 
a contradiction if 𝛼𝐼(𝑥) < 𝐼(𝛼𝑥).

• 𝐼 is action invariant: 𝐼(𝛼𝜙+(1−𝛼)𝑔) = 𝛼𝐼(𝜙)+ (1−𝛼)𝐼(𝑔) when 𝑔 = 𝑓𝑝 for 𝑝 ∈Δ. Notice that 𝑤 ∈𝑊 ⟺ 𝛼𝑤+(1−𝛼)𝑔 ∈𝑊 , 
and that if 𝜙 ≥𝑤, then 𝛼𝜙+ (1 − 𝛼)𝑔 ≥ 𝛼𝑤+ (1 − 𝛼)𝑔. The rest follows from 𝐼 being action invariant.

• 𝐼 is supnorm continuous: Suppose not, so 𝑥𝑛 → 𝑥 in supnorm and, first, lim inf 𝐼(𝑥𝑛) < 𝐼(𝑥). There is 𝜖 > 0 and a sub-sequence, 
WLOG the whole sequence, such that 𝐼(𝑥𝑛)+ 𝜖 < 𝐼(𝑥) for all 𝑛. By definition, there exists 𝑥 ≥𝑤 ∈𝑊 such that 𝐼(𝑤) ≥ 𝐼(𝑥)− 𝜖∕3. 
Also, for 𝑛 large enough, 𝑥𝑛 ≥ 𝑥− 𝜖∕3 in every state. Thus 𝑥𝑛 ≥𝑤− 𝜖∕3, but then 𝐼(𝑥𝑛) ≥ 𝐼(𝑤− 𝜖∕3) = 𝐼(𝑤) − 𝜖∕3 ≥ 𝐼(𝑥) − 2𝜖∕3, 
a contradiction. Second, if lim sup𝐼(𝑥𝑛) > 𝐼(𝑥), then there exists 𝜖 > 0 a sub-sequence, WLOG the whole sequence, such that 
𝐼(𝑥𝑛) > 𝐼(𝑥)+ 𝜖 for all 𝑥𝑛. Pick 𝑛 such that 𝑥 ≥ 𝑥𝑛 − 𝜖∕3. There exist 𝑥𝑛 ≥𝑤 ∈𝑊 such that 𝐼(𝑤) ≥ 𝐼(𝑥𝑛)− 𝜖∕3. Then 𝑥≥𝑤− 𝜖∕3
and 𝐼(𝑥) ≥ 𝐼(𝑤− 𝜖∕3) ≥ 𝐼(𝑥𝑛) − 2𝜖∕3 > 𝐼(𝑥), a contradiction.

To finalize the proof, I adapt the Gilboa and Schmeidler (1989) (GS) arguments to construct a set of priors representing the 
preference as in GS but with the additional property that ∫ 𝑓(1,⟨𝑎⟩)𝑑𝜋 = ∫ 𝑓(1,⟨𝑎⟩)𝑑𝜋′ for all 𝜋,𝜋′ ∈ Π for any 𝑎 ∈. Let 𝑊𝐴 be the 
cone generated by {𝑓𝑝 ∶ 𝑝 ∈Δ}.

For any 𝜙∈𝑊 ∗ with 𝐼(𝜙) > 0, define 𝐷1 = {𝜓 ∈𝑊 ∗ ∶ 𝐼(𝜓) > 1} and

𝐷2 = 𝑐𝑜({𝜓 ∈𝑊 ∗ ∶ 𝜓 ≤ 𝑎, 𝐼(𝑎) = 1, and 𝑎 ∈𝑊𝐴}
⋃

{𝜓 ∈𝑊 ∗ ∶ 𝜓 ≤ 𝜙∕𝐼(𝜙)}).

To apply the GS arguments, I show that 𝐷1
⋂

𝐷2 = ∅. By 𝐼 action invariant and convexity of the constituent sets, any 𝑑2 ∈𝐷2 equals 
𝛼𝑎1 + (1 − 𝛼)𝑎2 where 𝑎1 ≤ 𝑎 for 𝑎 ∈ 𝑊𝐴 and 𝐼(𝑎) = 1, 𝑎2 ≤ 𝜙∕𝐼(𝜙) and 𝛼 ∈ [0,1]. Then, 𝐼(𝑑2) ≤ 𝐼(𝛼𝑎 + (1 − 𝛼)𝑎2) by WM, which 
equals 𝛼𝐼(𝑎) + (1 − 𝛼)𝐼(𝑎2) by action invariant, which is less than

𝛼𝐼(𝑎) + (1 − 𝛼)𝐼(𝜙∕𝐼(𝜙)) = 1

by WM. Conclude 𝐼(𝑑2) ≤ 1 for any 𝑑2 ∈𝐷2 and hence 𝐷1
⋂

𝐷2 = ∅. Moreover, note 1 ∈𝐷2 and 1 in 𝑐𝑙(𝐷1). A separating hyperplanes 
argument gives a finitely additive measure 𝜋𝜙 such that ∫ 𝑑1𝑑𝜋𝜙 ≥ 1 ≥ ∫ 𝑑2𝑑𝜋𝜙 for all 𝑑1 ∈𝐷1 and 𝑑2 ∈𝐷2.

Applying the GS arguments shows that 𝜋𝜙 is a finitely additive probability measure, 𝐼(𝜙) = ∫ 𝜙𝑑𝜋𝜙, and ∫ 𝜓𝑑𝜋𝜙 ≥ 𝐼(𝜓) for all 
𝜓 ∈𝑊 ∗. This 𝜋𝜙 must have ∫ 𝑎𝑑𝜋𝜙 = 𝐼(𝑎) for all 𝑎 ∈𝑊𝐴, since 𝐼(𝑎∕𝐼(𝑎)) = 1 implies that 𝑎∕𝐼(𝑎) ∈𝐷2 and 1 ≥ ∫ 𝑎∕𝐼(𝑎)𝑑𝜋𝜙. Since 
Ω is finite and each 𝜙 ∈𝑊 ∗ is measurable with respect to finite cylinder events, I can take each 𝜋𝜙 to be countably additive by the 
Kolmogorov Extension Theorem (Aliprantis and Border, 2006, Theorem 15.26; see the arguments following Lemma 3 of EP). As in 
GS, for Π= 𝑐𝑜{𝜋𝜙 ∶ 𝐼(𝜙) > 0}, 𝑝 ≿ 𝑞 if and only if

min
𝜋∈Π ∫ 𝑓𝑝𝑑𝜋 ≥min

𝜋∈Π ∫ 𝑓𝑞𝑑𝜋.

Since

min
𝜋∈Π ∫ 𝑓𝑝𝑑𝜋 =min

𝜋∈Π ∫
Ω

𝔼𝑝(⟨𝑎𝑖⟩)
[
𝑢

(
𝑛 ∑

𝑖=1 
𝑎𝑖(𝜔𝑎𝑖 )

)]
𝑑𝜋 = 𝑉 (𝑝),

the function 𝑉 represents ≿.

To complete the proof, I show existence of a 𝜇 ∈ΔΩ so that

𝑉 ((1, ⟨𝑎⟩)) = ∫ 𝑎𝑑𝜇.

For any 𝑝 ∈Δ, let ℎ𝑝 ∈ℝΩ satisfy ℎ𝑝(𝜔) =
∑

𝑝(⟨𝑎⟩)>0 𝑢(𝑎(𝜔))𝑝(⟨𝑎⟩). By SM, ℎ𝑝 ≥ ℎ𝑞 ⟹ 𝑝 ≿ 𝑞. By Lemma 3, ≿ satisfies independence 
when restricted to Δ. By the usual arguments, for any 𝑝, 𝑞 ∈ Δ, there is a 𝜇 so that 𝑝 ≿ 𝑞 if and only if ∫ ℎ𝑝𝑑𝜇 ≥ ∫ ℎ𝑞𝑑𝜇. Since 
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𝑉 is an a�ine function on Δ that also represents ≿, there exists 𝛼 > 0 and 𝛽 so that 𝑉 (𝑝) = 𝛼 ∫ ℎ𝑝𝑑𝜇 + 𝛽 for all 𝑝 ∈Δ. Moreover, 
𝛼 = 1 and 𝛽 = 0 since 𝑉 and ∫ ℎ𝑝𝑑𝜇 agree on lotteries over constants, completing the proof. □

Proof of Theorem 2. By Proposition 3 of EP, a unique coarsest correlation cover  exists. For any 𝐶 ∶→ , let 𝑓𝐶
𝑝 ∈ 𝐵0(Ω ,Σ )

be defined by

𝑓𝐶
𝑝 =

∑
𝑝(⟨𝑎𝑖⟩)>0)𝑝

(⟨𝑎𝑖⟩𝑛𝑖=1)𝑢
(

𝑛 ∑
𝑖=1 

𝑎𝑖
(
𝜔𝐶(𝑎𝑖)

))
.

The result follows from the same arguments as in Theorem 1 if 𝑓𝐶1
𝑝 ≥ 𝑓

𝐶2
𝑞 implies that 𝑝 ⪰ 𝑞 for any 𝐶1,𝐶2 ∶→ with 𝑎 ∈ 𝐶𝑖(𝑎)

for 𝑖 = 1,2.

By Theorem 1, ≿ has a CCR (𝑢,𝜇,Π) where 𝑢(0) = 0. Let 𝑉 (𝑝) be the utility of 𝑝 ∈Δ according to this representation, and let 𝑓𝑝

be as in Theorem 1. If 𝑢 is a linear function, then for any 𝑝 ∈Δ
𝑉 (𝑝) = min

𝜋 ∫
∑

𝑝(⟨𝑎𝑖⟩)∑
𝑖 

𝑎𝑖(𝜔𝑎𝑖 )𝑑𝜋 =
∑

𝑝(⟨𝑎𝑖⟩)∑
𝑖 ∫ 𝑎𝑖(𝜔)𝑑𝜇,

because ∫ 𝑎(𝜔𝑎)𝑑𝜋 = ∫ 𝑎(𝜔)𝑑𝜇 for all 𝜋 ∈ Π and 𝑎 ∈. Therefore, Monotonicity holds,  is understood, and  = {}. The result 
follows immediately from the usual Anscombe-Aumann Theorem. Otherwise, there exist 𝑥, 𝑦 ∈𝑋 such that 𝑢(𝑥+ 𝑦) ≠ 𝑢(𝑥) + 𝑢(𝑦).

Write Ω= {1,… ,𝐾} and 𝑁𝑎 for 𝑁 copies of the action 𝑎, where 𝑁 is a positive integer. For 𝑥 ∈𝑋 and 𝐵 ∈ choose an action 
𝛽𝐵,𝑘
𝑥 ∈𝐵 so that 𝛽𝐵,𝑘

𝑥 (𝜔) equals 𝑥 if 𝜔 = 𝑘 and 0 otherwise and define the corresponding event

𝐵,𝑘,𝑥 = {𝜔⃗ ∈Ω ∶ 𝜔𝛽𝐵,𝑘
𝑥 ∈𝐸𝑘

𝐵
}.

Note such actions exist because 𝐵 is rich. Let Θ𝜀 = (−𝜖,0)
⋃
(0, 𝜀), i.e. an open interval of size 𝜀 around 0 that excludes 0.

Lemma 5. Suppose that there exist 𝑥, 𝑦 ∈ 𝑋 such that 𝑢(𝑥 + 𝑦) ≠ 𝑢(𝑥) + 𝑢(𝑦). There exists 𝜀 > 0 such that for every collection 
{𝛽𝐵1 ,𝑘1

𝑥1
,… , 𝛽

𝐵𝑛,𝑘𝑛
𝑥𝑛

} with 𝑥𝑖 ∈Θ𝜀, 𝐵𝑖 ∈ , and 𝑘𝑖 ∈Ω for each 𝑖, and any 𝑝∈Δ , there exists

𝜋0 ∈ argmin
𝜋∈Π ∫ 𝑓𝑝𝑑𝜋

such that

𝜋0(𝐵𝑖,𝑘𝑖,𝑥𝑖 ) = 𝜇(𝑘𝑖) (4)

𝑘𝑖 ≠ 𝑘𝑗 , 𝐵𝑖 =𝐵𝑗 ⟹ 𝜋0(𝐵𝑖,𝑘𝑖,𝑥𝑖
⋂𝐵𝑗 ,𝑘𝑗 ,𝑥𝑗 ) = 0 (5)

and 𝑘𝑖 = 𝑘𝑗 , 𝐵𝑖 =𝐵𝑗 ⟹ 𝜋0
(𝐵𝑖,𝑘𝑖,𝑥𝑖

⋂𝐵𝑗 ,𝑘𝑗 ,𝑥𝑗
)
= 𝜇(𝑘𝑖) (6)

for all distinct 𝑖, 𝑗 ∈ {1,… ,𝐾} and every 𝐵 ∈ .

In words, for any 𝑝, there is minimizing probability measure 𝜋0 with the following properties. Eq (4) requires that the marginals 
of 𝜋0 agree with 𝜇. Eq (5) implies that the DM believes it impossible that bets on distinct states in the same class pay off jointly. Eq 
(6) implies that if one bet on state 𝑖 pays off, then all bets on state 𝑖 in the same class pay off. In sum, within the same understanding 
class, all the bets on one and only one of the elements of its finest partition pay off jointly.

Proof of Lemma 5. Following the proof of Lemma 4 from EP, for any non-zero 𝑥′, 𝑦′ ∈ (−𝜀, 𝜀) for 𝜀 > 0 small enough, the absolute 
value of

𝑢(𝑁𝑥′ +𝑀𝑦′ + 𝑧0) + 𝑢(𝑧0) − 𝑢(𝑁𝑥′ + 𝑧0) − 𝑢(𝑀𝑦′ + 𝑧0) (7)

is sufficiently close to 𝑢(𝑥+ 𝑦) + 𝑢(0) − 𝑢(𝑥) − 𝑢(𝑦) for some positive integers 𝑁 and 𝑀 and an appropriately chosen 𝑧0. In particular, 
one can find 𝜀 > 0 so that (7) does not equal zero for every non-zero 𝑥′, 𝑦′ ∈ (−𝜀, 𝜀).

To ease notation, set 𝛽𝑖 = 𝛽
𝐵𝑖,𝑘𝑖
𝑥𝑖

and  𝑖 = 𝐵𝑖,𝑘𝑖,𝑥𝑖 .

First, observe that for 𝜋 ∈Π, 𝜋( 𝑖) ≥ 𝜇(𝑘𝑖), since

𝜇(𝑘𝑖)𝑢(𝑥𝑖) = 𝑉 ((1, 𝛽𝑖)) = min
𝜋∈Π 𝜋( 𝑖)𝑢(𝑥𝑖).

Second, for any 𝑝 ∈ Δ , there exists 𝜋 ∈ argmin𝜋∈Π ∫ 𝑓𝑝𝑑𝜋 with 𝜋( 𝑖) = 𝜇(𝑘𝑖) for all 𝑖. Fix any 𝑝 ∈ Δ , and note 𝛼𝑉 (𝑝) + (1 −
𝛼)𝑉 (1, 𝛽𝑖) = 𝑉 (𝛼𝑝 + (1 − 𝛼)(1, 𝛽𝑖)). The former equals 𝛼𝑉 (𝑝) + (1 − 𝛼)𝜇(𝑘𝑖)𝑢(𝑥𝑖). The latter equals ∫ [𝛼𝑓𝑝]𝑑𝜋 + 𝜋( 𝑖)𝑢(𝑥𝑖) for some 
𝜋 ∈Π. If 𝜋( 𝑖) > 𝜇(𝑘𝑖), then ∫ 𝑓𝑝𝑑𝜋 < 𝑉 (𝑝) = min𝜋′∈Π ∫ 𝑓𝑝𝑑𝜋

′, contradicting the definition of 𝑉 . Conclude there is a minimizer with 
𝜋(1) = 𝜇(𝑘1). Now, suppose for 𝑛 there is 𝜋 ∈ argmin𝜋∈Π ∫ 𝑓𝑝𝑑𝜋 with 𝜋( 𝑖) = 𝜇(𝑘𝑖) for 𝑖 < 𝑛. Repeat the above arguments with 𝑖 = 𝑛, 
but choose 𝜋 to be the minimizer claimed by the IH. Conclude that this minimizer must also have 𝜋(𝑛) = 𝜇(𝑘𝑛). Induction implies 
this must be the case for all 𝜋( 𝑖). Hence, for any 𝑝, there is a minimizer satisfying Equation (4) for all 𝑖.
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Third, claim that this minimizer can also be taken to have 𝜋0( 𝑖 ⋂ 𝑗 ) = 0 when 𝐵𝑖 = 𝐵𝑗 and 𝑘𝑖 ≠ 𝑘𝑗 . There are a finite number of 
these pairs of events; order them arbitrarily. Assume (IH) that there is a minimizer 𝜋0 for any 𝑝 ∈Δ satisfying Eq (4) and for which 
Eq (5) also holds for the first 𝑛− 1 pairs. The base case holds by the above.

Let (𝑖, 𝑗) be pair 𝑛. Since 𝑥𝑖, 𝑥𝑗 ∈Θ𝜀, by the above, there exists 𝑁,𝑀,𝑧0 such that

𝑢(𝑁𝑥𝑖 +𝑀𝑥𝑗 + 𝑧0) + 𝑢(𝑧0) − 𝑢(𝑁𝑥𝑖 + 𝑧0) − 𝑢(𝑀𝑥𝑗 + 𝑧0) =𝐷 ≠ 0.

Define lotteries

𝑝1 ≡
(1
2
, ⟨𝑁𝛽𝑖, 𝑧0⟩; 12 , ⟨𝑀𝛽𝑗, 𝑧0⟩)

and

𝑝2 ≡
(1
2
, ⟨𝑁𝛽𝑖,𝑀𝛽𝑗 , 𝑧0⟩; 12𝑧0) .

Since 𝐵 understood,

𝑞1 =
1
2
𝑝+ 1

2
𝑝1 ∼

1
2
𝑝+ 1

2
𝑝2 = 𝑞2

Since 𝑉 is action independent,

𝑉 (𝑞1) =
1
2
𝐼(𝑝) + 1

2
𝑉 (𝑝1)

and

𝑉 (𝑝1) = 𝜇(𝑘𝑖)[𝑢(𝑁𝑥𝑖 + 𝑧0) − 𝑢(𝑧0)] + 𝜇(𝑘𝑗 )[𝑢(𝑀𝑥𝑗 + 𝑧0) − 𝑢(𝑧0)] + 𝑢(𝑧0).

By IH, there exists 𝜋0 ∈ Π satisfying (4) so that

𝑉 (𝑞2) =∫ 𝑓𝑞2
𝑑𝜋0

=1
2 ∫ 𝑓𝑝𝑑𝜋0 +

1
2
𝜋0( 𝑗

⋂ 𝑖)[𝑢(𝑁𝑥𝑖 +𝑀𝑥𝑗 + 𝑧0) − 𝑢(𝑧0)] +
1
2
𝑢(𝑧0)

+ 1
2
[𝜋0( 𝑖) − 𝜋0( 𝑗

⋂ 𝑖)][𝑢(𝑁𝑥𝑖 + 𝑧0) − 𝑢(𝑧0)]

+ 1
2
[𝜋0( 𝑗 ) − 𝜋0( 𝑗

⋂ 𝑖)][𝑢(𝑀𝑥𝑗 + 𝑧0) − 𝑢(𝑧0)]

=1
2 ∫ 𝑓𝑝𝑑𝜋0 +

1
2
𝑉 (𝑝1) +

1
2
𝜋0( 𝑗

⋂ 𝑖)𝐷

If 𝜋0( 𝑗 ⋂ 𝑖) > 0, then 𝑉 (𝑞1) ≠ 𝑉 (𝑞2), contradicting the claimed indifference. Moreover, 𝑉 (𝑞2) = 𝑉 (𝑞1) =
1
2𝑉 (𝑝) + 1

2𝑉 (𝑝1) by action 
independence, so 𝜋0 ∈ argminΠ ∫ 𝑓𝑝𝑑𝜋. Conclude the IH holds for the first 𝑛 pairs as well. Conclude by induction that there is a 
minimizer satisfying Eq (5) for any 𝑝 ∈Δ .

Fourth, suppose 𝛽𝑖, 𝛽𝑗 ∈ 𝐵 ∈ . Let 𝑏 ∈𝐵 be a bet yielding 𝑥𝑖 on Ω ⧵ {𝑘𝑖} and 0 otherwise.

𝑏 = {𝜔⃗ ∈Ω ∶ 𝜔𝑏 ≠ 𝑘𝑖}.

Because 𝐵 is understood, one has, for any 𝑁 ∈ℕ and 𝑧 ∈𝑋, that

1
2
𝑝+ 1

2

(1
2
, ⟨𝑁𝛽𝑖, 𝑧⟩; 12 , ⟨𝑁𝑏,𝑧⟩) ∼ 1

2
𝑝+ 1

2

(1
2
, ⟨𝑁𝛽𝑖,𝑁𝑏, 𝑧⟩; 1

2
, ⟨𝑧⟩)

∼ 1
2
𝑝+ 1

2

(1
2
, ⟨𝑁𝑥𝑖, 𝑧⟩; 12 , ⟨𝑧⟩) .

By above, there is a minimizer satisfying Eqs. (4) and (5), and similar arguments to those establishing Eq. (5) show the minimizer 𝜋0
for 𝑓𝑝 satisfying Eqs. (4) and (5) can be taken to also satisfy

𝜋0

( 𝑖
⋂𝑏

)
= 𝜋0

( 𝑗
⋂𝑏

)
= 0.

Picking 𝑁 ∈ℕ and 𝑧 ∈𝑋 such that 𝑢(𝑧+𝑁𝑥′) ≠ 𝑢(𝑧), one also has that[
𝜋0( 𝑖) + 𝜋0(𝑏)

]
(𝑢

(
𝑁𝑥𝑖 + 𝑧

)
− 𝑢 (𝑧)) = 𝑢

(
𝑁𝑥𝑖 + 𝑧

)
− 𝑢 (𝑧)

and so

𝜋0( 𝑖) + 𝜋0(𝑏) = 1.

The inclusion-exclusion formula gives that
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1 ≥ 𝜋0

( 𝑖
⋃ 𝑗

⋃𝑏
)
= 1 + 𝜋0( 𝑗 ) − 𝜋0

( 𝑖
⋂ 𝑗

)
and thus 𝜋0( 𝑗 ) = 𝜋0

( 𝑖 ⋂ 𝑗
)
. A symmetric argument with 𝑏′ defined using 𝑥𝑗 instead of 𝑥𝑖 shows 𝜋0( 𝑖) = 𝜋0

( 𝑖 ⋂ 𝑗
)
. Inductively 

extending as above yields a minimizing 𝜋0 satisfying Eq. (6). □

Lemma 6. Given any 𝜀 > 0 and profile 𝐹 = ⟨𝑎𝑖⟩𝑛𝑖=1 and allocation 𝐶 ∶→ , there exist 𝛽1, ..., 𝛽𝑇 ∈, 𝐵1, ...,𝐵𝑇 ∈ and 𝑁1, ...,𝑁𝑇 ∈
ℕ+ such that: 
(i) for any 𝐵𝑗 , 𝑗 = 1, ...., 𝑇 , there exists 𝑎𝑖 such that 𝐶(𝑎𝑖) =𝐵𝑗 ; 
(ii) for any 𝑗 = 1, ...., 𝑇 , 𝛽𝑗 = 𝛽

𝐵𝑗 ,𝑘
𝑥 for some 𝑘∈ {1, ...,𝐾} and 𝑥∈Θ𝜀; 

(iii) For any 𝐶 ∈ and all 𝜔∈Ω,∑
{𝑗∶𝐵𝑗=𝐶}

𝑁𝑗𝛽𝑗 (𝜔) =
∑

{𝑖∶𝐶(𝑎𝑖)=𝐶}
𝑎𝑖(𝜔).

The proof of Lemma 6 follows the same arguments as Lemma 5 of EP.

Pick any 𝑝, 𝑞 ∈ Δ and any allocations 𝐶1,𝐶2 ∶  →  satisfying 𝑓𝐶1
𝑝 ≥ 𝑓

𝐶2
𝑞 . Fix 𝜀 as per Lemma 5. Write 𝑝 = (𝑝𝑖,𝐹𝑖)𝑛𝑖=1 and 

𝑞 = (𝑞𝑖, 𝐹𝑖)𝑁𝑖=𝑛+1. For 𝑖 = 1,… ,𝑁 there are bets 𝛽𝑖
1,… , 𝛽𝑖

𝑇𝑖
, understanding classes 𝐵𝑖

1,… ,𝐵𝑖
𝑇𝑖

, and positive integers 𝑁𝑖
1,… ,𝑁𝑖

𝑇 𝑖 as in 
Lemma 6 so that

𝑝 ∼
(
𝑝𝑖, ⟨𝑁𝑖

𝑡 𝛽
𝑖
𝑡 ⟩𝑇𝑖𝑡=1)𝑛

𝑖=1
≡ 𝑝𝛽

and

𝑞 ∼
(
𝑞𝑖, ⟨𝑁𝑖

𝑡 𝛽
𝑖
𝑡 ⟩𝑇𝑖𝑡=1)𝑁

𝑖=𝑛+1
≡ 𝑞𝛽

by construction of understanding classes and the conclusion of Lemma 6. By Lemma 5,

𝑉 (𝑝) = 𝑉 (𝑝𝛽,𝐶 ) = ∫ 𝑓𝑝𝛽,𝐶 𝑑𝜋𝑝

for some 𝜋𝑝 ∈Π satisfying Eqs. (4), (5) and (6) for 
{
𝛽11 , 𝛽

1
2 ,… , 𝛽𝑁

𝑇𝑁

}
. By construction, for any measurable event 𝐸 ⊂Ω

{
𝛽11 ,𝛽

1
2 ,…,𝛽𝑁

𝑇𝑁

}
with 𝜋𝑝(𝐸) > 0, there exists a measurable event 𝐸′ ⊂ Ω so that 𝑓𝑝𝛽 (𝜔) = 𝑓

𝐶1
𝑝 (𝜔′) and 𝑓𝑞𝛽 (𝜔) = 𝑓

𝐶2
𝑞 (𝜔′) for 𝜔′ ∈ 𝐸′ and 𝜔 ∈ 𝐸. 

Therefore,

𝑉 (𝑝𝛽 ) = ∫ 𝑓𝑝𝛽 𝑑𝜋𝑝 ≥ ∫ 𝑓𝑞𝛽 𝑑𝜋𝑝 ≥ 𝑉 (𝑞𝛽 ),

and by transitivity, 𝑝 ≿ 𝑞. Then, I can repeat the arguments of Theorem 1 to find a rich CCR of ≿.

If 
(
𝑢,𝜇, ,Π1

)
and 

(
𝑢,𝜇, ,Π2

)
are both rich CCR’s of ≿, and Π2 ⊈ Π1, I can find 𝜋2 ∈ Π2 ⧵ Π1. Since all these measures 

are countably additive, there is some finite 𝐸 ⊂  so that the marginal on Ω𝐸 of 𝜋2 does not equal the marginal on Ω𝐸 of 
any 𝜋1 ∈ Π1 by Kolmogorov’s Extension Theorem (Theorem 15.26 of Aliprantis and Border (2006)). By the Separating Hyper

plane Theorem, one can find a 𝜙 ∈ ℝΩ𝐸
so that ∫ 𝜙𝑑𝜋2 < ∫ 𝜙𝑑𝜋1 for all 𝜋1 ∈ Π1. As shown in Theorem 2 of EP, the collection {

𝑓𝐶
𝑝 ∶ 𝑝 ∈Δ & 𝐶 an allocation

}
has dimensionality equal to min{| |, |ℕ|} when 𝑢 is not a polynomial, so one can find a 𝑝 and a 

𝐶 so that 𝑓𝐶
𝑝 = 𝜙. Then, for some 𝑞 ∈ Δ𝑋 so that 

∑
𝑞(⟨𝑥⟩)>0 𝑞(⟨𝑥⟩)𝑢(𝑥) = ∫ 𝜙𝑑𝜋2, the utility of 𝑞 according to 

(
𝑢,𝜇, ,Π2

)
exceeds 

that of 𝑝 while the utility of 𝑝 according to 
(
𝑢,𝜇, ,Π2

)
strictly exceeds that of 𝑞, contradicting that both represent the same ≿. 

Similar arguments give that Π1 ⊆Π2, so the two are equal. □

For any a finite 𝐹 ⊂ and probability distribution 𝜋 over 
(
Ω ,Σ )

, let 𝜋𝐹 be the marginal distribution over the coordinates 
indexed by 𝐹 .

Lemma 7. For any Rich CCR (𝑢,𝜇, ,Π) and probability distribution 𝜋∗ over 
(
Ω ,Σ )

, if for every finite 𝐹 ⊂ , there exists 𝜋(𝐹 ) ∈ Π
so that 𝜋∗

𝐹
= 𝜋(𝐹 )𝐹 , then 𝜋∗ ∈ Π.

Proof of Lemma 7. Suppose that 𝜋∗
𝐹
= 𝜋(𝐹 )𝐹 for some 𝜋(𝐹 ) ∈ Π for all finite 𝐹 . Then, (𝜋(𝐹 ))𝐹 , indexed by 𝐹 ⊂ and |𝐹 | <∞, is 

a net directed by ⊆. The set Ω is compact by the Tychonoff Theorem and metrizable in the product topology because  is at most 
countable. By Theorem 15.11 of Aliprantis and Border (2006), the set of probability measures on it is also compact and metrizable 
with the weak*-topology. As a closed subset thereof, Π is also compact. Therefore, (𝜋(𝐹 ))𝐹 has a subnet that converges to some 
𝜋† ∈ Π. But 𝜋†

𝐹
= 𝜋∗

𝐹
for any finite 𝐹 , so 𝜋∗ = 𝜋† by the Kolmogorov Extension Theorem (Theorem 15.26 of Aliprantis and Border 

(2006)). □
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Proof of Proposition 1. Observe that a CCCEU preference satisfies Weak Monotonicity and is complete, transitive, and continuous. 
If it also satisfies NUI, then one can apply Lemmas 2 and 3. NUI and the Lemmas give that 𝑊 is concave: if 𝑝 ≿ 𝑞, pick 𝑝′, 𝑞′ ∈ Δ𝑋

with 𝑝′ ∼ 𝑝 and 𝑞′ ∼ 𝑞. Then 𝛼𝑝+ (1 − 𝛼)𝑞 ≿ 𝛼𝑝′ + (1 − 𝛼)𝑞 by NUI, and 𝛼𝑝′ + (1 − 𝛼)𝑞 ∼ 𝛼𝑝′ + (1 − 𝛼)𝑞′ by Lemma 2. Moreover, 𝑊 is 
linear on Δ𝑋, so 𝑊 (𝛼𝑝 + (1 − 𝛼)𝑞) ≥𝑊 (𝛼𝑝′ + (1 − 𝛼)𝑞′) = 𝛼𝑊 (𝑝) + (1 − 𝛼)𝑊 (𝑞). This implies that 𝜈 is convex: for any 𝐴,𝐵 ∈ Σ , 
𝜈(𝐴 ∪𝐵) + 𝜈(𝐴 ∩𝐵) ≥ 𝜈(𝐴) + 𝜈(𝐵).

Consider first a linear 𝑢. Then, for any 𝑎, 𝑏 ∈ 𝐴, ( 12 , ⟨𝑎, 𝑏⟩; 12 , ⟨0⟩) ∼ ( 12 , ⟨𝑎⟩; 12 , ⟨𝑏⟩) by Weak Monotonicity. For the 𝐶1 ∈  with 
𝑏𝐶 , 𝑏 ∈ 𝐶1, there exists 𝑏′

𝐶
,−𝑏′

𝐶
∈ 𝐶1 so that −𝜌(−𝑏′

𝐶
,𝜔) = 𝜌(𝑏′

𝐶
,𝜔) = 𝜌(𝑏𝐹 ,𝜔) for all 𝜔 by non-singularity. By Lemma 2, ≿ satisfies the 

independence axiom when restricted to lotteries over action. Because 𝑢 is linear, 𝑊 (−𝑏′
𝐶
) = −𝑊 (𝑏′

𝐶
) and 𝑊 (𝑏𝐹 ) = −𝑊 (−𝑏𝐹 ). Now, 

𝑏 ∼ ⟨−𝑏′
𝐶
, 𝑏𝐶⟩ and 100 ∼ ⟨𝑏′

𝐶
, 𝑏𝐶⟩. Therefore, 12 ⟨𝑏⟩ + 1

2 ⟨0⟩ ∼ 1
2 ⟨−𝑏′

𝐶
⟩ + 1

2 ⟨𝑏𝐶⟩ ≿ 1
2 ⟨𝑏𝐶⟩ + 1

2 ⟨−𝑏𝐹 ⟩. Lemma 2 gives that −𝑏′
𝐶
≿ −𝑏𝐹 . 

Also, 12 ⟨100⟩+ 1
2 ⟨0⟩ ∼ 1

2 ⟨𝑏′𝐶⟩+ 1
2 ⟨𝑏𝐶⟩ ≿ 1

2 ⟨𝑏𝐶⟩+ 1
2 ⟨𝑏𝐹 ⟩. Lemma 2 gives 𝑏′

𝐶
≿ 𝑏𝐹 . Therefore, 𝑏′

𝐶
∼ 𝑏𝐹 and −𝑏′

𝐶
∼ −𝑏𝐹 , which implies ⟨100⟩∼ ⟨𝑏𝐶 , 𝑏𝐹 ⟩ and ⟨𝑏⟩∼ ⟨𝑏𝐶 ,−𝑏𝐹 ⟩.

Consider now a non-linear 𝑢, so there are 𝑥, 𝑦 ∈𝑋 and 𝛼 ∈ (0,1) so that 𝑢(𝛼𝑥+ (1− 𝛼)𝑦) ≠ 𝛼𝑢(𝑥) + (1− 𝛼)𝑢(𝑦). By continuity, there 
is no loss in setting 𝛼 = 1

2 and normalizing so that 𝑢(𝑥) = 𝑢∗ > 𝑢(𝑧∗) = 1 > 𝑢(𝑦) = 0 where 𝑧∗ = 1
2𝑥+ 1

2𝑦 and where 𝑢∗ ≠ 2.

Denote 𝐸̄ =Ω ⧵𝐸 for any 𝐸 ∈ Σ. Pick any 𝐴,𝐵 ∈ Σ and 𝐶1,𝐶2 ∈ . Denote 𝐴1 = {𝜔⃗ ∶ 𝜔𝐶1 ∈𝐴} and 𝐵2 = {𝜔⃗ ∶ 𝜔𝐶2 ∈𝐵}. I show 
that 𝜈(𝐴1 ∪𝐵2) = 𝜈(𝐴1) + 𝜈(𝐵2) − 𝜈(𝐴1 ∩𝐵2).

By richness, there are bets 𝐶1 and 𝐶2 on 𝐴,𝐵, 𝐴̄, 𝐵̄ at stakes 𝑧 = 𝑧∗ − 𝑦 > 0 and 0. Let 𝐸𝑖 be the bet in 𝐶𝑖 on 𝐸 for 𝐸 ∈ {𝐴,𝐵, 𝐴̄, 𝐵̄}
for 𝑖 = 1,2. Then for 𝐸,𝐹 ∈ {𝐴,𝐵, 𝐴̄, 𝐵̄} the utility of ⟨𝐸1, 𝐹2, 𝑦⟩ in 𝜔⃗ is 𝑢∗ if 𝜔⃗ ∈ 𝐸 × 𝐹 , 1 if 𝜔⃗ ∈ 𝐸̄ × 𝐹 or 𝜔⃗ ∈ 𝐸 × 𝐹 , and 0 if 
𝜔⃗ ∈ 𝐸̄ × 𝐹 . Then viewing the utilities of

⟨𝐴1,𝐵2, 𝑦⟩, ⟨𝐴̄1,𝐵2, 𝑦⟩, ⟨𝐴1, 𝐵̄2, 𝑦⟩, ⟨𝐴̄1, 𝐵̄2, 𝑦⟩
as vectors in ℝ4, the vectors are linearly independent (in matrix form their determinant is 𝑢∗4 − 4𝑢∗2). Then for any 𝑥1,… , 𝑥4 ∈ℝ, 
there exist a 𝑝 ∈  , 𝛼 > 0 and 𝛽 ∈ℝ so that

𝑓𝐶
𝑝 = 𝛼

4 ∑
𝑖=1 

𝑥𝑖𝕀𝐸𝑖
(⋅) + 𝛽

where (𝐸𝑖)4𝑖=1 = (𝐴1 ∩𝐵2,𝐴1 ∩ [𝐵2]𝑐 , [𝐴1]𝑐 ∩𝐵2, [𝐴1]𝑐 ∩ [𝐵2]𝑐). In what follows all vectors are 𝜎({𝐸𝑖}𝑖) measurable, so identify them 
with vectors in ℝ4 where the 𝑖 the component indicates the value in 𝐸𝑖.

Consider a bet 𝑟 on 𝐴𝑐 𝑟′ on 𝐴, both in 𝐶1: 𝑟 = (1, 𝑔) with 𝑔 ∈ 𝐶1 s.t. 𝑔(𝜔) equals 𝑧 on 𝐴̄ and 𝑦 otherwise and 𝑟′ = (1, 𝑔′) with 
𝑔′ ∈ 𝐶1 s.t. 𝑔′(𝜔) equals 𝑧 on 𝐴 and 𝑦 otherwise. I combine these with more complicated profiles to show that 𝜈 is additive.

First, pick any 𝑝, 𝑞 ∈ Δ(𝐹 ) and 𝐶 so that 𝑓𝐶
𝑝 = 𝑣 with 𝑣1 > 𝑣2 = 𝑣3 > 𝑣4 and 𝑓𝐶

𝑞 = 𝑣′ with 𝑣′1 < 𝑣′2 = 𝑣′3 < 𝑣′4 and find 𝑝′, 𝑞′ ∈ Δ
so that 𝑝 ∼ 𝑝′ and 𝑞 ∼ 𝑞′. Consider 𝑝(𝛼) = 𝛼𝑝 + (1 − 𝛼)𝑟 and 𝑝′(𝛼) = 𝛼𝑝′ + (1 − 𝛼)𝑟. Lemma 2 gives that 𝑝(𝛼) ∼ 𝑝′(𝛼) for every 𝛼. In 
particular, for all sufficiently large 𝛼 < 1,

𝛼−1𝑊 (𝑝(𝛼)) =𝑊 (𝑝) + (1 − 𝜈(𝐸1 ∪𝐸2 ∪𝐸3) + 𝜈(𝐸1 ∪𝐸3) − 𝜈(𝐸1))
1 − 𝛼

𝛼

=𝛼−1𝑊 (𝑝′(𝛼)) =𝑊 (𝑝) + 𝜈(𝐸3 ∪𝐸4)
1 − 𝛼

𝛼
.

This must hold for all 𝛼 in an interval, so

𝜈(𝐸3 ∪𝐸4) = 1 − 𝜈(𝐸1 ∪𝐸2 ∪𝐸3) + 𝜈(𝐸1 ∪𝐸3) − 𝜈(𝐸1).

Repeating the above with 𝑞 replacing 𝑝 and 𝑟′ replacing 𝑟 yields 𝑞(𝛼) = 𝛼𝑞 + (1 − 𝛼)𝑟′ ∼ 𝑞′(𝛼) = 𝛼𝑞′ + (1 − 𝛼)𝑟′ for all 𝛼. This requires 
that

𝜈(𝐸1 ∪𝐸3) = 1 − 𝜈(𝐸2 ∪𝐸3 ∪𝐸4) + 𝜈(𝐸3 ∪𝐸4) − 𝜈(𝐸4)

Adding the two yields

2 = 𝜈(𝐸1 ∪𝐸2 ∪𝐸3) + 𝜈(𝐸1) + 𝜈(𝐸2 ∪𝐸3 ∪𝐸4) + 𝜈(𝐸4)

which can only hold if

𝜈(𝐸1 ∪𝐸2 ∪𝐸3) + 𝜈(𝐸4) = 𝜈(𝐸2 ∪𝐸3 ∪𝐸4) + 𝜈(𝐸1) = 1 (8)

by convexity of 𝜈.

Now, pick a new 𝑝, 𝑞 ∈ Δ and 𝐶 so that 𝑓𝐶
𝑝 = 𝑤′ where 𝑤′

3 > 𝑤′
1 > 𝑤′

2 > 𝑤′
4 and so that 𝑓𝐶

𝑞 = 𝑤 where 𝑤2 > 𝑤3 > 𝑤4 > 𝑤1. 
Again find 𝑝′, 𝑞′ ∈ Δ𝑋 be so that 𝑝′ ∼ 𝑞 and 𝑞′ ∼ 𝑞. Define 𝑞(𝛼) = 𝛼𝑞 + (1 − 𝛼)𝑟 and 𝑞′(𝛼) = 𝛼𝑞′ + (1 − 𝛼)𝑟. Lemma 2 implies that 
𝑞(𝛼) ∼ 𝑞′(𝛼) for every 𝛼, and so for all sufficiently large 𝛼 < 1,

𝛼−1𝑊 (𝑞(𝛼)) =𝑊 (𝑞) + (𝜈(𝐸2 ∪𝐸3 ∪𝐸4) − 𝜈(𝐸2))
1 − 𝛼

𝛼

=𝛼−1𝑊 (𝑞′(𝛼)) =𝑊 (𝑞) + 𝜈(𝐸3 ∪𝐸4)
1 − 𝛼

𝛼
.
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Therefore using Equation (8),

𝜈(𝐸3 ∪𝐸4) =𝜈(𝐸2 ∪𝐸3 ∪𝐸4) − 𝜈(𝐸2)

=1 − 𝜈(𝐸1) − 𝜈(𝐸2).

Repeating the above with 𝑝 replacing 𝑞, and 𝑝′ replacing 𝑞′, and 𝑟′ replacing 𝑟 to get that 𝑝(𝛼) = 𝛼𝑝+(1−𝛼)𝑟′ ∼ 𝛼𝑝′ + (1−𝛼)𝑟′ ∼ 𝑝′(𝛼)
for all 𝛼, which holds if only if

𝜈(𝐸1 ∪𝐸2) =𝜈(𝐸1 ∪𝐸2 ∪𝐸3) − 𝜈(𝐸3)

=1 − 𝜈(𝐸4) − 𝜈(𝐸3)

using Equation (8). Since 𝜈(𝐸3 ∪𝐸4) = 1− 𝜈(𝐸1 ∪𝐸2) to satisfy independence on actions, 𝜈(𝐸3 ∪𝐸4) = 𝜈(𝐸3)+ 𝜈(𝐸4) and 𝜈(𝐸1 ∪𝐸2) =
𝜈(𝐸1) + 𝜈(𝐸2).

To conclude, notice

𝜈(𝐴1 ∪𝐵2) = 𝜈(𝐸1 ∪𝐸2 ∪𝐸3) = 1 − 𝜈(𝐸4)

by Eq (8). Also, 1 = 𝜈(𝐸1 ∪𝐸2) + 𝜈(𝐸3 ∪𝐸4) =
∑

𝑖 𝜈(𝐸𝑖) by the above. Combining, 𝜈(𝐴1 ∪𝐵2) =
∑3

𝑖=1 𝜈(𝐸𝑖). Since 𝜈(𝐸1) = 𝜈(𝐴1 ∩𝐵2), 
𝜈 is additive for 𝐴1,𝐵2. But 𝐴,𝐵 and 𝐶1,𝐶2 were arbitrary, so 𝜈 is a probability measure when restricted to pairs of understanding 
classes. By the logic at the end of Section 3.1, ≿ cannot exhibit the choices in that experiment.

The proof for non-linear 𝑢 extends inductively to an events generated finite collection of understanding classes when 𝑢 is not a 
polynomial. To do so, let 𝐵2 be an event in the first 𝑛 understanding classes and 𝐴1 an event in the 𝑛+1st. When 𝑢 is not a polynomial 
and non-singularity holds, the dimensionality 𝑓𝐶

𝑝 across lotteries and assignments is large enough so that the analogues of 𝑝 and 𝑞
exist. Thus, the above arguments apply, so 𝜈 must be additive and thus be a probability measure. □

Proof of Proposition 2. Necessity is trivial. Suppose ≿ has a rich CCR (𝑢,𝜇, ,Π) where 𝑢 is not a polynomial. Since 𝑢 is not a 
polynomial, there exists 𝑥, 𝑦, 𝑧 so that 𝑢(𝑥 + 𝑧) + 𝑢(𝑦 + 𝑧) − 𝑢(𝑥 + 𝑦 + 𝑧) − 𝑢(𝑧) ≠ 0. To save notation, set 𝑧 = 0; adding 𝑧 to each of 
the profiles in the lotteries compared below covers the case where 𝑧 ≠ 0. To save notation, write 𝐸𝐹 instead of 𝐸

⋂
𝐹 for events 

𝐸,𝐹 ∈ Σ .

First consider 𝐾 = 𝑢(𝑥) + 𝑢(𝑦) − 𝑢(𝑥 + 𝑦) − 𝑢(0) < 0. For 𝐸 ∈ Σ, let 𝑎𝑖
𝐸
= 𝑥𝐸0 ∈ 𝐶𝑖 and 𝑏𝑗

𝐸
= 0𝐸𝑦 ∈ 𝐶𝑗 and 𝑎𝑖

𝐸
+ 𝑏

𝑗
𝐸
= 𝑥𝐸𝑦 ∈ 𝐶1. 

Then 𝑉 (⟨𝑎𝑖
𝐸
+ 𝑏

𝑗
𝐸
⟩) = 𝜇(𝐸)𝑢(𝑥) + 𝜇(𝐸𝑐)𝑢(𝑦) and there is 𝜋 ∈Π so that

𝑉 (⟨𝑎1𝐸, 𝑏2𝐸⟩) =[𝜋(𝐸𝐶1
) − 𝜋(𝐸𝐶1

𝐸𝑐
𝐶2
)]𝑢(𝑥) + [𝜋((𝐸𝑐 )𝐶2

) − 𝜋(𝐸𝑐
𝐶1

𝐸𝐶2
)]𝑢(𝑦)+

[𝜋(𝐸𝐶1
𝐸𝑐

𝐶2
)]𝑢(𝑥+ 𝑦) + [𝜋(𝐸𝑐

𝐶1
𝐸𝐶2

)]𝑢(0)

=𝜇(𝐸)𝑢(𝑥) + 𝜇(𝐸𝑐)𝑢(𝑦) − 𝜋(𝐸𝑐
𝐶1

𝐸𝐶2
)𝐾

since 𝜋(𝐸𝐶1
) = 𝜋(𝐸𝐶2

) = 𝜇(𝐸), 𝜋(𝐸𝑐
𝐶1
) = 𝜋(𝐸𝑐

𝐶2
) = 𝜇(𝐸𝑐), and

𝜋(𝐸𝐶1
𝐸𝑐

𝐶2
) = 𝜋(𝐸𝑐

𝐶1
𝐸𝐶2

) = 𝜋(𝐸𝐶𝑖
) − 𝜋(𝐸𝐶1

𝐸𝐶2
) = 𝜇(𝐸) − 𝜋(𝐸𝐶1

𝐸𝐶2
).

No False Hedging implies 𝑉 (⟨𝑎𝑖
𝐸
+𝑏

𝑗
𝐸
⟩) ≥ 𝑉 (⟨𝑎𝑖

𝐸
, 𝑏

𝑗
𝐸
⟩), which holds only if 𝜋(𝐸𝑐

𝐶1
𝐸𝐶2

) = 0 because 𝐾 < 0. Similarly, for 𝐸1,… ,𝐸𝑛 ∈ Σ
and 𝑗1,… , 𝑗𝑛, 𝑘1,… , 𝑘𝑛 ∈ so that 𝑘𝑖 ≠ 𝑗𝑖, there exists 𝜋 ∈Π so that

𝑉

((1
𝑛 
, ⟨𝑎𝑗𝑖

𝐸𝑖
+ 𝑏

𝑘𝑖
𝐸𝑖

⟩)𝑛

𝑖=1

)
− 𝑉

((1
𝑛 
, ⟨𝑎𝑗𝑖

𝐸𝑖
, 𝑏

𝑘𝑖
𝐸𝑖

⟩)𝑛

𝑖=1

)
= −1

𝑛 

𝑛 ∑
𝑖=1 

𝜋
(
(𝐸𝑖)𝐶𝑗𝑖

(𝐸𝑐
𝑖 )𝐶𝑘𝑖

)
𝐾.

No False Hedging holds only if 𝜋
(
(𝐸𝑖)𝐶𝑗𝑖

(𝐸𝑐
𝑖 )𝐶𝑘𝑖

)
= 0 for each 𝑖.

Pick any finite 𝐹 ⊂  . Choosing events and indexes so that for every 𝜔 and every 𝐶 ∈ 𝐹 , 𝐸𝑖 = {𝜔} and 𝐶𝑗𝑖
= 𝐶 . This implies 

there is 𝜋 ∈ Π with 𝜋({𝜔⃗ ∶ 𝜔∗ = 𝜔𝐶 for all 𝐶 ∈ 𝐹 }) = 𝜇(𝜔∗) for all 𝜔∗ ∈ Ω. Lemma 7 implies that the extension to all 𝐶 ∈ lies in 
Π, establishing the result.

If instead 𝐾 = 𝑢(𝑥) + 𝑢(𝑦) − 𝑢(𝑥 + 𝑦) − 𝑢(0) > 0 repeat instead with 𝑐𝑖
𝐸
= 𝑦𝐸0 ∈ 𝐶𝑖 and 𝑎𝑖

𝐸
+ 𝑐

𝑗
𝐸
= (𝑥 + 𝑦)𝐸0 ∈ 𝐶1 replacing 𝑏𝑖

𝐸
, 

noting 𝑉 (𝑎𝑖
𝐸
+ 𝑐

𝑗
𝐸
) = 𝜇(𝐸)𝑢(𝑥+ 𝑦) + 𝜇(𝐸𝑐)𝑢(0), and there is 𝜋′ ∈ Π so that

𝑉 (⟨𝑎1𝐸, 𝑐2𝐸⟩) =[𝜋′(𝐸𝐶1
) − 𝜋′(𝐸𝐶1

𝐸𝑐
𝐶2
)]𝑢(𝑥+ 𝑦) + [𝜋′((𝐸𝑐)𝐶2

) − 𝜋′(𝐸𝐶1
𝐸𝑐

𝐶2
)]𝑢(0)+

[𝜋′(𝐸𝐶1
𝐸𝑐

𝐶2
)]𝑢(𝑥) + [𝜋′(𝐸𝑐

𝐶1
𝐸𝐶2

)]𝑢(𝑦)

=𝜇(𝐸)𝑢(𝑥+ 𝑦) + 𝜇(𝐸𝑐)𝑢(0) + 𝜋′(𝐸𝑐
𝐶1

𝐸𝐶2
)𝐾

=𝑉 (⟨𝑎1𝐸 + 𝑐2𝐸⟩) + 𝜋′(𝐸𝑐
𝐶1

𝐸𝐶2
)𝐾
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and No False Hedging requires 𝜋′(𝐸𝑐
𝐶1

𝐸𝐶2
) = 0. Similar arguments to the other case imply existence of the measure claimed by the 

result. □

Proof of Proposition 3. Suppose that ≿1 understands more connections than ≿2 and pick any 𝐵 ∈ 2. Now, 𝐵 is rich and 
≿2-understood, so 𝐵 is also ≿1-understood. Hence, it is contained in a maximal, rich, ≿1-understood subset 𝐵′. By construction 
of 1 in Theorem 2, 𝐵′ ∈ 1. Conversely, suppose that for any 𝐶 ∈ 2, there exists 𝐶 ′ ∈ 1 with 𝐶 ⊆ 𝐶 ′. Pick any rich 𝐵 ⊂ 
so that ≿2 understands 𝐵. Then 𝐵 is contained in a maximal element 𝐶 ∈2, which is in turn contained in 𝐶 ′ ∈1. Since 𝐶 ′ is 
≿1-understood and 𝐵 ⊆ 𝐶 ′, 𝐵 is ≿1-understood, completing the proof. □

Proof of Proposition 4. Suppose that ≿2 is more concerned about correlation than ≿1. When 𝑝, 𝑞 ∈ Δ, 𝑝 ≿2 𝑞 ⟺ 𝑝 ≿1 𝑞, so the 
usual Anscombe-Aumann uniqueness result gives that 𝜇1 = 𝜇2 and that 𝑢1 is a positive a�ine transformation of 𝑢2. By Proposition 3, 
1 is coarser than 2. As described in the text following that proposition, one can project Π1 onto 2; for convenience, slightly 
abuse notation by denoting its projection by Π1.

If Π1 ⊈ Π2, then there exists 𝜋∗ ∈ Π1 ⧵ Π2. Lemma 7 implies there exists a finite 𝐹 ⊂  so that 𝜋∗
𝐹
∉ Π2,𝐹 = {𝜋𝐹 ∶ 𝜋 ∈ Π2}. 

Now, Π2,𝐹 is compact, convex and disjoint from {𝜋∗
𝐹
}. By a separating hyperplane theorem, there is a function 𝜙 ∶ Ω𝐹 →ℝ so that 

∫ 𝑓𝑑𝜋∗ < 0 ≤ ∫ 𝜙𝑑𝜋 for all 𝜋 ∈Π2,𝐹 . There is a positive a�ine transformation 𝑔 so that 𝑔 ◦𝜙(𝜔⃗), 𝑔(0) ∈ 𝑟𝑎𝑛𝑔𝑒(𝑢1) for every 𝜔⃗∈Ω2 . 
Following the proof of Theorem 2 and using that 𝑢1 is not a polynomial, there exists a 𝑝 ∈Δ so that 𝑓𝑝 = 𝑔 ◦𝜙 and 𝑞 ∈Δ𝑋 so that 
𝑓𝑞 = 𝑔(0). Then, 𝑝 ≿2 𝑞 since

min 
𝜋∈Π2 ∫ 𝑓𝑝𝑑𝜋 ≥ 𝑔(0),

but 𝑞 ≻1 𝑝 since

min 
𝜋∈Π1 ∫ 𝑓𝑝𝑑𝜋 ≤ ∫ 𝑓𝑝𝑑𝜋

∗ < 𝑔(0).

This contradicts that ≿2 is more concerned about correlation then ≿1. □

Data availability

No data was used for the research described in the article.
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