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Simulation-based methods are an alternative approach to sample size calcula-

tions, particularly for complex multilevel models where analytical calculations

may be less straightforward. A criticism of simulation-based approaches is that

they are computationally intensive, so in this paper we contrast different

approaches of using the information within each simulation and sharing infor-

mation across scenarios. We describe the ‘‘standard error’’ method (using the

known effect estimate and simulations to estimate the standard error for a sce-

nario) and show that it requires far fewer simulations than other methods. We

also show that transforming power calculations onto different scales results in

linear relationships with a particular family of functions of the sample size to be

optimized, resulting in an easy route to sharing information across scenarios.
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1. Introduction

For applied statisticians, one of the most asked questions by research colla-

borators is ‘‘How big should my study be?’’ Sample size calculations are gener-

ally used to optimize the size of a study from a statistical point of view

particularly when using the null hypothesis significance testing (NHST)
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approach to statistics. They are thus often called power calculations as the opti-

mization is typically based on finding a particular set of sample conditions that

exceeds a desired power for a NHST and we will focus on such power calcula-

tions in this paper.

As statistical modeling techniques have advanced to allow models to capture

the many forms of dependence in data so the sample size calculations to design

studies with such dependency become more complex. Multilevel or mixed effect

models are now routinely used in most disciplines to analyze data with various

forms of clustering and software packages, like PINT (Bosker et al., 2003), opti-

mal design (OD; Spybrook et al., 2011), and SPA-ML (see Moerbeek &

Teerenstra, 2016), that use classical theory and large sample approximations to

estimate sample size calculations for such models have been in existence for

many years. PINT implements the formulae given in Snijders and Bosker (1993)

while OD builds on the work in Raudenbush (1997) and Raudenbush and Liu

(2001).

Such packages are very fast but consider a limited set of designs for which

theory and/or approximations exist, for example having balanced numbers of

observations within each cluster, one level of clustering, normal response vari-

ables, or data from randomized controlled trials. Specific extensions, for exam-

ple, to more levels (de Jong et al., 2010), or cross-classifications (Moerbeek &

Safarkhani, 2018), can be found but are less easily accessible to applied

researchers via commonly used software.

An alternative approach is to use simulation and packages that use this

approach have also been around for some time, beginning with packages like

ML-DES (Cools et al., 2008) and MLPowSim (Browne et al., 2009). The advan-

tage of a simulation-based approach is that one can simply generate simulated

datasets that capture all aspects of the design in question and then fit the required

statistical model to these datasets and estimate the power, for instance, by com-

puting the proportion of datasets for which the null hypothesis is rejected; this

avoids development of further theory which may be intractable or a poor

approximation for a specific design. Simulation-based techniques are now routi-

nely used and, as detailed in Gelman and Hill (2007), can be coded up for spe-

cific problems in software packages like R. There is also the simR R package

(Green & MacLeod, 2016) that uses simulation approaches for generalized lin-

ear mixed models.

When dealing with more complex models, one criticism of performing sam-

ple size calculations, irrespective of the method used, is that they require one to

specify values for many quantities, some of which are hard to estimate without

collecting the data required for the study. Murayama et al. (2022) propose an

interesting method, currently limited to specific designs, that uses a summary

statistics technique and single-level power software such as G*Power (Faul

et al., 2007) to get equivalent multilevel sample size estimates.

Optimizing simulated multilevel sample sizes
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Another criticism specifically of simulation-based techniques is that, due to

their computational complexity, they can be time-consuming to use and it is this

criticism that we aim to address in this paper. Typically, a simulation procedure

will investigate a series of scenarios, for example varying the number of clusters

for which data are collected where each scenario corresponds to a different num-

ber of clusters. It will then perform many simulations for each scenario to get a

power estimate for that scenario and select the scenario that optimizes the cri-

teria required, for example, finding the minimum number of clusters for which

power exceeds 0.8.

Often simulation-based techniques are performed by running many simula-

tions for each scenario and then combining results to give an estimate of power

for that scenario, with each simulation contributing little to the overall power

estimate of its scenario. Each scenario is then treated independently, and the sce-

nario with the minimum sample size that gives the desired power is selected.

The aim of this paper is to consider whether we can improve on previous simula-

tion approaches by considering firstly how to get the most information from a

single scenario and secondly how to share information across scenarios. Here

we consider whether knowledge of how power calculations work from an analy-

tical standpoint can speed up the process.

Although fitting multilevel models has become far faster over the past

decade, sample size determination via simulation can still be highly computa-

tionally intensive. Consider, for example, a study requiring the collection of

data on students within schools. We might look at say nine different numbers of

schools and 10 possible numbers of pupils per school thus creating 90 scenarios.

If we need to run 1,000 simulations (which may not be sufficient) for each sce-

nario, we are effectively fitting 90,000 statistical models. If each model takes

only 1 second to run, this will still result in a total run time of 1 day. These days

simple multilevel models will be much quicker to fit than this but, as models

get more complicated or require more complex estimation procedures such as

adaptive quadrature or Markov chain Monte Carlo (MCMC), the estimation

time per model can be much longer. Therefore, any method that can reduce the

total number of models to fit, either by reducing the number of simulations per

scenario or the number of scenarios to consider, will have a major impact on

the speed of the simulation approach. This reduction of model fitting is the

motivation for this paper.

We introduce simulation-based approaches in Section 2 by considering how

best to estimate power for a set of simulations for one simple single-level sce-

nario. In Section 3, we consider the optimal way to combine a series of scenarios

to perform a sample size calculation faster, firstly for a single-level model, then

followed in Section 4 by a multilevel model. In Section 5, we extend this idea to

a series of different multilevel modeling scenarios that serve to motivate a par-

ticular transformation approach, illustrate it when theory is not available, and
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finally show the challenges of non-normal responses. We end in Section 6 with

a discussion and guidance on how to implement the approaches introduced in

this paper. We use the R package version 4.4.3 (R Core Team, 2023) for all the

statistical analyses in this paper; all R scripts are available in the Supplemental

Materials (available in the online version of this article).

2. Alternative Simulation Methods for Power Calculations

To fix ideas, let us first consider a very simple study design in education.

Suppose we are interested in an intervention within a single elementary school.

We use a pre-test–post-test design where an assessment is performed prior to

the intervention and again after the intervention and we wish to see if student

performance improves. We note that in practice a far better design would also

include a control group but we are here trying to keep things simple for illustra-

tion of the sample size procedure.

The null hypothesis of no change can be tested using a paired t-test. Let us

assume that the assessment is a test score out of 100, and we anticipate an

improvement in the average mark from 50 to 53. A paired t-test requires the

variance in the test marks at each occasion and the correlation between the two

marks to compute the variance (or standard deviation) in the difference in marks

(i.e., the improvement).

The paired-sample test can be formulated as a statistical model as follows:

yi =b0 + ei, ei;N 0,s2
e

� �
, ð1Þ

where yi is the change score (post–pre-difference) for student i and b0 is the

average difference (expected to be positive). Suppose our aim is to detect an

improvement of b0 = 3 marks (and that we expect the standard deviation in the

change is se = 9 marks, that is, for 95% of students the change score is expected

to range from a reduction of 15 marks to an increase of 21 marks. The sample

size calculation is therefore used to find how many students are required to show

that on average students improve (with a power of 0.8).

The simulation approach involves generating random samples of different

sizes from a Normal (3, 92) distribution and looking at the summary statistics

produced in each simulation. Typically, when we move to multilevel models

our sample sizes are large and we are able to revert to using a z-test (assuming

a Normal distribution) rather than a t-test and so we will use this here noting

that the power produced will be higher than for the more correct t-test. For illus-

tration purposes, we will focus on one sample size only, 70 students, which as

we show next, corresponds to a power of approximately 0.8 of typical interest.

The standard formula that relates power and sample size for an arbitrary para-

meter g is
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g

SE ĝð Þ ’ Z1�a
2
+ Z1�b, ð2Þ

where in our example g is the expected improvement of three marks, Z denotes

a quantile of the Normal distribution, a is the size of the test, which is fixed

most often at .05 as below, and 1� b the unknown power. For this problem,

the estimated standard error would be s=
ffiffiffi
n
p

for a dataset of size n and a sample

standard deviation of s, but for a sample size calculation we instead assume a

value for the underlying (population) standard deviation, that is, se = 9 which

we can use along with n= 70 to calculate power for this sample size.

Rearranging (2) with SE ĝð Þ= 9==70 gives

Z1�b =
g

se

ffiffiffi
n
p
� Z1�a=2 =

3

9

ffiffiffiffiffi
70
p

� 1:96= 0:82867,

which gives a value for the power of 1� b= 0:7963.

Returning to our simulations, we therefore have two decisions to make: how

many simulations do we run, and what do we do with each of the simulated

datasets? Here we consider two simulation-based approaches, which we shall

refer to as the zero-one and standard error methods. Unlike theory-based meth-

ods, which give an exact power estimate, simulation-based approaches are sub-

ject to Monte Carlo errors so a slightly different answer will be obtained for

each set of simulations. The larger the number of simulations used the smaller

will be the Monte Carlo variation. We describe each approach below before

comparing their performance for the above illustrative paired t-test example.

2.1 Zero/One Method

The most used approach in many simulation-based sample packages is what

Browne et al. (2009) call the ‘‘zero/one method.’’ Here, for each simulation, we

construct a 95% confidence interval for the parameter of interest, the mean

improvement in scores in the above example, and determine whether it contains

0. The proportion of simulations for which the interval does not contain 0 is an

estimate of the power of the test, denoted by p0, 1. So, for this example, when

we run m simulations and the sample size is 70 then each simulation t will have

a mean �yt and standard deviation st and our power estimate is as follows:

p0, 1 =
1

m

Xm

t= 1

I �yt � Z0:025

stffiffiffiffiffi
70
p .0

� �
+ I �yt +Z0:025

stffiffiffiffiffi
70
p \0

� �� �
, ð3Þ

where I ½ � is an indicator function that equals 1 if the identity inside the brackets

is true, 0 otherwise. We therefore count the number of confidence intervals that

are all positive or all negative and convert this to a proportion to give a power

estimate. As we are considering binary indicator variables, for each simulation,
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we can use the Binomial distribution to obtain an interval to express uncertainty

due to simulation for our power estimate as follows:

p0, 1 � Z0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0, 1 1� p0, 1ð Þ

m

r
, p0, 1 +Z0:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0, 1 1� p0, 1ð Þ

m

r" #
:

The advantages of this approach are that it is simple to understand and corre-

sponds to what we will do with the real data we collect. Its disadvantage, how-

ever, is that it uses the minimum possible information per simulation: if a

simulation results in a confidence interval that nearly covers 0 this is treated

identically to a confidence interval that is far below or above 0, that is, the prox-

imity to 0 is ignored.

2.2 Standard Error Method

When performing a power calculation, the value assumed for the parameter

of interest is known and used in the simulation procedure. Here, we know the

underlying mean difference, m (assumed to be 3 in the example above), and the

challenge in power calculations is to evaluate the standard error associated with

estimation of m. The software package PINT simply gives standard errors for

the parameter estimates, allowing users to convert them to power estimates

should they require. A second approach one might therefore consider, which

was first suggested to us by Hox (personal communication 16th April 2007), is

the ‘‘standard error’’ or ‘‘SE’’ method where for each simulation we simply

record the standard error of the parameter. We can then calculate the average of

these standard errors and use this along with the known parameter value to form

the z-score and hence the power estimate. For example, with a known mean dif-

ference of m = 3 and sample size n = 70 we would have

ZSSE =
3

1=m
Pm

t= 1 st=
ffiffiffiffiffi
70
p

" #
: ð4Þ

In fact, using the mean of the standard errors is not such a sensible idea as for

small sample sizes the sample mean is biased (downwards). This is because

although the sample variance estimator, s2 is an unbiased estimate of the popula-

tion variance, s2
e , the sample standard deviation (and therefore equivalently the

standard error of the mean) is not unbiased for the population standard deviation.

An alternative approach is therefore to calculate the root-mean-square of the

standard error (equivalently plugging in the mean of the standard error squared):

ZSSE =
3

1=m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

t= 1 s2
t =70

p
" #

: ð5Þ
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Under the alternative hypothesis then ZSSE can be used in the standard power

formula: pzs =F(ZSSE � Z1�a=2) where F is the cumulative distribution func-

tion of the standard Normal distribution and a is the size of the test (where

Z1�a=2 is replaced by Z1�a if we wished to perform a two-tailed test). We antici-

pate that by the fact that this method is using more information, that it is less

noisy than the ‘‘zero/one’’ method, leading to fewer simulations being required

for an accurate power estimate.

2.3 Simulation Method Comparison

Both the ‘‘zero/one’’ and standard error approaches take equivalent times to

run per simulation so any benefit of one approach over another will be in being

able to run it for less simulations. To illustrate this, we vary the number of simu-

lations used from 50 to 5,000 (in steps of 50 to 500 and then steps of 500 to

5,000) and plot Monte Carlo intervals around our estimates to reflect the uncer-

tainty of our power estimate that is caused by the Monte Carlo nature of our pro-

cedure. Here, we use a resampling approach by repeating our simulations 1,001

times and from these 1,001 estimates (per simulation size) picking the 2.5% and

97.5% quantiles. Figure 1 plots the resulting Monte Carlo intervals for each

number of simulations. We can see that the SE method compared to the 0/1

method reduces the uncertainty to a large degree. The Monte Carlo uncertainty

intervals for the 0/1 method require thousands of simulations to be as small as

those for the SE method with just 50 simulations.

We could clearly repeat this comparison for more complex multilevel mod-

els. The one possible disadvantage of the SE method, over the 0/1 method, arises

when we use a procedure that gives biased parameter estimates, which can occur

for certain quasi-likelihood estimation procedures that were historically used for

discrete responses (Browne & Draper, 2006; Rodriguez & Goldman, 2001). As

the variance and hence the standard error of parameter estimates in models for

discrete responses is often related to the mean then the SE method involves mix-

ing an unbiased true parameter value with a biased standard error, and this may

result in a biased and over-optimistic power curve. We will revisit this in

Section 5.3 when we consider a multilevel logistic regression example.

The other consideration is bias in the variance estimator itself as it is well

known (Goldstein, 1989) that maximum-likelihood estimation gives biased esti-

mates for variances (particularly for small samples) which in turn results in bias

in the estimation of standard errors of fixed effects, and so it will be preferable

to use Restricted Maximum Likelihood (REML) estimation to remove this bias,

and we will use this in later examples for the SE method (but not for the 0/1

method).

It is clear from this simple single-level example that we can reduce the

computational burden of simulation-based power calculations for one particular
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scenario by switching to the SE method but can we do even better when consid-

ering a series of scenarios? We look at this next.

3. Using Simulation Approaches for a Series of Scenarios in a Single-Level

Modeling Setting

In Section 2, the SE method was found to reduce the Monte Carlo standard

errors of the simulation-based approach to sample size calculations in a single

scenario. Typically, however, the motivation for power calculations is to choose

between different data collection scenarios, for example, different sample sizes,

and to find the sample size at which power first exceeds a threshold (often 0.8).

Here simulations for a sequence of scenarios of increasing sample size can be

performed and by interpolation the point where the resulting curve crosses the

threshold is found.

There are methods to speed up the selection from this sequence, and Price

(2017) considered various approaches commonly used in optimization problems

to reduce the number of different sample sizes to be evaluated. For example,

one can use bracketing intervals, that is, two sample sizes with respectively

FIGURE 1. 95% Monte Carlo bands for the two approaches to simulated power

calculations for different numbers of simulations in a simple single-level model (1).
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lower and higher power than desired, followed by bisection or secant methods.

Bisection involves repeatedly dividing the set of possible sample sizes in two

while keeping the half that contains the optimal sample size. Secant methods

similarly reduce the set of possible sample sizes via linear interpolation to home

in on the desired sample size (see Price, 2017 for more details). Although these

methods will reduce the number of scenarios required to be investigated by

homing in on the correct sample size, they still treat each scenario in isolation

or in pairs.

Ideally, it would be better to share information across scenarios more gener-

ally. One method to do this is to use the power estimates from each scenario and

the respective sample size as inputs into a (parametric) modeling approach to fit

the power curve. Price (2017) investigated this with the ‘‘0/1 method’’ where a

dataset consisting of the 0s and 1s for each simulation and the respective sample

sizes considered were used to fit a logistic regression:

Ytj;Binomial(1, pj), log
pj

1� pj

� �
=b0 +b1nj; ð6Þ

where Ytj is the 0 or 1 from the tth simulation for the jth sample size, nj and pj

is the associated power. As noted by Price (2017) functions of nj could also be

used instead of simply nj in the linear predictor and later we will see that this is

important to consider.

3.1 Example 1: Single-Level Intervention Example

Here, we take a slightly different approach to Price (2017) as we wish to

build on the outputs of the more efficient SE method (rather than the 0/1

method) considered earlier. If we repeat the SE approach for several different

sample sizes, this will result in a series of corresponding power estimates that

form a power curve. We will illustrate this for our previous intervention exam-

ple from Section 2, but this time with the number of simulations per scenario

fixed at 1,000. The number of students in the sample changes for each scenario

from 10 to 100 in steps of five as our aim is to find the minimum sample size

that gives a power of 0.8.

The power curve resulting from the simulations can be seen in Figure 2

below.

Figure 2 shows a loess (locally estimated scatterplot smoothing) curve

formed from the points for each scenario, and we can read off where the curve

crosses 0.8 to get the desired sample size. Modeling this curve parametrically is

perhaps harder but we can use transformations and the form of the power calcu-

lations formula to find an easier relationship to model.

The standard formula for a power calculation is given by (2). For our specific

case where the standard error is sffiffi
n
p we can rearrange the formula as

Browne et al.
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Z1�b ’ � Z1�a=2 +
g

s

ffiffiffi
n
p

: ð7Þ

In terms of relating power to sample size, we can see that fitting a linear

regression to the z-scores of the power against the square root of sample size

should give a straight line fit with the intercept equal to � Z1�a=2 = � 1:96 for

a = .05 and the slope equal to the standardized difference g
s
. In Figure 3, we con-

vert the data from Figure 2 by transforming the powers to z-scores

Z1�b =F�1(1� b) and take the square root of the sample sizes to confirm this

linear relationship.

FIGURE 2. Power curve for the mean difference in scores in the single-level

intervention example showing power increasing as sample size (n) increases with sample

size for a power of 0.8 identified.
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Figure 3 shows a clear linear relationship with the black points from 1,000

simulations per setting lying largely on the line and with increasing Monte

Carlo errors as we reduce the number of simulations to 200 and then to 50. This

implies that, due to the linear relationship, we could get the same straight line

from a smaller number of different sample size scenarios, and as few as only

two. This would reduce the simulation time dramatically: Here we have consid-

ered 19 different sample sizes so only running two would reduce computation

time to about 10% of the full running time. We could also reduce the number of

simulations per sample size as an alternative way of speeding up the simulation,

but there is a trade-off. For example, if we were to take just the first two sample

size scenarios and z-scores for 50 simulations (in light gray) then a straight line

joining these two points would be much steeper and diverge dramatically from

the black line plotted here. In 7fact, as is well known in the OD literature

(Berger & Wong, 2009), if we were to select only two sample sizes, then choos-

ing sample sizes that are further apart will typically result in less error. We will

consider these observations in the examples that follow.

FIGURE 3. Plots of z-scores against square root of sample size for the intercept

parameter representing the mean difference in scores in the intervention example with

50 (in light gray), 200 (in dark gray), and 1,000 (in black), simulations per sample size.
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4. Multilevel Modeling

4.1 A First Balanced Multilevel Model

We next consider how our first example, model (1) extends to a multilevel

setting (example 2). We will generalize the example of a student-level interven-

tion in a single elementary school to multiple schools. Suppose that it is believed

that there will be variability across schools in the impact of the intervention and

the aim is to detect a smaller effect (2.5 marks) than in example 1 to reflect the

likelihood that the school in that example might be more engaged in the process

than a school in general. We will again assume a within-school variance of

s2
e = 81 but introduce a between-school variance of s2

u = 16 so that school

variability is 16.5% of the total, which is typical for educational data.

Here the model for example 2 is

yij =b0 + uj + eij, uj;N 0,s2
u

� �
, eij;N 0,s2

e

� �
, ð8Þ

where i indexes students and j indexes schools and we are interested in the

power to detect b0, the average difference in marks due to the intervention.

When we consider power calculations for a two-level model for a balanced

design then there are two possible sample sizes that can vary—the number of

level 2 units (N , schools in this example) and the number of level 1 units per

level 2 unit (n, students, which for now we assume is the same for all schools).

For the balanced setting the package PINT (Bosker et al., 2003) can be used to

calculate analytically the power for different sample size scenarios and with a

model with just an intercept we can use the design effect (DEFF),

DEFF= 1+ r n� 1ð Þ, ð9Þ

as a multiplier to scale up overall sample sizes from a single-level model, where

r is the intra-class correlation (ICC),
s2

u

s2
u +s2

e
(in our example .165), so the larger

r the larger the design effect. As the formula depends on n the impact of increas-

ing the number of students per school increases the overall sample size but also

the design effect. However, the number of schools, N is not involved in the for-

mula so studies with more schools but the same total sample size (and thus fewer

students per school) will have more power. Note that we have assumed the same

within-school variance as in example 1, so the addition of between-school varia-

bility leads to an increase in the total variance, which has an impact on power.

Snijders (2005) gives further design effect formulae for all types of fixed

effect parameters in two-level models. These design effect formulae have impli-

cations for the speed-ups proposed for the simulation-based sample size calcula-

tions in the previous section. We can input the parameter values for our model

into the PINT software, and it will produce standard error estimates for the

Optimizing simulated multilevel sample sizes
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parameter of interest, b0, for many different sample size scenarios. We can then

convert these standard errors to the equivalent power estimates (see Figure 4).

In Figure 4a, we see a series of curves, one for each number of students per

school (from 10 to 60 in steps of 5), where we are plotting power against a num-

ber of schools. As the number of students per school increases the power curves

show higher power. For any given number of students per school, there is a min-

imum number of schools that will give a power greater than 0.8 (which range

from 23 to 31 here). To check whether we can use transformations to get a linear

relationship, Figure 4b plots the z-score transformed powers against the square

root of the number of schools, and this indeed gives a series of straight lines. For

a given number of students per school, we could thus simply choose two differ-

ent numbers of schools and use them to construct the regression line to give

power estimates for any number of schools.

It is worth noting, however, that we might also be faced with the other sam-

ple size question of how many students we will need to sample per school for a

fixed number of schools. Figure 5 shows the analogous plots for this situation.

(a) (b)

FIGURE 4. (a) Power curves for example 2 showing power plotted against number of

schools with separate curves for different numbers of students per school. (b) Equivalent

plot of the z-transformed power against square root of number of schools.
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The power curves in Figure 5a are much flatter than those in Figure 4a. This

is in part due to each point on the curve representing an increase of five students

(rather than schools) but also the fact that the clustering limits the added value

of an additional student but not that of an additional school. In Figure 5b, the

intra-class correlation is pulling down the previously straight lines we saw in

Figure 4b. In fact, in the extreme case of a purely level 2 response, the lines

would become horizontal as there would be no gain in adding students to exist-

ing schools (see also Hemmings et al., 2011).

In this simple example, we can in fact calculate a different function of n that

will form a linear relationship as we know the standard error of the intercept

estimate is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2

e + ns2
u)=nN

p
. The z-score is proportional to the inverse of the

standard error and so some rearrangement, treating everything except n as

known constants, results in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(1+ ns2

u=s2
e)

p
playing the role of

ffiffiffi
n
p

in the

single-level model. The plot of the z-scores against this function in Figure 6

shows that indeed we again get a series of linear relationships, one for each

number of schools N.

(a) (b)

FIGURE 5. (a) Power curves for example 2 showing power plotted against numbers of

students per school with separate curves for different number of schools. (b) Equivalent

plot of the z-transformed power against square root of number of students per school.
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We have shown that, for a variance components model with balanced data,

there exist two transformations of the two different sample sizes, the number of

clusters N and the number of observations per cluster n, that exhibit linear rela-

tionships with the z-score transformation of power. We can therefore use the

power estimates from as few as two different sample size scenarios to construct

a power curve to find the optimal number of schools for a fixed number of stu-

dents per school, and for the optimal number of students per school for a fixed

number of schools.

We have deliberately considered a simple example here but generally power

calculations for the effects of predictor variables are of interest. Snijders and

Bosker (1993) generalize standard error estimation for all two-level multilevel

models including predictor variables defined at both levels and random slope

models. These standard errors can then be used for power calculations for test-

ing the significance of these predictor variables.

In terms of the transformation approach, the linear relationship with the z-

score of the power and the square root of the number of level 2 units will hold

in each case. For the alternative sample size question regarding the number of

FIGURE 6. Plot of z-transformed power estimates against
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(1+16n=81)

p
for

example 2 to show that we can find a function of cluster size that is linearly related to

the z-score of power.
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level 1 units to choose per level 2 unit, it should also be possible (by rearrange-

ment of the formulae in Snijders, 2005) to construct a function of n that exhibits

a linear relationship with the z-scores. Interestingly, for the random intercept

model, the relationship will depend on properties of the predictor variable. In

two-level random intercept models where the predictor is purely a level 1 pre-

dictor, that is, does not vary across level 2 units, then the linear relationship will

be with
ffiffiffi
n
p

(albeit with a different intercept and slope) as the clustering does

not have an impact on the precision of the slope coefficient; in contrast, for a

purely level 2 predictor, that is, one that is constant within each cluster, the lin-

ear relationship will be with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(1+ ns2

u=s2
e)

p
, as for the intercept in the var-

iance components model. In many cases predictors have both a level 1 and level

2 component and then the function that exhibits linearity will be somewhere in

between. For random slopes models, the relationship is more complex and will

depend on the complete level 2 random effects variance-covariance matrix.

What is interesting is that even though things can get more complicated we

can typically rearrange the formula to be of the form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(1+ cn)

p
for some c

that depends on model parameters. For this simple example, we can see that

c = 0 when we varied the number of schools whilst c = s2
u=s2

e when we varied

the number of pupils within schools and so c is playing the role of a penalty due

to the lack of independence in the data.

Although looking at these functional forms is interesting as it gives insight

into how the multilevel model inflates standard errors to account for clustering,

PINT will instantly give the standard errors required and so there is little need

for simulation-based methods here. We will therefore in Section 5 look at exam-

ples outside the balanced two-level normal response models that PINT covers.

First, however, we will perform a simulation study to compare possible methods

for speeding up the simulation-based approach in the context of the current

example.

4.2 Simulation Study to Assess Performance of Different Simulation-Based

Approaches

In Section 4.1, we illustrated how transformations of power curves can result

in linear relationships and hence can be indirectly used via a linear regression fit

to obtain parametric estimates of power curves using all the data from a series

of scenarios. In this section, we will now look at this in more detail via a small

simulation study.

We return to our education example of Section 4.1 but focus on one specific

sample size question. Let us assume our educational intervention is to be per-

formed in multiple schools by a single team that will visit each school in the

study on a single day per school but only have capacity to perform the interven-

tion on 20 students during that time. The question, therefore, is how many
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schools they should visit and this amounts to examining the power curve for 20

students in Figure 4a and finding where it crosses 0.8.

In PINT, we can consider a large range of numbers of clusters as it estimates

standard errors instantly. In contrast, when using simulation, the computation

time will depend on how many scenarios we consider so here we will only esti-

mate power for numbers of clusters from 10 to 50 in steps of five. This will

result in nine scenarios. As mentioned in Snijders and Bosker (1993) the stan-

dard errors from PINT are large sample approximations; more generally the

standard errors will depend on the estimation method that we use for the model

fitting. Here we use the lmer function in the lme4 R package and choose the

slightly larger REML estimates as the SE method requires unbiased standard

error estimates. We now describe three different methods to utilize the results

of our simulation.

Method 1: Consider the (perhaps standard) approach of treating the nine sce-

narios in isolation and recording the power for each. As the power estimates

should increase with the number of clusters, find the two scenarios that

bracket a power of 0.8 and use linear interpolation to find the smallest num-

ber of clusters with power .0.8.

Method 2: Take the z-scores for the two scenarios from the furthest apart

sample sizes (10 and 50 schools) and fit the regression line through these

two points against the square root of the number of clusters. Use the result-

ing linear regression line to predict the minimum number of clusters that has

a power greater than 0.8.

Method 3: Take the z-scores for the nine scenarios that correspond to the

power estimates and fit a linear regression of these z-scores against the

square root of the number of clusters. Use the resulting linear regression line

to predict the minimum number of clusters that has a power greater than 0.8.

Methods 1 and 3 use the full dataset whilst method 2 will reduce the time of

the simulations as it only needs to run simulations for two out of the nine

scenarios.

For each of the three methods, we report results using the SE method here

noting that similar improvements over the 0/1 method can be observed for this

example as earlier. As we are interested in speeding up the simulation proce-

dure, we will also consider three different numbers of simulations (50, 200, and

1,000) per scenario. If we consider 1,000 simulations as a reference, we will be

speeding the exercise up by factors of 20 and 5, respectively. This results over-

all in nine different method combinations in total. The simulation exercise was

performed 100 times using different random number seeds to investigate the

repeatability of the different methods in terms of which number of clusters they

propose. The simulations were performed using R code modified from that
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created by MLPowSim for similar models but also using the R parallel package

to run replications in parallel. Running 8 replications in parallel on a 3.80 GHz

8 core PC with 8 GB of RAM took 1 hour 25 minutes to run the 100 replica-

tions. Figure 7 illustrates the results of the simulation experiment:

Starting at the bottom right graph of Figure 7, we see that for 1,000 simula-

tions per scenario and the regression method (method 3) we get the anticipated

behavior with the same number of suggested clusters (26) for 98 of the 100

replications. The other 2 replications opt for 25 clusters which given from theory

the power for 25 clusters is 0.797, is perhaps not unexpected given the Monte

Carlo nature of the method. If we reduce to 200 simulations, we get 26 clusters

83% of the time but a decrease to 50 simulations per setting leads to a little more

variation in sample sizes with only 73% of replications giving 26 clusters.

In a similar way, a decrease in the number of scenarios leads to a small reduc-

tion in performance. Using only the 10 and 50 clusters data (method 2) does

well: for 1,000 simulations it also gives 26 clusters 88% of the time but drops

off to 65% and 46% when simulations are reduced to 200 and 50 simulations

respectively.

FIGURE 7. Estimated number of clusters required from simulation study with 20 students

per class. The columns of graphs represent three different numbers of simulations per

scenario. The rows in the graphs are in the order of methods 1 through 3.
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The more standard interpolation approach (method 1) does reasonably well

with 80% of replications giving 26 clusters for 1,000 simulations with 58% and

34% of replications giving 26 clusters for 200 and 50 simulations respectively;

its performance is similar to, but not quite as good as, method 2 but requires all

the data. It should be noted that for method 1, we are using linear interpolation

between the two bracketing sample sizes, and it is possible, therefore, that apply-

ing a smoothing method such as loess on the whole set of points may do slightly

better.

We have focused on one example for our simulation study in this paper,

though we have observed similar results for other examples. In summary, these

simulations have shown the following:

1. The approach of fitting a regression of the z-scores against the square

root of number of clusters appears to improve accuracy over a more

standard interpolation of the power estimates. We will look in the next

section at which more complex multilevel models this method can be

generalized to.

2. In terms of speeding up the simulations, the two approaches of reducing

the number of simulations per scenario and the number of scenarios used

in the regression will both reduce, to a degree, the accuracy of power

estimates, but will greatly speed up the procedure.

Software implementations of analytical formulae can be used to calculate

power estimates for the simple multilevel model considered here to calculate

power estimates. In the next section, we consider further, more complex exam-

ples to explore whether there are still linear relationships that will reduce the

time required.

5. More Complex Multilevel Power Calculations

In this section, we consider three scenarios that are not covered by PINT, but

that can be implemented in simulation-based packages like MLPowSim. We

show that for certain optimization problems, the regression-based approach can

still be used to improve the accuracy of the calculations and reduce computation

time.

5.1 Three-Level Modeling Example

A restriction of the theory-based PINT package (although not the OD or

SPA-ML software) is that it can handle only one level of clustering, that is, a

two-level model. This is not to say that analytical formulae cannot be used for

three-level scenarios, indeed Moerbeek et al. (2000), Konstantopoulos (2008),
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and de Jong et al. (2010) among others discuss such theory and some recent

theory-based power calculators include three level designs. As an alternative

approach Van Breukelen (2024) looks at equivalences between three-level, two-

level, and one-level designs to allow the use of simpler power calculators.

Continuing with our within-school intervention example, suppose that to

generalize from the specific teaching conditions experienced within a single

classroom it is decided to sample five children from each of four classes rather

than 20 students from one class. We now have a three-level structure with chil-

dren nested within classes nested within schools. For illustration, we have fixed

the number of students and classes per school and so our sample size question

reduces to how many schools we require. We will assume the same anticipated

effect of b0 = 2:5 marks, a between-school variance of s2
v = 16, a between-

class within-school variance of s2
u = 16, and a reduced residual variance of

s2
e = 64. The model takes the form:

yijk =b0 + vk + ujk + eijk , vk;N 0,s2
v

� �
, ujk;N 0,s2

u

� �
, eijk;N 0,s2

e

� �
, ð10Þ

where i indexes students, j indexes classes and k indexes schools, vk is a school

effect, ujk is a class effect and eijk is a residual term.

Figure 8 shows the power curve and the plots for the z-scores of the intercept

in this model against the square root of the sample size of highest-level units

(schools). We can once again see a linear relationship showing that the transfor-

mation idea extends to three-level models, in this case for the intercept. As with

the two-level model, this relationship with the square root of sample size at the

highest level also holds for the coefficients of predictors because adding units at

the highest level is not affected by the clustering that occurs within such units.

For changes to the number of units at lower levels, the situation is more com-

plex, as described below.

We might consider a slight variant of this design where we are constrained to

visit 30 schools (n3) and we want to determine how many classes (n2) we should

include in each school: choosing between two and eight classes and sampling

five children from each or choosing four classes but varying the number of chil-

dren (n1) from 2 to 10 in each class.

For our simple three-level variance components model, the standard error for

the intercept estimate is

SE b̂0

	 

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

e + n1s2
u + n1n2s2

v

n1n2n3

s
: ð11Þ

We can see immediately that when varying only the number of schools n3 the

standard error is simply proportional to 1=
ffiffiffiffiffi
n3
p

and hence the z-score simplifies

to ZS = a+ b
ffiffiffiffiffi
n3
p

(for some values a and b). The linear relationship can then

be seen in Figure 8. This will be the case for the highest level of clustering more
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generally and indeed, as with the two-level case, for the coefficients of any pre-

dictors in the model as well as the intercept. For varying the number of units at

the other levels, the formulae require rearrangement as described next.

In terms of changing the number of level 2 units n2, with the number of level

1 and 3 units fixed, we can rearrange to give

ZS = a0+ b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2= 1+

(n1s2
v)

(s2
e + n1s2

u)
n2

� �s
ð12Þ

for some values a
0

and b0. Figure 9a shows the z-scores calculated using this

expression as a function of n2. Finally, for changing the number of level 1 units

n1, with the number of level 2 and 3 fixed, we have

ZS = a00+ b00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1

1+
s2

u + n2s2
v

s2
e

n1

h is
ð13Þ

for some values a
00

and b00. Both formulae (12) and (13) are functions of the formffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(1+ cn)

p
for the sample size n to be determined (here n= n2 and n= n1,

respectively, see Supplemental Materials 4 (available in the online version of

this article) for derivations of (12) and (13)). This motivates a potential family

of functions to use in scenarios where formulae cannot easily be calculated as

we illustrate in the next example.

(a) (b)

FIGURE 8. Plots of (a) power versus number of schools and (b) z-scores against

square root of the number of schools respectively for three-level example.
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Figure 9 shows the z-scores calculated using Equations 12 and 13, respec-

tively, using 5,000 simulations per combination of sample sizes to smooth the

fit. The linear regression fit is shown in light gray and a loess smoother fit in

black.

It is worth noting that these variance components models are special cases of

more general three-level models. de Jong et al. (2010) give matrix formulae for

some specific extensions to the models considered here (including predictors at

lower levels and random slopes) that also involve summary statistics for predic-

tor variables in the model. What is clear is sample size optimizations that

involve varying the number of highest-level units are the most straightforward

in that the simple idea of plotting z-scores against the square root of the number

of highest-level units holds. In fact, as with the two-level case, the relationship

with the square root of sample sizes will also hold for estimating power to detect

purely level 1 predictor variables, that do not have an associated random slope,

when varying any one of the three sample sizes but this does not hold for other

predictor types. For the optimization problems involving varying the number of

units within clusters or the number of lower-level clusters, we have shown that

formulae can be used to obtain linear relationships in the variance components

case, and it should again be possible to generalize to models with predictor vari-

ables and random slopes albeit the formulae will be more complex.

(a) (b)

FIGURE 9. Plots of (a) z-scores versus derived function of number of classes (level 2)

and (b) z-scores versus derived function of number of students (level 1) in the three-level

example where we allow numbers of classes and numbers of students to vary

respectively.
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5.2 A Cross-Classified Unbalanced Example With Control of One Classification

A common challenge in designing educational studies is that there are often

clustering factors that can be hard to control in sample selection. For example,

to extend our current example, let us suppose that the intervention is carried out

in the first year of middle school. We might employ our sample design from

Section 4 by taking a number of students from a chosen number of (middle)

schools. Our sample size questions would be how many schools and how many

pupils per school; however, prior educational experience might be equally

important but harder to control. In the United Kingdom, for example, students

move from primary school to secondary school at age 11 and it is common for

secondary schools to take their intake from several primary schools as they tend

to be larger. It is also common for children from the same primary school to go

to different secondary schools so primary schools are not nested within second-

ary schools. Whilst it is generally easy to discover which primary school each

child attended it is often impractical to build this information into sample selec-

tion. Therefore, we could envisage a study design where we choose pupils at

random from a number of secondary schools and then simply note their previ-

ous primary school so that we control for any primary school clustering in our

modeling. In particular, the impact of primary school clustering will often be

greater than that for secondary school clustering for data collected at the start of

secondary school because those schools will have taught the children for a lon-

ger period.

In order to replicate this scenario, we use the structure of a dataset from Fife

in Scotland (Paterson, 1991) that is often used as an example for cross-classified

models. The full dataset has 148 primary schools that serve 19 secondary

schools. We assume that we wish to collect data from all 19 secondary schools

but need to decide how many pupils to sample from each school (we will look

at possible scenarios with between 4 and 30 pupils in each school).

We will use the real Fife data (see Supplemental Materials 3 in the online

version of the journal) to construct probabilities, for each secondary school, of

attendance at each of the 148 primary schools and use these probabilities in our

simulation to generate the primary schools associated with each pupil. Let us

assume the original anticipated intervention effect of b0 = 3 marks, a smaller

between-secondary school variance of 9, a larger between-primary school var-

iance of 36, and a residual variance of s2
e = 64.

The model (using the notation of Browne et al. (2001) developed for the

more general Multiple Membership Multiple Classification family of non-nested

model) takes the form

yi =b0 + u
2ð Þ
primary ið Þ+ u

3ð Þ
secondary ið Þ+ ei,
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u
(2)
primary(i);N 0,s2

u(2)

	 

, u

3ð Þ
secondary ið Þ;N 0,s2

u(3)

	 

, eijk;N 0,s2

e

� �
, ð14Þ

where i indexes students, primary(i) indexes the primary school attended by

student i and secondary ið Þ indexes the secondary school attended by student i,

thus u
2ð Þ
primary ið Þ refers to the effect of the primary school attended by student i,

and u
3ð Þ
secondary ið Þ the effect of the secondary school attended by student i.

If we follow the approach used in the three-level hierarchical example in

Section 5.2 then we expect to find a linear relationship between the z score of

power and a function of sample size of the form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(1+ cn)

p
where n in this

case is the number of pupils per secondary school but a formula for c is not

available. Instead, we can try to find an optimal value of c by performing a grid

search and minimizing the sums of squared differences for the resulting best fit-

ting regressions. We see from Figure 10a, this occurs at approximately c = .160

and the resulting relationship in Figure 10b does indeed appear approximately

linear.

5.3 Multilevel Logistic Regression Analysis Example

For our final example, we look at power calculations for discrete response

multilevel models. Such models are covered from an analytical perspective by

(a) (b)

FIGURE 10. Plots of (a) the sums of square differences for different values of c showing

a minimum at around .155 and (b) z-scores versus the resulting derived function (using

c = .155) of number of schools in the Fife cross-classified example.

Optimizing simulated multilevel sample sizes

24



Moerbeek et al. (2001) using marginal quasi-likelihood (MQL) and are consid-

ered in the OD software package. These methods are also specific to MQL (that

is less commonly used today due to its known biases) although Moerbeek et al.

(2001) derive an adjustment for penalized quasi-likelihood estimation and

numerical integration. Power calculations for multilevel logistic regression

models can be evaluated by MLPowSim and have also been investigated by Ali

et al. (2019) using simulation-based approaches.

We consider an example with a binary outcome for passing or failing a test.

Let us suppose we have a test where historically 50% of students pass, and we

wish to see whether a particular teaching intervention can improve the pass rate.

We will evaluate this intervention in a number of schools, and we expect the

post-intervention pass rate to increase to 60%, that is, an intervention improve-

ment of 10 percentage points from the baseline of 50%. Note that this is not the

optimal design for such an intervention as in practice we would likely match

the pre and post pass/fail indicators for individual students but it allows us (for

simplicity and consistency) to continue with designs that can be analyzed with a

model containing only an intercept parameter.

We fit a logistic regression model to the post-intervention scores and com-

pare the estimated mean to 50%, which corresponds to comparing the estimated

intercept to 0 (the logit transform for .5). We assume there is between-school

variability in the post-intervention probability of a pass that equates to a var-

iance of s2
u = 0:5 on the log-odds scale.

Our model is therefore

yij;Binomial 1,pij

� �
, log

pij

1� pij

� �
=b0 + uj, uj;N (0,s2

u), ð15Þ

where i once again refers to students and j to schools. We simulate data with

values of log(0.6/0.4) = 0.405470 for b0, and .5 for s2
u. As with the earlier inter-

vention example, we will assume sample sizes of 20 students per school and

our question is how many schools are required. We will run 5,000 simulations

for each of 13 different numbers of schools (10–70 in steps of 5).

One of the challenges with multilevel logistic models is deciding on which

estimation procedure to use. Rodriguez and Goldman (2001) showed that the

quasi-likelihood methods that were originally developed for fitting such models

give very biased estimates when the outcome is rare, clusters are small, or clus-

tering is severe, with the intercept and between-cluster variance both biased

toward zero. Browne and Draper (2006) also confirmed this and showed how

MCMC methods performed better. Other more computational methods like

adaptive Gaussian quadrature (AGQ) are now commonly implemented in soft-

ware and here we use adaptive quadrature in R via the glmer function (Bates

et al., 2015). In the implementation in glmer, the user can choose the number of

quadrature points with the more points chosen the better the approximation.
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Here we consider values of 0, 1, and 3 for the function. One quadrature point is

equivalent to the Laplace approximation and choosing the value 0 gives a fast

algorithm that is less accurate but converges more often.

Figure 11 shows the results when a value of 0 is used, while Figures 12 and

13 show the equivalent graphs when the number of quadrature points shifts to 1

and 3, respectively. What is clear when using the value 0 for quadrature points

is that the bias in the point estimate for b0 is producing different power curves

for the SE and 0/1 methods introduced in Section 2. This is because the 0/1

method uses both the parameter estimate from the model fit and its associated

estimated standard error (which depends on the parameter estimate) so that both

are biased (in magnitude) downwards. The SE method instead uses the true

value for the parameter but an estimate of the standard error so the downwards

bias is only present in the standard error resulting in an estimated power that is

higher than the true power when bias is present.

In terms of the use of the transformation—the estimates from the SE method

(in light gray) in Figure 11b look plausibly linear whilst the 0/1 function exhibits

some non-linearity.

(a) (b)

FIGURE 11. (a) Power curves versus sample size for case where AGQ = 0,

(b) z-transform of power vs. square root of sample size.
Note. AGQ = adaptive Gaussian quadrature.
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When the number of quadrature points increases to 1 and 3, we see much

closer agreement between the SE and 0/1 methods. Interestingly moving from 1

to 3 quadrature points only makes a small difference here as we are modeling in

a situation where the approximation is good (underlying probability close to .5,

ICC low and cluster size large). In fact, seven quadrature points (not shown)

give a fit very similar to three quadrature points. What is interesting is both the

SE and 0/1 methods have broad agreement on power for sample sizes where

power ranges from around 0.5 to 0.9 but the 0/1 method transformation still

exhibits a slight curvature in the tails (Figures 12b and 13b). Now that the two

methods agree, they give a suggested sample size of approximately 34 schools

closer to the 33 from the SE method with AGQ = 0 than the 36 of the 0/1

method.

The results for the AGQ = 0 setting are included because it has been reported

in several places that for more complex models only the AGQ = 0 setting will

converge in the glmer package and so here we show that with this method (and

indeed for quasi-likelihood methods in other packages) the SE method may give

more optimistic sample size estimates than the 0/1 method.

(a) (b)

FIGURE 12. (a) Power curves versus sample size for case where AGQ = 1,

(b) z-transform of power vs. square root of sample size.
Note. AGQ = adaptive Gaussian quadrature.
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6. Discussion

In this paper, we have looked in more detail at the choice’s researchers face

when using simulation to perform sample size calculations. We have divided

these choices into decisions on how to use the results from the simulations of a

single scenario and decisions on how to combine simulations across different

scenarios to maximize the efficiency of the procedure.

In general, we have shown that compared to the traditional 0/1 method for

calculating power for a particular setting, the SE method is more efficient pro-

vided an unbiased estimation routine like REML (for normal response models)

is used for estimation. The only scenarios where the SE method diverges from

the 0/1 method are cases where the estimation procedure is biased, for example,

with models for discrete responses using some approximate estimation routine

like Quasi-likelihood or AGQ with low numbers of quadrature points. In these

situations, we would recommend using a less biased estimation routine, if possi-

ble, for example, second-order Penalized Quasi-likelihood or AGQ with more

quadrature points.

When we come to consider a set of scenarios, for example, a set of possible

sample sizes, we have shown that there is merit in finding functions of the

(a) (b)

FIGURE 13. (a) Power curves versus sample size for case where AGQ = 3,

(b) z-transform of power vs. square root of sample size.
Note. AGQ = adaptive Gaussian quadrature.
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underlying power and the sample sizes that exhibit linear relationships. In fact,

in many scenarios, plotting against the square root of the number of clusters at

the highest level gives such a relationship. It is then possible to reduce the num-

ber of scenarios that need to be simulated to calculate the desired sample size

estimate. This will be increasingly important as the underlying models to be

fitted become more complex and thus take longer to fit.

In Section 4.2, we performed a simulation study to compare different

approaches. The results showed that there is a trade-off between reducing the

number of simulations we run and the accuracy of the power calculation. The

simulation was designed to confirm that we can get reasonable performance

with just two scenarios but that choosing scenarios further apart is better than

those close together. An alternative is to increase the number of scenarios while

reducing the number of simulations for each. In terms of future work, it would

be interesting to consider an optimal simulation design here, perhaps with dif-

ferent numbers of simulations for different scenarios to reflect the differing

uncertainty at the different sample sizes. We could also consider how such

simulations can combine with or compare to the work in Price (2017) that itera-

tively chooses better guesses at the optimal sample size.

For the majority of the models considered in this article, it is possible to use

theory to perform the power calculations without needing simulations either

directly with software implementations or via coding up existing formulae. We

have deliberately chosen such models not because we believe it is better to use

simulation in these cases but to confirm agreement between the theory-based

and simulation-based methods. We would advocate expanding the range of

models where theory-based methods are implemented in standard software. It is

however useful to confirm that simulation-based approaches agree with the the-

ory when it is available.

In Section 5, we have looked at more complex examples to motivate a gen-

eral form for our proposed linearization method and then used it when theory-

based approaches have not been implemented. We have shown that the approach

of using the SE method and looking for linear relationships still holds for

improving the speed of the simulation-based approach. We have only scratched

the surface here to show that the suggested techniques have wider applicability.

We note that all our examples are random intercept models, and clearly more

work is needed to verify that models with random slopes and indeed longitudi-

nal models with more complex dependence structures can benefit from the

approaches introduced.

In all our examples, we have cast our sample size calculations as one-

dimensional optimization problems, for example by fixing all bar one of the dif-

ferent sample sizes in the three-level model example in Section 5.2. Often in

the literature, the sample size optimization is converted to a cost optimization

problem (see Cohen, 2005; Shen & Kelcey, 2020; Snijders & Boskers, 1993) by
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including different costs for collecting data at different levels of the model, for

example having a cost for each school included in the data collection and a dif-

ferent cost for each child which again creates a one-dimensional optimization.

We have not considered such problems here, but they often break down to two-

step procedures where, for example, the first step is to calculate the minimum

number of schools required for each specific cluster size to achieve a power of

greater than 0.8 and the second step is to choose the optimal cost from this set

of optimal numbers of schools. Here our approach could be used straightfor-

wardly in step 1.

To conclude, it is worth remembering that as study designs become more

complex, sample size calculations require estimates for many parameters, all of

which have some uncertainty. This means that although we are aiming to get an

exact and consistent estimate of the required sample size, it relies on the para-

meter estimates used and so is just a guide. If different methods give slightly

different sample size estimates, this should be balanced with the uncertainty in

the parameter estimates themselves.
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