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a b s t r a c t

We analyse the large and diverse literature on technical change in integrated assessment models

(IAMs) of climate change, with a view to understanding how different representations of tech-

nical change affect optimal climate policy. We first solve an analytical IAM that features several

models of technical change from the literature, including exogenous technical change in abate-

ment technologies, exogenous decarbonisation of the economy, endogenous technical change via

learning-by-doing, and endogenous technical change via R&D (in particular, directed technical

change). We show how these models of technical change impact optimal carbon prices, emissions

and temperatures in often quite different ways. We then survey how technical change is currently

represented in the main quantitative IAMs used to inform policy, demonstrating that a range of ap-

proaches are used. Exogenous technical change in abatement technologies and learning-by-doing

are most popular, although the latter mechanism is only partially endogenous in some models. We

go on to quantify technical change in these policy models using structural estimation, and simu-

late our analytical IAM numerically, assessing the effect of technical change on optimal climate

policy. We find large quantitative effects of technical change and large quantitative differences be-

tween different representations of technical change, both under cost-benefit and cost-effectiveness

objectives.

1. Introduction

Integrated assessment models (IAMs) have played a central role in developing our understanding of economically efficient climate

policies and continue to provide important inputs to decision-makers (e.g. IPCC, 2018, 2022). Technical change (hereafter TC) is one

of the key assumptions in any IAM that estimates emissions abatement costs.

TC is complex and multi-faceted. Some TC mechanisms are exogenous to abatement policy decisions. For example, there may be

technological spillovers from non-climate R&D, such as general-purpose membrane technologies developed in the chemical industry,

which can also reduce the costs of clean hydrogen production. Some mechanisms are endogenous because they depend on climate
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R&D specifically. For example, cost reductions in fuel cell technologies have depended heavily on R&D investment so far. Some

mechanisms are endogenous to abatement policy because technology costs depend directly on deployment. For example, photovoltaic

cells would still be expensive today if they had not been deployed at large scale. Usually, exogenous and endogenous TC will co-

exist. For example, the development of Lithium-ion batteries for smartphones can reduce the future cost of electric-vehicle batteries

(exogenous TC). However, the specific requirements of car batteries (e.g., large capacity and peak power) will be met more quickly

if electric vehicles are produced at scale (endogenous TC).

IAMs need to make sense of the complex and diverse mechanisms of TC, simplify them and build appropriate model abstractions.

Previous reviews have shown that modellers have taken many different approaches to TC (Löschel, 2002; Grubb et al., 2002; Sue

Wing, 2006; Gillingham et al., 2008). At the same time, it is well known from other reviews that there is wide variation between IAMs

in their estimated abatement costs of meeting pre-determined climate goals (Clarke et al., 2014; van Vuuren et al., 2020; Riahi et al.,

2022), or their prescriptions of optimal warming (Gillingham et al., 2018). The missing piece of the puzzle is knowing what role TC

plays in this variation. It is difficult to know because IAMs are rich and complicated, with many relevant differences. Therefore, it is

not obvious how to construct a controlled comparison that leads to an understanding of the effect of different representations of TC

on optimal climate policy. This is our aim in this paper.

We begin in Section 2 with a theoretical analysis of different TC models. Our fundamental aim is to assess the effect of TC on

optimal climate policy, where we mostly use marginal abatement costs (MACs), carbon taxes, emissions and temperatures as sufficient

statistics for climate policy (where relevant, we also discuss innovation subsidies of different kinds). We consider two kinds of climate

policy, minimising the discounted sum of abatement costs and climate damages (cost-benefit analysis), and meeting a pre-determined

climate constraint at minimum discounted abatement cost (cost-effectiveness analysis). Building on the foundation of a common

set of equations for welfare, utility, warming and damages, we compare three different classes of TC models. The first is models of

exogenous TC. We consider both exogenous TC in abatement technologies, which reduce abatement costs, and exogenous TC that

reduces the emissions intensity of economic growth (so-called Autonomous Energy Efficiency Improvements or AEEI). The second

class is models of endogenous TC based on learning-by-doing. In these models, the cost of abatement is a decreasing function of past

cumulative abatement. The third class is models of endogenous TC based on R&D investment into abatement/clean technologies. We

particularly focus on recent models of Directed Technical Change (DTC), which embed R&D in a model in which TC can improve

either dirty or clean technologies.

The analysis delivers a rich set of results that we summarise in five Results, with derivations contained in the Appendices.

1. Exogenous TC that makes future abatement cheaper creates an incentive to abate less in the short run but more in the long

run. Optimal carbon taxes are always lower, but emissions/temperatures are higher in the short run before ending up lower

in the long run. Under cost-effectiveness, the long-run temperature is unaffected (it is constrained) but it is reached quicker.

2. Exogenous TC through AEEI has different effects. Its short-run effects are ambiguous, but plausibly it leads to lower optimal

carbon taxes, emissions and temperatures. In the long run, however, it unambiguously leads to higher optimal carbon taxes,

emissions and temperatures (again, under cost-effectiveness the long-run temperature is unaffected but it is reached quicker).

This is because AEEI has two countervailing effects. On the one hand, it reduces business-as-usual (BAU) emissions, which

makes lower emissions less costly to attain. On the other hand, by decarbonising the economy, it makes further emissions

reductions more difficult. The balance of these effects is different at different stages of the low-carbon transition.

3. Endogenous TC based on learning-by-doing also has two countervailing effects. On the one hand, it makes future abatement

cheaper, creating an incentive to wait, just like exogenous TC in abatement technologies. On the other hand, early abatement

is what reduces future abatement costs, creating the opposite incentive to abate early. Optimal carbon taxes are lower, but

an abatement subsidy is required to internalise the learning externality. The sum of these – the firm’s MAC – can be higher

or lower than without TC initially, so the effect on short-run emissions and temperatures is also ambiguous. In the long run,

emissions and temperatures are lower, so emissions and temperatures under endogenous, learning-based TC can be lower all

along the path. Under cost-effectiveness analysis, we show that the effect of endogenous, learning-based TC is qualitatively

the same as exogenous TC in abatement technologies, but not as strong. The carbon budget is still used up more quickly and

abatement is backloaded, but the endogenous future learning gain tempers the incentive to do so.

4. Models of endogenous TC based on R&D also create an incentive for early action, but not in the form of abatement. Instead,

firms invest in R&D, incentivised by R&D subsidies, and delay abatement until R&D has reduced abatement costs. This means

the optimal carbon tax, emissions and temperature trajectories look more like exogenous TC in abatement technologies than

they do endogenous, learning-based TC. In fact, we show formally that they are the same as exogenous TC in abatement

technologies, provided R&D investment costs are small relative to output.

5. We comment on clean technology dynamics in endogenous TC models. By design, learning-based models are designed to

replicate negative exponential experience curves that have been demonstrated empirically for a wide range of technologies

(e.g., Way et al., 2022). To do this, they conform to the process of “fishing out”, meaning that it becomes harder to find new

ideas, the larger the existing knowledge stock. By contrast, most DTC models conform to the opposite process of “standing on

the shoulders of giants”, meaning that existing knowledge makes new knowledge easier to develop. This logically means such

models cannot reproduce experience curves.

Arguably a drawback of much of the literature is that endogenous, learning-based TC is represented at the exclusion of R&D, and vice

versa. We finish Section 2 by proposing a model of endogenous R&D based on both.
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Starting with Section 3, we shift our focus to quantitative models. This section contains a systematic survey of how TC is represented

in the current crop of major quantitative IAMs, based on 22 families of models. We establish that a diversity of TC modelling

approaches exists, as previous reviews also found. We find that TC is exogenous in the majority of models. Where it is endogenous,

it is mostly based on learning-by-doing rather than R&D, a finding that is not obvious unless one-off models are excluded. Where

models represent learning-by-doing, the incentive to abate early is often ignored in setting optimal policy, however. This leads us to

identify a class of models where TC is ‘semi-endogenous’.

Section 4 quantifies the effect of TC on climate policy. We develop a method of structural estimation, which enables us to calibrate

the abatement cost and TC parameters of our model on the current crop of IAMs reviewed in the previous section. We use ‘observed’

variation in the timing of abatement and associated abatement costs across more than 700 IAM scenarios collected in two major

databases (the Intergovernmental Panel on Climate Change or IPCC and the Network of Central Banks and Supervisors for Greening

the Financial System or NGFS). This gives us an estimate of how much TC drives down abatement costs in current IAMs, assuming the

process is either exogenous or endogenous. We then take this calibration of abatement costs/TC and apply it to a simple, quantitative

IAM, whose structure builds on the theoretical analysis of Section 2. We numerically solve for optimal MACs, carbon prices and

technology subsidies, as well as emissions and temperatures. We find that TC has a quantitatively large effect on the optimal paths

under cost-benefit analysis, e.g., warming in 2100 is at least 0.5 ◦C lower due to TC. We also find large differences between the two

forms of TC considered, e.g., the difference in the initial MAC is $73/tCO2, attributable almost entirely to an optimal deployment

subsidy to internalise the learning externality. Under cost-effectiveness analysis and an ambitious temperature constraint of 1.75 ◦C,

emissions and temperature paths are closer together due to the small available carbon budget, but the difference in MACs caused by

TC is even larger.

Section 5 provides a discussion, focusing primarily on TC uncertainties.

Related literature

We connect to three main strands of literature. The first is papers investigating the effects of TC in IAMs of different varieties. This

literature is large, diverse and diffuse across fields. One of our primary purposes in this paper is to survey it, so we provide citations

throughout the following sections as our survey progresses. A foundational general framework for analysing the role of endogenous

TC in optimal climate policy was provided by Goulder and Mathai (2000). Much of the subsequent literature, including the models

we analyse, can be understood as extensions or specialisations of this framework.

Second, the model we build for theoretical and quantitative analysis draws on the recent literature on analytical IAMs (Golosov

et al., 2014; Rezai and Van der Ploeg, 2016; van den Bijgaart et al., 2016; Dietz and Venmans, 2019; Traeger, 2023). As the moniker

suggests, these models are intended to provide analytical insights into the role of different parameters and assumptions, shining a

light into the black box of richer quantitative IAMs. Our model has a similar level of complexity, uses specific representations from

this literature, and delivers analytical as well as quantitative results.

Third, we contribute to the literature by reviewing and synthesising quantitative IAMs, specifically those with a focus on emissions

abatement (sometimes called energy models or energy system models). Many of the scenario runs of these models are summarised

in IPCC reports (IPCC, 2022). Weyant (2017) and Nikas et al. (2019) provide recent, general overviews. Löschel (2002), Grubb et al.

(2002), Sue Wing (2006) and Gillingham et al. (2008) are examples of earlier overviews of TC in these models, and van Vuuren et al.

(2020) analyse the large differences in abatement costs between models. Relative to this literature, we make several contributions:

we provide an up-to-date review; unlike previous reviews, we solve different TC representations analytically, which delivers a set of

formal, precise comparisons; and we provide a method of isolating the quantitative effects of TC in these models on optimal paths,

controlling for other factors.

2. Theoretical analysis

Throughout this section, we assume the economy is populated by a fixed number of households, which obtain utility from

consumption of an aggregate good. The representative household’s welfare is

𝑊 = ∫

∞

0
𝑒−𝛿𝑡𝑢 (𝑐(𝑡)) 𝑑𝑡, (1)

where 𝛿 is the utility discount rate and 𝑢 (𝑐(𝑡)) = 𝑐(𝑡)1−𝜂∕(1 − 𝜂), with 𝜂 standing for the elasticity of marginal utility of consumption.
In all the models we consider, households supply labour 𝐿 inelastically and own capital 𝐾 that is rented to firms.
Climate change is also modelled in the same way throughout. Global mean temperature 𝑇 is linearly proportional to cumulative

carbon dioxide emissions (Dietz and Venmans, 2019; Dietz et al., 2021):

𝑇 (𝑡) = 𝜁𝑆(𝑡). (2)

Cumulative emissions 𝑆(𝑡) = ∫ 𝑡0 𝑃 (𝑢) 𝑑𝑢, where 𝑃 stands for emissions. The slope of the relationship between temperature and cumu-
lative emissions is governed by 𝜁 , the so-called Transient Climate Response to cumulative carbon Emissions or TCRE (Collins et al.,
2013).

Increasing temperatures cause climate damages, which only affect production of the aggregate good. Damages Ω are given by

Ω(𝑡) = exp
(

−
𝛾
2
𝑇 (𝑡)2

)

, (3)
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where 𝛾 is the damage function coefficient. Note this represents the basic treatment of damages in the IAM literature: more complex
dynamics and mechanisms are warranted in studies where damages are the focus (see Dietz, 2024, for a review).

2.1. Models with an aggregate abatement cost function

The first models we look at link emissions directly with production of the aggregate consumer good:

𝑃 (𝑡) = 𝜎(𝑡) [1 − 𝜇(𝑡)] 𝑌 (𝑡), (4)

where 𝜎 is the carbon intensity of BAU production 𝑌 and 𝜇 is emissions abatement expressed as a control rate. The total cost of
abatement Λ is given by

Λ(𝑡) = exp
(

−
𝜑(𝑡)
2
𝜇(𝑡)2

)

, (5)

where 𝜑 is the slope of the MAC function.
The aggregate good is produced in a competitive market using capital and labour supplied by households. Production net of

abatement costs and climate damages is

𝑌 (𝑡) = 𝐾(𝑡)𝛼
[

𝐴𝐿(𝑡)𝐿(𝑡)
]1−𝛼Λ(𝑡)Ω(𝑡), (6)

where 𝐴𝐿 is exogenously growing labour productivity1 and 𝛼 is the capital share.2 Since climate damages and abatement costs enter
the production function multiplicatively, they are both proportional to production. The number of firms is sufficiently large that

climate damages are fully externalised. 𝑌 omits Λ and Ω.
Normalising the price of the aggregate good to one, the representative firm chooses capital and labour inputs to maximise profits:

max
𝐾(𝑡),𝐿(𝑡)

𝜋(𝑡) = 𝐾(𝑡)𝛼
[

𝐴𝐿(𝑡)𝐿(𝑡)
]1−𝛼Λ(𝑡)Ω(𝑡) − 𝑟(𝑡)𝐾(𝑡) −𝑤(𝑡)𝐿(𝑡) − 𝜏(𝑡)𝑃 (𝑡), (7)

where 𝑟 is the rental price of capital, 𝑤 is the wage, and 𝜏 is a carbon tax that the firm may face. Any carbon tax revenue raised is
returned to households lump-sum, so the household budget constraint is

𝑐(𝑡) + 𝐾̇(𝑡) + 𝛿𝐾𝐾(𝑡) = 𝑟(𝑡)𝐾(𝑡) +𝑤(𝑡)𝐿(𝑡) + 𝛶 (𝑡), (8)

where 𝛶 represents the lump-sum transfers and 𝛿𝐾 is capital depreciation.

Exogenous TC

In many models, especially quantitative models but also analytical models focusing on aspects of the problem other than TC per se,

TC is exogenous. Exogenous TC can be introduced into our model in two ways that are representative of the literature:

1. The slope of the MAC function 𝜑 decreases over time due to reductions in the cost of abatement technologies.
2. The carbon intensity coefficient 𝜎 decreases over time (as in, e.g., Nordhaus’ DICE model). This is often referred to as AEEI.

If TC is exogenous, socially optimal emissions abatement is implemented using one policy instrument, a Pigouvian tax equal to

the marginal damage cost of carbon emissions, a.k.a. the social cost of carbon (SCC).3 In response, firms reduce emissions until their

MAC is equal to the tax. Appendix A derives this well-known result from a more general model. For the model here, the optimality

condition is:

∫

∞

𝑢=𝑡
𝑒−𝑟(𝑢−𝑡)𝑌 (𝑢)𝛾𝜁𝑆(𝑢)𝑑𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SCC

= 𝜏(𝑡) =
𝜑(𝑡)𝜇(𝑡)
𝜎(𝑡)

⏟⏞⏟⏞⏟
MAC

, (9)

where 𝑟 = 𝛿 + 𝜂𝑐̇(𝑡)∕𝑐(𝑡) is the Ramsey rule for the consumption discount rate. The SCC is proportional to output (and thus depends
on productivity growth 𝐴𝐿), the damage function coefficient, the TCRE and cumulative future emissions, and it decreases with the
discount rate.

The MAC is proportional to the MAC slope parameter 𝜑. Hence, as TC decreases 𝜑, it also decreases the MAC. The effect of this
on optimal climate policy can be summarised as follows:

Result 1 (Effects of exogenous TC in abatement technologies). Compared to a model without TC, exogenous TC that decreases

the slope of the MAC generates lower optimal MACs/carbon taxes, higher short-run emissions/temperatures but lower long-run emissions.

Cumulatively, emissions are lower in the long run, as is warming.

1 An alternative would be to make 𝐴𝐿 endogenous, opening the possibility that abatement and climate damages interact with productivity growth. In the models
we consider, TC in abatement is orthogonal to the dynamics of 𝐴𝐿.
2 The assumption here of Cobb-Douglas production reflects much of the literature and aids comparability with models below that explicitly represent energy inputs,

but the same results can be obtained from a more general production function, as in the Appendices.
3 Or equivalently a cap on the quantity of emissions with an implied price equal to the social cost of carbon.
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Appendix A provides the formal analysis in support of this. The basic intuition is that TC makes future abatement cheaper than

today, and if TC is exogenous then all the social planner must do is wait for this to happen. This makes it optimal to abate emissions less

in the short run but more in the long run. The net effect is not immediately obvious but in fact it must be lower cumulative emissions

and warming in the long run. This is because TC makes the MAC at peak warming lower. Optimality then requires marginal damages

to be lower accordingly. Since marginal damages are increasing in cumulative emissions and temperature, peak temperature must be

lower.

This describes what happens if the social planner’s objective is to maximise discounted net benefits. The planner’s objective may

instead be to minimise the discounted abatement costs of achieving a pre-determined cumulative emissions/temperature constraint.

In that case, two things change. First, with a fixed emissions budget, the optimal carbon tax is not equal to the SCC but rather results

from applying the Hotelling rule – it must increase at the interest rate, with an initial value equal to the present value of the MAC at

zero emissions when the constraint binds. Second, if the constraint binds then evidently long-run temperatures are unaffected by TC.

Exogenous TC that decreases abatement costs generates lower carbon taxes and higher short-run emissions as before, which now result

in faster convergence to the constrained peak temperature. The social planner does not care about damages under cost-effectiveness

and prefers to use up more of the cumulative emissions budget early on, anticipating cheaper abatement later.

The effects of AEEI on optimal climate policy are different from those of falling abatement costs. AEEI is a reduced-form representa-

tion of economy-wide decarbonisation that is not induced by climate policy, including within-sector energy efficiency improvements

and structural shifts from manufacturing to services. In principle, energy efficiency can be either emissions-saving or emissions-using.

One channel through which energy efficiency may increase emissions is the rebound effect: by raising the productivity of energy

inputs, energy efficiency lowers the effective cost of energy services, potentially stimulating greater energy demand. If this rebound is

strong enough, TC as represented by energy efficiency may be emissions-using. This mechanism can also arise in a general-equilibrium

setting. Di Maria and Smulders (2017) provide a model in which emissions-using TC emerges endogenously due to complemen-

tarity between capital and polluting inputs.4 Conversely, Casey (2024) shows that emissions intensity can fall even when TC is

emissions-using, due to relative price effects and output expansion.

AEEI in models with aggregate abatement costs is typically calibrated on the global emission/output ratio, which embodies a wide

range of mechanisms and has been declining since the early 20th century.5 Then, AEEI exerts two contrasting forces on the optimal

path. First, it reduces BAU emissions, which makes lower emissions less costly to attain. Second, by decarbonising the economy,

it makes further emissions reductions more difficult. In an energy-efficient economy, a given relative reduction in emissions leads

to lower absolute abatement (Δ𝜇(𝑡) ≅ −𝜎(𝑡)𝑌 (𝑡)Δ𝑃 (𝑡)). For example, if the efficiency of the internal combustion engine increases,
substitution with an electric vehicle reduces emissions by less. These forces are illustrated by inspecting the effect of a change in 𝜎 on
the MAC. Using (4) to substitute the emissions control rate out of the expression for the MAC, and differentiating with respect to 𝜎,

𝜕
𝜕𝜎(𝑡)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜑(𝑡)
𝜎(𝑡)

−
𝜑(𝑡)𝑃 (𝑡)
𝜎(𝑡)2𝑌 (𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
MAC

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
𝜑(𝑡)
𝜎(𝑡)2

(

2𝑃 (𝑡)
𝜎(𝑡)𝑌 (𝑡)

− 1
)

.

A decrease in the carbon intensity of the economy decreases the MAC provided 2 𝑃 (𝑡) > 𝜎(𝑡)𝑌 (𝑡). 𝜎(𝑡)𝑌 (𝑡) is simply BAU emissions.
Therefore, this condition means that AEEI decreases the MAC when emissions are more than half of BAU, which if it is met6 will

be early in the transition, and increases the MAC when emissions are less than half of BAU, i.e., late in the transition. Early in

the transition, the main effect of AEEI is to reduce BAU emissions, making lower absolute emissions easier to achieve. Late in the

transition, the main effect of AEEI is to make further emissions reductions harder, which is aligned with the results of Di Maria and

Smulders (2017), who also show that TC may raise the MAC.

Appendix B derives optimal emissions, which by extension give optimal temperatures, under AEEI. We summarise the effects of

AEEI on optimal climate policy as follows:

Result 2 (Effects of exogenous TC: AEEI). Compared to a model without TC, AEEI generates higher optimal MACs/carbon taxes,

cumulative emissions and temperatures in the long run. The short-run effects of AEEI are ambiguous, but, assuming initial emissions are more

than half of BAU, AEEI generates lower MACs/carbon taxes, emissions and temperatures.

Since AEEI increases the MAC when emissions are less than half of BAU, AEEI increases the MAC at peak warming (zero emissions).

Optimality then requires the SCC to be higher too. Since the SCC is an increasing function of temperature, peak temperature must be

higher. This is the opposite of the effect of exogenous TC, which decreases the slope of the MAC. In the short run, the effects of AEEI

are ambiguous. As the effect on the MAC illustrates, the important condition is whether emissions are more or less than half of BAU.

We might consider the former case more realistic in the short run, as large jumps in emissions are difficult. When emissions are more

than half of BAU, AEEI reduces the MAC/carbon tax as shown above, and it reduces emissions and therefore temperatures.

4 When TC increases the productivity of capital, and capital is strongly complementary with polluting intermediate inputs, firms invest more in capital and expand

output, thereby increasing pollution.
5 Global Carbon Budget (2024); Bolt and van Zanden – Maddison Project Database 2023; with major processing by Our World in Data (https://ourworldindata.org/

grapher/co2-intensity).
6 Technically, the optimal value of initial emissions can be anywhere between BAU and zero unless further constraints are applied. In our quantitative analysis, we

introduce emissions inertia, which makes a big jump in initial emissions very costly.

https://ourworldindata.org/grapher/co2-intensity
https://ourworldindata.org/grapher/co2-intensity
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If the planner’s objective is cost-effectiveness and the temperature constraint binds, then AEEI does not affect peak warming. In

principle, the effect of AEEI on the emissions path that uses up the cumulative emissions budget is ambiguous, but again if initial

emissions are more than half of BAU, then AEEI decreases emissions in the short run, compensated by higher emissions in the long

run and peak warming is reached later.

Endogenous TC based on learning-by-doing

In other models, TC is endogenous because the cost of clean technologies decreases the more they are deployed. This dynamic is

often referred to as learning-by-doing. It was one of the two cases explored by Goulder and Mathai (2000) and has also been anal-

ysed/used by, for example, Van der Zwaan et al. (2002); Bramoullé and Olson (2005); Rezai and Van Der Ploeg (2017); Olijslagers et al.

(2023); Grubb et al. (2024), and various quantitative/policy models reviewed in Section 3. In the model here, it can be represented

by writing the MAC as a function of cumulative abatement7:

MAC(𝑡) =
𝜑𝜇(𝑡)
𝜎(𝑡)

(

𝐻̃(𝑡)
𝐻̃(0)

)−𝜒
, (10)

where 𝐻̃(𝑡) = ∫ 𝑡𝑢=0 𝜎(𝑢)𝜇(𝑢)𝑌 (𝑢) 𝑑𝑢 is cumulative abatement and 𝜒 is the learning elasticity. Thus, for every percent increase in
cumulative abatement, the MAC decreases by 𝜒 percent.
With a large number of firms, we assume for the sake of simplicity that the future learning gain from present abatement is fully

externalised – incremental knowledge fully “spills over”. Then, with a negative climate externality and a positive learning externality,

the social planner generally needs two policy instruments, the carbon tax and an abatement subsidy 𝑠 (e.g., a feed-in-tariff).8 The
firm’s profit function becomes

𝜋(𝑡) = 𝑌 (𝑡) − 𝑟(𝑡)𝐾(𝑡) −𝑤(𝑡)𝐿(𝑡) − 𝜏(𝑡)𝑃 (𝑡) + 𝑠(𝑡)𝜎(𝑡)𝜇(𝑡)𝑌 (𝑡). (11)

Lump-sum transfers in the household’s budget constraint are now tax revenues net of subsidy payments.9

Socially optimal emissions abatement in this model is implemented by the following pricing rule:

∫

∞

𝑢=𝑡
𝑒−𝑟(𝑢−𝑡)𝑌 (𝑢)𝛾𝜁𝑆(𝑢)𝑑𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SCC

+∫

∞

𝑢=𝑡
𝑒−𝑟(𝑢−𝑡)𝑌 (𝑢)

𝜑𝜒
2𝐻̃(0)

(

𝐻̃(𝑢)
𝐻̃(0)

)−𝜒−1
𝜇(𝑢)2𝑑𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Social benefit of learning

= 𝜏(𝑡) + 𝑠(𝑡).
(12)

Therefore, the social optimum can be achieved by setting the carbon tax equal to the SCC and the abatement subsidy equal to the

marginal external gain in abatement knowledge. This is proportional to output, the MAC slope parameter 𝜑 and the learning elasticity
𝜒 , and increases with the square of current abatement effort (via 𝜇(𝑡)). It is inversely related to cumulative abatement 𝐻̃(𝑢), reflecting
diminishing learning returns.

A particular feature of this model of learning-based TC, where TC depends on cumulative aggregate abatement, is that the tax and

subsidy are additive and the social optimum can in principle also be implemented by a single policy instrument, call it a ‘learning-

adjusted’ tax, which is equal to the MAC. The intuition is that both climate damages and TC depend on cumulative abatement.

However, we encourage readers to think of this tax/subsidy additivity result as more of theoretical curiosity. It does not hold in

the model with clean and dirty energy discussed in the next section, or in other circumstances, such as when different abatement

technologies have different learning rates (see Appendix A.3).

Result 3 (Effect of learning-based TC). Compared to a model without TC, endogenous TC based on learning-by-doing generates lower

optimal carbon taxes when accompanied by abatement subsidies equal to the marginal future learning gain, but it has an ambiguous effect on

emissions and temperatures in the short run. Emissions and temperatures are lower in the long run. Thus, emissions and temperatures can be

lower all along the path.

Appendix B provides the formal analysis in support of this. The basic intuition is that under endogenous TC from learning-by-

doing, two countervailing effects are at play. First, there is the cost-reduction effect: TC makes future abatement cheaper than today,

as with exogenous TC. Second, however, there is the endogenous future gain effect: the reason abatement is cheaper in the future is

abatement today. This creates an incentive for early abatement and is optimally incentivised by an abatement subsidy (ignoring the

additivity result above). Thus, while the optimal carbon tax is lower, the subsidy/marginal future learning gain can be large enough

to produce higher abatement and lower emissions in the short run than without TC. In the long run, emissions and temperatures are

lower, as they were in the previous case.

Under a cost-effectiveness objective, endogenous TC based on learning-by-doing has the same effect as exogenous TC in abate-

ment technologies – lower carbon taxes, higher short-run emissions and consequently faster convergence to the constrained peak

temperature – but the positive effect on emissions and temperatures in the short run is not as strong as under exogenous TC. Again,

the difference is due to the endogenous future learning gain, which tempers the incentive to backload abatement.

7 Appendix A develops a more general model of deployment-based endogenous TC.
8 In the case where companies can appropriate part of the knowledge generated, the optimal subsidy will only cover the non-appropriable part.
9 If lump-sum transfers are negative then taxation is assumed to be non-distortionary.
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Price-induced TC

In a few models, technology is directly linked to prices (e.g., Jakeman et al., 2004; Wilkerson et al., 2013). We can connect the

analysis up to this point with such models.

The key driver of endogenous TC in the above model is a state variable (cumulative emissions 𝐻̃), which can be interpreted
as a knowledge stock. The knowledge stock’s equation of motion depends on the quantity of abatement. In general, we can write
̇̃𝐻(𝑡) = 𝑓 (𝜇(𝑡)). Suppose the knowledge stock is a function of the carbon price rather than abatement quantity. This can give the
same dynamics, because any quantity of abatement has a corresponding carbon price: 𝜇(𝑡) = 𝑔 (𝜏(𝑡)), where 𝑔(⋅) is the inverse MAC
function.10 As a result, the same equation of motion can now be written as a function of 𝜏 rather than 𝜇: ̇̃𝐻(𝑡) = 𝑓 (𝑔(𝜏(𝑡))). Integrating
this equation gives current technology/knowledge, which will be a function of past carbon prices. Result 3 thus applies to this kind of

model. This generalizes the empirical insight in Sue Wing (2008), who uses cumulative price shocks as a reduced-form proxy for an

energy-saving knowledge stock. For models in which abatement affects other prices, which in turn affect the buildup of knowledge

(via the function 𝑓 (⋅)), abatement indirectly affects the dynamics of the knowledge stock, and again we can say in general that there
will be an extra term for the social benefit of learning that drives a wedge between the SCC and the MAC as in (12).

Technology parameters may be a function of the current price rather than past prices (Jorgenson and Wilcoxen, 1993), and

technology is not modelled as a stock variable but rather as an instantaneous variable. As a result, TC is not path-dependent (there

is no knowledge stock) and it makes more sense to consider it as a model of exogenous TC (Gillingham et al., 2008).

2.2. Models with clean and dirty energy substitution

Endogenous TC based on learning-by-doing

Instead of modelling emissions as a function of aggregate output and emissions abatement via an aggregate abatement cost

function, many models explicitly link emissions with the use of dirty/fossil energy (e.g., Golosov et al., 2014; Fried, 2018; Hart,

2019; Hassler et al., 2021, and various quantitative/policy models reviewed in Section 3). Thus, the somewhat abstract concept

of abatement, evoking models of controlling point-source pollution, is unpacked into substituting energy with other inputs, and

substituting dirty with clean energy.

Taking the model of endogenous TC based on learning-by-doing, here we introduce clean and dirty energy intermediates in

production. Final-good production is now

𝑌 (𝑡) = 𝐾(𝑡)𝛼𝐸(𝑡)𝜈
[

𝐴𝐿(𝑡)𝐿(𝑡)
]1−𝛼−𝜈Ω(𝑡), (13)

where 𝐸 is an energy composite and 𝜈 is the energy expenditure share. As the final-good production function is Cobb-Douglas, this
is close to the model in Golosov et al. (2014). Other models use a constant elasticity of substitution (CES) function for final-good

production (e.g., Hassler et al., 2021).

The composite, intermediate energy good is produced by combining clean and dirty energy, assuming a constant elasticity of

substitution (CES):

𝐸(𝑡) =
[

𝐸𝑐 (𝑡)
𝜖 + 𝐸𝑑 (𝑡)

𝜖]1∕𝜖 (14)

where 𝜖 determines the elasticity of substitution between clean and dirty energy (indexed 𝑐 and 𝑑 respectively). How clean and dirty
energy are produced varies between models, with some using labour (e.g., Fried, 2018; Golosov et al., 2014) and others using final

goods as the input (Hart, 2019). This choice is not consequential for our purposes. We follow the latter approach, so 𝐸𝑖(𝑡) = 𝐴𝑖(𝑡)𝑋𝑖(𝑡),
𝑖 ∈ {𝑐, 𝑑}, where 𝐴𝑖 is clean/dirty energy productivity and 𝑋𝑖 is the quantity of final goods used in clean/dirty energy production.

11

Fossil fuels are assumed to be abundant (i.e., specifically coal is abundant). Expressing dirty energy use in tonnes of carbon dioxide,

emissions are identified with dirty energy use, 𝑃 = 𝐸𝑑 . A caveat is that with CES between clean and dirty energy, the MAC is
implicitly infinite at zero emissions. Therefore, in numerical applications this structure would need to be augmented, for example,

with a backstop technology if the SCC is large enough to make zero or negative emissions desirable.

In general, learning-by-doing applies to both clean and dirty energy. The experience-curve dynamic can be represented by writing

clean/dirty energy productivity as a function of a stock of knowledge:

𝐴𝑖(𝑡) = 𝐴𝑖(0)
(

𝐻𝑖(𝑡)
𝐻𝑖(0)

)𝜒
, (15)

where 𝐻 is cumulative aggregate knowledge, which accumulates in proportion to deployment/use of the respective energy sources
(e.g. Rezai and Van Der Ploeg, 2017):

𝐻̇𝑖(𝑡) = 𝐸𝑖(𝑡). (16)

This formulation abstracts from knowledge depreciation, which is assumed to be slow. Knowledge is assumed to be technology-

specific and there are no spillovers from one technology to the other. On the contrary, using green technology will slow down the

knowledge built up in the dirty sector and vice versa, which is a form of crowding out.

10 In a model with both a carbon price and a subsidy, one can write 𝜇(𝑡) = 𝑔(𝜏(𝑡), 𝑠(𝑡)).
11 Technically 𝑋𝑑 is the quantity of final goods used in dirty energy production adjusted for the productivity of fossil-fuel extraction, as explained by Hart (2019).

Dirty energy production 𝐸𝑑 (𝑡) = 𝐴𝑑 (𝑡)𝐷𝑑 (𝑡), where 𝐷𝑑 stands for fossil inputs, and 𝐷𝑑 (𝑡) = 𝐴𝑑𝑥𝑋𝑑 (𝑡) is fossil-fuel extraction with extraction productivity 𝐴𝑑𝑥. The price
of the final good is one and productivity is also constant since the final good is unchanging, so unit extraction costs are constant and equal to 1∕𝐴𝑑𝑥.
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We remain in a competitive market and we assume the planner can use two policy instruments, a carbon tax and a clean-energy

subsidy. The profit function of the firm in this case is

𝜋(𝑡) = 𝑌 (𝑡) − 𝑟(𝑡)𝐾(𝑡) −𝑤(𝑡)𝐿(𝑡) −
[

𝑝𝑐 (𝑡) − 𝑠(𝑡)
]

𝐸𝑐 (𝑡) −
[

𝑝𝑑 (𝑡) + 𝜏(𝑡)
]

𝐸𝑑 (𝑡). (17)

Socially optimal emissions abatement in this model can be implemented by setting the carbon tax equal to the SCC minus the

marginal future learning gain from dirty energy use, and the clean-energy subsidy equal to the marginal future learning gain from

clean energy use:

∫

∞

𝑢=𝑡
𝑒−𝑟(𝑢−𝑡)𝑌 (𝑢)𝛾𝜁𝑆(𝑢)𝑑𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SCC

−∫

∞

𝑢=𝑡
𝑒−𝑟(𝑢−𝑡)𝑌 (𝑢)

[

𝐸𝑑 (𝑢)∕𝐸(𝑢)
]𝜖 𝜒
𝐻𝑑 (𝑢)

𝑑𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Social benefit of learning: dirty

= 𝜏(𝑡), (18)

∫

∞

𝑢=𝑡
𝑒−𝑟(𝑢−𝑡)𝑌 (𝑢)

[

𝐸𝑐 (𝑢)∕𝐸(𝑢)
]𝜖 𝜒
𝐻𝑐 (𝑢)

𝑑𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Social benefit of learning: clean

= 𝑠(𝑡). (19)

The social benefit of learning for each energy type is proportional to output, the learning elasticity, and the energy type’s market

share
[

𝐸𝑖(𝑢)∕𝐸(𝑢)
]𝜖
, and is inversely related to cumulative knowledge 𝐻𝑖(𝑢). The firm will use dirty energy up to the point where its

marginal product equals the price of dirty energy plus the tax,

𝜕𝑌 (𝑡)
𝜕𝐸𝑑 (𝑡)

=
[

𝑝𝑐 (𝑡) − 𝑠(𝑡)
]

(

𝐴𝑑 (𝑡)
𝐴𝑐 (𝑡)

)𝜖(𝐸𝑑 (𝑡)
𝐸𝑐 (𝑡)

)𝜖−1
= 𝑝𝑑 (𝑡) + 𝜏(𝑡). (20)

Similarly, it will use clean energy up to the point where its marginal product equals the price of clean energy minus the subsidy.

The effect of TC in this model can be seen by decomposing the productivity term in (20):
(

𝐴𝑑 (𝑡)
𝐴𝑐 (𝑡)

)𝜖
=
(

𝐴𝑑 (0)
𝐴𝑐 (0)

)𝜖(𝐻𝑐 (𝑡)
𝐻𝑐 (0)

)𝜖𝜒(𝐻𝑑 (𝑡)
𝐻𝑑 (0)

)−𝜖𝜒
. (21)

This decreases with cumulative clean energy use with an elasticity of −𝜖𝜒 and increases with cumulative dirty energy use with an
elasticity of 𝜖𝜒 .
As mentioned above, the carbon tax and the innovation subsidy are not perfect substitutes in this model. A carbon tax will lead

to both less energy use and energy substitution from dirty to clean. Although a clean-energy subsidy will also incentivise substitution

from dirty to clean, by itself it will lead to more energy use, not less.12 In fact, the vigilant reader will notice that in principle the

planner could use three policy instruments: the carbon tax and the clean-energy subsidy, plus a dirty-energy subsidy equal to the

marginal future learning gain from dirty energy use. However, the dirty-energy subsidy is additive to the carbon tax and it makes

little sense to implement it separately.

These additional features aside, Result 3 and its extension to cost-effectiveness also apply to the effects of TC on optimal climate

policy in this case.

Endogenous TC based on R&D: directed technical change

So far, TC has either been exogenous or it has been endogenous because of learning-by-doing. The third important class of models

makes TC endogenous because future abatement costs depend on current R&D investments. This was the other case explored by

Goulder and Mathai (2000). Further early models of this type included Smulders and De Nooij (2003); Buonanno et al. (2003);

Popp (2004), with diverse mechanisms through which R&D reduces abatement costs. Within the last decade, R&D-based TC has

been popularised by applying models of DTC (e.g., Acemoglu et al., 2012, 2016; Fried, 2018; Hart, 2019; Hassler et al., 2021).

Distinguishing between clean and dirty energy is the most obvious (and popular) way to introduce a direction to TC. As previously

discussed in the context of AEEI, TC can be emissions-saving or emissions-using depending on the mechanism and its effect on input

demand. In DTC models, this distinction plays a central role: the direction of innovation depends on relative economic incentives, and

the elasticity of substitution between clean and dirty energy shapes the strength of this trade-off (Hémous and Olsen, 2021). These

models formalise competition between clean and dirty R&D, whereas the models considered so far assume emissions-saving TC.

We start with a general functional form for R&D-based TC:

𝐴̇𝑖(𝑡) = 𝜓
(

𝑧𝑖(𝑡), 𝐴𝑖(𝑡)
)

, (22)

where 𝑧𝑖 stands for R&D investments. For 𝜕𝜓∕𝜕𝐴𝑖 > 0, we have so-called “standing on the shoulders of giants”, meaning that existing
knowledge makes new knowledge easier to develop. The opposite case, 𝜕𝜓∕𝜕𝐴𝑖 < 0, is called “fishing out”, meaning that it becomes
harder to find new ideas, the larger the existing knowledge stock. We will return to this important issue below.

A feature of R&D models is usually imperfect competition – the prospect of a monopoly achieved by patenting a new invention

incentivises costly R&D. This complicates the model dynamics, so DTC models, which are written in discrete time, typically assume

the patent lasts just one period (e.g., Acemoglu et al., 2012). We follow this assumption in our continuous-time model, noting the

12 Yet, defining the MAC as the difference between the marginal products of dirty and clean energy, MAC ∶= 𝑑𝑌 (𝑡)∕𝑑𝐸𝑑 (𝑡) − 𝑝𝑑 (𝑡) − 𝑑𝑌 (𝑡)∕𝑑𝐸𝑐 (𝑡) + 𝑝𝑐 (𝑡) = 𝜏(𝑡) + 𝑠(𝑡).
So, although the tax and the subsidy are not perfect substitutes, the MAC is equal to their sum.
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assumption is less realistic when the time step is infinitesimal. Practically, the implication is that R&D needs to be subsidised in

order for it to happen, because the monopoly vanishes instantaneously as an approximation for vanishing in a few years as it does in

discrete-time models. If we made the model more complex by introducing an explicit time dependence of monopoly profits, the main

addition would be that some R&D happens without subsidies. Appendix D discusses such a model with a private knowledge stock that

gradually becomes public. More broadly, even in the absence of strong intellectual property rights, firms that invest in innovation

may still enjoy first-mover advantages or market power (e.g., through cost asymmetries and deterrence under Bertrand competition)

that enable partial appropriation of returns. The rest of the model is the same as the previous section. We assume that R&D costs are

homogeneous of degree one.

The social planner has three tools: a carbon tax, and subsidies for clean- and dirty-energy R&D. The carbon tax and the dirty-energy

R&D subsidy are not additive in this case. That is because TC no longer depends on cumulative abatement. The firm’s profit function

becomes

𝜋(𝑡) = 𝑌 (𝑡) − 𝑟(𝑡)𝐾(𝑡) −𝑤(𝑡)𝐿(𝑡) − 𝑝𝑐𝐸𝑐 −
[

𝑝𝑑 (𝑡) + 𝜏(𝑡)
]

𝐸𝑑 (𝑡) − 𝑐(𝑧𝑐 (𝑡) + 𝑧𝑑 (𝑡)) + 𝑠𝑐 (𝑡)𝑧𝑐 (𝑡) + 𝑠𝑑 (𝑡)𝑧𝑑 (𝑡), (23)

where 𝑐(⋅) is an R&D cost function. This is where crowding out happens. Most models assume costs are linear in 𝑧𝑐 + 𝑧𝑑 , where 𝑧
is often described as the number of scientists in a given sector.13 If the number of scientists is assumed fixed (e.g., Acemoglu et al.,

2012), crowding out of dirty innovation by clean is strong because additional scientists cannot be recruited from outside the R&D

sector. In Popp (2004), which is an R&D model but not a DTC model per se,14 crowding out is also strong because the opportunity

cost of innovation is set at three times the investment in R&D.

Socially optimal emissions abatement in this model is implemented by setting the carbon tax equal to the SCC and the clean- and

dirty-energy subsidies equal to the social marginal productivity benefits of R&D in the respective sectors:

∫

∞

𝑢=𝑡
𝑒−𝑟(𝑢−𝑡)𝑌 (𝑢)𝛾𝜁𝑆(𝑢)𝑑𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SCC

= 𝜏(𝑡), (24)

∫

∞

𝑣=𝑡

[

exp
[

−∫

𝑣

𝑢=𝑡

[

𝑟(𝑢) − 𝜕𝜓∕𝜕𝐴𝑐 (𝑢)
]

𝑑𝑢
]

𝜕𝑌 (𝑣)∕𝜕𝐴𝑐 (𝑣)𝑑𝑣
]

𝜕𝜓∕𝜕𝑧𝑐 (𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Social benefit of clean R&D

= 𝑠𝑐 (𝑡), (25)

∫

∞

𝑣=𝑡

[

exp
[

−∫

𝑣

𝑢=𝑡

[

𝑟(𝑢) − 𝜕𝜓∕𝜕𝐴𝑑 (𝑢)
]

𝑑𝑢
]

𝜕𝑌 (𝑣)∕𝜕𝐴𝑑 (𝑣)𝑑𝑣
]

𝜕𝜓∕𝜕𝑧𝑑 (𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Social benefit of dirty R&D

= 𝑠𝑑 (𝑡). (26)

The social benefit of R&D is decreasing in the discount rate and depends on the rate of change of research productivity with knowledge

accumulation 𝜕𝜓∕𝜕𝐴𝑖, which may increase or decrease the effective discounting depending on whether research faces diminishing
or increasing returns. It is increasing in the marginal productivity of knowledge 𝜕𝑌 ∕𝜕𝐴𝑖, and decreasing in the marginal cost of R&D
𝜕𝜓∕𝜕𝑧𝑖(𝑡).
Firms will respond by reducing emissions until their MAC equals the tax and by investing in R&D until marginal investment costs

in each sector equal the subsidies. Eq. (26) reflects the internalisation of positive innovation externalities in dirty energy, but it does

not capture indirect effects of dirty energy R&D on fossil-fuel discoveries, nor general-purpose spillovers from dirty R&D. In models

with such channels, optimal subsidies toward dirty R&D may differ.

In this model, TC is endogenous in the sense that it is affected by the future trajectory of the carbon price. This can be seen from

(25) and (26), because the marginal benefit of energy R&D is a function of the marginal product of energy knowledge, and this in

turn depends on energy use, which is affected by the carbon price. However, this does not change the fact that in R&D/DTC models,

the MAC equals the SCC (or the MAC follows the Hotelling rule under cost-effectiveness analysis). Furthermore, at the optimum a

model of exogenous TC via falling abatement costs will have the same dynamics as this model of R&D-based TC:

Result 4 (Effect of R&D-based TC). Replace a model of endogenous TC based on R&D with a model of exogenous TC, ensuring abatement

costs follow an identical time path. The models will have the same optimal carbon taxes, emissions and temperatures provided R&D investment

costs are small relative to output.

Appendix E.3 shows this result formally. The basic intuition is that early action is optimal in R&Dmodels, but unlike learning-based

models the early action comes in the form of clean energy R&D investment, rather than abatement. The planner optimally invests

in R&D before deploying clean technology, with effects on optimal carbon taxes, emissions and temperatures that with suitable

calibration are identical to when the planner waits for technology costs to fall exogenously. This result depends on the assumption

that R&D investment costs are small relative to output/consumption growth, because these costs reduce consumption and therefore

have the potential to alter marginal climate damages and the discount rate, i.e., to alter the SCC. It is highly likely that R&D investment

costs are relatively small (IPCC, 2022). It is also important to stress that although Result 4 holds at the optimum, the exogenous TC

13 Often the innovation sector is represented as a separate sector, which receives a patent when a successful innovation is realised. We have assumed innovation is

realised in-house, but the dynamics are the same.
14 Although Popp has a clean and dirty sector, TC in the dirty sector is exogenous.
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model so calibrated will not give the same climate-policy dynamics away from the optimum. Therefore, the result does not imply

exogenous TC will always capture the dynamics of endogenous, R&D-based TC. It is merely intended to sharpen our intuitions about

how optimal policies differ qualitatively.

Bretschger et al. (2011, 2017) develop IAMs with endogenous growth based on expanding varieties and knowledge diffusion. This

strand of work shows how carbon pricing and R&D-driven innovation can interact with productivity spillovers across sectors and

countries, offering valuable insights that complement the DTC literature by focusing on the pace and spread of innovation rather than

its direction.

Technology cost dynamics in learning- versus R&D-based models

We now return to standing on the shoulders of giants versus fishing out, and the dynamics of TC in learning- versus R&D-based

models. Besides having different implications for optimal abatement, these two classes of endogenous TC models tend to predict

different technology-cost trajectories, which in turn can lead to very different optimal carbon taxes. For example, Acemoglu et al.

(2012) famously found that optimal carbon taxes could be very low because a temporary clean R&D subsidy was so effective in

reducing future abatement costs.

First, note that we can rewrite the learning-based model using energy productivity 𝐴𝑖 instead of knowledge𝐻𝑖 as the state variable.

Taking the time derivative of (15) gives us the new equation of motion:

𝐴̇𝑖(𝑡) =
𝐴𝑖(0)

1
𝜒

𝐻𝑖(0)
𝐴𝑖(𝑡)

1− 1
𝜒 𝐸𝑖(𝑡). (27)

In this equation, instantaneous productivity on the right-hand side is raised to the power 1 − 1∕𝜒 . Assuming 0 < 𝜒 < 1, this power is
negative, consistent with 𝜕𝜓∕𝜕𝐴𝑖 < 0 and giving us fishing out.
This is in contrast to most DTC models. Take Acemoglu et al. (2012), in which the equation of motion of clean/dirty energy

productivity, written in continuous time, is

𝐴̇𝑖(𝑡) = 𝜉𝑖𝑧𝑖(𝑡)𝐴𝑖(𝑡), (28)

where 𝜉𝑖 represents the expected productivity gain per unit of R&D. Because productivity growth is proportional to the current level
of productivity, it is clear that in this model there is a strong standing on the shoulders of giants effect.

Later DTC models such as Fried (2018) introduce additional features that weaken the size of the standing on the shoulders of

giants effect, but it still holds. In Fried (2018),

𝐴̇𝑖(𝑡) = 𝜉𝑖𝑧𝑖(𝑡)
𝜄𝐴𝑖(𝑡)

[

𝐴𝑖(𝑡)
𝐴𝑖(𝑡) + 𝐴𝑗 (𝑡)

]−𝜍
= 𝜉𝑖𝑧𝑖(𝑡)

𝜄𝐴𝑖(𝑡)
1−𝜍[𝐴𝑖(𝑡) + 𝐴𝑗 (𝑡)

]𝜍 , (29)

where 𝜄 ∈ (0, 1) implies diminishing returns to R&D within a period (the “stepping on toes effect”), creating an incentive to smooth

out R&D effort over time, and the factor

[

𝐴𝑖(𝑡)
𝐴𝑖(𝑡)+𝐴𝑗 (𝑡)

]−𝜍
introduces cross-sectoral technology spillovers between sectors. Fried assumes

𝜍 ∈ (0, 1). Thus, cross-sectoral spillovers reduce the elasticity of productivity growth with respect to current productivity, but still
𝜕𝜓∕𝜕𝐴𝑖 > 0 – there is standing on the shoulders of giants. It is perhaps worth emphasising that despite the superficial similarity
of language, standing on the shoulders of giants and stepping on toes are mutually compatible dynamics. The former amounts to

𝜕𝜓∕𝜕𝐴𝑖 < 0, the latter to 𝜕2𝜓∕𝜕𝑧𝑖2 < 0.
An exception is the DTC model of Hart (2019). In Hart’s model, the equation of motion of the knowledge stock is

𝐻̇𝑖(𝑡) = −𝛿𝐻𝐻𝑖(𝑡) + 𝐴𝐿(𝑡)
𝜍1
(

𝐻𝑖(𝑡) + 𝜍2𝐻𝑗 (𝑡)
)1−𝜍1𝜉𝑧𝑖(𝑡)

1−𝜄. (30)

The first term is knowledge depreciation and the second term is knowledge accumulation. Within the second term,𝐻𝑖 + 𝜍2𝐻𝑗 ensures

there is standing on the shoulders of giants overall in this equation, albeit with diminishing returns given Hart’s assumption that

𝜍1 ∈ (0, 1) and further attenuation from positive cross-sectoral spillovers (𝜍2 ∈ (0, 1)). Again, 𝜄 ∈ (0, 1) produces the stepping on toes
effect in relation to instantaneous R&D effort.

However, Hart’s model separates productivity from knowledge, which is unusual in endogenous TC models. The justification

Hart gives is that energy productivity has a physical maximum. This function is concave, so the marginal gains from accumulating

knowledge are decreasing, which is important. Concretely, energy productivity evolves according to

𝐴𝑖(𝑡) = 𝐴̄𝑖
𝐻𝑖(𝑡)

𝐻∗ +𝐻𝑖(𝑡)
, (31)

where 𝐴̄𝑖 is the theoretical maximum productivity as knowledge 𝐻𝑖 goes to infinity and 𝐻∗ is the knowledge stock at which

productivity is 𝐴̄𝑖∕2.
Combining Eqs. (30) and (31), we get

𝐴̇𝑖(𝑡) =

[

𝐴̄𝑖 − 𝐴𝑖(𝑡)
]2

𝐴̄𝑖𝐻∗

[

−𝛿𝐻
𝐴𝑖(𝑡)𝐻∗

𝐴̄𝑖 − 𝐴𝑖(𝑡)
+ 𝐴𝐿(𝑡)

𝜍1
[

𝐴𝑖(𝑡)𝐻∗

𝐴̄𝑖 − 𝐴𝑖(𝑡)
+ 𝜍2𝐻𝑗 (𝑡)

]1−𝜍1
𝜉𝑧𝑖(𝑡)

1−𝜄

]

. (32)

It can be shown that the sign of the derivative of this with respect to 𝐴𝑖 is positive for small 𝐴𝑖, but for large 𝐴𝑖 the knowledge decay
term comes to dominate and the derivative is negative. Thus, Hart’s model has standing on the shoulders of giants at low productivity

levels, but fishing out at high productivity levels.
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Result 5 (Comparative dynamics of endogenous TC). Learning-based models of TC exhibit fishing out whereas most DTC models

exhibit standing on the shoulders of giants. Breaking the link between knowledge and productivity allows DTC models to exhibit fishing out

when technologies are mature.

The importance of this result lies in the fact that learning-based models are designed to fit the empirical regularity of Wright’s

law and negative exponential experience curves. To reproduce such an experience curve, there must be diminishing returns to R&D

as the knowledge stock increases, but early DTC models exhibit increasing returns. The standing on the shoulders of giants effect is

motivated by trends in patent counts. However, both effects can co-exist if the marginal productivity of patents is decreasing. One

way to capture both of these effects is to introduce diminishing marginal energy productivity gains with respect to knowledge, which

is what occurs in Hart’s model at high levels of knowledge.

More broadly, assumptions about knowledge spillovers and path dependence in DTC models are central to optimal policy design.

While writing 𝐴̇(𝑡) as a function of 𝐴(𝑡) can capture path dependence in reduced form, DTC models typically interpret 𝐴(𝑡) narrowly
as knowledge or productivity. In practice, however, path dependence may also reflect other mechanisms (e.g., network effects, scale

economies, infrastructure lock-in, political-economy factors, etc.), which could imply a need for more policy instruments than just

R&D subsidies and carbon pricing. Thus, it is best not to interpret these models too literally.

Extensions

The idea that knowledge only accumulates through learning-by-doing or R&D is unrealistic, compared with the idea that it responds

to both (Grubb et al., 2021). Unfortunately, it is a feature of the literature that models tend to use one representation at the expense

of the other. But they can be combined. Represent the interdependency between deployment and R&D by an equation of motion of

the general form

𝐴̇𝑖(𝑡) = 𝜓
(

𝑧𝑖(𝑡), 𝐸𝑖(𝑡), 𝐴𝑖(𝑡)
)

. (33)

The dependence on 𝐸𝑖 introduces learning-by-doing. The optimal policy now requires a deployment subsidy for clean energy

∫

∞

𝑣=𝑡

[

exp
[

−∫

𝑣

𝑢=𝑡

[

𝑟(𝑢) + 𝜕𝜓∕𝜕𝐴𝑐 (𝑢)
]

𝑑𝑢
]

𝜕𝑌 (𝑣)∕𝜕𝐴𝑐 (𝑣)𝑑𝑣
]

𝜕𝜓∕𝜕𝐸𝑐 (𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Marginal innovation benefit of clean deployment

= 𝑠𝑑𝑒𝑝𝑙𝑜𝑦𝑐 (𝑡), (34)

on top of the R&D subsidy for clean energy from Eq. (25). Technically, the same applies to dirty energy.

Note that the integral in the formula corresponds to the forward-looking value of an extra unit of 𝐴𝑐 (𝑡) and is also an element of
the R&D subsidy. This leads to the useful result that the ratio of the deployment subsidy and the R&D subsidy should be equal to the

ratio of their marginal productivities:

𝑠𝑑𝑒𝑝𝑙𝑜𝑦𝑐

𝑠𝑅&𝐷𝑐
=
𝜕𝜓∕𝜕𝐸𝑐 (𝑡)
𝜕𝜓∕𝜕𝑧𝑐 (𝑡)

. (35)

The right-hand side may be amenable to empirical estimation. If so, this may provide a guide to the elusive question of how much to

subsidise R&D versus deployment (Cervantes et al., 2023).

The MAC defined as the difference in net productivity between dirty and clean energy is higher than the SCC due to the effect of

deployment on innovation:

𝑀𝐴𝐶 = 𝑆𝐶𝐶 − 𝑠𝑑𝑒𝑝𝑙𝑜𝑦𝑑 + 𝑠𝑑𝑒𝑝𝑙𝑜𝑦𝑐 . (36)

Thus, this model will have optimal paths qualitatively similar to endogenous, learning-based TC. Typically, the clean-energy deploy-

ment subsidy will dominate the dirty-energy deployment subsidy due to the larger innovation potential of clean energy. Note that

this increase in the MAC is still present in a model where there is no innovation without R&D effort, for example, in a model with

the following equation of motion: 𝐴̇𝑖(𝑡) = 𝑧𝑖(𝑡) + 𝜌𝑧𝑖(𝑡)𝐸𝑖(𝑡).
Bretschger et al. (2017) offer a complementary perspective on R&D-based TC. Their multi-sector, multi-region model has expand-

ing varieties in the tradition of Romer (1990), as well as national and international knowledge diffusion. R&D-driven innovation

raises economy-wide productivity by increasing the diversity of intermediate inputs, and carbon pricing indirectly affects the pace

and pattern of this growth through sectoral reallocation. This mechanism brings the important insight that endogenous TC can in-

fluence the costs of climate policy through broad productivity channels and international spillovers, not just through abatement cost

reductions for specific clean technologies.

3. Survey of quantitative IAMs

We now move from theoretical models to quantitative IAMs intended to inform policy. This section describes our systematic

review of how TC is represented in these models currently.

We first compiled a list of candidate IAMs, populating the list using a set of international databases/web resources and previous

reviews on the topic.15 The resulting long list comprised 87 models. We then screened this long list of IAMs based on the following

15 In particular, we used the IPCC AR6 Scenario Explorer and Database hosted by IIASA (https://data.ece.iiasa.ac.at/ar6/#/workspaces); the web resources of

the Integrated Assessment Modeling Consortium or IAMC (https://www.iamconsortium.org/resources/models-documentation/), the United Nations Framework

https://data.ece.iiasa.ac.at/ar6/##/workspaces
https://www.iamconsortium.org/resources/models-documentation/
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Table 1

Representation of technical change in 22 IAMs. In models with learning-by-doing (LbD), the cost of a technology depends on past (cumulative) deploy-

ment. In models with R&D, the cost of a technology depends on past investments in R&D. The “Other IAMs” category contains energy system models

coupled with other modules such as land use.

Model Type Intertemporal Exgenous or LbD/R&D References

optimisation endogenous TC

AIM/CGE CGE No exogenous Fujimori et al. (2017a,b)

DICE Optimal growth Yes exogenous Nordhaus (2017)

DNE21+ Energy system Yes exogenous* Sano et al. (2006); Wada et al. (2012)

E3ME Macroeconometric No semi-endogenous LbD/R&D Mercure et al. (2018)

Cambridge Econometrics (2019)

ENV-Linkages CGE No exogenous Château et al. (2014)

EPPA CGE No exogenous Chen et al. (2015); Jacoby et al. (2006)

Octaviano et al. (2016)

GCAM Other IAMs No exogenous Bond-Lamberty et al. (2022); Calvin et al. (2017)

GEM-E3 CGE No semi-endogenous LbD Capros et al. (2013)

GTAP-E CGE No exogenous Burniaux and Truong (2002); Corong et al. (2017)

GTEM CGE No semi-endogenous LbD Jakeman et al. (2004); Pant (2007)

ICES CGE No exogenous* Eboli et al. (2010); Parrado and De Cian (2014)

IGEM CGE Yes exogenous Goettle et al. (2007)

IMACLIM-R CGE No semi-endogenous LbD Bibas et al. (2022)

IMAGE Other IAMs Yes endogenous LbD Stehfest et al. (2014)

MARKAL/ Energy system Yes endogenous** LbD Loulou et al. (2016)

TIMES

MESSAGEix- Other IAMs Yes exogenous* Fricko et al. (2017); Krey et al. (2020)

GLOBIOM Messner (1997)

PACE CGE Yes*** exogenous Böhringer et al. (2009a); Gavard et al. (2022)

Phoenix CGE No exogenous Sue Wing et al. (2011); Lucena et al. (2018)

POLES Energy system No semi-endogenous LbD Keramidas et al. (2017)

REMIND Optimal growth Yes endogenous LbD Luderer et al. (2015)

WEM Energy system No exogenous IEA (2021)

WITCH Optimal growth Yes endogenous LbD/R&D Emmerling et al. (2016)

* A study adding endogenous change exists, but this is not incorporated in the main model (e.g., Messner (1997) for MESSAGE; Parrado and De Cian

(2014) for ICES; Sano et al. (2006) for DNE21+).
** Most applications do not use the endogenous TC feature of the model.
*** There is an extension allowing intertemporal optimisation of the model (Böhringer et al. (2009b)).

criteria for inclusion. First, the model must be global. Second, the model must be in current/recent use, which we defined as having

yielded a publication within the three years prior to undertaking our review. Third, the model must have been designed to estimate

mitigation costs from the energy system (this excluded models primarily intended to estimate the SCC, and it also excluded specialist

land-use models). Fourth, the model must have been used in multiple papers or projects (we excluded ‘one-off’ models). Lastly, we

consolidated versions of the same model into a single family. After screening and combining, we were left with 22 model families for

analysis of their representation of TC. These are listed in Table 1.

The table describes the type of model and then classifies the models’ representation of TC. We divide the models into exoge-

nous, endogenous and what we call ‘semi-endogenous’ TC, and for endogenous TC models we further specify whether the process is

based on learning or R&D. We use semi-endogenous to describe models in which current deployment of an abatement technol-

ogy makes the technology cheaper in the future, but where this learning mechanism does not affect the optimal price/subsidy

trajectory. In other words, models with semi-endogenous TC feature larger future deployment as technologies become cheaper

(learning-by-doing), but omit the incentive for early abatement that would arise from anticipating the endogenous future cost

reduction.16

The results of our systematic review are as follows. First, the diversity of modelling approaches to TC identified in earlier reviews

endures today. Second, we find that TC is exogenous in the majority of models. Four models include endogenous TC, and five other

models have semi-endogenous TC. TC is exogenous in the remaining 13 models. A pre-requisite for fully endogenous TC is the ability

Convention on Climate Change or UNFCCC response measures modelling tools (https://unfccc.int/topics/mitigation/workstreams/response-measures/modelling-

tools-to-assess-the-impact-of-the-implementation-of-response-measures), the Stanford University Energy Modeling Forum (Böhringer et al., 2021), and previous review

articles by Gillingham et al. (2008) and Nikas et al. (2019).
16 One could therefore also describe these models as not fully optimising, or as second-best models. We prefer the term semi-endogenous to highlight the specific

mechanism of learning-by-doing without full intertemporal optimisation. To ensure our classification of models as semi-endogenous was reasonable, we contacted the

relevant modelling teams to explain our concept of semi-endogenous TC and check our characterisation of their model. We contacted eight modelling teams (IMAGE,

GTEM, POLES, E3ME, GEM-E3, EPPA, IMACLIM-R, IGEM) and received answers from seven of them.

https://unfccc.int/topics/mitigation/workstreams/response-measures/modelling-tools-to-assess-the-impact-of-the-implementation-of-response-measures
https://unfccc.int/topics/mitigation/workstreams/response-measures/modelling-tools-to-assess-the-impact-of-the-implementation-of-response-measures
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to optimise the model intertemporally; only eight models do this, as column 3 shows. Lastly, of the models with semi-endogenous or

endogenous TC, the majority represent learning-by-doing, with R&D investments explicitly represented in only two models. In their

sample, Gillingham et al. (2008) identified a larger share of models with R&D, but most of these models were one-off developments:

R&D is less prevalent as a TC mechanism in the most commonly used core versions of IAMs that feed into inter-comparison exercises

like the IPCC scenario database.

4. Quantitative analysis

The purpose of this section is to estimate the effects of TC in the quantitative/policy IAMs on optimal climate policy. This is not

easy. Previous literature asking similar questions has relied on regression of IAM outputs on model features (e.g. Kuik et al., 2009),

sensitivity analysis using a single model (e.g. Manne and Richels, 2004), and harmonised runs of multiple IAMs (e.g. Gillingham

et al., 2018). Each approach has its pros and cons. Standard, regression-based meta-analysis provides a convenient way to ex-

plore a wide range of model features, but it is typically limited to qualitative results on the effects of TC (since model features

are represented as dummy variables). Given the nature of the data, regression also faces identification problems such as low sta-

tistical power and multi-collinearity. Sensitivity analysis with individual IAMs permits a tightly controlled experiment into the

effects of TC but is limited to an individual model structure. By contrast, harmonised runs of multiple IAMs allow model uncer-

tainty to be explored, but it is practically difficult to evaluate many models this way, let alone multiple parameterisations of each

model.

Our approach consists of two steps. The first step is structural estimation of how much TC reduces abatement costs in the current

crop of IAMs. The second step is to build a simple IAM, based on the theoretical models of Section 2, and use it to simulate optimal

climate policy based on the TC parameter estimates from the first step. Thus, our approach is most similar to running sensitivity

analysis with an individual IAM, but by ensuring through the first step that the model replicates TC in more complex IAMs, and by

using a simple model structure broadly in the tradition of analytical IAMs, the model is set up to perform more of a meta-analytical

function.

We implement both exogenous TC in abatement technologies and endogenous, learning-based TC, as these are the two principal

types of TC that feature in the quantitative/policy IAMs. R&D-based TC is not included in this analysis, because it rarely features

in quantitative/policy IAMs and when it does it is alongside learning-based TC – we cannot differentiate their effects in the data.

However, we know from Section 2 that R&D-based TC will give approximately the same optimal climate policy paths as exogenous

TC when the metrics of interest are carbon taxes, emissions and temperatures, as long as R&D costs are not large enough to shift the

consumption growth rate. We run our simple IAM under cost-benefit and cost-effectiveness objectives.

4.1. Structural estimation of TC

Our structural estimation uses ‘observed’ variation in the timing of abatement and associated abatement costs across a large

number of IAM scenarios collected in two major databases (the IPCC and the NGFS).17 This gives us an estimate of how much TC

drives down abatement costs in current IAMs, supposing the process is either exogenous or endogenous, learning-based.

The abatement cost/TC parameters are calibrated on 739 scenarios from 13 leading IAM families,18 obtained by pooling results

from the IPCC and NGFS databases. We exploit variation between IAM scenarios in total abatement costs, MACs and emissions. If

the underlying IAMs were static, a given quantity of abatement would cost the same whenever it happens. But with TC, a given

quantity of abatement is more costly the earlier it happens. This is our identifying variation. A model of exogenous TC can be esti-

mated by assuming that observed cost reductions in the dataset are driven by time. Specifically, we estimate the following formula

for the slope of the MAC function: 𝜑(𝑡) = 𝜑(∞) + (𝜑(0) − 𝜑(∞)) 𝑒−𝑔𝜑𝑡. Alternatively, a model of endogenous, learning-based TC can be
estimated by assuming that observed MAC reductions are a function of cumulative abatement:

(

𝐻̃(𝑡)∕𝐻̃(0)
)−𝜒
. We cannot estimate

a mixed exogenous/endogenous model – the underlying models are either exogenous or endogenous, and there is high collinearity

between time and cumulative abatement. However, the parameter estimates recovered from the pure exogenous and pure endoge-

nous, learning-based TC models could still be used in a mixed TC model, where the MAC function is a weighted average of the

two.

Parameter estimation is made using the Generalised Method of Moments, estimating total and marginal abatement cost functions

simultaneously. This allows us to obtain more robust results: although the MAC function is more economically meaningful as it

determines the FOCs of the optimum, the MAC functions of the underlying IAMs could be non-linear. We give equal weight to the

errors of both the total and marginal abatement cost functions and assume they are independent and normally distributed. For both

exogenous and endogenous TC, we report four specifications. First, we fit the exogenous or endogenous TC parameters on all the IAMs

in the databases. This utilises all the available variation between models, but treats IAMs with endogenous, learning-based TC as if

17 The IPCC AR6 database is available at https://data.ene.iiasa.ac.at/ar6/ and the NGFS Phase 5 transition database is available at https://data.ene.iiasa.ac.at/ngfs/

#/workspaces.
18 Alternatively, 45 different IAMs counting multiple members of the same family, e.g., different model versions, or energy models with and without coupling to

land-use models.

https://data.ene.iiasa.ac.at/ar6/
https://data.ene.iiasa.ac.at/ngfs/##/workspaces
https://data.ene.iiasa.ac.at/ngfs/##/workspaces
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Table 2

Parameter estimates for fitting both total and marginal abatement costs to the IPCC and NGFS databases of IAM results. In the fixed-effects (FEs) columns,

we report mean coefficients and standard errors. *** indicates significance at the 1 % level.

No TC Exogenous TC Endogenous, learning-based TC

All models All models Exog models FEs: initial FEs: initial All models Endog models FEs: initial FEs: initial

MACs MACs & TC MACs MACs & TC

𝜑0 2.7e-05*** 1.2e-04*** 1.2e-04*** 1.1e-04*** 1.1e-04*** 1.4e-04*** 1.3e-04*** 9.1e-05*** 1.1e-04***

𝑔𝜑 .048*** .049*** .013*** 0.027***

𝜑∞ 1.9e-05*** 1.5e-05*** 2.2e-07 1.7e-05***

𝜒 .362*** .302*** .315*** 0.211***

𝐻̃(0) 16.3*** 12.7*** 92.5*** 36.6***

𝜃 1.5e-03*** −1.7e-05 −2.9e-05 7.7e-04*** 4.7e-04*** 5.1e-05 9.2e-05 6.6e-04*** 4.5e-04***

N 12393 12393 6545 12393 12393 12393 5848 12393 12393

LL 4.9e+04 5e+04 2.7e+04 5.2e+04 5.2e+04 5.0e+04 2.3e+04 5.2e+04 5.2e+04

they had exogenous TC, and vice versa. The second specification fits the exogenous TC parameters only on the subset of IAMs with

exogenous TC, and similarly for endogenous, learning-based TC. Third, we include a fixed-effects specification, where we allow each

model to have its own initial MAC slope.19 Fourth, we include a fixed-effects specification where each model has its own initial MAC

slope and its own TC rate. The fixed effects control for unobserved, model-specific factors, which could confound the effects of TC.

The fourth specification is the most flexible and is the one we use. Table 2 summarises the resulting parameter estimates (Appendix F

Table A1 gives the full, model-specific estimates).

For our preferred specification with model-specific initial MAC slopes and rates of TC, exogenous TC reduces the MAC slope by

around 3 % per year to a long-run value that is around 85 % lower than its initial value. The slope halves every 25 years or so. For

endogenous TC, the learning elasticity 𝜒 = 0.21 in our preferred specification. This gives a learning rate 1 − 2−𝜒 = 14 %, i.e., the
percentage reduction in the MAC slope each time cumulative abatement doubles. Larger historical learning rates have been recorded

for some technologies, such as photovoltaics (32 %), wind power (19 %) and battery technologies (42 %), while lower learning rates

have been recorded for other technologies, such as hydroelectricity and nuclear (both 0 %) (Way et al., 2022).20 Notice that for both

types of TC, the fit on all models and the fit only on IAMs with TC of the same type give similar outcomes. For endogenous TC, the

learning rate is faster but this is partially offset by lower cumulative emissions at time zero, 𝐻̃(0). Therefore, we find little evidence
of a systematic relationship between the speed and the representation of TC.

4.2. Simple IAM

We calibrate and simulate a simple numerical IAM building on the theoretical models of Section 2, in particular the model with an

aggregate abatement cost function. To make the model more realistic, we add population, normalised to one in the initial period and

growing at a decreasing rate 𝑛. We assume the economy is on an approximately balanced growth path, so consumption and output grow
at the constant rate of exogenous labour productivity 𝑔, and we avoid explicitly modelling capital accumulation. Supported by the
fact that BAU emissions scenarios in the IPCC/NGFS databases are roughly constant over this century, we assume that 𝜎(𝑡) = 𝜎(0)𝑒−𝑔𝑡

– AEEI exactly offsets the scale effect on emissions. We define 𝑃 = 𝜎(0)𝑌 (0) as the constant level of BAU emissions. Emissions are
redefined as greenhouse gas rather than just CO2 emissions.

21 To avoid unrealistic jumps in initial emissions, we also add a quadratic

penalty on the speed of abatement to the abatement cost multiplier, exp
(

− 𝜃
2𝑃

2
𝜇̇(𝑡)2

)

. This is a simple way to factor in the effect of

adjustment costs and capital inertia, without explicitly modelling them. Rapid abatement may require costly repurposing/stranding of

dirty capital, and green capital accumulation may also face bottlenecks. The parameter 𝜃 is recovered from the structural estimation
above, reflecting the fact that quantitative/policy IAMs typically incorporate such constraints. Appendix C derives the effect of inertia

on the model’s optimality conditions.

The social planner chooses a time path for the emissions abatement growth rate 𝜇̇(𝑡), where 𝜇 is defined as the fraction of BAU
emissions abated at time 𝑡, to maximise discounted utility of consumption. The optimisation problem in full is:

max
𝜇̇(𝑡)

𝑊 = ∫

∞

0
𝑒−(𝛿−𝑛(𝑡))𝑡

𝑐(𝑡)1−𝜂

1 − 𝜂
𝑑𝑡

19 We group some of the 18 model families together to form 11 groups, to avoid non-convergence.
20 Our aggregate learning rate is not easy to compare with technology-specific learning rates, because not only learning rates 𝜒𝑖 but also initial levels of knowledge
𝐴𝑖 are heterogeneous. Our aggregate initial level of cumulative abatement 𝐴0 assumes endogenous TC is slower in later decades (that is, green technology as a ‘family’

matures). Yet, there will be new fast-learning technologies in the future merely because they start with a low initial stock of knowledge 𝐴0,𝑖. Comparing the dynamics

of an aggregate learning mechanism with disaggregated technologies as in Appendix B is a fruitful area of future research.
21 We make a corresponding adjustment to the TCRE coefficient 𝜁 .
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Table 3

Exogenous parameter values for the numerical simulations.

Parameter Value Source

𝛿 0.008 Drupp et al. (2018), 20 % trimmed mean of experts

𝜂 1.3 As above

𝑛, −𝑔𝑛 0.0105, 0.013 United Nations (2022)

𝑔 0.02 By assumption

𝜁 0.0006 IPCC AR6 WGI (IPCC, 2021)

𝛾 0.0154 Howard and Sterner (2017)

𝑌 (0) US$84.537 trn IMF (2021)

𝑃 60 GtCO2eq IPCC AR6 WGIII (IPCC, 2022)

subject to
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⎩

𝑇̇ (𝑡) = 𝜁𝑃 (𝑡)
𝑃 (𝑡) = 𝑃 (1 − 𝜇(𝑡))

if endogenous TC: ̇̃𝐻(𝑡) = 𝑃𝜇(𝑡)

𝑐(𝑡) = 𝑐(0) ⋅ 𝑒𝑔𝑡 ⋅Ω(𝑡) ⋅ Λ̃(𝑡)
Ω(𝑡) = exp

(

− 𝛾
2𝑇 (𝑡)

2
)

Λ̃(𝑡) = exp
(

− 𝜑(𝑡)
2 𝑃

2
𝜇(𝑡)2Ψ(𝑡) − 𝜃

2𝑃
2
𝜇̇(𝑡)2

)

Ψ(𝑡) =

⎧

⎪

⎨

⎪

⎩

(

𝐻̃(𝑡)
𝐻̃(0)

)−𝜒
, endogenous TC

1, exogenous TC

𝜑(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝜑(0), endogenous TC

𝜑(∞) + [𝜑(0) − 𝜑(∞)] 𝑒−𝑔𝜑𝑡, exogenous TC

Initial conditions: 𝑇 (0) = 𝑇0, 𝐻̃(0) = 𝐻̃0, 𝑐(0) = 𝑐0

The model is solved as a boundary value problem with MATLAB’s bvp5c function.22 Table 3 reports the additional, exogenous

parameter values that complement the TC parameter values recovered from the structural estimation. The model is run out to 2500 in

order to avoid terminal values affecting the optimal paths during our period of interest.

4.3. Results

Cost-benefit analysis

Fig. 1 plots optimal, cost-benefit climate policies for no TC (think of this as a straw-person scenario), exogenous TC and endogenous,

learning-based TC. The key point is that TC has a quantitatively large effect on optimal emissions, temperatures and MACs, and there

is a substantial difference between the two forms of TC.

The incentive to wait for abatement costs to fall is clear under exogenous TC. Emissions fall immediately, but they are higher

than under no TC until 2036. Thereafter, they continue to fall in a roughly linear fashion and by 2100 they are much lower than

under either of the other two scenarios.23 Under endogenous, learning-based TC, emissions fall very rapidly in the first ten years (this

despite the presence of capital inertia), illustrating the incentive to abate early in order to reduce future abatement costs. Either form

of TC results in temperatures at the end of the century that are substantially lower than under no TC – from 3.0 ◦C under no TC to

2.5 ◦C under exogenous TC and 2.4 ◦C under endogenous, learning-based TC. Exogenous TC leads to a substantial reduction in the

MAC/optimal carbon price, starting 26 % lower than under no TC and with a widening gap over time. By contrast, under endogenous

TC the optimal MAC starts 12 % higher than under no TC but then grows more slowly, ending up 30 % lower in 2100. This difference

reflects the fundamentally different dynamics of endogenous TC, where early abatement is undertaken optimally in order to generate

future cost reductions, whereas under exogenous TC cost reductions arrive independently of abatement effort. Below we decom-

pose this effect on the optimal MAC into the SCC (optimal carbon tax) and the marginal future learning gain (optimal deployment

subsidy). The difference between the initial MAC under exogenous and endogenous, learning-based TC is $73/tCO2. Appendix G

reports an equivalent set of results when capital inertia is ignored. Results are similar but large initial differences in emissions are

optimal.

22 For the cost-effectiveness analysis, we minimise total abatement costs choosing abatement every two years until 2200 using MATLAB’s fmincon function. The

model has two state variables, abatement and temperature (𝐻̃ can be written as a function of time and temperature). The decision variable is the change in abatement.
23 Note that under exogenous TC, emissions are substantially negative in the very long run, beyond 2100.
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Fig. 1. Optimal, cost-benefit climate policies without TC, with exogenous TC and with endogenous TC. Emissions in the top-left panel, temperature above pre-industrial

in the top right, and the MAC/carbon price on the bottom.

Cost-effectiveness analysis

Fig. 2 plots optimal, cost-effective climate policies, imposing a temperature constraint of 1.75 ◦C as representative of the UN Paris

Agreement goal of “well below 2 ◦C”. This is a very demanding scenario in general, as evidenced by the rapidly falling emissions

paths and high MACs. As in the cost-benefit case, exogenous TC leads to backloading abatement effort. Emissions are higher than

under no TC until mid-century and lower thereafter. Consequently, temperatures hit the 1.75 ◦C ceiling ten years earlier. Compared

to exogenous TC, endogenous, learning-based TC leads to more abatement in the next few decades and less abatement thereafter.

Effort is marginally more frontloaded in order to internalise the social benefit of learning. However, unlike the cost-benefit case,

endogenous, learning-based TC does not lead to lower emissions in the short run than under no TC, rather they are higher. This

was identified as a possible outcome in the theory section. In a very ambitious abatement scenario, the cost-reduction effect of

endogenous, learning-based TC outweighs the future learning effect. The difference in MACs due to TC is very large in this 1.75 ◦C

cost-effectiveness scenario. The MAC under exogenous TC is 26 % lower in 2020 than under no TC, widening to 44 % in 2050. This

is interpretable as the difference in the optimal carbon tax. The MAC under endogenous, learning-based TC is 33 % lower in 2020

than under no TC and 46 % lower in 2050. This contains both the optimal carbon tax and deployment subsidy.24

Estimating the endogenous future gain effect

The above figures show different effects of exogenous and endogenous TC on optimal climate policies. The main conceptual

difference between the two TC processes is the social benefit of learning, i.e., internalising the marginal external gain in abatement

knowledge. However, the above results do not isolate the social benefit of learning. So, Fig. 3 decomposes the optimal MAC under

endogenous, learning-based TC into its two components, the SCC/Hotelling price and the social benefit of learning. An optimal policy

would comprise a carbon tax equal to the former and a deployment subsidy equal to the latter.

Looking first at the cost-benefit problem, the SCC is $143/tCO2 in 2020 and $303/tCO2 in 2050. The social benefit of learning is

$70/tCO2 in 2020, falling to $48/tCO2 in 2030 and roughly flat thereafter. In the cost-effectiveness case, the Hotelling price is similar

to the SCC, at $144/tCO2 in 2020 and $371/tCO2 in 2050. However, the social benefit of learning is larger at $98/tCO2 in 2020 and

$73/tCO2 in 2030. One might wonder why the initial Hotelling price is not much larger than the SCC given that cumulative emissions

are much lower. The answer is twofold: first, the Hotelling path increases at a steeper rate. This in turn increases the forward-looking

endogenous learning gains, which make abatement cheaper.

24 Note that the MAC paths under the two forms of TC cross each other in 2060 (not shown in the figure), with the MAC under exogenous TC subsequently being

lower than under endogenous, learning-based TC.



Journal of Environmental Economics and Management 133 (2025) 103216

17

L. Coppens, S. Dietz and F. Venmans

2020 2040 2060 2080 2100
Year

0

10

20

30

40

50

G
tC

O
2

Emissions

No TC
Exogenous TC
Endogenous TC

2020 2040 2060 2080 2100
Year

1.2

1.3

1.4

1.5

1.6

1.7

1.8

°C

Temperature increase

2020 2030 2040 2050
Year

200

300

400

500

600

700

800

$/
tC

O
2

Marginal abatement cost

Fig. 2.Optimal, cost-effective climate policies without TC, with exogenous TC andwith endogenous TC. Emissions in the top-left panel, temperature above pre-industrial

in the top right, and the MAC/carbon price on the bottom.
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Fig. 3. Decomposition of the optimal MAC into the SCC/Hotelling price and the social benefit of learning (SBL), for the cost-benefit (left) and cost-effectiveness (right)

problems.

But how does the dynamic incentive created by endogenous TC impact optimal emissions, temperatures and MACs? This requires

a different kind of analysis, because this dynamic incentive also affects the SCC. That is, take the social benefit of learning away and

the SCC also changes. Here we develop a method of isolating the dynamic incentive of endogenous, learning-based TC. The method

proceeds in two steps. The first step is to estimate a time-dependent MAC function (i.e., exogenous TC), with a MAC that is identical to

the endogenous, learning-based TC model at each point in time. This can be achieved using a sufficiently high-order polynomial. The

second step is to take the exogenous-TC MAC curve so estimated, and use it to recalculate optimal model trajectories. Any difference

between the optimal paths of the endogenous, learning-based TC model and its exogenous replica must then be due to the dynamic

incentive of endogenous TC (see Appendix E.1).

Fig. 4 plots the results. Emissions are 10 % lower in 2050 and 5 % lower in 2100 due to the endogenous future gain effect, leading

to 0.13 ◦C less warming at the end of the century. The MAC starts 41 % higher and is 9 % higher in 2050. These results indicate

that, insofar as TC is endogenous and based on learning-by-doing, models that do not include the incentive structure of a learning

externality produce too little abatement, optimal MACs that are too low, and temperatures that are too high. In our review of models,

we showed that TC is exogenous in most IAMs, but this observation also applies to models of semi-endogenous TC, as these also omit
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Fig. 4. Comparison of a model of endogenous TC with a model without TC, but where the static MAC function is calibrated to give the same marginal cost and quantity

of abatement at each point in time as the endogenous TC model. The difference between the paths is exactly the endogenous future gain effect. Emissions in the top-left

panel, temperature above pre-industrial in the top right, and the MAC/carbon price on the bottom.

the dynamic incentive. The estimates here provide an upper bound on the bias though, because they are derived from comparing a

model of pure exogenous TC and a model of pure endogenous TC. Reality likely incorporates both.

Appendix E.2 further compares a model of exogenous TC with a static model with identical MACs at each point in time. For

example, if, say, the exogenous TC model projects zero emissions in 2050 at a marginal cost of $250/tCO2, the static model would

have the same MAC at zero emissions. The static MAC function will be concave, since TC causes the linear instantaneous MAC

function to decline over time. We show theoretically that the static approximation of the exogenous TC model is exact under certain

assumptions and quantitatively that it is almost exact under more general assumptions. By contrast, a static model cannot replicate

the dynamics of a model with endogenous, learning-based TC.

Sensitivity analysis

Here we analyse the sensitivity of the optimal, cost-benefit policy to variation in the abatement cost/TC parameters, and the

discount rate. For the former variation, we use the standard errors from the GMM estimates in Table 2. For the latter, we use the

range of responses from the expert survey on discounting by Drupp et al. (2018). The results are summarised in Table 4, with detailed

results contained in Appendix G. There are four scenarios: low discount rate; high discount rate; slow TC; fast TC.

Reducing the discount rate leads to lower emissions/temperatures and higher MACs, as expected. Increasing the discount rate leads

to the opposite effects. The effects of TC are qualitatively the same under different discount rates, except that with a low discount

rate, endogenous, learning-based TC leads to a lower initial MAC than under no TC, not a higher one. The explanation for this is

the same as in the cost-effectiveness case above: when emissions fall very fast, the cost reduction effect outweighs the endogenous

learning effect.

If TC is slow, emissions/temperatures are higher, but so are MACs.25 The opposite is true for fast TC. The comparative effects of

exogenous and endogenous TC are qualitatively the same whether TC is slow or fast.26

5. Discussion

Our aim in this paper has been to assess, both qualitatively and quantitatively, the effect of different representations of TC in the

IAM literature on optimal climate policy. In doing so, we have surveyed a wide range of models distributed across several strands of

25 Under endogenous, learning-based TC, the MAC is lower under slow TC for just the first two years.
26 Care should be taken in comparing exogenous and endogenous, learning-based TC under low/high rates, however – setting the parameters at plus/minus one

standard deviation is not assured to produce comparable rates of TC.
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Table 4

Sensitivity analysis on the discount rate and the rate of technical change. The low discount rate corresponds

to 𝛿 = 0 and the high discount rate to 𝛿 = 0.02. Further sensitivity analysis on 𝜂 can be found in Appendix G.
Fast (slow) TC corresponds to plus (minus) one standard deviation for 𝑔𝜑 in the model of exogenous TC and
for 𝜒 and 𝐴0 in the model of endogenous, learning-based TC.

Emissions (GtCO2) Temperatures (◦C) MACs ($/tCO2)

2030 2050 2100 2030 2050 2100 2020 2050

Main specification

No TC 39.10 38.60 35.33 1.45 1.91 3.03 190.62 421.05

Exogenous TC 40.93 32.31 6.91 1.46 1.90 2.49 140.32 285.47

Endogenous TC 30.48 25.74 17.81 1.41 1.75 2.40 213.26 345.54

Low discount rate

No TC 17.80 20.03 19.65 1.34 1.57 2.18 383.72 745.72

Exogenous TC 30.81 21.11 −3.79 1.42 1.73 1.97 224.63 394.30

Endogenous TC 9.89 6.59 4.34 1.32 1.41 1.58 343.94 472.22

High discount rate

No TC 50.00 48.90 45.57 1.50 2.09 3.51 86.22 221.19

Exogenous TC 48.88 42.26 19.64 1.50 2.05 2.96 76.62 184.71

Endogenous TC 45.37 41.41 32.56 1.48 2.00 3.11 107.23 216.68

Slow technical change

No TC 39.10 38.60 35.33 1.45 1.91 3.03 190.62 421.05

Exogenous TC 40.94 33.35 9.92 1.46 1.91 2.56 143.75 294.66

Endogenous TC 32.65 29.20 22.46 1.42 1.79 2.57 209.88 367.71

Fast technical change

No TC 39.10 38.60 35.33 1.45 1.91 3.03 190.62 421.05

Exogenous TC 40.88 31.21 4.29 1.46 1.90 2.42 137.29 277.34

Endogenous TC 28.27 22.03 12.96 1.41 1.70 2.22 215.44 321.47

literature, including mostly theoretical contributions to environmental economics and applied, quantitative contributions to policy.

TC has been represented in multiple ways and has complex dynamic effects on emissions, temperatures, costs, taxes and subsidies.

We have tried to make sense of the different approaches by setting up a common theoretical and quantitative framework, within

which different TC mechanisms can be analysed.

TC matters. Exogenous TC that makes future abatement cheaper creates an incentive to abate less in the short run and more in the

long run if temperature is optimally chosen. Emissions are much lower in the long run according to our quantitative analysis, resulting

in 0.5 ◦C less warming in 2100 compared to no TC. If temperature is constrained, exogenous TC creates a similar incentive to backload

abatement, so the temperature ceiling is hit faster. If exogenous TC happens instead through AEEI, it plausibly reduces emissions in

the short run but increases them in the long run. Again, if temperature is constrained, abatement is backloaded and the temperature

ceiling is hit faster. Endogenous TC based on learning-by-doing also makes future abatement cheaper, but there is the additional and

opposing learning effect, which incentivises early abatement. Our quantitative results suggest that under cost-benefit analysis, the

latter effect outweighs the former so that emissions and temperatures are always lower than under no TC (e.g., emissions are 20 %

lower in 2030). The results also suggest that the optimal paths under exogenous, MAC-reducing TC and endogenous, learning-based

TC diverge significantly under cost-benefit analysis (less so under cost-effectiveness analysis), driven by a social benefit of learning

that we estimate at $70/tCO2 initially. We also show how models of endogenous, R&D-based TC create an incentive for early action

through subsidising R&D, but optimal emissions, temperature and MAC/carbon tax paths are plausibly isomorphic with exogenous

TC, so our quantitative results for exogenous TC should also apply.

The two forms of endogenous TC that we consider, based on learning-by-doing or R&D, can imply different technology cost

dynamics, an issue we feel deserves further analysis and discussion in the future. We try to get this discussion started with an an-

alytical comparison of technology cost paths and an illustration of how learning and R&D can be combined within a single model

of relatively low complexity. More broadly, it is not our view that any one class of model is inherently superior to the others. In

reality, TC is driven by a combination of mechanisms, including factors that may be treated as exogenous to the abatement/en-

ergy sector (e.g., R&D spillovers from other sectors), and learning-by-doing and R&D in the abatement/energy sector. A mixed

model may therefore provide a more realistic representation of the various processes at play. R&D is facilitated by deployment,

which creates an endogenous future gain effect associated with R&D. That matters. The interactions between the abatement/en-

ergy sector and the wider economy can also be modelled explicitly. However, such models also involve greater complexity and

reduced transparency, and the appropriate degree of model complexity ultimately depends on the intended use of the model and the

audience.

Sensitivity analysis reveals that our results are qualitatively robust to variation in the rate of TC (and the discount rate). The

sensitivity analysis on the rate of TC, carried out using the standard errors of our statistical estimates, also provides an insight into

the likely impacts of TC on optimal trajectories, in case the IAM literature as a whole underestimates future technology cost reductions.

This is an implication of recent work by Way et al. (2022), who argue IAMs underestimate deployment rates for renewable energy

technologies and overestimate their costs. Supposing this critique has some validity, we might then be more guided by our results for
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high-end TC as calibrated on the IAM databases.27 Mechanically, fast TC, so defined and measured, results in a larger quantitative

effect on optimal emissions, temperatures and carbon prices.

Uncertainty about TC is an important feature of the problem. Although there exist many papers with sensitivity analysis on

technological parameters, like ours, to the best of our knowledge the literature has not yet investigated optimal emissions under

uncertainty in a dynamic model where information on TC is gradually discovered. A fully dynamic stochastic model goes beyond the

scope of this paper, but from our analytical solutions we can speculate about the effect of uncertainty.

Since total abatement costs are convex in abatement, Jensen’s inequality indicates that the expected value of future abatement costs

increases under uncertainty. This increases future abatement costs relative to current, certain abatement costs, and is an argument

for earlier abatement with a higher initial MAC. The higher MAC can be understood as a risk premium society is willing to pay to

insure against the possible outcome of slower-than-expected TC.

But how much this matters depends as usual on whether TC is exogenous or endogenous, and whether the objective is cost-benefit

or cost-effectiveness. When TC is exogenous and the objective is cost-effectiveness, the above effect is the only one at play and in

principle the risk premium on TC uncertainty could be quantitatively large. In the case of endogenous TC, we would expect the risk

premium to be lower, because we know from our analysis that the endogenous future gain effect attenuates the effect of TC uncertainty

on the initial MAC. In other words, since endogenous TC has a smaller impact on the optimal MAC (compared to exogenous TC),

the societal cost of wrongly anticipating TC is lower. Similarly, in a cost-benefit analysis, lower-than-expected TC leads to a higher

optimal peak temperature, attenuating the initial price/MAC adjustment. Again, since the effect of TC on the initial MAC is lower

than under cost-effectiveness, the social cost of wrongly anticipating TC and the corresponding risk premium are lower. Combining

both effects, i.e. in a cost-benefit analysis with endogenous TC, the effect of TC on the initial MAC should be small.

Note that these are mere first-order effects of adding uncertainty on parameters 𝜒 and 𝑔𝜑. There are other effects that go beyond
this intuition, for example when the uncertainty regarding the growth rate of the economy is correlated with uncertainty regarding

TC. Also, uncertainty affects investment incentives. In the case of long-term, irreversible investments with large uncertainty over the

profitability of the technology, uncertainty leads to an incentive to postpone the investment and wait for new information, a.k.a. option

value, the value of keeping options open. For example, uncertainty about the availability of nuclear fusion in the future can create

an incentive to postpone the investment in a new nuclear fission plant today. Investigating optimal emissions under technological

uncertainty is therefore a fruitful avenue for future research.
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Appendices for online publication

In Appendices A–E, we formally derive the analytical results in Section 2. Our strategy is to use the most general possible model.

That is, to the extent possible we derive results for general functional forms, which then apply to the specific functions used in

Section 2. This tends to keep the mathematical notation uncluttered and provides a set of results of potentially broad use, while main-

taining a model structure in the main text that is more immediately relatable to the literature. Some results hold under more general

conditions than others, therefore, as we proceed through the analysis we will make more specialised assumptions. Appendices F and

G contain further results from our quantitative analysis.

Appendix A. General model

For ease of notation, we omit time subscripts unless confusion is possible. Other subscripts are used to indicate partial derivatives.

To obtain a simpler expression for the MAC, the MAC growth rate and abatement speed, we will use abatement 𝑎 = 𝑃 −𝑃 rather than
abatement relative to BAU emissions 𝜇 = (𝑃 − 𝑃 )∕𝑃 .28

Define a knowledge stock𝐻 that accumulates according to the following equation of motion, which depends on time 𝑡, the existing
knowledge stock, investment 𝐼 , and abatement 𝑎:

𝐻̇ = 𝜓(𝑡,𝐻, 𝐼, 𝑎). (37)

27 In our fast TC scenario, abatement costs are reduced by one third between 2020 and 2040. This corresponds to the cost reduction for wind technologies in the

fast transition scenario of Way et al. (2022). Their cost reductions for batteries and electrolysers are even larger because these technologies start with a very low

cumulative installed capacity. By contrast, they argue that other technologies such as carbon capture and storage and nuclear have seen almost no cost reductions

over the last decades.
28 The same results can be obtained by defining a business-as-usual consumption path, a carbon intensity path, and defining 𝑎 = 𝜇𝜎𝑐𝐵𝐴𝑈 . This gives marginal
abatement costs 𝑐𝑎 =

𝑐𝜇
𝜎𝑐𝐵𝐴𝑈

with growth rate 𝑐̇𝑎∕𝑐𝑎 = 𝑐̇𝜇∕𝑐𝜇 − 𝜎̇∕𝜎 − 𝑐̇𝐵𝐴𝑈∕𝑐. The abatement growth rate can be decomposed as 𝑎̇∕𝑎 = 𝜇̇∕𝜇 + 𝜎̇∕𝜎 + 𝑐̇𝐵𝐴𝑈∕𝑐𝐵𝐴𝑈 .
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The most intuitive interpretation of𝐻 is a knowledge stock, but it can be any technological parameter that is path-dependent. Assume
the function 𝜓 is twice differentiable in all its arguments. The presence of 𝐻 in the function may represent standing on the shoulders
of giants (𝜓𝐻 > 0) or fishing out (𝜓𝐻 < 0). We assume 𝜓𝐻 < 𝑟, i.e., the consumption discount rate, to avoid a bang-bang solution. The
knowledge stock may increase over time (

𝜕𝜓
𝜕𝑡 ≥ 0), e.g., via technological spillovers from non-green sectors, as a response to green

R&D investment (𝜓𝐼 ≥ 0;𝜓𝐼𝐼 ≤ 0), or from learning-by-doing as a result of clean technology deployment (𝜓𝑎 ≥ 0;𝜓𝑎𝑎 < 0).
As in the main text, we assume that warming is proportional to cumulative emissions, that is, 𝑇 = 𝜁𝑆 with

𝑆𝑡 = 𝑆0 + ∫

𝑡

0
𝑃𝑢𝑑𝑢 ↔ 𝑆̇ = 𝑃 . (38)

A.1. Cost-benefit analysis

Consider a consumption function 𝑐 (𝑎,𝐻, 𝐼, 𝑇 , 𝑡), twice differentiable in all its arguments, where positive abatement is costly
−𝑐𝑎 ≥ 0, the MAC function is increasing (−𝑐𝑎𝑎 > 0), and emissions beyond BAU are useless −𝑐𝑎|𝑎≤0 = 0. Knowledge decreases total
and marginal abatement costs (𝑐𝐻 > 0; −𝑐𝑎𝐻 > 0), and green R&D investment reduces consumption (𝑐𝐼 = 1). Time dependence of the
consumption function captures both exogenous TC and AEEI. Climate warming causes convex damages (𝑐𝑇 < 0, 𝑐𝑇𝑇 < 0). We assume
that apart from abatement costs, green R&D and damages, the economy is on a balanced growth path with a constant savings rate as

in Dietz and Venmans (2019). As a result, we do not distinguish between production and consumption.

Population at time zero is normalised to one and grows at rate 𝑛. The utility function has the standard properties 𝑢𝑐 > 0, 𝑢𝑐𝑐 < 0.
The social planner maximises welfare as discounted utility,

max{𝑎,𝐼} ∫

∞

0
𝑒−(𝛿−𝑛)𝑡𝑢 (𝑐 (𝑎,𝐻, 𝐼, 𝑇 , 𝑡)) 𝑑𝑡, (39)

subject to

𝑆̇ = 𝑃 − 𝑎; 𝐻̇ = 𝜓(𝑡,𝐻, 𝐼, 𝑎); 𝑆0,𝐻0 given. (40)

The current value Hamiltonian of the problem is

 = 𝑢 (𝑐 (𝑎,𝐻, 𝐼, 𝑇 (𝑆), 𝑡)) − 𝜆𝑆
(

𝑃 − 𝑎
)

+ 𝜆𝐻𝜓 (𝑡,𝐻, 𝐼, 𝑎) . (41)

The FOCs include

𝑢𝑐𝑐𝑎 + 𝜆𝐻𝜓𝑎 = 𝜆𝑆 , (42)

̇𝜆𝑆 = (𝛿 − 𝑛) 𝜆𝑆 − 𝑢𝑐𝜁𝑐𝑇 , (43)

𝑢𝑐 = 𝜆𝐻𝜓𝐼 , (44)

̇𝜆𝐻 = (𝛿 − 𝑛) 𝜆𝐻 − 𝑢𝑐𝑐𝐻 − 𝜆𝐻𝜓𝐻 . (45)

The transversality conditions are lim𝑡→∞𝜆𝑆𝑒−(𝛿−𝑛)𝑡 = 0 and lim𝑡→∞𝜆𝐻𝑒−(𝛿−𝑛)𝑡 = 0.
Integrating (43) and (45), and plugging the integrals into (42), we obtain

𝑐𝑎𝑡 = ∫

∞

𝑡
𝑒−(𝛿−𝑛)(𝑢−𝑡)

𝑢𝑐𝑢
𝑢𝑐𝑡
𝜁
(

−𝑐𝑇𝑢
)

𝑑𝑢 + 𝜓𝑎𝑡 ∫

∞

𝑡
𝑒− ∫ 𝑢𝑡

(

(𝛿−𝑛)+𝜓𝐻
)

𝑑𝑠
𝑢𝑐𝑢
𝑢𝑐𝑡
𝑐𝐻𝑢

𝑑𝑢. (46)

Acknowledging that ln
𝑢𝑐𝑢
𝑢𝑐𝑡

= ∫ 𝑢𝑡
̇𝑢𝑐
𝑢𝑐
𝑑𝑠 and defining the discount rate 𝑟 = 𝛿 − 𝑛 − ̇𝑢𝑐

𝑢𝑐
, we obtain that the MAC equals the present value

of future marginal damages (the SCC) plus the future learning gain from an extra tonne of abatement today:

𝑐𝑎𝑡
⏟⏟⏟
MAC

= ∫

∞

𝑡
𝑒− ∫ 𝑢𝑡 𝑟𝑑𝑠𝜁

(

−𝑐𝑇𝑢
)

𝑑𝑢
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

SCC

+

knowledge increment
⏞⏞⏞
𝜓𝑎𝑡

…and its effect on abatement costs
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

∞

𝑡
𝑒− ∫ 𝑢𝑡

(

𝑟+𝜓𝐻
)

𝑑𝑠𝑐𝐻𝑢
𝑑𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Social benefit of learning

. (47)

This corresponds to Eq. (12) in the main text, i.e., the optimality condition for the model with endogenous TC based on learning-by-

doing. In the absence of learning-by-doing, the endogenous future gain term drops out, giving the optimality condition for exogenous

TC in Eq. (9).

Differentiating (42) and combining it with the other FOC gives

̇𝑐𝑎 = 𝑟𝑐𝑎 +
𝜓𝐻𝜓𝑎 − 𝜓̇𝑎

𝜓𝐼
+ 𝑐𝐻𝜓𝑎 − 𝜁𝑐𝑇 , (48)

which after dividing through by 𝑐𝑎 gives the growth rate of the MAC,

̇𝑐𝑎
𝑐𝑎

= 𝑟 +
𝑐𝐻𝜓𝑎 +

𝜓𝐻
𝜓𝐼
𝜓𝑎 −

𝜓̇𝑎
𝜓𝐼

𝑐𝑎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Social benefit of learning

−
𝜁𝑐𝑇
𝑐𝑎

⏟⏟⏟
Damages

. (49)
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Peak warming

Lemma 1. Assume that from the point at which peak warming is reached the marginal abatement cost and damage functions are static.

Then TC decreases peak warming.

Proof. If the MAC and damage functions are static from the point at which peak warming is reached, peak warming is also the steady

state. If we conjecture that 𝑃̇ = 0, the MAC, temperature and hence marginal damages will be constant, Eq. (47) is satisfied and has
the solution

𝑀𝐴𝐶∗ =
−𝜁𝑐∗𝑇
𝑟

. (50)

Since a model with TC has a lower MAC in the steady state, from (50) −𝑐∗𝑇 is lower. And since marginal damages are increasing in
temperature, the steady state temperature is lower. ■

This lemma depends on static MACs and marginal damages after peak warming, which ensure peak warming is the model’s

steady state. However, peak warming may not be a steady state. One special case is where both the MAC and damage functions are

proportional to consumption. In this case, 𝑟 in (50) is replaced by 𝑟 − 𝑔 and the claim still holds, in fact.
Moreover, in the specialised model of Appendix B, we relax the assumption of no TC after peak warming, allowing TC to continue

after peak warming such that it is optimal to cool the earth after peak warming with negative emissions. Yet, we will show that TC

still decreases peak warming under highly plausible conditions.

Lemma 1 underpins Results 1–3 in the main text as they relate to optimal emissions and temperatures in the long run.

Exogenous TC

Lemma 2. In a cost-benefit setting, exogenous TC
(

𝜓𝑎 = 0
)

results in a lower initial MAC, lower initial abatement, and a lower initial MAC

growth rate than a model without TC.

Proof. To show this, conjecture that the model with exogenous TC has the same initial MAC as the model without TC. From Eq. (49),

this implies that initial MAC growth is also the same (the initial conditions ensure marginal damages are the same). The same

MAC growth rate combined with a decreasing MAC curve in the model with exogenous TC will lead to faster abatement and lower

temperatures after the start. This will, in turn, lead to faster growth of the MAC in later periods (from Eq. 49). From (47), lower

emissions and temperatures lead to a lower MAC, which contradicts our conjecture. As a result, the initial MAC needs to be lower. If

the MAC is lower and the MAC function is identical at time zero, initial abatement will be lower. Regarding the initial MAC growth

rate, (49) shows that since 𝑐𝑇 is identical from the initial condition on temperature and 𝑐𝑎 is lower, the change in the MAC will
initially be lower. ■

In later periods, the lower MAC is compensated by lower marginal damages and the effect of exogenous TC on the growth rate is

ambiguous.

Lemma 2 provides the basis for the rest of Result 1 in the main text, determining the qualitative effect of exogenous TC in abatement

technologies on MACs, emissions and temperatures in the short run. In a model of exogenous TC, the MAC and the carbon price are

equivalent.

Endogenous, learning-based TC

Corollary 1. In a cost-benefit setting, endogenous TC
(

𝜓𝑎 > 0
)

has ambiguous effects on the initial MAC, initial abatement and the initial

MAC growth rate compared to a model without TC.

In a model with endogenous TC, there is the additional social benefit of learning (Eq. 47), which increases the MAC, all else

being equal. Hence, the effect of endogenous TC on the initial MAC, initial abatement and the initial MAC growth rate is in general

ambiguous. This provides the remaining basis for Result 3 in the main text, determining the qualitative effect of endogenous, learning-

based TC on optimal MACs, emissions and temperatures in the short run.

A.2. Cost-effectiveness analysis

In the case of cost-effectiveness analysis, damages are replaced by a temperature ceiling 𝑇 ≤ 𝑇̄ , which corresponds to a constraint
on cumulative emissions 𝑇̄ = 𝜁𝑆̄. The Hamiltonian in Eq. (41) is replaced by the following Lagrangian,

 = 𝑢 (𝑐 (𝑎,𝐻, 𝐼, 𝑡)) − 𝜆𝑆
(

𝑃 − 𝑎
)

+ 𝜆𝐻𝜓 (𝑡,𝐻, 𝐼, 𝑎) − 𝜃
(

𝑃 − 𝑎
)

, (51)

where the Lagrange multiplier 𝜃 indicates that whenever 𝑆 = 𝑆̄, emissions cannot be positive. The FOCs are

𝑢𝑐𝑐𝑎 + 𝜆𝐻𝜓𝑎 = 𝜆𝑆 + 𝜃, (52)

̇𝜆𝑆 = (𝛿 − 𝑛) 𝜆𝑆 , (53)

If 𝑆 = 𝑆̄ ∶ 𝜃 > 0; 𝜃̇ ≤ 0; 𝑃 ≤ 0.

If 𝑆 < 𝑆̄ ∶ 𝜃 = 0. (54)



Journal of Environmental Economics and Management 133 (2025) 103216

23

L. Coppens, S. Dietz and F. Venmans

Eqs. (60) and (62) remain the same. Call 𝑡 the time when the constraint hits. Before 𝑡, the Lagrange multiplier is zero and the integral
expression for the MAC is

𝑐𝑎𝑡
⏟⏟⏟
MAC

= 𝜆𝑆0 𝑒
𝑟𝑡

⏟⏟⏟
Hotelling

+

knowledge increment
⏞⏞⏞
𝜓𝑎𝑡

…and its effect on abatement costs
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫

∞

𝑡
𝑒− ∫ 𝑢𝑡

(

𝑟+𝜓𝐻
)

𝑑𝑠𝑐𝐻𝑢
𝑑𝑢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Social benefit of learning

. (55)

At time 𝑡, the continuity of the costate variable implies continuous MACs and therefore continuous emissions at zero. Using boundary
conditions at time 𝑡, 𝑎𝑡 = 𝑃 , 𝑆𝑡 = 𝑆̄, ∫ 𝑡0 𝑃𝑑𝑡 = 𝑆̄ −𝑆0, and assuming that endogenous future learning gains are negligible after time 𝑡,
we establish that 𝜆𝑆0 is the present value of the MAC at zero emissions at time 𝑡, 𝜆

𝑆
0 = 𝑒−𝑟𝑡 𝑐𝑎𝑡 |𝑎=𝑃 (this requires the knowledge stock

at time 𝑡, so there will be no closed-form solution in the general case).
For green R&D or exogenous TC, we have 𝜓𝑎 = 0 and the Hotelling rule is preserved. For general cases of endogenous TC, the

Hotelling rule is no longer valid.

Exogenous TC

Lemma 3. In a cost-effectiveness setting, exogenous TC has no effect on the growth rate of the MAC (the Hotelling rule is unaffected), but

results in a lower MAC over the entire path, less initial abatement, higher abatement later, and peak warming being reached earlier.

Proof. From Eq. (49) and the assumptions of cost-effectiveness (𝑐𝑇 = 0) and no endogenous TC (𝜓𝑎 = 0), we see that the MAC
increases according to the Hotelling rule at rate 𝑟 in both models. Conjecture that the initial MAC would start at the same level. The
model with TC has lower abatement costs after time zero and would have weakly higher abatement over the whole path, reaching

zero emissions earlier. This would violate the condition that cumulative emissions before reaching zero emissions must be equal in

both models (𝜁 ∫ ∞
0 𝐸 = 𝑇̄ ). Hence, the MAC must start lower. Since the MAC function is identical at the start, this must result in lower

abatement at the start. Since cumulative emissions must be identical, the abatement path must cross the no-TC abatement path and

lead to zero emissions earlier. ■

Endogenous, learning-based TC

Lemma 4. In a cost-effectiveness setting, endogenous TC
(

𝜓𝑎 > 0
)

has ambiguous effects on the initial MAC, initial abatement and the

initial MAC growth rate compared to a model without TC.

Proof. In a model with endogenous TC, there is the additional endogenous future gains component (Eq. 47), which increases the

MAC, all else being equal. Hence the effect of endogenous TC on the initial MAC, and in turn initial abatement and the initial MAC

growth rate, is generally ambiguous. ■

A.3. Technological processes with different learning speeds

It is straightforward to extend the model to more technologies. We will show the derivation for two families of abatement tech-

nology, each with a different TC process. Assume the same conditions as above apply to each technology, 𝑐𝑎 < 0; 𝑐𝑎𝑎 < 0; 𝑐𝑎|𝑎<0 = 0,
meaning that within each abatement family there are diminishing returns to scale (see Bramoullé and Olson, 2005, for a model with

constant MACs and a technology accumulation function 𝐻̇ = 𝑎). The assumption of differentiability and zero MACs for negative emis-
sions implies zero MAC at zero abatement. This will ensure an interior solution for each technology family: at least some abatement

is optimal for each technological family.29

The planner’s objective is

max𝑎,𝐼 ∫

∞

0
𝑒−(𝛿−𝑛𝑡)𝑡𝑢

(

𝑐
(

𝑎1, 𝑎2,𝐻1,𝐻2, 𝐼1, 𝐼2, 𝑇 (𝑆), 𝑡
))

𝑑𝑡, (56)

subject to

𝑆̇ = 𝑃 − 𝑎1 − 𝑎2; 𝐻̇𝑖 = 𝜓
(

𝑡,𝐻𝑖, 𝐼𝑖, 𝑎𝑖
)

. (57)

The current value Hamiltonian of the problem is

 = 𝑢
(

𝑐
(

𝑎1, 𝑎2,𝐻1,𝐻2, 𝐼1, 𝐼2, 𝑇 (𝑆), 𝑡
))

− 𝜆𝑆
(

𝑃 − 𝑎𝑖
)

+
∑

𝑖=1,2
𝜆𝐻𝑖 𝜓

𝑖 (𝑡,𝐻𝑖, 𝐼𝑖, 𝑎𝑖
)

. (58)

The seven FOCs for 𝑖 = 1, 2 include

𝑢𝑐𝑐𝑎𝑖 + 𝜆
𝐻
𝑖 𝜓

𝑖
𝑎𝑖
= 𝜆𝑆 , (59)

29 In case abatement costs are non-continuous at zero, a non-negativity condition 𝑎𝑖 ≥ 0 should be added and will lead to the obvious conclusion that families of
technologies that are more expensive than alternative families of technologies, even at very low levels of deployment, and even when endogenous future gains are

taken into account, should not be deployed yet.
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𝑢𝑐 = 𝜆𝐻𝑖 𝜓
𝑖
𝐼𝑖
, (60)

̇𝜆𝑆 =
(

𝛿 − 𝑛𝑡
)

𝜆𝑆 − 𝑢𝑐𝜁𝑢𝑇 , (61)

̇𝜆𝐻𝑖 =
(

𝛿 − 𝑛𝑡
)

𝜆𝐻𝑖 − 𝑢𝑐𝑐𝐻𝑖
− 𝜆𝐻𝜓𝐻𝑖

. (62)

Integrating the costate Eq. (62) for each technology family and substituting into (59) allows us to write (12) for each technology

family separately.

Appendix B. Specialised model

To obtain further analytical results, we must specialise some functional relationships. The assumptions regarding welfare and

warming are the same as in the preceding section. We now assume emissions are produced according to Eq. (4) in the main text, and

we assume quadratic damages and total abatement costs, like Eqs. (3) and (5) in the main text, respectively. Exogenous TC that reduces

abatement costs over time is represented by the slope of the MAC curve 𝜑 decreasing as a function of time.30 Instead of a general
knowledge stock, we assume that endogenous, learning-based TC is specifically driven by cumulative abatement 𝐻̃𝑡 = ∫ 𝑡−∞ 𝑎𝑢𝑑𝑢.31

We can write cumulative emissions as a function of time and the state variable 𝑆:

𝐻̃(𝑡, 𝑆) = ∫

𝑡

0
𝑃 𝑢𝑑𝑢 − 𝑆 + 𝑆0. (63)

This model can be solved with only one state variable and its shadow price 𝜆𝑆 incorporates both damages and endogenous, learning-
based TC.

We obtain the following expression for consumption per capita:

𝑐 = 𝑐0 exp

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔𝑡 −
𝜑𝑡
2

𝑎2

𝜎2𝑡 𝑐2
⏟⏟⏟

𝜇2

(

𝐻̃∕𝐻̃0
)−𝜒 −

𝛾
2
𝜁2𝑆2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (64)

Note that we can choose the decision variable to be abatement 𝑎 or relative abatement 𝜇 = 𝑎
𝜎𝑡𝑐
. The solution will be the same. We

will choose 𝑎 as the decision variable, because it leads to easier expressions for the growth rate of the MAC and the marginal gain of
TC. The MAC is

𝑐𝑎 = −
𝜑𝑡
𝜎2𝑡 𝑐

𝑎
(

𝐻̃∕𝐻̃0
)−𝜒 = −𝑐

𝜑𝑡

𝑃
2
𝑡

𝑎
(

𝐻̃∕𝐻̃0
)−𝜒 . (65)

Utility 𝑢(𝑐) = 𝑐1−𝜂

1−𝜂 . We assume decreasing population growth 𝑛 = 𝑛0𝑒−𝑔𝑛𝑡 and standardise initial population to one. The welfare
functional is

max∫

∞

0
𝑒−(𝛿−𝑛𝑡)𝑡𝑢 𝑑𝑡. (66)

The present Value Hamiltonian is

𝐻𝑃𝑉 = 𝑒−(𝛿−𝑛𝑡)𝑡𝑢 (𝑐 (𝑡, 𝑆, 𝑎)) − 𝜆𝑆
(

𝑃 − 𝑎
)

. (67)

The FOCs are

𝜆𝑆 = −𝑒−(𝛿−𝑛𝑡)𝑡𝑢𝑐𝑐𝑎, (68)

̇𝜆𝑆 = 𝑒−(𝛿−𝑛𝑡)𝑡𝑢𝑐𝑐𝑆 , (69)

where 𝑐𝑆 = 𝑐
(

−𝛾𝜁2𝑆 − 𝜒𝜑𝑡
2𝐻̃0𝜎2𝑡 𝑐

2 𝑎
2(𝐻̃∕𝐻̃0

)−𝜒−1
)

includes both marginal damages and endogenous learning gains from TC.

30 The slope of the MAC curve is also affected by a separate R&D knowledge stock, which is accumulated by R&D investments (but not by abatement), ̇̃𝐻 = 𝜓̃
(

𝐼, 𝑡
)

.

This stock is optimised according to a third FOC, 𝑢𝑐 = ̃𝜆𝐻 𝜓̃𝐼 .
31 This is also compatible with a knowledge stock which builds up proportional to abatement, and a scaling factor which depends on both time and deployment-

dependent R&D investments 𝐻̇ = 𝜚 (𝐼, 𝑡) 𝑎. However, in this case we assume that optimal investments make the function 𝜚 (𝐼∗ , 𝑡) constant over time (the full model
would have a second optimality condition 𝑢𝑐 = 𝜇𝜌𝐼𝑎). We normalise the unit of 𝐻 such that 𝜚 = 1.
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Integrate (69) between time 𝑡 and infinity with terminal condition lim𝑡→∞𝜆𝑆 = 0:

𝜆𝑆𝑡 = ∫

∞

𝑡
𝑒−(𝛿−𝑛𝑢)𝑢𝑐1−𝜂𝑢

(

𝛾𝜁2𝑆 +
𝜒𝜑𝑡
2𝐻̃0

𝜇2
(

𝐻̃∕𝐻̃0
)−𝜒−1

)

𝑑𝑢. (70)

Combining this result with (68) and dividing by −𝑒−(𝛿−𝑛𝑡)𝑡𝑢𝑐𝑡 gives the expression MAC = SCC + Social benefit of learning in the text
(Eq. 12):

−𝑐𝑎 = ∫

∞

𝑡
𝑒−𝛿(𝑢−𝑡)+(𝑛𝑢𝑢−𝑛𝑡𝑡)

(

𝑐𝑢
𝑐𝑡

)−𝜂
𝑐𝑢

(

𝛾𝜁2𝑆 +
𝜒𝜑𝑢
2𝐻̃0

𝜇2
(

𝐻̃∕𝐻̃0
)−𝜒−1

)

𝑑𝑢. (71)

Acknowledging ln
𝑐𝑢
𝑐𝑡

= ∫ 𝑢𝑡 𝑑ln𝑐𝑠 ↔
𝑐𝑢
𝑐𝑡

= 𝑒∫
𝑢
𝑡

𝑐̇
𝑐 𝑑𝑠 ↔

(

𝑐𝑢
𝑐𝑡

)−𝜂
= 𝑒−𝜂 ∫

𝑢
𝑡

𝑐̇
𝑐 𝑑𝑠 shows that the first factor in the integral is the discount factor

with the Ramsey discount rate 𝛿 − 𝑛𝑡 + 𝜂
𝑐̇
𝑐 .

Note that when we write the MAC as a function of BAU emissions, both MACs and damages are proportional to consumption, so

we can write this equation relative to consumption while reducing the discount rate by the growth rate of consumption:

−𝑐𝑎∕𝑐 =
𝜑𝑡

𝑃
2
𝑡

𝑎
(

𝐻̃∕𝐻̃0
)−𝜒 = ∫

∞

𝑡
𝑒−𝛿(𝑢−𝑡)+(𝑛𝑢𝑢−𝑛𝑡𝑡)−(𝜂−1) ∫

𝑢
𝑡

𝑐̇
𝑐 𝑑𝑠

(

𝛾𝜁2𝑆𝑢 +
𝜒𝜑𝑢
2𝐻̃𝑢

𝜇2𝑢
(

𝐻̃𝑢∕𝐻̃0
)−𝜒

)

𝑑𝑢. (72)

To find a differential equation for the MAC, first take the time derivative of (68):

̇𝜆𝑆 = −𝑒−(𝛿−𝑛𝑡)𝑡(−𝛿 + 𝑛𝑡 + 𝑛̇𝑡𝑡)𝑢𝑐𝑐𝑎 − 𝑒−(𝛿−𝑛𝑡)𝑡𝑢𝑐𝑐𝑎 − 𝑒−(𝛿−𝑛𝑡)𝑡𝑢𝑐 ̇𝑐𝑎. (73)

Substitute out ̇𝜆𝑆 from (69) and (73), divide by 𝑒−(𝛿−𝑛𝑡)𝑡𝑢𝑐 , and use −
̇𝑢𝑐
𝑢𝑐

= 𝜂 𝑐̇𝑐 to give

− ̇𝑐𝑎 =
(

𝛿 − 𝑛𝑡 − 𝑛̇𝑡𝑡 + 𝜂
𝑐̇
𝑐

)

(−𝑐𝑎) + 𝑐𝑆 , (74)

which corresponds to

̇𝑐𝑎
𝑐𝑎

⏟⏟⏟
MAC growth

= 𝑟 −
𝜁𝑐𝑇
𝑐𝑎

⏟⏟⏟
Marginal damages

+
𝑐𝐻̃
𝑐𝑎

⏟⏟⏟

.

Social benefit of learning

(75)

To find a differential equation for abatement, we take the time derivative of (65) to calculate the growth rate of the MAC:

̇𝑐𝑎
𝑐𝑎

=
𝜑̇
𝜑

+ 𝑎̇
𝑎
− 2 𝜎̇

𝜎
− 𝑐̇
𝑐
− 𝜒 𝑎

𝐻̃
.

Plugging the growth rate of the MAC into (75) results in

𝑎̇
𝑎
= 𝛿 − 𝑛𝑡 − 𝑛̇𝑡𝑡 + (𝜂 + 1) 𝑐̇

𝑐
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑟+𝑔

−
𝜑̇
𝜑

+ 2 𝜎̇
𝜎
+
𝜒𝑎
𝐻̃

− 1
2
𝜒𝑎
𝐻̃

−
𝜎2 𝑐2𝛾𝜁2𝑆

𝜑𝑎
(

𝐻̃∕𝐻̃0
)−𝜒 . (76)

Note that if BAU emissions are constant, we have 𝜎̇
𝜎 = −𝑔, which boils down to using 𝑟 − 𝑔 instead of 𝑟 + 𝑔.

Eq. (76) shows that TC will increase initial abatement speed for real-world parameters. Let us first show this for exogenous TC.

Denote the (negative) growth rate of exogenous TC as 𝑔𝑇𝐶 = 𝜑̇∕𝜑 and define 𝜕𝑎
𝜕𝑔𝑇𝐶

as the difference in abatement between two

identical models with marginally different TC growth rates. Similarly, define 𝑔𝑎 = 𝑎̇∕𝑎 and denote 𝜕𝑎
𝜕𝑔𝑇𝐶

as the difference in abatement

between two models, where the TC growth rate has been marginally altered. A change in the exogenous TC rate will affect initial

abatement, but not 𝐻̃ , 𝑆 and 𝜑, because they are defined by their initial conditions. Taking the derivative of Eq. (76) with respect to
𝑔𝑇𝐶 at time zero gives

−
𝜕𝑔𝑎
𝜕𝑔𝑇𝐶

= 1 −
𝛾𝜁2𝑆

𝜑𝑎(𝐻̃∕𝐻̃0)
−𝜒

𝜕𝑎∕𝑎
𝜕𝑔𝑇𝐶

. (77)

The factor
𝛾𝜁2𝑆

𝜑𝑎(𝐻̃∕𝐻̃0)
−𝜒 is the marginal damage over the MAC, which is typically lower than 2 % (it is the adjusted discount rate

𝑟 + 𝑔 + 2 𝜎̇𝜎 at the steady state and considerably smaller at the start of the transition). So even if
𝜕𝑎∕𝑎
𝜕𝑔𝑇𝐶

is large, say initial abatement

increases by 5 % for a 1 % increase of TC, the RHS remains large and positive. Thus, exogenous TC increases the initial abatement

speed.
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For endogenous, learning-based TC, a very similar argument can be made. Denote the (negative) growth rate of endogenous,

learning-based TC as 𝑔𝑇𝐶 =
𝑑
𝑑𝑡
(

𝐻̃∕𝐻̃0
)−𝜒

(

𝐻̃∕𝐻̃0
)−𝜒 = − 𝜒𝑎

𝐻̃ . Taking the derivative of Eq. (76) with respect to 𝑔𝑇𝐶 at time zero gives

−
𝜕𝑔𝑎
𝜕𝑔𝑇𝐶

= 1∕2 −
𝛾𝜁2𝑆

(𝜑𝑎(𝐻̃∕𝐻̃0)
−𝜒

𝜕𝑎∕𝑎
𝜕𝑔𝑇𝐶

. (78)

The same term as for exogenous TC reappears and for the same reasons this will be small. Moreover,
𝜕𝑎∕𝑎
𝜕𝑔𝑇𝐶

is not only small, it is often

negative (initial abatement increases with endogenous, learning-based TC), as it is for our parameters. The term 1/2 comes from the

fact that the endogenous future gain incentive creates a flattening effect on the abatement path that is half the size of the opposite

cost-reduction effect. So again, endogenous, learning-based TC increases the initial abatement speed.

The extension to a market economy is a straightforward application of the first welfare theorem. The first order conditions will be

the same provided that 𝜆𝑆 equals the sum of the tax and the subsidy. Appendix D shows a comparison between the market equilibrium
and the social optimum in a more elaborate model.

Peak warming

We have already developed several results for the general model in Appendix A. These are of course also valid in this more

specialised model. However, by adding more structure, we can produce a few more results.

Lemma 5. TC decreases peak warming if at the time of peak warming optimal abatement satisfies

⎛

⎜

⎜

⎜

⎜

⎝

𝑟 + 𝑔 − 2 𝜎̇𝜎

𝑛𝑒𝑔
⏞⏞⏞

− 𝑎̇
𝑎

𝑝𝑜𝑠
⏞⏞⏞⏞⏞⏞⏞⏞⏞

−
𝜑̇
𝜑

+
𝜒𝑎
2𝐻̃

⎞

⎟

⎟

⎟

⎟

⎠

(

𝑟 + 𝑔 − 2 𝜎̇𝜎
)

𝜑𝑡∗
(

𝐻̃
𝐻̃0

)−𝜒

𝜑0
< 1. (79)

Proof. The claim follows from rewriting Eq. (76) at the time of peak warming as

𝛾𝜁𝑇 ∗ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑟 +

− 𝑑𝑀𝐴𝐶∕𝑑𝑡
𝑀𝐴𝐶 −

𝑐𝐻̃
𝑀𝐴𝐶

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑔 + 2 𝜎̇
𝜎
− 𝑎̇
𝑎
−
𝜑̇
𝜑

+
𝜒𝑎
2𝐻̃

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝜑𝑎
𝑃 2

(

𝐻̃
𝐻̃0

)−𝜒
. (80)

and dividing this by the equivalent expression for the model without TC. ■

This condition is satisfied unless peak warming is reached implausibly quickly. The first factor on the left-hand side of the inequality

converges to one in the long term and tends to be very close to one at peak warming. The numerator comprises the discount rate,

plus the degrowth rate of the MAC (the cost-reduction effect, −𝑑∕𝑑𝑡(𝑀𝐴𝐶∕𝑐)), minus the endogenous future gains of learning-based
TC. In the static model, this is just 𝑟+ 𝑔 + 2 𝜎̇𝜎 , but in the presence of TC we have additional terms. The second factor is much smaller
than one. It is the relative reduction of the slope of the MAC curve due to TC at the time of peak warming.

Lemma 5 extends Lemma 1 to the case where TC continues after peak warming is reached. Therefore, it provides a more general

set of circumstances underpinning Results 1–3 as they relate to optimal policy in the long run.

Endogenous, learning-based TC under cost-effectiveness analysis

Lemma 6. In a cost-effectiveness setting, compared to a model without TC, the model with endogenous TC will have lower MAC growth, a

lower MAC over the entire path, less initial abatement, higher later abatement, and reach peak warming earlier.

Proof. The emissions path will still be steeper, because the cost-reduction effect
𝜒𝑎
𝐻̃ dominates the endogenous future gain effect

1
2
𝜒𝑎
𝐻̃

in Eq. (76) (where 𝛾 = 0). Since cumulative emissions are identical with and without TC in the cost-effectiveness case, the emissions
paths must cross each other, with emissions higher at the start under endogenous TC, lower at the end, and zero emissions reached

earlier. Higher initial emissions imply a lower initial MAC. Eq. (75) shows that endogenous future gains will reduce the growth rate

of the optimal MAC (marginal damages are zero in the cost-effectiveness analysis). A lower initial MAC combined with lower growth

implies a lower MAC over the entire path. ■

Note that the shadow price of carbon, 𝜆𝑆 in Eq. (53), always follows a Hotelling path irrespective of TC. This result is also reported
in Goulder and Mathai (2000).

Decreasing carbon intensity (AEEI)

Lemma 7. In a cost-effectiveness setting, compared to a model with constant carbon intensity ( 𝜎̇𝜎 = 0), the model with decreasing carbon

intensity will have lower initial emissions and reach peak warming later, if optimal initial emissions are less than half of BAU emissions.
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Proof. To investigate the role of decreasing carbon intensity 𝜎̇ on the emission path, we need to find an expression for the change in
emissions, because abatement depends on 𝜎. Taking the time derivative of abatement 𝑎 = 𝜎𝑐 − 𝑃 yields

𝑎̇
𝑎
= −

1 − 𝜇
𝜇

𝑃̇
𝑃

+ 1
𝜇

( 𝜎̇
𝜎
+ 𝑐̇
𝑐

)

⏟⏞⏞⏟⏞⏞⏟
𝑃̇
𝑃

. (81)

Combining this result with (76) and acknowledging that the damage term is zero for cost-effectiveness analysis (replaced by a

constraint on temperature), gives

𝑃̇
𝑃

= 𝑔 +
(

2 − 𝑃
𝑃

)

𝜎̇
𝜎
+
(

𝑃
𝑃

− 1
)(

𝜑̇
𝜑

−
𝜒𝑎
2𝐻̃

− 𝑟
)

, (82)

where 𝑃 = 𝜎𝑐.32

The factor 2 − 𝑃
𝑃 is positive whenever emissions are less than half of BAU emissions (𝑃 < 1

2𝑃 ). So if initial emissions are less
than half of BAU emissions, the entire emissions path will be flatter. Since the exogenous temperature constraint sets cumulative

emissions, the flatter emissions path will lead to lower initial emissions and later peak warming. ■

By contrast, for lenient, unambitious climate scenarios, AEEI will initially steepen the emissions path (when 𝑃𝑡 >
1
2𝑃 𝑡 ) and later

on flatten the emissions path (when 𝑃𝑡 <
1
2𝑃 𝑡). The effect of AEEI on initial emissions and the time of peak warming is therefore

ambiguous.

The case of cost-benefit analysis is more complicated because AEEI increases peak warming. Consider again the case where

𝑃0 =
1
2𝑃 0. The growth rate of emissions at time zero is

𝑃̇
𝑃

= 𝑔 +
𝜑̇
𝜑

− 𝑟 +

𝑐𝑆∕𝑐𝐸
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑐𝛾𝜁2𝑆0

𝜎
𝜑𝜇

.

This is unaffected by AEEI because marginal damages are set by initial cumulative emissions and the MAC is set by our hypothesis that

𝜇 = 1∕2. In subsequent periods, AEEI will again flatten the emissions path. This flattening will be reinforced by an increasing MAC
in later periods (effect of 𝜎 in the last term). However, combined with larger cumulative emissions, initial emissions are ambiguous.
Nevertheless, in the limit case where initial emissions are extremely low (approaching zero), AEEI will flatten the emissions path and

therefore (slightly) decrease initial emissions.33 By contrast, in the limit case where initial emissions approach BAU emissions, AEEI

reduces the emission speed lim𝑃−>𝑃 𝑃̇ = 𝑔 + 𝜎̇
𝜎 .

These results are summarised in Result 2 in the main text.

Heterogeneous learning rates

Amore detailed model may have several groups of abatement technologies, each with a MAC function 𝑐𝑖,𝑡
𝜑𝑖,𝑡

𝑃
2
𝑡

𝑎𝑖
(

𝐻̃𝑖
𝐻̃0𝑖

)𝜒𝑖
. Cumulative

emissions are now 𝑆𝑡 = 𝑆0 +𝑃 𝑡−
∑

𝐻̃𝑖. For 𝑁 groups of technologies, the model now has 𝑁 decision variables and 𝑁 stock variables
(cumulative abatement for each group of technologies). Assuming a constant discount rate, the integral form of the Euler equations

for each technology is

𝜑𝑖,𝑡
𝑃 2
𝐵𝐴𝑈𝑖,𝑡

𝑎𝑖,𝑡
(

𝐻̃𝑖,𝑡∕𝐻̃0,𝑖
)−𝜒𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
MAC%𝑖

= ∫

∞

𝑡
𝑒−(𝑟−𝑔)(𝑢−𝑡)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Discount factor

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛾𝜁2𝑆𝑢
⏟⏟⏟

Marg. damages%

+
𝜒𝑖𝜑𝑖,𝑢
2𝐻̃𝑖,0

𝜇2𝑖,𝑢
(

𝐻̃𝑖,𝑢∕𝐻̃𝑖,0
)−𝜒𝑖−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Endogenous future gains%𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑑𝑢. (84)

Appendix C. The specialised model with inertia

This model builds on the specialised model described in Appendix B. It is the model that we will use for quantitative analysis. To

fit the model to the observation that BAU emissions 𝑃 in the IPCC-NGFS database are constant (or at least not increasing), we set
AEEI equal to GDP growth. This also simplifies notation as the change of abatement and relative abatement are proportional 𝑎̇ = 𝜇̇𝑃 .

32 When we assume constant exogenous TC ( 𝜑̇
𝜑

= 𝑔𝜑 .) and decreasing carbon intensity at a constant rate (
𝜎̇
𝜎
= 𝑔𝜎 ), we can integrate 𝑃̇ using boundary conditions

∫ 𝑇
0 𝑃𝑡𝑑𝑡 = 𝑆̄ and 𝑃𝑇 = 0. This gives

𝑃𝑡 = 𝑃 0𝑒
(𝑔+𝑔𝜎 )𝑡 − 𝑎0𝑒(𝑔+2𝑔𝜎−𝑔𝜑+𝑟)𝑡 . (83)

The first term describes BAU emissions over time and the second term describes abatement over time. AEEI has a double effect: it reduces BAU emissions (steepening

the emissions path) and it slows down abatement (flattening the emissions path).

33 At low emissions, the equation of motion for emissions converges to lim𝐸−>0 𝐸̇ = 𝑐0𝜎0
(

𝜑̇
𝜑
− 𝜎̇

𝜎
− 𝑟 + 𝜎0

𝜑0
𝛾𝜁2𝑆0

)

showing that fast AEEI leads to a flatter emissions

path.
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Call 𝑣 = 𝑎̇ the abatement speed. Assume a quadratic penalty on abatement speed (as a proportion of GDP) of 𝜃2 𝑣
2. Consumption

per capita now becomes

𝑐 = 𝑐0𝑒
(

𝑔𝑡− 𝜑𝑡
2 𝑎

2(𝐻̃∕𝐻̃0
)−𝜒− 𝜃

2 𝑣
2− 𝛾

2 𝜁
2𝑆2

)

. (85)

The present value Hamiltonian is

𝐻𝑃𝑉 = 𝑒(−𝛿+𝑛𝑡)𝑡𝑢(𝑐) − 𝜆𝑆 (𝐸𝐵𝐴𝑈 − 𝑎) + 𝜆𝑎𝑣, (86)

with FOCs

𝜆𝑎 = 𝑒(−𝛿+𝑛𝑡)𝑡𝑢𝑐𝑐𝜃𝑣, (87)

𝜆̇𝑎 = 𝑒(−𝛿+𝑛𝑡)𝑡𝑢𝑐𝑐𝜑𝑡𝑎
(

𝐻̃∕𝐻̃0
)−𝜒 − 𝜆𝑆 , (88)

̇𝜆𝑆 = 𝑒(−𝛿+𝑛𝑡)𝑡𝑢𝑐𝑐𝑆 . (89)

Differentiate the FOC of the maximisation:

𝜆̇𝑎 = 𝑒(−𝛿+𝑛𝑡)𝑡𝑢𝑐𝑐𝜃𝑣
[

−𝛿 + 𝑛𝑡 + 𝑛̇𝑡 − 𝜂
𝑐̇
𝑐
+ 𝑐̇
𝑐
+ 𝑣̇
𝑣

]

, (90)

substitute this result in Eq. (88) and divide by 𝑒(−𝛿+𝑛𝑡)𝑡𝑢𝑐𝑐𝜃:

𝑣
[

−𝛿 + 𝑛𝑡 + 𝑛̇𝑡𝑡 − (𝜂 − 1) 𝑐̇
𝑐

]

+ 𝑣̇ =
𝜑𝑡𝑎

(

𝐻̃∕𝐻̃0
)−𝜒

𝜃
− 𝜆𝑆

𝑒(−𝛿+𝑛𝑡)𝑡𝑢𝑐𝑐𝜃
, (91)

with

𝑛𝑡 + 𝑛̇𝑡 = 𝑛0𝑒
−𝑔𝑛𝑡

(

1 − 𝑔𝑛𝑡
)

, (92)

and

𝑐̇
𝑐
= 𝑔 +

(

𝜑0 − 𝜑∞
)

𝑔𝜑
2

𝑎2
(

𝐻̃∕𝐻̃0
)−𝜒 − 𝜑𝑡𝑎𝑣

(

𝐻̃∕𝐻̃0
)−𝜒 +

𝜑𝑡
2
𝑎2𝜒

(

𝐻̃∕𝐻̃0
)−𝜒 𝑎

𝐻̃
− 𝜃𝑣𝑣̇ − 𝛾𝜁2𝑆

(

𝐸𝐵𝐴𝑈 − 𝑎
)

. (93)

The growth rate of consumption is very close to 𝑔, but the component −𝜃𝑣𝑣̇ cannot be neglected. Reorganise to obtain a differential
equation in 𝑣̇,

𝑣̇ = 1
1 + (𝜂 − 1)𝜃𝑣2

⎡

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎝

𝛿 − 𝑛0𝑒−𝑔𝑛𝑡
(

1 − 𝑔𝑛𝑡
)

+ (𝜂 − 1)

Net of 𝜃𝑣𝑣̇
⏞⏞⏞
( 𝑐̇
𝑐

)

⎞

⎟

⎟

⎟

⎟

⎠

𝑣 +
𝜑𝑡𝑎

(

𝐻̃∕𝐻̃0
)−𝜒

𝜃
− 𝜆𝑆

𝑒(−𝛿+𝑛𝑡)𝑡𝑢𝑐𝑐𝜃

⎤

⎥

⎥

⎥

⎥

⎦

. (94)

We now have a system of four differential equations in four variables 𝑆, 𝑎, 𝑣, 𝜆𝑆 (Eqs. 38, 76, 94 and 89). The boundary conditions
are

𝑆(0) = 𝑆0,

𝑎(0) = 𝑎0 = 𝐸𝐵𝐴𝑈 − 𝐸0, (95)

𝑎(∞) = 𝐸𝐵𝐴𝑈 ,

𝑣(∞) = 0.

The MAC is the current value shadow price of carbon, expressed in consumption units, i.e.,

MAC = 𝜆𝑆𝑒𝛿𝑡

𝑢𝑐
. (96)

From Eq. (91) we can rewrite this as 34

MAC = 𝑒𝑛𝑡𝑡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐𝜑𝑡𝑎
(

𝐻̃∕𝐻̃0
)−𝜒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜕𝑐∕𝜕𝑎 standard MAC

+ 𝑐𝜃𝑣
[

𝛿 − 𝑛𝑡 − 𝑛̇𝑡𝑡 + (𝜂 − 1) 𝑐̇
𝑐

]

− 𝑐𝜃𝑣̇
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Abatement speed costs (pos.)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (97)

Alternatively, the integration of Eq. (89) gives the MAC as the sum of both the SCC and the endogenous future gains:

MAC = 𝜆𝑆𝑒𝛿𝑡

𝑢𝑐
= ∫

∞

𝑡
𝑒𝑛𝑢𝑢𝑒−𝛿(𝑢−𝑡)−𝜂 ∫

𝑢
𝑡

𝑐̇
𝑐 𝑑𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Discount factor

𝑐𝑢

(

𝛾𝜁2𝑆 +
𝜒𝜑𝑢
2𝐻̃

𝑎2
(

𝐻̃∕𝐻̃0
)−𝜒

)

𝑑𝑢. (98)

34 For analytical simplicity, we usually focus on the marginal effect of abatement on consumption per capita, i.e. 𝑐𝑎. However, since 𝑎 is expressed as worldwide
abatement, the marginal effect of abatement on total consumption is more relevant, because it responds to costs in production. So we report the latter and we multiply

costs by population size 𝑒𝑛𝑡 𝑡.
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The discount factor is the standard Ramsey discount factor as can be seen from
(

𝑐𝑢
𝑐𝑡

)−𝜂
= 𝑒−𝜂 ∫

𝑢
𝑡

𝑐̇
𝑐 𝑑𝑠.

Appendix D. Model with energy inputs and knowledge spillovers from private to aggregate

In this Appendix, we extend the simple model of Section 2 in two directions. First, we explicitly model energy inputs, giving the

model two mechanisms for abatement: energy efficiency and carbon intensity of energy, which is modelled with a simple abatement

variable rather than explicit clean and dirty energy. We assume that innovation affects the carbon intensity of energy and not energy

efficiency. This feature creates a different role for the carbon price and the innovation subsidy: the optimal tax applies to all abatement

technologies and equalises the MAC between sectors, whereas subsidies target the sectors with the largest innovation potential.

Second, we assume that when firms innovate, they obtain an individual advantage before their knowledge diffuses in the wider

economy. That is, not all knowledge is shared with other producers, some knowledge is private as in Gerlagh et al. (2009); Greaker

and Pade (2009). We show that the optimal R&D subsidy does not compensate for private knowledge, only for the gradual leakage

from private firms to public firms.

Firm 𝑖 produces with the following Cobb-Douglas production function, combining labour 𝐿, capital 𝐾 and energy 𝐸 (we leave out
index 𝑖 for now),

𝑌 = (𝐴𝐿𝐿)
1−𝜈−𝛼𝐾𝛼𝐸𝜈ΓΛ, (99)

where Γ and Λ represent abatement costs and damages from climate change, respectively. Emissions are defined as 𝑃 = 𝜓(1 − 𝜇)𝐸,
where 𝜇 ∈ [0, 1] is abatement effort and 𝜎 is the carbon intensity of energy inputs. Dirty inputs are expressed in tonnes of CO2.
Companies can abate 𝑎 = 𝜇𝜎𝐸, which is costly. Abatement costs are proportional to production and quadratic in abatement,

Γ = 𝑒
− 𝜑

2 𝑎
2
( 𝐻+𝜔ℎ𝑖
𝐻0+𝜔ℎ0

)−𝜒

, (100)

where 𝐻 is the public knowledge stock and ℎ is the private knowledge stock. Companies make an effort 𝑧 to reduce their abatement
costs, building up their private knowledge stock. However, the private knowledge stock becomes public after some time. This leads

to the following dynamics: ℎ̇𝑖 = 𝑧𝑖 − 𝛿ℎ𝑖 and 𝐻̇ =
∑𝑁
𝑖 𝛿ℎ𝑖. The knowledge stock reduces abatement costs with a constant elasticity 𝜒 .

Effort 𝑧 costs 𝐶(𝑧).
As TC is the result of R&D which is different from abatement, the optimal policy requires two instruments, a Pigouvian carbon tax

𝜏 and a knowledge subsidy 𝑠 which is proportional to 𝑧. Also, the model has two different abatement mechanisms: energy efficiency
and carbon intensity of energy. TC only applies to the latter. As a result, using only a carbon tax leads to excessive energy efficiency

effort and insufficient TC, whereas using only a subsidy leads to insufficient energy efficiency.

Market equilibrium

We assume the total number of companies 𝑁 is large enough that companies are price takers and the market is competitive.
Normalising the price of the final good to one, the profit function of the company is

𝜋 = 𝐴𝐿𝐿
1−𝜈−𝛼𝐾𝛼𝐸𝜈ΓΛ −𝑤𝐿 − 𝑟𝐾 − 𝑝𝐸𝐸 − 𝐶(𝑧) − 𝜏𝜎 (1 − 𝜇)𝐸 + 𝑠𝑧. (101)

s.t. 𝐻̇ =
∑𝑁
𝑖 𝛿ℎ𝑖; ℎ̇𝑖 = 𝑧𝑖 − 𝛿ℎ𝑖. To maximise profits intertemporally, the company solves the following current value Hamiltonian

ℋ𝐶𝑉 = 𝜋 + 𝜆𝐻
( 𝑁
∑

𝑖
𝛿ℎ𝑖

)

+ 𝜆ℎ𝑖
(

𝑧𝑖 − 𝛿ℎ𝑖
)

. (102)

The FOCs include

𝜕ℋ
𝜕𝜇

= 0 ↔ 𝑌 𝜑𝑎
(

𝐻 + 𝜔ℎ𝑖
𝐻0 + 𝜔ℎ0

)−𝜒
= 𝜏, (103)

𝜕ℋ
𝜕𝐸

= 0 ↔ 𝜈𝑌 ∕𝐸 = 𝜎 (1 − 𝜇) 𝜏, (104)

𝜕ℋ
𝜕𝑧

= 0 ↔
𝑑𝐶
𝑑𝑧

− 𝑠 = 𝜆ℎ, (105)

̇𝜆𝐻 = 𝑟𝜆𝐻 − 𝑌
𝜑
2
𝑎2𝜒

(

𝐻 + 𝜔ℎ𝑖
𝐻0 + 𝜔ℎ0

)−𝜒−1 1
𝐻0 + 𝜔ℎ0

, (106)

̇𝜆ℎ = (𝑟 + 𝛿) 𝜆ℎ − 𝑌
𝜑
2
𝑎2𝜒

(

𝐻 + 𝜔ℎ𝑖
𝐻0 + 𝜔ℎ0

)−𝜒−1 𝜔
𝐻0 + 𝜔ℎ0

− 𝛿𝜆𝐻 . (107)

The integral form of (106) and (107) gives

𝜆𝐻𝑡 = ∫

∞

𝑡
𝑒−𝑟(𝑢−𝑡)

[

𝑌𝑖
𝜑
2
𝑎2𝜒

(

𝐻 + 𝜔ℎ𝑖
𝐻0 + 𝜔ℎ0

)−𝜒−1 𝜔
𝐻0 + 𝜔ℎ0

]

𝑑𝑢, (108)
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𝜆ℎ𝑡 = ∫

∞

𝑡
𝑒−(𝑟+𝛿)(𝑢−𝑡)

[

𝑌𝑖
𝜑
2
𝑎2𝜒

(

𝐻 + 𝜔ℎ𝑖
𝐻0 + 𝜔ℎ0

)−𝜒−1 𝜔
𝐻0 + 𝜔ℎ0

+ 𝛿𝜆𝐻
]

𝑑𝑢. (109)

The company sets the subsidy net of R&D costs equal to 𝜆ℎ, which is the value of knowledge. This value of knowledge is composed
of all future direct effects on its abatement efforts (the first term in the integral) plus the fact that the firm contributes to aggregate

knowledge, which will also make abatement cheaper for the individual firm. Yet, the shadow price of this aggregate knowledge 𝜆𝐻𝑡
corresponds to the aggregate productivity gains for firm 𝑖 only, which is 𝑁 times lower than the gain from a social point of view. To
make that point more formally, we now derive the social optimum.

Social optimum

We assume taxes and subsidies are collected lump sum, without a cost of public funds. All variables are now aggregate quantities,

unless indexed by 𝑖. The social planner maximises the present value of production

𝑌 =
𝑁
∑

𝑖
𝑌𝑖 =

𝑁
∑

𝑖
𝐴𝐿𝐿

1−𝜈−𝛼
𝑖 𝐾𝛼

𝑖 𝐸
𝜈
𝑖 𝑒

− 𝜑
2 𝑎

2
𝑖

( 𝐻+𝜔ℎ𝑖
𝐻0+𝜔ℎ0

)−𝜒
− 𝛾

2 𝜁
2𝑆2

−
𝑁
∑

𝑖
𝐶(𝑧𝑖), (110)

s.t. 𝐻̇ =
∑𝑁
𝑖 𝛿ℎ𝑖; ℎ̇𝑖 = 𝑧𝑖 − 𝛿ℎ𝑖; 𝑆̇ = 𝜎 (1 − 𝜇)𝐸. The current value Hamiltonian is

ℋ𝐶𝑉 = 𝑌 + 𝜆𝐻
( 𝑁
∑

𝑖
𝛿ℎ𝑖

)

+
𝑁
∑

𝑖
𝜆ℎ𝑖

(

𝑧𝑖 − 𝛿ℎ𝑖
)

− 𝜆𝑆𝜎 (1 − 𝜇)𝐸. (111)

The FOCs include

𝑌 𝜑𝑎

(

𝐻 + 𝜔ℎ𝑖
𝐻0 + 𝜔ℎ𝑖0

)−𝜒

= 𝜆𝑆 , (112)

𝜈𝑌 ∕𝐸 = 𝜎 (1 − 𝜇) 𝜆𝑆 (113)

𝑑𝐶
𝑑𝑧𝑖

= 𝜆ℎ𝑖 , (114)

̇𝜆𝐻 = 𝑟𝜆𝐻 −
𝑁
∑

𝑖
𝑌𝑖
𝜑
2
𝑎2𝜒

(

𝐻 + 𝜔ℎ𝑖
𝐻0 + 𝜔ℎ𝑖0

)−𝜒−1
1

𝐻0 + 𝜔ℎ𝑖0
, (115)

̇𝜆ℎ𝑖 = (𝑟 + 𝛿)𝜆ℎ𝑖 − 𝑌𝑖
𝜑
2
𝑎2𝜒

(

𝐻 + 𝜔ℎ𝑖
𝐻0 + ℎ𝑖0

)−𝜒−1
𝜔

𝐻0 + 𝜔ℎ𝑖0
− 𝛿𝜆𝐻 . (116)

The integral form of (115) and (116) gives

𝜆𝐻𝑡 = ∫

∞

𝑡
𝑒−𝑟(𝑢−𝑡)

⎡

⎢

⎢

⎣

𝑁
∑

𝑖
𝑌𝑖
𝜑
2
𝑎2𝜒

(

𝐻 + 𝜔ℎ𝑖
𝐻0 + 𝜔ℎ𝑖0

)−𝜒−1
𝜔

𝐻0 + ℎ𝑖0

⎤

⎥

⎥

⎦

𝑑𝑢, (117)

𝜆ℎ𝑡 = ∫

∞

𝑡
𝑒−(𝑟+𝛿)(𝑢−𝑡)

⎡

⎢

⎢

⎣

𝑌𝑖
𝜑
2
𝑎2𝜒

(

𝐻 + 𝜔ℎ𝑖
𝐻0 + 𝜔ℎ𝑖0

)−𝜒−1
𝜔

𝐻0 + ℎ𝑖0
+ 𝛿𝜆𝐻

⎤

⎥

⎥

⎦

𝑑𝑢. (118)

Eq. (115) shows that the shadow price of aggregate knowledge is now 𝑁 times larger. Therefore, the term 𝛿𝜆𝐻 inside the integral of
(118) of the company specific shadow price is 𝑁 times larger. Indeed, the individual company may take into account that spillovers
to the aggregate knowledge stock will be beneficial for itself too, but this advantage is 𝑁 times larger from a social perspective.
Comparing both solutions indicates that the subsidy should be

𝑠 = (1 − 1∕𝑁)∫

∞

𝑡
𝑒−(𝑟+𝛿)(𝑢−𝑡)

[

𝛿𝜆𝐻
]

𝑑𝜏. (119)

Note that when spillovers are negligible the subsidy converges to zero, lim𝛿−>0 𝑠 = 0, whereas when spillovers are extremely large,
the subsidy converges to the shadow price of the aggregate knowledge stock lim𝛿−>∞ 𝑠 = (1 − 1∕𝑁)𝜆𝐻 .
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The first FOCs (112) and (113) indicate that both the MAC via decarbonisation of energy and the MAC via energy efficiency gains

equal the SCC. Comparing this with the FOCs of the market equilibrium indicates that the optimal tax should be set at the SCC, 𝜏 = 𝜆𝑆 .

Appendix E. Correspondence between exogenous and endogenous TC

E.1. Method of isolating endogenous future gain effect

Our method of isolating the endogenous future gain effect proceeds in two steps. The first step is to estimate a time-dependent

MAC function (i.e., exogenous TC), with a MAC that is identical to the endogenous TC model at each point in time. This can be

achieved using a sufficiently high-order polynomial. The second step is to take the exogenous TC MAC curve and use it to recalculate

optimal model trajectories. Any difference between the optimal paths of the endogenous TC model and its exogenous replica must

then be due to the endogenous future gain effect.

We can show this in theory. Call 𝑎∗ the optimal abatement path of the model with endogenous TC. Conjecture that this is also the
optimal path of the model with exogenous TC. By the assumption of identical MACs, the abatement path 𝑎∗ will result in the same
SCC in Eq. (12) at each point in time. Given that we use the same climate model (Eq. 38), both models result in the same temperature

path. Fig. A1 shows that since MACs are identical, total abatement costs are also identical. Hence, consumption and the discount

rate are the same. However, in the exogenous TC model, the absence of the endogenous future gain effect increases the left-hand

side of Eq. (12). Hence, our conjectured abatement path 𝑎∗ does not solve Eq. (12), and the initial MAC and abatement are lower
in the model with exogenous TC. Lower abatement results in higher temperatures, higher marginal damages, and a higher SCC in

Eq. (12). Therefore, both models converge in the long run. If TC is zero after peak warming (∀𝑡 > 𝑡𝑝𝑒𝑎𝑘 ∶ 𝐻̇ = 0), Eq. (12) shows
that the optimal abatement path of the endogenous TC model also solves the exogenous TC model, i.e., peak warming and long-run

temperatures are identical (although peak warming occurs earlier in the endogenous TC model).

E.2. Static approximation of MAC function under exogenous TC

We can also test the ability of a suitably calibrated static model to approximate the optimal solution of a model of exogenous TC.

Fig. A2 shows our approach visually. Exogenous TC results in an optimal pair {𝑀𝐴𝐶%∗, 𝑎∗} at each moment in time, where again
𝑀𝐴𝐶% = 𝜑𝑡𝑎, i.e., the MAC as a proportion of consumption. Next, we construct a static MAC function that is fitted to be identical at
each point in time (i.e., at each level of abatement on the optimal path of the exogenous TC model). This static MAC function will

be concave, since TC makes the MAC function, which is assumed to be linear, decrease over time. We fit based on a polynomial such

that

𝑀𝐴𝐶%∗ =

( 𝑁
∑

𝑛=0
𝜑𝑛𝑜𝑙𝑒𝑎𝑟𝑛𝑛 𝑎∗𝑛

)

, (120)

where the coefficients 𝜑𝑛𝑜𝑙𝑒𝑎𝑟𝑛𝑛 are independent of time, unlike in the model with exogenous TC.

We optimise the model with the static MAC function and check that the solution is close to the optimum of the model with

exogenous TC. Fig. A3 shows that the correspondence is almost exact (less than 0.1 % difference in emissions or MACs).

In fact, under certain specific functional forms the correspondence is exact in theory. In particular, if marginal abatement costs

and marginal damages are proportional to consumption to the power 𝜈 and marginal utility is CES, the static MAC function is a
perfect substitute for exogenous TC. The assumption of constant elasticities implies that we can factorise the marginal cost func-

tions into a factor that does not depend on consumption and a power function of consumption, respectively: 𝑐𝑎 = −𝑀𝐴𝐶%(𝑎, 𝑡)𝑐𝜈 ;

Fig. A1. Graphical representation of the comparison between endogenous TC and exogenous TC with identical MAC function. The endogenous TC model has a linear

marginal abatement cost function𝑀𝐴𝐶% = 𝜑𝐴−𝜒𝑎. The optimal path (which depends on cumulative abatement) results in optimal slopes at each point in time. Next,
a 25th-degree polynomial in time is fitted to obtain the same MAC but without the dependence on cumulative abatement.𝑀𝐴𝐶 =

(

𝜑1 + 𝜑2𝑡 + 𝜑3𝑡2 + 𝜑4𝑡3 …
)

𝑎.
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Fig. A2. Graphical representation of the comparison between TC and no TC with identical but static MAC. The model with TC has a linear abatement cost function

but with a time-dependent slope 𝜑𝑡𝑎 =
(

𝜑∞ + (𝜑0 − 𝜑∞)𝑒−𝑔𝜑𝑡
)

𝑎 in the case of exogenous TC. This model results in an optimal set of {𝑀𝐴𝐶%∗ , 𝑎∗} depicted by the blue
squares. Next, a polynomial in 𝑎 (of order 15) is fitted to obtain a time-independent MAC that is identical on the optimal path. The polynomial also goes through the
origin, in order to ensure similar total abatement costs, represented by the area under the curve. The dotted area is the difference between the total abatement costs

of both models in 2100. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

𝑐𝑇 = −𝑀𝐷%(𝑇 )𝑐𝜈 . Integrating Eq. (43) yields

𝜆𝑆𝑡 = ∫

∞

𝑡
𝑒−(𝛿−𝑛)(𝑢−𝑡)𝑢𝑐𝑢𝜁𝑐

𝜈
𝑢𝑀𝐷%(𝑇 )𝑑𝑢. (121)

Substituting Eq. (42) gives

𝑢𝑐𝑡 𝑐
𝜈
𝑡𝑀𝐴𝐶%(𝑎, 𝑡) = ∫

∞

𝑡
𝑒−(𝛿−𝑛)(𝑢−𝑡)𝑢𝑐𝑢𝜁𝑐

𝜈
𝑢𝑀𝐷%(𝑇 )𝑑𝑢. (122)

𝑢𝑐𝑡 𝑐
𝜈
𝑡 is a constant (independent of time 𝑢) and can therefore be included in the integral,

𝑀𝐴𝐶%(𝑎, 𝑡) = ∫

∞

𝑡
𝑒−(𝛿−𝑛)(𝑢−𝑡)

(

𝑐𝑢
𝑐𝑡

)𝜈−𝜂
𝜁𝑀𝐷%(𝑇 )𝑑𝑢. (123)

Call 𝑎∗ the optimal abatement path of the model with exogenous TC. We try this path as a candidate solution to the model without
TC. By assumption of identical MACs, the abatement path 𝑎∗ will result in the same left-hand side of Eq. (123) at each point in time.
Given that we use the same climate model (Eq. 38), the model without TC will result in the same temperature path. Fig. A2 shows

that although MACs are identical, total abatement costs will be higher in the model without TC (dotted area). Hence, consumption

will be slightly lower in the model without TC. But since we assume 𝜈 = 𝜂, the right-hand side of Eq. (123) will also be identical at
each point in time. Hence our candidate solution solves the Euler equation and is the optimal solution of the model without TC.

What if 𝜂 > 𝜈? Fig. A2 shows that although MACs are identical, total abatement costs will be lower in the model with TC (dotted
area). Hence, consumption will be slightly higher in the model with TC. As a result, the discount factor

(

𝑐𝑢
𝑐𝑡

)𝜍−𝜂
will be slightly lower,

and MACs and abatement will be lower too. The effect is too small to be visible on a graph though.

E.3. Approximation of R&D-based TC by exogenous TC

In this subsection we compare a model with exogenous TC to a model with endogenous R&D which is unaffected by deployment.

Consider the general model of Appendix A, where the knowledge stock is independent of abatement, but responds to investment 𝐼
in early-stage R&D, that is, 𝐻̇ = 𝜓(𝑡,𝐻, 𝐼). Assume that this endogenous R&D is replaced by an exogenously decreasing MAC function,
such that on the optimised path, the MAC function is identical at each point in time. Then, the optimal emission and MAC paths are

quasi-identical, they differ only to the extent that R&D investment costs reduce consumption.

To show this, ignore investment costs 𝑐𝐼 for a moment. Call 𝐻∗(𝑡) and 𝐼∗(𝑡) the optimal knowledge stock and investment
respectively of the model with early-stage R&D. Compare this to a model with exogenous TC, where the paths of the knowledge stock

and investment respectively are replaced by an exogenous function of time 𝑓 (𝑡), such that ∀𝑡 ∶ 𝑐 (𝑎,𝐻∗(𝑡), 𝐼∗(𝑡), 𝑇 , 𝑡) = 𝑐 (𝑎, 𝑓 (𝑡), 𝑇 , 𝑡).
The production function (which equals consumption in this setup) will be identical over the path, resulting in the same MAC and

marginal damage functions. Since 𝜓𝑎 = 0 in both cases, the optimal abatement path 𝑎∗ of both models satisfies Eq. (47) for cost-benefit
analysis and Eq. (55) for cost-effectiveness analysis. Hence the exogenous TC model and the early-stage R&D model have the same

optimal abatement path.

Now bring back the R&D investment costs – these reduce consumption and therefore alter marginal damages and the discount rate.

The critical observation is that this effect on consumption growth will generally be negligible, given the small size of the investment

costs when converted into a growth impact (IPCC, 2022). This is basis of Result 4 in the main text.
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Fig. A3. Exogenous TC versus no TC: fitting a polynomial in abatement to the MAC of the exogenous TC curve. Emissions in the top-left panel, temperature above

pre-industrial in the top right, and the MAC on the bottom.

Two caveats are in place though. First, note that although the technology function 𝜓 is independent of abatement, the dependence
on investment makes TC endogenous, that is, investment in green technology becomes more attractive in a lower emissions scenario.

This is also why solving the model for the optimal R&D investment rule is not straightforward, as investment depends on the abatement

and vice versa.

Second, whenever policy is not optimal, or whenever beliefs about future costs and damages are updated, the two models will

no longer behave in the same way, because exogenous TC is independent of policy whereas investment in R&D depends on forward-

looking policy.

Appendix F. GMM results by model

Table A1

Parameter estimates for fitting both total and marginal abatement costs to the IPCC and NGFS databases of IAM results, including model-specific estimates. Models

are grouped as follows: (1) AIM, (2) C3AIM, MERGE or C_ROADS, (3) GCAM, (4) GEM, (5) MESSAGE, (6) REMIND, (7) WITCH, (8) POLES, (9) IMAGE, (10) COFFEE,

(11) DNE. Idem indicates that the value of the preceding (left) model is imposed. *** indicates significance at the 1 % level.

No TC Exogenous TC Endogenous TC

All models All models Exog models FE: initial FE: initial FE: initial All models Endog models FE: initial FE: initial FE: initial

MAC MAC & quadr MAC & TC MAC MAC & quadr MAC & TC

𝜃 1.5e-03*** −1.7e-05 −2.9e-05 7.7e-04*** idem 4.7e-04*** 5.1e-05 9.2e-05 6.6e-04*** idem 4.5e-04***

𝜑 2.7e-05*** 1.2e-04*** 1.2e-04*** 1.4e-04*** 1.3e-04***

𝑔𝜑 .048*** .049*** .013*** .011***

𝜑∞ 1.9e-05*** 1.5e-05*** 2.2e-07 idem 1.7e-05***

𝜑1 6.9e-05*** 6.8e-05*** 1.3e-04*** 8.2e-05*** 7.1e-05*** 2.2e-04***

𝜑2 1.3e-04*** 1.2e-04*** 9.7e-05*** 1.5e-04*** 1.2e-04*** 8.0e-05**

𝜑3 1.1e-04*** 1.0e-04*** 7.7e-05*** 1.3e-04*** 1.1e-04*** 9.9e-05***

𝜑4 4.3e-05*** 4.6e-05*** 8.7e-05*** 5.1e-05*** 5.0e-05*** 8.7e-05***

𝜑5 4.5e-05*** 4.6e-05*** 1.4e-04*** 5.1e-05*** 4.9e-05*** 9.1e-05***

𝜑6 5.3e-05*** 5.6e-05*** 8.6e-05*** 6.4e-05*** 6.1e-05*** 9.1e-05***

𝜑7 7.2e-05*** 7.2e-05*** 8.0e-05*** 8.8e-05*** 7.8e-05*** 1.0e-04***

𝜑8 1.8e-04*** 1.5e-04*** 1.7e-04*** 2.1e-04*** 1.5e-04*** 2.0e-04***

𝜑9 9.3e-05*** 6.6e-05*** 1.3e-04*** 1.1e-04*** 6.9e-05*** 1.2e-04***

(continued on next page)
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Table A1 (continued)

No TC Exogenous TC Endogenous TC

All models All models Exog models FE: initial FE: initial FE: initial All models Endog models FE: initial FE: initial FE: initial

MAC MAC & quadr MAC & TC MAC MAC & quadr MAC & TC

𝜑10 2.0e-05*** 2.6e-05*** 8.3e-06*** 2.3e-05*** 3.1e-05*** 3.9e-06***

𝜑11 1.9e-04*** 1.7e-04*** 1.8e-04*** 2.3e-04*** 1.9e-04*** 1.3e-04***

𝜑𝑠𝑞 −4.0e-07*** −2.8e-07***

𝑔𝜑1 .038***

𝑔𝜑2 8.8e-03

𝑔𝜑3 9.5e-03***

𝑔𝜑4 .056***

𝑔𝜑5 .068***

𝑔𝜑6 .041***

𝑔𝜑7 .023***

𝑔𝜑8 .013***

𝑔𝜑9 .026***

𝑔𝜑10 3.0e-03**

𝑔𝜑11 .011***

𝜒 .361*** .302*** .315*** .216***

𝐻̃(0) 16.3*** 12.7*** 92.5*** idem 36.6***

𝜒1 .515***

𝜒2 .058

𝜒3 .164***

𝜒4 .387***

𝜒5 .402***

𝜒6 .336***

𝜒7 .274***

𝜒8 .213***

𝜒9 .267***

𝜒10 –.236***

𝜒11 –.064

𝑁 12393 12393 6545 12393 12393 12393 12393 5848 12393 12393 12393

𝑙𝑙 4.9e+04 5.0e+04 2.7e+04 5.2e+04 5.3e+04 5.2e+04 5.0e+04 2.3e+04 5.2e+04 5.2e+04 5.2e+04

Appendix G. Additional quantitative results

Fig. A4 presents optimal, cost-benefit climate policies in the absence of abatement inertia (i.e., no abatement speed penalty).

Without inertia, the social planner is free to choose large variations in initial emissions. Accordingly, initial emissions are much lower

than in the presence of capital inertia, regardless of the existence and type of TC. This results in more slowly increasing temperatures,

but since capital inertia is relevant in the short to medium run but less so in the long run, temperatures in 2100 are similar.

Consistent with the theoretical results in Appendix B, emissions under exogenous TC are initially higher (abatement is lower) than

without TC, with a lower MAC/carbon price. Conversely, under endogenous, learning-based TC emissions are initially lower than

without TC, with a higher MAC. The abatement path is steeper under both forms of TC, which is also consistent with the theory.

Figs. A5–A8 present optimal, cost-benefit climate policies with low/high discount rates and slow/fast TC. These plots provide

further details on the results summarised in Table 4.
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Fig. A4. Optimal, cost-benefit climate policies without TC, with exogenous TC and with endogenous TC, for the case of no capital inertia. Emissions in the top-left

panel, temperature above pre-industrial in the top right, and the MAC/carbon price on the bottom.
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Fig. A5. Optimal, cost-benefit climate policies without TC, with exogenous TC and with endogenous TC, under low discount rates (𝛿 = 0 or 𝜂 = 1). Emissions in the
top-left panel, temperature above pre-industrial in the top right, and the MAC/carbon price on the bottom.
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Fig. A6. Optimal, cost-benefit climate policies without TC, with exogenous TC and with endogenous TC, under high discount rates (𝛿 = 0.02 or 𝜂 = 2). Emissions in
the top-left panel, temperature above pre-industrial in the top right, and the MAC/carbon price on the bottom.
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Fig. A7. Optimal, cost-benefit climate policies without TC, with exogenous TC and with endogenous TC, under slow TC. Emissions in the top-left panel, temperature

above pre-industrial in the top right, and the MAC/carbon price on the bottom.
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Fig. A8. Optimal, cost-benefit climate policies without TC, with exogenous TC and with endogenous TC, under fast TC. Emissions in the top-left panel, temperature

above pre-industrial in the top right, and the MAC/carbon price on the bottom.

Data availability

The code and data used to fit the parameters reported in Table 2 are available at https://github.com/FVenmans/TechnicalChange.

MATLAB code is available upon request.
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