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Abstract

There is strong evidence that exposure to atmospheric pollution is detrimental to
health. However, most current and historical research has focussed on the short-
run consequences of exposure to pollution on health, and historical researchers have
not been able to assess the effects of pollution on a wide range of health indicators.
This paper uses fog events at a daily level as a proxy for acute extreme pollution
events in historical London (1892-1919). It tests whether exposure to fog at birth
and at the time of sickness influenced a wide range of indicators of child health
in the short and long term, including birth outcomes (birth weight, length, still-
birth, premature birth and neonatal death), mortality risk (mortality before age
15), growth outcomes (heights and weights in infancy, childhood and adolescence),
and morbidity outcomes (incidence, prevalence and sickness duration from respir-
atory diseases and measles). Being born on a fog day did not have strong effects on
birth or growth outcomes or on morbidity outcomes for upper respiratory diseases.
However, being born on a fog day increased mortality risk from respiratory diseases
and increased incidence, prevalence and sickness duration from measles, influenza
and other lower respiratory diseases. I also find short-run effects of fog on sickness
duration from influenza and measles. Overall, the mixed results suggest that at-
mospheric pollution caused significant ill health in historical London but only for
limited dimensions of health.

Keywords: ambient air pollution, morbidity, child growth, respiratory disease,
health transition
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1 Introduction

The air of nineteenth- and early twentieth-century industrial cities swirled with smoke,

soot, and sulphur, the choking byproducts of the coal that powered factories and warmed

homes. The smog in London was particularly bad, sometimes so thick that people could

not see across the street and struggled to find their own homes (Luckin 2003, p. 35). This

paper considers the short- and long-run health costs of this pollution for children living

in London and assesses whether changes in pollution affected the health transition, the

vast improvements in health that have occurred since the mid-nineteenth century.

Today, the World Health Organization states that ‘air pollution is the most important

environmental determinant of health’ (WHO 2024, p. 2). Common pollutants including

particulate matter (PM), sulphur dioxide (SO2) and nitrous oxides (NOx) damage health

by irritating the lungs and respiratory tract and exacerbating respiratory disease and

other respiratory complications including asthma (Manisalidis et al. 2020). Outside the

respiratory system, the smallest particulate matter less than 2.5 µm in diameter (PM2.5)

can enter the bloodstream directly via the lungs and damage other body systems, in-

creasing the risk of cardiovascular diseases, diabetes, obesity and neurological conditions.

PM2.5 pollution can also cross the placental barrier and affect children developing in utero,

causing low birth weight and shorter gestational ages (Pryor et al. 2022). While most of

the evidence of the harms of pollution is related to the immediate costs of pollution ex-

posure (Currie et al. 2014), there is growing evidence that exposure to pollution in utero

and in early life may have persistent consequences for health at later ages (Bharadwaj

et al. 2016; von Hinke and Sørensen 2023).

The health consequences of pollution today are becoming clear, but applying these

findings to the past is challenging for several reasons. First, we do not have instrumental

measures of pollution before the 1950s that would allow us to track changes in histor-

ical pollution exposure or estimate health effects of specific dosages of pollution (Clay

and Troesken 2011; Hanlon 2024). Second, the mix of pollutants historically was differ-

ent from today with higher levels of SO2, lower levels of NO2 and similar levels of PM

pollution between London and current polluted megacities (Brimblecombe and Grossi
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2009). Third, people are far more aware of the health consequences of pollution today

and practice avoidance behaviours that were not possible in the past, e.g. staying indoors

or installing air purifiers. Thus, the effects of pollution exposure on health today are

net of these avoidance behaviours and may underestimate the health costs in the past

in the absence of avoidance. Fourth, before the introduction of vaccinations for common

childhood diseases in the 1960s, nearly all children contracted diseases like measles and

whooping cough. Today very few are infected, so any specific effect of pollution on out-

comes from these diseases would not be measured with current data. Finally, both the

health of the average person and medical technology and care have improved vastly since

the nineteenth century. These improvements may attenuate the health costs of pollution

today relative to historical contexts. Given the differences between past and present, it

is necessary to study the health effects of pollution in historical settings directly.

This paper tests the effect of atmospheric pollution on health by focussing on Lon-

don at the turn of the twentieth century, a time when London was extremely polluted

(Brimblecombe and Grossi 2009; Hanlon 2024). I use fogs in London to proxy extreme

pollution events (Clay and Troesken 2011). In London, fog events occurred on cold, rain-

less, still days where the pollution emitted from the city was trapped in place, leading

to sharp, acute increases in pollution levels. The fog events were determined by met-

eorological phenomena and are therefore exogenous to individuals resident in London.

Hanlon (2024) has used weekly data to show that these fog events affected mortality in

London from 1866 to 1965. This paper uses daily fog data to measure the consequences

of exposure to extreme pollution in utero, at birth and in the first month on the health

outcomes of individuals in two data sources covering London 1892-1919: children born in

the Queen Charlotte Hospital (a maternity hospital) and living in the Foundling Hospital

(an orphanage). These sources allow me to analyse the effects of pollution on child health

across a number of dimensions such as birth outcomes (birth weight, birth length, still-

birth, premature birth and neonatal death), mortality outcomes (mortality before age c.

15), growth outcomes (heights and weights in infancy, childhood and adolescence), and
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morbidity outcomes (incidence,1 prevalence2 and sickness duration of respiratory diseases

and measles).

The results are mixed. In the short run, fog events close to birth did not affect birth

outcomes. Exposure to fog at the time of sickness influenced influenza and measles sickness

durations, but did not affect catarrh (the common cold) and tonsillitis sickness duration.

The long-run outcomes from exposure to pollution in utero and at birth were also mixed.

In utero exposure to fog events did not strongly affect any health outcomes. Fog exposure

around birth also did not affect child or adolescent growth or upper respiratory tract

infections in late childhood and adolescence. However, children born on fog days and

exposed to greater levels of fog in the first month of their life had higher mortality risk

from respiratory causes. Children born on fog days also experienced greater incidence

and prevalence of lower respiratory diseases between ages 5 and 10. Finally, children born

on fog days had 77.3% and 27.2% longer sickness durations from influenza and measles

respectively than children not born on fog days when exposed to these diseases between

ages 5 and 15.

This paper makes three key contributions to the literature. First, it provides novel

historical evidence on the long-run effects of exposure to extreme pollution at and around

birth. The historical literature on the health costs of pollution to date has almost exclus-

ively focussed on the short-run effects of pollution exposure. For example, Beach and

Hanlon (2018) find strong effects of pollution, proxied by industrial coal consumption,

upwind of a district on infant mortality in England in 1851-60. Clay et al. (2024a) show

that the opening of new coal-fired power plants in the United States from 1938 to 1962

increased infant mortality. Hanlon (2024) shows that dense fogs in London led to sharp

increases in weekly mortality, particularly affecting the elderly but also children and

prime-age adults suffering from measles and tuberculosis respectively. The only historical

paper looking at longer-term exposure is Bailey et al. (2018), which shows that British

men born in more polluted districts had significantly lower adult stature. The focus on

short-run effects of pollution exposure is also common in contemporary research as well

1Incidence is the number of sickness events per child year exposed.
2Prevalence is the time sick per child year exposed.
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(Currie et al. 2014). However, a growing literature suggests that pollution exposure in

utero and around birth has negative consequences for later health for both children and

adults. In children, pollution exposure in utero and around birth increases the risk of de-

veloping asthma (Bharadwaj et al. 2016; Sbihi et al. 2016). In adults, individuals exposed

to the Great London Smog in December 1952 in utero were more likely to experience res-

piratory hospitalizations in older age (Martin-Bassols et al. 2024; von Hinke and Sørensen

2023).

This paper builds from this literature by analysing the long-run effects of exposure to

extreme pollution events in early life on childhood health in a historical population. The

paper presents novel evidence that children exposed to extreme pollution (fog events)

on their birthday were scarred by this experience. They faced heightened mortality risk,

increased morbidity and longer sickness durations from measles and influenza. Thus, the

health costs of pollution were not limited simply immediate responses to acute pollution

events but also contributed to ill health for individuals years after the exposure. Contrary

to the previous literature, I do not find long-run effects of in utero exposure to extreme

pollution on health outcomes. This may be in part because this paper focusses on child

health and cannot speak to old-age outcomes.

Second, as nearly all historical papers on the health effects of pollution have used

mortality, a rare and extreme event, as their outcome variable, this paper contributes by

exploring a much richer set of health outcomes. Historical fog events did not affect birth

or child growth outcomes, which is somewhat puzzling since pollution has been found to

affect both types of outcomes in previous historical and modern studies (Bailey et al. 2018;

Hanlon 2024; Shah and Balkhair 2011; Spears et al. 2019). However, fog events capture a

particular margin of pollution exposure, moving from high to extreme levels of pollution,

and do not reflect differences between unpolluted and polluted environments. Thus, fog

events may not capture chronic pollution exposure well. The morbidity outcomes also

provide interesting insights. Not only did children born on fog days experience longer

influenza sickness durations, they were also more susceptible to contracting influenza as

well. The morbidity effects highlight that pollution influenced less extreme outcomes than
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mortality and therefore had a wider impact on survivors’ health.

Third, the paper builds on earlier work by exploring the interaction between pollution

and specific diseases. While being born on a fog day had lasting effects on influenza and

measles morbidity, it did not affect morbidity from less severe, upper respiratory infections

such as catarrh and tonsillitis. The strong effects of pollution on influenza and measles

morbidity is in line with the existing literature showing that mortality from the 1918

influenza pandemic was worse in more polluted environments (Clay et al. 2018; Franke

2022) and that fog events increased measles deaths in the short run (Hanlon 2024).

That pollution affected some diseases but not others yields insights into the mech-

anisms through which pollution affected health and the wider costs of pollution to child

health. If asthma were the key mechanism through which pollution affected respiratory

morbidity, then we would expect to see effects for all respiratory diseases, not just influ-

enza. The importance of pollution exposure on the birthday, a novel finding in both the

historical and contemporary literature, suggests that if the first breath a child takes is

full of toxic pollutants, this may permanently damage their lungs, prime their immune

systems for stronger responses to infection in the future, and increase their susceptibility

to respiratory morbidity later in life. The limited effect of pollution on upper respirat-

ory morbidity is also intriguing. Upper respiratory infections made up the vast majority

of respiratory morbidity in the Foundling Hospital, 79.6% and 73.4% of incidence and

prevalence respectively, raising questions about whether pollution could create enough

morbidity to affect child growth (Bailey et al. 2018).

Overall, this paper shows that atmospheric pollution contributed to ill health in the

past in real but also limited ways. Rising ambient pollution in the nineteenth century

acted as a countervailing force to the improvements in health occurring as part of the

health transition, but also reductions in pollution were unlikely to be important drivers

of the health transition.

6



2 Data

2.1 Pollution Data

While contemporary studies focus on well-specified and defined definitions of pollution,

instrumental measures of atmospheric pollution do not exist for the UK before the 1950s.

This has led historical climatologists, meteorologists and economic historians to use other

instrumental and non-instrumental weather sources to proxy pollution. The best estimates

available on the development of pollution in London suggest that SO2 and PM pollution

peaked in the 1890s and either far exceeded or were similar to pollution levels in highly

polluted megacities in the twenty-first century (Figure 1). NO2 pollution peaked later

because of rising transport emissions. While there was some improvement in pollution

levels in the early twentieth century, the major reduction in pollution did not occur until

after the Clean Air Act was passed in 1956 (Brimblecombe and Grossi 2009). However,

while these estimates give a rough trend and peak level of pollution, they are not helpful

for precisely estimating the effects of pollution on health. They are very rough estimates,

hide considerable year-to-year and within-year variation, and since the estimates are for

20 to 50 year periods, prevent the use of identification strategies that could provide causal

estimates of pollution on health.

This paper follows Clay and Troesken (2011) and Hanlon (2024) in using fog events

as a proxy for pollution in historical London. The vast majority of fogs in London are

radiation fogs. These occur in specific meteorological conditions. Typically, on a clear,

cold day, radiation from the sun warms the ground during the day. Afterwards, during the

night, the heat from the ground is released into the air, cooling the air close to the ground

to below the dew point and allowing fog to emerge. Appendix Figure A.2 compares the

weather conditions on foggy vs. non-foggy days, showing that fogs occur on cold days

with relatively high pressure (clear skies), but the most strong difference between foggy

and non-foggy days is in the wind speed. Fog is much more likely to form on very still

mornings. Thus, we can think of fogs as proxying a set of weather conditions that prevent

air pollution from being dispersed across space. Pollution being emitted by factories and
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Figure 1: Estimated trends in major pollutants in London compared with current mega-
cities and UK standards

Notes: Annual average pollution levels over time. The grey shaded area highlights the period studied
in this paper and the black dashed vertical line marks the passage of the Clean Air Act in 1956. The
London figures are predicted from data on coal imports to London, a good proxy for coal consumption.
The estimates also take into account (through fairly rough assumptions) changes in the coal mix over
time toward cleaner coal, improving combustion technology that reduced emission from factories and the
expansion of the footprint of the city over this time period (Brimblecombe 1977). The PM10 emissions
figures are predicted from the SO2 figures before 1950, so these should not be read as independent.

Sources: Historical London - Brimblecombe and Grossi (2009, p. 1356); Beijing - Beijing Municipal
Bureau of Statistics (2024, Chapter 7-23); Delhi - National Statistical Office, India (2024, p. 84); UK
Standards - Department for Environment, Food and Rural Affairs (2023).
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(more importantly in London) households simply stayed where it was rather than being

blown down wind or purged from the air with rain. Where both fog and instrumental

pollution measures overlap in the 1950s, Hanlon (2024) has shown that fog is a very good

predictor of pollution levels.

The data on fogs comes from the Registrar General’s Weekly Returns of Births and

Deaths in London. The final page of the report includes a wide range of instrumental and

non-instrumental measures of the weather as observed at the Greenwich Observatory.

As part of this report, the officials provided general remarks about the weather each

day (see Appendix Figure A.1 for an example). Here they noted when the weather was

foggy, sometimes distinguishing levels of fog density as well. Hanlon (2024) used weekly

counts of fogs to analyse short-run changes in mortality in London from 1866 to 1965. For

this paper, I have recollected this data at the daily level in order to more precisely link

fog exposure in precise critical windows (e.g. at birth) with subsequent health outcomes.

Hanlon (2024) also focussed on dense fogs in his analysis of mortality, but I will include all

fog days for a number of reasons. First, this paper analyses a wider set of health outcomes

that are less extreme than mortality and therefore, less extreme pollution events may still

matter. Second, while I am confident that meteorologists at the Greenwich Observatory

could distinguish foggy conditions from non-foggy conditions, I am less confident that

more subjective measures about the density of fog would be consistent across different

observers. Finally, my datasets of health outcomes have limited sample sizes, so increasing

the sample size of the treated fog group is necessary to be able to detect effects. A

final concern is that the Greenwich Observatory is located on the southeastern outskirts

of London rather than in central London where the hospitals were located (Appendix

Figure A.3). While this may seem far, weather conditions are highly correlated across

space, so it is unlikely that the low wind speeds that allowed pollution to build up would

be present in Greenwich but not in central London even if fog were not present in both

places.
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2.2 Health Data: Queen Charlotte Hospital

The first source of health outcomes for this paper are the inpatient records of the Queen

Charlotte Hospital.3 The Queen Charlotte Hospital was a specialist maternity hospital

founded in 1752. By the turn of the twentieth century, it was located on Marylebone

Road in central London. The hospital had both outpatient and inpatient services. The

outpatients were exclusively married women who were delivered by midwives in their

homes, though complicated cases were transferred to the hospital. The inpatient service

consisted of eight beds in the labour wards and fifty beds for lying-in patients: the patients

remained in the hospital for the first two weeks following the birth, the lying-in period,

where they recovered from childbirth. The inpatient service served both single and married

pregnant women, but single women were required to be ‘respectable’, meaning that the

child was their first illegitimate child and that they were of good standing before their

‘fall’. The hospital was completely free to patients. Women mostly gained access to the

hospital by receiving a sponsorship letter from a patron of the hospital but a few also

applied independently. In practice, hospital patrons gave their sponsorship letters to

clergymen or other social workers of the time who passed them along to deserving women,

women who could not afford to be attended by a midwife and met the respectability

criterion.

Once given a letter, the women attended the hospital in advance of their delivery to

register and obtain an order of admission (Select Committee of the House of Lords on

Metropolitan Hospitals 1891, pp. 519-25). The vast majority of women then travelled

to the hospital after going into labour (Queen Charlotte Hospital 1892, p. 6). Women

were admitted to the hospital throughout the day, but there were peaks in the late

morning and late evening and fewer admissions between 11:00 pm and 2:00 am (see

Appendix Figure C.4 for the distribution). The women gave birth at median 5.72 hours

after admission and 91.7% gave birth within 36 hours of admission, suggesting that most

women were not receiving prepartum care. The remaining 8.3% of women were in the

hospital for longer before delivery and may have been complicated cases transferred from

3Records on outpatients are not available until the 1930s.
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the outpatient services. While I include these women in the analysis, excluding them does

not qualitatively alter the findings (results not reported).

The hospital’s register of inpatients listed each mother’s name, address, age, marital

status, number of previous pregnancies, dates and times of admission and delivery and

the midwife who attended the birth (see Appendix A.2 for more detail). There was also

information about the health of the child including their presentation during delivery, sex,

whether they were born alive or stillborn, whether they were premature or not, their birth

weight and length, their date of discharge and whether the child died before discharge.

There were 31,239 deliveries in the Queen Charlotte Hospital between 1892 and 1913,

representing 1.12% of births in London over that period. I collected a random sample

of 160 births from each year, which serve as the basis for the analysis in this paper.

Descriptive statistics are reported in Appendix Table A.1.

Considering the representativeness of women giving birth in the Queen Charlotte Hos-

pital, the women were negatively selected on socioeconomic status and health in some

ways. They were poor working-class women who could not afford to hire a midwife on

their own. At 45% of patients, single women were also greatly over-represented relative

to the population of women giving birth in London. They likely had fewer resources and

diminished support relative to their married counterparts. In addition, because the hos-

pital only delivered single women for their first illegitimate birth, the share of primiparous

mothers was higher than in the London population: over 60% of women in the Queen

Charlotte Hospital were giving birth for the first time. First births tend to have more

complications and also lower birth weights, so this may skew the sample relative to the

London population (Schneider 2017).

However, there were a few ways that the women were positively selected. The respect-

ability requirement likely excluded the most desperately poor women. Women suffering

from infectious disease at the time of delivery were also not admitted, so none of the

women were actively suffering from tuberculosis for instance. Finally, the women were

required (if able) to breastfeed their children during the lying-in period in the hospital,

which likely increased the breastfeeding rates among the women and may have benefited
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the children’s health (Queen Charlotte Hospital 1892, p. 6). Despite these issues, the

Queen Charlotte sample still provides useful information about child health in historical

London.

2.3 Health Data: Foundling Hospital

The second source of data for this paper is the extremely data rich cohort study of children

that I have reconstructed from the records of the London Foundling Hospital. Although

called a hospital, the institution was more similar to an orphanage. It was founded in

1739 to care for the children of unwed mothers from infancy until the children reached

maturity. Although it operated for a short period in the eighteenth century like a typical

European foundling hospital, taking in all children given up by their mothers, it shifted

policy in 1760 introducing selection criteria to the admissions process, which were still

in place in the late nineteenth century (Levene 2007). To be admitted, children had to

be the first-born, illegitimate child of an otherwise respectable woman, and their mother

had to have been abandoned by their father. The Foundling Hospital staff conducted

extensive interviews and checks to ensure that the women met these criteria. In prior

work, we tested for selection into the Foundling Hospital and found virtually no selection

into the hospital based on observable characteristics (Arthi and Schneider 2021).

Figure 2 presents the life stages of children under Foundling Hospital care. Because

mothers were not allowed to apply to give up their children until after the child was born,

children spent their first few months living with their mothers (life stage 1): the median

age at admission was 91 days old. 80% of the children were born in London with 20%

coming from outside London (see Appendix A.3.4 for more detail). After being admitted,

the children were sent to small, rural villages in Kent, Surrey and later Essex to be fostered

with respectable families (life stage 2). The children remained in the countryside until

they were five or six years old when they returned to the Foundling Hospital main site in

Bloomsbury, central London. In the hospital’s records, the return from the countryside is

called re-admission. Finally, from ages 5 to 15 or 16, the children lived in the Foundling

Hospital main site (life stage 3) until they were discharged from the hospital. A small
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Figure 2: Life stages of children in the Foundling Hospital

number of children (2.5% of the sample) were restored to their mothers before discharge

and fall out of observation, but there is no evidence of selective loss to follow up through

this mechanism (Arthi and Schneider 2021).

The analysis in this paper focusses on children admitted to the Foundling Hospital

between 1893 and 1914 when the hospital admitted on average 50 children per year.

Starting in January 1893, the medical officer, William John Cropley Swift, kept a med-

ical record of each child admitted, recording considerable details about the children’s

health at admission, re-admission and discharge. The medical record was no longer up-

dated with re-admission and discharge information from April/May 1919, likely when

Cropley Swift retired as medical officer. The full details of the information available are

presented in Appendix Table A.2, but the important health outcomes for this paper are

anthropometric outcomes (weight at admission; height and weight at re-admission; and

height and weight at discharge) and mortality with causes of death. Descriptive statistics

and further detail are provided in Appendix A.3. The medical record also includes the

dates of birth, admission, re-admission, discharge and if necessary dates the child was

restored to their mother or died so that the periods of exposure in each life stage are very

well defined for each child.

In addition to keeping the medical register, the medical officer also managed the

hospital’s infirmary, which treated children living in the Foundling Hospital’s main site

during life stage 3 when they got sick. The medical officer kept a weekly infirmary report

that listed all the children in the infirmary that week, their age, their date of admission to

the infirmary and the disease for which they were being treated. The children discharged
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that week and their date of discharge were also listed. This data therefore allows me to

reconstruct the morbidity history of children including all the diseases they were treated

for in the infirmary and their sickness duration for each sickness event. Importantly,

this data is for a defined population, so it is possible to compute precise incidence and

prevalence rates.

While the weekly infirmary reports begin in the eighteenth century, the focus of this

paper is on sickness events between March 1897 and October 1915. During this period,

there were 6,409 sickness events with 695 different disease classifications which I coded

into 205 diseases using the ICD-10. Sickness duration could be reconstructed for 97.2%

of sickness events. These diseases varied from mundane things like catarrh, the common

cold, and minor injuries to more serious infectious diseases like measles and bronchitis and

chronic diseases like epilepsy. One might worry that the medical officer had fixed rules

about how long children were to remain in the infirmary for specific types of diseases, but

Appendix Figure A.4 shows that there was large variation in sickness duration from all

respiratory diseases, suggesting that sickness duration was actually capturing children’s

sickness experiences.

Because this paper studies the health effects of air pollution, I will focus on respirat-

ory infections and measles which in severe cases has respiratory complications. Table 1

presents the number of cases, incidence, prevalence and median sickness duration for

respiratory diseases with more than five cases in the data. The most common diseases

were catarrh, tonsillitis and influenza, though measles’ greater sickness duration made

its prevalence greater than that of influenza. The table also indicates which respiratory

diseases are considered upper respiratory diseases affecting the nose, throat and larynx

and lower respiratory diseases affecting the bronchial tubes and lungs. This data allows

me to test the effects of pollution on individual-level incidence and prevalence of disease

as well as sickness duration of sickness events.

Overall, the Foundling Hospital Cohort Dataset is an unique historical source. The

extent and quality of the longitudinal data is unparalleled for this time period. In par-

ticular, the quality of the morbidity data is more complete than many current surveys of
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Table 1: Period respiratory morbidity in the Foundling Hospital

Upper/Lower Median Sickness
Disease Resp. Disease Cases Incidence Prevalence Duration (days)

Catarrh Upper 1083 162.67 3.78 6
Tonsillitis Upper 846 127.07 2.92 7
Influenza Lower 426 63.99 1.69 7
Chronic Tonsillitis Upper 193 28.99 .56 6
Bronchitis Lower 50 7.51 .45 12
Bronchopneumonia Lower 30 4.51 .37 20
Pneumonia Lower 11 1.65 .13 24.5
Sore Throat Upper 9 1.35 .04 6
Laryngitis Upper 7 1.05 .02 7
Pharyngitis Upper 6 .9 .01 5

Measles 315 47.31 1.81 13

Notes: Incidence is cases per 1,000 child years exposed. Prevalence is years sick per 1,000 child years
exposed. These are period rates reflecting the population of children in the hospital between the start
and end of the infirmary records. Sample sizes are smaller in the analysis below because the data is
restricted to children born in London or to a subset of cases (see Appendix A.3.5 for further discussion).
In the analysis below, tonsillitis and chronic tonsillitis are combined because the two diseases behave
similarly.

Sources: Foundling Hospital Cohort Dataset (2025).

respiratory morbidity. The fact that the same medical officer recorded sickness events for

the entire period (with a few gaps for his holidays) makes the data far more comparable

than studies based on different doctors’ diagnoses. However, the foundling children are a

selected and unrepresentative group of children, so it is important to assess the external

validity of findings from this dataset.

In some dimensions, the health of children in the Foundling Hospital was better than

for a typical London child of the period. The children were relatively well nourished

compared to other London children: their rate of child stunting, the share of children too

short for their age, was lower than that of London children as measured by the London

County Council (London County Council 1907; Schneider et al. 2024). They also received

better medical care: mortality rates in the Foundling Hospital between ages 1 and 5 were

lower than in London and the surrounding counties where the children were fostered

(Arthi and Schneider 2021). Few children in London were cared for by a doctor and team

of nurses every time they got sick. Epidemics were far less frequent in the Foundling

Hospital than in surrounding London. For instance, the hospital did not have a measles

case between June 1903 and February 1911 despite regular biennial epidemics outside
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(Hardy 1993, p. 30). The hospital also managed to avoid water-borne diseases during the

period covered here. While there was a typhoid epidemic in 1891, there were no cases of

typhoid in the 18 years studied here (Cropley Swift 1911, p. 8). This was atypical for

London where typhoid was still common even if typhoid mortality rates had fallen (Hardy

1993, p. 152).

On the other hand, there were ways in which the foundling children’s health was in-

ferior to typical London children. They were less likely to have been breastfed in infancy

than typical children (Arthi and Schneider 2021) and as illegitimate children whose fath-

ers did not support them likely did not have the same care in early life as legitimate

children. The fact that the children lived in large wards with many other children may

have increased their viral loads and hence sickness severity when an epidemic did break

out. It also seems unlikely that the children received the same kind of attention and care

in an institutional setting as they would have received in a family. Still, despite these

caveats, the Foundling Hospital Cohort Study provides the richest detail on child health

of any dataset available for this period.

3 Methods

This paper examines the effect of acute extreme pollution exposure (fog days) on chil-

dren’s health in both the short run and long run. Short-run outcomes, occurring within

days of pollution exposure, include the effects of pollution on birth outcomes and sickness

events aged c. 5-15. Long-run outcomes, occurring long after pollution exposure, include

mortality (outside the neonatal period), child growth, and the incidence, prevalence and

duration of sickness from respiratory diseases or diseases with respiratory complications

(measles). I analyse the long-run costs of pollution exposure in utero, on a child’s birthday,

and in the first month of their life. Greater discussion of the logic behind the empirical

strategy is included in Appendix B.
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3.1 Empirical Equations: Short-run Effects

To understand the effects of fog exposure at birth on birth outcomes, I use regressions of

the following form:

Yi = α + βFogb +X ′γ +Qb + Cb +Wb + ϵi (1)

where Yi are birth outcomes for child i. Birth weight and length as continuous variables are

estimated via OLS whereas the binary outcomes stillbirth, premature birth and neonatal

death in the first two weeks of life are estimated with logistic regressions. The main

variable treatment of interest is Fogb, which is a binary variable equal to 1 if a child

was born on a fog day and zero otherwise. b indexes the birthday as the day of fog

exposure, but this will be allowed to vary later. Note though that these regressions are

purely cross-sectional in nature. The regressions include individual level controls (X ′γ)

for the child’s sex, mother’s marital status, mother’s age and its square, and child’s

parity, which can all affect birth outcomes. Qb are quarter of birth fixed effects, which

control for any confounding from seasonality. Cb are birth year fixed effects with the year

beginning July 1st so as not to break the year during middle of winter when pollution

and respiratory disease are at their worst. These control for any trends over time in birth

outcomes and pollution exposure. Wb are weather condition controls in the week of birth

including temperature, pressure, rainfall and humidity and their squares. Thus, the logic

of this identification strategy is that assignment into treatment (being born on a fog

day) is random. The other controls are included to ensure balance between the treatment

and control group on other potentially important characteristics. The regressions are

estimated on birth outcomes using the Queen Charlotte Hospital sample.

The estimation strategy is similar when analysing the short-run effects of pollution

exposure on children’s sickness duration in the Foundling Hospital main site in central

London from c. ages 5 to 15. Here the empirical equation takes the form:
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Dj = α + β1Fogt +X ′γ +Qt + Yt +Wt + ϵj (2)

where Dj is the sickness duration for sickness event j. I focus on respiratory diseases

and measles because there is strong biological grounds for thinking that these diseases

were affected by pollution.4 Fogt is a binary variable taking one if a child was exposed

to fog on the day they entered the infirmary (t) and zero if not. The regressions include

individual controls (X ′γ) for child’s sex and age at the beginning of the sickness event.

Qt and Yt are quarter and year fixed effects respectively related to the beginning date

of the sickness event (t). Wt are again weekly weather controls with respect to time t.

Because sickness duration is a count variable, I use zero-truncated negative binomial

models to estimate the regressions. I use heteroskedasticity robust standard errors rather

than cluster-robust standard errors because there is no clustering in sampling or treatment

assignment (Abadie et al. 2023).

For the short-run sickness duration variables, I also consider lagged exposure to fog

taking the following form:

Dj = α + ϕ1

9∑
s=7

Fogt−s + ϕ2

6∑
s=4

Fogt−s + ϕ3

3∑
s=1

Fogt−s + β1Fogt

+ X ′γ +Qt + Yt +Wt + ϵj

(3)

where common variables with Equation 2 are the same, but I have added counts of

the number of fogs in three day intervals going back nine days before admission to the

infirmary on day t.

3.2 Empirical Equations: Long-run Effects

To estimate the long-run effects of pollution exposure at or around birth, we can re-use

Equation 1 substituting health outcomes later in childhood for Yi: mortality, child growth,

4This helps to reduce false positives from testing the effect of fog on types of disease where we would
not necessarily expect pollution to matter.
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individual-level incidence and prevalence of disease, and sickness duration at the sickness

event level. I employ different regression models depending on the structure of the data:

Cox proportional hazard models and competing risk models for mortality; OLS models

from child growth and individual-level incidence and prevalence of disease; and zero-

truncated negative binomial models for sickness duration. The range of individual-level

controls included depends on the models and data available. I also restrict the analysis

to children born in London since only children born in London would be exposed to

London pollution at birth (see Appendix A.3.4). For the Foundling Hospital cohort, this

is relatively straightforward to do although there are a few children who were born in

London, but moved outside London shortly after birth. Thus, they are included in the

sample when analysing exposure at or before birth, but removed when analysing exposure

after birth.

Building on Equations 1 and 5 above, I also explore exposure to pollution after birth

in the following form:

Yi = α + η1

28∑
s=1

Fogb+s +X ′γ +Qb + Cb +Wb + ϵi (4)

where η1
∑28

s=1 Fogb+s is the count of fogs an individual was exposed to in the first four

weeks of their life. I focus on the first four weeks because this is the traditional neonatal

period, and only 0.7% of Foundling Hospital children were admitted before 28 days of

age.

When analysing the long-run effects of pollution exposure around birth on sickness

duration for sickness events, I also include sickness quarter, year and age fixed effects.

While these variables are unlikely to be confounders, I include them to ensure balance

between the treatment and control groups. I cluster the standard errors at the individual

level since some children were sick from the same disease more than once and their

treatment assignment, in relation to their birth date, is clustered (Abadie et al. 2023).

Note also that the sample of sickness events under analysis changes when analysing short-
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run and long-run effects of pollution exposure because I do not have exact birthdates for

children born before 1892 and the fog data ends on 24 October 1914, about a year before

the final entries in the infirmary book. This issue is discussed in detail in Appendix A.3.5.

Finally, we can extend the baseline regression above to capture prenatal exposure to

pollution as well:

Yi = α + ϕ1

252∑
s=169

Fogb−s + ϕ2

168∑
s=85

Fogb−s + ϕ3

84∑
s=1

Fogb−s

+ X ′γ +Qb + Cb +Wb + ϵi

(5)

where the common variables with Equation 4 are the same, but we add counts of the

number of fogs experienced in the first (
∑252

s=169 Fogb−s), second (
∑168

s=85 Fogb−s) and third

(
∑84

s=1 Fogb−s) trimester of pregnancy assuming all children were born at full term.5 This

measure captures pollution exposure of the mother while the child was in utero. The in

utero effects are tested against all outcomes.

3.3 Identification and Selection

A key assumption of the empirical strategy is that fog events are exogenous to individu-

als’ characteristics.6 While the samples used in this paper are not random samples of

the population as described above, because we are comparing children selected through

the same process, selection would only be a threat to internal validity if the selection

procedure for children exposed to fog was somehow different from those not exposed to

fog. Given that fog events were determined by meteorological conditions and women have

limited control over when they give birth, it is hard to imagine how selection into giving

birth on a fog day would be influenced by anything other than the extreme pollution

event.7 Nor would selection be a problem for short-run sickness events in the Foundling

Hospital since we observe all children at risk. However, selection into admission to the

Queen Charlotte or Foundling Hospital could potentially be a problem if the selection

5Unfortunately, gestational age was not systematically reported for all children, so this is the only
way to assign exposure.

6Other, less important identification concerns are discussed in Appendix C.
7Note that caesarian sections and inductions were extremely rare in this period.
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procedure differed by fog exposure. I will consider selection into each institution in turn.

For the Queen Charlotte Hospital, we might worry that fogs affected the types of

women who could travel to give birth in the hospital, especially since there is anecdotal

evidence that travel was difficult on the heaviest fog days (Luckin 2003, p. 35). However,

in my sample, there is no evidence that births were less likely to occur on fog days:

12.4% of births in my sample occurred on fog days and 11.9% of days in the same period

were fog days. The difference in these proportions is tiny and statistically insignificant.

Interestingly, the timing of admission seems to vary somewhat on fog days (Appendix

Figure C.4). The typical morning and evening peaks in admissions were less pronounced

on fog days, perhaps because women delayed coming to the hospital until the morning

fog had lifted or had to travel more slowly due to low visibility. However, this difference

in admission time does not appear to have affected the care received at the hospital: the

median time between admission and delivery was 24 minutes longer for children born on

fog days. There were also no meaningful or statistically significant differences in maternal

age, marital status or parity between mothers giving birth on fog days or not (Appendix

Table C.1). Thus, there do not appear to be systematic differences between children in

the Queen Charlotte Hospital being born on fog days or not.

Turning to the Foundling Hospital, the first worry might be that children born on

fog days might differ by parental characteristics. Appendix Table C.2 shows that there

are no differences in their father’s social status, and while children born on fog days

had mothers who were 0.62 years older on average, this difference is small and unlikely

to strongly influence child health (see Appendix Figure C.6). We might also worry that

children born on a fog day would be less likely to be admitted to the Foundling Hospital

because they had a greater risk of death before admission while they were living with

their mothers. This does not appear to be the case. The share of admitted children born

on a fog day (12.2%) is not meaningfully or statistically different from the expected share

if we assume children at risk of admission were born uniformly across the year from the

earliest child’s birthday to the latest one’s (12.0%). Admission ages were also not different,

so the two groups did not face differences in exposure before admission. The Foundling

21



Hospital itself could have also potentially contributed to the selection. We can test this

from 1909 to 1914 when we have information on both accepted and rejected applications.

However, there is no difference in acceptance rates between children born on a fog day or

not (Appendix Table C.2).

Although there are no differences in the share of children born on fog days or admission

age, we might worry that children born on fog days would face greater mortality risks and

that this mortality might selectively cull the weakest individuals, leading to survival bias,

a form of collider bias (Schneider 2020). We can test this by comparing the birth weights

and lengths of a subsample of 160 children born in the Queen Charlotte Hospital and

later admitted to the Foundling Hospital (Appendix Table C.2). While the birth weights

and lengths of children admitted to the Foundling Hospital born on fog days are greater

than those not born on fog days, the differences are not statistically significant and they

are similar in magnitude to the differences found at birth when analysing the full sample

of children born in the Queen Charlotte Hospital, indicating very little survival bias in

this setting.

Finally, one might worry that children born on fog days were visibly weaker and

that this might have affected the care they received from their mothers before admission

or their mother’s decision to give them to the Foundling Hospital. However, this seems

unlikely. As we will see, there was no effect of being born on a fog day on birth weight or

length, raising doubt about whether these children did appear weaker. In addition, there

were no differences in the breastfeeding rate or breastfeeding duration between children

born on fog days or not. The child’s age at which the mothers applied to the Foundling

Hospital was also not different between the groups (see Appendix Table C.2). Thus, there

do not appear to be reinforcing or compensating investments in relation to exposure to

severe pollution at birth.

Given this discussion, I argue that fog events are randomly assigned with respect to

individuals and sickness events and can therefore provide causal estimates of the effect

of pollution on both short- and long-run health outcomes. However, the margin of pollu-

tion studied here should be interpreted as moving from high levels to extreme levels of
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pollution, a particular margin that may not translate to moving from low to high levels

of pollution.

4 Results: Short-Run Effects

I begin with short-run effects of pollution exposure, focussing on birth outcomes and

sickness duration from respiratory diseases in late childhood and adolescence.

4.1 Birth Outcomes

Beginning with birth outcomes, I do not find strong effects of fog events on birth outcomes.

There is no effect of fog exposure at birth or fog exposure in the week before birth on

birth weight (Appendix Table D.1). While most gains in infant weight are made across

the third trimester (Hanson et al. 2015), we might expect that a pollution spike could

trigger early labour and lead children to be born at an earlier gestational age with a lower

birth weight. This does not appear to be the case in this period, nor is there an effect

of fog exposure on prematurity either.8 In fact, fog exposure at birth and in the three

days before birth has a small positive and statistically significant effect on birth length

(Appendix Table D.2) with children born on fog days being 0.4 cm longer (10% of an

sd of birth length). This is an unexpected and puzzling result, though it is compatible

with the birth weight results which show small positive effects that are not statistically

significant. This positive effect cannot be explained by survival bias because it remains

when I include or exclude stillbirths and also there is no effect of fog events around birth

on stillbirths (Appendix Table D.3). Since the fog exposures are close to birth and the

fetuses are mostly also close to term, it seems unlikely that there are unobserved stillbirths

biasing the results. We do have to be somewhat circumspect about the stillbirth results

though because both stillbirths and fog events are rare events, so the power to estimate

the effect of fog events at birth on stillbirths is low. There is also no effect of fog events

on infant deaths in the first two weeks after birth (Appendix Table D.3). In summary,

8Note that I do not observe gestational age, only whether the child was full term or not, so there is
potential measurement error in this variable.
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there are not important health consequences of extreme pollution exposure close to birth

on short-run birth outcomes.

4.2 Sickness Duration

The second set of short-run effects relate to exposure to fogs at the time a child contracted

an illness at ages c. 5 to 15. I focus on sickness duration from three respiratory illnesses

catarrh, tonsillitis and influenza that are among the most prevalent in the data and

measles which often results in respiratory complications. Unfortunately, there were too few

sickness events for bronchitis and pneumonia to analyse them separately. The regressions

are estimated with zero-truncated negative binomial models to account for the count

nature of sickness duration as a variable.

Table 2 presents the results. There are no statistically significant or meaningful effects

of recent pollution exposure on sickness duration from catarrh or tonsillitis. There is a

marginally statistically significant, positive effect of fog exposure on the day of admission

to the infirmary on influenza sickness duration. This amounts to a 34.1% increase in

sickness duration (3 additional days sick at the mean of 9.7 days) for those admitted

on a fog day versus those admitted on a normal day. One might worry that this effect

is driven by outliers, but looking at the raw sickness duration distributions presented

in Figure 3A, it is clear that the distribution of influenza sickness duration for children

admitted on a fog day is shifted to the right. For measles, there is no effect for the day

of admission, but there is a statistically significant effect of the number of fog events 1

to 3 days before admission on measles sickness duration. Each extra fog event increases

the sickness duration by 14.2% (2 additional days sick at the mean of 14.3 days). Again,

these differences are not driven by outliers (Figure 3B). The difference in the timing of

the effect for influenza and measles may be driven by the different incubation periods

for each disease. Influenza has a very short incubation period of 1-2 days (Treanor 2014,

p. 467) whereas measles has a longer incubation period of 10 days (Moss and Griffin 2014,

p.542). Therefore, it makes sense that exposure closer to entry to the infirmary is more

important for influenza compared to measles.
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Table 2: Effect of pollution exposure at time of sickness on sickness duration from respir-
atory diseases and measles

(1) (2) (3) (4)
Catarrh Tonsillitis Influenza Measles∑9

s=7 Fogt−s 0.062 -0.030 0.092 0.067
(0.075) (0.033) (0.081) (0.074)∑6

s=4 Fogt−s 0.094 0.032 -0.102 0.055
(0.066) (0.035) (0.063) (0.084)∑3

s=1 Fogt−s 0.002 0.064 -0.047 0.133∗∗

(0.050) (0.042) (0.082) (0.063)

Fogt (Ad Day) 0.043 -0.034 0.293∗ -0.075
(0.118) (0.082) (0.171) (0.112)

Sex Dummy Yes Yes Yes Yes
Sickness Weather Yes Yes Yes Yes
Sickness Age FE Yes Yes Yes Yes
Sickness Year FE Yes Yes Yes Yes
Sickness Quarter FE Yes Yes Yes Yes∑

Fogt 123 119 49 24
N (sickness events) 1021 1010 398 269

Notes: Estimated with zero-truncated negative binomial models. Coefficients with robust standard errors
in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1% level respectively.

Sources: Foundling Hospital Cohort Dataset (2025).

While the non-significance and small effect sizes for catarrh and tonsillitis suggest

that the results are not an artefact of omitted variables or other unobservable biases,

I also conduct a placebo check and show that fog events at or before admission do not

affect sickness durations from injuries where we would expect no effect to exist (Appendix

Table D.16).

5 Results: Long-Run Effects

Having discussed short-run effects, I now turn to longer-term effects of pollution exposure

around birth on health at later ages. This includes the effect of in utero exposure to

pollution on birth and later outcomes as well as pollution exposure at and after birth on

later outcomes.
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Figure 3: Raw distribution of influenza sickness duration for children admitted to the
infirmary or not on fog days

Sources: Foundling Hospital Cohort Dataset (2025).

5.1 Birth Outcomes

In addition to the short-run effects described in the previous section, we can also explore

the longer-run effects of exposure to pollution in the various stages of pregnancy on birth

outcomes. Here the power issues of the short-run effects are less of a problem because the

pollution exposure variable is the sum of fog events in each trimester of pregnancy rather

than a binary comparison of those born on fog days or not. The results are presented in

Appendix Tables D.5-D.7 and show no statistically significant or historically meaningful

effects of in utero exposure to fog events on birth weight, stillbirth, neonatal death and

premature birth. There is a significant effect of second trimester fog exposure on birth

length with a one standard deviation increase in fog exposure leading to a very small

0.07 standard deviation decrease in birth length. Overall, though it appears that in utero

pollution exposure did not affect birth outcomes.
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5.2 Mortality

Turning next to mortality, unfortunately, because death is a relatively rare event and

the total sample size in the Foundling Hospital Cohort Dataset is relatively small, there

are limitations to what we can learn about the long-run effects of pollution on mortality.

However, mortality is one of the few health outcomes available in this dataset that reveals

how pollution affected the health of young children under age five, who were particularly

prone to respiratory disease. Thus, it is worth tentatively exploring this outcome.

Table 3 shows the pollution exposure stratified by three categories: survival, deaths

from respiratory causes and deaths from other causes. Respiratory causes refer to cause

of death descriptions that reference influenza, bronchitis, pneumonia, tuberculosis9 or

whooping cough. The medical officer often reported multiple causes of death, so a death

is counted as having a respiratory cause if one of these five diseases is mentioned. Table 3

shows that 95 out of 760 children who survived were born on a fog day (12.5%) . Children

who died of a respiratory cause were more likely to have been born on a fog day (18.9%),

but children dying of other causes were less likely to have been born on a fog day (5.8%).

Note though that the power for these calculations is very limited: only 7 children who

died of respiratory diseases were born on a fog day. The differential pollution exposure is

also present when analysing the number of fogs that children experienced in the first 28

days after their birthday. Children dying of respiratory diseases experienced on average

4.6 fog events in their first 28 days, whereas survivors and children who died of other

causes experienced an average of 3.5 and 3.0 fog days respectively.

These differences are intriguing, but they should not be interpreted naively since the

simple averages do not account for seasonality or the censoring in the data based on

the ages at which children were admitted and discharged from the hospital. In addition,

the differential effect of pollution exposure on mortality from respiratory causes versus

other causes suggests that competing risks may be important in understanding this effect.

Children born on fog days may die from respiratory causes before becoming at risk of

non-respiratory causes. When competing risks are present, traditional Cox proportional

9Tuberculosis includes pulmonary and general tuberculosis but excludes tuberculosis not present in
the lungs.
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Table 3: Differences in pollution exposure stratified by survival status

Fogb (Birthday)
∑28

s=1 Fogb+s

Mortality Status Share Sum N Mean SD

Survivor 0.125 95 760 3.45 3.81

Death (Respiratory Cause) 0.189 7 37 4.57 4.10
Death (Other Cause) 0.058 4 69 3.00 3.95

Notes: Fogb is an indicator variable equal to one if a child was born on a fog day and 0 otherwise.∑28
s=1 Fogb+s is the number of fog events a child is exposed to in the first 28 days after the birthday.

The sample is limited to children born in London and further limited to children living in London after
birth when analysing fog exposure after birth.

Sources: Foundling Hospital Cohort Dataset (2025).

hazard models can provide biased estimates of the effect of covariates on the cause-specific

mortality risk (Andersen et al. 2012). Therefore, competing risk models are required to

model the cause-specific mortality risk (Fine and Gray 1999).

Table 4 confirms that competing risks are an issue in this setting. Specifications 1-3

estimate the effect of being born on a fog day and the cumulative exposure to fog events

in the first 28 days after the birthday on mortality risk between admission and discharge

from the Foundling Hospital. The coefficients are very close to one and insignificant

showing no effect. However, when using a competing risk model to account for potential

bias, we see that children born on a fog day are more than twice as likely to die from

respiratory causes. This effect is only statistically significant at the 10% level, but the

magnitude is very large. Cumulative pollution exposure in the 28 days after the birthday

also affected mortality risk with a one standard deviation increase in fog exposure (3.8 fog

events) leading to a 40% increase in mortality risk, statistically significant at the 5% level.

I also tested for the effect of pollution exposure in utero on mortality risk, but there were

no significant effects (see Appendix Table D.11). Because the sample size is limited, these

results should not be over-interpreted, but they do present strongly suggestive evidence

that pollution exposure not only had a short-run influence on mortality, as Hanlon (2024)

has shown, but also raised mortality risk from respiratory causes across an individual’s

childhood and adolescence.10

10Note that although the Foundling Hospital Cohort Dataset is not ideal for estimating this kind of
effect, it is currently impossible to estimate it for London from other sources. The only way to do this
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Table 4: Effect of pollution exposure on mortality risk

(1) (2) (3) (4) (5) (6)
All All All Respiratory Respiratory Respiratory

Fogb (Birthday) 0.941 0.949 2.256* 2.212*
(0.319) (0.325) (1.028) (1.025)∑28

s=1 Fogb+s 1.047 1.047 1.092** 1.096**
(0.033) (0.033) (0.046) (0.046)

Sex Dummy Yes Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes Yes
Birth Decade FE Yes Yes Yes Yes Yes Yes∑

Fogb 106 102 106 102
N 860 829 829 860 829 829

Notes: The sample is restricted to children born in London and is restricted further to children living in
London with their mothers before being admitted to the Foundling Hospital when analysing the effect of
fog exposure in the first 28 days. Individuals enter observation upon admission to the Foundling Hospital
and are censored at discharge, death or the date when the medical record stopped being updated.
Hazard ratios with standard errors in parentheses. Models 1-3 employ the Cox Proportional Hazard
model. Models 4-6 use a competing risk model where respiratory deaths are the outcome of interest and
other causes of death are the competing risk. Mean and SD of

∑28
s=1 Fogb+s are 3.5 and 3.8 respectively.

*, ** and *** denote statistical significance at the 10%, 5% and 1% level respectively. Individual controls
include mother’s age and its square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).

5.3 Individual-Level Morbidity Results

While the mortality results in the last section are intriguing, it is also important to

consider how pollution affected the morbidity experience of children. I begin by analysing

the morbidity experiences of individual children between ages c. 5 and 10 before analysing

sickness events. The age range is restricted to ages 5 to 10 to increase the number of

children in the sample. Analysing a longer age range substantially reduces the sample

size (see Appendix Figure A.5).

We begin by analysing sickness incidence, the number of times a child experiences a

given disease or category of diseases per year of exposure between a child’s readmission

to the Foundling Hospital and age 10. For instance, some children would never get sick

from flu whereas others might experience it several times between readmission and age

would be to link individual-level birth and death records for London in order to obtain the birth date and
the cause of death. Collecting data of this kind would require negotiating access with the UK government
and a multi-million pound data transcription and linkage effort and therefore is out of the scope of the
current project.
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Table 5: Effect of pollution exposure at birth on individual-level sickness incidence

(1) (2) (3) (4) (5)
Catarrh Tonsillitis Influenza Upper Resp Lower Resp

Fogb (Birthday) -0.021 0.002 0.056*** -0.013 0.054**
(0.039) (0.035) (0.019) (0.052) (0.022)
[-0.025] [0.003] [0.167] [-0.011] [0.135]

Sex Dummy Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes Yes

Mean Dep. Var. 0.21 0.17 0.05 0.39 0.08∑
Fogb 63 63 63 63 63

N 471 471 471 471 471

Notes: Individual-level sickness incidence is the number of cases per year of exposure between re-admission
and age 10. The sample is restricted to children observed in the infirmary data to age 10 and children
born in London. For definitions of upper and lower respiratory diseases, see Table 1. Estimated with OLS.
Unstandardised coefficients with heteroskedasticity robust standard errors in parentheses and standard-
ised coefficients in square brackets. *** denotes statistical significance at the 1% level. Individual controls
include mother’s age and its square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).

10. Table 5 shows that being born on a fog day increases individual-level incidence of

influenza and lower respiratory diseases but does not affect upper respiratory diseases

such as catarrh and tonsillitis. The effects for influenza and lower respiratory diseases are

both statistically significant and large in magnitude relative to upper respiratory diseases.

The influenza incidence rate for children born on fog days is double the mean influenza

incidence rate in the sample. Thus, children exposed to extreme pollution at birth seem

to be more susceptible to influenza infections later in childhood.

We can also analyse the effect of fog exposure on individual sickness prevalence, the

percentage of time exposed that an individual was sick. This captures both how often

they contracted the disease but also the sickness duration of their sickness events. Table 6

shows that the effect of pollution exposure at birth on sickness prevalence is fairly similar

to incidence. There are large effects of pollution exposure at birth on influenza and lower

respiratory prevalence, but smaller and insignificant effects for upper respiratory diseases.

The magnitude of the coefficients on upper respiratory diseases are larger than for incid-
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Table 6: Effect of pollution exposure at birth on individual-level sickness prevalence

(1) (2) (3) (4) (5)
Catarrh Tonsillitis Influenza Upper Resp Lower Resp

Fogb (Birthday) 0.083 0.161 0.191*** 0.264 0.198**
(0.203) (0.136) (0.071) (0.243) (0.082)
[0.026] [0.075] [0.178] [0.065] [0.116]

Sex Dummy Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes Yes

Mean Dep. Var. 0.51 0.44 0.14 0.96 0.23∑
Fogb 63 63 63 63 63

N 471 471 471 471 471

Notes: Individual-level sickness prevalence is the number of sickness days per 100 days exposed between
re-admission and age 10 or the percentage of days spent sick. The sample is restricted to children observed
in the infirmary data to age 10 and children born in London. For definitions of upper and lower respiratory
diseases, see Table 1. Estimated with OLS. Unstandardised coefficients with heteroskedasticity robust
standard errors in parentheses and standardised coefficients in square brackets. *, ** and *** denote
statistical significance at the 10%, 5% and 1% level respectively. Individual controls include mother’s age
and its square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).

ence but still substantially smaller than the very large effects for influenza. Again, it is

clear that extreme pollution exposure on the day of birth matters for lower respiratory

morbidity in later childhood.

Appendix Tables D.12 to D.15 report the results of pollution exposure in utero and

in the 28 days after birth on incidence and prevalence, and largely show that these effects

are statistically insignificant or only marginally significant (at the 10% level). Puzzlingly,

these coefficients tend to be negative, suggesting that being exposed to more fog events

during these periods decreases sickness incidence and prevalence. However, the effects

sizes tend to be small, so we should not over-interpret these. These results confirm that

extreme pollution exposure on the day of birth has a particularly strong effect on lower

respiratory morbidity later in childhood.
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5.4 Sickness Duration Results

I now turn from analysing individual-level morbidity data to using sickness events them-

selves as the unit of observation in order to study sickness duration directly. When study-

ing sickness duration, I do not combine larger categories of respiratory diseases because

the diseases have different distributions of sickness duration (see Appendix Figure A.4),

which would mean that the composition of disease within these categories might drive

the results. Table 7 presents the results. There is no effect of being born on a fog day for

catarrh or tonsillitis, but children born on fog days have longer, statistically significant

sickness durations from influenza and measles when experiencing these diseases between

the ages of c. 5 and 15. These are large effects: children born on a fog day have 77.3%

longer flu sickness durations (about 7 days increased sickness duration from a mean of

9.7 days) and 27.2% longer measles sickness durations (about 4 days increased sickness

duration from a mean of 14.5 days).

Again, one might reasonably worry that this result is being driven by outliers, so

Figure 4 plots the raw distributions of sickness duration for influenza and measles for

children born on a fog day or not. For children born on a fog day, the entire distribution

of influenza sickness duration is shifted upwards, so the results are not driven by outliers.

For measles, the sickness duration distribution for children born on fog days appears very

similar to the distribution of children not born on fog days at lower lengths of sickness

duration, but there is a subset of children born on fog days who have longer sickness

events (though still within the range observed in the control group). This is what we

would expect since long sickness durations from measles occur when measles leads to

pneumonia. Thus, it appears that children born on fog days are more likely to experience

respiratory complications from measles and therefore have longer sickness durations.

Interestingly, at least for influenza, these effects are specifically localised to the day

of birth. Appendix Table D.17 shows that the effects do not hold for children exposed

to fog the day before birth or the day after birth. For measles, there is no effect the day

before birth, but a similar effect the day after birth. When analysing in utero exposure

and exposure in the first 28 days, again there are not strong influences of in utero ex-
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Table 7: Effect of pollution exposure at birth on sickness duration from respiratory dis-
eases and measles

(1) (2) (3) (4)
Catarrh Tonsillitis Influenza Measles

Fogb (Birthday) -0.032 0.125 0.573*** 0.241**
(0.131) (0.098) (0.148) (0.115)

Sex Dummy Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes
Birth Year Trend Yes Yes Yes Yes

Sickness Quarter FE Yes Yes Yes Yes
Sickness Year FE Yes Yes Yes Yes
Sickness Age FE Yes Yes Yes Yes∑

Fogb 109 108 36 29
Clusters (individuals) 393 364 174 245
N (sickness events) 800 704 235 245

Notes: Sample restricted to children born in London. Estimated with zero-truncated negative binomial
models. Coefficients with standard errors clustered at the individual level in parentheses. *, ** and
*** denote statistical significance at the 10%, 5% and 1% level respectively. Individual controls include
mother’s age and its square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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Figure 4: Raw distribution of influenza and measles sickness duration for children born
and not born on fog days

Sources: Foundling Hospital Cohort Dataset (2025).
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posure or exposure after birth (Appendix Tables D.18 and D.19). Thus, there is a special

consequence of being exposed to extreme pollution on the day of birth.

Finally, we can test the relative magnitude of the effect of pollution exposure at birth

and short-run pollution exposure at the time of sickness by analysing both forms of

exposure in a subsample of sickness events (see Appendix Figure A.5C). Table 8 shows

that, in this subsample, the magnitude of the effect of being born on a fog day is slightly

larger than the magnitude of experiencing a fog day upon admission to the infirmary at

the start of the sickness incident.11 Thus, the long-run effects of pollution exposure at

birth are large and important in influencing children’s morbidity experience, at least for

influenza.

5.5 Anthropometric Outcomes

The final set of long-run outcomes analysed are measures of weight, height and BMI

for the children that were taken at admission, re-admission and discharge. These have

been standardised using the WHO growth standard/reference to account for the fact that

children were not all measured at the same age. The results are presented in Appendix

Tables D.8-D.10. Exposure to fog at birth and in the 28 days after the birthday is never

statistically significant. When analysing pollution exposure in utero, exposure in the first

and second trimesters weakly increases weight-for-age Z-scores in childhood, but these

coefficients are only statistically significant at the 10% level. Overall, though, there is

little evidence that this margin of pollution exposure strongly affected child growth.

6 Discussion

This paper presents mixed results of the impact of pollution on child health in turn-

of-the-twentieth-century London. The null results with respect to birth outcomes are

incongruous with modern studies that show effects of pollution on birth outcomes (Currie

11The short-run effect size is larger than that reported in Table 2 above. It is difficult to fully explain
this, but note that this is a separate subsample, so there may be composition effects or different influenza
strains over time that are affecting the magnitude of the coefficients.

34



Table 8: Effect of pollution exposure at birth and sickness event on sickness duration
from influenza and measles

(1) (2) (3) (4) (5) (6)
Influenza Influenza Influenza Measles Measles Measles

Fogb (Birthday) 0.573*** 0.629*** 0.241** 0.193*
(0.148) (0.129) (0.115) (0.103)

Fogt (Ad Day) 0.520** 0.442*** -0.170 -0.152
(0.203) (0.168) (0.121) (0.128)

Sex Dummy Yes Yes Yes Yes Yes Yes
Individual Controls Yes No Yes Yes No Yes

Birth Weather Yes No Yes Yes No Yes
Birth Quarter FE Yes No Yes Yes No Yes
Birth Year Trend Yes No Yes Yes No Yes

Sickness Weather No Yes Yes No Yes Yes
Sickness Quarter FE Yes Yes Yes Yes Yes Yes
Sickness Year FE Yes Yes Yes Yes Yes Yes
Sickness Age FE Yes Yes Yes Yes Yes Yes∑

Fogb 36 34 29 29∑
Fogt 28 27 22 21

Clusters (individuals) 174 163 162 245 224 221
N (sickness events) 235 226 223 245 224 221

Notes: The sample is restricted to children born in London. Estimated with zero-truncated negative
binomial models. Coefficients with standard errors clustered at the individual level in parentheses. *,
** and *** denote statistical significance at the 10%, 5% and 1% level respectively. Individual controls
include mother’s age and its square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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et al. 2014; Johnson et al. 2021; Siddika et al. 2016). However, it is important not to

over-represent the magnitude of these effects. Taking historical stillbirths as an example,

(Hanlon 2024) found that in utero exposure in the first trimester and exposure in the

four weeks before birth to heavy fog events in historical London increased stillbirths by

0.7% and 1.55% respectively. While these effect sizes are within the confidence intervals

of the effects reported in this paper, they are still small. A recent meta-analysis found

that the effects of pollutants on the risk of stillbirth were of a similar order of magnitude,

though the meta-analysis results were not statistically significant (Siddika et al. 2016).

For reference, the stillbirth rate fell from a high of 41.4 stillbirths per 1,000 total births

in 1933 to 22.6 in 1950 in England and Wales, a 45.4% decline over that period (Office

for National Statistics 2022). The modern effects of pollution on birth weight are also

very small (Currie et al. 2014), which makes sense from a historical perspective given

that mean birth weights have not changed dramatically since the nineteenth century

in polluted industrial cities despite sharp reductions in pollution (Schneider 2017). One

might further doubt these small effect sizes because of the potential for publication bias or

because most studies are not able to analyse exogenous variation in pollution exposure.

In any case, it is hard to argue that pollution was a major determinant of poor birth

outcomes in the past.12

This paper’s mortality results present a potential way of reconciling conflicting results

in the current literature on pollution and infant mortality in historical Britain. Studying

fog events in London from 1866 to 1965, Hanlon (2024) finds no short-run effect of fog

days on infant mortality in weekly data, but Beach and Hanlon (2018) find that plausibly

exogenous spatial variation in industrial coal pollution from upwind districts affected

average infant mortality rates at the registration district level in England and Wales in

the 1850s. This paper confirms Hanlon (2024)’s finding that fog events at birth did not

affect infant deaths associated with prematurity: there was no short-run effect of fog

events on neonatal mortality, nor did fog events trigger early labour since there were no

12One caveat to this is that I am least certain about the location of mothers in both samples in the
first trimester, so if some of them were not living in London this could attenuate the effects of the in
utero exposures (see Appendix A.3.4).
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negative effects on birth weight or length. However, I do find that children born on fog

days and exposed to greater numbers of fogs in the first month of life had substantially

higher risk of respiratory mortality after being admitted to the Foundling Hospital in

infancy even though they were living in the countryside removed from London’s horrid

pollution. This suggests that the higher infant mortality in polluted places may not have

arisen from short-run excess mortality from extreme pollution events but from the longer-

term effect of extreme pollution exposure in early life on exacerbating serious respiratory

infections. The absence of effects of pollution on prematurity and the fact that there does

not appear to be selective culling of children born on fog days before admission to the

Foundling Hospital (median age of 3 months) suggests that the costs of early life pollution

exposure were stronger later in infancy, in the post-neonatal period (age 1 month to 12

months).

The most exciting and novel results in this paper, however, are the morbidity results.

There are two surprising findings. First, acute extreme pollution events in both the short

and long term only influenced lower respiratory disease morbidity (influenza, bronchitis

and pneumonia) and not upper respiratory disease morbidity (catarrh and tonsillitis).

This fits well with the mortality results since lower respiratory infections are much more

likely to result in death and also with earlier studies that showed that pollution strongly

affected mortality during the 1918 influenza pandemic (Clay et al. 2018; Franke 2022).

However, when considering respiratory morbidity in the Foundling Hospital, upper respir-

atory infections made up 79.6% and 73.4% of incidence and prevalence of all respiratory

diseases, so they were dominant in children’s experience of sickness. This raises questions

about the extent to which pollution exposure could create the kind of chronic respiratory

morbidity that could influence child growth and may help to explain why I do not find

any effect of pollution exposure on child growth contrary to existing historical literature

(Bailey et al. 2018). On the other hand, median sickness durations of 6 or 7 days for com-

mon respiratory infections seems long given what children experience today and suggests

that chronic pollution exposure may have exacerbated respiratory infections.

The second surprising finding is that there were long-run effects of acute extreme
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pollution exposure on the day of birth on mortality risk from respiratory infections and

sickness incidence, prevalence and duration from influenza and other lower respiratory

diseases. Contemporary and historical studies have mostly focussed on either the short-

run effects of acute pollution exposure or long-run effects of chronic pollution exposure.

While there is evidence that acute pollution exposure in utero during the Great Smog

of London in 1952 affected old age respiratory morbidity (Martin-Bassols et al. 2024;

von Hinke and Sørensen 2023), this paper is the first to my knowledge to document

such specific health costs of being born during an acute extreme pollution event. Being

born on a fog day made children more likely to contract lower respiratory infections and

increased sickness duration for lower respiratory diseases and measles. The magnitude

of these long-run effects was also larger than the short-run effects. For instance, being

born on a fog day increased influenza sickness duration by 77.3% whereas entering the

infirmary on a fog day resulted in a 34.1% increase in sickness duration. The gap between

these effects was smaller when including both in the same regression (see Table 8), but

in any case, the magnitude of the long-run effect was large.

I have not found studies analysing the health costs of acute pollution exposure pre-

cisely on an individual’s birthday, so the biological mechanisms that could produce this

result are somewhat speculative. One mechanism might be asthma. Perinatal pollution

exposure increases the risk of young children developing asthma (Sbihi et al. 2016), and

asthma increases the risk of contracting respiratory diseases and exacerbates these in-

fections (Sharma et al. 2022). However, asthma exacerbates both upper and lower res-

piratory infections. For instance, individuals with asthma exposed to the common cold,

an upper respiratory infection, are more likely to experience lower respiratory symptoms

than individuals without asthma (Corne et al. 2002). Since I do not find effects for up-

per respiratory infection, asthma does not seem a likely candidate mechanism. Another

mechanism might be differences in gestational age since preterm children’s lungs are not

fully developed (Warburton 2017). However, there is no evidence that children born on

fog days had lower gestational age since they did not have lower birth weight and were

not more likely to be recorded as premature.
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However, there are three possible mechanisms that could explain the results. First,

pollution might cause damage to developing lung structures and inhibit the structural

changes in the lungs that occur at birth. The lungs undergo a rapid and fundamental

transformation at birth from being fluid-filled and positive pressure in utero to being gas-

filled and lower pressure. At birth, the fluid in the lungs is rapidly absorbed, the alveoli (air

sacs where gas transfer occurs) inflate with the first breath and the surfactant system

(chemicals that reduce surface tension in the alveoli) springs into action to facilitate

gas transfer in the alveoli (Warburton 2017). It is possible that exposure to extreme

pollution in the immediate postnatal period could affect these processes, damaging alveoli

and surfactant development and increasing the risk of respiratory disease (Ubags et al.

2020). Second, pollution exposure at birth may change how the immune system develops

and functions in the lungs perhaps priming the immune system to more severe response

to infection in the future (Ubags et al. 2020). The neonatal immune system operates

differently from the immune system even later in infancy (Levy and Wynn 2014), which

may explain the localised effect at birth. These more severe responses (e.g. cytokine storm)

can exacerbate respiratory infections later in life (Chang et al. 2024). Finally, there is

evidence that pollution exposure can lead to epigenetic changes in lung cells (Durham

and Adcock 2013). While the prenatal period is seen as most sensitive for epigenetic

changes, postnatal changes are possible and especially in the respiratory system which

changes so dramatically at birth (Marsit 2015).

In extending these findings to the wider literature, two limitations must be considered.

First, the children in the Queen Charlotte and Foundling Hospital samples were not

necessarily representative of all children in London, so we need to consider the external

validity of the findings (see also the discussion of representativeness in Section 2). For the

Queen Charlotte Hospital, if anything, the fact that the patients tended to be poor and

single might make them more susceptible to pollution as they likely lived in more polluted

areas and had poorer baseline health. Thus, the fact that there is no effect even among

these women suggests that the results are likely to apply to other women in London.

The Queen Charlotte patients were also disproportionately drawn from less polluted
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West London whereas East London tended to be more polluted because prevailing winds

blew the pollution toward the north east (Heblich et al. 2021). Although this may mean

that the shock of a fog event was smaller in magnitude for women in the sample than

for women in East London, the shock would still be large relative to current pollution

exposures that have been found to influence birth outcomes. Therefore, there is no reason

to believe that the null effects for birth outcomes are related to the geographic distribution

or non-representativeness of women in the Queen Charlotte Hospital.

Assessing the external validity of effects from the Foundling Hospital sample is more

challenging since the children were healthier and had access to better medical care than

the typical London child of the time, but also lived in an institutional setting, increasing

their exposure to respiratory disease. Of course, the children were not born in the institu-

tion, so aside from being illegitimate and primiparous, the children’s early life experiences

would not have been so different from the typical London child. The institutional setting

makes it difficult to assess the short-run effect of fog events on contracting respiratory

diseases, which are not analysed in this paper. For epidemic diseases like influenza and

measles, the timing of infection was determined by the introduction of the pathogen to

the population rather than individuals pollution-related susceptibility. Catarrh and ton-

sillitis were endemic but even then the fact that children slept in wards with up to forty

other children suggests that the disease transmission process was not comparable to that

of the typical child. This also may have meant that average viral loads were higher for

these children compared to the typical child. However, this would have affected all chil-

dren equally, so it is not clear that this would bias the differential fog effect found in this

paper. Finally, most of the mortality in the Foundling Hospital data occurred while the

children were fostered with families in the countryside from infancy to c. age 5. Thus,

the mortality results may capture more typical living conditions.

A final concern for external validity is the pollution proxy used in this paper. Fog

events proxy an acute increase in pollution from high to extreme levels far above the

annual average levels in Figure 1. However, all of the children were exposed to high levels

of pollution similar to recent levels in Beijing and Delhi while they were living in London.
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This makes it difficult to extrapolate for instance from the results on mortality risk to

long run changes in respiratory mortality in London over time. It also means that the

margin of pollution exposure in this paper may not capture the effects of persistent,

chronic exposure to high pollution on health. While I do not find effects of the number

of fog events individuals were exposed to in utero and limited effects for fog exposure in

the first month of life, the number of fog events is still an imperfect proxy for chronic

exposure.

7 Conclusion

Using a wide range of health outcomes from two historical datasets, this paper has tested

the effects of acute exposure to extreme pollution (fog events) on individual-level health

outcomes in both the short and long-run. While there are no effects of fog events on birth

outcomes or child growth, there were short-run effects of fog events on influenza and

measles sickness duration and there were long run effects of pollution exposure at birth

on mortality from respiratory diseases and incidence, prevalence and sickness duration

from lower respiratory diseases and measles. Although mixed, these effects suggest that

the health costs of pollution were a countervailing force to the improvements in health

that were occurring during London’s health transition. The high baseline pollution levels

(Figure 1) and regular fog events (Figure 5A) contributed to increased morbidity and

mortality from respiratory diseases in the capital. However, as is clear from Figures 5B

and 5C, childhood mortality rates from bronchitis, other respiratory diseases and measles

fell dramatically between 1890s and 1920s despite the high levels of pollution whereas

pneumonia mortality remained more or less stagnant. The frequency of fog events did fall

from the 1890s to the 1910s, reducing some of the exposure to extreme pollution events,

but it is hard to believe that this decline or the modest declines in average pollution rates

presented in Figure 1 could explain the substantial fall in mortality.

Translating these pollution effects to trends in health indicators over time is chal-

lenging for a number of reasons. First, sometimes coal pollution was associated with in-
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creasing incomes and other amenities that could counteract the health costs (Clay et al.

2024b). For instance, studying the twentieth-century United States, Clay et al. (2024a)

find that when new coal-fired power plants were opened in locations with low baseline ac-

cess to electricity, the benefits of gaining access to electricity offset the costs of increased

local pollution and infant mortality was unaffected by the new plant. However, when

new plants were opened in locations with high electricity access, the new plants led to

significant increases in infant mortality. Thus, pollution may have heterogeneous effects

depending on how it relates to these other factors. Second, the health costs of extreme

pollution events may have changed over time. Hanlon (2024) finds that the short-run

effect of London fog events on mortality became smaller over time, and the decline in

the effect was particularly pronounced for measles. One explanation for this diminishing

effect is that average pollution levels were falling, if modestly (see Figure 1), and there-

fore the spike in pollution from fog events became smaller over time. However, it may

also indicate that new technologies or practices mitigated the health costs of pollution.

Taking measles as an example, a reduction in the effect of fog events on measles mortality

would not be driven by the fact that fewer children were contracting measles. Measles is

the most infectious human pathogen, and all children continued to contract measles until

the introduction of a vaccine in the 1960s. Instead, it suggests that other factors such as

improving nutrition, better nursing care or pollution avoidance mitigated the fog effect

over time (Schneider 2023). Grappling with these complex factors is difficult, and more

research is needed to understand the changing relationship between pollution and health

over time. However, on balance it seems more likely that increasing pollution served as a

countervailing force to the health transition, slowing improvements in health over time,

rather than reductions in pollution being an important cause of improving health across

the health transition.
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Figure 5: Fog events and respiratory and measles mortality in London, 1866-1939

Notes: For panels B and C, the population at risk was interpolated for the 0 to 5 age group using geometric
interpolation between census population counts. Other resp. includes all deaths from respiratory diseases
aside form bronchitis and pneumonia. *Data for 1914 is incomplete stopping on 24 October.

Sources: Mortality and fog data was transcribed from the Weekly Return of Births and Deaths in London
. . . (1870-1930) by Hanlon (2024). Population counts by age for London were drawn from various census
publications from 1861 to 1931.
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A Data Sources

A.1 Pollution Data

Figure A.1: Example page from the Weekly Return of Births and Deaths in London
showing information about fogs

Source: Weekly Return of Births and Deaths in London . . . (1896).

51



Figure A.2: Weather conditions on days with and without fog in London 1900-10

Notes: The fog days are observed at the Greenwich observatory, but the other weather data is from the
Met Office Daily weather reports which were reported at Brixton. Wind speed data are only available
from 1900-6.

Sources: Fog data - Weekly Return of Births and Deaths in London . . . (1900-10); All weather data
except windspeed - Craig and Hawkins (2020); Windspeed data - Meteorological Office (1900).

52



Figure A.3: Map showing locations where data was collected

Source: Booth Poverty Map 1898-99, https://booth.lse.ac.uk/.
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A.2 Queen Charlotte Hospital

The Queen Charlotte Hospital Dataset was constructed from the ‘Register of in-patients’

held in the London Archives, references H27/QC/B/01/008 to H27/QC/B/01/015.

Table A.1 presents descriptive statistics for the dataset. The raw dataset contains

3,543 observations, but we restrict the analysis to singleton births and also exclude some

observations where clerical errors in the original source prevent us from identifying the

date of delivery precisely. The final sample contains 3,384 observations, though the sample

size is smaller for birth weight and length because these variables were not always recorded

for stillbirths.

Table A.1: Descriptive statistics for the main health outcomes for the Queen Charlotte
Hospital Dataset

N Mean St Dev Min Max Sum

Health Outcomes
Birth Weight (kg) 3292 3.146 0.556 0.37 5.10
Low Birth Weight 3292 0.101 0.302 0.00 1.00 334
Birth Length (cm) 3322 52.770 3.771 10.16 76.20
Premature Birth 3364 0.076 0.265 0.00 1.00 256
Stillbirth 3378 0.043 0.203 0.00 1.00 145
Neonatal Death 3241 0.023 0.148 0.00 1.00 73

Treatment Variables∑252
s=169 Fogb−s (1

st Tri) 3384 10.251 8.345 0.00 36.00∑168
s=85 Fogb−s (2

nd Tri) 3384 10.312 8.294 0.00 36.00∑84
s=1 Fogb−s (3

rd Tri) 3384 10.014 8.321 0.00 36.00∑9
s=7 Fogb−s 3384 0.332 0.704 0.00 3.00∑6
s=4 Fogb−s 3384 0.347 0.714 0.00 3.00∑3
s=1 Fogb−s 3384 0.349 0.705 0.00 3.00

Fogb 3384 0.124 0.330 0.00 1.00 420

Controls
Mother’s Age (years) 3379 25.495 5.844 13.00 47.00
Single (share) 3381 0.451 0.498 0.00 1.00 1524
Parity 3384 1.126 1.863 0.00 6.00

Notes: There are 3,384 observations in the data. The sample is restricted to singleton births and excludes
a small number of cases where clerical errors in the original source make the date of delivery uncertain.
Sources: Queen Charlotte Hospital Dataset (2025).
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A.3 Foundling Hospital

The Foundling Hospital Cohort Study was reconstructed from records of the Foundling

Hospital held in the London Archives (TLA). Table A.2 provides the information included

in the records and their respective catalog reference numbers. Note that the medical

register, the petitions, the register of applications and some of the weekly infirmary

reports are restricted access because they include personal information that is less than

110 years old. Coram, the charity that succeeded the Foundling Hospital, manages access

to these records. Because of an earlier agreement that I signed to access the archival

sources that were restricted under the 110-year rule, I am not allowed to share the data.
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Table A.2: Structure and sources of the Foundling Hospital Dataset

Socioeconomic/
Event/Life Stage Years Source (TLA Reference) Administrative Information Health Information

Birth 1892-1908 FH Petitions Mother’s approximate address Child’s birthday
(A/FH/A/8/1/2/102-117) Mother’s age Child’s sex

Where child was born
Father’s occupation

When mother last saw father
What became of father

1909-1914 Register of applications Mother’s approximate address Child’s birthday
(A/FH/A/8/5/1) Mother’s age Child’s sex

Father’s occupation

1892-1908 Registers of In-Patients Mother’s marital status Child’s birthday
Queen Charlotte Hospital Mother’s age Child’s sex

(H27/QC/B/1/8-13) Child’s parity
Birth weight
Birth length

LS1: Pre-admission to FH 1892-1914 Medical Record Infant feeding practice (breast, milk or food)
(0-1 year old) (A/FH/A/18/15/1) Duration of breastfeeding

Admission to FH 1893-1914 Medical Record Admission date Child’s birthday
(around 0.37 years old) (A/FH/A/18/15/1) Hospital number Child’s sex

Admission age Weight
Subjective nutritional assesment

Vaccinated
Diseases present at entry

LS2: Time Fostered in Country 1893-1919 Medical Record County child was fostered in Diseases child was treated for in country
(1-6 years old) (A/FH/A/18/15/1)

Return from Country to FH 1897-1919 Medical Record Re-admission date Weight
(4-6 years old) (A/FH/A/18/15/1) Re-admission age Height

Subjective nutritional assesment
Eye exam
Ear exam

LS3: Time Resident in FH 1897-1919 Medical Record School standard Diseases child was treated for in hospital
(6-17 years old) (A/FH/A/18/15/1) Re-vaccinated

1897-1915 Weekly Infirmary Reports All diseases child was treated for in infirmary
(A/FH/A/18/5/30-35) Complications from diseases

Dates of entry to and exit from the infirmary
Duration of each sickness event

Discharge from FH 1907-1919 Medical Record Discharge date Weight
(around 15-17 years old) (A/FH/A/18/15/1) Discharge age Height

Employment after discharge Subjective state of health

Other Life Events

Restored to Parents 1892-1919 Medical Record Date of restoration
(any age) (A/FH/A/18/15/1) Who child was restored to

Deaths 1892-1919 Medical Record Date of death Cause of death
(any age) (A/FH/A/18/15/1) Place of death

Notes: Gray shaded rows reflect information about life stages, i.e. periods of time, and white cells reflect life events, i.e. one
point in time.
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A.3.1 Descriptive Statistics for Anthropometric Outcomes

Table A.3: Descriptive statistics for the anthropometric health outcomes for the Foundling
Hospital Cohort Dataset

N Mean St Dev Min Max

Anthro Outcomes
WAZ Infancy 865 -2.096 1.483 -6.38 1.80
WAZ Age 4–6 727 -1.020 0.875 -4.09 1.29
HAZ Age 4–6 729 -1.599 1.080 -7.80 3.21
BAZ Age 14–16 330 -0.340 0.952 -3.28 2.06
HAZ Age 14–16 330 -1.996 1.105 -6.00 0.55

Treatment Variables∑252
s=169 Fogb−s (1

st Tri) 866 9.887 8.147 0.00 36.00∑168
s=85 Fogb−s (2

nd Tri) 866 9.940 8.265 0.00 36.00∑84
s=1 Fogb−s (3

rd Tri) 866 10.254 8.670 0.00 36.00
Fogb 866 0.122 0.328 0.00 1.00∑28

s=1 Fogb+s 866 3.477 3.826 0.00 16.00

Controls
Male 866 0.515 0.500 0.00 1.00
Mother’s Age (years) 862 21.459 3.381 13.00 36.00

Notes: WAZ is weight-for-age Z-scores; HAZ is height-for-age Z-scores; BAZ is BMI-for-age Z-scores. All
Z-scores are relative to the WHO standard/reference.

Sources: Foundling Hospital Cohort Dataset (2025).
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A.3.2 Descriptive Statistics for Individual-Level Morbidity Outcomes

Table A.4: Descriptive statistics for the individual-level morbidity outcomes (ages 5-10)
for the Foundling Hospital Cohort Dataset

N Mean St Dev Min Max

Incidence
All Causes 471 1.331 0.860 0.00 11.41
All Respiratory 471 0.466 0.436 0.00 2.76
Upper Respiratory 471 0.388 0.397 0.00 2.32
Lower Respiratory 471 0.075 0.138 0.00 0.74
Catarrh 471 0.210 0.289 0.00 2.25
Tonsillitis (All) 471 0.175 0.232 0.00 1.12
Influenza 471 0.055 0.114 0.00 0.74

Prevalence
All Causes 471 5.068 6.007 0.00 77.97
All Respiratory 471 1.205 1.567 0.00 12.95
Upper Respiratory 471 0.965 1.376 0.00 12.95
Lower Respiratory 471 0.235 0.583 0.00 7.61
Catarrh 471 0.511 1.104 0.00 12.95
Tonsillitis (All) 471 0.443 0.727 0.00 5.20
Influenza 471 0.141 0.365 0.00 2.42

Treatment Variables∑252
s=169 Fogb−s (1

st Tri) 471 10.565 8.239 0.00 36.00∑168
s=85 Fogb−s (2

nd Tri) 471 10.701 8.249 0.00 35.00∑84
s=1 Fogb−s (3

rd Tri) 471 11.452 9.066 0.00 36.00
Fogb 471 0.134 0.341 0.00 1.00∑28

s=1 Fogb+s 471 3.919 3.970 0.00 16.00

Controls
Male 471 0.503 0.501 0.00 1.00
Mother’s Age (years) 471 21.450 3.223 14.00 32.00

Notes: At the individual level, incidence is measured as sickness events per year exposed. Prevalence is
measured as the percentage of time exposed sick from that specific cause.

Sources: Foundling Hospital Cohort Dataset (2025).

A.3.3 Descriptive Statistics for Sickness Duration Outcomes
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Figure A.4: Sickness duration distributions for respiratory diseases observed in the Found-
ling Hospital Infirmary, 1897-1915

Sources: Foundling Hospital Cohort Study (2025).
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A.3.4 Determining the Children’s Location of Birth

Because I am interested in understanding how pollution exposure at birth affected long-

run health outcomes, it is important understand what information is available about

the mother’s location at and around each child’s birth in the Foundling Hospital. This

information is not provided in the medical record, so I had to link the medical record

to two sources: the petitions mothers completed when applying to the hospital (1892-

1908) and the register of applications kept by the hospital staff (1909-14). These sources

have different strengths and weaknesses. The petitions list both the birth place and the

mother’s residence when she applied to the hospital. The register of applications, on the

other hand, only lists the mother’s residential address when she applied, but it provided

information on both accepted and rejected applications, allowing me to study selection

into the hospital.13 Birth and/or residence locations were not available for c. 2.5% of the

sample, often because the petitions were missing or the locations were illegible.

I use the following rules to decide whether a child was born in London where the

birth location is unclear. If a child is resident in London at the time the mother applies

to the hospital, I assume that they were born in London. This is a reasonable assumption

because where both birth and residence location are present, it was never the case that

a child born outside London moved with their mother to London before being admitted

to the Foundling Hospital. There are, however, 27 children who are born in London and

later move outside London with their mothers during life stage 1, often to live with the

mother’s family. This means that we cannot be entirely certain that children living outside

London in life stage 1 were not born in London where the birth location is missing.14 Thus,

I exclude children who were not born in or were not resident in life stage 1 in London,

roughly 20% of the sample, when analysing the effects of pollution exposure at birth

on long-term health outcomes. Of course, the fact that a mother gave birth in London

does not mean that she was present in London for her entire pregnancy, so there may be

13For a subset of 160 children, I can also link them to the Queen Charlotte Hospital and get their
mother’s residential address before giving birth. However, this was invariably in London because women
had to be able to easily reach the hospital.

14Where birth and residence place are known, 19% of children are born in London and then move
outside in life stage 1.
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measurement error in the pollution exposure variables, especially for the first and second

trimester of pregnancy.

A.3.5 Foundling Hospital Data Structure

The structure of the Foundling Hospital data and Greenwich Observatory weather data

affects how the data can be analysed. Essentially, the Foundling Hospital data is the

combination of two datasets: the medical records and infirmary book. The medical records

provide longitudinal information for children based on their admission in infancy, their

readmission at ages 4-6 and their discharge at ages 15-16. The medical record begins

recording information for admission cohorts in January 1893 and the records stopped

being updated at readmission and discharge in April/May 1919, likely when a new medical

officer took post and stopped systematically recording the data. The infirmary books

contain period information on children’s sickness events during their time living at the

Foundling Hospital main site in central London from approximate ages 5 to 15. These

records begin in 1759 and continue until 1923, but I collected the weekly information

from 27 March 1897 to 5 October 1915. The start of this interval corresponds with the

first children in the medical records returning the Foundling Hospital main site, and the

end date is determined by a missing infirmary book: there is no data available from

October 1915 to June 1919. The infirmary book only lists a child’s name, age, admission

and discharge dates from the infirmary and the cause of infirmity. Thus, we can only

study the effects of pollution exposure at birth on long-run health outcomes by linking

the infirmary books to the medical record because we need information about the child’s

birth date and where they were living at and after birth.

The Greenwich Observatory weather data also presents some minor restrictions on the

data as well. While the data was kept religiously across the second half of the nineteenth

century, the weather data was not kept during the First World War. Thus, there are no

weather or fog observations after 24 October 1914.

Figure A.5 shows how the data structure and constraints affect the sample of influenza

cases that can be analysed. For instance, when analysing the effect of pollution exposure
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at birth on later sickness duration, we must exclude some cases of flu that occur to

children who are too old to appear in the medical record (Figure A.5A). We do not have

precise birthdates for these children,15 nor do we know whether or not they were born in

London. While it would be fairly straightforward to find birthdates for these children in

the archive, figuring out whether they were born in London is far more time consuming

and beyond the scope of the analysis here. Thus, these influenza cases are excluded

leaving 223 influenza cases within the bolded line polygon that are in our analytical

sample. However, changing the research question affects the data that can be analysed.

When studying the short-term effects of pollution exposure on children, we no longer

need information on birthdates or where the children were born. This means that nearly

all influenza cases can be included in the analytical sample, barring cases that occur

after the weather data is no longer available (Figure A.5B). This leaves 398 cases in the

analytical sample. Finally, in Figure A.5C, we want to test both the long-run effects and

short-run effects at the same time, which limits the sample to children with birthdates,

children with birth locations in London and sickness events occurring before the end of

the weather data, leaving only 211 cases in the analytical sample. Thus, it is clear why

the sample size changes across the various specifications in the paper.

Figures A.5D and E similarly show what cases of flu are counted when analysing

incidence and prevalence of flu at the individual level. Because we want to measure

incidence and prevalence for consistent age groups, there is a trade-off in capturing a

wide age range and increasing the number of individuals that can be observed for the full

age range. This is why the group from age c. 5 to 10 is reported in the paper, but the

results for the age group from c. 5 to 15 are qualitatively similar.

15They are placed on the lexis diagram for illustrative purposes only using a predicted birthdate based
on their ages at admission to the infirmary and some random noise.

62



Figure A.5: Different sets of sickness events included in the sample depending on empirical
strategy

Notes: Each graph reflects a different empirical strategy in the paper. The analytical sample includes
influenza cases within the bolded black lines. Analysis of fog at birth is also restricted to children
experiencing influenza who were born in London (see Appendix A.3.4). Inc. is incidence and Prev. is
prevalence.

Sources: Foundling Hospital Cohort Dataset (2025).

63



B More Detail on Empirical Strategy

Figure B.1 explains how exposure to fog in relation to the birth day or date of admission

to the infirmary would affect birth outcomes and sickness duration in the short run and

other outcomes in the long run.

Starting with short-run effects on birth outcomes (Figure B.1A), if a child is born

the day before a fog event, we would not expect pollution to affect their birth outcomes.

Therefore, I do not include leads of fog exposure when analysing birth outcomes. If a

child were born on a fog day, then the pollution may have directly affected their birth

outcomes either by triggering early labour or exacerbating the difficulties of labour for

the mother. If a child were born after fog days, this could affect their birth outcomes by

influencing the health of the mother. Therefore, I test for fog exposure in each trimester

to check whether this affected birth outcomes.

When considering the short-run effect of pollution on sickness duration (Figure B.1C),

again looking a leads of fog exposure with respect to a child’s admission date is not pos-

sible. In this case, the number of fog events a child is exposed to while in the infirmary

would be positively correlated with the severity of their illness irrespective of their pol-

lution exposure, leading to reverse causality in the relationship. However, we can still

explore exposure to fogs on the day of admission and in the period preceding admission

to see whether pollution exposure in these periods affected sickness duration. Looking

at lagged exposure is important because we can assume that children were only admit-

ted to the infirmary when clinical symptoms appeared for their disease. The incubation

period between infection and the appearance of symptoms varies by disease: 1-2 days for

influenza (Treanor 2014); 4-6 days for other respiratory diseases such as rhinoviruses and

parainfluenza viruses that cause upper and lower respiratory tract infections respectively

(Englund and Moscona 2014; Mackay and Arden 2014); and 10 days for measles (Moss

and Griffin 2014). Therefore, differing exposure windows may be necessary to capture the

effects of pollution on sickness duration from different diseases.

Exploring pollution exposure windows around birth for long-run health outcomes is

also important (Figure B.1B). In this, case it is possible to study cumulative pollution
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Figure B.1: Timing of pollution exposure (fogs) and the interpretation of effects on short-
and long-run outcomes

Notes:
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exposure after birth (leads of fog exposure) because pollution exposure in the first month

of life could have long-run consequences for health, and all long-run health outcomes were

measured after the first month. We can also test whether experiencing a fog event on one’s

birthday has negative effects for health. Finally, we can study the pollution exposure of

children in utero by studying whether lagged pollution exposure relative to birth affected

children’s health status.
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C Identification and Selection Issues

C.1 Sources of Collider Bias in Pollution Research

This paper measures the short and long-run health effects of exposure to acute extreme

pollution events, proxied by fog events. Focussing on acute pollution events helps to

address the main endogeneity concerns in analysing the health effects of pollution. The

first concern is that pollution is an observable disamenity that individuals consider when

making residence location choices (Currie et al. 2014). Because residence location choices

are based on a host of factors including income, education, ability to commute, etc.,

spatial variation in atmospheric pollution is rarely randomly assigned. This sorting is

a form of pretreatment collider bias (see Figure C.1) and was important in historical

cities, shaping the socioeconomic character of neighbourhoods over long periods of time

(Banzhaf et al. 2024; Heblich et al. 2021; Schneider 2020). Using short-run spikes in

pollution as the treatment mitigates bias from sorting because these temporary shocks

affected all areas in a city and would not induce cross-neighbourhood migration. In any

case, the locations of the Queen Charlotte Hospital and Foundling Hospital were fixed

long before the period analysed here so that sorting responses could not have affected

the children exposed in these institutions: the Foundling Hospital opened its Bloomsbury

site in 1745 (Pugh 2007, p. 39) and the Queen Charlotte Hospital on Marylebone Road

opened in 1856 (Select Committee of the House of Lords on Metropolitan Hospitals 1891,

p. 519).

A second potential source of endogeneity is related to avoidance behaviour: i.e. indi-

vidual behaviours to reduce exposure to exogenous ambient pollution levels (Currie et al.

2014). Today, this could mean staying indoors on high pollution days or using air puri-

fiers. Avoidance behaviours are mediators between short-run pollution spikes and health

outcomes. This means that without controlling for these behaviours the effect estimated

is the biological effect of pollution on health net of any avoidance behaviours. In actuality,

this is what we are curious to estimate anyway since we want to understand the health

effects of pollution in a particular context. Note that avoidance behaviours as mediators

67



Coal Pollution
(exposure)

Infant
Mortality
(outcome)

Residence
Location Choice

Income

Neighbourhood
Crowding

Sanitary
Conditions

Housing
Quality

Disease
Environment

Health
Expenditure

Nutrition
(Breast-
feeding)

Figure C.1: DAG showing collider bias arising from endogenous residence location choices
when considering the long-run health effects spatial variation in pollution exposure

Source: Schneider (2020).

are bad controls and controlling for them would induce collider bias if we assume that

the rich and educated are more likely to practice avoidance behaviours (see Figure C.1)

(Angrist and Pischke 2009, pp. 64-66). It is not clear to what extent avoidance behaviours

were possible or followed in the past. On the foggiest days in London in the 1890s, people

may have stayed indoors because poor visibility made it difficult to travel (Luckin 2003,

p. 35). However, the emphasis on ventilation in the past, lack of insulation, poorly sealed

windows and indoor coal fires may have limited the benefits of staying indoors when

ambient pollution was bad. The focus on people in institutions in this paper also lim-

its the heterogeneity in avoidance behaviours across individuals because the institutions

were unlikely to have different avoidance policies for different groups of people within the

institution.

Finally, Figure C.3 shows the classic example of collider bias, survival bias, which is

discussed at length in the text and in Schneider (2020). Acute pollution events affect

whether an individual survives to adulthood as does their latent health. Because we

can only observe health outcomes for those who survive, we are implicitly conditioning

on the collider variable Survive to Measurement. Simply put, if children born on fog

days are more likely to die and those with the weakest latent health are more likely
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Figure C.2: DAG showing collider bias arising from controlling for avoidance behaviour
as a mediator when considering the long-run health effects of short-run extreme pollution
exposure

to die, the the average latent health of survivors born on fog days will be higher than

the average latent health of children who were not born on fog days and do not suffer

from this additional mortality risk. However, there does not appear to be much survival

bias in this setting because acute pollution exposure did not affect stillbirths or neonatal

deaths. While pollution exposure did affect subsequent mortality, it is not clear whether

this mortality was high enough, or sufficiently selective with respect to latent health

to produce survival bias. For instance, when comparing birth weights and lengths for

a subsample of 160 children admitted to the Foundling Hospital who were born in the

Queen Charlotte Hospital, there are no statistically significant differences in birth weight

and length between those born on a fog day or not. Thus, survival bias does not appear

to be a major problem in this setting.
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C.2 Selection into the Queen Charlotte Hospital

There are not strong signs that selection into the Queen Charlotte Hospital varied based

on whether a woman delivered her child on a fog day or not. There are slight differences in

the timing of admission on fog and non-fog days (Figure C.4), but this does not translate

to any meaningful differences in characteristics or care. Table C.1 shows that maternal

characteristics are nearly identical between mothers giving birth on a fog day or not

and that the time between admission and delivery of the child is also not meaningfully

different. Maternal age and parity are not normally distributed, but their distributions

are nearly identical between the two groups (Figure C.5).
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Figure C.4: Admission times of mothers delivering their children in the Queen Charlotte
Hospital on days with and without fog in London 1892-1908

Sources: Queen Charlotte Hospital Dataset (2025).
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Table C.1: Selection into the Queen Charlotte Hospital comparing children born on a fog
day or not

Central Statistical Difference/
Tendency Fogb = 0 Fogb = 1 Test Coefficient p-value

Maternal Age (Years) Median 24 24 OLS 0.28 0.36
(2961) (418) [0.31]

Single (Share) Mean 0.46 0.42 T-test 0.04 0.18
(2962) (419)

Parity Median 0 0 Poisson -0.02 0.63
(2964) (420) [0.05]

Admission to Delivery Median 5.64 6.04 OLS 0.56 0.46
Time Gap (Hours) (2887) (415) [0.76]

Notes: Fogb is an indicator variable equal to one if a child is born on a fog day and zero otherwise.
Sample size in parentheses and standard errors in square brackets. For the admission to delivery time
gap, women whose admission time was after their delivery time were excluded as probable clerical errors.
I also exclude women who gave birth more than 96 hours after admission as these are likely to be
problematic births that were transferred from the outpatient department.

Sources: Queen Charlotte Hospital Dataset (2025).

Figure C.5: Maternal age and parity distributions of mothers delivering their children in
the Queen Charlotte Hospital on days with and without fog in London 1892-1908

Sources: Queen Charlotte Hospital Dataset (2025).
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C.3 Selection into the Foundling Hospital

There are also not signs that selection into the Foundling Hospital either on paternal or

child characteristics or through the hospital’s selection procedure varied for children born

on fog days or not. Table C.2 shows that the share of children with high status fathers

was similar between the treatment and control. Children born on fog days had slightly

older mothers, but looking at the distribution of maternal age presented in Figure C.6,

these differences are unlikely to have affected health outcomes. There are limited signs of

survival bias since the birth weights and lengths of children born in the Queen Charlotte

Hospital and later admitted to the Foundling Hospital are similar. Likewise, there is

no sign that maternal investment was different between the two groups: the breastfed

share and breastfeeding duration were similar and the date on which the mother applied

to give up the child to the Foundling Hospital was also similar. Finally, there were no

differences in treatment and control on selection into the Foundling Hospital with the

admission age and acceptance rate similar for children born on fog days or not. Thus,

there is no indication that anything other than acute pollution exposure can explain the

health differences between individuals born on fog days or not.
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Figure C.6: Maternal age distributions of children admitted to the Foundling Hospital
born on days with and without fog in London 1892-1908

Sources: Foundling Hospital Cohort Study (2025).
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Table C.2: Selection into the Foundling Hospital comparing children born on a fog day
or not

Central Statistical Difference/
Tendency Fogb = 0 Fogb = 1 Test Coefficient p-value

Parental Characteristics
Maternal Age (Years) Mean 21.41 22.03 OLS 0.62 0.08

(756) (106) [0.35]
Father High Class (Share) Mean 0.50 0.48 T-test -0.02 0.70

(760) (106)

Child Characteristics
Birth Weight (kg)† Mean 3.20 3.24 T-test 0.04 0.65

(136) (24)
Birth Length (cm)† Mean 53.06 53.87 T-test 0.81 0.15

(136) (24)

Maternal Investment
Ever Breastfed (Share) Mean 0.59 0.63 T-test 0.04 0.44

(756) (106)
Breastfeeding Dur. (Days) Median 60 64 OLS 10.61 0.31

(263) (35) [10.34]
Application Age (Days)‡ Median 58 52.5 OLS 6.49 0.72

(370) (36) [17.91]

FH Selection
Admission Age (Days) Median 91 87.5 OLS 4.28 0.68

(760) (106) [10.26]
Acceptance Rate (Share)‡ Mean 0.48 0.53 T-test 0.04 0.61

(370) (36)

Notes: Fogb is an indicator variable equal to one if a child is born on a fog day and zero otherwise.
Means with sample size in parentheses and standard errors in square brackets. P-values are from a two-
tailed T-test with equal variances or OLS. † denotes data for 1892-1908, and ‡ denotes data for 1909-14.
The sample is slightly different across indicators because information about rejected applications is only
available from 1909 to 1914 and information on birth outcomes for foundling hospital children born in
the Queen Charlotte Hospital is only available from 1892 to 1908.

Sources: Foundling Hospital Cohort Study (2025).
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D Additional Results

D.1 Birth Outcome Results

Table D.1: Effects of pollution exposure at and shortly before birth on birth weight in
the Queen Charlotte Hospital, 1892-1913

(1) (2) (3) (4)

Birth
Weight

Birth
Weight

Birth
Weight

Birth
Weight∑9

s=7 Fogb−s 0.003 0.000
(0.015) (0.014)∑6

s=4 Fogb−s 0.014 0.020
(0.014) (0.013)∑3

s=1 Fogb−s 0.021 0.026∗

(0.016) (0.015)

Fogb (Birthday) 0.033 0.027 0.024 0.016
(0.031) (0.030) (0.031) (0.030)

Individual Controls Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes

Birth Year FE Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes

Stillbirths Included Yes No Yes No∑
Fogb 407 395 407 395

N 3278 3164 3278 3164
r2 0.04 0.05 0.04 0.05

Notes: Estimated with OLS. Unstandardised coefficients with heteroskedasticity robust standard errors
in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1% level respectively.
Individual controls include a sex dummy, mother’s age and its square, parity dummies and mother’s
civil state dummies.

Sources: Queen Charlotte Hospital Dataset (2025).
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Table D.2: Effects of pollution exposure at and shortly before birth on birth length in the
Queen Charlotte Hospital, 1892-1913

(1) (2) (3) (4)

Birth
Length

Birth
Length

Birth
Length

Birth
Length∑9

s=7 Fogb−s 0.101 0.060
(0.093) (0.087)∑6

s=4 Fogb−s -0.005 0.025
(0.098) (0.092)∑3

s=1 Fogb−s 0.215∗∗ 0.296∗∗∗

(0.108) (0.096)

Fogb (Birthday) 0.399∗ 0.400∗∗ 0.315 0.285
(0.212) (0.189) (0.212) (0.191)

Individual Controls Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes

Birth Year FE Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes

Stillbirths Included Yes No Yes No∑
Fogb 409 399 409 399

N 3308 3204 3308 3204
r2 0.08 0.09 0.08 0.09

Notes: Estimated with OLS. Unstandardised coefficients with heteroskedasticity robust standard errors
in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1% level respectively.
Individual controls include a sex dummy, mother’s age and its square, parity dummies and mother’s
civil state dummies.

Sources: Queen Charlotte Hospital Dataset (2025).

77



Table D.3: Effects of pollution exposure at and shortly before birth on stillbirths and
neonatal deaths (first two weeks) in the Queen Charlotte Hospital, 1892-1913

(1) (2) (3) (4)

Still-
birth

Still-
birth

Neonatal
Death

Neonatal
Death∑9

s=7 Fogb−s 0.122 0.275
(0.125) (0.181)∑6

s=4 Fogb−s -0.026 -0.132
(0.142) (0.208)∑3

s=1 Fogb−s -0.105 0.056
(0.154) (0.207)

Fogb (Birthday) -0.108 -0.088 0.167 0.135
(0.300) (0.305) (0.363) (0.352)

Individual Controls Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes

Birth Year Trend Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes∑

Fogb 421 421 411 411∑
Stillbirth or Neonatal Death 146 146 66 66∑
Fogb × (SB or ND) 15 15 9 9

N 3450 3450 3322 3322

Notes: Estimated with logistic regression. Unstandardised coefficients with heteroskedasticity robust
standard errors in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1%
level respectively. A birth year trend rather than birth year fixed effects is used to avoid loss of
observations from variables that perfectly predict success or failure. Individual controls include a sex
dummy, mother’s age and its square, parity dummies and mother’s civil state dummies.

Sources: Queen Charlotte Hospital Dataset (2025).
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Table D.4: Effects of pollution exposure at or shortly before birth on premature birth in
the Queen Charlotte Hospital, 1892-1913

(1) (2)

Premature
Birth

Premature
Birth∑9

s=7 Fogb−s -0.057
(0.112)∑6

s=4 Fogb−s -0.257∗∗

(0.129)∑3
s=1 Fogb−s -0.085

(0.135)

Fogb (Birthday) -0.065 -0.013
(0.237) (0.247)

Individual Controls Yes Yes
Weather Controls Yes Yes

Birth Year Trend Yes Yes
Birth Quarter FE Yes Yes∑

Fogb 426 426∑
Premature 262 262∑
Fogb × (Premature) 26 26

N 3455 3455

Notes: Estimated with logistic regression. Unstandardised coefficients with heteroskedasticity robust
standard errors in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1%
level respectively. A birth year trend rather than birth year fixed effects is used to avoid loss of
observations from variables that perfectly predict success or failure. Individual controls include a sex
dummy, mother’s age and its square, parity dummies and mother’s civil state dummies.

Sources: Queen Charlotte Hospital Dataset (2025).
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Table D.5: Effects of pollution exposure in utero on birth weight and length in the Queen
Charlotte Hospital, 1892-1913

(1) (2) (3) (4)

Birth
Weight

Birth
Weight

Birth
Length

Birth
Length∑252

s=169 Fogb−s (1
st Tri) -0.000 -0.001 0.002 -0.004

(0.002) (0.002) (0.014) (0.013)∑168
s=85 Fogb−s (2

nd Tri) -0.001 -0.001 -0.034∗∗∗ -0.034∗∗∗

(0.002) (0.002) (0.013) (0.013)∑84
s=1 Fogb−s (3

rd Tri) 0.002 0.002 0.003 0.006
(0.002) (0.002) (0.014) (0.012)

Sex Dummy Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes

Stillbirths Included Yes No Yes No

N 3278 3164 3308 3204
r2 0.04 0.05 0.08 0.09

Notes: Estimated with OLS. Unstandardised coefficients with heteroskedasticity robust standard errors
in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1% level respectively.
Individual controls include a sex dummy, mother’s age and its square, parity dummies and mother’s
civil state dummies.

Sources: Queen Charlotte Hospital Dataset (2025).
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Table D.6: Effects of pollution exposure in utero on stillbirths and neonatal deaths (first
two weeks) in the Queen Charlotte Hospital, 1892-1913

(1) (2)

Still-
birth

Neonatal
Death∑252

s=169 Fogb−s (1
st Tri) -0.003 -0.006

(0.016) (0.024)∑168
s=85 Fogb−s (2

nd Tri) 0.010 0.017
(0.014) (0.021)∑84

s=1 Fogb−s (3
rd Tri) 0.021 0.019

(0.015) (0.021)

Sex Dummy Yes Yes
Individual Controls Yes Yes

Birth Weather Yes Yes
Birth Year Trend Yes Yes
Birth Quarter FE Yes Yes∑

Stillbirth or Neonatal Death 146 66
N 3450 3322

Notes: Estimated with logistic regression. Unstandardised coefficients with heteroskedasticity robust
standard errors in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1%
level respectively. A birth year trend rather than birth year fixed effects is used to avoid loss of
observations from variables that perfectly predict success or failure. Individual controls include a sex
dummy, mother’s age and its square, parity dummies and mother’s civil state dummies.

Sources: Queen Charlotte Hospital Dataset (2025).
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Table D.7: Effects of pollution exposure in utero on premature birth in the Queen Char-
lotte Hospital, 1892-1913

(1)

Premature
Birth∑252

s=169 Fogb−s (1
st Tri) -0.000

(0.012)∑168
s=85 Fogb−s (2

nd Tri) 0.014
(0.011)∑84

s=1 Fogb−s (3
rd Tri) -0.010

(0.013)

Sex Dummy Yes
Individual Controls Yes

Birth Weather Yes
Birth Year Trend Yes
Birth Quarter FE Yes∑

Premature 262
N 3455

Notes: Estimated with logistic regression. Unstandardised coefficients with heteroskedasticity robust
standard errors in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1%
level respectively. A birth year trend rather than birth year fixed effects is used to avoid loss of
observations from variables that perfectly predict success or failure. Individual controls include a sex
dummy, mother’s age and its square, parity dummies and mother’s civil state dummies.

Sources: Queen Charlotte Hospital Dataset (2025).
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D.2 Anthropometric Results

Table D.8: Effects of pollution exposure at birth on child growth outcomes in the Found-
ling Hospital, 1893-1919

(1) (2) (3) (4) (5)

WAZ
Infancy

WAZ
Age 4-6

HAZ
Age 4-6

BAZ
Age 14-16

HAZ
Age 14-16

Fogb (Birthday) 0.209 0.097 0.192 0.065 0.191
(0.157) (0.096) (0.123) (0.131) (0.164)

Sex Dummy Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes Yes∑

Fogb 106 90 89 44 44
N 861 723 725 326 326

Notes: WAZ is weight-for-age Z-score; HAZ is height-for-age Z-score; and BAZ is BMI-for-age Z-score
all relative to the WHO child growth standard/reference. The sample is restricted to children born
in London. Estimated with OLS. Unstandardised coefficients with heteroskedasticity robust standard
errors in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1% level
respectively. Individual controls include a sex dummy, mother’s age and its square, father’s occupation
dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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Table D.9: Effects of pollution exposure in utero on child growth outcomes in the Found-
ling Hospital, 1893-1919

(1) (2) (3) (4) (5)

WAZ
Infancy

WAZ
Age 4-6

HAZ
Age 4-6

BAZ
Age 14-16

HAZ
Age 14-16∑252

s=169 Fogb−s (1
st Tri) 0.007 0.016* 0.012 0.014 0.002

(0.012) (0.008) (0.009) (0.010) (0.015)∑168
s=85 Fogb−s (2

nd Tri) 0.008 0.011* -0.001 0.011 0.003
(0.010) (0.007) (0.008) (0.010) (0.013)∑84

s=1 Fogb−s (3
rd Tri) 0.016 0.005 0.003 0.005 -0.003

(0.010) (0.007) (0.008) (0.009) (0.012)

Sex Dummy Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes Yes∑

Fogb 106 90 89 44 44
N 861 723 725 326 326

Notes: The sample is restricted to children born in London. Estimated with OLS. Unstandardised
coefficients with heteroskedasticity robust standard errors in parentheses. *, ** and *** denote stat-
istical significance at the 10%, 5% and 1% level respectively. Individual controls include a sex dummy,
mother’s age and its square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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Table D.10: Effects of pollution exposure after birth on child growth outcomes in the
Foundling Hospital, 1892-1919

(1) (2) (3) (4) (5)

WAZ
Infancy

WAZ
Age 4-6

HAZ
Age 4-6

BAZ
Age 14-16

HAZ
Age 14-16∑28

s=1 Fogb+s 0.019 -0.002 0.006 0.020 0.014
(0.017) (0.011) (0.014) (0.015) (0.016)

Sex Dummy Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes
Birth Weather Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes Yes∑

Fogb 102 87 86 43 43
N 830 698 700 312 312

Notes: The sample is restricted to children born and living in London with their mothers before
admission to the Foundling Hospital. Estimated with OLS. Unstandardised coefficients with hetero-
skedasticity robust standard errors in parentheses. *, ** and *** denote statistical significance at the
10%, 5% and 1% level respectively. Individual controls include a sex dummy, mother’s age and its
square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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D.3 Mortality Results

Table D.11: Effect of pollution exposure in utero on mortality risk

(1) (2)
Respiratory Respiratory∑252

s=169 Fogb−s (1st Tri) 1.025 1.021
(0.026) (0.026)∑168

s=85 Fogb−s (2nd Tri) 1.006 1.006
(0.033) (0.033)∑84

s=1 Fogb−s (3rd Tri) 1.023 1.021
(0.031) (0.032)

Fogb (Birthday) 2.168
(1.032)

Sex Dummy Yes Yes
Individual Controls Yes Yes

Birth Weather Yes Yes
Birth Quarter FE Yes Yes
Birth Decade FE Yes Yes∑

Fogb 106
N 860 860

Notes: The sample is restricted to children born in London. Hazard ratios with standard errors in
parentheses. The regressions are estimated using a competing risk model where respiratory deaths are
the outcome of interest and other causes of death are the competing risk. *, ** and *** denote statistical
significance at the 10%, 5% and 1% level respectively. Individual controls include mother’s age and its
square, father’s occupation dummies and birth location dummies.
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D.4 Individual-level Morbidity Results

Table D.12: Effect of pollution exposure in utero on individual-level sickness incidence

(1) (2) (3) (4) (5)
Catarrh Tonsillitis Influenza Upper Resp Lower Resp∑252

s=169 Fogb−s (1
st Tri) 0.000 0.000 -0.001 0.000 -0.002

(0.003) (0.002) (0.001) (0.004) (0.001)
[0.004] [0.012] [-0.050] [0.010] [-0.111]∑168

s=85 Fogb−s (2
nd Tri) 0.001 0.001 -0.000 0.002 0.001

(0.003) (0.002) (0.001) (0.003) (0.001)
[0.024] [0.044] [-0.002] [0.037] [0.043]∑84

s=1 Fogb−s (3
rd Tri) -0.001 -0.002 -0.001 -0.003 -0.002

(0.002) (0.002) (0.001) (0.003) (0.001)
[-0.043] [-0.069] [-0.118] [-0.070] [-0.114]

Sex Dummy Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes Yes

Mean Dep. Var. 0.21 0.17 0.05 0.39 0.08∑
Fogb 63 63 63 63 63

N 471 471 471 471 471

Notes: Individual-level sickness incidence is the number of cases per year of exposure between re-
admission and age 10. The sample is restricted to children observed in the infirmary data to age 10 and
children born in London. For definitions of upper and lower respiratory diseases, see Table 1. Estimated
with OLS. Unstandardised coefficients with heteroskedasticity robust standard errors in parentheses
and standardised coefficients in square brackets. *, ** and *** denote statistical significance at the
10%, 5% and 1% level respectively. Individual controls include mother’s age and its square, father’s
occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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Table D.13: Effect of pollution exposure after birth on individual-level sickness incidence

(1) (2) (3) (4) (5)
Catarrh Tonsillitis Influenza Upper Resp Lower Resp∑28

s=1 Fogb+s -0.002 -0.006* -0.001 -0.008 -0.002
(0.004) (0.003) (0.001) (0.006) (0.002)
[-0.028] [-0.104] [-0.049] [-0.077] [-0.060]

Sex Dummy Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes Yes

Mean Dep. Var. 0.21 0.17 0.05 0.39 0.07∑
Fogb 62 62 62 62 62

N 452 452 452 452 452

Notes: Individual-level sickness incidence is the number of cases per year of exposure between re-
admission and age 10. The sample is restricted to children observed in the infirmary data to age
10 and children born and living in London with their mothers before admission to the Foundling
Hospital. For definitions of upper and lower respiratory diseases, see Table 1. Estimated with OLS.
Unstandardised coefficients with heteroskedasticity robust standard errors in parentheses and stand-
ardised coefficients in square brackets. *, ** and *** denote statistical significance at the 10%, 5%
and 1% level respectively. Individual controls include mother’s age and its square, father’s occupation
dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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Table D.14: Effect of pollution exposure in utero on individual-level sickness prevalence

(1) (2) (3) (4) (5)
Catarrh Tonsillitis Influenza Upper Resp Lower Resp∑252

s=169 Fogb−s (1
st Tri) -0.012 -0.003 -0.003 -0.014 -0.008*

(0.009) (0.008) (0.003) (0.013) (0.005)
[-0.087] [-0.032] [-0.061] [-0.081] [-0.109]∑168

s=85 Fogb−s (2
nd Tri) 0.009 -0.000 -0.001 0.009 0.005

(0.011) (0.006) (0.003) (0.013) (0.005)
[0.068] [-0.004] [-0.012] [0.055] [0.070]∑84

s=1 Fogb−s (3
rd Tri) -0.024* -0.003 -0.005* -0.026* -0.004

(0.013) (0.006) (0.003) (0.014) (0.005)
[-0.196] [-0.033] [-0.122] [-0.169] [-0.062]

Sex Dummy Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes Yes

Mean Dep. Var. 0.51 0.44 0.14 0.96 0.23∑
Fogb 63 63 63 63 63

N 471 471 471 471 471

Notes: Individual-level sickness prevalence is the number of sickness days per 100 days exposed between
re-admission and age 10 or the percentage of days spent sick. The sample is restricted to children ob-
served in the infirmary data to age 10 and children born in London. For definitions of upper and
lower respiratory diseases, see Table 1. Estimated with OLS. Unstandardised coefficients with hetero-
skedasticity robust standard errors in parentheses and standardised coefficients in square brackets. **
and *** denote statistical significance at the 5% and 1% level respectively. Individual controls include
mother’s age and its square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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Table D.15: Effect of pollution exposure after birth on individual-level sickness prevalence

(1) (2) (3) (4) (5)
Catarrh Tonsillitis Influenza Upper Resp Lower Resp∑28

s=1 Fogb+s -0.007 -0.016 -0.007 -0.024 -0.012
(0.014) (0.010) (0.005) (0.018) (0.009)
[-0.026] [-0.085] [-0.077] [-0.068] [-0.085]

Sex Dummy Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes
Birth Year FE Yes Yes Yes Yes Yes

Mean Dep. Var. 0.52 0.44 0.14 0.97 0.23∑
Fogb 62 62 62 62 62

N 452 452 452 452 452

Notes: Individual-level sickness prevalence is the number of sickness days per 100 days exposed between
re-admission and age 10 or the percentage of days spent sick. The sample is restricted to children
observed in the infirmary data to age 10 and children born and living in London with their mothers
before admission to the Foundling Hospital. For definitions of upper and lower respiratory diseases,
see Table 1. Estimated with OLS. Unstandardised coefficients with heteroskedasticity robust standard
errors in parentheses and standardised coefficients in square brackets. ** and *** denote statistical
significance at the 5% and 1% level respectively. Individual controls include mother’s age and its
square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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D.5 Short-run Sickness Duration Results

Table D.16: Placebo effect of pollution exposure at time of sickness on sickness duration
from injuries

(1)
Injuries∑9

s=7 Fogt−s 0.028
(0.074)∑6

s=4 Fogt−s -0.026
(0.086)∑3

s=1 Fogt−s 0.069
(0.071)

Fogt (Ad Day) 0.194
(0.208)

Sex Dummy Yes
Sickness Weather Yes
Sickness Age FE Yes
Sickness Year FE Yes
Sickness Quarter FE Yes∑

Fogt 22
N (sickness events) 309

Notes: Estimated with zero-truncated negative binomial models. Coefficients with robust standard errors
in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1% level respectively.

Sources: Foundling Hospital Cohort Dataset (2025).
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D.6 Long-run Sickness Duration Results

Table D.17: Effect of pollution exposure at and around birth on sickness duration from
respiratory diseases and measles

(1) (2) (3) (4) (5) (6)
Influenza Influenza Influenza Measles Measles Measles

Fogb−1 -0.075 0.109
(0.129) (0.109)

Fogb (Birthday) 0.569*** 0.214*
(0.156) (0.117)

Fogb+1 0.085 0.212*
(0.142) (0.127)

Sex Dummy Yes Yes Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes Yes Yes
Birth Year Trend Yes Yes Yes Yes Yes Yes

Sickness Quarter FE Yes Yes Yes Yes Yes Yes
Sickness Year FE Yes Yes Yes Yes Yes Yes
Sickness Age FE Yes Yes Yes Yes Yes Yes∑

Fog 34 36 38 37 29 29
Clusters (individuals) 150 148 153 220 212 212
N (sickness events) 203 205 207 220 212 212

Notes: Sample restricted to children born in London. The reference group is held constant in the three
specifications for each disease to make the comparisons straightforward to interpret. The reference group
is children not born the day before, the day of, or the day after a fog event. Estimated with zero-
truncated negative binomial models. Coefficients with standard errors clustered at the individual level
in parentheses. *, ** and *** denote statistical significance at the 10%, 5% and 1% level respectively.
Individual controls include mother’s age and its square, father’s occupation dummies and birth location
dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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Table D.18: Effect of pollution exposure in utero on sickness duration from respiratory
diseases and measles

(1) (2) (3) (4)
Catarrh Tonsillitis Influenza Measles∑252

s=169 Fogb−s (1
st Tri) 0.001 0.008 -0.002 -0.002

(0.006) (0.006) (0.012) (0.008)∑168
s=85 Fogb−s (2

nd Tri) 0.001 0.008* -0.010 -0.009*
(0.007) (0.005) (0.009) (0.005)∑84

s=1 Fogb−s (3
rd Tri) -0.007 0.011** -0.021** -0.007

(0.007) (0.005) (0.010) (0.005)

Sex Dummy Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes
Birth Year Trend Yes Yes Yes Yes

Sickness Quarter FE Yes Yes Yes Yes
Sickness Year FE Yes Yes Yes Yes
Sickness Age FE Yes Yes Yes Yes∑

Fogb 109 108 36 29
Clusters (individuals) 393 364 174 245
N (sickness events) 800 704 235 245

Notes: Sample restricted to children born in London. Estimated with zero-truncated negative binomial
models. Coefficients with standard errors clustered at the individual level in parentheses. *, ** and
*** denote statistical significance at the 10%, 5% and 1% level respectively. Individual controls include
mother’s age and its square, father’s occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).
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Table D.19: Effect of pollution exposure after birth on sickness duration from respiratory
diseases and measles

(1) (2) (3) (4)
Catarrh Tonsillitis Influenza Measles∑28

s=1 Fogb+s -0.019* 0.022* 0.010 0.002
(0.010) (0.013) (0.023) (0.008)

Sex Dummy Yes Yes Yes Yes
Individual Controls Yes Yes Yes Yes

Birth Weather Yes Yes Yes Yes
Birth Quarter FE Yes Yes Yes Yes
Birth Year Trend Yes Yes Yes Yes

Sickness Quarter FE Yes Yes Yes Yes
Sickness Year FE Yes Yes Yes Yes
Sickness Age FE Yes Yes Yes Yes∑

Fogb 104 106 35 28
Clusters (individuals) 374 349 161 236
N (sickness events) 756 670 218 236

Notes: Sample restricted to children born and living in London with their mothers before admission to the
Foundling Hospital. Estimated with zero-truncated negative binomial models. Coefficients with standard
errors clustered at the individual level in parentheses. *, ** and *** denote statistical significance at
the 10%, 5% and 1% level respectively. Individual controls include mother’s age and its square, father’s
occupation dummies and birth location dummies.

Sources: Foundling Hospital Cohort Dataset (2025).

94


	WP380 Cover
	Born in smog

