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Abstract. Using shift-compactness, the continuity theorems of Baire and Luzin and a variant
of Darboux’s boundedness theorem, we deduce directly the continuity of positive solutions
of the Go�l ↪ab-Schinzel equation and of the kernels of the closely related Goldie and gener-
alized Goldie equation, from appropriate assumptions of the Baire property or (Lebesgue)
measurability.
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1. Introduction. Measure case

We give short new proofs of the continuity of (Lebesgue) measurable and of
Baire (i.e. with the Baire property) positive solutions of the Go�l ↪ab-Schinzel
functional equation [31]

h(x + h(x)y) = h(x)h(y), (GS)

for x, y ∈ Gh := {t : h(t) > 0}, the latter assumed non-null/non-meagre.
Aczél and Go�l ↪ab [1] studied this equation in order to identify one-parameter
subsemigroups of the affine group without recourse to analytical-differential
methods. Its close connection with Beurling’s important extension of the cele-
brated Weiner Tauberian Theorem [5] and also with Beurling regular variation,

1Paper presented at the Bingham Colloquium at LSE celebrating on 19th March 2025 the
anniversary of that day.
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for which see [11,13,38], warrants as direct a proof as possible of continuity
(and a read-out of its solution – for which see Section 6, although glimpses of
the form of h abound in the proofs).

Positivity of h is natural in the regular variation context and below we
assume (GS) is restricted to Gh. Relaxing this restriction, one may consider
non-negative h with a wider domain R similarly to [23] (where the domain is
a vector space). In the general Goldie equation of Section 5 a wider domain
seems necessary to support our analysis.

The continuity proof below may be viewed as the natural generalization of
the analogous simple classical proof of continuity for measurable/Baire solu-
tions of the Cauchy equation via Darboux’s theorem (that a locally bounded
additive function is continuous; cf. Section 2).

The theorem and proof for (GS) extend to measurable real-valued functions
defined on Euclidean spaces (see the Concluding Remarks), but its inspiration
is clearest (simplest) on the real line. The Baire category analogue could have
been viewed as an instance of the Banach Continuous Homomorphism theorem
[19, Ch. 11] (cf. [37]) in view of the group operation below, were it not for the
fact that to apply Banach’s theorem would require verification that the said
group structure is topological under the Euclidean metric. But that is not
a given here. We note the related Banach-Mehdi theorem, that for complete
normed vector spaces an additive Baire map is continuous, has a similar but
simpler proof, which inspired the present approach (see e.g. [19, Th. 12.1.5]).
The Baire variant asserted above is contained in a result of Brzd ↪ek [24], being
implied by his hypothesis that {x : 0 < |h(x)| < a} contains a non-meagre
Baire subset for some a ∈ (0,∞). We use a somewhat similar hypothesis to
deduce local boundedness of h.

As we shall confirm, non-zero continuous solutions of (GS) on R take one
of the two forms

h(x) = 1 + ρx, max{1 + ρx, 0},

for ρ ∈ R: see [25] for a survey. Thus the second of these yields solutions
that are positive for ρ > 0 on (−1/ρ,∞), and for ρ < 0 on (−∞,−1/ρ),
the former suiting asymptotic analysis according to the received convention in
regular variation. In consequence we admit only domains of solutions that are
unbounded on the right. For other solutions, including ‘trivial’ ones with range
{−1, 0, 1}, see [31] and [41].

Two key ideas allow transparent passage from the classical Cauchy result
to the Go�l ↪ab-Schinzel case.

The first key in this approach is an adaptation of Darboux’s Theorem
through the use of the Popa binary operation [41]

s ◦h t := s + h(s)t,

which we abridge to s ◦ t whenever context allows, by analogy to the circle
operation of ring theory. When h satisfies (GS) this operation endows with
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a group structure the set Gh := {x ∈ R : h(x) > 0}, assumed non-null/non-
meagre, on which h generates a group norm (below) in the measurable h
context, and likewise in the Baire case, turning h into a homomorphism1. The
latter feature would allow the Banach-Neeb Theorem to operate in the case
when h is Baire rather than measurable (as Gh is a Baire space), were the
group known to be topological, which initially is not the case here.

The second key is the shift-compactness property (which, as we will see,
flows in the present context, from the Baire and Luzin Continuity Theorems
for Baire/measurable functions, a ‘third’ key in effect):

Definition. In a metric group X an arbitrary (‘target’) subset T ⊆ X is shift-
compact if for any null sequence zm → 1X there is t ∈ T such that i.o. (infinitely
often) tzm ∈ T, that is

Mt := {m ∈ N : tzm ∈ T} is infinite.

This concept broadens Parthasarathy’s for whom the context was the convo-
lution semi-group of (Borel) probabilities on a separable metric group X. See
[17] for an appraisal of the connection.

For X = (R,+) the property was initially studied (specialized to co-finite
sets Mt) by Kestelman [34], motivated by work of Banach, and again later by
Borwein and Ditor [22]. The target sets there were Baire non-meagre sets or
measurable non-null sets and these are shift-compact [8], [19, §4.2]. Its close
connection to Karamata’s Uniform Convergence Theorem [5, §1.2] inspired
much investigation of this area [6,8]. For the extensive usage of this property
see [19]. We note that the concept of shift-compactness was independently later
discovered by Banakh and Jab�lońska in [4] who refer to the negated property
as null-finiteness.

In Lemma 1, for any null sequence wn and any non-null measurable set/non-
meagre Baire set T, for some (indeed, for almost all) t ∈ T, a subsequence of
{t ◦ wn}n embeds in T. This is obtained by a subtle modification of the usual
proof of the Kestelman-Borwein-Ditor shift-compactness theorem [9].

We recall that a non-negative group norm satisfies three properties:
(i) positivity: ||x|| > 0, unless x is the identity,
(ii) symmetry: ||x−1|| = ||x||,
(iii) subadditivity: ||xy|| ≤ ||x|| + ||y||.

According to the Birkhoff-Kakutani Theorem [19, Ch. 6], a group that
is first-countable (i.e. having a countable local neighbourhood base at the
identity) and with continuous right translation (a ‘right-topological’ group)
is normable iff inversion and multiplication are continuous at the identity. A
normed group thus need not be a topological group, but it is a metric group,

1 Under ◦h the group Gh is a subgroup of G∗ := {x : h(x) �= 0}, which decomposes into two
sets as in the (limiting) case of the punctured line R∗ under multiplication, with R+ := (0, ∞)
its subgroup.
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metrized for instance by the left-invariant metric dL(x, y) := ||x−1y||. For
background see also [3].

The group identity of (Gh, ◦) is 0 and the inverse of any element x is
−x/h(x) (cf. [41]), denoted below by x−1

h . Put

L(a) = Lh(a) :=
∫ a

0

dx

h(x)
and ||a|| := |L(a)|.

(Absolute value is needed for elements of Gh to the left of 0.) We show in
Lemma 3 below that L(a) is finite and in Proposition 1 that L(.) is a group
logarithm so that ||.|| is a group norm for Gh. (This is consistent with known
group logarithms and norms in the Popa groups Gρ arising from h(x) = 1+ρx
[15, Th. 1].) Thus we use Lebesgue measure on R to make the group Gh a
topological measure space (cf. [30]), which one might briefly call a ‘topological
measure group’.

Our first result does not require h to satisfy (GS), i.e. (right-) ‘shifting’ via
◦h need not itself be a group operation – sufficient here is the embracing group
structure of (R,+).

Lemma 1. For h measurable, wn → 0 a null sequence, and T ⊆ R non-null
measurable, there is t ∈ T for which t ◦h wn ∈ T infinitely often, i.e. the
following set is infinite:

{n ∈ N : t + h(t)wn ∈ T}.

Proof. By Luzin’s Continuity Theorem ([40, Th. 8.2], [33, Th. 17.12], [21, Th.
2.210 and 7.14(ix)], [32, p. 243]), reducing T by a subset of smaller measure,
if needed, we assume w.l.o.g. (without loss of generality) h to be continuous
on T and bounded thereon, by B say. Choose inductively, as follows, non-null
descending compact subsets Tn ⊆ T (hence with non-empty intersection), and
increasing integers mn with

t + h(t)wmn
∈ Tn−1 for t ∈ Tn.

Given the compact set Tn, let s0 be a Lebesgue-density point of Tn. Pick
an interval In around s0 with |In ∩ Tn|/|In| > 3/4. Also fix m = mn+1 > mn

such that B|wn| ≤ |In|/8 for all n ≥ m, so that with t ∈ Tn

|h(t)wn| ≤ |In|/8 for n ≥ m.

Let Jn = In\Tn and set

T ′
n := {t + h(t)wm : t ∈ In ∩ Tn}.

Write hm(t) := h(t)wm. If s = t + hm(t) ∈ Jn for some t ∈ In ∩ Tn, then
t = s − hm(t) ∈ Jn − hm(t) and |hm(t)| ≤ |In|/8. So

|Jn −
⋃

{hm(t) : t ∈ In ∩ Tn with t + hm(t) ∈ Jn}| ≤ |In|/2.

Put
Tn+1 := {t ∈ I ∩ Tn : t + h(t)wm ∈ In ∩ Tn} ⊆ Tn.
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Then |Tn+1| ≥ |In|/2 and is closed, by continuity of h on T. Furthermore,
t + h(t)wmn+1 ∈ Tn for t ∈ Tn+1. Consider

t ∈
⋂

Tn ⊆ T.

For n > 2, since t ∈ Tn, we have t ◦ wmn
= t + h(t)wmn

∈ Tn−1 ⊆ T . �

The above proof reduces to the standard proof of shift-compactness in the
additive group (R,+) when h(t) ≡ 1. We can now see that Gh is an interval
extending to +∞ but its exact form comes at the end (in Section 6, Theorem
5(ii)).

Corollary 1. For measurable h satisfying (GS), if Gh is non-null, then 0 is
an interior point of Gh, so that Gh is open in R (and so locally compact).
Furthermore, if Gh is unbounded to the right, then R+ ⊆ Gh.

Proof. Suppose 0 is not an interior point of R. Then, for n = 1, 2, ..., we may
choose zn ∈ (−1/n, 1/n)\Gh. As Gh is measurable non-null, for some t ∈ Gh

one has t◦hzn ∈ Gh i.o. by Lemma 1. For such n, referring to the group inverse
t−1
h for which h(t−1

h ) = 1/h(t),

zn = −t/h(t) + (t + h(t)zn)/h(t) = t−1
h ◦h (t ◦h zn) ∈ Gh,

a contradiction. So [−ε, ε] ⊆ Gh for some ε > 0. Then [t−h(t)ε, t+h(t)ε] ⊆ Gh,
for each t ∈ Gh, as h(t ± δh(t)) = h(t ◦ (±δ)) = h(t)h(±δ) > 0 for 0 < δ ≤ ε.

So 0 is an interior point and Gh is open.
To proceed further we exploit some ideas from [23, Th. 3] adapting to

the present context, as function arguments here are restricted to Gh. Two
preliminary observations are needed (to make this account ‘free standing’).

Take A := {a : h(a) = 1}, which is additive, and M = {h(x) : x ∈ Gh},
which is a multiplicative subgroup of R+.

Observation 1. For x, y ∈ Gh, if h(x) = h(y), then x − y ∈ A; indeed,
1 = h(x)h(y)−1 = h(x)h(−y/h(y)) = h(x − y).

Observation 2. It follows now that, for any a, x ∈ Gh, if h(a) = 1, then by
(GS)

h(x + h(x)a) = h(x),
so that h(x)a ∈ A, i.e. Aμ = A for μ ∈ M and so also MA = A.

We now return to the proof of the final claim, which splits into three cases
according as (i) M is finite, (ii) M is infinite and A �= {0}, and (iii) A = {0}.
Case (i): M is finite. Then M = {1}, i.e. h ≡ 1, and so here x+y = x+h(x)y ∈
Gh for x, y ∈ Gh. So since [0, ε) ⊆ Gh = A, by additivity R+ ⊆ Gh. (In fact
Gh = R.)
Case (ii): M is infinite and A �= {0} . Here M accumulates at 0. Indeed, if
μ ∈ M\{1}, then μn → 0, assuming w.l.o.g. μ < 1 (otherwise replace μ by
1/μ). Thus A = MA is dense in R+. Here a + x = a + h(a)x ∈ Gh, for a ∈ A
and x ∈ Gh. But [0, ε) ⊆ Gh, so Gh ⊇ A + [0, ε) ⊇ R+, by the density of
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A in R+. (Here again Gh = R.) The last step may be compared to classical
additivity results: cf. [5, Cor. 1.1.4 and 1.1.5].
Case (iii): A = {0}. Here, for x, y ∈ Gh, if h(x) = h(y), then x − y = 0 by
Observations 2, i.e. h is injective on Gh. For any x ∈ Gh\{0}, as h(x) �= h(0) =
1, put z(x) := x/(1 − h(x)). For any x, y ∈ Gh,

h(x + h(x)y) = h(y + xh(y)),

both equal to h(x)h(y) by (GS). Since x◦hy and y◦hx are in Gh, by injectivity,

x + h(x)y = y + xh(y).

Equivalently x − xh(y) = y − yh(x), and this is equivalent to

z(x) = x/(1 − h(x)) = y/(1 − h(y)) = z(y).

Thus z(x) is constant on Gh. Writing the constant value as −1/ρ we obtain

x/(1 − h(x)) = −1/ρ, i.e. h(x) = 1 + ρx.

As declared at the outset, solutions bounded from above are disallowed. So if
Gh is to be unbounded on the right, then ρ > 0 and Gh = (−1/ρ,∞). For an
alternative proof, see the Remark 4 below. �

Remarks 1. For continuous h the functional equation h(x + h(x)y) = h(y +
xh(y)) is studied on R in [25, Lemma 1] where Gh is found to decompose into
the union of a finite and an infinite interval.
2. In Case (iii) above, if z(x) = x + h(x)z(x) ∈ Gh, then for z = z(x)

h(z) = h(x + h(x)z) = h(x)h(z),

so after cancelling by h(z) – a contradiction. So z /∈ Gh, and indeed z = z(x) =
−1/ρ /∈ Gh by above.
3. Case (iii) uses the reverse of the injectivity argument of Theorem 5(i).
4. An alternative proof for Case (iii). Here h may also be Baire, to which we
refer later. As we declared at the outset, we do not allow solutions bounded
from above. If Gh is assumed bounded from below, consider x /∈ Gh for some
least x > 0. Choose xn in Gh with xn → x. Then h(xn) ≥ L for some L > 0,
as otherwise h(xn) → 0 and so the group inverse (xn)−1

h = −xn/h(xn) ∈ Gh

shows Gh to be unbounded from below. The positive sequence zn := (x −
xn)/h(xn) ≤ (x − xn)/L is null, so for large enough n is in Gh. Then x =
xn + h(xn)zn ∈ Gh, a contradiction. Thus [0,∞) ⊆ Gh.

As a preliminary to Lemma 3 below we need:

Lemma 2. If h satisfies (GS) and is continuous on Gh, then Gh is connected.
So, if Gh is unbounded to the right, then R+ := (0,∞) ⊆ Gh.

Proof. By the assumed continuity of h, the group inversion map: x 
→ x−1
h =

−x/h(x) is continuous on Gh. Write G
±
h = Gh ∩ R±. By Corollary 1 Gh is

open, so suppose that G
−
h has an unbounded connected component different
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from R−. Let I be a second, bounded component of Gh in R−, then the image
J of I under inversion is a connected component in R+. This cannot be all of
G

+
h otherwise G−

h would be connected (by inversion). Let x > 0 be the infimum
of J . Then there exist xn ∈ J ⊆ G

+
h with h(xn) → 0 and limit x. So (xn)−1

h

is unbounded, yet lies in the bounded set I, a contradiction. Hence G
−
h = R−

and is connected; hence also G
+
h is connected. So Gh is connected. �

The next result needs to be interpreted with the hindsight of Theorem 5(ii),
where we identify the form of h and so of Gh. Specialized to κ = h it is of im-
mediate use in Proposition 1, but the Goldie equations of subsequent sections
prompt an interest in the ‘pexiderized’ version of (GS) displayed below.

Lemma 3. For h measurable satisfying (GS), any positive measurable function
κ satisfying

κ(x ◦h y) = κ(x)κ(y) (x, y ∈ Gh)
is locally bounded away from 0 and locally bounded above, both relative to

non-null compact subsets of Gh . Furthermore, κ is continuous on Gh. In
particular, these properties hold of h for h a positive measurable solution of
(GS) and so h is continuous on Gh, which is connected.

Proof. Consider any non-null compact C ⊆ Gh. Suppose that cn ∈ C has
κ(cn) → 0. W.l.og. cn converges to c ∈ C. Put zn := cn − c → 0, so that
wn = zn/h(c) is also null. But

c ◦h wn = c + zn = cn.

So wn ∈ Gh and κ(wn) → 0, since κ(c) > 0 and

κ(c)κ(wn) = κ(c ◦h wn) = κ(cn) → 0.

Passing to a non-null subset C ′ ⊆ C, we may assume, again by Luzin’s Con-
tinuity Theorem, that κ is continuous on C ′ . By Lemma 1, for some t ∈ C ′,
t ◦h wn ∈ C ′ i.o. and so passing to a subsequence w.l.o.g. for all n. Now
t + h(t)wn → t, so by continuity on C ′ at t,

κ(t) = limn κ(t ◦ wn) = κ(t) limn κ(wn) = 0,

contradicting that κ(t) > 0. So κ is bounded away from 0 on C.
If instead κ(sn) → ∞, the same argument yields the contradiction that

κ(t) = ∞, showing that κ is bounded above on C.
Now consider any null sequence zn. By Corollary 1, w.l.o.g. each zn is in

Gh. By what has just been proved, w.l.o.g. we may suppose by passing to a
subsequence that κ(zn) is convergent. Again by Lemma 1, for some t ∈ C ′ the
sequence t ◦h zn ∈ C ′ i.o. and again by passing to a further subsequence we
may suppose this holds for all n. Since κ is continuous on C ′,

κ(t)κ(zn) = κ(t ◦h zn) → κ(t),

and so κ(zn) → 1 = κ(0), as κ is positive. That is, κ is continuous at 0.
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Now for any s ∈ Gh and any null sequence wn, which we may suppose is
in Gh by Corollary 1, take zn := wn/h(s) → 0, which again we may suppose
is in Gh; then

s ◦ zn = s + h(s)zn = s + wn → s,

and, as κ(zn) → 1,

κ(s + wn) = κ(s ◦h zn) = κ(s)κ(zn) → κ(s).

That is, κ is continuous on Gh.
In the case κ = h, continuity of h implies Gh is connected, by Lemma 2.

�

Proposition 1. For h a measurable solution of (GS), the corresponding norm
||.|| is a group norm on the Popa group (Gh, ◦h) under which Gh is a topological
group with a natural left-invariant metric equivalent to the Euclidean norm on
R .

Proof. By Lemma 3, Gh is connected. For a �= 0 we write [0, a] for the (in-
clusive) interval between 0 and a irrespective of their order. Integrals below
are implicitly calculated over such modified intervals. By Lemma 3, since h(x)
is bounded above and below on the compact interval from 0 to a, we have
0 < |L(a)| < ∞ and so ||a|| is well-defined and positive. Furthermore,

|a| · inf{1/h(x) : x ∈ [0, a]} ≤ ||a|| ≤ |a| · sup{1/h(x) : x ∈ [0, a]}.

The substitution
y = a ◦ x = a + h(a)x

gives dy = h(a)dx and so∫ −a/h(a)

0

dx

h(x)
=

∫ 0

a

dy

h(a)h(x)
.

By (GS), we conclude that∫ −a/h(a)

0

dx

h(x)
= −

∫ a

0

dy

h(a ◦ x)
= −

∫ a

0

dy

h(y)
,

and |L(−a/h(a))| = |N(a)|. Again with y = a ◦ x and any b, c,∫ a◦b

a◦c

dx

h(x)
=

∫ a◦b

a◦c

h(a)dx

h(a)h(x)
=

∫ b

c

dy

h(y)
, (∗)

corresponding, as earlier, to a notional metric dL(a ◦ b, a ◦ c) = ||b−1a−1ac|| =
||b−1c||. So by (∗)

L(a) + L(b) =
∫ a

0

dx

h(x)
+

∫ b

0

dy

h(y)
=

∫ a

0

dx

h(x)
+

∫ a◦b

a

dx

h(x)

=
∫ a◦b

0

dy

h(y)
= L(a ◦ b).
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Thus
||a ◦ b|| = |L(a ◦ b)| = |L(a) + L(b)| ≤ ||a|| + ||b||,

and so all three properties of the norm are verified.
Since the norm is defined by integration, absolute continuity of the integral

guarantees that inversion and product are continuous. �

We may now state and prove:

Theorem 1. Any measurable solution h of (GS) with Gh = {x : h(x) > 0}
non-null is continuous on Gh. Furthermore, R+ ⊆ Gh and also (−∞, 0] ∩ Gh

is an interval so that Gh is itself an interval.

Proof. For x ∈ G, put
f(x) = log h(x),

which we view as a homomorphism from (G, ◦) to (R,+), since

f(a ◦ b) = f(a) + f(b).

Interpreted in the context of a normed group, Darboux’s Theorem [29], [19,
Th. 9.4.1], [35], (cf. [10], or see below) asserts that if f is locally bounded at
0, then f is continuous at 0, and hence throughout the Popa group, f being a
homomorphism.

By assumption, for some B > 0, the set

S := {x : 0 < |f(x)| < B}
here is (measurable and) non-null. If f is unbounded at the origin, we may
choose zn → 0 in G with |f(zn)| unbounded. By Lemma 1 S is shift-compact,
so we may choose t ∈ S with t ◦ zn ∈ S infinitely often. Then, as above with
t−1
h the group inverse of t,

|f(zn)| = |f(t−1
h ◦ t ◦ zn)| = |f(t−1

h ) + f(t ◦ zn)| ≤ |f(t−1
h )| + B,

for infinitely many n. But this contradicts unboundedness.
By Darboux’s Theorem (see next section), f and so also h is continuous,

also in the sense of the Euclidean norm, by Proposition 1.
As for the final claim, (0,∞) ⊆ Gh by Lemma 2, so restricted to [0,∞)

the inversion mapping x 
→ x−1
h = −x/h(x) ∈ (−∞, 0] is continuous and so its

image is connected. �

2. Darboux Theorem

On a normed group (G, ◦),

||x ◦ y|| ≤ ||x|| + ||y|| ≤ 2max{||x||, |y||},
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somewhat reminiscent of the p-adic ultrametric, cf. [28]. On (Gh, ◦h), where
Gh := {x : h(x) > 0} and x ◦h y := x + h(x)y with h positive on R, satisfying
(GS), and bounded by L on |x| < δ, one has for x, y with |x|, |y| < δ:

|x ◦h y| ≤ |x + h(x)y| ≤ |x| + L|y| ≤ max{|x|, |y|}(1 + L),

so that the Euclidean norm restricted to Gh is a prenorm in the following
sense.

Definition. Say that ||.|| is a pre-norm on the group G if it is positive except
at 1G and for some K > 1 and δK > 0

||x ◦ y|| ≤ K max{||x||, ||y||}, for ||x||, ||y|| ≤ δK .

Variant Darboux Theorem. For a pre-norm ||.|| on a group G, if f : (G, ◦) →
(R,+) is a homomorphism,

f(x ◦ y) = f(x) + f(y),

bounded in some pre-norm neighbourhood of 1G, then f is continuous. In
particular this is so for the group norm of Section 1 on Gh.

Proof. First note that for any δ < δK , for ||x|| < δ/KNN

||xN || ≤ KN ||x||.
Indeed, this holds for N = 1. Proceed by induction. If ||x|| < δ/KN+1(N+1) <
δ/KNN , then ||xN || < KN ||x|| < KNδ/KNN = δ/N < δK and so, as K > 1,

||x ◦ xN || ≤ K max{||xN ||, ||x||} ≤ K max{KN ||x||, ||x||} ≤ KN+1||x||.

Suppose that f has a local bound of L on ||t|| < δ. W.l.o.g. δ < δK . Now
let ε > 0 be given. Choose an integer N with N > L/ε. Consider t with
||t|| ≤ δ/NKN . Then ||t|| < δ and

||tN || ≤ KN ||t|| ≤ KNδ/NKN < δ : |f(tN )| ≤ L.

By additivity,

||Nf(t)|| = ||f(tN )|| ≤ L : ||f(t)|| ≤ L/N < ε.

Thus f is continuous at 1G and so continuous.

We have already seen that for h a measurable solution of (GS) with Gh

non-null there is a group norm equivalent to the Euclidean norm and that h
is locally bounded. In the next section we study the case of h Baire.
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3. Baire case

In this section h is a Baire solution to (GS), meaning that h−1(U) is Baire
(has the Baire property) for U open. We will need a definition and a theorem.

Definition. (Category convergence, [7]) A sequence of Baire functions hn sat-
isfies the category convergence condition (cc) if, for any non-empty open set
U , there is a non-empty open set V ⊆ U such that, for each k ∈ ωN,⋂

n≥k
V \h−1

n (V ) is meagre. (cc)

Equivalently, off a meagre set of t,

t ∈ V =⇒ hn(t) ∈ V i.o.

This holds in the case of hn(t) = t + h(t)zn for zn → 0 and V Euclidean open,
since

t ∈ V =⇒ t + h(t)zn ∈ V i.o. (co-finitely!).
However, for a density-open V the condition is essentially the result that V is
shift-compact in the sense of shifts under ◦h as in Lemma 1 above.

Category Embedding Theorem. ([7,19]; Th. 10.2.2). Let X be a topological
space. If hn : X → X are Baire functions satisfying (cc) with pre-images of
meagre sets being meagre, then, for any Baire set T ⊆ X, for quasi-all t ∈ T
there is an infinite set Mt such that

{hm(t) : m ∈ Mt} ⊆ T, i.e. hn(t) ∈ T i.o.

Corollary 2. (Lemma 1–Baire version). For wn → 0 a null sequence and
T ⊆ R a non-meagre Baire set, there is t ∈ T for which t ◦ wn ∈ T i.o., i.e.
the following set is infinite:

{n ∈ N : t + h(t)wn ∈ T}.

Proof. This follows from the Category Embedding Theorem by applying the
following result. �
Lemma 4. (Meagre pre-images). For h Baire, {zn}n null and M meagre, the
following pre-image is meagre for each n

h−1
n (M) = {s − h(s)zn/h(zn) : s ∈ M}.

Proof. It is enough to consider a nowhere dense set M . Write wn = −zn/h(zn) =
(zn)−1

h for the group inverse. Then the right wn-shift is the inverse of the right
zn-shift:

s = hn(t) := t + h(t)zn = t ◦ zn,

t = h−1
n (s) = s ◦ (zn)−1

h = s + h(s)wn.

As h(x) is Baire, so is hn(t) := t + h(t)zn. So w.l.o.g. hn is continuous off a
mearge set M ′ ⊇ M, by Baire’s Continuity Theorem [33, Th. 8.38], [40, Th.
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8.1], [19, Th. 2.1.4]. We work relative to the complement X of M ′. Choose V
an arbitrary non-empty open set in X to exclude M. Now h−1

n (V ) is open,
by continuity as V omits M ; so omits M ′; now choose non-empty open W ⊆
h−1

n (V ) to exclude M. Suppose if possible that W does not avoid h−1
n (M).

Then for some s ∈ M

t = h−1
n (s) = s + h(s)wn ∈ W, so hn(t) ∈ hn(W ) ⊂ V,

so s = hn(t) ∈ V ∩ M, a contradiction. �

Theorem 2. Any solution h of (GS) with the Baire property (that pre-images
of open sets are Baire) and with {x : h(x) > 0} = h−1(0,∞) non-meagre is
continuous. Furthermore, R+ ⊆ Gh and also (−∞, 0] ∩ Gh is an interval so
that Gh is itself an interval.

Proof. This follows analogously to Theorem 1 by interpreting Corollary 1 and
Lemma 3 in the Baire context, replacing Luzin’s by Baire’s Continuity Theo-
rem. �

Alternative Integration Proof. One can follow the norm-based Darboux proof
of §1 also in the Baire case. Begin by restricting the solution function h to a
co-meagre Gδ set H := Gh\M (with M a meagre, centrally symmetric Fσ set)
on which hH := h|H is continuous with domain non-null. This is possible here,
as Corollary 1 (interpreted in the Baire context via Corollary 2) implies that
Gh is open. (Also Remark 4 of Section 1 implies that if Gh is assumed bounded
from below, then [0,∞) ⊆ Gh.) That yields a group-norm, albeit only on H, via
Lemma 1, as H is non-null. Fortunately, w.l.o.g. H is a subgroup of Gh. Indeed,
as h(0) = h(0)2 by (GS), by positivity h(0) = 1, and so h(x)h(−x/h(x)) =
h(0) = 1, again by (GS). Thus h(−x/h(x)) = 1/h(x) yields relative continuity
at the group inverse x−1

h from relative continuity at x ∈ H (both relative to
H). A norm can now be assigned to x ∈ M via completion, which the density
of the non-meagre subgroup H allows:

||x|| := lim sup
δ>0

{||q|| : q ∈ (x − δ, x + δ) ∩ H}.

Hence L(x), as defined previously, may be interpreted as an improper integral:

L(x) = LH(x) :=
∫ x

0

dt

hH(t)
= lim

q→x
t∈H

∫ q

0

dt

hH(t)
(x ∈ Gh).

As noted earlier, Gh is open and so locally compact in R, implying the Sub-
group Theorem applies here ([9, Ths 6.11, 6.13] or [36, Ch. VI. 13. XII], cf.
[BinO2025, 9.3.1]), so that the co-meagre subgroup H is clopen. Suppose
H �= Gh; then, being open, Gh\H is non-meagre and yet contained in the
meagre set M, a contradiction. Thus h is continuous on all of Gh. �
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4. The Goldie equation

The Goldie equation below, also linked to regular variation [5] and [12], is
simpler than the Go�l ↪ab-Schinzel equation in that it is already defined on a
Popa group Gh with h(x) = hρ(x) = 1 + ρx. We show how continuity of
solutions here is also provided by the Darboux paradigm.

We note that (the ρ = 0) versions of this equation were studied by Aczél
[2] in connection with the characterization of geometric and power means and
in the equivalence of certain utility representations.

Notation: In view of the needs in the subsequent section, it is convenient
below to use ◦h for a general function h and to write ◦ρ when h is specialized
to h(x) = hρ(x).

Theorem 3. Taking x ◦ρ y = x + hρ(x)y, let K solve the Goldie equation

K(x ◦ρ y) = K(x) + g(x)K(y) (x, y ∈ Gρ)

with K(1) �= 0, g(0) = 1, and {x : |K(x)| > 0} non-meagre/non-null. Then K
is continuous at the origin, and so K and g are both continuous.

In this functional equation context we will refer to K above as a kernel.
We offer several proofs. In the first proof, we provide a group logarithm on

the range R(K), which it emerges is a Popa group of the form Gσ for some σ.
This demonstrates similarity to the Go�l ↪ab-Schinzel case.

Darboux Proof. We may exclude the case K ≡ 0. Then the range R(K) is a
Popa group, by [18, Theorem 7.1A] (applicable here as N (ρ) = {t : ρt = 0} =
{0} and R(K) �= K(N (ρ))). Now

K(x) + g(x)K(y) = K(x ◦ y) = K(x) ◦σ K(y) = K(x) + (1 + σK(x))K(y)

implies g(x) − 1 = σK(x). The group logarithm of the Popa group Gσ is as in
Section 1:

Lσ(a) =
∫ a

0

dt

hσ(t)
=

∫ a

0

dt

1 + σt
=

1
σ

log(1 + σa).

Replacing K by K/σ in the Goldie equation, if necessary, we may assume
σ = 1. Applying this logarithm, take

f(x) := log(1 + K(x)).

Then f is a homomorphism into (R,+):

f(x ◦ρ y) = log(1 + K(x ◦ρ y)) = log[1 + K(x) + (1 + K(x))K(y)]
= log[(1 + K(x))(1 + K(y))] = f(x) + f(y).

Take h = hρ in Lemma 1; then as in Theorem 1, being Baire/measurable, f is
locally bounded. By Darboux’s theorem, f is continuous and hence so also is
K. (first proof) �
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Second Proof. Note that K(0) = 0, since g(0) = 1 and

K(0) = K(0 ◦ρ 0) = K(0) + g(0)K(0).

We first show that K is continuous at 0. Suppose otherwise. Then K(zn) does
not converge to 0 for some null zn (which is in Gρ). W.l.o.g. K is continuous
on T := {x : |K(x)| > 0}, again by Luzin’s Continuity Theorem. By Lemma
1, t ◦ρ zn ∈ T i.o. for some t ∈ T. If g(t) = 0, then taking s = t−1

ρ ◦ρ x for x
arbitrary implies that

K(x) = K(t ◦ρ s) = K(t) + g(t)K(s) = K(t),

i.e. that K is constant, a contradiction since K(0) = 0 �= K(1). So g(t) �= 0
and then

K(t) = lim K(t ◦ρ zn) = K(t) + g(t) lim K(zn).

But this implies lim K(zn) = 0, contrary to assumption. So K is continuous at
t = 0. We complete the proof by proving the following lemma (needed again
below and in the next section), which does not require the exact form of h.

Lemma 5. Assume the kernel K is continuous at 0. Then
(i) K is continuous;
(ii) if h is continuous, then also g is continuous.

Proof. (i) For zn null, continuity of K at 0 gives K(zn) → 0; furthermore,

K(t + h(t)zn) = K(t ◦h zn) = K(t) + g(t)K(zn) → K(t).

So K is continuous at any t ∈ Gh. (For any t and null sequence wn again
take zn := wn/h(t), which is null, and then t + wn = t ◦h zn.)

(ii) For any tn → t ∈ Gh, by continuity of h, tn ◦h 1 = tn +h(tn) → t+h(t) =
t ◦h 1,

K(tn) + g(tn)K(1) = K(tn ◦h 1) → K(t ◦h 1) = K(t) + g(t)K(1),

yielding g(tn) → g(t) (by (i) and as K(1) �= 0), so that g is continuous.
In particular, this holds for the auxiliary in the Goldie equation.(second

proof) �

Towards a third Darboux proof, we need the following to motivate our
assumptions below. Here again we need h to be Baire/measurable.

Lemma 6. A Baire/measurable solution K of the Goldie equation with {x :
|K(x)| > 0} non–meagre/non-null is locally bounded.

Proof. For some bound B > 0 the set T := {x : 0 < |K(x)| < B} is non-null.
Suppose that |K(zn)| is unbounded above for some null zn. By Lemma 1, for
some t the sequence t ◦ρ zn ∈ T i.o. Then

|g(t)K(zn)| = |K(t ◦ρ zn) − K(t)| ≤ |K(t ◦ρ zn)| + |K(t)| < B + |K(t)|,
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contradicting unboundedness unless g(t) = 0. But, if this were the case, taking
s = t−1

ρ ◦ρ x for x arbitrary implies as before that

K(x) = K(t ◦ρ s) = K(t),

i.e. that K is constant, a contradiction since K(0) = 0 �= K(1). �

Remark. In Lemma 6, suppose that |g(zn)| is unbounded above for some null
zn. By Lemma 6 we may suppose that K(zn) is bounded. For some t ∈ T with
K(t) > 0 the sequence t ◦ρ zn ∈ T i.o. Then by Lemma 1

K(t ◦ρ zn) = K(zn ◦ρ t) = K(zn) + g(zn)K(t).

So

|g(zn)K(t)| = |K(t ◦ρ zn) − K(zn)| ≤ B + |K(zn)|,
contradicting unboundedness, since t ∈ T. �

The following result shows off another Darboux paradigm. However, the
same conclusion also follows from the identity K(x) = g(x) − 1 noted above,
and also more directly from commutativity of ◦ρ, as follows.

K(x) + g(x)K(y) = K(y) + g(y)K(x), so K(x)[1 − g(y)] = K(y)[1 − g(x)],
K(x)

1 − g(x)
=

K(y)
1 − g(y)

= c, so K(x) = c(g(x) − 1).

This last needs a single y with g(y) �= 1 and K �= 0 to define c (see [12, Th.
1]).

Proposition 2. In the Goldie equation, if the kernel K is locally bounded and
the auxiliary g is continuous at 0, then K is continuous.

Proof. We assume K is bounded by L in some neighbourhood of 0. Iterating
powers from the left under ◦ρ so that t = t ◦ρ tn−1 = t + hρ(t)tn−1 yields

K(t ◦ρ tn−1) = K(t) + g(t)K(tn−1) = K(t) + g(t)(K(t) + g(t)K(tn−2))

= ... = K(t)(1 + g(t)+... + g(t)n−1)) = K(t) ·
{

n, if g(t) = 1,
1−g(t)n−1

1−g(t)
, if g(t) �= 1.

For any N, as g(0) = 1, provided t lies in a neighbourhood of 0 with |g(t)−1| <
1/N, we have for appropriate n = n(N) that

|NK(t)| ≤ |K(tn)| ≤ L, i.e. |K(t)| < L/N.

Then, as in the Darboux variant, |K(t)| < ε for N > L/ε and so K is contin-
uous at 0. Consequently K is continuous by Lemma 5(i). (third proof) �
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5. The General Goldie equation

Here we use shift-compactness to deduce continuity aspects of the general
Goldie equation, previously studied in [18] albeit assuming continuity, namely

K(x + h(x)y) = K(x) + g(x)K(y) (x ∈ Gh, y ∈ R)

with K(1) �= 0, g(0) = h(0) = 1, where Gh := {t : h(t) > 0} with 1 ∈ Gh is
Baire non-meagre, respectively measurable non-null. In the functional equation
context here, we will again refer to K as a kernel.

Above we have relaxed the condition y ∈ Gh of earlier sections, thus ex-
tending the domain of K to R, as K(y) = K(0 + h(0)y). This wider domain
assumption is for two reasons. Firstly, the present domain choice aligns with
that of [18]. Secondly, until h is identified, one cannot assume that Gh is a
group, which occasionally impedes the analysis. However, for a ∈ Gh, the left
a-shift t 
→ s = a ◦h t = a + h(a)t, defined on R, posseses a well-defined
anti-shift (inverse on R), s 
→ t = (s − a)/h(a); this allows the interpretation
K(s) = K(a ◦h t). To aid matters we assume also that Gh is inversion in-
variant in that −a/h(a) ∈ Gh for a ∈ Gh (a ‘reflection’ in 0). Nonetheless,
we record at the critical junctures whenever these stronger assumptions are
invoked (Propositions 4 and 6, Corollary 3, and in Corollary 4, where we use
the inversion-invariance assumption).

For further alignment with the Goldie equation, we assume that h preserves
positivity, i.e. that if a, b ∈ Gh, then h(a + h(a)b) > 0, so that a ◦h b ∈ Gh –
a ‘quasi’ semi-group, lacking associativity (and likewise for g); see [26, Th.1]
why adding the converse implication results in h satisfying (GS); 2 eventually
in Proposition 5 below we recover that here too h satisfies (GS). An additional
hypothesis is helpful: we will assume that −(ε, ε) ⊆ Gh for some ε > 0, so that
Gh is open. We recall from [18] that Gh = Gg := {t : g(t) > 0} : the first of
many parallel behaviours between the auxiliaries (see below). As a frequent
ingredient in proofs, we mention another instance. Given continuity of K, and
of h at 0, for any null zn,

K(1) = lim K(zn + 1) = lim K(zn + h(zn)/h(zn))
= lim[K(zn) + g(zn)K(1/h(zn))] = K(1) lim g(zn),

i.e. lim g(zn) = 1 = g(0), and we thus see g is also continuous at 0.
The ‘unitary’ case of g ≡ 1 embraces (logarithmically) the Go�l ↪ab-Schinzel

equation, allowing the solution read-out in Section 6 Theorem 5 (by an appeal
to monotonicity/injectivity, cf. Corollary 3).

When K(x) ≡ cx, the equation reduces for c �= 0 to

h(x) = g(x) (x ∈ Gh),

2 For h ≥ 0, this guarantees that both the left-shift t �→ a ◦h t and its anti-shift inverse
preserve positivity, leading to h(a)h(b)/h(a ◦ b) = 1 when 0 is an interior point of Gh.



Darboux and shift-compactness paradigms: Automatic

which says nothing about the nature of the auxiliaries. (For the converse direc-
tion of h = g implying linearity, see the Remarks at the end of Section 6.) Thus
we will at least need the n assumption that g and h are like K: respectively
Baire, or measurable.

Theorem 4. With the assumptions just given that g and h are like K, i.e.
all Baire or respectively all measurable, then K is continuous. If further h is
continuous at 0, then the auxiliaries g, h are continuous.

The proof will emerge from the sequence of results below. The form of the
solution triplet is then known (with h = hρ and g(t) = (hρ(t))θ/ρ, including
g(t) = eθt when ρ = 0), see e.g. [39].

Lemma 7. For non-trivial K, if K is differentiable anywhere on Gh, then it
is differentiable everywhere on Gh, and then

K ′(t) =
g(t)
h(t)

K ′(0).

Proof. Since K(0) = 0 for s �= 0 with s, t ∈ Gh, the formula follows from:

K(t + h(t)s) − K(t)
sh(t)

=
g(t)
h(t)

K(s) − K(0)
s

. �

Lemma 8. Assume that both K and the auxiliary h are Baire/measurable and
Gh := {t : h(t) > 0} is correspondingly Baire non-meagre/measurable non-
null. Then K is continuous.

Proof. As in Section 4 (second proof), consider any null sequence zn (in Gh).
Restricting attention to some subset of Gh on which by Luzin’s Continuity
Theorem K is continuous, by Lemma 1 for some t ∈ Gh a subsequence t+h(t)zn

converges to a continuity point t of K. So

K(t) = lim K(t + h(t)zn) = K(t) + g(t) lim K(zn),

implying continuity of K at 0, as K(0) = 0 (since this last implies K(zn) → 0).
Note that here again g(t) �= 0, since h(t) > 0 implies constancy near t : indeed,
otherwise, taking s = x/h(t) ∈ Gh for x near 0, gives for g(t) = 0

K(t + x) = K(t ◦h s) = K(t) + g(t)K(s) = K(t).

In turn, this implies K ′(t) = 0 and by the formula in Lemma 7 constancy on
Gh, a contradiction.

Furthermore, as in Lemma 5(i), given continuity of K at 0, for arbitrary
s ∈ Gh and with sn → s also in Gh, take the ‘anti-shifts’ zn := (sn−s)/h(s) →
0 (in Gh for large n). Then, since sn = s + h(s)zn,

K(s) = K(s) + g(s) lim K(zn) = lim K(s + h(s)zn) = lim K(sn).

That is, K is continuous at any s ∈ Gh.
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Proposition 3. For K a continuous kernel, the zeros of K form a discrete set:
neither the origin nor any other point is an accumulation of zeros of K.

Proof. Suppose that a sequence of zeros ζn (in Gh) of K converges to 0 from
the right. W.l.o.g. K(1) > 0, and there is a maximal open interval (c, d) around
1, where K is positive. Here K(c) = 0 by continuity (this invokes our wider
domain assumption). However, the shifts cn := c + h(c)ζn are zeros of K
converging from the right to c, as

K(c + h(c)ζn) = K(c) + g(c)K(ζn) = 0,

but these lie ultimately in (c, d), contradicting positivity of K on (c, d). A
similar argument applies at d if there is a sequence of zeros converging from
the left at 0.

Now suppose that a ∈ Gh accumulates zeros an to the right, so that by
continuity also K(a) = 0. Then the anti-shifts ζn := (an − a)/h(a) > 0 (in Gh

for large n) are zeros of K accumulating to the right of 0, since

0 = K(an) − K(a) = K(a + h(a)ζn) − K(a) = g(a)K(ζn),

and g(a) > 0 as a ∈ Gh = Gg. �

Corollary 3. If the kernel K is continuous, then it is strictly monotone on Gh

locally to each zero; furthermore, if the origin is the unique zero of K, then K
is strictly monotone on Gh.

Proof. Suppose first that the origin is the unique zero of K and that w.l.o.g.
K(t) > 0 to the right of 0. Given 0 < y < x with y ∈ Gh take the anti-shift
z = (x − y)/h(y), so that x = y + h(y)z with z > 0. Then, as K(z) > 0,

K(x) = K(y + h(y)z) = K(y) + g(y)K(z) > K(y).

Here again we have used the wider domain assumption (for z).
Now let k be the first zero of K to the right of 0. If 0 < y < x < y + h(y)k,

then K(y) < K(x).3 �

Corollary 4. If K is a continuous kernel with a least positive zero at k ∈ Gh,
then h(k) = 1, and so {nk : n ∈ Z} is the set of all zeros of K.

Proof. For any zero ζ ∈ Gh\{0} with 0 < h(ζ) < 1, note that the inductive
definition ζn+1

h := ζ ◦h ζn
h gives ζn+1

h ∈ Gh and K(ζn+1
h ) = K(ζ ◦h ζn

h ) =
K(ζ) + g(ζ)K(ζn

h ) = 0. But

ζn+1
h = ζ + h(ζ)ζn

h = ζ(1 + ... + h(ζ)n) → ω :=
ζ

1 − h(ζ)
,

so these zeros accumulate (with ω a zero), a contradiction. So h(ζ) ≥ 1 and in
particular h(k) ≥ 1. If h(k) > 1, then κ := −k/h(k) ∈ Gh is also a negative

3 For a more detailed account, see the Appendix.
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zero of K (appealing to the inversion-invariance assumption), since 0 = K(0) =
K(k ◦h κ) = K(k)+g(k)K(κ) as g(k) > 0. So h(κ) ≥ 1. Then k1 = −κ/h(κ) ≤
−κ < k and k1 ∈ Gh is a smaller positive zero of K, as now K(0) = K(κ ◦
k1) = K(κ) + g(κ)K(k1) and g(κ) > 0 (as h(κ) > 0), a contradiction. So
h(k) = 1. Likewise h(κ) = 1 and so κ = −k. By induction, as h(k) = 1, both
(n + 1)k = k ◦ nk ∈ Gh and K((n + 1)k) = K(k) + g(k)K(nk) = 0. Likewise,
K((n + 1)κ) = K(κ) + K(nκ) = 0.

Furthermore, for 0 < δ < k, if nk + δ ∈ Gh then −k + (nk + δ) ∈ Gh and
by induction δ ∈ Gδ. As K(−k + nk + δ) = K(nk + δ) for each k, by reverse
induction if K(nk + δ) = 0, then K(δ) = 0, contradicting the definition of k.
Hence there are no other zeros on [0,∞). The same argument applies with κ
for k. Hence the set of zeros is {nk : n ∈ Z}. �
Corollary 5. For non-trivial K, if K is differentiable at some point in Gh, then
K has only one zero and is strictly monotonic by Corollary 3.
Proof. By Lemma 7, for K somewhere differentiable in Gh and non-trivial,
K ′(0) �= 0 and w.l.o.g. K ′(0) > 0. So, as g, h are positive, strict monotonicity
follows again from Lemma 7. �
Remark. For g, h continuous and K(z) > 0 for small z > 0, [12, Th. 8] shows
that K(x) is differentiable and of the form c

∫ x

0
(g(t)/h(t)) dt. The proof uses

Riemann telescoping sums generated this time by iterating powers from the
right: un+1 = un ◦h u = un + h(un)u, giving ‘Beck sequence’ partitions of the
range of integration.

In view of Proposition 5 below, it seems unlikely that K has more than one
zero, unless h is ‘ill-behaved’: see Theorem 5 below. Nevertheless, the following
observation is, if not noteworthy, then curious. ‘Boundedness away from zero’
was noted in Lemma 3.
Proposition 4. For K a continuous kernel, if K has more than one zero and
g and h are bounded and also bounded away from 0 in the neighbourhood of
the origin, then g and h are continuous at 0.

Proof. Let k be the first zero of K to the right of the origin. Let zn be null with
well-defined finite limits η := lim h(zn) > 0 and lim g(zn) > 0 (by boundedness
away from 0). We check that kη and k/η are zeros of K (appealing again to the
wider domain assumption). As η > 0 , we conclude that kη ≥ k and k/η ≥ k
so that η = 1 = h(0). Indeed

K(ηk) = K(lim(zn + h(zn)k)) = lim g(zn)K(k) = 0,

K(k) = lim K(zn + k) = lim g(zn)K(k/h(zn)) = lim g(zn) lim K(k/h(zn)).

Given this deduction of continuity of h at 0, for any null zn,

K(1) = lim K(zn + 1) = limK(zn + h(zn)/h(zn))
= lim g(zn)K(1/h(zn)) = K(1) lim g(zn),

by continuity of K, as noted earlier. So g is also continuous at 0. �
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Parallel behaviours of auxiliaries: Before proceeding towards our final result,
we need to clarify that if h is continuous at 0, then assuming only continuity
of K at 0 implies the same for g. This repeats the ideas in Lemma 5 but with
a weaker hypothesis on h: first, exactly as in Lemma 5(i), for zn null (in Gh),
continuity of K at 0 gives K(zn) → 0 and so

K(1 + h(1)zn) = K(1 ◦h zn) = K(1) + g(1)K(zn) → K(1),

i.e. continuity of K at 1. Hence, for zn null, continuity of h at 0 gives

K(1) = lim K(zn + h(zn)) = K(1) lim g(zn),

yielding continuity of g at 0, as K(1) �= 0. We resist deriving the many other
parallels (from f to g, save to mention: boundedness, unboundedness, con-
vergence to zero) and ‘reverse parallels’ (from g to f, which can require the
monotonicity corollary).

Proposition 5. Assume continuity at 0 of g and h, and that K is continuous
but not linear. If h is Baire/measurable, then h is continuous and satisfies
(GS). Likewise, g is continuous and satisfies a pexiderized variant of (GS) if
g is correspondingly Baire/measurable.

Proof. It is shown in [18], albeit in a normed vector space context, that as-
suming K,h, g continuous, for any u > 0,

K(su) = λu(s)K(u) (s ≥ 0),

where λu(s) is the linking function defined there – with suitable parameters. In
fact, only the limits δg(u) := lim n(g(u/n)− 1) and δh(u) := lim n(h(u/n)− 1)
being zero (equivalent to g and h continuous at 0) and the continuity of K are
used.

The case when λu(t) = id(t) ≡ t yields K linear and g = h, as above, ex-
cluded by our assumptions. Otherwise, as in [BinO24a, Prop. 8.1], the relation

λu

(
h(a + h(a)b)

h(a)h(b)

)
=

g(a + h(a)b)
g(a)g(b)

for a, b ∈ Gh

holds for any two choices u > 0, so since all the graphs λu(t) other than id
cross only at t = 1 [BinO24a, Lemma 8.2], it follows that

h(a + h(a)b)
h(a)h(b)

= 1 and hence g(a + h(a)b) = g(a)g(b),

as λu(1) = 1. Thus h satisfies the equation (GS) on Gh; consequently, g satisfies
the ‘pexiderized’ variant seen in Lemma 3.

Thus, if we assume h is Baire/measurable, then in view of the assumptions
on Gh, we conclude that h is continuous by Theorem 1 and, by known results
(confirmed in Theorem 5 below) h(t) = 1+ρt for some ρ ∈ [0,∞), i.e. that Gh

is a Popa group. That in turn shows that if also g is Baire/measurable, then
by the variant Darboux theorem g is continuous, in view of the assumptions
on Gg = Gh. �
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Remarks. Evidently h will have continuity points provided TK := {t ∈ Gh :
K(t) > 0} is non-meagre/non-null. But it is unclear how this information
might imply continuity at 0.

The results in this section may easily be transferred to a vector space
context; the form of the auxiliaries is then as in [BinO24a, Theorem 8.1] and
of the kernel as in [20, Th. 4a/4b].

6. The form of h

We derive the form of h directly, using two separate approaches. In the first
we invoke a strong form of the property of h considered in Lemma 3.

Proposition 6. For a continuous kernel K, if h is locally bounded away from 0
on [0,∞), then [0,∞) ⊆ Gh and K is strictly monotonic.

Proof. We show that 0 is the unique zero of K, so that Corollary 3 applies.
By appeal to compactness, one readily proves that h locally bounded away

from 0 implies that h is bounded away from zero on compact subintervals of
[0,∞), so that [0,∞) ⊆ Gh. Towards a contradiction, we now suppose that K
has a least positive zero at k, that for some L > 0 and all t ∈ [0, k], h(t) ≥ L,
and finally, as K is continuous and non-zero in (0, k), that K is positive on
(0, k) – otherwise replace K by −K.

Now for y ∈ (0, k) as 0 < k−y < k we have K(k−y) > 0 and h(k−y) ≥ L.
However, for any choice of y ∈ (0, Lk)∩ (0, k), we reach the contradiction that
both y, k − y ∈ Gh (as h(k − y) > 0) and

0 = K(k) = K(k − y + y) = K(k − y) + g(k − y)K(y/h(k − y)) > 0,

as 0 < y/h(k − y) < Lk/L = k and g(k − y) > 0. Thus, there is no least
positive zero of K and so by Corollary 3, K is strictly monotonic. �
Theorem 5. (i) For h measurable, g(t) ≡ 1 and K a continuous kernel (e.g.
when K is measurable), equivalently for κ(t) = exp K(t) a positive solution of
the pexiderized (GS) equation

κ(x ◦h y) = κ(x)κ(y),

there exists ρ such that in a neighbourhood of 0 the inner auxiliary satisfies

h(t) = 1 + ρt.

If, further, h is locally bounded away from 0 , then K is strictly monotonic,

h(t) = 1 + ρt for all t ∈ Gh,

and Gh := {t : t > −1/ρ}, with the convention −1/0 = −∞.
(ii) With the assumptions on h of Theorem 4, the positive solutions of the

Go�l ↪ab-Schinzel equation have the form

h(t) = 1 + ρt for t > −1/ρ with ρ ≥ 0,
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and again Gh := {t : t > −1/ρ}.

Proof. (i) By Corollary 3, K is strictly monotonic in some neighbourhood of
0. Then, as g(t) ≡ 1,

K(s + h(s)t) = K(s) + K(t) = K(t + h(t)s).

So, for s, t > 0 restricted to that neighbourhood of 0,

s + h(s)t = t + h(t)s : (h(s) − 1)/s = (h(t) − 1)/t = const.

Setting the constant as ρ yields h(t) = 1 + ρt in that neighbourhood of 0.
If further h is locally bounded away from 0, then by Proposition 6, K is

strictly monotonic and so the previous argument is valid without restricting s
or t to a neighbourhood of 0.
ii) For h a solution of (GS), take K = log h, so that K solves the general Goldie
equation with g(t) ≡ 1 implying K is continuous. So h = expK is continuous
and then h is locally bounded away from 0 near the origin by Corollary 1. So
by the local result in part (i),

K(s) − K(0)
s

=
log(1 + ρs)

s
→ ρ as s → 0.

So K ′(0) = ρ. By Lemma 7, with g(t) ≡ 1 and K = log h,

K ′(t) =
1

h(t)
ρ =⇒ h′(t)

h(t)
=

ρ

h(t)
=⇒ h(t) = ρt + 1,

as h(0) = 1. Positivity for large t > 0 yields ρ ≥ 0. �
Remarks. Our result complements the case h = g of the general Goldie equa-
tion studied in [12, Th. 9] where for h locally bounded above and away from 0,
the solution is found to be linear: K(x) = cx, provided K(0) = 0 (implied in
the present context by the assumption h(0) = g(0) = 1). By recasting (GS) as
a Goldie equation a further deduction is made there that the solution of (GS)
for h locally bounded above and away from 0 is given by h(x) = 1 + ρx. The
assumptions there justify the use of ‘Beck sequence’ partitions for Riemann
sums with the integrand being the ratio g/h ≡ 1, as might be suggested by
Lemma 7.

7. Concluding remarks

1. Lemma 1 and its consequences exploit the embedding of (Gh, ◦) in (R,+).
This is reminiscent of [12] where function behaviour on a (smaller) dense sub-
group (A,+), embedded in (R,+), is deduced from that of a related function
on R. There the tool is the integral assuming continuous solutions. Here the
tool in Theorem 5(ii) is the derivative.
2. Alternative proof of Lemma 1–B. Repeat the argument in the measure case
of Lemma 1 verbatim (save for invoking Baire’s Continuity Theorem) using
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the category density topology DB on R [14, Theorem 1], in which sets V are
open if each point v ∈ V has a Euclidean neighbourhood U with U\V meagre.

�
3. For measurable h : Rd → R+ satisfying (GS) in the form

h(x + h(x)y) = h(x)h(y) (x, y ∈ R
d),

as above take a ◦ b = a + h(a)b, and define a Borel measure by setting

η(B) =
∫

B

dx

h(x)d
for Borel B,

where dx refers to Lebesgue measure in R
d (cf. [27, 7.6.3]). As in Lemma 3,

η(B) is finite. Again as on the line, using the substitution y = a◦x = a+h(a)x,
for which the Jacobian may be computed to be ∂y/∂x = h(a)d, shows the
measure to be left-invariant:

η(a ◦ B) =
∫

a◦B

dy

h(y)d
=

∫
B

h(a)ddx

h(a)dh(x)d
=

∫
B

dx

h(x)d
= η(B).

So η may be interpreted as Haar measure on (Rd, ◦).
Denoting by Bn the 1/n closed balls centered at 0, and writing � for

symmetric difference, put

dL(x, y) := supn η(x ◦ Bn�y ◦ Bn).

This is a left-invariant Weil metric [16] (as used also in the proof of Struble’s
theorem [DieS, Th. 8.1]), which gives rise to the group norm

||x||η := dL(x, 0).

As in Proposition 1, ||x||η is equivalent to the Euclidean norm ||x||2.
For Baire h satisfying (GS), apply the alternative integration approach of

§3 relative to a non-null non-meagre subgroup H, which is locally compact (by
Corollary 1, interpreted via Corollary 2).
4. The proof above for Theorem 2 holds also in R

d. One may either refer to
the CET-based proof of Lemma 1 – Baire, which applies quite generally, or
repeat the alternative proof of Lemma 1– Baire in Remark 1 but with DB now
the category density topology (as defined in [14, Th. 1]) derived in the group
(Rd,+). The proof of Theorem 2 then continues to hold with |x| interpreted
as the Euclidean norm ||x|| in R

d.
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8. Appendix

Detailed Proof of Cor. 3. We check in greater detail the proof of Corollary 3,
and how this leads to Theorem 5(i).

Let k be the first zero of K to the right of 0. W.l.o.g. we may suppose that
K(z) > 0 for 0 < z < k (otherwise, replace K by −K). Let ε > 0 be given
with (−ε, ε) ⊆ Gh and ε < 1/3 so that

1 − ε

1 + ε
>

1
2
.

By continuity of h at 0, choose δ > 0 so that 1 − ε < h(u) < 1 + ε for
|u| < δ < min{k/4, ε}. Take k̄ := (k−δ)/(1+ε) < k. Given u < v < u+h(u)k̄,
we shall have z := (v − u)/h(u) < k̄ < k and so K(z) > 0.

Consider any u with |u| < δ. By choice of δ, we have both

u + h(u)k̄ < δ + (1 + ε)k̄ = k,

and also

h(u)k̄ > (1 − ε)(k − δ)/(1 + ε) >
3k

4
(1 − ε)/(1 + ε) >

k

2
1
2

> δ.

That is, the interval (u, u + h(u)k̄) contains δ as 0 < δ < u + h(u)k̄. So any v
with u < v < δ satisfies u < v < u + h(u)k̄. So with z as above, as u ∈ Gh,

K(u) < K(u) + g(u)K(z) = K(u ◦ z) = K(v).

Put I0 := (−δ, δ), then K is strictly increasing on I0. �

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Alternative Proof of Prop. 6. By Proposition 3 we may assume for some δ > 0
that K(t) > 0 for t ∈ (0, δ). We will show that K is (strictly) increasing on
[0, δ]. For now, suppose that, for some a ≥ 0, K(t) is continuous, positive and
(strictly) increasing on [0, a] but not increasing on (0, b) for b > a. This last
implies that for each b > a there are witness points u = u(b) < v = v(b) with
0 < u < v < b and K(u) ≥ K(v). Clearly, u, v are not both in [0, a].

So first consider the case that for each b > a the witness points have
a ≤ u < v < b with K(v) ≤ K(u) and K(a) ≤ K(u). Since h is bounded from
below we have L := min{h(x) : a ≤ x ≤ a + εh(a)} > 0 for some ε > 0 with
0 < ε < δ. Take b = a + εL/2 and consider the corresponding witnesses u, v
∈ [a, a + εL/2] ⊆ [a, a + h(a)ε], as h(a) ≥ L. So h(u) ≥ L and h(v) ≥ L with
v − u = (v − a) − (u − a) < εL. As h(u) ≥ L, we may write v = u + h(u)z
with z := (v − u)/h(u) < εL/L < δ, so that K(z) > K(0) = 0. Then, as
h(u) > L > 0 so that g(u) > 0 and u ∈ Gh,

K(v) = K(u ◦h z) = K(u) + g(u)K(z) > K(u),

a contradiction.
In particular, with a = 0 the above argument precludes witnesses u < v in

[0, δ) with K(v) ≤ K(u), implying that K(u) < K(v) for all pairs u < v from
(0, δ). So we may now assume a > 0 (in fact we may now assume a ≥ δ).

Now consider the alternative. Here for each b > a there is y = y(b) ∈ (a, b)
with K(y) < K(a); indeed, the witnesses now satisfy u < a < v < b, so that
K(v) ≤ K(u) < K(a) and we may take y = v. Taking yn ∈ (a, a + 1/n) with
K(yn) < K(a), we may write zn := (yn − a)/h(a) > 0, as h is bounded away
from 0. Then since zn → 0, for large enough n, zn < a and so, for such n, as
K(zn) > 0, so since a ∈ Gh,

K(a) > K(yn) = K(a ◦h zn) = K(a) + g(a)K(zn) > K(a),

again a contradiction. �
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