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Abstract

Background: The rapid integration of information technology into daily life has exacerbated the digital divide (DD),
particularly among older adults, who often face barriers to technology adoption. Although prior research has linked technology
use to cognitive benefits, the long-term neurostructural and cognitive consequences of the DD remain poorly understood.

Objective: The aim of this study is to use large-scale neuroimaging data to examine how the DD affects long-term brain
structure and cognitive aging in older adults. It specifically investigates (1) structural and cognitive differences between older
adults with and without DD engagement, (2) predictive relationships between group-distinctive brain regions and cognitive
outcomes, and (3) longitudinal impacts of DD exposure on accelerated aging trajectories of neural substrates and cognitive
functions.

Methods: The study included 1280 community-dwelling older adults (aged 65-90 y) who completed comprehensive cognitive
assessments and structural magnetic resonance imaging scans at baseline. Longitudinal data were available for 689 participants
(mean follow-up 3.2 y). Participants were classified into the DD (n=640) and overcoming DD (n=640) groups using rigorous
propensity score matching to control for age, education, gender, and baseline health conditions. A computational framework
using the searchlight technique and cross-validation classification model investigated group differences in structural features
and cognitive representation. The aging rate of each voxel’s structural feature was calculated to explore the long-term influence
of the DD.

Results: The DD group showed significant deficits in executive function (#=4.75; P<.001; Cohen d=0.38) and processing
speed (1=4.62; P<.001; Cohen d=0.37) compared to the overcoming DD group. Reduced gray matter volume in the DD
group spanned the fusiform gyrus, hippocampus, parahippocampal gyrus, and superior temporal sulcus (false discovery rate—
corrected P<.05). The computational framework identified the key structural substrates related to executive function and
processing speed, excluding the ventro-orbitofrontal lobe (classification accuracy <0.6). Longitudinal findings highlighted the
long-term impact of the DD. The DD group exhibited faster gray matter volume decline in the middle frontal gyrus (+=3.95 for
the peak voxel in this cluster, false discovery rate—corrected P<.05), which mediated 17% of episodic memory decline (P=.02).

Conclusions: Older adults who overcome the DD demonstrate preserved gray matter structure and slower cognitive decline,
particularly in frontotemporal regions critical for executive function. Our findings underscore that mobile digital interventions
should be explored as potential cognitive decline prevention strategies.
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Introduction

Although mobile devices have become some of the most
indispensable technologies in modern society, there is still
a significant portion of the population that has never used
them. This gap between individuals who are adept at using
digital information and communication technologies (ICTs)
and those who are not is referred to as the digital divide
(DD) [1,2]. However, the impact of the absence of these
new avenues for connection, information, and communica-
tion on our brains and cognitive capacities, as well as that
of screen exposure, remains unclear. The effect of the DD
is especially notable within the older population, which
demonstrates considerably lower levels of internet acceptance
and utilization [3,4]. Given the rapid growth of the aging
population in China, it is conceivable that the DD will
marginalize older individuals from the swiftly progressing
society, potentially impeding their future advancement.

The theory of neural plasticity suggests that the struc-
ture of the human brain can undergo long-term changes in
response to environmental stimuli and situational triggers
[5]. The ubiquitous adoption of the internet and information
technology has substantially decreased the costs associated
with acquiring new knowledge and participating in social
interactions [6]. Consequently, it is contended that the
neural modifications induced by the internet are beneficial,
especially for older adults who are experiencing decline.
Studies endorsing the theory of neural plasticity propose that
smartphone-based games could potentially alleviate age-rela-
ted cognitive decline. However, research on smartphone
use inducing neural plasticity effects has been limited to
approximately 6 months, thus inadequately exploring the
enduring impacts of ICT use on older individuals [7-9].

The theory of frontal lobe control and the extended theory
of internet addiction suggest that degenerated prefrontal
cortical regions could lead to the dysfunction of cognitive
control and inhibition, which is the potential physiological
basis for problematic online behaviors [10]. Thus, older
individuals with notable prefrontal atrophy in the course of
neural aging not only fail to derive benefits from ICT use
in acquiring cognitive enhancement, but also face a potential
decline in neural flexibility. This decline is also recognized
as a clinical precursor to problematic network behaviors in
the aging brain [11-13]. The duration of engagement with
problem networks was found to be significantly associated
with both gray matter atrophy and impairment of white
matter integrity [14]. Although the study centered on younger
age cohorts, its observed neuropathological characteristics
could potentially signify a prospective risk of Alzheimer
disease. This suggests the emergence of a long-term digital
survival paradigm or a novel environmental instigator for
Alzheimer disease, potentially by expediting the neurodege-
nerative process [15].
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In sum, the long-term implications of addressing the
DD among the older adult population, whether positive or
negative, are yet to be substantiated.

To ascertain the long-term implications of addressing the
DD among the older population, this study, using a large-
sample neuroimaging cohort, will investigate the following:
(1) the differences in brain structure and cognitive per-
formance between individuals who overcome the DD and
those who do not, (2) whether the identified brain regions
that classify the 2 groups will also predict their cognitive
performance, and (3) the longitudinal alterations of the aging
rate in cognitive function and brain structure caused by the
DD.

A relationship may exist between the longitudinal changes
in cognitive function and brain structure observed in aging
populations and the existence of a DD.

Methods

Study Design

The study population was derived from the Beijing Aging
Brain Rejuvenation Initiative, a longitudinal neuroimaging
initiative investigating aging-related cognitive trajectories.
Participants were not prospectively recruited for this specific
analysis but constituted a subset of individuals meeting
predefined inclusion criteria. Our samples were community-
based. They were all recruited voluntarily. The majority of
them live in different communities in Beijing. Established at
Beijing Normal University in 2008, the Beijing Aging Brain
Rejuvenation Initiative has conducted cohort studies based on
the registry of a large community population in the greater
metropolitan area of Beijing. All of the participants were 50
years or above at the time of baseline enrollment, capable
of living independently, without nervous system diseases or
psychiatric disorders, with no metal implants or any other
contraindications for undergoing magnetic resonance imaging
(MRI) within the body, with 6 or more years of formal
education. A total of 3380 participants with MRI data were
recruited; participants with a Mini-Mental State Examination
score below 24 and without the data to quantify the DD were
excluded. As a result, only 1400 participants were recruited
in this study. Of 1400 participants, 1280 were included in
this study based on propensity score matching (PSM). All
of the participants who were registered were revisited every
2-3 years. Throughout the follow-up period, factors like
bodily metal implants, severe ailments, loss to follow-up, or
participant refusal led to only 689 individuals undergoing a
subsequent MRI scan (see Figure S1 in Multimedia Appendix
1 for precise dropout rates and detailed characterization of the
longitudinal sample and data collection framework).
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Participants

According to the cross-sectional data, we divided the
participants into the DD group and overcoming DD (ODD)
group based on the quantification of the DD (see the
Measurements section). Power calculations were conducted
a priori to ensure adequate statistical sensitivity. For the
primary comparison between the digital engagement groups
(DD vs ODD), we estimated required sample sizes using a
2-sample ¢ test framework with medium effect size (Cohen
d=.3), 80% power, and a=.05: ngecondary=2 X (Z1-a/2+Z1-p)/
d)?=2 x (1.96+0.84)>=352 per group.

This calculation guided our longitudinal tracking cohort
design (n=350 per group) and cross-sectional neuroimaging
subsample (n=700 per group). The effect size threshold
(d=0.3) was selected based on prior neuroimaging studies
of technology-related structural plasticity, while the o level
(0.05) and power (0.80) followed field-standard conventions
[16]. To verify that the cross-group differences of brain
structure between the 2 groups were not due to demographic
variables (age, gender, and education) and some chronic
diseases (hypertension, diabetes, and hyperlipidemia), we
used the PSM method [17] to match the DD group with
the ODD group based on age, education level, gender,
hypertension, diabetes, and hyperlipemia. Following PSM
matching, the initial participant count of 1400 decreased to
1280 (each group consisted of 640 participants). The detailed
demographic data for both groups can be found in Table S1
in Multimedia Appendix 1. A total of 689 individuals formed
the baseline for tracking data, with 296 in the DD group
and 393 in the ODD group, both tracked only once. There
were no significant demographic differences between the 2
groups at baseline. Detailed data can be found in Table S2 in
Multimedia Appendix 1.

Measurements
Quantifying the DD

The quantification indicator of the DD involves an item
about the frequency of using ICTs from the Leisure Activ-
ity Scale: “How often do you use a computer and mobile
devices?” We classified individuals with scores of 0 (never),
1 (=zonce per year), and 2 (zonce per month) into the DD
group and individuals with scores of 4 (zonce per week) and
5 (everyday) into the ODD group [18-24]. The DD group
means failing to overcome the DD while the ODD group
means overcoming the DD. We selected usage frequency
as the metric to operationalize the DD based on 2 com-
pelling empirical rationales. First, China’s 2023 National
Aging Population Survey revealed that 61% of adults aged
=65 years report never using smartphones, establishing a
clinically significant dichotomy between digital adopters and
nonadopters within this vulnerable demographic. Second, our
Journal of Medical Internet Research—published cohort study
[25] demonstrated distinct bimodal utilization patterns: 49%
exhibited complete digital exclusion (“Never Users”), while
51% engaged in at least occasional usage (“Occasional Users”
or higher). This polarized distribution aligns with national
surveillance data showing similar bifurcated technology
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adoption trends among older adults, thereby validating
our methodological approach for capturing population-level
digital inequities.

In the longitudinal data analysis, participants for whom
the use of ICTs could be tracked over time were categorized
into either the DD group or the ODD group. We exclu-
ded participants who transitioned their status of using ICTs
because crossing the DD is a relatively stable state that would
not change in the short term. If a transition occurred, it may
be due to uncontrollable external factors, which are not the
focus of this study.

Cognitive Measurements

As described in our previous study, all participants underwent
a battery of neuropsychological tests at baseline recruitment
[26]. The assessment involved general cognitive ability
and cognitive function across 5 domains including mem-
ory, language, attention, spatial processing, and executive
function. General cognitive ability was tested using the
Chinese version of the Mini-Mental State Examination [27].
Memory was tested using the Auditory Verbal Learning
Test [28] and the Rey-Osterrich Complex Figure Test [29].
Executive function was tested using the Stroop Color Word
Test and the Trail Making Test Part B [30]. Spatial process-
ing was assessed using the Clock Drawing Test [31] and
the RO_Copy test [29]. Attention was evaluated using the
Symbol Digit Modification Test [32] and the Trail Making
Test Part A [30]. Language was tested using the Boston
Naming Test and the Verbal Fluency Test (VFT) [33]. The
Chinese version and English version of the questionnaire
can be found in Multimedia Appendix 2 and Multimedia
Appendix 3, respectively.

Synthesize the Aggregate Scores for Different
Cognitive Domains

We conducted a confirmatory factor analysis analysis for
the performance of each cognitive domain (Figure S2 in
Multimedia Appendix 1). The path coefficients were used
as weights to output the synthesized scores of each cognitive
domain. The reason for this processing is that it facilitates
subsequent modeling with neuroimage data. As a result, all
the neuropsychological tests were divided into 6 domains
including memory, visual-spatial, processing speed, executive
function, working memory, and language. It should be noted
that, due to the fact that only the VFT was included among
language-related tests, the confirmatory factor analysis model
in this study did not incorporate it. Therefore, the subsequent
scores related to language only used the standardized scores
of the VFT.

MRI Image Acquisition and Data
Processing

MRI data were acquired using a SIEMENS PRISMA 3T
scanner at the Imaging Center for Brain Research at Beijing
Normal University during the baseline recruitment and at
follow-up several years later. Participants were in a supine
position with their heads snugly fixed by straps and foam
pads to minimize head movement. The T1-weighted structural
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images were acquired using 3D magnetization-prepared
rapid gradient echo sequences (192 sagittal slices, repetition
time=2530 ms, echo time=2.27 ms, slice thickness=1 mm,
flip angle=7°, and field of view=256 mm x 256 mm).

The MATLAB2021b [34] and SPM12 [35] toolboxes with
default parameters were used to preprocess the structural
images. The modulated gray matter images were smoothed
with a Gaussian kernel of 8§ mm full width at half maximum.
We used the mean gray matter map (threshold=0.2) of all
the participants to obtain a group brain mask, as well as for
subsequent analysis.

High-resolution T1 structural image data were processed
using the Catl2 toolbox [36]. Apart from using the East
Asian brain template for registration, all other parameters
were set to default. The specific processing steps are as
follows. The raw data were converted to the NIfTI (Neu-
roimaging Informatics Technology Initiative) format and
underwent tissue segmentation within an individual space
to obtain images of gray matter, white matter, and cerebro-
spinal fluid. After improving segmentation accuracy through
affine processing, the images were spatially normalized using
high-dimensional DARTEL and geodesic shooting methods
[37], registering them to the standard Montreal Neurological
Institute brain template after 6 iterations and resampling the
images to a voxel size of 1.5 mm?3. The original voxel size of
the MRI data was 1 x 1 x 1 mm?3 [37]. Further local adaptive
segmentation corrected local deviations in individual gray
matter tissues. Following the assessment of image quality and
tissue segmentation effects, all brain tissue images underwent
spatial smoothing using a Gaussian kernel function (full width
at half maximum=8mm).

Statistical Analysis
The Effect of the DD on Cognitive Function

The intergroup variations between the DD and ODD groups
were assessed through an independent samples ¢ test. Cohen d
was used for the calculation of effect size.

The mixed linear model (MLM) was used to examine the
influence of the DD variable on the rate of cognitive aging
at an individual level. Initially, we established the null model
and unconditional growth model. The null model was used
to determine the hierarchical structure of the longitudinal
data for different cognitive functions, which was suitable for
MLM analysis. The unconditional growth model was used
to identify significant aging patterns in various cognitive
functions over time. After selecting these 2 models, we
constructed the full model that encompassed level 1 (descri-
bed the individual cognitive level aging patterns) and level 2
(investigated the influence of the DD variable on the aging
patterns of multiple cognitive abilities in individuals).

Level 1:
Cognitive Score = iy + 11(Time) + e

Level 2:
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o = Boo + Bo1(AZehaseline) + Pox(Gender) + Bys
(Edu) + fBy4(Digital Divide) + r,

71 = P10 + Pr11(Agehaseline) + B12(Gender) + B3
(Edu) + ,4(Digital Divide) + r,

The Statistical Package for Social Science (version 25.0;
IBM Corp) was used for descriptive statistics and difference
analysis. The Mplus (version 8.3) software was used to build
an MLM for each domain of cognition. An o of .05 was
applied to indicate statistical significance.

The Effect of the DD on Brain Structural
Characteristics

Cross-Sectional Data

We used a 2-sample ¢ test on the DD group and ODD
group while regressing age, gender, educational level, and
total intracranial volume. We used a significance level of
P<05 following false discovery rate (FDR) correction to
identify group variances, which were then used for subse-
quent analyses.

A scheme of multivoxel pattern analysis based on support
vector machines (SVM) was used to constrain the brain
regions representing the group differences of the DD and
predicting the individual’s cognitive performance. The whole
statistical framework is illustrated in Figure 1. First, we
used searchlight analysis to generate a neighborhood matrix
of voxels using a sliding spherical window centered on
a specific voxel with the radius of 2 mm. Subsequently,
principal component analysis was applied on this matrix
to reduce the dimensions of the data to retain 80% of the
variance to extract meaningful features (Figure 1A). Second,
SVM was used to classify the different groups in each
voxel. The classification accuracy determined through 10-fold
cross-validation served as a measure of the discriminat-
ing capability of the centered voxel. The specific parame-
ter settings of the SVM in MATLAB'’s fitcsvm function
are as follows by default. We used the linear kernel func-
tion as the kernel function and the value of 1 as the reg-
ularization parameter (BoxConstraint), which controls the
penalty for misclassification. Distinct brain regions exhibiting
outstanding classification performance were identified in a
3D accuracy map using a specified threshold (greater than
0.6; Figure 1B). Finally, the dominant regions for classify-
ing different groups also used the searchlight technique to
generate a voxel matrix and extract distinct features. These
features were then incorporated in a general linear model
to predict the behavioral scores of multidomain cognitive
function. The correlation between the predicted and observed
scores was calculated to delineate the measure of representing
the specific domain of cognition. The statistical significance
of the correlation was determined using 10,000 permutations,
where predictive scores were shuffled for each permuta-
tion, and a correlation coefficient was computed. A null
distribution was constructed based on the 10,000 correla-
tion coefficients, and multiple comparisons correction was
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executed with an FDR threshold of P<.001. The brain regions
with significant correlation coefficients were characterized
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as regions associated with the DD that represent specific
cognitive functions.

Figure 1. An illustration of the statistical framework using the searchlight technique. (A) Searchlight analysis generated a neighborhood voxel
matrix using a sliding spherical window. PCA was then applied to reduce data dimensions and extract meaningful features. (B) SVM was used
for voxel-based group classification with 10-fold cross-validation. Distinct brain regions with high classification accuracy were identified in a 3D
accuracy map using a specified threshold. (C) The features were added to a GLM to predict multidomain cognitive function scores. Correlations
between predicted and observed scores were calculated to assess domain-specific representation. DD: digital divide; EF: executive function; GLM:
general linear model; MRI: magnetic resonance imaging; ODD: overcoming the digital divide; PCA: principal component analysis; PS: processing
speed; SVM: support vector machine; VFT: Verbal Fluency Test.
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Based on this, we calculated the annual decline rate of gray
matter volume (GMV) for each participant at the voxel level
and region level (Anatomical Automatic Labeling template).
The maps of decline rate between the DD group and ODD
group were analyzed using 2-sample ¢ tests with the base-
line demographic variables and total intracranial volume
controlled. Finally, to establish whether changes in cognitive
performance were associated with changes in the decline rate
of GMV, Pearson correlation analysis was conducted.

DPABI software was used for the analysis. An independ-
ent samples 7 test was used to compare GMV between the DD
group and the ODD group. The FDR method for the multiple
comparison correction analysis method was applied for the
extraction of image data. The statistical significance threshold
for the voxel size was set at 0.05, whereas for the cluster
size it was established at 0.001. All primary Matlab codes
supporting the rest of the findings of this study (mainly in
Figure 1) are available online at [38].

Ethical Considerations

The study was conducted in accordance with the institutional
review board at the Imaging Center for Brain Research
at Beijing Normal University (ICBIR_A_0041_002_02) and
was approved in March 2015, with waived requirements
for additional registration given its observational design

https://www .jmir.org/2025/1/e73360

approved by the ethics committee of the State Key Labora-
tory of Cognitive Neuroscience and Learning, Beijing Normal
University. We used STROBE (Strengthening the Reporting
of Observational Studies in Epidemiology) as our report-
ing framework. Written informed consent and sociodemo-
graphic information were obtained from the participants
before initiating the neuropsychological tests. All participants
were reimbursed with daily necessities valued at 20 RMB
(approximately US $10) and provided with a free screening
report covering multiple domains of cognition as a token of
appreciation.

Results

Individual Differences in Cognitive
Function of the Older Population Under
the DD

Due to the demographic information being controlled, an
independent sample ¢ test was used to indicate the cognitive
differences between the 2 groups. Table S2 in Multimedia
Appendix 1 presents the differences of multidomain cognitive
function between the DD group and ODD group. The
cognitive domains with the largest effect size were processing
speed (t=4.62; P<.001; Cohen d=0.37) and executive function
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(t=4.75; P<.001; Cohen d=0.38). The results indicated that
the performance of these cognitive functions in the ODD
group was better than in the DD group.

The Differences in Structural Substrates
Between the DD and ODD Group

Compared with the DD group, the ODD group showed
significantly greater GMV in various brain regions in both
hemispheres, mainly located in 4 clusters (Figure 2). The
first cluster (peak label at temporal pole: t=4.41; P<.001)
and second cluster (peak label at hippocampus: 7=4.19;

Lietal

P<.001) included the fusiform gyrus, parahippocampal gyrus,
hippocampus, and temporal pole. The third cluster (peak
label at Rolandic operculum: 7=4.03; P<.001) included the
Rolandic operculum, superior temporal gyrus, supramarginal
gyrus, and Heschl gyrus. The last cluster (peak label at frontal
orbital cortex: 7=4.14; P<.001) included the orbital part of
the inferior frontal gyrus and part of the insula. Detailed
information for each brain region is listed in Table S3 in
Multimedia Appendix 1. These 4 clusters represented the
advantageous brain regions for individuals overcoming the
digital divide (the ODD group).

Figure 2. The structural differences between the older adults overcoming the digital divide and those who failed to overcome the divide. Cluster
1 (peak label at temporal pole: 1=4.41; P<.001) and cluster 2 (peak label at hippocampus: =4.19; P<.001) included the fusiform gyrus, parahippocam-
pal gyrus, hippocampus, and temporal pole. Cluster 3 (peak label at Rolandic operculum: t=4.03; P<.001) included the Rolandic operculum, superior
temporal gyrus, supramarginal gyrus, and Heschl gyrus. Cluster 4 (peak label at frontal orbital cortex: r=4.14; P<.001) included the orbital part of the

inferior frontal gyrus and part of the insula.

Constrain the Brain Regions Specific to
Classifying the ODD Group and the DD
Group

To find out the regions that could effectively represent the
features of overcoming the DD, we constructed a statis-
tical framework (Figure 1A) to constrain the regions to
classify the structural substrates specific to the DD. The
statistical framework analyzed the entire brain to extract
structural features from the neighborhood matrix of each

https://www .jmir.org/2025/1/e73360

voxel. Subsequently, the SVM model was used to predict
the state of the DD based on the voxel features. Finally, a
3D accuracy map was generated. The regions where accuracy
exceeded a predetermined threshold were called constrained
regions and the rest regions were excluded (Figure 3A). The
decoding result and the subsequent conjunction analysis both
indicated that the excluded regions were mainly involved in
the ventromedial orbitofrontal (VMOF) area and parts of the
olfactory and temporal lobes were also excluded (Figure 3B).
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Figure 3. Constraining the brain regions specific for classifying the overcoming the digital divide group and the digital divide group. (A) The
constrained regions refer to the voxels with classified accuracy above the threshold. The excluded regions are the rest regions that displayed
significant gray matter volume difference between the 2 groups; however, the classified accuracy was lower than the threshold. Classified accuracy
refers to the accuracy of classifying 2 groups based on voxel-level characteristics through the searchlight statistical framework (see the Methods
section). (B) The specific distribution and accuracy value of the constrained and excluded regions. The upper map depicts the accuracy distribution
of constrained regions, indicating that the average classification accuracy from high to low is the fusiform gyrus, Heschl, Rolandic operculum,
parahippocampal gyrus, and hippocampus. The lower map shows the accuracy distribution of the excluded regions, mainly including the inferior

frontal regions and orbital frontal regions.

A Constrained regions

Cognitive Representation of the
Constrained Regions of DD

Based on the aforementioned framework, we also developed
a statistical model to analyze the cognitive representation
of these regions (Figure 1C). The findings revealed that the
constrained regions are most indicative of executive function,
with over 80% of the voxels significantly predicting executive
function scores. Processing speed ranked as the second most
represented cognitive domain, with approximately 50% of
the voxels predicting processing speed scores (Figure 4A).

https://www.jmir.org/2025/1/e73360

The voxels predicting the rest cognitive functions such as
memory, visual-spatial, working memory, and language were
no more than 50. This result aligns with behavioral find-
ings that highlight distinct differences between the DD and
ODD groups in terms of processing speed and executive
function. Notably, the superior temporal pole, hippocampus,
and parahippocampal gyrus were identified as critical brain
regions involved in these differences (Figure 4B). More-
over, the specific brain regions predicting executive function
included the Rolandic operculum, Heschl gyrus, and superior
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temporal gyrus. These regions were decoded as tactile and
auditory-related cortices (Figure 4C).

Lietal

Figure 4. Cognitive representation of the constrained regions of the digital divide. (A) The distribution of the constrained regions predicting EF and
PS. (B) The predictive accuracy(r) of the specific brain region distribution of EF and PS. Combining (A) and (B), we found that the brain areas in
the constrained region representing executive function and processing speed are mainly the hippocampus, parahippocampal gyrus, temporal pole, and
fusiform gyrus. (C) EF regions compared to PS regions: the result indicated the regions specific to EF, including the Rolandic operculum, Heschl
gyrus, and superior temporal gyrus, which were decoded as tactile and auditory-related cortices. EF: executive function; PS: processing speed.
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Longitudinal Evidence on the DD
Influencing Cognitive Aging

Significant interindividual variations were observed for all
cognitive abilities in the null model, suggesting the viability
of constructing the subsequent MLM (Table S5 in Multimedia
Appendix 1). However, in the unconditional growth model,
the age-related change trend of visual-spatial and working
memory did not reach statistical significance, preventing
the construction of the full model (Table S4 in Multimedia
Appendix 1). The DD could significantly influence the aging
rate of cognitive function (Table S6 in Multimedia Appendix
1). Compared to the ODD group, the memory performance
of the DD group displayed a faster aging rate (Bi4=2.54,
P=.01). Moreover, the participants who were older at baseline
also exhibited a more pronounced rate of memory decline
(B11=-2.47; P=01).

The groups did not differ significantly at baseline in
terms of demographic variables, as they were matched. Fewer
participants were followed up longitudinally. Thus, we did the
independent ¢ test for their demographic variables. The result
indicated that the longitudinal groups did not differ in terms
of these variables (Table S4 in Multimedia Appendix 1).
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The Difference in the Decline Rate of
Brain Structure Between the DD and
ODD Groups

To investigate the influence of the DD on structural aging in
older adults, the annual aging rate of GMV was calculated
for each voxel (see the Statistical Analysis section). We
generated brain maps depicting the GMV decline rate
for each individual and identified brain regions showing
significant group differences in decline rates. The findings
revealed that the rate of GMV decline in the middle frontal
gyrus (MFG) was notably lower in the ODD group than in the
DD group (BA=46; X=-38, Y=53, Z=11; cluster size=719,
peak r value=3.91; Figure 5A and B). Moreover, this decline
rate in the MFG significantly correlated with individual
memory performance (R=0.17; P=.02; Figure 5C) while
displaying no significant association with scores in other
cognitive domains. Additionally, supplementary materials
included a comparison of structural aging rates based on
cluster size between the 2 groups. The results indicate
significantly lower gray matter aging rates in the MFG,
orbitofrontal cortex, and anterior cingulate gyrus in the ODD
group as opposed to the DD group, with these rates also
correlating with memory scores (Figure S3 and Table S7 in
Multimedia Appendix 1).
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Figure 5. The difference in the decline rate of brain structure between the DD and ODD groups. (A-B) The GMV decline rate in the MFG was
significantly lower in the ODD group than in the DD group. (C) The decline rate in the MFG significantly correlated with individuals’ memory
performance (R=0.17; P=.02) and showed no significant association with scores in other cognitive domains. DD: digital divide; GMV: gray matter

volume; MFG: middle frontal gyrus; ODD: overcoming the digital divide.
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Discussion

Principal Findings

Through the utilization of the searchlight technique in
cross-sectional data and integrating it with a cross-validation
classification prediction model, this study more precisely
constrains the distinct brain regions between the DD and
ODD groups. This research not only pinpoints the primary
brain regions that exhibit the greatest accuracy in discerning
differences between the 2 groups but also delineates how
the structural features extracted from these brain regions
represent individual cognitive performance. Furthermore, our
findings suggest a long-term impact of the DD on brain
structure. Specifically, the MFG may exhibit a faster rate of
aging related to the episodic memory alternations attributable
to the DD.

Compatrison to Prior Work

Through traditional intergroup comparisons, this study
observed that the GMV of the ODD group exhibited
significant advantages over the DD group in several
brain regions, including the fusiform gyrus, hippocampus,
parahippocampal gyrus, temporal pole, superior temporal
sulcus, and orbitofrontal region. Following the regional
screening constraints within the statistical framework of this
study, the brain regions capable of more accurately distin-
guishing between the DD group and ODD group were limited
to the fusiform gyrus, hippocampus, parahippocampal gyrus,
and a segment of the superior temporal sulcus, while the
excluded regions were predominantly concentrated in the
VMOF region. The VMOF area is considered a component
of the reward circuit [39] and is associated with individual
self-control [40].

The Introduction section of this study mentioned a
theory suggesting that older adults may experience reduced
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self-control due to aging of the frontal lobe, which could
impede their cognitive benefits from ICTs. However, based
on the above results, we do not support this view because
the VMOF brain region related to self-control behavior in
the frontal lobe shows a low correlation with ICT usage
[41], as demonstrated in this study by the inability to
properly distinguish the ODD group from the DD group.
Moreover, the rationale behind excluding VMOF in our
statistical framework is that previous studies have shown,
when controlling for other maladaptive behaviors, specific
brain regions associated with internet use excluded the
VMOF, retaining the regions of the left temporal cortex [42].
Collectively, our findings imply that there is no significant
relationship between self-control behaviors of internet use
related to reward circuits in the aging population. In contrast
to young people, older adults are not easily prone to internet
addiction, and older adults who use the internet do not exhibit
structural damage of the brain. Moreover, the key brain
regions that differentiate between the 2 groups are primarily
located around the hippocampus and temporal lobe, align-
ing with prior research exploring the functional activation
patterns associated with internet use in older adults. Older
individuals engaging in internet activities exhibit heightened
activation in regions like the hippocampus and temporal pole,
linked to intricate cognitive processes [43]. These results
align with this study, suggesting the potential neural plasticity
of these cortical areas associated with advanced cognitive
functions in the context of internet utilization. In contrast to
prior research, this study did not find a significant contri-
bution of the visual cortex in distinguishing internet usage
among older individuals [43-45], but tactile and auditory-rela-
ted cortices showed notable involvement. This indicates that
older individuals rely less on visual stimuli in their internet
activities. Additionally, as smartphones advance, managing
internet use does not always require visual prompts; for
example, individuals can use voice commands and browse
web content using the auditory mode. In addition, even
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simple interactions with the internet via the touchscreen
interface of smartphones could lead to sustained neural
cognitive changes [46]. This finding aligns with the out-
comes of this research, indicating that specific brain regions
associated with sensory and tactile functions can differentiate
between groups.

The GMV features of each voxel in the aforementioned
brain regions are considered effective in distinguishing
structural variances between the DD and ODD groups. The
rationale for the discriminative capability of these voxels may
stem from cognitive-behavioral distinctions linked to their
features and the conditions of the DD and ODD groups.
Findings from this research indicate that more than 80%
of the voxels in the delineating brain regions can predict
executive function, with processing speed following closely.
These results align with behavioral outcomes, highlighting
the predictive capacity of gray matter structural traits in
differing cognitive functions between the 2 groups. Notably,
brain regions exhibiting relatively strong predictive efficacy
encompass the temporal pole, parahippocampal gyrus, and
hippocampus. These brain regions are all associated with
a range of neurodegenerative diseases and may explain the
cognitive impairments found in these diseases.

The temporal pole plays a significant role in the ini-
tial pathological progression observed in Alzheimer disease
[47]. Notable gray matter deterioration in this region has
also been detected during the initial stage of Alzheimer
disease [48]. Furthermore, in another study, the degree of
temporal pole atrophy was significantly elevated in the
mild cognitive impairment group compared to the healthy
control group, showing a specific correlation with executive
function performance [49]. Similarly, the brain structural
features of the parahippocampal gyrus and hippocampus
are also associated with the preclinical stages of neurode-
generative diseases [50-52]. Although the decline in these
regions is commonly believed to be more related to memory
impairments, a significant association was observed between
reduced volume in the parahippocampal and hippocampal
regions and cognitive decline across various domains, such
as episodic memory, working memory, processing speed, and
executive function [50,53,54].

The absence of the hippocampus in predicting individu-
als’ memory performance might appear puzzling at first.
However, in this study, this result is reasonable because the
computational framework of this study distinguishes the DD
and ODD groups based on the structural characteristics of
each voxel obtained, and memory is not included in charac-
terizing the cognitive performance differences between the
2 groups. As a result, the prediction of individual cogni-
tive abilities based on brain structure features that differenti-
ate these groups without involving memory aligns with the
behavioral findings. Additionally, we adopted the searchlight
technique, which is particularly effective for group differen-
tiation [55-57]. Starting from the research question using
this method, sacrificing a complete brain region’s struc-
tural representation is necessary. The correlation between
hippocampal GMV and memory is strongly influenced
by hippocampal subfield segmentation [58]. Hence, the
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limitation in predicting individual memory without account-
ing for hippocampal segmentation is justifiable.

Initially, we might not instinctively correlate the MFG
with memory-related functions. Upon conducting in-depth
studies, it has been revealed that the MFG predominantly
contributes to attentional functions [59]; moreover, it assumes
a more prominent controlling function in the process of
semantic integration [60]. Consequently, our initial hypothe-
sis posited that the cognitive functions more closely associ-
ated with the decline of the MFG were mental speed, which
serves as an indicator of attention, and executive function,
reflective of cognitive control. However, the actual correction
results indicated that the decline in episodic memory was
correlated with the reduction in the GMV of the MFG.

Nevertheless, the corrected data within this study
demonstrated that the MFG was linked to the decline in
episodic memory, albeit its effect size might confer limited
explanatory power (R?=2.89%). Notably, extant research on
the function of the MFG has predominantly focused on the
entire region. Given its spatial proximity to the attention
network and the supplementary motor area, the functional
interpretations are intertwined [61]. In the current research,
the region of the MFG under investigation was closer to
the inferior frontal lobe, suggesting that the MFG might be
indirectly involved in memory integration via the prefrontal
circuitry [62,63]. Moreover, few studies have delved into
the relationship between the MFG and its functions from
the perspective of age-related decline in the older adult
population. Hence, despite the issue of an insufficient effect
size, we can still get some enlightenment from it. Age-
related declines in episodic retrieval have been associated
with volume reductions in the MFG [64-66]. Studies have
demonstrated that better structural integrity in the posterior
hippocampus and MFG is associated with enhanced within-
network connectivity, thus improving associative and source
memory performance in older individuals [67]. Therefore, the
results of this study show that the slow rate of gray matter
decline in the MFG corresponds to lower memory perform-
ance decline. However, in longitudinal studies, the increase in
MFG activation associated with individuals’ memory decline
also corresponded to the longitudinal decrease in the MFG
brain structure [68,69]. The structural deterioration of the
MEFG results in nonbenign functional compensation, linked to
reduced cognitive performance and potential brain pathology
[70-73]. Hence, the preservation of frontal lobe integrity
prompted by older adults engaging with the internet can
promote a positive brain function pattern without compromis-
ing the frontal lobe’s behavioral control, thereby partially
contradicting the hypothesis that age-related frontal lobe
inadequacy gives rise to negative online behaviors.

Our study can be further expanded to an alternative
perspective, as mobile-device-based cognitive training has
emerged as a crucial strategy to address the challenges that
dementia poses for cognitive health [74,75]. Nevertheless,
due to constraints in clinical randomized controlled trials,
the duration of cognitive training interventions typically falls
short of 1 year. Moreover, the limited sample size result-
ing from challenges in recruitment and participant attrition
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diminishes statistical power, potentially yielding adverse
outcomes, particularly concerning gray matter neuroplasticity
[76-78]. These factors have sparked debates regarding the
efficacy of cognitive training [79,80]. Based on a long-
term clinical cohort of big data, this study indicates that
the aging population can benefit from the simple use of
mobile devices and the internet. Additionally, it revealed
consistent gray matter structural variations. Although earlier
studies indicated the challenge in reversing gray matter
atrophy during aging [81], the rate of gray matter altera-
tions in aging is gradual [82]. Hence, this study proposes a
different perspective, suggesting that extended engagement
with mobile devices and the internet, leading to increased
stimulation and information acquisition for older adults, may
offset the progression of gray matter aging to some extent.

Future Directions

The future development of cognitive decline prevention
strategies through mobile devices presents a multifaceted
opportunity for advancing personalized health care. For
example, neuroplasticity-based cognitive training is an
effective way to enhance cognitive function and prevent
dementia in healthy older adults. With the spread of the
internet and mobile devices, technological advances foster
the swift development of computerized cognitive training
(CCT), making it possible for older adults to access adaptive
multidomain cognitive training in the community or even in
their homes. CCT is a convenient and sustainable combina-
tion of existing cognitive training and ICTs. Nevertheless,
our study revealed that when it comes to leveraging mobile
devices to enhance the cognitive abilities of older adults,
extensive cognitive engagement on their part might not be
necessary. Instead, they merely passively absorb information
and, to a certain extent, cooperate through finger movements,
which can nonetheless facilitate cognitive improvement. This
finding holds significant implications for the future design of
more diverse forms of CCT.

However, our study has certain limitations. The conclusion
that the causal relationship between overcoming the DD and
brain structural preservation remains inadequately established
is appropriately considered. Although the longitudinal data
provide valuable insights into the correlation between ICT
use and slower decline in MFG volume, the study design
cannot definitively demonstrate that ICT use is the causal
factor. Alternative explanations, such as preexisting cognitive
differences that might predispose certain individuals to adopt
technology, require more thorough consideration. Therefore,
we suggest that future research further explores this correla-
tion.

Based on the above findings and limitations, we recom-
mend the following for future work. First, more rigorous
experimental designs can be used to better understand the
causal relationship between ICT use and cognitive improve-
ment. Second, it is suggested to conduct further research to
identify and control for potential confounding factors such
as preexisting cognitive differences. Finally, the exploration
of more diverse methods of cognitive enhancement through
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mobile devices can be expanded to develop more personal-
ized and effective CCT programs.

In summary, while our study provides some evidence
of the potential of mobile devices in enhancing the cog-
nitive abilities of older adults, further research is needed
to strengthen these conclusions and explore more effective
strategies for preventing cognitive decline.

Limitations

Although this study provides critical insights into the DD’s
health impacts, several limitations warrant consideration.
First, our operationalization of digital engagement through a
single self-reported frequency question (“How often do you
use a computer and mobile devices?”) inherently simpli-
fies the multidimensional nature of digital access. Although
validated by national surveillance patterns and our prior
cohort findings [25], this approach cannot capture critical
nuances like device ownership, usage contexts (eg, independ-
ent vs proxy-assisted use), or application-specific competen-
cies. Subsequent studies would benefit from multidimensional
assessments incorporating device availability (eg, “Do you
own internet-enabled devices?”), usage autonomy (“Do you
need assistance accessing digital services?”), and functional
digital literacy measures. Second, the ubiquitous adoption
of the internet and information technology has substan-
tially decreased the costs associated with participating in
social interactions; however, this study did not use varia-
bles measuring mental health, because only a depression
scale was included. In the next stage of our cohort study,
we propose to collect more variables of mental health to
investigate the social activity deficiencies caused by the
DD in the older population. Third, concerning the quantifi-
cation of the DD, this study did not differentiate between
the specific utilizations of ICTs. Some participants may have
only passively received phone calls and messages, lacking
active engagement with ICTs for accessing further stimuli.
Consequently, there remains the potential for misclassifica-
tion of these individuals into the ODD group. Finally, while
PSM was rigorously applied to balance observed covari-
ates between the intervention and control groups, residual
confounding from unmeasured variables (eg, socioeconomic
status, prior exposure to cognitive training programs, or
genetic predisposition) may persist. Future studies should
incorporate comprehensive baseline assessments of these
potential confounders through multimodal data collection (eg,
geocoded socioeconomic indices, detailed lifelong learning
histories). Sensitivity analyses using quantitative bias analysis
methods could further quantify the potential impact of
unmeasured confounding on effect estimates.

Conclusion

This study provides preliminary evidence that older adults
who engage with digital technologies exhibit associations
with preserved GMV in Alzheimer disease—vulnerable
regions. Our cross-sectional analyses suggest structural
differences in the fusiform gyrus, hippocampus, and
parahippocampal gyrus between digitally engaged (ODD) and
nonengaged (DD) groups, with these regions demonstrating
predictive value for executive function and processing speed.
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Longitudinal observations indicate a correlation between
technology use and slower GMV decline in the MFG,
though the observational design precludes causal attribu-
tion. Although these findings highlight potential neurostruc-
tural correlates of digital engagement in aging, alternative
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predisposing individuals to technology adoption—require
systematic evaluation. Future intervention studies are needed
to clarify whether targeted digital training can modulate GMV
trajectories and whether such changes translate to clinically
meaningful cognitive preservation.

explanations—such as preexisting cognitive advantages
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