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long-run economic time series are drawn from incomplete records with significant temporal and geo-
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when data are scarce. We introduce “past predictive modeling,” a framework that leverages machine
learning and out-of-sample predictive modeling techniques to reconstruct representative historical time
series from scarce data. Validating our approach using nominal wage data from England, 1300-1900,
we show that this new method leads to more accurate and generalizable estimates, with bootstrapped
standard errors 72% lower than benchmark linear regressions. Beyond just bettering accuracy, these im-
proved wage estimates for England yield new insights into the impact of the Black Death on inequality,
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1 Introduction

When an economist begins a project on long-run economic growth or development, their first action is

usually to download the benchmark data series that are held in one of the worlds’ major repositories.

These series of wages, population, income, and other variables appear robust and reliable. In reality, even

the most authoritative of these are built on fragile foundations. Usually, they face two serious problems:

the scarcity of the underlying data and the validity of the methodology used to derive a series from it.

While today’s economic data are based on large numbers of observations, systematic sampling, and

statistical adjustment, usually in the hands of reliable government agencies, data for earlier historical

periods, which comprise the vast majority of economic time, are pieced together from fragmentary and

incomplete records. They are a patchwork with significant temporal and geographic gaps.

Because historical records are riddled with holes, the method used to derive a long-run representative

data series is critically important. The standard approach to addressing gaps in the quantitative historical

record relies heavily on linear regression. Regressions are used to generate series of average fitted values

for each period from scarce and inconsistent data. This produces a seemingly continuous time series,

where annual estimates rely on parametric assumptions about the evolution of economic relationships.

But there is a problem with this approach: as data become more scarce in each period, these standard

curve-fitting exercises can lead to bias or overfitting to the few data points available. The resulting average

fitted value for a period is less representative of the true population. To secondary users of the data, these

limitations—and, sometimes, even the full extent of the underlying patchiness of the original data—are

not always fully apparent. Yet they can introduce bias into results and lead to mistaken conclusions.

In this paper, we introduce “past predictive modeling,” a framework that leverages machine learning

and out-of-sample predictive modeling techniques to more accurately reconstruct long-run time series

from fragmentary historical data. Our approach differs fundamentally from existing linear regression

methods: instead of fitting a single curve to sometimes hundreds of years of data from the past, risking

bias and overfitting in periods where data are more scarce, we use more recent data to make out-of-sample

predictions of values in earlier periods. The standard (forward) predictive modeling literature addresses

bias and overfitting by focusing on how well models can predict unseen out-of-sample data. We take

this solution and apply it to the analogous problem of scarce data in the past. Rather than predicting

future outcomes, we use more recent data to make predictions of past values, optimizing out-of-sample
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predictive accuracy to generate more representative estimates than standard regression methods.

In addition to developing an out-of-sample predictive modeling framework that addresses temporal

dependencies in the data, we also advance the method of prediction. Our flexible framework enables any

prediction algorithm to be used, so we move beyond linear regressions to test and implement multiple

machine learning algorithms that are known make superior out-of-sample predictions.

FIGURE 1: COMPARATIVE PERFORMANCE: PAST PREDICTIVE MODELING VS.
TRADITIONAL REGRESSION APPROACH

Note: Average performance metrics 1220–1900 for unskilled laborers. Linear regression on
the left panel follows that of Clark (2005). Linear regression on the right panel run within the
out-of-sample prediction framework. For full details, see Section 5.

Our main contribution is to elucidate this new past predictive modeling framework and to show

empirically that it yields long-run historical economic time series that are more precise and generalizable

than benchmark linear regressions in the face of patchwork historical data. Using English nominal wages

as an example, we find that our method reduces bootstrapped standard errors by 60% on average relative

to linear regression models and improves out-of-sample accuracy by over 28%. Figure 1 summarizes these

results. We also illustrate that these methodological improvements meaningfully shift long-run nominal

wage patterns, giving new insights on long-run economic development.

Our argument in this paper is developed in four steps. First, we assess the problem of data scarcity

affecting long-run economic statistics and consider existing techniques with which it has been addressed.

We show that the dominant methodology for generating annual series in the recent literature is fitting

linear regressions, even in periods of limited data. Regression-based series have been collected in major
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data repositories, and scholars are increasingly relying on these series for analyses of very-long-run de-

velopments across many subfields. Then, we describe three major limitations of the standard regression

approach and how they can be addressed in our new framework: the performance of the method under

data scarcity, the dimensionality problem, and the inflexibility of the method.

In the second step, we set out our alternative methodological framework, past predictive modeling.

We describe a simple predictive modeling framework that allows for backward temporal prediction of

incomplete data. Our framework explicitly addresses temporal dependencies in the data and optimizes

on out-of-sample predictive accuracy using an expanding window “walk backward” technique. The

key innovation of this framework is using more recent data to make generalizable short-run predictions

of historical values of an economic outcome. The framework is flexible to choice of machine learning

algorithm and adaptable to many economic variables.

The third step is to empirically validate our new framework by directly comparing it to existing tech-

niques. To do so, we select as an application long-run trends in nominal wages over the course of seven

centuries in England (Clark 2005). This is an appropriate data setting in which to test our framework be-

cause nominal wages are a common measure of very-long-run economic development, and England is a

classic case study.1 We describe the nominal wage data available for England for the past seven centuries

in Section 4. Then, in Section 5, we pit our past predictive modeling framework against linear models

for estimating patterns of nominal wages. We show that the past predictive modeling framework leads

to large reductions in bootstrapped standard errors and improved accuracy in predicting out-of-sample

data. As an additional robustness check, we demonstrate improvements of a similar magnitude for an-

other setting: servant’s wages in Japan (Kumon 2022).

In the fourth step, we show that this framework not only leads to more accurate predictions, but

that these new predictions have actual implications for our understanding of historical economies. Sec-

tion 6 demonstrates that our new estimates for England yield novel insights on foundational questions

about the evolution of wages, inequality, and productivity. We find paths of wages following the Black

Death in the mid-1300s to be highly differentiated by skill, revising our understanding of the impact of

this demographic shock on income inequality and the skill premium. We also show how our improved

methodology can generate entirely new series previously unavailable to economists, generating for the

first time long-run regional wage series that shed light on timings of key phases of development and

1These wages might more appropriately be thought of as labor costs. See Appendix A for a discussion of the distinction
between wages and labor costs.
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which can be aggregated into a population-weighted national average. Finally, we demonstrate that our

revisions to this series impact secondary analyses where wages are a key variable by showing how they

affect estimates of productivity growth from Bouscasse et al. (2025).

Related literature

Our paper contributes to several strands of literature. We contribute to the emergent subfield of machine

learning for predictive modeling in economics, and to the use of machine learning for economics in his-

torical settings. We also contribute the evaluation of long-run economic growth and the study of historical

time series, and to literature on historical sources and data management in econometric analysis.

Recent work in economics has shown that, in cases where the goal is to make accurate predictions

rather than to establish causal relationships, certain machine learning algorithms regularly outperform

traditional OLS and time series regression techniques. For example, Mullainathan and Spiess (2017)

demonstrate this for housing prices, Richardson et al. (2021) and Yoon (2021) for forecasting GDP, and

Bluwstein et al. (2023) for predicting recessions, and Bajari et al. (2015) for demand estimation. These

are cases, like ours, where obtaining 𝑦 (in the language of Mullainathan and Spiess (2017)), is a core eco-

nomic objective. Related works on “prediction policy” problems show improved accuracy with machine

learning algorithms over regression techniques when the goal is prediction (Kleinberg et al. 2015; Chalfin

et al. 2016). Goulet Coulombe et al. (2022) unpack the features driving the gains of machine learning over

standard methods, finding that the flexibility and non-linearity of these methods the key to their strong

performance. In general, the literature has found that machine learning provides advantages in predic-

tive accuracy for complicated systems characterized by complex and non-linear relationships between

variables under changing conditions.

Our paper is the first to apply these benefits of machine learning for predictive modeling to the prob-

lem of scarce historical data in long-run time series. We are not, however, the first to use machine learning

in historical settings. Machine learning has revolutionized both the gathering of data sets from complex

historical sources and their tractability. As Dell (2025) highlights, machine learning has aided in classi-

fication, document digitization, record linkage, and the analysis of text and image corpora for historical

documents. Many papers rely on machine learning for linking individuals across censuses such as Price

et al. (2021), Abramitzky et al. (2021), Helgertz et al. (2022) and Buckles et al. (2024). Natural language

processing is a common technique for working with historical text data (see Ferguson-Cradler 2023).
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Dell et al. (2023) develop a deep learning pipeline for extracting full-text articles from newspaper images,

generating high quality data and better understanding of “historical world knowledge.” We contribute

to this literature by establishing the use of predictive modeling machine learning in historical settings.

Many papers have summarized and surveyed the available machine learning methods for predic-

tion. Masini et al. (2023) provide a general framework and summary of these methods for time-series

forecasting. Gu et al. (2020) discuss the methods in detail in the setting of empirical asset pricing. Dell

(2025) provides an accessible summary of deep learning approaches. While the objective of our paper is

not to summarize the various methods available, we base the structure of our neural networks on those

developed in Gu et al. (2020).

We also contribute to literature on the fundamental task of constructing long-run economic indicators.

Reliable long-run data are critical to all attempts to understand economic growth and development (Allen

2001, 2009; Bouscasse et al. 2025; Broadberry et al. 2015; Clark 2005, 2007a; Crafts 2021; Feinstein 1998;

Humphries and Weisdorf 2019). Since the seminal work of Phelps Brown and Hopkins (1955), nominal

wages have been among the most important series in use for this purpose. Advances in the scope of wage

series and their comparative measurement since the turn of the century by Allen (2001, 2015) and Clark

(2005, 2007b) have led to major shifts in our understanding of long run development, including debates

on the role of factor prices in driving technological change in the first industrial revolution (Allen 2015),

and the persistence of Malthusian forces (Clark 2007a). Our new estimates of long-run nominal wages

contribute directly to this literature.

Our method also contributes more broadly to work on constructing long-run indicators and generat-

ing predicted values using regressions. We survey many such papers related to wages in Table 1 below

(Clark 2005, 2007b; Allen et al. 2011; De Zwart and Van Zanden 2015; Pfister 2017; Ridolfi 2019; Humphries

and Weisdorf 2019; Horrell and Humphries 2019; De Zwart and Lucassen 2020; Federico et al. 2021; Rota

and Weisdorf 2021; Kumon 2022; Chambru and Maneuvrier-Hervieu 2023; Buscemi 2025; Carvalhal et al.

2024; Liu 2024). Similar methods have been used to predict other economic phenomena (for example:

Zhai 2024; Du Plessis et al. 2015; Mitchener and Weidenmier 2015; Etro 2018; Koepke and Baten 2005;

Samy 2015; Karagedikli and Tunçer 2021; Raff et al. 2013; Edquist 2010; Coşgel and Ergene 2012).

A final contribution of our paper is the contextualization of the ready availability of historical data

from resources such as the Bank of England and FRED. These repositories are increasingly valuable to

researchers in many subfields. We highlight the scarcity of data underlying some of the series in these
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repositories. We also show empirically that shifts in predicted values arising from past predictive model-

ing meaningfully shape secondary analyses where wages are a core component.

2 The problem of scarce data

In an age of big data, the scarcity of original observations from reliable sources remains a critical challenge

for long-run economic measurement. In this section, we document the presence of data scarcity even in

estimates that appear founded in large samples. Then, we describe approaches to dealing with scarce

data, using the case of wages. We explore the limits of the current best practice methodology, linear

regression, and describe how, in the presence of scarce data, estimates from regression models can be

biased and unrepresentative.

2.1 Data scarcity

Data scarcity is a serious problem in long-run economic datasets. We illustrate this with the case of

nominal wage series as these are among the best-founded datasets. The wage estimates for skilled and

unskilled workers in England between 1209 and 1914 made by Clark (2005) are, to our knowledge, based

on the largest collection of historical wage observations from a country with an unusually rich and well-

preserved set of records.2 After cleaning the data and removing duplicates, Clark’s data set contains

39,223 observations of day wages from multiple sources, including 9,591 observations of laborers or un-

skilled workers, leaving, on average, 136 observations of unskilled wages per decade. However, data are

unevenly distributed, and even in this setting data scarcity generally increases with distance from the

present. As Figure 2 shows, while some decades have abundant laborer data (such as the 1890s, with over

900 total observations) others have almost no data points (such as the 1240s, with only three total obser-

vations). On average, there are only thirteen observations of laborers’ wages in each year. The problem

of scarce data is especially acute after the Black Death and in the mid fifteenth century, late seventeenth

century, and mid eighteenth century—all key periods of interest.

Data scarcity is a general issue with long-run economic indicators, as we can see in Table 1, which sum-

marizes the sample, observations, and parameterization of a range of papers using regression models to

2By one measure, the data in Carvalhal et al. (2024) is larger, but it is based on expanding a much smaller number of obser-
vations that specify the wages for large groups of individual workers who receive the same pay into individual observations for
each worker within that group.
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FIGURE 2: DECADAL OBSERVATION COUNTS IN THE CLARK (2005) LABORER SAMPLE

estimate historic wages from around the globe. Despite the large size of the datasets built by researchers,

few contain more than fifty observations per year studied, even after heroic work with idiosyncratic pri-

mary sources. The inclusion of controls for factors that might plausibly affect the wage, such as gender,

occupation, payment type, source, lead to a high number of parameters in each estimation. As a re-

sult, even studies with a relatively large number of observations per year frequently have periods and

categories in which the estimation is reliant on very small samples. These estimates are, nonetheless,

presented and used as nationally representative wage data.

We are unlikely to solve the problem of data scarcity, which is driven by broader issues of data survival

and collection. The challenge to the researcher is how to respond to this limitation in order to achieve the

best possible estimates of economic indicators.

2.2 Existing methodological approaches

The papers listed in Table 1 contain the best estimates of long run day wages from different regions to

date. All apply the current best practice methodology of regression analysis. In this section, we briefly

discuss the development of this methodological approach to constructing long-run wage series and its

limitations.
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TABLE 1: REVIEW OF PAPERS WITH WAGE TIME SERIES BASED ON REGRESSION MODELS

Obs. Obs. Obs.
Paper N Years R2 Param. per per per param.

year decade per year

Clark (2005) 46,000 795 - 47 57.86 578.62 1.23
Clark (2007b) 19,417 660 - 39 29.42 294.20 0.75
Allen et al. (2011) 327 80 0.408 12 4.09 40.88 0.34
De Zwart and Van Zanden (2015) 587 190 0.48 3 3.09 30.89 1.03
Pfister (2017) 2,187 350 0.77 18 6.25 62.49 0.35
Ridolfi (2019) 26,332 610 0.991 328 43.17 431.67 0.13
Humphries and Weisdorf (2019) 6,800 590 - 12 11.53 115.25 0.96
Horrell and Humphries (2019) 3,873 580 0.567 12 6.68 66.78 0.56
Gary and Olsson (2020) 28,500 350 - 8 81.43 814.29 10.18
De Zwart and Lucassen (2020) 7,586 280 - 17 27.09 270.93 1.59
Federico et al. (2021) 14,513 52 - 16 279.10 2,791 17.44
Rota and Weisdorf (2021) 439 350 0.86 5 1.25 12.54 0.25
Kumon (2022) 1,736 280 - 41 6.20 62.00 0.15
Chambru and Maneuvrier-Hervieu (2023) 19,786 249 - 118 79.46 794.62 0.67
Carvalhal et al. (2024) 69,325 129 0.52 31 537.40 5374.03 17.34
Liu (2024) 6,006 310 0.936 46 19.37 193.74 0.42
Buscemi (2025) 23,490 310 - 82 75.77 757.74 0.92
Note: The measure presented of observations per parameter/year treats sums the number of parameters in separate control variables and expresses

them over the years in observation. In use in the model, the potential set of variations increases geometrically, so readers are encouraged to treat this
measure as a heuristic device only.

Constructing estimates of wages for occupations, regions, or nations presents an empirical and con-

ceptual challenge that economic historians have addressed in a number of ways over more than a century

of research. Those working on more modern periods are, of course, able to rely on series gathered from

official sources, deferring judgement about the representativeness of the wages they use to original in-

vestigators (De Zwart 2011; Frankema and Waijenburg 2012; Cvrcek 2013; Allen and Khaustova 2019;

Mijatović and Milanović 2021, for example). Work on earlier periods generally takes one of two main

approaches: identifying a local average wage directly or estimating a representative wage using a linear

regression.

The first approach, evident from the earliest work in the late nineteenth-century, focused on identi-

fying an average (modal, mean, or representative) wage paid to men in given industries on a daily or

weekly basis (Bowley 1900; Gilboy 1934). For work on single institutions or cities this approach is still

widely used (Allen 2001; Paker et al. 2025; López Losa and Zarauz 2021).3 In all these studies, the reliance

on a single site and context simplifies the problem of achieving a plausibly representative wage estimate,

3Alternatives to simpler averages are sometimes used: Rota and Weisdorf example, fit a local polynomial regression in their
work on St Peter’s in Rome and on rural workers in Tuscany (Rota and Weisdorf 2020, 2021). They also estimate rural wages
using Clark’s regression approach as a cross-check on their results (Rota and Weisdorf 2021, pp. 461-2).
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at the price of not being generalizable to the regional or national level.

The second approach, estimating nominal wage values using regressions, was introduced by Robert

Margo in his analysis of American wages and generalized to a wider audience by Greg Clark in his sem-

inal paper on English day wages (Margo 2000; Clark 2005). It provided an econometric solution to the

challenge of how to estimate a representative wage for a larger polity—usually a region or nation—from

a diverse range of data sources. Regression analysis overcame the fragmented nature of the surviving

sources, providing a formal solution to the problem of representativeness that otherwise constrained es-

timates from single sites or institutions.

It is Clark’s models for building craftsmen and laborers’ day wages (or labor costs) that have been

most widely cited and emulated.4 These include a tightly defined set of variables that allow for some

variation between occupations, across space, and over time, which were used to predict log-transformed

annual national day wages. As an example, the model for craftsmen includes categorical indicators for

29 crafts; an indicator if the wage was for a combination of workers, such as a master and servant; 50-

year period dummies, interacted with region dummies for five regions; location fixed effects; and the

year of observation (Clark 2005, p. 1322). Clark (2007b) conducts a similar analysis for agricultural day

wages, averaging observations within each year, place, season and task, as well as including controls for

threshing rates and winnowing, and for seasonality (Clark 2007b, p. 101). These models set the standard

form for using regressions to generate a national annual metric from individual-level data.

Some sense of the influence of these methods and the importance of wage series relying on these

methods can be obtained from citation counts. At the time of writing, Clark (2005) has over 700 citations,

many from secondary users of his laborer and craftsman wage series. His series form the basis of the

average weekly earnings reported in the Bank of England’s “Three Millennium of Macroeconomic Data”

whose associated bulletin has over 200 citations (Thomas et al. 2010).5 The average weekly earnings series

back to 1260 is readily available on FRED.6

While the discussion so far has focused on the use of these methods for wages, regressions have been

used to generate other predicted series in economic history such as agricultural labor productivity in

China (Zhai 2024), human heights from archeological long bones (Koepke and Baten 2005), prices and

4Clark (2005) acknowledged that many of the wages that he gathered were probably not directly paid, deflating nominal
wages by 0.905 to account for this. Stephenson (2018) demonstrates that in the seventeenth and eighteenth centuries, the quoted
day rates in institutional accounts may have overstated wages paid to actual workers 20-30%. See Appendix A for more details.

5Note that this dataset is often used without a reference in the bibliography, so this is an underestimate.
6Bank of England, Consumer Price Index in the United Kingdom [CPIUKA], retrieved from FRED, Federal Reserve Bank of

St. Louis; https://fred.stlouisfed.org/series/CPIUKA
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marginal productivity of enslaved workers in the Cape Colony (Du Plessis et al. 2015), currency risk

premia during the classical gold standard (Mitchener and Weidenmier 2015), sale prices of paintings

during the Italian Renaissance (Etro 2018), historical house price indices globally (Samy 2015; Karagedikli

and Tunçer 2021; Raff et al. 2013), electric motor prices in Sweden (Edquist 2010), and wealth inequality

in the Ottoman Empire (Coşgel and Ergene 2012). As in the case of wages, in these other examples,

regressions are used to generate a more representative prediction of an outcome by controlling for various

factors.

2.3 Challenges of regression curve-fitting to scarce data

Margo and Clark’s method has become standard, as the long list of papers in Table 1 demonstrates, though

the details of its application have varied. In this section, we highlight three connected issues with this

regression methodology that affect the quality of the annual estimates that are generated: data scarcity,

the extent to which additional controls have been incorporated, and the inflexibility of the approach. For

each of these limitations, we briefly discuss how it will be addressed by our past predictive modeling

framework.

First, and most broadly, data scarcity directly affects the reliability of estimates from regressions. In

periods with less data available, fitted values become more like interpolations than estimates of nationally

representative values. This risks bias or overfitting depending on how closely the model tracks the few

data points available in a year or a decade (Hastie et al. 2009, pp. 21-27, 220-224) The resulting estimates of

wages or other economic phenomena in the periods in which data are most scarce are less representative

and reliable than estimates from the same model for years in which data are less scarce.

To address this overarching challenge, we shift from a curve-fitting estimation framework to a pre-

diction framework that takes into account the time series nature of the data (Shmueli 2010). Privileging

out-of-sample prediction accuracy allows us to generate more representative estimates of unseen data,

especially in the periods in which data are most scarce.

Second, a tendency to expand the number of control variables has increased the risk of parameter

instability. While the earliest wage regressions used relatively spartan models, subsequent work has often

increased the number and variety of additional control variables. Variables have included the effects of,

among other things, urban vs. rural settings, source biases, types of payment, duration of contract, and

gender.
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There are good reasons to expand the regression model to incorporate these factors, as we have might

well expect them to impact wages. However, the inclusion of a larger set of controls in linear models

presents a ‘curse of dimensionality’ when data are scarce that increases the risk of overfitting, causing

unstable parameter estimates (Hastie et al. 2009, pp. 24–27). Evidence that this may be an issue can be

seen in the measures of model fit reported in Table 1. Several have an 𝑅2 in excess of 0.9 (Ridolfi 2019; Liu

2024).

To address this limitation, our past predictive modeling framework employs algorithms with regular-

ization and dimensionality reduction. This allows for the inclusion of a rich set of controls while avoiding

the challenges of high-dimensional estimation on limited data (Varian 2014). Our technique of using more

recent data to predict historical data also ensures that the largest possible sample is used in each year’s

prediction.

One reason for the increase in control variables in recent papers has been to allow models to predict

wages from datasets that include males and females, or skilled and unskilled workers, or multiple oc-

cupations at the same time, increasing the sample size as a result. This approach contrasts with Margo

and Clark’s separation of samples, models, and predictions for different occupational groups. The recent

trend of estimating a single model and predicting separate occupational wage series from it follows a

common logic in regression analysis. It does, however, build in assumptions about the consistency of the

relationship between different control variables and occupational categories.

This leads us to a third issue: unless extensive interactions are incorporated, which is rarely the case,

such an approach implicitly assumes that a control variable such as ‘urban’ has, for example, the same

effect on skilled and unskilled workers alike, and that this effect remains relatively constant over time

and space. This ‘hedonic’ aspect of curve-fitting approaches to scarce data, a necessary characteristic of

inflexible linear models, has been strongly criticized by historians (Hatcher 2018; Nicholas and Oxley

1993).

Margo’s initial discussion of wage regressions underlined this issue (Margo 2000). He highlighted the

distinction between the bundle of job and worker characteristics, estimated through the coefficient 𝛽, and

the time-period dummies in his model. He notes, “[i]n a less restrictive specification, 𝛽 would be allowed

to vary across time periods—ideally, for each time period. However, allowing 𝛽 to vary over time greatly

increases the number of coefficients to estimate, producing the trade-off noted above between sampling

error and historical detail” (Margo 2000, p. 38). Margo deliberately chose to estimate his model separately
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for occupational groups and regions so that beta could vary between them, allowing for flexibility in the

contribution of various factors to wages over time and between groups.

Past predictive modeling addresses these issues by parsimoniously generating estimates for differ-

ent groups from the same model using machine learning algorithms which are more flexible than linear

models. The increased flexibility of these non-parametric models allows the impact of variables on the

prediction to vary over time and space.

The large body of existing research on long-run nominal wages has achieved a great deal with the

current method. However, it faces difficult problems that are shared by other equivalent efforts to estimate

long-run economic statistics: the unavoidable scarcity of data and the inherent rigidity of the estimation

of relationships between variables achieved by least squares regression.

3 Methodology

To address these limitations of previous approaches to working with scarce historical data, we develop

and implement a new framework, past predictive modeling, that generates robust out-of-sample predic-

tions of historical economic series using machine learning strategies. In this section, we describe the core

elements of this framework. The innovation is first to approach the problem of scarce data using a predic-

tion framework; then, rather than predicting future values, to adapt these methods to predict historical

values of economic series; and finally, to use machine learning algorithms to generate the best predictions.

We first present the general framework, followed by specific implementations and estimation procedures.

3.1 General framework with sample splitting and “walk backward”

In the most general sense, we model economic outcomes 𝑦𝑖,𝑡 using a simple predictive framework with

error,

𝑦𝑖,𝑡 = 𝐸𝑡 (𝑦𝑖,𝑡 ) + 𝜖𝑖,𝑡 ,

where the conditional expectation of 𝑦𝑖,𝑡 at time 𝑡 is,

𝐸𝑡 (𝑦𝑖,𝑡 ) = 𝑔∗(𝑥𝑖,𝑡 ) .

Our goal is to isolate a representation of 𝐸𝑡 (𝑦𝑖,𝑡 ) as a function of predictor variables, given in the 𝑃-
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dimensional vector 𝑥𝑖,𝑡 , that minimizes the out-of-sample prediction error for realized 𝑦𝑖,𝑡 . The function

𝑔∗(·) is a flexible function of 𝑥𝑖,𝑡 that maps predictor variables to the outcome. We describe various algo-

rithms for 𝑔∗(·) below.

Our past predictive modeling framework differs from standard predictive modeling by making pre-

dictions backwards in time rather than forwards. We adapt the expanding window forecasting approach,

commonly used for forward-looking predictions, to address the historical data scarcity problem by re-

constructing series backward in time. In this setting, we use the more recent data points as the “known”

information to train a model that predicts historical economic values for periods with incomplete records.

Just as in standard predictive modeling, we predict where there is the most uncertainty, but in historical

settings, the greatest uncertainty is further in the past.

To maintain temporal consistency, we follow the most common approach in the literature and divide

the sample into three disjoint periods: a training sample, a validation sample, and a testing sample.

The training sample is the data used to estimate the model. Using the trained model, we then generate

predictions for the validation sample and use these predictions to tune the hyperparameters of the model.

We evaluate the prediction error in the validation sample and then iteratively search for hyperparameters

that minimize the error in the validation sample, re-fitting the model to the training data under each set

of hyperparameters. The validation sample is out-of-sample and temporally disjoint from the training

data, so evaluating the prediction error of the validation sample allows us to optimize the model for out-

of-sample performance on an unseen time period. Finally, we report measures of model fit for the testing

sample, which was not used for model estimation nor for hyperparameter tuning. We then use the fully

trained and validated model to make a forecast for the next year.

Where our method differs from the common expanding window “walk forward” approach—in which

the training window grows year by year to make successive forward predictions—is that we instead

“walk backward.” In our framework, the training window expands in reverse, using all of the most

recent data and incorporating older historical data at each step to predict values for earlier and earlier

years.7 In each iteration, we predict only a single year, generating a short-horizon forecast that captures

historical trajectories without imposing patterns from one century onto another.

Figure 3 illustrates this framework for years 𝑡 = 0 to 𝑡 = 9. The first iteration gives the process that

generates a prediction for 𝑡 = 3. The training data includes years 𝑡 = 7 through 𝑡 = 9. The model is tuned

7We show in Appendix C that our results for England are also robust to using a variety of rolling window approaches.
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using 𝑡 = 5, the model fit is computed for 𝑡 = 4, and the prediction is ultimately made for 𝑡 = 3. 𝑡 = 6 is left

out to ensure there is no leakage between the training data and the testing data.

In the second iteration, we get the prediction for 𝑡 = 2. Data from future years 𝑡 = 6 to 𝑡 = 9 are used to

estimate the model that ultimately predicts the past value in 𝑡 = 2. The training window expands back as

the prediction is made further back in time, increasing the amount of data used to train the model. This

walk-backward, expanding window process continues until each year in the sample has a prediction.8

FIGURE 3: ILLUSTRATION OF WALK-BACKWARD EXPANDING WINDOW

This framework is more flexible than existing methods in two key aspects. First, it accommodates

highly flexible, non-linear prediction algorithms through 𝑔∗(·), which can better capture complex and

changing relationships between predictor variables and outcomes. Second, the walk-backward expand-

ing window approach allows the model to change dynamically over time. By re-estimating 𝑔∗(·) each

year, we relax the assumption built into the regression models discussed above that predictor variables

have largely time-invariant impacts on the outcome. This allows our approach to more effectively capture

structural changes and evolving relationships over extended historical periods. To balance this flexibility,

we impose in our framework the restriction that the hyperparameters governing regularization of 𝑔∗(·)

are stable over time. This constraint ensures that even as the model adapts dynamically, the fundamental

model architecture is consistent, which ensures that our flexible estimates are still coherent across periods.

To determine these hyperparameters, we follow common practice and iteratively test combinations of

8Note that only original, raw data observations are in the training data for each annual prediction. Model-generated predic-
tions are never used recursively to inform other predictions.
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hyperparameters on the validation sample using a grid search to determine the combination that min-

imizes the out-of-sample prediction error. To find a combination of hyperparameters that works well

across the full sample period, we set a fixed interval length and conduct the grid search once every in-

terval. From the resulting best combinations of hyperparameters from each search, we select the modal

combination.

The estimation method is not a black box. Although the re-estimation of 𝑔∗(·) means that the para-

maters connecting variables and outcomes change dynamically, they can be observed and interpreted.

We are able to see how much different variables in the dataset are contributing to the estimation in each

prediction window from the score assigned to each feature, which we discuss in more detail in Appendix

D.

3.2 Model selection and evaluation

Our choice of machine learning algorithms for 𝑔∗(·) is based on the existing literature, which generally

finds that gradient boosted decision trees and deep neural networks outperform linear regressions for

prediction and forecasting problems. We compare all non-linear algorithms to a benchmark linear model

with no regularization. We focus on three algorithms for our gradient boosted decision trees: XGBoost

(Chen and Guestrin 2016), LightGBM (Ke et al. 2017), and CatBoost (Prokhorenkova et al. 2018). All three

algorithms are known for performing well on prediction tasks in scenarios with complex and non-linear

relationships by creating ensembles of decision trees and iteratively boosting to improve model perfor-

mance. This is balanced by regularization to reduce overfitting. We also build four feed-forward neural

networks with hidden layers ranging from two (shallow) to five (deep), all of which also incorporate

regularization through ensembling, early stopping, and learning rate shrinkage.

Any of these algorithms for𝑔∗(·) can be seamlessly integrated into our past predictive modeling frame-

work. Central to the framework is the expanding window, walk-backward approach where more recent

data are used to predict past data. The key is to correctly subset the data into disjoint training, validation,

testing, and forecasting blocks and then expand the size of the training data in each step. Once these steps

are in place, any algorithm that can predict continuous-valued outcomes from labeled data is appropriate

to incorporate as 𝑔∗(·). Because the framework itself is algorithmically agnostic, it will be adaptable to

future innovations in predictive algorithms.

In Appendix B, we test the various machine learning strategies described above to determine what
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is initially most successful with very-long-run economic data. To determine which algorithm makes the

strongest out-of-sample predictions, we calculate the out-of-sample prediction error using the root mean

squared error. This is defined as the square root of the average of the squared prediction error (𝑦𝑖,𝑡 −

𝑦𝑖,𝑡 )2 where 𝑦𝑖,𝑡 denotes our predicted value from the estimation of 𝑔∗(·) on unseen data. We find that

LightGBM outperforms the benchmark linear model, the other gradient boosted decision trees, and the

neural networks, so we use that algorithm throughout the paper.

3.3 Use cases and extensions

The past predictive modeling framework described above is designed to work best with scarce histori-

cal data for which the underlying observations are available at a regular frequency. This is because the

method relies on consecutive observations for the split of the training, validation, testing, and prediction

samples. The framework could be modified for data available at, e.g., decadal levels by simply indexing

𝑡 in terms of decades.9 If consistency between the timing of the training data and prediction data is not

important in an application, 𝑡 could also simply index the next non-missing year of data.

While the framework is designed for scarce data, it is important to keep in mind that if the training

data are too limited, machine learning algorithms will not be able to produce reliable results. Given the

backwards prediction structure, the sample size of the training data is most limited in the years closest to

the present. One therefore must include years after the first prediction year to form the training data for

the first prediction.10 While there is no universal threshold for what constitutes an adequate sample size

in machine learning applications, for tree based models, one guideline is to ensure that the training data

includes at least the number of leaves times the minimum data in each leaf.

The backwards prediction structure also has a further implication that should be recognized: it cannot

anticipate exogenous shocks that are not yet in its training data. As a result, the time at which a sudden

shock becomes visible in the predictions is shifted by the four years it takes for it to enter the training

sample. Analytically, this is easy to accommodate, but it needs to be kept in mind when interpreting

short-run annual predictions.11

9In this case, to ensure that the training data are close to the prediction data, one might consider eliminating the space
between the training and validation data, or eliminating the validation data entirely. This would, however, prevent any tuning
of the hyperparameters or reporting of feature importance.

10For example, in our application to English wages below, we use data through 1914 and make our first prediction in 1900.
11We note that this does not seem to present a large issue in the application to English wages we explore. In Appendix F, we

show that the correlation between changes in annual nominal wages and annual grain prices is stronger with past predictive
modeling than with regression estimation.
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4 Application

To empirically validate our framework, we apply past predictive modeling to the well-studied case of

nominal wages in England over the course of seven centuries.

We leverage Clark’s 47,000 observations of nominal wages paid to workers in the English building

industry from 1200 to 1914 (Clark 2005)12. This dataset is the foundation of much influential research on

the economic history of England over six centuries. As Humphries and Weisdorf (2019) and others have

since pointed out, the degree to which these wages represent an average worker’s income or real wages

is limited because they omit women and workers on annual contracts, and because we have no accepted

estimates of how many days were worked per year.13 Nevertheless, the dataset remains one of the largest

and best researched for any country in Europe.

Clark (2005) uses these observations to estimate a representative wage for laborers and craftsmen

in each year in a linear regression model. We apply past predictive modeling to these data, using the

variables in the original 2005 model as well as some information that was collected but not included,

presumably because of the dimensionality issue inherent in the regression approach.14

We modify the raw data in three ways to improve the validity of the analysis. First, rather than

constructing two separate samples for unskilled laborer and skilled craftsman wages, we incorporate all

observations into a unified dataset with an indicator variable to distinguish among laborers, craftsmen,

and assistants to craftsmen. This approach allows our estimates of, for instance, laborers’ wages to be

informed by broader wage patterns across occupations, taking full advantage of the enhanced flexibility

of machine learning algorithms to allow for these spillovers.

Second, we refine the classification of occupations into craft types based on the original occupations to

ensure that all wages pertain exclusively to building workers and that the correct occupations are grouped

together.15 This results in nineteen types of building craft categories.

12We are exceptionally grateful to Gregory Clark for sharing the raw data underlying the regression models with us. To the
best of our knowledge, these data have not been used in projects other than in Clark’s own work.

13Our approach is agnositc to how to adjust for these concerns.
14The additional variables are: whether the worker was an assistant, a laborer, or a craftsman; county identifiers; whether the

wage was paid by the day, hour, or week; whether the worker was male or female; the season of the year; and whether the wage
was complemented by food or other provisions.

15Specifically, we drop coopers, furbishers, millwrights, boat builders, shipwrights, blacksmiths, locksmiths, smiths, wheel-
wrights, and whitesmiths as these occupations are not traditionally considered to be in the building industry. We also combine
various names for thatchers, for plasterers, and for roofers into three craft categories. The remaining nineteen categories of
crafts include carpenters, joiners, or wrights; bricklayers; laborers (e.g. carry earth, make wells); carvers; daubers (e.g. clayers,
wattle); glaziers; tilers; lath layers (e.g, rending lath, lathier, lathing); masons or stonecutters; painters; pavers; plasterers or
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Finally, we address duplicates in the data, where multiple workers receiving identical wages in the

same place for the same occupation in the same year were entered on separate rows. We consolidate

these rows in order to not overstate our sample size, combining repeat observations into single row of

the data and generating a new variable that captures the count of observations of each wage-year-place

combination. After these modifications, we are left with 39,223 total observations.

We also employ regional population data for our analysis. When working with nominal wages,

researchers have typically reported separate wage series for laborers (unskilled wages) and craftsmen

(skilled wages). These estimates are meant to be taken as ‘national’ estimates representative of average

wage levels across England. We improve on this approach by presenting population-weighted averages

of regional wage estimates in order to generate a more representative ‘national’ estimate. To achieve this,

we build upon established population data for the counties of England (Wrigley 2007, 2009; Broadberry

et al. 2015, table 8B).16 This enables us to fit values to population levels as they changed over time, im-

proving the accuracy of a ‘national’ wage estimate.

5 Validation results

This section assesses the extent to which our past predictive modeling framework improves on conven-

tional regression-based approaches using our case study of English nominal wages. We evaluate perfor-

mance along two dimensions. First, we compute bootstrap standard errors to compare the precision of

estimates generated by the past predictive modeling framework and traditional linear regression. The

results indicate a substantial reduction in uncertainty, with past predictive modeling yielding bootstrap

standard errors that are on average 60.2% lower than those from linear regressions. Second, we evaluate

predictive performance out-of-sample, comparing the accuracy of machine learning algorithms to that of

linear models within the past predictive modeling framework. We conservatively find that the past pre-

dictive modeling framework implemented using LightGBM improves out-of-sample accuracy by more

than 28%.

pargetters; plumbers; roofers (e.g. slaters, heliers); sawyers; reeders (e.g. thatchers or arundinators); waller; whitelimers (e.g.
whitewashers); and other craftsmen.

16Our regional population estimates are constructed as follows. We first use linear interpolation to estimate the share of the
national population in each county between the benchmarks estimates given in Broadberry et al. (2015) and Wrigley (2007, 2009).
We then estimate county populations by assigning them their share of the national population estimates (Broadberry et al. 2015).
We then aggregate the counties into the regions used in Clark (2005).
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5.1 Reduction of uncertainty

Does the past predictive modeling framework yield more precise estimates than traditional in-sample

regression-based approaches? As discussed in Section 2.3, when data are scarce, regression models are

prone to overfitting. This leads to unstable predictions that poorly reflect underlying population pa-

rameters and are less generalizable to unseen data. In theory, using appropriate predictive modeling

techniques that optimize for out-of-sample performance and account for the temporal nature of the data

should address this problem and improve precision. Is this borne out in practice?

Using our case study of nominal wages in England, we test whether the predicted values from our

past predictive modeling approach are more stable and precise than those from traditional regression

methods. To do this, we generate bootstrap standard errors of the average estimate for each year using

both methods. First, we replicate the sample and models for laborers and craftsmen from Clark (2005)

and confirm that we generate the same annual average wage estimates. Then, we estimate the bootstrap

standard error by creating 100 bootstrapped samples, resampling with replacement, and generating a

new prediction for each year from each bootstrapped sample.17 A lower standard deviation of these

predictions indicates a narrower confidence interval and thus a more precise and stable set of predictions.

Second, we calculate the bootstrap standard error for the predictions from the past predictive mod-

eling framework, implemented with LightGBM.18 We follow the same procedure but within the past

predictive modeling framework, where predictions are generated separately for each year, making the

process more computationally intensive. To calculate the bootstrap standard errors, as before, we gener-

ate the standard deviation of the prediction across 100 bootstrap samples for each year.

Figure 4 presents the results of the bootstrap analysis for both estimation approaches, separately for

laborers (unskilled) and craftsmen (skilled), with standard errors scaled by the mean and plotted as

decadal averages. The blue line depicts the bootstrap standard errors from the replicated estimates of

Clark (2005), while the orange line corresponds to the standard errors generated by the past predictive

modeling framework implemented using LightGBM. A higher standard error indicates more uncertainty

in the prediction. For both laborers and craftsmen, the past predictive modeling framework produces

much more precise estimates in almost every decade. On average, the standard errors are reduced with

the new framework by 60.2% for laborers and by 69.0% for craftsmen. These substantial reductions in

17If the sample size is 𝑁 , each bootstrap sample is size 𝑁 . Then, each observation has a 1
𝑁

chance of being drawn so a 1 − 1
𝑁

chance of never being drawn. Over the course of 𝑁 draws, the probability of an observation not being drawn is (1 − 1
𝑁
)𝑁

18This decision is discussed below.
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the standard error suggest that the regression-based models are overfitting to the limited historical data,

resulting in greater variability in predictions under resampling. The past predictive modeling framework

addresses this overfitting to generate more robust and stable estimates of annual wages.

FIGURE 4: BOOTSTRAP STANDARD ERRORS, REGRESSION VS. PAST PREDICTIVE MODELING

The instability of wage estimates from regression models, particularly in the presence of scarce data,

makes any given prediction less representative of the true population parameter and therefore less gen-

eralizable to unseen data. A key innovation of the past predictive modeling approach is its prioritization

of out-of-sample model fit, explicitly taking the temporal nature of the data into account by using an ex-

panding window approach. This fundamental difference in perspective increases the ability of the model

to generate stable, generalizable estimates that better reflect the true underlying wage distribution.

We conduct three additional robustness checks. First, we check that our framework presents these

advantages outside of the English nominal wages setting. In Appendix E, we replicate this bootstrap

analysis using the data from Kumon (2022) for servant wages in Japan 1610–1890. Our implementation of

the past predictive modeling framework with LightGBM reduces bootstrap standard errors by over 40%.19

This large reduction in uncertainty in a distinct setting with limited data indicates that the usefulness of

this method is not just confined to the case of English nominal wages.

19We implement LightGBM with just its default hyperparameters. With hyperparameter tuning, it is likely this reduction in
uncertainty could be even greater.
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Second, in Appendix F we relate the laborers’ wages from the Clark (2005) regression and from our

new past predictive modeling framework to grain prices for the years 1300-1600. Wage prices and grain

prices should be related through both income and in wage effects for a period in which agriculture is the

dominant sector (Broadberry et al. 2015) and consumption baskets are dominated by grain-based foods

(Clark 2005, p. 1328). We show that changes in wage estimates from the past predictive modeling frame-

work are slightly more correlated with changes in wheat prices than the wage estimates from Clark (2005).

Also in Appendix F, our third check shows that when the sample size in a given prediction year is smaller,

our estimates diverge more from those in Clark (2005), suggesting that, as expected, our improvements

are coming from years in which data are more scarce.

5.2 Improvements in accuracy

The previous section shows that the past predictive modeling framework generates more precise esti-

mates than traditional regression-based methods by explicitly accounting for temporal dependencies in

the data using an expanding window “walk backward” approach. An additional benefit of this shift in

methodology is that it enables the use of machine learning algorithms that optimize predictive power.

This can lead to more accurate out-of-sample predictions than linear regressions.

As we described in Section 3, any algorithm for 𝑔∗(·) can be integrated into the past predictive mod-

eling framework, so we evaluate three gradient boosted decision trees and four neural networks in Ap-

pendix B. Our metric for evaluating which of these algorithms makes the strongest out-of-sample predic-

tions is the root mean squared error for the testing sample. A lower root mean squared error indicates that

our algorithm better predicts unseen data. The out-of-sample prediction error is particularly salient in the

context of scarce data, where, by definition, the true value of some economic outcome is unseen. Opti-

mizing out-of-sample predictive power reduces the risk of bias or overfitting that can arise from scarce or

noisy data, generating the most representative and accurate prediction. We therefore select the algorithm

that, for our specific case, produces the lowest average root mean squared error across all years.

As Appendix B shows, when compared to a benchmark linear model implemented within the past

predictive modeling “walk-backward” framework, LightGBM is 28% more accurate out-of-sample.20 This

demonstrates that the past predictive modeling approach not only improves on existing methods in terms

20This estimate of the improvement in accuracy to unseen out-of-sample data is necessarily an underestimate. In order to eval-
uate out-of-sample, out-of-time accuracy, the linear model has to be implemented in a walk-backward, time-aware framework.
There are likely further gains to accuracy that arise just from using the framework which this estimate cannot capture.
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of precision, but that these more generalizable estimates are also more accurate to unseen data.

One final, fundamental point that needs to be acknowledged is that, irrespective of method, the true

population value we wish to predict is unknowable, made unrecoverable by the choices and accidents

that shape what data from hundreds of years ago survive today. While it is impossible to recover data

that were never recorded, in this setting, prioritizing algorithms that minimize out-of-sample prediction

error offers a pragmatic alternative. This approach is superior to running a linear regression on the full

sample, which assumes that the observed data are representative and that true structural parameters can

be recovered. Instead, we seek the most representative approximation of unrecorded economic outcomes

using the data we do observe by focusing on out-of-sample predictive power. Yet while we can confi-

dently state that past predictive modeling improves out-of-sample accuracy relative to a linear model,

it remains impossible to quantify the extent of that improvement relative to the true, but unrecoverable,

population value.

6 The economic benefits of past predictive modeling

More accurate predictions of economic indicators have an obvious appeal, but does this added statistical

precision have meaningful benefits for economic analysis? In this section, we examine the differences

between the predictions that the past predictive modeling framework produces and those obtained from

the existing best-in-class regression methodology in order to evaluate whether they are significant enough

to justify adopting this new approach.

The broad trends of our predicted long-run wage series for 1200 to 1900 are reported in Figure 5, with

95% confidence intervals around 9-year moving averages. The benefits of the past predictive modeling

framework can be demonstrated usefully through three examples that explore some applications of these

new wage estimates.

First, we show that the enhanced precision of predictions in periods of scarce data provides new

insights into the effect of the Black Death on income inequality. Second, we show how the flexibility

of parameter estimates in this approach allows regional wage variations to be documented, generating a

deeper understanding of the economic geography of industrializing England. Third, we exploit these new

regional series to produce nationally representative weighted wage estimates that remove major biases

introduced by the changing spatial composition of the data, a frequent issue with historical datasets.
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FIGURE 5: PAST PREDICTIVE MODELING WAGE ESTIMATES OF CRAFTSMEN AND LABORER’S WAGES,
1200-1900

Finally, we examine how the new wage series affect estimates of productivity growth over the long run,

revising our understanding of developments before 1600.

6.1 The Black Death and inequality: predictions with limited observations

Meaningful differences between the wage estimates generated by the past predictive modeling approach

and regression emerge in several periods. The past predictive modeling approach has particular strengths

in generating predictions in settings where data are sparse. We illustrate this through the impact of a

defining economic shock, the Black Death of 1348 that killed somewhere between a third and a half of the

English population.

The Black Death was the largest single labor market shock in recorded history. Figures 7 reports our

predicted wages and Clark’s estimates in the decades around the Black Death (Clark 2005).21 Focusing on

wage differences across the period after shock, we are able to exploit the advantages of these predictions.

Most notably, we find a more rapid, larger and more sustained increase in unskilled laborer’s wages in

the years immediately following the plague. Laborers’ nominal wages increased by almost 70% between

the early 1340s and the mid-1350s, compared to 45% in Clark’s estimation. Our predictions for skilled

21Following Clark, to make these comparisons we scale our predicted wages by 0.905, which is his adjustment to reflect that
most day wages were not directly paid to workers. See Appendix A for more on these issues.
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craftsmen’s wages are consistently lower than Clark’s in this period, but the rate and size of their wage

increase after the Black Death was more similar to his series, with our predicted wages increasing by 48%

and Clark’s by 39% over the same period.

FIGURE 6: COMPARISON OF PAST PREDICTIVE MODELING WAGE ESTIMATE WITH EXISTING SERIES FROM

CLARK (2005), 1320-1500

The differential impact of the Black Death that we see in these new wage series pushed the skill pre-

mium—the ratio between the average unskilled and average skilled wage—down to its lowest-ever level

in these decades, as Figure 7 shows. This is substantially below other estimates (Van Zanden 2009; Jensen

and Luo 2024), implying much lower returns to skill in the late fourteenth and early fifteenth century.

Where existing series show stability from around 1400, we observe the skill premium steadily recovering

until the early sixteenth century, when population growth began to accelerate, and, perhaps more impor-

tantly, real interest rates fell (Schmelzing 2020). For the next two hundred years, the skill premium moved

around 60%, with peaks and troughs in periods of economic and political crisis such as the 1590s and the

civil war.

The divergence we observe between skilled and unskilled wages after the Black Death indicate that the

impact of the epidemic was economically differentiated. Unskilled laborers on casual day work contracts,

with an outside option in agricultural work, benefited most from this dramatic Malthusian shock. The

lower elasticity of skilled wages is plausibly explained by the state’s intervention in the labor market,
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FIGURE 7: COMPARISON OF SKILL PREMIUM WITH EXISTING SERIES FROM CLARK (2005), 1320-1500

as it introduced novel legal constraints on wages through the ‘Ordinance of Labourers’ (1349) (Cohn

2007).22 If the Black Death’s impact on the capital-labor ratio generated a major reduction in economic

inequality, reducing the power of the landed elite (Scheidel 2018; Alfani 2021), these results suggest that

the epidemic also lowered inequality within the waged labor force, revealing a new mechanism by which

epidemics impact inequality.23

6.2 Regional growth patterns before the Industrial Revolution

One of the major benefits of past predictive modeling is its flexibility. In most linear regression specifi-

cations, it is difficult to identify shifts in paramaters. Coefficients on variables are estimated for the full

sample, or vary only intermittently between restricted sets of interactions. To give a concrete example

from the setting we are exploring, regression models struggle to capture shifts in inter-regional wage ra-

tios over time. When estimated in a single model, regional effects are usually fixed or, at best, estimated

for a limited number of pre-determined periods. When linear models are estimated separately for dif-

ferent regions and then aggregated, inter-regional spillovers are missed as wage dynamics in one region

22Annual wages adjusted even more slowly to the Black Death (Claridge et al. 2024; Humphries and Weisdorf 2019, p. 2874)
23Evidence for an equalizing effect in agricultural wages suggests a similar trend in the larger rural workeforce (Claridge et al.

2025, p. 38)
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cannot influence another.

The greater flexibility of machine learning can address these issues, allowing the identification of rela-

tive changes in regional wage levels while still parsimoniously estimating a single model. This enhanced

ability to examine spatial variation (or similar variation in other parameters) is one of the major advan-

tages of past predictive modeling.

In our application, English nominal wages, we use this flexibility to predict regional wages based

on time-varying region effects. This allows us to examine regional differences in wage costs, a feature of

premodern labor markets that has been identified as major cause of industrialization via directed technical

change (Allen 2009). Our new predicted regional wage series offer a novel insight into the economic

geography of England in the centuries before the first Industrial Revolution.

Figure 8 presents the first consistent, long-run predictions of regional wages in England.24 They

provide new evidence on the timing of two key phases of economic development that have only been

sketched from patchy urbanization data previously. The first is the sixteenth and seventeenth century

divergence between London and the rest of the nation that was primarily driven by international trade

(Wrigley 1967; Zahedieh 2010; Acemoglu et al. 2005). This started in the mid-sixteenth century and in-

volved a doubling of nominal wages in London by 1650 compared to much slower wage growth else-

where in England. By the 1670s, the ‘London premium’ relative to northern wages was around 100%

(Woodward 1995). These high London wages were then sustained for almost a century The second is

the later eighteenth-century process of convergence, as productivity growth surged in the industrializing

north due to the increasing returns to skill and human capital in newly mechanised industries. The wage

evidence suggests this did not begin until the 1770s, and the ‘great reversal’ in wages brought about by

industrialization (Kelly et al. 2023, 70) did not fully emerge until after 1800.

These new regional wage series underline the distinctive dominance of London as the economic center

of skills, training, and labor demand in England throughout the seventeenth and eighteenth centuries.

England’s ’high wage’ economy was limited to the capital until the Industrial Revolution was well under

way.

24See Appendix G for comparisons with alternative shorter-run measures.
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FIGURE 8: REGIONAL WAGE PATTERNS, 1500 TO 1840

6.3 Constructing representative national wage series

Regional wage series have a further important advantage. As we discuss in Section 4, in combination

with population data we can use them to estimate a population-weighted national wage.

The large relative changes in regional wage levels presented in Section 6.2 have economically mean-

ingful implications for national wage estimates. We illustrate this in Figure 9, which presents the new

past predictive model wage series for building laborers and craftsmen. Each panel reports two series that

presented as nine-year moving averages. The unweighted series is the average wage prediction in each

year from our model. The weighted series is a population-weighted average of the regional predictions.25

The weighted series is more representative of national wage trends and is the approach taken by modern

national statistical agencies.

For most periods, the two series are similar, as we would expect given the empirical richness of Clark’s

original data. However, the weighted series and the unweighted series diverge substantially from around

1660 until the middle of the eighteenth century due to the divergence between regional wage levels and

the large share of observations from high-wage London. Both the weighted series show significantly

25Appendix H discusses the weighting method fully.
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lower national wages during this time than the unweighted series, with large differences of 15-20% for

some decades. In the absence of weighting, the series show a marked rise after 1660 followed by a sub-

stantial fall in the 1740s. In the weighted series, both laborers and craftsmen’s wages grow much more

slowly after 1660 before entering a period of sustaining growth from around 1760. There is no evidence

of any change in the trend in nominal labor income after the Glorious Revolution (1688), or of a fall in

nominal wages during the mid-eighteenth century when demographic pressure was pressing on output

growth, suggesting the presence of substantial downward wage stickiness.

In cases of scarce data, where some regions may be better represented in the extant data than others,

weighting regional estimates by population generates a more nationally-representative estimate than an

unweighted average. The flexibility of past predictive modeling permits the use of aggregation strategies

that correct for the existence of potentially large biases.

FIGURE 9: WEIGHTED AND UNWEIGHTED WAGES IN D. PER DAY

6.4 Productivity growth in England

As a final illustration of the implications of using the past predictive modeling framework, we revisit

Bouscasse, Nakamura and Steinsson’s recent analysis of productivity and growth in England over the

long run (Bouscasse et al. 2025). Their paper estimates productivity growth in England between 1250
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and 1870, providing important new evidence for when productivity growth began and the rate of growth

from 1600-1800.

Wages are a critical ingredient in their analysis, which derives estimates of productivity from the labor

demand curve. They choose this approach because real wages (and population) “are arguably among the

best measured series of all economic time series over our long sample period” (Bouscasse et al. 2025,

838). They estimate productivity in two ways. First, they use the Black Death as an exogenous shock,

and exploit the change in real wages that accompanied the fall in population. Second, they structurally

estimate a Malthusian model using population and wages across six centuries. The data they use for their

main estimations are Clark’s series for unskilled building workers (Clark 2005). We replaced these with

our wage predictions, deflated in the same way, as explained in Appendix I.

Reassuringly, we produce essentially unchanged results for the two major results in Bouscasse et al.

(2025): the breakpoint from which persistent productivity growth is observed remains around 1600, and

the rates of growth in the period before and after this are similar.

We do, however, find suggestive evidence that one of the surprising features of medieval economic

history that Bouscasse et al. believed had disappeared with their analysis did in fact exist. This is the rise

and fall of productivity between the Black Death and the middle of the sixteenth century. While Bouscasse

et al. saw little sign of this in their results, the productivity rates obtained with the new wage estimates

shows a significant increase by the 1450s, as Figure 10 shows. These estimates are still slightly below

those produced by Clark (2016) using a dual approach technique to estimate TFP, and Allen’s estimates

for agricultural productivity (Allen 2005).26

How to explain this rise and fall in productivity has stood as a challenge since Clark identified it.

That it appears again in these new estimates suggests that there were real changes in productivity during

these centuries, perhaps reflecting the countervailing impact of improvements in market integration and

political turmoil on the English economy, and this deserves further research.

More broadly, this application demonstrates that the improvements brought by past predictive mod-

eling impact not just the estimated series, but also secondary analyses that use those estimations as a core

component.

26Figure 10 plots the baseline model from Bouscasse et al. (2025). In Appendix I, we show that this result is robust to both the
simple and structural models. We also show the full productivity breakpoint results.
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FIGURE 10: ESTIMATES OF PRODUCTIVITY IN ENGLAND
Note: Each series is the natural log of productivity, as reported in (Bouscasse et al. 2025, Fig. I).

7 Conclusion

Economists interested in long-run analyses must contend with the fragmentary and incomplete nature

of historical data. This paper introduces past predictive modeling, a framework that leverages machine

learning and out-of-sample predictive modeling techniques to address this challenge of reconstructing

economic time series from scarce historical data. We improve on conventional methods that fit regression

curves to limited data, which risk bias and overfitting, by using a prediction framework that optimizes

on out-of-sample prediction accuracy.

Applying this framework to English nominal wages from 1300 to 1900, we demonstrate that this past

predictive modeling approach yields substantial improvements in precision and accuracy of predicted

values. Relative to benchmark linear regressions, past predictive modeling reduces bootstrap standard

errors by 60.2% and out-of-sample root mean squared errors by 28.4%. These performance gains arise

from leveraging well-established techniques for addressing bias and overfitting and using more flexible

machine learning algorithms.
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Beyond just improvements in accuracy, our new wage estimates shape our understanding of long-run

economic development. We find that the Black Death had a skill-differentiated impact on wage rates,

leading to a much lower skill premium than previously recognized. By estimating novel long-run re-

gional wage series and weighting by population, we illuminate regional economic dynamics prior to the

Industrial Revolution and also show the importance of population weighting for national wage estimates

to be representative. Finally, our new estimates reconfirm the existence of a medieval productivity puzzle

after the Black Death.

The broader implications of our method extend to development economics, macroeconomics, and

economic history, where reliable historical data are critical to our understanding of economic transitions

and long-term growth yet difficult to come by. While we have chosen to use nominal wages as our case

study, the framework we outline here can be applied to a wide range of historical economic variables,

opening up new avenues for future research and shifting fundamentally our approach to scarce data.
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Appendices

A Labor costs or wages

The series of day wage observations in Clark’s dataset are the amounts reported in original historical

records as paid by institutions to craftsmen or building firms for labour costs (Clark 2005, p. 1321). Most

economic historians working with long-run series of construction wages have interpreted these as ‘day

wages’ paid to workers; however, as Clark points out, before 1860 or so, the amounts actually received by

the workers would have been less than these payments. This is because institutions typically contracted

with master contractors or ‘firms’ for different types of work, and account books show that the masters

or contractors deducted their overhead costs from the billed amounts before paying labour (Stephenson

2018).

In order to convert this series into a nominal day wage series that represents the wage received by

workers, not the cost billed to the client, it is necessary to deduct the contractor’s overhead or margin

from the recorded values. The value of the difference between the ‘day rate’ in the institutional account

and the wage paid to the worker will have varied depending on the value of the contract to the contractor,

the costs of credit, other supply chain considerations, seasonality, stage dependency, and so on. Clark

(2005) deducts 9.5 percent from the bill or recorded amount. Stephenson (2018) finds that for the period

1650–1800 in England the difference lay somewhere between 20 and 30 percent. Deductions for other

places will have been subject to local institutional arrangements (López Losa and Zarauz 2021; Baulant

1971; Mocarelli 2004; Stephenson 2019, pp. 765-6).

To then move from day wages to estimate average annual male wage income, it is necessary to estab-

lish or estimate a number of days that workers will have worked per year. It is generally accepted that

this will have varied (de Vries 2008; Broadberry et al. 2015), and it will have been a function of invest-

ment in and demand for building services, seasonality, project specificity, and outside options for labor

(Stephenson 2020). Estimates of the annual number of days worked come from a variety of sources (see

description in Broadberry et al. 2015, p. 264) including working records from building sites (Stephenson

2020; Paker et al. 2023; Woodward 1995) and the costs of consumption goods (Allen and Weisdorf 2011;

Humphries and Weisdorf 2019). In this paper, the series that we present are for day rates and are only

directly comparable to nominal day wages. We do not make assumptions or estimations about the days
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worked per year, so therefore we do not predict annual real wages or living standards.

The predicted ‘wage’ series for England 1300–1900 from this paper should therefore be understood as

the cost of labor less 9.5 percent. We deliberately follow Clark on this to enable direct comparisons to his

series, as we say in footnote 21, and for all comparisons we scale our predicted wages by the same 0.905

factor.

B Comparison of machine learning algorithms

In this appendix, we test the effectiveness of three gradient-boosted decision tree algorithms and four

neural networks, pitting them against a benchmark linear model estimated within the framework.

We focus on three algorithms for our gradient boosted decision trees: XGBoost (Chen and Guestrin

2016), LightGBM (Ke et al. 2017), and CatBoost (Prokhorenkova et al. 2018). All three algorithms are

known for performing well on prediction tasks in scenarios with complex and non-linear relationships

by creating ensembles of decision trees and iteratively boosting to improve model performance. This is

balanced by regularization to reduce overfitting. The methods differ in their optimization: XGBoost uses

first and second-order gradient descent, LightGBM uses histograms to approximate first-order gradients

more efficiently, and CatBoost computes gradients on dynamically updated subsets of the data.

For each of the gradient boosted decision trees, model and tree complexity hyperparameters are tuned

using the validation data to minimize out-of-sample prediction error. To determine these hyperparame-

ters, we follow common practice and iteratively test combinations of hyperparameters on the validation

sample using a grid search to determine the combination that minimizes the out-of-sample prediction er-

ror. To find a combination of hyperparameters that works well across the full sample period, we set a fixed

interval length and conduct the grid search once every interval. From the resulting best combinations of

hyperparameters from each search, we select the modal combination.

When applied to our case study of English nominal wages, Table A1 gives the best hyperparameters

for XGBoost, Table A2 for CatBoost, and Table A3 for LightGBM.

We also build four feed-forward neural networks with hidden layers ranging from two (shallow) to

five (deep). It is not common practice to tune neural networks using a hyperparameter grid owing to

their computational complexity, so we follow Gu et al. (2020) in designing the architecture of our neural

networks with fixed parameters. The number of neurons is selected according to the geometric pyramid
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TABLE A1: XGBOOST TUNING PARAMETERS

Parameter Value

objective reg:squarederror
eval metric rmse
max depth 10
min child weight 1
eta 0.3
n estimators 200
colsample bytree 1
alpha 0
reg lambda 0

TABLE A2: CATBOOST TUNING PARAMETERS

Parameter Value

loss function RMSE
iterations 500
learning rate 0.1
depth 6
l2 leaf reg 3
min data in leaf 5

rule and all layers are fully connected. The activation function is Leaky ReLU, and we use an ADAM

optimizer with a learning rate of 0.001 for 200 epochs with a batch size of 128 observations. Following

Gu et al. (2020), we incorporate three regularization techniques into the network architecture. We use

the learning rate shrinking algorithm with factor 5 if validation metrics plateau and incorporate early

stopping. For each estimate, we also construct five separate networks and take the average to ensure the

results are not biased by one-off variation in the random seeds.

Our metric for evaluating which of these algorithms makes the strongest out-of-sample predictions is

the root mean squared error. This is calculated for the testing sample, which is not used in the training

or tuning of any of the machine learning algorithms. A lower root mean squared error indicates that

our algorithm better predicts unseen data. The out-of-sample prediction error is particularly salient in

the context of scarce data, where, by definition, the true value of some economic outcome is unseen.

Optimizing out-of-sample predictive power reduces the risk of overfitting that can arise from scarce or

noisy data, generating the most representative and accurate prediction. We therefore select the algorithm

that, for our specific case, produces the lowest average root mean squared error across all years.

Figure A1 presents the average root mean squared error across all years from each of the eight models
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TABLE A3: LIGHTGBM TUNING PARAMETERS

Parameter Value

objective regression
metric rmse
max depth 10
num leaves 31
learning rate 0.2
n estimators 500
min data in leaf 10
lambda l1 1
feature fraction 0.9

applied to the English nominal wage data: the benchmark linear model (LM), XGBoost (XGB), LightGBM

(LGB), CatBoost (CATB), and feed-forward neural networks with 2-5 hidden layers (FFNN2-5).

FIGURE A1: OUT-OF-SAMPLE ROOT MEAN SQUARED ERROR, LINEAR REGRESSION AND MACHINE

LEARNING MODELS

Figure A1 shows that LightGBM and CatBoost generate the most accurate out-of-sample predictions,

while the neural networks generate the least accurate predictions. This accords with the literature which

generally finds that gradient boosted decision trees have the greatest prediction power in cases with many

categorical features over long run time series. Compared to the benchmark linear model estimated within

the framework, LightGBM reduces the prediction error by 28.36%.
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Our results in Figure A1 show that CatBoost marginally outperforms LightGBM in terms of reducing

the root mean squared error. Because this difference is negligible, we choose to use LightGBM in our

subsequent tests of whether the more accurate predictions from the past predictive modeling framework

are meaningfully different from existing estimates because it is faster and easier to work with.

C Robustness to rolling window approaches

As an additional robustness check, we run the model with 50-year, 100-year, 250-year, and 500-year rolling

windows instead of an expanding window. A rolling window uses the same number of years in each

model estimation and is another standard technique for time series prediction. In our case, this limits the

data used in the estimation to a fixed number of years following the year for which the prediction is being

generated.

Figure A2 shows that our results are essentially identical regardless of whether an expanding window

or rolling window approach is used, for both laborers and craftsmen.

FIGURE A2: EXPANDING WINDOWS VS. ROLLING WINDOWS FOR LABORERS AND CRAFTSMEN

Table A4 shows that the average bootstrap standard errors are very similar between the different

approaches. The expanding window provides the lowest average standard error for the laborers estimate,

while the 100-year rolling window provides the lowest average standard error for the craftsmen estimate.
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Note that all of the approaches give a lower standard error than the linear regression in Figure 1.

TABLE A4: AVERAGE BOOTSTRAP STANDARD ERRORS,
EXPANDING VS. ROLLING WINDOW

Laborers Craftsmen

Expanding Window (baseline) 0.229 0.239
50-yr Rolling Window 0.241 0.241
100-yr Rolling Window 0.234 0.234
250-yr Rolling Window 0.230 0.237
500-yr Rolling Window 0.230 0.236

D Feature importance in the predictive model

One advantage of the past predictive modeling framework is that it allows us to evalute the contribution

each variable (“feature”) makes to the model’s predictions. We calculate a permutation importance score

for all the features in the model, giving us information about the contribution that each makes to the

wage prediction for each year. The permutation importance score is a measure of how much the model’s

performance drops if the values of a single feature are randomly shuffled. It has an appealingly obvious

intuition. If shuffling the values does not affect performance much, then that feature is not making a large

contribution to the prediction, and vice versa.

In our application to English wages, we report permutation importance scores for each year, giving the

contribution of each feature to the wage prediction for that year, and then express this as a percentage. As

a result, we are able to decompose the importance of individual features, such as an area like the county

of Kent, and of different categories of feature, such as counties in general. We can also observe how the

importance of different features changes over the period being studied.

Table 1 reports the average percentage score of each category of feature across all 653 models estimated

from 1220 to 1900 (for some years in the thirteenth century where wage observations are missing no model

can be estimated), and the minimum and maximum share contributed by each category.

The type of work involved—whether the wage is paid to a craftsman or laborer—has the largest aver-

age permutation importance score. This is entirely plausible given the large difference in the sums paid

to each, captured in the skill premium estimate discussed in Section 6.1. We also see that Region, and to

a lesser degree County, also have relatively large scores, which is consistent with the substantial spatial

variation in wages across England. Most other features have smaller permutation importance scores on
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TABLE A5: SUMMARY OF FEATURE IMPORTANCE ACROSS ALL YEARS

Feature Category
Mean (%) Max (%) Min. (%)

CountObs 0.16 6.36 0.00
County 8.83 46.81 0.00
Craft 6.53 50.72 0.00
Female 0.51 17.52 0.00
Food 3.05 56.72 0.00
FoodMissing 0.46 7.98 0.00
Joint 0.12 0.13 0.12
JointDummy 1.19 1.21 1.15
Region 17.47 57.79 0.00
Season 0.42 5.67 0.00
Source 4.91 36.13 0.00
Status 3.82 46.39 0.00
Type 52.23 92.26 0.00
WageType 0.29 7.37 0.00

average, but occasionally have larger effects in specific years.

Together, the three most important parameters account for, on average, 78% of the permutation impor-

tance score across these predictions. The model derives significant information from the multiple other

pieces of information it can incorporate into its estimation process.

The contribution of different features evolves over time. In Figure A3, we illustrate the shifting share

of the prediction score supplied by different categories of feature. The contribution of the Wage Type

rises and then declines over time, while Region becomes visibly more important in the second half of our

period, as divergence within England becomes greater.
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FIGURE A3: FEATURE IMPORTANCE, 1290-1900.

E Application to Japanese Wages

As an additional robustness check, we explore whether we see similar improvements in precision for an

entirely different setting — male servant wages in agriculture in Japan from 1610–1890. Kumon (2022)

uses a regression in the style of Clark (2005) to reconstruct an annual series of farm wage estimates for

Japan, which are then further analyzed using welfare ratios to explore the strength of Malthusian forces

during this period. We select this paper for an additional robustness check because it is one of few pa-

pers in Table 1 that provides complete and detailed replication files including the raw wage observations

underlying the regression analysis.

First we replicate the analysis in Kumon (2022) as a regression model. The model includes dummies

for decades or half-decades, dummies for if it was a loan or hereditary servant contract, the duration of

the contract, and regions interacted with a dummy for after 1750. We take the OLS model as specified in

the replication files. We draw 100 bootstrap samples, estimate this model, and then compute the bootstrap

standard error as the standard deviation of the predictions of that model.

Then we implement the past predictive modeling framework for 1610–1890, again computing boot-
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strap standard errors. Our first prediction is for 1850, using 40 years of data through 1890 to make that

prediction. This is because the data are very scarce for the recent years, so 40 years are required to have

the about 300 observations that are minimally required to run LightGBM. We use LightGBM with its de-

fault hyperparameters. Because we do not use the validation dataset to tune the hyperparameters, our

estimates below are an underestimate of the total possible gain from using the past predictive modeling

framework.

FIGURE A4: BOOTSTRAP STANDARD ERRORS,
KUMON (2022) REGRESSION VS. PAST PREDICTIVE MODELING

Figure 4 presents the results of the bootstrap analysis for the Kumon (2022) regression model (in pink)

and the past predictive modeling approach implemented with LightGBM (in blue), plotted as decadal

averages. A higher standard error indicates more uncertainty in the prediction. On the whole, the past

predictive modeling framework produces more precise estimates in almost every decade. The average

bootstrap standard error 1610–1850 is reduced from 38.62 to 23.07 using the past predictive modeling

framework. This is a reduction in uncertainty of 40.25%. The fact that the past predictive modeling frame-

work reduces bootstrapped standard errors for farm servant laborers in Japan shows that the approach

can reduce overfitting and improve precision generally across many settings.
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F Robustness exercises for validation of the framework

First, we check to see if the differences between the new past predictive modeling series and the standard

wage estimates from Clark (2005) are greatest in periods where data are most scarce. Figure A5 relates the

level difference between the two wage series and the sample size of the prediction sample. The correlation

is negative, -0.0908 for laborers and -0.1061 for craftsmen, indicating that as the sample size increases, the

difference between the two series decreases. This is the relationship we would expect to see if the new

method is indeed improving the predictions in periods where data are more scarce.

FIGURE A5: DIFFERENCE BETWEEN PAST PREDICTIVE MODELING AND CLARK (2005) SERIES,
AGAINST SAMPLE SIZE

Our next robustness check is to compare the correlation of our laborers’ (unskilled) wage estimates

with wheat prices. Wage prices and grain prices should be related through both income and in wage

effects for a period in which agriculture is the dominant sector (Broadberry et al. 2015) and consumption

baskets are dominated by grain-based foods (Clark 2005, p. 1328). To explore this, we compute the first

differences regression of the laborer’s wage on the wheat price prior to 1600:

Δ𝐿𝑎𝑏𝑜𝑟𝑒𝑟𝑊𝑎𝑔𝑒𝑡 = 𝛽0 + 𝛽1Δ𝑊ℎ𝑒𝑎𝑡𝑃𝑟𝑖𝑐𝑒𝑡 + 𝜖𝑖 (1)
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Where 𝐿𝑎𝑏𝑜𝑟𝑒𝑟𝑊𝑎𝑔𝑒𝑡 is the estimate of the average laborer’s wage in year t,𝑊ℎ𝑒𝑎𝑡𝑃𝑟𝑖𝑐𝑒𝑡 is the estimate

of the average wheat price in year t from (Clark 2005), and 𝛽1 is the impact of changes in the wheat price

on changes in wages. An estimate nearer to 1 indicates that wages and wheat prices change at a more

similar rate.

The results are given in Table A6. Columns (1) and (2) give the results of the correlation with the

wheat prices from Clark for 1300-1600, and the remaining columns restrict the sample to 1300-1400, 1400-

1500, and 1500-1600, respectively. The correlation with the new predicted laborer wages from the past

predictive modeling framework is given first, followed by the correlation with Clark’s laborer wages. In

all periods, there is a more positive correlation with the new past predictive modeling estimate, signaling

that changes in the wheat price are more closely associated with changes in the wage. However, we note

that this analysis is limited by a lack of statistical significance.

TABLE A6: CORRELATIONS OF LABORER WAGES AND WHEAT PRICE, PAST PREDICTIVE MODELING VS.
CLARK (2005)

(1) (2) (3) (4) (5) (6) (7) (8)
PPM Clark (2005) PPM Clark (2005) PPM Clark (2005) PPM Clark (2005)
1300-1600 1300-1600 1300-1400 1300-1400 1400-1500 1400-1500 1500-1600 1500-1600

Wheat 0.103* 0.0626 0.142 0.0869 0.135 -0.0582 0.0885 0.0658
(1.75) (1.25) (1.54) (0.79) (0.97) (-0.47) (0.90) (0.88)

Constant 0.0228 0.0189 0.0187 0.0169 0.00626 0.00304 0.0417 0.0324
(1.10) (1.07) (0.76) (0.57) (0.27) (0.14) (0.83) (0.85)

Observations 282 282 81 81 100 100 100 100

t statistics in parentheses. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.

G Comparisons with other wage evidence

Clark provides the main wage series for England (Clark 2005). However, other series have been created,

for regions or specific locations. In this section, we compare the wage predictions from past predictive

modeling to these.

Figure A6 compares our prediction of the laborer’s wage gainst Allen’s alternate influential wage

(Allen 2001, 2009). It shows that our estimates of the broad trends for labourer’s day rates broadly accord

with Allen’s for the three regions he discusses, the North and South of England and London.

Figure A7 presents a range of town-level wage estimates from the late seventeenth and eighteenth

century generated by Woodward (1995) in his detailed study of urban construction in Northern England.
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It shows that our prediction of northern construction laborers’ wages is very close to these different urban

estimates, generally sitting around the middle of the range.

Finally, Figure A8 gives a comparison between our northern construction laborer wage and a set of

wage estimates for agricultural laborers constructed by Hunt (1986) for several counties. It also includes

the agricultural wage estimate from Allen (2001). As we would expect, urban construction workers re-

ceived a wage premium in the eighteenth century. The convergence of urban and rural unskilled wages

in Yorkshire and Lancashire the 1790s may reflect the impact of growing demand from industry in these

areas.

FIGURE A6: COMPARISON TO ALLEN’S REGIONAL WAGE PATTERNS, 1500 TO 1840
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FIGURE A7: COMPARISON TO URBAN CONSTRUCTION WAGES, 1650-1800

FIGURE A8: COMPARISON TO AGRICULTURAL WAGES 1760-1800
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H Weighting Estimates

In most large historical datasets of day wages or similar variables, the underlying observations survive in

varying amounts from the different regions in different periods of time. In most cases it is also true that

during the period in question population was distributed unevenly across those different regions. The

changing shares of available data that comes from different geographical regions over time mean that

generating national estimates requires us to pay attention to the underlying sample structure of the data.

This might be an obvious point, but it has not been taken into account in previous estimates of nominal

wage series with the exception of Humphries and Weisdorf (2019). The potential scale of the issue is

illustrated clearly in the main text in Figure 9 where the deviation between our weighted and unweighted

estimates of laborers and craftsmens’ wages become large and economically meaningful in the decades

around 1700. It is an issue that cannot simply be resolved by incorporating geographical or regional

controls within a regression model. That provides an estimation of the size of regional variations, but it

does not provide guidance on how to aggregate from the regional to the national level.

In the specific case we explore here, the deviation between the weighted and unweighted series is

driven by a period in which a disproportionate share of the observations come from London, the English

city with the highest wages, as illustrated by A9

We aggregate by weighting regional wage estimates by the population of the region in each year to

make the average wage more representative geographically (as in Humphries and Weisdorf (2019, 2872

n.11). For long-run estimates this inevitably adds a further challenge, as it requires sub-national popula-

tion estimates for periods of time when even national population figures are disputed. We address that by

focusing on regional population shares, and interpolating between benchmark periods using the growth

rate of the national population (Broadberry et al. 2015; Wrigley 2007, 2009). Regional population shares

change relatively slowly before the modern period, due to the slower pace of migration and economic

development.

We argue that this is more appropriate than the two main alternatives. The first alternative approach

would involve allowing the sample to define the weight based on the number of observations in each

period. This is evidently potentially a source of substantial bias if the underlying data is not randomly

generated, which is the case in most studies.

The second alternative is an unweighted average of regional series. In the absence of a guide to re-
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FIGURE A9: SHARE OF OBSERVATIONS AND POPULATION FROM LONDON

Note: The figure reports the share of wage observations in London per decade, and estimates of the share of the English
population in London. Source: see text.

gional population shares, this is perhaps unavoidable. However, in these settings, the aggregate estimate

may lock in substantial bias if regional shares do change meaningfully. In the period we study, for exam-

ple, London’s share of the English population rises from c. 1.7% in 1300 to c. 13% in 1820.

I Productivity replication

In Section 6.4, we report the results of replicating the recent analysis of long-run productivity growth in

England by Bouscasse, Nakamura and Steinsson (Bouscasse et al. 2025). Our replication involved sub-

stituting construction laborers’ and craftsmen’s wages predicted using past predictive modeling for the

series from Clark (2005) that is used as the main wage data in their paper. We reused their exemplary

code and replication package without any other alterations, as our concern was to identify any implica-

tions from using the past predictive modeling wage series.

The only adjustment that we make in methodological terms relates to the time period used to calculate

54



the average wage in each period. The wages that Bouscasse et al. (2025) use are decadal averages of

nominal wages deflated by Clark’s Cost of Living index. Thay take the forward average of each decade’s

wages, starting with the first year of the decade. This means that the wage for 1340 is an average of 1340-

49. We use an alternate estimate centered on the first year of the decade, making 1340 the average of 1335-

1344. We do this because the past predictive modelling framework produces elevated wage estimates for

1345 onwards as it cannot ‘see’ the arrival of the Black Death until that enters the dataset. By using a

centered average, we avoid polluting our estimate of the average wage in the period before the arrival of

the pandemic with the effects of the plague.27

As Table A7 shows, the trend in our centered average is much closer to that in Clark (2005), while a

forward average of the past predictive modeling wage already begins to increase in the 1340-49 estimate.

Keeping the 1340 estimate free of the impact of the Black Death is critical for two of Bouscasse et al’s

models which rely on wages in the decades 1340 and 1360 for identification: “Specifically, we estimate

𝛼 as the ratio of the change in real wages and the change in the population between 1340 and 1360”

(Bouscasse et al. 2025, 11).

Clark PPM PPM
Year Labourer Craftsmen Labourer Craftsmen Labourer Craftsmen

Forward Forward Centred Centred Forward Forward
1300 1.6 3.0 1.6 2.8 1.6 2.9
1310 1.7 3.3 1.7 3.1 1.8 3.1
1320 1.7 3.2 1.8 3.0 1.8 3.1
1330 1.7 3.3 1.9 3.1 1.9 2.9
1340 1.6 2.9 1.9 2.8 2.2 3.2
1350 2.3 4.1 2.8 3.9 2.9 4.0
1360 2.8 4.5 3.0 4.1 3.3 4.3
1370 2.9 4.7 3.5 4.5 3.4 4.6
1380 2.9 4.6 3.3 4.5 3.4 4.5
1390 2.9 4.6 3.4 4.4 3.5 4.5

TABLE A7: AVERAGE WAGE ESTIMATES (1300–1390)

Bouscasse et al. discuss a rich array of models to account for different issues. We concentrate on three

of these that are core to their main findings in order to establish the effect of using the new wage series.

First, their ”simple” model, estimated from the Black Death shock. Second, their ”baseline” model, which

is their preferred structural model, and which also bases the slope of the labor demand curve on the

Black Death. Third, their ”structural” model in which the labor demand curve is conditional on the entire

27This is a minor concern with the way in which their approach works currently. Clark’s annual wage series starts to rise in
1349, the year after the start of the epidemic, particularly for craftsmen. However, as this only provides 10% of the 1340 sample
in Bouscasse et al. (2025), it has little impact.
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sample, rather than the Black Death. This last model is particularly important as it is largely independent

of the decisions we make about how to treat wages in the 1340s.

In the main text, we focus on the changes we observe in the estimates of productivity during the

centuries after the Black Death that are obtained from the baseline model. Here we show the estimates of

productivity obtained using the other models, to substantiate that result. We also briefly present results

that confirms their other main findings on the break point in productivity growth and rates of productvity.

Figure A10 and Figure A11 report new estimates of productivity using the simple and the structural

models. The simple model provides an even stronger case for a rise and decline of productivity in the

thirteenth to sixteenth centuries. It suggests that productivity may not have fully returned to pre-Black

Death levels at the end of this cycle, and that it was not until c.1700 that England overtook the productivity

seen around 1450. The results of the structural models are more similar, in part because the rise and fall is

more evident in the original estimates. Still, we again see higher estimates of productivity in the fifteenth

century from the past predictive modeling wages.

FIGURE A10: ESTIMATES OF PRODUCTIVITY IN ENGLAND, SIMPLE MODEL

Note: Each series is the natural log of productivity, as reported in (Bouscasse et al. 2025, Fig. I). We compare their estimates using
Clark’s wages (”BNS simple”) and the results of the same model using the past predictive modeling wages (”PPM simple”).
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FIGURE A11: ESTIMATES OF PRODUCTIVITY IN ENGLAND, STRUCTURAL MODEL

Note: Each series is the natural log of productivity, as reported in (Bouscasse et al. 2025, Fig. I). We compare their estimates
using Clark’s wages (”BNS structural”) and the results of the same model using the past predictive modeling wages (”PPM
structural”.

To turn from this question to their main findings, first, Bouscasse et al. find that productivity growth

began around 1600, in line with other recent estimates (Wallis et al. 2018). The timing of the break in pro-

ductivity that we observe using the past predictive modeling wages is the same. Figure A12 reproduces

the estimates of the probability that a structural break occurred in the decades between 1550 and 1800 that

we obtain using their main models alongside the probability from their simple model using Clark (2005),

which is reported in Figure V in their paper. All share the same prediction, that 1600 is the most likely

break point, confirming that element of their analysis.
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FIGURE A12: PROBABILITY OF DIFFERENT PRODUCTIVITY GROWTH BREAK DATES

Note: The figure plots estimates of the probability that a structural break occurred in different decades between 1550 and 1800,
as in Bouscasse et al. (2025, 55). It reports the results from their simple model using Clark’s wages (”BNS simple”) and three
models using the past predictive modeling wages.

Second, Bouscasse et al. provide new estimates of the rates of productivity growth in the long-run,

across the three regimes they identify: before 1600, 1600-1800, and 1800-60. We report estimates from

the three different models run using past predictive modeling wages in Table A8. The estimates for each

period are very similar to those they present, while we report alongside the new estimates for comparison.

The baseline model using the new wage series gives the same overall mean productivity growth in each

of the regimes, with the only change being wider bounds for the distribution, indicating a greater range

of possible values, as we would expect for the period before 1600 particularly. The simple model suggests

a positive but very small average rate of productivity growth before 1600, but the bounds cross zero. It

also reports somewhat lower rates of growth in both subsequent periods, without challenging the overall

narrative.
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TABLE A8: PRODUCTIVITY GROWTH

PPM wages Clark (2005) wages
Mean St Dev 2.5% 97.5% Mean St Dev 2.5% 97.5%

Simple Model
𝜇𝑎,1 0.01 0.01 -0.01 0.03 0.00 0.01 -0.01 0.02
𝜇𝑎,2 0.03 0.03 -0.01 0.10 0.04 0.02 0.02 0.10
𝜇𝑎,3 0.15 0.01 0.12 0.18 0.19 0.01 0.17 0.22

Baseline Model
𝜇𝑎,1 0.00 0.01 -0.01 0.02 -0.00 0.01 -0.01 0.01
𝜇𝑎,2 0.02 0.02 -0.02 0.05 0.02 0.01 0.01 0.04
𝜇𝑎,3 0.05 0.01 0.03 0.08 0.05 0.01 0.03 0.08

Note: The table reports the mean, standard deviation, 2.5% quantile, and 97.5% quantile of the posterior distribution in the same
form given in (Bouscasse et al. 2025, 871). The three regimes cover the years 1250-1590, 1600-1800, 1810-1860.
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