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Abstract

Studies on the demography and health of racially diverse African populations are scarce,
particularly due to lingering data challenges. Generative data modelling has emerged as a
valuable solution to this burden. The study, therefore, examined the efficacy of Conditional
Tabular GAN (CTGAN), CopulaGAN, and Tabula Variational Autoencoder (TVAE) for
generating synthetic but realistic demographic and health data. This study employed the
World Health Organisation stigy on global ageing and adult health survey (SAGE) Wave 1
South African data (n = 4227). Information missing from SAGE Wave 1, including demo-
graphic (e.g., race, age) and health (e.g., hypertension, blood pressure) indicators, were
imputed using Generative Adversarial Imputation Nets (GAIN). CopulaGAN, CTGAN,
and TVAE, sourced from the sdv 1.24.1 python library, generated 104,227 synthetic records
based on the SAGE data constituents. The outcomes were accessed with similarity and ma-
chine learning (XGBoost) augmentation metrics (sourced from the sdmetrics 0.21.0 python
library), including column shapes and overall and precision ratio scores. Generally, the
GAIN imputations resulted in data with properties that were comparable to original and
with no missing information. CTGAN’s (89.20%) overall quality of performance was above
that of TVAE (86.50%) and CopulaGAN (88.45%). These findings underscore the usefulness
of generative data modelling in addressing data quality challenges in diverse populations
to enhance actionable health research and policy implementation.

Keywords: deomography; synthetic data; generative data modelling; GAIN; CopulaGAN;
CTGAN; TVAE; South Africa; Africa

1. Introduction

Africa has one of the most diverse populations in the world, characterised by genetic,
cultural, and phenotypic diversity, as well as more than 2000 ethno-linguistic groups [1].
Furthermore, the individual countries on the continent have inherently diverse population
characteristics. For instance, Nigeria and Uganda have about 371 [2] and 65 distinct
ethnic divisions [3], respectively. Similarly, South Africa and Mauritius rank among the
most racially diverse countries on the continent [4]. While ethnic differentials manifest
in behavioural patterns, racial differentials encompass biological traits and socio-cultural
behaviours. The interplay between genetics (biology) and socio-cultural factors influences
health more than behavioural patterns only [5]. Thus, racial diversity, which entails ethnic
diversity, across the continent may be more important in driving health outcomes, disease
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patterns, and therapeutic responses [6,7]. Additionally, race and associated genetic and
social determinants interact to influence disease burden. In this context, race may be a
precursor that shapes exposure to other social indicators that modulate disease burden and
health patterns [8].

Various types of data on demographic and health characteristics of racially diverse
African populations exist, with tabular datasets comprising the majority [9,10]. These
tabular datasets, particularly those from this century, exhibit distinct age-related health
patterns. Young people are susceptible to infectious diseases and associated drivers, while
adults face a higher risk of non-communicable diseases (NCDs), especially cardiometabolic
diseases [11-13]; stroke, angina pectoris (angina), hypertension and diabetes are among the
most prevalent forms of cardiometabolic diseases in adults [14-17]. In addition, the data
reveals that the burden of these diseases is further polarised across various social determi-
nants of health, with race/ethnicity, wealth, education, and residence as the most recurring
factors [4,18]. The insights from such data underscore the significance of demographic
and health data as indispensable for informed decision-making mechanisms in public
health, policy, planning, and resource allocation within countries. However, the ethnic
and/or racial diversity is often underrepresented in many health research reports, resulting
in underreporting of population-specific demographic and health insights. Research by
Naz et al. [19] and Kinyondo and Pelizzo [20] revealed that poor-quality data rank among
the leading factors for the endemic underreporting of health insights in racially diverse
countries in Africa. Indeed, the continent has limited funds for data collection. Accordingly,
data collection efforts in most African countries rely on external funds and are typically
carried out through large-scale surveys or national studies. Such studies have multiple
constraints, including smaller sample sizes, missing data, privacy concerns, and restricted
access due to ethics and regulations. Similarly, the archiving and management of the
acquired data are suboptimal. Repositories are usually inaccessible and characterised by
poor database preservation practices, collectively degrading data quality and limiting the
utility of such datasets [19,21]. In addition, these limitations impede the effective use of
demographic and health information for advanced analytics and the design of effective
health promotion interventions for diverse populations in Africa. Another aspect is that the
measurable reports on demography and health in racially diverse populations are based
on obsolete, small samples with missing and incomplete data. For instance, Pillay-van
Wyk et al. [4] report on one of the most racially diverse countries in Africa, South Africa,
revealed variations in age-standardised deaths among different racial groups. Though
the study was published in 2016, the data for analysis were four years older (1990-2012).
Also, Mhlanga and colleagues’ [22] study on racial differences in public healthcare revealed
significant differences in healthcare by race. Their study, conducted by means of a survey
in 2018, employed a sample size of 20,908 drawn from a population of 58.61 million. While
that survey might have been representative of the population, a larger sample size may
yield a more representative and reliable outcome [23]. As the challenge persists, it remains
unclear whether data quality can be systematically improved in Africa, particularly for
diverse populations. A practical and sustainable approach to improving the quality of
demographic and health data would include minimising missing information, increasing
data size, and minimal privacy concerns. Such an initiative will enhance the efficiency and
impact of research work in African countries with diverse populations.

In recent years, deep learning techniques have been resurgent as prominent tools for
overcoming challenges of data availability, accessibility, and quality in countries [24-27]. In-
deed, using deep learning techniques to produce data that imitates real-world information
without compromising privacy or having counterintuitive patterns will offer valuable op-
portunities for advancing research. Among the many deep learning techniques, generative
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adversarial networks (GANSs) and variational autoencoders (VAE) emerge as high-quality
approaches for synthetic data generation [25,28]. Moreover, GANs and VAE are the founda-
tional architectures for generative models tailored to tabular, text, and image data [29,30].
Accordingly, several GANs and VAE techniques have outperformed many methods in
creating data similar to original tabular datasets. In racially diverse populations in Africa,
data synthesis with GANs and VAEs could unlock new opportunities for cross-institutional
research and predictive modelling without compromising ethical standards and responsible
data practices. However, the application of GANs and VAEs to address the suboptimal
quality of current demographic and health data from racially diverse populations in Africa
remains largely underexplored. Consequently, there is uncertainty about whether GANs,
VAEs, or both can be practical tools for generating data that can capture the statistical
characteristics and correlations of a real-life survey dataset from racially diverse African
populations. This gap warrants the utility of GANs and VAEs for synthetic data generation
in racially diverse African populations. Evaluating the performance of GANs and VAEs
in generating synthetic tabular data will demonstrate the potency of synthetic data in
overcoming existing data access and quality barriers in Africa, enabling a more robust
analysis of health and demographic trends. Additionally, such an assessment will pro-
vide information on the comparative evaluation of deep learning models’ performance in
health and demographic information generation based on a real-world survey from the
African context.

Therefore, the study examined generative data modelling for diverse populations in
Africa. Specifically, this study addresses the following primary research questions: (1) To
what extent can generative data modelling techniques, including TVAE, CTGAN, and
CopulaGAN, capture the statistical characteristics and correlations of diverse population
data? (2) Which generative data modelling technique produces the highest-quality synthetic
data in a diverse population?

2. Materials and Methods
2.1. The Context

South Africa, an ethnically and racially diverse country with known racial health
disparities [4,22], is a suitable context for sourcing population and health data as baseline
information for generative data modelling. The country’s population comprise four main
racial groups, namely, black (African [81.7%]), Indian (Asian [8.5%]), coloured (mixed
race [2.6%]), and white (7.2%) [31]. These racial groups have varied ethnic identities
and different socio-demographic statuses and lifestyles. The country, like most diverse
populations in low-resource settings, is experiencing a rapid epidemiological shift marked
by increased incidence of unhealthy weight gain and chronic disease, particularly in
adults [16,32]. Furthermore, the rising incidence of mortality and morbidity associated
with cardiometabolic conditions like ischaemic heart disease (IHD), stroke, and diabetes
has accompanied the nutritional and epidemiological transition in the country [4]. South
Africa, therefore, presents a valuable study setting for this research.

2.2. Data and Data Source

This study used data from the World Health Organisation (WHO) Global Ageing and
Adult Health survey (SAGE) for South Africa. Due to access limitations for the most recent
SAGE waves (2 and 3), this study was granted access to the South African SAGE (Wave 1).
SAGE Wave 1 is the second wave of a longitudinal demographic and health study of persons
aged 50 and above in six low- and middle-income countries (LMICs), including South
Africa, conducted from 2007 to 2010. SAGE uses multistage cluster sampling techniques to
provide information for 4227 South Africans [11,33]. The data capture several population
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and health indicators, including socio-demographic characteristics, health state, biomarkers,
anthropometric indices, risk factors, and chronic conditions relevant to the current study.

2.3. Variables and Variable Transformation

To further demonstrate the utility of deep learning for improving data quality in a
diverse population, demographic and health variables were selected from the South SAGE
Wave 1. Specifically, the chosen variables included age, sex, education, wealth, weight,
height, blood pressure (BP), waist circumference (WC), and self-reported diagnoses of
diabetes, angina pectoris (angina), stroke, and hypertension. Ever been to school, the edu-
cation indicator, was recoded as either yes or no. Wealth was recoded as ‘rich” or ‘not rich’.
These variables were selected because of their known association with the ongoing disease
transition in South Africa and other diverse populations in Africa [4,11,12,15,16]. Weight
values outside the range of 50 kg to 300 kg were set to not available (NA). Height values out
of range 80 cm and 300 cm were set as NA. The WC values out of the range 50 cm to 300 cm,
were set to NA. BP values out of the range 65 mmHg and 300 mmHg were set to NA. Self-
reported disease status and educational (ever been to school) statuses other than “yes’ or
‘no” were set to NA. The recoding of these variables is because human biomarkers and
anthropometric measurements fall within particular ranges. Also, self-reported health
status is often measured on a binary scale, i.e., whether the subject has (yes) or does not
have (no) the condition. Thus, values below or above the threshold for weight, height, WC,
and disease status are rare and may indicate errors of measurement or data entry. Setting
these to NA prevented unrealistic values from skewing analyses. Moreover, including
these extreme values in the analysis would result in weak statistics [11]. On top, these
transformations enabled further computation of the missing information using the deep
learning techniques.

2.4. Handling Missing Data

The data were characterised by missing information. Accordingly, the study adopted
the generative adversarial imputation nets (GAIN) method to impute all missing values.
GAIN is a type of GANSs typically designed to perform robust imputation on data with
mixed features (categorical and numerical indicators). Moreover, GAIN can produce
imputations that closely reflect the underlying distribution of the actual data [34]. The GAIN
imputer builds upon the GAIN architecture to implement a robust deep learning-based
approach for imputing missing values in tabular datasets from all settings, including the
low-resource setting under study. The GAIN imputer was modified to emphasise statistical
fidelity and safe convergence while addressing the challenge of missing information in the
SAGE data. As indicated in Figure 1, this study followed several steps to create and apply
the GAIN imputer to the missing information in the SAGE data.

First, the GAIN imputer was configured with hyperparameters to control specific
portions of the model’s behaviour, performance, and generalisability, thereby ensuring a re-
liable imputation. A fraction of the missing information was masked to a discriminator (D),
measured at a hint rate of 0.9. The adversarial and reconstruction loss were balanced
via a regularisation coefficient, alpha = 10, with a controlled training batch size = 64, and
duration = 300 epochs [35]. These configurations did not contain an early stopping mech-
anism and were set to automatically select a graphical processing unit (GPU or compute
unified device architecture [CUDAY]) or central processing unit (CPU), depending on avail-
ability. Because the number of observations in the SAGE data was less than 10,000, this
study employed a batch size ranging from 32 to 128. The hint rate was set at 0.9 to enable
the discriminator (D) to more effectively locate missing information (almost complete
masking). The epochs were reduced to 300 because some variables (e.g., hypertension and
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stroke) had missing information ranging from 5% to 16%, and the overall dataset numbered
approximately 1000 but was less than 10,000 [36-38].

Second, the GAIN imputer pre-processed the mixed data types extracted from the
SAGE data. Here, individual data types were assigned different preprocessing methods,
including min-max scaling and one-hot encoding, using the MinMaxScaler and OneHotEn-
coder from the scikit-learn 1.7.0 Python library. Numerical data columns, such as weight,
height, and age, were normalised (0, 1) using the MinMaxScaler to mitigate the effects
of values with high ranges on the expected outcomes. The categorical variables were
encoded using a OneHotEncoder and converted to factors or numeric format (e.g., sex
[male or female] became sex [0 or 1]). For all data types, missing values were tracked
through a binary mask to guide the generator (G) during training. The generator (G) then
received both data types (numerical and categorical) and the missingness mask. The G
predicted missing values by outputting imputed values of coded and normalised range
(0 or 1) using a sigmoid activation. Following the actions of G, a discriminator (D) was
used to distinguish between observed and imputed values based on the data and a “hint”
matrix, partially revealing the actual mask [34,39] (see Figure 1). The hint matrix revealed
a portion of the missingness mask to the D, thereby preventing trivial identification of
observed values and promoting more meaningful learning. The D also employed a sigmoid
activation function because of its ability to map values between 0 and 1, thereby ensuring
bounded gradients for all outputs [36,37]. An Adam optimiser was used to minimise the
respective losses [34,40].

The third phase was postprocessing. Following the generation of imputed values,
the regularised (normalised and label-encoded) features were decoded (for categorical
indicators) and denormalised (for numerical indicators) to their original formats. These
steps helped the reconstructed data to maintain its initial structure and statistical char-
acteristics [34,36]. The loss values for both G and D were logged during the training
phase to allow for output monitoring (see Figure 1). The GAIN imputation architecture
and application code can be retrieved from “Imputation with GAIN (code)” on GitHub at
https:/ /github.com/SallySims /GAIN-Imputation-I.git (accessed on 24 June 2025).
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Figure 1. Generative Adversarial Imputation Network architecture diagram. Source: Authors’
creation based on information from Yoon et al. [34], Patterson and Gibson [37].
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To assess the similarity between the tabular data and the GAIN imputed data, statisti-
cal properties were evaluated using the Kolmogorov—-Smirnov (KS) and Jensen-Shannon
(JS) tests. These tests were selected due to their established strength in validating data
distribution preservation metrics and are suitable for comparing convergence and diver-
gence between original and imputed data [41]. Accordingly, the KS and JS tests assessed
the outcomes for numerical and categorical variables, respectively.

2.5. Statistical Analysis
2.5.1. Descriptive Analysis

The original and imputed data were summarised, presented as means, standard
deviation (SD), and percentages. Through these summaries, the distribution, the similarities,
and differences between the variables in the original and imputed data are presented [12,42].

2.5.2. Inferential Analysis

This study employed CopulaGAN, CTGAN, and TVAE to perform generative data
modelling due to the need for diverse and increased response volumes in South Africa’s
diverse population. These GANs and VAE were selected because of their superior per-
formance in generating synthetic tabular information for datasets with mixed features, in
contrast with machine learning, and traditional approaches [27,30]. The CTGAN model ef-
ficiently employs mode-specific normalisation processes, builds on a conditional generator
and training-by-sampling, and uses fully connected networks and other contemporary data
manipulation techniques to create high-quality data synthesis outputs [43—46]. Specifically,
the CTGAN employs mode-specific normalisation for the independent preprocessing of
each variable in all data types. In this method, a variational Gaussian mixture model
(VGM) estimates each continuous column’s modes, because such columns often have
non-Gaussian multimodal distributions. Each value is then represented with two com-
ponents: a one-hot vector indicating the mode, and a scalar showing the value of the
mode. Furthermore, the CTGAN introduces a conditional generator to condition sample
generation on a selected category from a discrete column. This approach addresses the
challenges of standard GAN generators, particularly their tendency to overlook category
imbalance, which leads to poor representation of infrequent categories. The condition is
represented by a vector that combines one-hot encodings and mask vectors to specify the
targeted category. Generated outputs are penalised via cross-entropy loss if the outputs
fail to match the condition. This ensures the model learns actual conditional distributions.
On top, the CTGAN employs a training-by-sampling approach to enhance balanced rep-
resentation during training. A discrete column is randomly selected, and a category is
sampled based on the logarithm of its frequency. This guides the generator (G) to create
realistic samples for the discriminator (D) to evenly explore all categories as either real
or fake, while maintaining the original data distribution. Both the generator (G) and the
discriminator (D) use two connected layers. While the G applies batch normalisation
with Rectified Linear Unit (ReLU), tanh, and Gumbel-Softmax activation functions, the
D uses leaky ReLU and dropout. CTGAN employs the Packed Generative Adversarial
Networks (PacGAN) framework to mitigate mode collapse and utilises the Wasserstein
Generative Adversarial Network with Gradient Penalty (WGAN-GP) loss, combined with
the Adam optimiser. These and specific hyperparameter scores (epochs, batch size, em-
bedding dimension, generator (G) and discriminator/critic (D), and G and D learning rate,
see https://github.com/sdv-dev/SDV /tree/main/sdv/single_table (accessed on 24 June
2025) for details) are introduced as part of the training to improve the model’s performance.
A comprehensive explanation of the CTGAN framework is reported by Xu et al. [46] and
Precise et al. [45].
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The CopulaGAN is a variant of CTGAN that leverages a copula-based modelling
technique for data synthesis [47]. The CopulaGAN model uses the Gaussian copulas to
analyse non-normal dependent observations by modelling dependency through a mul-
tivariate normal error structure to separate the dependence structure from the marginal
distributions [48]. Furthermore, the copulas apply cumulative distribution function (CDF)-
based transformations to data to simplify the learning of data trends. Inference within
this model relies on maximum likelihood, with closed-form likelihoods for continuous
data and numerical approximations (e.g., importance sampling) for discrete/categorical
data [30,47-49]. Like CTGAN, hyperparameters (epochs, batch size, embedding dimen-
sion, generator (G) and discriminator/critic (D), and the learning rates of G and D) are
introduced as part of the data synthesis process. Masarotto and Varin [48] and Pathare and
colleagues [47] provide detailed information on Gaussian copulas and CopulaGAN.

TVAE employs two neural networks and a conditional probabilistic distribution to
generate artificial data. Within this architecture, a similar CTGAN preprocessing step is
implemented, although the loss function is modified to better suit data with a tabular
structure. The TVAE use an encoder—decoder and Evidence Lower Bound (ELBO) loss to
train a model [30]. One of the two neural networks, the decoder, models the condition
distribution, whereas the other, the encoder, models the approximate posterior. Specifically,
the decoder outputs a joint distribution over continuous (2Nc) and discrete (Nd) indicators.
Here, the Nd is modelled with Gaussian distributions while the discrete values and mode
indicators are modelled with categorical distributions via Softmax. On the one hand, the
encoder maps an input row to latent indicators, and on the other hand, it employs standard
VAE encoding with outputs for the mean and log variance, while assuming the latent
indicator is normally distributed. Also, the model is trained using an Adam optimiser
and other hyperparameters [30,46,50]. More detailed information on TVAE architecture is
presented by Xu et al. [46].

This study utilised synthetic data vaults (SDVs) project algorithms presented as
sdv 1.24.1 python library to apply TVAE, CopulaGAN, and CTGAN to augment the origi-
nal South African SAGE demographic and health data. The data synthesis process using
SDV was built on the standard approach for generative data modelling. Additionally, the
SDVs incorporated parsimonious yet statistically significant hyperparameters into the data
augmentation procedure [51,52]. For instance, the CTGAN and CopulaGAN hyperparame-
ter configurations included epochs = 300, batch size = 500, embedding dimension = 128§,
generator (G) and discriminator/critic (D) = 256 and 256, and G and D learning
rate =2 x 10~*. Information on the details of SDV data synthesis for the three generative
models can be found at https://github.com/sdv-dev/SDV /tree/main/sdv/single_table.
These generative modelling techniques can generate data at about 1 to 100 times the initial
scale. Therefore, this study set the synthetic data output to 104,227, i.e., ~25 x 4227 (the
sample size). Also, the synthetic data metrics (SD metrics) were used to evaluate how
closely the synthetic data generated with the TVAE, CopulaGAN, and CTGAN compared
with the original data in terms of complexities, dependencies, and characteristics, i.e., the
quality of reporting. The SD metrics, from the scikit learn 1.7.0 python library, was used to
evaluate the distribution of columns (column shapes) in the synthetic and real data, using
similarity metrics such as the Jensen-Shannon (JS) divergence (for categorical indicators)
and the Kolmogorov-Smirnov (KS) test (for numerical indicators). Specifically, the KS test
compared the empirical cumulative distribution functions of the CTGAN, CopulaGAN,
and TVAE generated data with the original dataset. For this statistic, KS test, the maxi-
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mum value (supremum [supy]) of the absolute difference between the original F,(n) and
generated F¢(n) data is of interest. This is presented in Equation (1) as follows:

D = supy|Fr(n) — Fg(n)] (1)

The derived KS statistic is converted to a KS score by normalisation as stated in
Equation (2).
Ksscore == (1 - D) (2)

The JS statistic examines the divergence (zero divergence or symmetry) DJS(R || S)
between the real (R) and synthetic (S) data distributions based on the Kullback-Leibler
divergence (KLD), as presented in Equation (3)

DJS(R || §) = ZKLD(R || M) + 3KLD(S || M) 3)

where the following apply:
M= %(R + S) is the average (or mixture) of the two distributions (real and generated).
DJS(R || S) = 0 if and only if R is exactly the same as S. However, small DJS indi-
cate symmetry:.
KLD(R || M) is the KLD from R to M, defined in Equation (4) as follows:

R(i)
M(i)

Like KS, the JS output DJS(R II'S ) is converted to a normalised D]Sscore (range O to 1),
as presented in Equation (5):

KLD(R || M) =}, R(i)log(—-=) 4)

D]Sscorezl_D]S(R || S) (5)

The column shape metric averages KS and ]S scores for columns within specific
variable types (numerical [ieCp;, ] and categorical [i€Cc4]), defined as Equation (6):

. 1
Column Shape Metric = ;(Ziecm D]Sscore,i) + (Zienum KSscore,i) (6)

Also, the pairwise relationships between the features (column pair trends) were eval-
uated for consistency. This ensured that the synthetic data captured both the individual
column distributions (univariate properties) and relationships between the columns (multi-
variate structure) in the original data. Based on the SD metric specifications, the two main
metrics of correlation and contingency similarity were employed for column pair trend
analysis [51,52]. The column pair trend metrics compute the correlation coefficient (either
Pearson or Spearman) for a pair of columns, A and B, in the original (R) and synthetic (S)
data. This yields two separate correlation values. The test normalises and returns a
similarity score based on Equation (7):

Sap—R
score = 100 x (1 — |A'32A'B|) )

For a pair of columns, A and B, the contingency similarity test computes a normalised
contingency table for the real (R) and synthetic (S) data. The contingency table describes the
proportion of rows with each combination of categories in columns A and B. Furthermore,
the test uses the total variation distance (% YweA LpeB | Sup— Rap |) approach to compute
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the difference between the contingency tables. The derived distance is subtracted from 1,
ensuring a high score means high similarity. The process is summarised in Equation (8):

1
score = 100 x <1 -5 ZMA ZﬁGB‘Szx,ﬁ - Ra,ﬁ‘) ®)

The average of all metric outcomes became the overall score. All the outputs were
presented in percentages to provide a universal and intuitive scale for the quality measure-
ments [53,54]. Machine learning (ML) augmentation metrics were used in the multivariate
analysis to test the extent to which the dual datasets” multivariate structures yielded better
results than the original data when training a model. Regarding the SD metric, this study
used the ‘binary classifier precision efficacy’ method to analyse how precisely (precision
score) the classifier (XGBoost, sourced from the sdmetrics 0.21.0 python library) trained
on synthetic data generated from the real data. XGBoost was used because of its ability
to handle large datasets [55]. Here, regarding sensitivity, the current study employed
hypertension, the condition with the most reported and derived actual cases, as the predic-
tion outcomes of interest at a fixed recall level of 0.8. Heart conditions like hypertension
and angina pectoris or ischaemic heart disease (IHD) often receive general risk scoring
with a target recall of about 0.7-0.85. Hence, setting the recall at 0.8 aligns with medical
diagnosis standards that prevent missing too many actual cases of diseases or conditions of
interest [56,57]. All feature engineering and analyses were performed with Python 3.1.25.

3. Results

Table 1 illustrates a comparative summary of the demographic and health char-
acteristics in the original and imputed datasets for 4227 South African adults. Gen-
erally, there were differences in the primary variable outcomes, but similarities in the
outputs of the variable elements. More numerical than categorical indices recorded
changes in outcomes following the imputation with GAIN. In the original dataset,
the average age of a South African was 62.71 £ 9.65 years, whereas the modified
data revealed a decreased average age of 62.63 £ 9.83 years. Average height increased
from 157.95 £ 12.52 cm to 158.55 £ 13.19 cm. Systolic blood pressure (BPs) decreased
slightly from 145.34 & 25.36 mmHg to 145.00 = 25.20 mmHg. Racial status was char-
acterised initially by a missing value (643 (15.21) and other statuses (African/Black:
2238 (52.95%), Coloured: 716 (16.94%), Indian/Asian: 335 (7.93%), White: 287 (6.79%),
Other: 8 (0.19%)). Hypertensive status was reported among 1144 (27.06%) respondents,
although 204 (4.83%) provided no response. Following the imputation with GAIN, racial
status distribution was as follows: African/Black: 2344 (55.45%), Coloured: 822 (19.45%),
Indian/Asian: 576 (13.63%), White: 477 (11.28%) and Other: 8 (0.19%). The consistencies
in statistical properties (D, ;; (KS)) in both datasets ranged from 0.01 for BPs to 0.02 for the
other variables (age, height, weight, WC), at p > 0.05 (no statistically significant difference).
Hypertension status report was devoid of NA /no response and increased to 1232 (29.15%)

Table 2 illustrates the outcomes of generative data modelling using TVAE, CTGAN,
and CopulaGAN, sourced from the sdv 1.24.1 python library. A total of 104,227 records
were generated by the three models, even though the outcomes varied according to
the variables under study. These generative data models provided information on demo-
graphics and health indicators, including race, age, sex, BPs, self-reported angina, height,
and wealth. Comparing the numerical variables, the average age of participants was old-
est for CTGAN (63.30 & 9.87 years), older for CopulaGAN (63.04 & 12.85 years), and old for
TVAE (59.26 &= 11.70 years). The average BP generated from CTGAN (142.17 4 25.58 mmHg)
was within the average estimates from TVAE (138.30 + 23.25 mmHg) and CopulaGAN
(145.81 + 28.17 mmHg). The average weight and WC deduced from CopulaGAN [weight
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(76.86 + 15.41 kg) and WC (94.23 £ 21.64 cm)] were higher, in contrast with the aver-
ages from TVAE [weight (72.95 £ 15.65 kg) and WC (91.14 £ 17.65 cm)], which were
lower. Regarding categorical indicators, there were more African/Black racial identities
than other groups in all models. CTGAN produced a relatively balanced race distri-
bution (i.e., 51.82% African/Black, 20.90% coloured, 18.10% Indian/Asian, 8.19% White,
0.99% Other) compared to TVAE (72.69% African/Black, 10.19% coloured, 5.50% In-
dian/Asian, 11.62%White, NA for other races). Females were more common than males
across all generative data models, although CTGAN had more males [49,398 (47.39%)] than
TVAE (37,121 (35.62%)) or CopulaGAN 42.65%, n = 44,452). The generated prevalence of
hypertension varied between the models, with CTGAN [38,392 (36.83%)] recording the
highest and TVAE [24,281 (23.30%)] revealing the lowest prevalence. A similar pattern was
observed for stroke and diabetes and angina pectoris.

Table 1. Summary of the Original and Imputed Data.

Original Imputed Tests
Number (%) Number (%) 1
4227 (100) 4227 (100) stats, p-value
X+ SD X+ SD Dy, m (KS)
Age 62.71 £ 9.65 62.63+ 9.83 0.02, p > 0.05
Height 157.95 4+ 12.52 158.55 + 13.19 0.02, p > 0.05
Systolic blood pressure (BPs) 145.34 £ 25.36 145.00 £ 25.20 0.01, p > 0.05
Weight 76.44 + 18.30 76.08 + 19.72 0.02, p > 0.05
Waist circumference (WC) 94.40 4+ 17.44 95.66 4+ 19.00 0.02,p > 0.05
Number (%) Number (%) DJS (P||Q) (JS)
Sex 0.01
Male 1797 (42.51) 1797 (42.51)
Female 2428 (57.45) 2430 (57.49)
Missing 2 (0.047) NA
Race 0.05
African/Black 2238 (52.95) 2344 (55.45)
Coloured 716 (16.94) 822 (19.45)
Indian/Asian 335 (7.93) 576 (13.63)
White 287 (6.79) 477 (11.28)
Other 8(0.19) 8 (0.19)
Missing 643 (15.21) NA
Ever been to school 0.01
Yes 2661 (62.93) 3043 (71.99)
No 873 (20.65) 1184 (28.01)
Missing 693 (16.41) NA
Wealth 0.01
Rich 1767 (41.80) 2123 (50.22)
Not rich 1638 (38.75) 2104 (49.78)
Missing 822 (19.45) NA
Angina pectoris 0.02
Yes 229 (5.42) 351 (8.30)
No 3798 (89.88) 3876 (91.70)
Missing 200 (9.53) NA
Hypertension 0.01
Yes 1144 (27.06) 1232 (29.15)
No 2879 (68.11) 2995 (70.85)
Missing 204 (4.83) NA
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Table 1. Cont.

Original Imputed Tests
Stroke 0.05
Yes 144 (3.41) 340 (8.04)
No 3883 (91.86) 3887 (91.96)
Missing 200 (4.73) NA
Diabetes 0.02
Yes 370 (8.75) 453 (10.72)
No 3657 (86.52) 3774 (89.28)
Missing 200 (4.73) NA
Source: Computation based on data from WHO SAGE South Africa [33]. Note: DJS (P||Q) (JS), Jensen-Shannon
divergence; D, (KS), Kolmogorov-Smirnov; NA, not available.
Table 2. Summary of the synthetic data generated with CTGAN and CopulaGAN.
CopulaGAN CTGAN TVAE
Number (%) Number (%) Number (%)
104,227 (100) 104,227 (100) 104,227(100)
Indicators X 4+ SD X +SD X 4+ SD
Age 63.04 +12.85 63.30 £ 9.87 59.26 =+ 11.70
Height 158.43 £+ 16.76 159.86 £+ 19.21 159.07 £9.91
Systolic blood pressure (BPs) 145.81 + 28.17 142.17 + 25.58 138.30 + 23.25
Weight 76.86 = 15.41 76.08 £+ 19.68 72.95 £ 15.65
Waist circumference (WC) 94.23 4+ 21.64 92.82 4+ 20.08 91.14 + 17.65
Number (%) Number (%) Number (%)
Sex
Male 44,452 (42.65) 49,398 (47.39) 37,121 (35.62)
Female 59,775 (57.35) 54,829 (52.61) 67,106 (64.38)
Race
African/Black 47,764 (45.83) 54,012 (51.82) 75,760 (72.69)
Coloured 25,866 (24.82) 21,782 (20.90) 10,619 (10.19)
Indian/ Asian 13,822 (13.26) 18,868 (18.10) 5732 (5.50)
White 15,730 (15.09) 8535 (8.19) 12,116 (11.62)
Other 1045 (1.00) 1030 (0.99) NA
Ever been to school
Yes 77,156 (74.03) 84,540 (81.11) 85,914 (82.43)
No 27,071 (25.97) 19,687 (18.89) 18,313 (17.57)
Wealth
Rich 49,919 (47.89) 47,907 (45.96) 43,095 (41.35)
Not rich 54,308 (52.11) 56,320 (54.04) 61,132 (58.65)
Angina pectoris
Yes 20,770 (19.93) 16,309 (15.65) 419 (0.40)
No 83,457 (80.07) 87,918 (84.35) 103,808 (99.60)
Hypertension
Yes 29,595 (28.39) 38,392 (36.83) 24,281 (23.30)
No 74,632 (71.61) 65,835 (63.17) 79,946 (76.70)
Stroke
Yes 14,446 (13.86) 20,543 (19.71) 1684 (1.62)
No 89,781 (86.14) 83,684 (80.29) 102,543 (98.38)
Diabetes
Yes 13,074 (12.54) 23,158 (22.22) 2116 (2.03)
No 91,153 (87.46) 81,069 (77.78) 102,111 (97.97)

Source: Computation based on data from WHO SAGE South Africa [33].

Table 3 shows the assessment of the quality of generative data modelling with Copu-
laGAN, CTGAN, and TVAE, focusing on how these three models preserved the original
data’s complex interrelationships and statistical properties. These quality reports were
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presented as column shapes, pair trends, and overall scores. The CTGAN outputs were of
the highest quality (89.20%) compared with TVAE (86.50%), which were the lowest. Also,
CTGAN (90.16%; 88.25%) outperformed TVAE (89.86%; 83.13%) and CopulaGAN (89.63%;
87.27%) in terms of column shapes and column pair trends outcomes.

Table 3. Generative data model quality metrics (SD metrics) for CopulaGAN, CTGAN, and TVAE.

Metric CopulaGAN CTGAN TVAE
Column Shapes 89.63% 90.16% 89.86%
Column Pair 87.27% 88.25% 83.13%
Trends
Overall Score 88.45% 89.20% 86.50%

Source: Computation based on data from WHO SAGE South Africa [33].

Table 4 shows the ML augmentation metrics outcomes for the CTGAN, CopulaGAN,
and TVAE generated data and the original information for South Africa. The metric com-
pares the performance of these three models’ training and validation dataset, focusing
on recall, precision, and confusion matrix (TP, FP, TN, FN), along with a precision ratio
score. According to Table 4, all the synthetic data significantly improved recall (vali-
dation recall) [COpulaGAN: 0.47, CTGAN:0.47, TVAE:0.44] compared with the original
data (0.23). The original data were more precise (0.59) than the synthetic datasets (Cop-
ulaGAN: 0.45, CTGAN: 0.46, TVAE: 0.43) at correctly predicting positive hypertensive
cases (validation precision). The ratio of correctly predicted positive cases of hypertension
(precision ratio score) in the synthetic versus original data revealed that CTGAN (0.77) and
CopulaGAN (0.76) achieved higher scores than the TVAE model (0.73).

Table 4. Generative data models” ML augmentation metrics (SD metrics) for CopulaGAN, CTGAN,
and TVAE.

CopulaGAN CTGAN TVAE
Data Types
Original Synthetic Original Synthetic Original Synthetic
Training Recall 0.80 0.80 0.80 0.80 0.80 0.80
Validation Recall 0.23 047 0.23 047 0.23 0.44
Validation Precision 0.59 0.45 0.59 0.46 0.59 0.43
True Positives (TPs) 82 168 82 169 82 168
False Positives (FPs) 56 205 56 201 56 220
True Negatives (TNs) 852 703 852 707 852 688
False Negatives (FNs) 279 193 279 193 279 210
Score (Precision Ratio) 1.0 (baseline) 0.76 1.0 (baseline) 0.77 1.0 (baseline) 0.73

Source: Computation based on data from WHO SAGE South Africa [33].

4. Discussion

This study presents a pioneering report on applying generative data modelling tech-
niques to improve data quality in diverse populations across Africa. Specifically, this
study employed CopulaGAN, CTGAN, and TVAE for generating synthetic data for South
Africa, a racially and ethnically diverse African population. These techniques mimicked the
complex dependencies and statistical relationships in the WHO SAGE South Africa Wave 1
(4227 observations) data to enhance synthetic data generation (104,227 observations). The
quality of outputs from these generative data modelling techniques revealed differential
levels of similarity between original and artificial data. These findings underscore the
importance of generative data modelling as an efficient mechanism for overcoming data
quality challenges and capturing the dynamics in diverse populations in Africa.
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The revelation that GAIN, CTGAN, CopulaGAN and TVAE mimicked the statistical
and complex dependency characteristics of the WHO SAGE South African data to impute
missing information and generate data at a scale 24.66 times the original data highlights
the usefulness of generative data modelling for mitigating issues of poor data quality
for diverse populations. The data generation capabilities of these models corroborate
reports [27,29,30,34,58] of high-accuracy imputations for missing information in mixed
data types. Additionally, these studies report the effectiveness of these models in creating
privacy-preserving synthetic data across different population groups and clinical contexts,
supporting informed health decisions. These findings underscore the transformative poten-
tial of these models as scalable solutions for enhancing data quality in diverse populations
and underserved areas, especially in Africa, where data challenges are widespread.

The observed variations in the SD metrics outcomes for CTGAN, CopulaGAN, and
TVAE could be attributable to many factors. It is possible that the relatively strong per-
formance of CTGAN compared to the other models may be due to the structure of the
variables selected from the South African data. CTGAN performed well in learning re-
lationships among categorical indicators, rendering it well-suited to modelling synthetic
data with many such indicators, such as the variables employed in the current study. In
addition, CTGAN uses mode-specific normalisation and conditional vector sampling for
data synthesis. These techniques allow CTGAN to model discrete variables more efficiently
than CopulaGAN and TVAE [27,29,43]. In contrast, the poor performance of TVAE relative
to the GAN models (CopulaGAN and CTGAN) may have been due to its limited ability to
model non-linear relationships in tabular data. Similarly, TVAE employs one-hot encoding
to preprocess categorical data, transforming the data into binary vectors; however, it may
not capture complex relationships or handle data with a significant class imbalance. The
reasonably commensurate outcomes between CTGAN and CopulaGAN might be due to
the similarity in their mode of synthetic tabular generation architecture [30,50].

4.1. Implications for Low-Resource Settings

The current findings highlight the suitability of generative data modelling techniques
for application to diverse populations. By generating artificial data that exceeds the scale of
the original data by a factor of two, these models can provide cost-effective and ethically
sound data generation for advanced predictive analytics. In the context of Africa, where
diverse populations are experiencing rapid epidemics of NCDs [4,15], CTGAN and Copu-
laGAN can become valuable mechanisms for generating data on the racial distribution of
NCDs and associated drivers. Access to such data for advanced predictive modelling will
therefore be crucial for informing evidence-based health policy built on context-specific, yet
less expensive, data. Moreover, because TVAE and CTGAN have peculiar methodological
advantages in the synthesis of data, these two models can be combined for more reliable
data generation outcomes.

4.2. Limitations and Future Directions

Despite the strength of the study, some limitations can be noted. The study relied solely
on WHO SAGE South Africa Wave 1 for analysis, and the data may not fully represent
population diversity in Africa. Data from other racially and ethnically diverse African areas
should be incorporated into future studies. Also, the study used only two forms of GANSs,
CTGAN and CopulaGAN, despite the existence of multiple forms of GANs designed for
tabular data. However, CTGAN and CopulaGAN used in the study are models that have
been identified in the literature as effective for the production of realistic and equitable
synthetic data outcomes. The analysis also revealed that the models performed well with
specific aspects of the data. Hence, future research could integrate these models to facilitate
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better learning from the data and the subsequent execution of improved synthetic data
generation outcomes.

5. Conclusions

Generative data modelling techniques can address the lingering data limitations and
challenges hindering the complete execution of actionable research on diverse African
populations. Our findings suggest that each model, CTGAN, CopulaGAN, and TVAE,
performed well in specific aspects of synthetic data generation. The CTGAN scored the
most balanced representation across variables, especially in racial classes. However, the
overall performance of the CopulaGAN was below that of the CTGAN; the former better
preserved inter-variable relationships. Also, the overall performance of TVAE was lower
than that of CTGAN. TVAE exhibited stronger performance outputs for variables such as
BPs and age, which had non-linear relationships. Therefore, generative data models offer a
valuable pathway to more representative research and policy-making. However, further
validation studies are needed to assess the external utility and long-term implications of
using such data for African health research.
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Abbreviations

The following abbreviations are used in this manuscript:

2Nc Continuous variables

BPs Systolic blood pressure

CDF Cumulative distribution function

CopulaGAN  Copula generative adversarial network

CTGAN Conditional tabular generative adversarial network
D Discriminator

DJS(P I 1Q) Jensen-Shannon divergence

JS Jensen-Shannon divergence

ELBO Evidence lower bound

G Generator

GAIN Generative adversarial imputation nets
GAN Generative adversarial network

FN False negative

FpP False positive

KLD Kullback-Leibler divergence

LMICs Low- and middle-income countries

NCDs Non-communicable diseases
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Nd Discrete variables

PacGAN Packed generative adversarial network
ReLU Rectified linear unit

SAGE Study on global ageing and adult health
SD Standard deviation

SD Metrics Synthetic data metrics

SDV Synthetic data vault

TN True negative

P True positive

TVAE Tabular variational autoencoder

VAE Variational autoencoder

VGM Variational Gaussian mixture model
WC Waist circumference

WGAN-GP Wasserstein generative adversarial network with gradient penalty

WHO World health organisation
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