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Abstract
Consider a matroid M whose ground set is equipped with a labeling to an abelian group. A basis
of M is called F -avoiding if the sum of the labels of its elements is not in a forbidden label set F .
Hörsch, Imolay, Mizutani, Oki, and Schwarcz (2024) conjectured that if an F -avoiding basis exists,
then any basis can be transformed into an F -avoiding basis by exchanging at most |F | elements.
This proximity conjecture is known to hold for certain specific groups; in the case where |F | ≤ 2; or
when the matroid is subsequence-interchangeably base orderable (SIBO), which is a weakening of
the so-called strongly base orderable (SBO) property.

In this paper, we settle the proximity conjecture for sparse paving matroids or in the case where
|F | ≤ 4. Related to the latter result, we present the first known example of a non-SIBO matroid.
We further address the setting of multiple group-label constraints, showing proximity results for the
cases of two labelings, SIBO matroids, matroids representable over a fixed, finite field, and sparse
paving matroids.
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1 Introduction

Let E be a finite ground set and let ψ : E → Γ be a labeling from E to an abelian group Γ.
A group-label constraint requires for a solution X ⊆ E to satisfy ψ(X) :=

∑
e∈X ψ(e) /∈ F ,

where F ⊆ Γ is a prescribed set of forbidden labels. Such a solution X is called F -avoiding.
An F -avoiding X is also called zero in the case when F = Γ \ {0} (i.e., ψ(X) = 0), and
non-zero in the case when F = {0} (i.e., ψ(X) ̸= 0). Several constraints in combinatorial
optimization, such as parity, congruency, and exact-weight constraints, are representable
as group-label constraints by letting Γ be a cyclic group Zm or the integers Z, and F be
the complement of a singleton. These constraints have been studied for many classical
combinatorial optimization problems, including matching [40, 36, 1, 14, 25], arborescence[2],
submodular function minimization [17, 37], minimum cut [38], and independent sets or bases
in a matroid [6, 12, 43]. Also, the non-zero and F -avoiding constraints have been particularly
well-studied for path and cycle problems on graphs [9, 8, 23, 27, 29, 42, 49, 50, 47].

In this paper, we study group-label constraints on matroid bases. This line of research
was initiated by Liu and Xu [32], who addressed the problem of finding a zero basis. Hörsch,
Imolay, Mizutani, Oki, and Schwarcz [20] considered non-zero bases, and more generally,
F -avoiding bases, posing the following conjecture.

▶ Conjecture 1.1 (Proximity Conjecture [20]). Let M be a matroid, ψ : E → Γ a labeling from
the ground set E of M to an abelian group Γ, and F ⊆ Γ a finite collection of forbidden labels.
Then, for any basis A of M , there exists an F -avoiding basis B of M such that |A \B| ≤ |F |,
provided that at least one F -avoiding basis exists.

It is clear that Conjecture 1.1 implies an algorithm for finding an F -avoiding basis using
O((rn)|F |) independence oracle queries, where r is the rank of M and n := |E|. Note that this
bound is meaningful only when |F | < r since the naïve brute-force search runs in

(
n
r

)
= O(nr)

oracle queries. Another consequence of Conjecture 1.1 is that the number of F -avoiding
bases is at least |B|/

∑|F |
i=0
(

r
i

)(
n−r

i

)
, where B is the basis family of M , provided that at least

one F -avoiding basis exists.
Conjecture 1.1 is known to hold if (i) |F | ≤ 2, (ii) Γ is an ordered group, (iii) Γ has prime

order, (iv) |Γ \ F | = 1 and Γ is a cyclic group with the order being a prime power or the
product of two primes, or (v) M is strongly base orderable (SBO). The claim for |F | = 1
essentially follows from Rieder’s characterization [43] of basis lattices, and a simpler proof
can be found in [20]. The proof for |F | = 2 in [20] first reduces the problem to 6-element,
rank-3 matroids and then shows the claim for them, treating one special matroid M(K4)
separately. Case (ii) was also proven in [20], where an ordered group is a group equipped
with a total order consistent with the group operation, such as the integers Z and the reals R.
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Conjecture 1.1 for (iii) and (iv) was shown by Liu and Xu [32]. They showed (iii) with
|Γ \ F | = 1 using an additive combinatorics result by Schrijver and Seymour [45] (which is
Conjecture 1.2 below for prime-order cyclic groups), and it immediately extends to general F .
For (iv), Liu and Xu observed more generally that Conjecture 1.1 for finite Γ with |Γ \F | = 1
holds if the following long-standing conjecture by Schrijver and Seymour [45] is met for every
subgroup of Γ.

▶ Conjecture 1.2 (Schrijver and Seymour [45]; see also [11]). Let M be a matroid with ground
set E, basis family B, and rank function ρ. Let ψ : E → Γ be a labeling to an abelian group
Γ and H := { g ∈ Γ | g + ψ(B) = ψ(B) } the stabilizer subgroup of ψ(B) := {ψ(B) | B ∈ B }.
Then,

|ψ(B)| ≥ |H|

 ∑
Q∈Γ/H

ρ(ψ−1(Q)) − ρ(E) + 1

.
Schrijver and Seymour [45] showed Conjecture 1.2 for prime-order cyclic groups, and

DeVos, Goddyn, and Mohar [11] proved it for the cases when M is obtained from a uniform
matroid by adding parallel elements and when Γ is one of the groups in (iv).

Case (v) was shown in [32] for |Γ \ F | = 1 and in [20] for general F . SBO matroids are a
class of matroids that admit a certain basis exchange property and includes gammoids (so in
particular, uniform, partition, laminar, and transversal matroids); see, e.g., [44, Section 42.6c].
As mentioned in the full version [21] of [20], the same proof works if we only assume a weaker
property called subsequence-interchangeable base orderability (cf. Lemma 2.4). Following
Baumgart [3], we say that a rank-r matroid is subsequence-interchangeably base orderable
(SIBO) if every pair of bases A and B admits orderings a1, . . . , ar of A and b1, . . . , br of B
such that (B \ {bi, . . . , bj}) ∪ {ai, . . . , aj} = {b1, . . . , bi−1, ai, . . . , aj , bj+1, . . . , br} is a basis
for any pair (i, j) with 1 ≤ i ≤ j ≤ r. For each pair of bases, we call such a pair of orderings
an SI-ordering. Baumgart [3] posed the following conjecture.

▶ Conjecture 1.3 (Baumgart [3]). Every graphic matroid is SIBO.

By case (v) above, Conjecture 1.3 would imply Conjecture 1.1 for graphic matroids. Let
us note that Conjecture 1.3 is a strengthening of the graphic matroid case of the following
celebrated conjecture.

▶ Conjecture 1.4 (Gabow [15], see also [48, 10]). Let A and B be bases of a rank-r matroid M .
Then, there are orderings a1, . . . , ar of A and b1, . . . , br of B such that {a1, . . . , ai, bi+1, . . . , br}
and {b1, . . . , bi, ai+1, . . . , ar} are bases for any i = 1, . . . , r.

In contrast to Conjecture 1.3, Conjecture 1.4 is known to hold for graphic matroids [48,
26, 10], regular matroids [4], and sparse paving matroids [5], which are the focus of this paper.
A rank-r matroid is paving if every circuit is of size either r or r + 1, and is sparse paving if
it and its dual are both paving. It is believed that asymptotically almost all matroids are
sparse paving, formally stated as follows.

▶ Conjecture 1.5 (Mayhew, Newman, Welsh, and Whittle [34]). Let Mu(n) and Su(n) be the
families of all matroids and sparse paving matroids, respectively, on an unlabeled n-element
ground set. Similarly, let Ml(n) and Sl(n) be their counterparts on a labeled n-element
ground set. Then,

lim
n→∞

|Su(n)|
|Mu(n)| = lim

n→∞

|Sl(n)|
|Ml(n)| = 1

holds.

Under Conjecture 1.5, the result of [5] implies that Conjecture 1.4 holds asymptotically.

ICALP 2025
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Our contributions. Our first main result is a proof of Conjecture 1.1 for sparse paving
matroids. Together with Conjecture 1.5, it would imply that Conjecture 1.1 holds in an
asymptotic sense. In addition, sparse paving matroids are significant in matroid theory as
they have been used in hardness proofs for several algorithmic problems [12, 21, 24, 33] as
well as counterexamples of conjectures. In fact, sparse paving matroids were used in [20]
to disprove a strengthening of Conjecture 1.1 for |Γ \ F | = 1 posed in the initial preprint
version [31] of [32]. Given these contexts, our positive result for sparse paving matroids
provides further evidence supporting Conjecture 1.1.

We also show Conjecture 1.1 for |F | ≤ 4 using a computer-aided proof. First, we use
an observation from [21] (see Lemma 2.3) to reduce to the case of matroids on at most 10
elements having rank at most 5. By checking all such matroids using a SAT solver, it turns
out that all of them are SIBO, except for a single matroid called R10. We complete the
proof by showing Conjecture 1.1 for R10 separately. For completeness, we also provide an
elementary proof that R10 is not SIBO. This is noteworthy, as it serves as the first example
of a non-SIBO matroid and shows that Conjecture 1.3 does not extend to regular matroids.

As the second main thread of the paper, we consider an analog of Conjecture 1.1 for
multiple group labelings. In this setting, given k labelings ψ1, . . . , ψk, where each ψt is a map
from E to an abelian group Γt, and k forbidden labels f1 ∈ Γ1, . . . , fk ∈ Γk, we are to find a
basis B such that ψt(B) ̸= ft for all t ∈ {1, . . . , k}. Questions with similar constraints have
also been studied for paths and cycles in graphs [22, 19, 18, 7]. Note that the ψ1 = · · · = ψk

case corresponds to the single F -avoiding constraint with F = {f1, . . . , fk}, and the more
general constraints ψ1(B) /∈ F1, . . . , ψk(B) /∈ Fk with F1 ⊆ Γ1, . . . , Fk ⊆ Γk reduce to this
setting with

∑k
t=1 |Ft| constraints ψt(B) ̸= f (t ∈ {1, . . . , k}, f ∈ Ft). We pose the following

conjecture.

▶ Conjecture 1.6 (Multi-Labeled Proximity Conjecture). There is a computable function
d : N → N such that for each k ∈ N, matroid M with ground set E, group labelings ψt : E → Γt,
group elements ft ∈ Γt for t = 1, . . . , k, and basis A of M , there exists a basis B of M with
ψt(B) ̸= ft for t = 1, . . . , k and |A \B| ≤ d(k), provided that at least one such basis exists.

Note that Conjecture 1.6 leads to a polynomial-time solvability for finding a basis satisfying
k group-label constraints for any fixed k. As a lower bound, we show using uniform matroids
that d(k), if exists, must be at least 2k − 1. Conjecture 1.1 for |F | = 1 implies that this
is tight if k = 1. For k = 2, we show that 22 − 1 = 3 is tight. We further show that
d(k) = ⌊(e− 1/2)k!⌋ − 1 suffices for SIBO matroids. We combine an extension of this result
with a result of [20] (Theorem 5.6) to show the existence of such a function d(k) for matroids
representable over a fixed, finite field. Finally, we prove an analogous result for sparse paving
matroids using a similar method, but relying on a new structural observation on sparse
paving matroids instead of Theorem 5.6.

Related work. Eisenbrand, Rohwedder, and Węgrzycki [13] showed a proximity result on
basis pairs of integer-labeled matroids. For a matroid labeled with Zm for a positive integer
m ≥ 2, this result implies that if there exists a zero basis, then for any basis A, there exists a
zero basis B such that |A\B| = O(m5). This bound is weaker than the bound |A\B| ≤ m−1
implied by Conjecture 1.1. Their result also implies a bound |A \ B| = |Γ|O(log |Γ|) for a
matroid labeled with a finite abelian group Γ. The paper [13] additionally provided an FPT
algorithm for finding a zero basis of a matroid labeled with a finite abelian group when
parameterized by group size.
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Hörsch, Imolay, Mizutani, Oki, and Schwarcz [20] also posed a weighted variant of
Conjecture 1.1, which was settled for SBO matroids as well as the case when |F | = 1 [20].
Extending the proofs of Conjecture 1.1 in other cases to the weighted conjecture is left for
future work.

Organization. The rest of this paper is organized as follows. Section 2 describes preliminaries.
Sections 3 and 4 prove Conjecture 1.1 for sparse paving matroids and the case when |F | ≤ 4,
respectively. Section 5 gives proximity results in the setting of multiple labelings. Finally, in
Section 6, we conclude the paper with several open questions.

2 Preliminaries

For a nonnegative integer k and a set S, let [k] := {1, . . . , k} and
(

S
k

)
:= {X ⊆ S | |X| = k }.

For a set S, x /∈ S, and y ∈ S, we abbreviate S∪{x} as S+x and S \{y} as S−y. All groups
are implicitly assumed to be abelian. We use the additive notation for the group operation.
Let Zm be the cyclic group of order m. For a prime power q, let GF(q) be the finite field of size
q. For a function c : E → S and subset X ⊆ E, we use the notation c[X] := { c(e) | e ∈ X }.
(Recall that if ψ : E → Γ is labeling to a group Γ, then ψ(X) :=

∑
e∈X ψ(e).)

We refer the readers to [39] for basic concepts and terminology in matroid theory.
A matroid M consists of a finite ground set E(M) and a nonempty set family B(M)
such that for any B,B′ ∈ B(M) and e ∈ B \ B′, there exists f ∈ B′ \ B such that
B − e + f ∈ B(M). Every element in B(M) is called a basis (or a base). The rank of M
is the size of any basis of M . The dual M∗ of M is a matroid on the same ground set
defined by B(M∗) = {E(M) \B | B ∈ B(M) }. For X ⊆ E(M), the restriction of M to X,
denoted by M |X, is a matroid on X with B(M |X) = {B′ ∈

(
X
r′

)
| B′ ⊆ B (∃B ∈ B(M)) },

where r′ := maxB∈B(M) |B ∩ X|. Also, the contraction of M by X is a matroid M/X :=
(M∗|(E(M) \ X))∗. A matroid M ′ is a minor of M if M ′ = (M |X)/Y for some X,Y

with Y ⊆ X ⊆ E(M). Two matroids M1 and M2 are isomorphic if there exists a bijection
σ : E(M1) → E(M2) such that B(M2) = { {σ(e) | e ∈ B } | B ∈ B(M1) }.

A matroid M of rank r is called uniform if B(M) =
(

E(M)
r

)
; it is denoted by Ur,n up to

isomorphism, where n = |E(M)|. A matroid M is called F-representable if for some matrix
A over a field F, E(M) corresponds to the set of columns of A and B(M) consists of the
subsets of columns of A each of which forms a basis of the vector space spanned by the
columns of A. We will use the following characterization of sparse paving matroids.

▶ Proposition 2.1 (see [5]). A matroid M of rank r is sparse paving if and only if there
exists a collection H = {H1, . . . ,Hk} of subsets of E(M) such that |Hi| = r for each i ∈ [k],
|Hi ∩Hj | ≤ r − 2 if i ̸= j, and B(M) =

(
E(M)

r

)
\ H.

Since the class of sparse paving matroids is closed under taking restrictions and duals, we
also have the following proposition.

▶ Proposition 2.2. The class of sparse paving matroids is minor-closed.

In an indirect approach to Conjecture 1.1, the following lemma is useful. It is similar to
[32, Corollary 4.4] and is obtained from [21, Lemmas 5.35 and 5.36].

▶ Lemma 2.3 (see [21]). Let M be a matroid, ψ : E(M) → Γ a group labeling, and F ⊆ Γ a
finite set of forbidden labels. Assume that (M,ψ, F ) is a counterexample to Conjecture 1.1,
i.e., M has an F -avoiding basis and it has a basis A with |A\B| ≥ |F |+1 for any F -avoiding
basis B. Then, there exists a minor M ′ of M having rank |F |+1, a labeling ψ′ : E(M) → Γ, a
set of labels F ′ ⊆ Γ with |F ′| = |F |, and a basis B′ of M such that B′ is the only F ′-avoiding
basis of M ′ and E(M ′) \B′ is a basis.

ICALP 2025
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The following observation was essentially noted in [21, Remark 5.16]; we include a proof
for completeness.

▶ Lemma 2.4 (see [21]). Let E be a finite set, ψ : E → Γ a group labeling, F ⊆ Γ a finite
collection of labels, and A = {a1, . . . , ar} and B = {b1, . . . , br} disjoint subsets of E, where
r = |F | + 1. If B is F -avoiding, then there exists a pair (i, j) with 1 ≤ i ≤ j ≤ r such that
B̂i,j := (B \ {bi, . . . , bj}) ∪ {ai, . . . , aj} = {b1, . . . , bi−1, ai, . . . , aj , bj+1, . . . , br} is F -avoiding.
Furthermore, if ψ(B̂1,j) ∈ F for every j ≥ 1, then there exists a pair with i > 1 such that
ψ(B̂i,j) = ψ(B).

Proof. If there exists 1 ≤ k ≤ r such that ψ(B̂1,k) /∈ F , then (i, j) = (1, k) is indeed a desired
pair. Otherwise, as |F | = r − 1, there exists a pair (k1, k2) by the pigeonhole principle such
that 1 ≤ k1 < k2 ≤ r and ψ(B̂1,k1) = ψ(B̂1,k2). We then have ψ(B̂k1+1,k2) = ψ(B) /∈ F ,
which means that the pair (i, j) = (k1 + 1, k2) is a desired one. ◀

3 Proximity Theorem for Sparse Paving Matroids

In this section, we prove the following theorem.

▶ Theorem 3.1. Conjecture 1.1 is true when M is a sparse paving matroid.

Proof. Suppose, to the contrary, that Conjecture 1.1 does not hold for a sparse paving
matroid M on the ground set E, a labeling ψ : E → Γ, and a forbidden label set F ⊆ Γ.
Then, as minors of sparse paving matroids are sparse paving by Proposition 2.2, we may
assume by Lemma 2.3 that M has rank r = |F | + 1, it contains exactly one F -avoiding basis
B, and A := E \B is also a basis (with ψ(A) ∈ F ). Clearly, |F | ≥ 1.

We first consider the case when |ψ[E]| ≥ r + 1. Suppose that B is rainbow, i.e., no two
elements in B have the same label. Fix an element e ∈ A such that B + e is still rainbow,
and consider the sets A− e+ f for f ∈ B. Then, by Proposition 2.1, at least r − 1 = |F | of
these r sets are bases. Since B + e is rainbow, these bases and A, each of which is obtained
by adding an element of B + e to A− e, have distinct labels, thus at least one of these bases
or A is F -avoiding. This contradicts that B is the only F -avoiding basis.

Next, suppose that B is not rainbow. As there are r + 1 elements of different labels, we
can take a set X ⊆ E with |X| = r and an element e ∈ A \X such that X + e is rainbow.
We consider r sets X + e− f for f ∈ X in addition to X itself. Then, by Proposition 2.1,
at least r = |F | + 1 of these r + 1 sets are bases, and none of them is B as they are all
rainbow. Since X + e is rainbow, these bases have distinct labels, thus at least one of them
is F -avoiding. This contradicts that B is the only F -avoiding basis.

From now on, let us assume |ψ[E]| ≤ r. To complete the proof, we first prove three
lemmas. For each g ∈ Γ, we call ψ−1(g) := ψ−1({g}) = { e ∈ E | ψ(e) = g } the label class
of g.

▶ Lemma 3.2. For any X ⊆ E with |X| = r, ψ(X) /∈ F , and X ̸= B, one of the following
holds:
1. X is the union of label classes, or
2. |B \X| = 1, B △X is a label class, and X ∩B is the union of label classes.

Proof. Assume that X is not the union of label classes, i.e., there exists a pair of e ∈ X and
f /∈ X with ψ(e) = ψ(f). Now X is not a basis as B is the only F -avoiding basis. Since
M is sparse paving, X − e + f is a basis and ψ(X − e + f) = ψ(X) /∈ F , which implies
that X − e+ f = B. This holds for any pair (e, f) and the pair (e, f) is indeed unique as
{e, f} = X △B, completing the proof. ◀
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▶ Lemma 3.3. One of the following holds:
1. B is the union of label classes, or
2. there exists g ∈ Γ such that |ψ−1(g) ∩B| = |ψ−1(g) ∩ (E \B)| = 1 and B \ ψ−1(g) is the

union of label classes.

Proof. Assume that B is not the union of label classes, i.e., there exists a pair of e ∈ B and
f /∈ B with ψ(e) = ψ(f). Let X := B − e+ f . Then, X is not a basis as ψ(X) = ψ(B) /∈ F

and B is the only F -avoiding basis. Thus, Lemma 3.2(2) implies statement 2 here. ◀

As in Lemma 2.4, under fixed orderings a1, . . . , ar of A and b1, . . . , br of B, for each
pair (i, j) with 1 ≤ i ≤ j ≤ r, we define B̂i,j := (B \ {bi, . . . , bj}) ∪ {ai, . . . , aj} =
{b1, . . . , bi−1, ai, . . . , aj , bj+1, . . . , br}.

▶ Lemma 3.4. Let C be a set and c : E → C be a coloring. If |c[A]| + |c[B]| ≤ r + 1, then
there are orderings a1, . . . , ar of A and b1, . . . , br of B such that B̂i,j is not the union of color
classes for any pair (i, j) with 1 ≤ i ≤ j ≤ r and (i, j) ̸= (1, r).

Proof. We construct the desired orderings by fixing ai and bi for each i = 1, . . . , r− 1 in this
order so that there exists a ∈ A \ {a1, . . . , ai} with c(a) = c(ai) or b ∈ B \ {b1, . . . , bi} with
c(b) = c(bi). We first show that this is sufficient for our purpose, and then show that this is
indeed possible.

Suppose to the contrary that for orderings satisfying the above condition, there exists a
pair (i, j) such that B̂i,j is the union of color classes. If j < r, then there exists k > j such
that c(ak) = c(aj) or c(bk) = c(bj). Since B̂i,j is the union of color classes, {aj , ak} or {bj , bk}
must be included in or disjoint from B̂i,j , but {aj , ak, bj , bk} ∩ B̂i,j = {aj , bk} by definition,
a contradiction. Otherwise, j = r and hence 1 < i (≤ j). Then, similarly, there exists k ≥ i

such that c(ak) = c(ai−1) or c(bk) = c(bi−1), but {ai−1, ak, bi−1, bk} ∩ B̂i,r = {ak, bi−1}, a
contradiction. Thus, the above construction is sufficient.

Now we show that we can fix ai and bi for each i = 1, . . . , r−1 so that the above condition
is satisfied. The proof is done by induction on r. The base case when r = 1 is trivial.

Suppose that r ≥ 2. If |c[A]| + |c[B]| = r + 1, then by the pigeonhole principle (as
|A| + |B| = 2r), there exists an element a ∈ A such that c(a) ̸= c(a′) for any a′ ∈ A \ {a}
or b ∈ B such that c(b) ̸= c(b′) for any b′ ∈ B \ {b}. By symmetry, we may assume that
c(b) ̸= c(b′) for any b′ ∈ B \ {b}, and then by the pigeonhole principle (as |A| = r and
|c[A]| = r + 1 − |c[B]| ≤ r − 1), there exist two distinct elements a, a′ ∈ A with c(a) = c(a′).
In this case, by setting a1 = a and b1 = b, the condition for i = 1 is satisfied as a ∈ A \ {a1}
and c(a) = c(a1), and that for i ≥ 2 can be satisfied by applying the induction hypothesis
to the remaining part A′ = A \ {a1}, B′ = B \ {b1}, and c′ : (A′ ∪B′) → C, where c′ is the
restriction of c and satisfies |c′[A′]| + |c′[B′]| = |c[A]| + |c[B]| − 1 = r.

The remaining case is when |c[A]| + |c[B]| ≤ r. Then, since |c[A]| ≤ r− |c[B]| ≤ r− 1, we
have two distinct elements a, a′ ∈ A with c(a) = c(a′), and by setting a1 = a and arbitrarily
choosing b1 ∈ B, the condition for i = 1 is satisfied as a ∈ A\{a1} with c(a) = c(a1) and that
for i ≥ 2 can be satisfied by applying the induction hypothesis as well. Thus, we complete
the proof. ◀

We turn back to the proof of Theorem 3.1. We discuss the two cases in Lemma 3.3
separately.

(1) Suppose that B is the union of label classes; this implies |ψ[A]| + |ψ[B]| = |ψ[E]| ≤ r.
Let us regard ψ as a coloring and apply Lemma 3.4 to get orderings a1, . . . , ar of A and
b1, . . . , br of B. We then apply the first statement of Lemma 2.4 to these orderings to get
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a pair (i, j) with 1 ≤ i ≤ j ≤ r such that B̂i,j is F -avoiding. We have (i, j) ̸= (1, r) since
ψ(B̂1,r) = ψ(A) ∈ F . Then, B̂i,j is F -avoiding but is not the union of label classes, thus
B △ B̂i,j is a label class by Lemma 3.2. This is a contradiction since B is the union of label
classes.

(2) Otherwise, there exists g ∈ Γ such that ψ−1(g) ∩ B = {e} and ψ−1(g) ∩ A = {f}
for some e ∈ B and f /∈ B, and B − e is the union of label classes. We define a coloring
c : E → Γ ∪ {⋆} by c(e′) := ψ(e′) for e′ ∈ E− f and c(f) := ⋆. Now we have |c(A)| + |c(B)| =
|ψ[E]|+1 ≤ r+1 since A−f is also the union of label classes. Hence we can apply Lemma 3.4
to c and we get orderings a1, . . . , ar of A and b1, . . . , br of B, and then by Lemma 2.4, we
obtain a pair (i, j) with 1 ≤ i ≤ j ≤ r such that B̂i,j is F -avoiding but is not the union of
color classes. We have (i, j) ̸= (1, r) since ψ(B̂1,r) = ψ(A) ∈ F . We apply Lemma 3.2 to
X = B̂i,j . (1) is impossible because the color classes refine the label classes. In case of (2),
by the assumption of Lemma 3.3(2), B △X = {e, f}, implying that X is the union of color
classes, a contradiction. ◀

4 Proximity Theorem for at Most 4 Forbidden Labels

We first observe that Conjecture 1.3 does not hold for regular matroids: a pair of disjoint
bases of the matroid R10 does not have an SI-ordering. R10 is the matroid appearing in
Seymour’s fundamental decomposition theorem of regular matroids [46], and it can be defined
as the even-cycle matroid of the complete graph K5. The ground set of this matroid is the
edge set of K5 and its bases are the sets of five edges forming a subgraph containing exactly
one odd cycle and no even cycle. It is not difficult to check the following statement; see also
the proof of [4, Proposition 5.5].

▶ Lemma 4.1. Consider R10 as the even-cycle matroid of the complete graph K5 on vertex set
{v1, . . . , v5}. Then, for any two disjoint bases A and B of R10, there exists an automorphism
of R10 mapping A and B to the 5-cycles { vivi+1 | i ∈ [5] } and { vivi+2 | i ∈ [5] } of K5,
respectively, where indices are meant in a cyclic order (e.g., v6 = v1).

We show the following using Lemma 4.1.

▶ Theorem 4.2. R10 is not SIBO.

Proof. We consider R10 as the even-cycle matroid of the complete graph K5 on vertex
set {v1, . . . , v5}. Let A and B be disjoint bases of R10; we show that A and B do not
have an SI-ordering. For this, suppose to the contrary that there exists an SI-ordering
a1, . . . , a5 of A and b1, . . . , b5 of B. By Lemma 4.1, we may assume A = { vivi+1 | i ∈ [5] }
and B = { vivi+2 | i ∈ [5] }.

We may assume by symmetry that a1 = v1v2. Using that (a1, b1) is a symmetric
exchange between A and B, it follows that b1 = v3v5. By symmetry, we may assume that
a2 ∈ {v2v3, v3v4}. As (a2, b2) is a symmetric exchange between A− a1 + b1 and B − b1 + a1,
it follows that

(a2, b2) ∈ {(v2v3, v2v4), (v3v4, v1v3)}.

If (a2, b2) = (v2v3, v2v4), then A−a2 + b2 = {v1v2, v2v4, v3v4, v4v5, v5v1} contains the 4-cycle
{v1v2, v2v4, v4v5, v5v1}, a contradiction. We conclude that (a2, b2) = (v3v4, v1v3).
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Using that a3 ∈ A \ {a1, a2} = {v2v3, v4v5, v5v1} and (a3, b3) is a symmetric exchange
between (A\{a1, a2})∪{b1, b2} = {v1v3, v3v5, v2v3, v4v5, v5v1} and (B \{b1, b2})∪{a1, a2} =
{v1v2, v3v4, v2v4, v4v1, v5v2}, it follows that

(a3, b3) ∈ {(v2v3, v1v2), (v4v5, v1v4), (v1v5, v2v5)}.

It is clear that (a3, b3) ̸= (v2v3, v1v2) as v1v2 = a1. If (a3, b3) = (v4v5, v1v4), then A−a3+b3 =
{v1v2, v3v4, v1v4, v2v3, v5v1}, which contains the 4-cycle {v1v2, v2v3, v3v4, v4v1}, a contradic-
tion. Otherwise, (a3, b3) = (v1v5, v2v5), and then A− a3 + b3 = {v1v2, v3v4, v2v5, v2v3, v4v5},
which contains the 4-cycle {v2v3, v3v4, v4v5, v5v2}, a contradiction. This finishes the proof. ◀

Using a computer program, we verified that this is the only example of a basis pair not
having an SI-ordering up to rank 5.
▶ Proposition 4.3. Let M be a matroid of rank at most 5, and (A,B) a basis pair of M
not having an SI-ordering. Then, A and B are disjoint and the restriction M |(A ∪ B) is
isomorphic to R10.

Giving a human-readable proof of Proposition 4.3 seems difficult, as even Conjecture 1.4
was verified only up to rank 4 [30]. (Note that R10 is known to satisfy Conjecture 1.4 [4], thus
Proposition 4.3 implies that the conjecture holds up to rank 5.) Up to rank 4, one can check
the validity of Proposition 4.3 by using one of the existing databases of small matroids [35].
As the list (or number) of rank-5 matroids on 10 elements is unknown and expected to be
very large [35], we used a different approach: we encoded a basis pair of a matroid of given
rank not having an SI-ordering as a Boolean formula, with variables encoding which subsets
are bases, and decided the satisfiability with a SAT solver; see Section A for details. We
note that a similar but much more sophisticated approach has been used to study Rota’s
basis conjecture [28].

We are ready to prove the following theorem.
▶ Theorem 4.4. Conjecture 1.1 is true when |F | ≤ 4.
Proof. Suppose otherwise and let (M,ψ, F ) be a counterexample. We may assume by
Lemma 2.3 that M has rank r = |F | + 1, it contains exactly one F -avoiding basis B, and
A := E(M) \B is also a basis (with ψ(A) ∈ F ).

If the basis pair (A,B) has an SI-ordering, then we obtain by Lemma 2.4 an F -avoiding
basis other than B, a contradiction. Otherwise, as M has rank |F | + 1 ≤ 5, Proposition 4.3
implies that M is isomorphic to R10, which we regard as the even-cycle matroid of the
complete graph K5 on the vertex set {v1, . . . , v5}. By Lemma 4.1, we may assume that
A = { vivi+2 | i ∈ [5] } and B = { vivi+1 | i ∈ [5] }. Fix k ∈ [5] and define orderings

(a1, . . . , a5) := (vk+2vk+4, vkvk+2, vk+4vk+6, vk+3vk+5, vk+1vk+3)
(b1, . . . , b5) := (vkvk+1, vk+2vk+3, vk+3vk+4, vk+1vk+2, vk+4vk+5)

of A and B, respectively (see Figure 1). Then, it can be checked that for indices 1 ≤ i ≤ j ≤ 5,
the set B̂i,j := {b1, . . . , bi−1, ai, . . . , aj , bj+1, . . . , b5} is a basis if and only if (i, j) ̸= (3, 3). In
particular, B̂1,j is a basis for each j ≥ 1, and hence ψ(B̂1,j) ∈ F , as B is the only F -avoiding
basis. Thus, by Lemma 2.4, we have ψ(B̂i,j) = ψ(B) /∈ F for some (i, j), which must be
(3, 3) as B is the only F -avoiding basis, again. That is, ψ(vk+3vk+4) = ψ(b3) = ψ(a3) =
ψ(vk+4vk+6). Since this holds for every k ∈ [5], we get that

ψ(B) =
5∑

k=1
ψ(vk+3vk+4) =

5∑
k=1

ψ(vk+4vk+6) = ψ(A),

which contradicts that ψ(B) /∈ F and ψ(A) ∈ F .
◀
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vk vk+1

vk+2

vk+3

vk+4

b1

b4

b2b3

b5 a2

a1

a4

a5a3

Figure 1 Labeling the elements of the matroid R10 such that for indices 1 ≤ i ≤ j ≤ 5, the set
B̂i,j is a basis if and only if (i, j) ̸= (3, 3). Recall that bases are the sets of size 5 containing no
4-cycle of K5.

5 Proximity for Multiple Labelings

In this section, we verify Conjecture 1.6 for various classes of matroids. We begin with an
example showing that the function d in Conjecture 1.6 must satisfy d(k) ≥ 2k − 1 for each
k ≥ 1, even for uniform matroids.

▶ Example 5.1. Let k be a positive integer. Let r = 2k − 1, and let Ur,2r denote the uniform
matroid of rank r on some ground set E of size 2r. We show that there exist group labelings
ψt : E → Γt for t ∈ [k], and a basis A of Ur,2r such that B := E \ A is the only basis of M
satisfying ψt(B) ̸= 0 for all t ∈ [k].

Let us fix a set A ⊆ E of size r. We set Γk = Z, and Γt = Z2t for t ∈ [k − 1]. Finally, we
define the group labelings by

ψt(e) :=


2t−1 − 1 if e ∈ A,

2t−1 if e /∈ A and t ̸= k,

−2k−1 if e /∈ A and t = k.

Note that r ≡ −1 (mod 2t) for all t ∈ [k − 1]. It is easy to see that ψt(B) ̸= 0 for all
t ∈ [k], where B = E \A. Hence, we only need to show that for each ℓ ∈ [r − 1], any set A′

obtained by exchanging ℓ elements of A into B is zero in at least one of the labelings.
Let t ∈ N be the largest for which 2t−1 divides ℓ+ 1. Note that ℓ ≡ 2t−1 − 1 (mod 2t).

Moreover, as ℓ < r = 2k − 1, we have t ≤ k. Now if t < k, then

ψi(A′) = (2t−1 − 1)(r − ℓ) + 2t−1ℓ

= (2t−1 − 1)r + ℓ

≡ (2t−1 − 1) · (−1) + (2t−1 − 1) (mod 2t)
≡ 0 (mod 2t).

On the other hand, if t = k, then ℓ = 2k−1 − 1, and in this case

ψk(A′) = (2k−1 − 1)(r − ℓ) − 2k−1ℓ = (2k−1 − 1)2k−1 − 2k−1(2k−1 − 1) = 0.

Next, we show the existence of d(k) as in Conjecture 1.6 for several matroid classes. The
proofs will be based on the following lemma.
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▶ Lemma 5.2. Let ψt : E → Γt be group labelings on a finite set E and ft ∈ Γt group elements
for t ∈ [k]. Let B ⊆ E be a subset with ψt(B) ̸= ft for all t ∈ [k]. Let X1, . . . , Xℓ ⊆ B and
Y1, . . . , Yℓ ⊆ E \B be pairwise disjoint nonempty subsets. For 1 ≤ i ≤ j ≤ ℓ, let

Bi,j := (B \ (Xi ∪ · · · ∪Xj)) ∪ (Yi ∪ · · · ∪ Yj).

If ℓ ≥ ⌊(e− 1/2)k!⌋, there are indices i, j such that ψt(Bi,j) ̸= ft for all t ∈ [k].

Proof. Let ck denote the smallest integer such that whenever ψ1, . . . , ψk are labelings,
f1, . . . , fk group elements, and B,X1, . . . , Xℓ, Y1, . . . , Yℓ are subsets as in the theorem and
ℓ ≥ ck holds, then there exist indices 1 ≤ i ≤ j ≤ ℓ such that ψt(Bi,j) ̸= ft for all t ∈ [k]. If
no such integer exists, then define ck to be infinite. Observe that c0 = 1.

▷ Claim 5.3. ck ≤ k · ck−1 + 1 holds for k ≥ 1.

Proof. Assume for contradiction that ck > k ·ck−1 +1, that is, there exist labelings ψ1, . . . , ψk,
group elements f1, . . . , fk, and subsetsB,X1, . . . , Xℓ, Y1, . . . , Yℓ as required with ℓ ≥ k·ck−1+1
such that there exist no indices 1 ≤ i ≤ j ≤ ℓ such that ψt(Bi,j) ̸= ft for all t ∈ [k]. In
particular, for each q ∈ [ℓ], there exists t ∈ [k] such that ψt(B1,q) = ft. Since ℓ ≥ k · ck−1 + 1,
this implies that there exists t ∈ [k] with |{ q ∈ [ℓ] | ψt(B1,q) = ft }| ≥ ck−1 + 1. We may
assume that t = k, and let 1 ≤ q0 < · · · < qck−1 ≤ ℓ be indices with ψk(B1,q0) = · · · =
ψk(B1,qck−1

) = fk. Define X ′
i := Xqi−1+1 ∪· · ·∪Xqi

and Y ′
i := Yqi−1+1 ∪· · ·∪Yqi

for i ∈ [ck−1],
and B′

i,j := (B \ (X ′
i ∪ · · · ∪ X ′

j)) ∪ (Y ′
i ∪ · · · ∪ Y ′

j ) for 1 ≤ i ≤ j ≤ ck−1. Observe that
Y ′

i = B1,qi
\B1,qi−1 and X ′

i = B1,qi−1 \B1,qi
hold for i ∈ [ck−1]; thus

ψk(Y ′
i ) − ψk(X ′

i) = ψk(B1,qi
) − ψk(B1,qi−1) = fk − fk = 0.

Using the definition of ck−1, we get that there exist indices 1 ≤ i′ ≤ j′ ≤ ck−1 such that
ψt(B′

i′,j′) ̸= ft for all t ∈ [k − 1]. By defining i := qi′−1 + 1 and j := qj′ , we get Bi,j = B′
i′,j′

and

ψk(Bi,j) = ψk(B) +
j′∑

s=i′

(ψk(Y ′
s ) − ψk(X ′

s)) = ψk(B) ̸= fk.

This proves that ψt(Bi,j) ̸= ft for all t ∈ [k], a contradiction. ◁

Claim 5.3 implies that c1 ≤ c0 + 1 = 2 and c2 ≤ 2c1 + 1 ≤ 5. We improve the latter
bound by one.

▷ Claim 5.4. c2 ≤ 4.

Proof. Assume for contradiction that c2 > 4, and let ψ1, . . . , ψ4 be labelings, f1, . . . , f4
group elements, and B,X1, . . . , X4, Y1, . . . , Y4 subsets as in the proof of Claim 5.3 such that
there exist no indices 1 ≤ i ≤ j ≤ 4 such that ψt(Bi,j) ̸= ft for all t ∈ [2]. We have that
|{ q ∈ [4] | ψt(B1,q) = ft }| ≤ 2 holds for all t ∈ [2], as otherwise we get a contradiction using
the proof of Claim 5.3 and c1 ≤ 2. This implies that

|{ q ∈ [4] | ψ1(B1,q) = f1 }| = |{ q ∈ [4] | ψ2(B1,q) = f2 }| = 2. (1)

By symmetry, we also get

|{ q ∈ [4] | ψ1(Bq,4) = f1 }| = |{ q ∈ [4] | ψ2(Bq,4) = f2 }| = 2. (2)
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We may assume that ψ1(B1,4) = f1. Let p, q ∈ [3] denote the unique indices such that
ψ1(B1,p) = f1 and ψ1(Bq+1,4) = f1. If p = q, then

f1 + f1 = ψ1(B1,p) + ψ1(Bp+1,4) = ψ1(B) + ψ1(B1,4) = ψ1(B) + f1,

thus ψ1(B) = f1, a contradiction. We conclude that p ̸= q. Let r ∈ [3] be the unique index
with {p, q, r} = [3]. Then, from (1) and (2), we get that ψ1(B1,p) = ψ1(B1,4) = ψ1(Bq+1,4) =
f1 and ψ2(B1,q) = ψ2(B1,r) = ψ2(Bp+1,4) = ψ2(Br+1,4) = f2. Then,

f2 + f2 = ψ2(B1,r) + ψ2(Br+1,4) = ψ2(B1,q) + ψ2(Bq+1,4) = f2 + ψ2(Bq+1,4).

thus ψ2(Bq+1,4) = f2. This contradicts (2) and finishes the proof. ◁

Using induction we obtain that ck ≤
(∑k

i=0
1
i! − 1

2

)
k!. Indeed, it holds for k = 2 by

Claim 5.4, and using Claim 5.3 and induction we get

ck ≤ k · ck−1 + 1 ≤ k ·

(
k−1∑
i=0

1
i! − 1

2

)
(k − 1)! + 1 =

(
k∑

i=0

1
i! − 1

2

)
k!.

The statement of the lemma follows by using that
∑∞

i=0
1
i! = e. ◀

▶ Theorem 5.5. Let A be a basis of a matroid M on ground set E, and ψt : E → Γt group
labelings and ft ∈ Γt group elements for t ∈ [k]. Assume that M has at least one basis B
with ψt(B) ̸= ft for all t ∈ [k].
1. If M is SIBO, then it has a basis B with ψt(B) ̸= ft for all t ∈ [k] and |A \ B| ≤

⌊(e− 1/2)k!⌋ − 1.
2. If k = 2, then M has a basis B with ψ1(A) ̸= f1, ψ2(A) ̸= f2, and |A \B| ≤ 3.

Proof. Let B be a basis of M such that ψt(B) ̸= ft for all t ∈ [k] and |A \B| is minimum.
Assume that ℓ := |A \B| ≥ ⌊(e− 1/2)k!⌋. If M is SIBO, then there exist orderings x1, . . . , xℓ

of B and y1, . . . , yℓ of A such that (B \{xi, . . . , xj})∪{yi, . . . , yj} is a basis for 1 ≤ i ≤ j ≤ r.
Then, using Lemma 5.2 with Xi = {xi} and Yi = {yi} for i ∈ [ℓ], we get a contradiction
to A and B being closest. This proves 1. For proving 2, assume that k = 2 and M is not
SIBO. Observe that in this case |A \ B| ≥ ⌊(e − 1/2) · 2⌋ = 4. Let A′ be a basis of M
with A′ ⊆ A ∪ B and |A′ \ B| = 4. Then, M/(A′ ∩ B) has rank 4 and hence is SIBO by
Proposition 4.3. Thus, there exist orderings x1, . . . , x4 of B \A′ and y1, . . . , y4 of A′ \B such
that (B \ {xi, . . . , xj}) ∪ {yi, . . . , yj} is a basis for 1 ≤ i ≤ j ≤ 4. This contradicts A and B

being closest by Lemma 5.2. ◀

Example 5.1 shows that for k = 2, the bound 3 in Theorem 5.52 is tight. Observe that
this differs from the case ψ1 = ψ2 where the tight bound is 2 [20].

Finally, we derive the validity of Conjecture 1.6 for matroids representable over a fixed
finite field and sparse paving matroids. For positive integers α and k, we define a matroid M
to be weakly (α, k)-base orderable if for every ordered basis pair (A,B) of M with |A\B| ≥ α,
there exist pairwise disjoint nonempty subsets X1, . . . , Xk ⊆ B \A and Y1, . . . , Yk ⊆ A \B
such that

(
B \

⋃
i∈Z Xi

)
∪
⋃

i∈Z Yi is a basis for each Z ⊆ [k]. The following was shown in
[20].

▶ Theorem 5.6 (Hörsch, Imolay, Mizutani, Oki, Schwarcz [20]). There is a computable function
h : N × N → N such that for every prime power q, every GF(q)-representable matroid is
weakly (h(q, k), k)-orderable for any k ∈ N.
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Following the terminology of [20], for a basis B of a matroid M , we say that a minor
M ′ of M is a B-minor if M ′ = (M |X)/Y for some X,Y with Y ⊆ B ⊆ X ⊆ E(M). In
this case, B(M ′) = {B′ ⊆ X \ Y | B′ ∪ Y ∈ B(M) }. We show the following result, which is
related to results of [41].

▶ Theorem 5.7. Let k ≥ 0 be an integer and M a sparse paving matroid of rank r. If
min{r, |E(M)| − r} ≥

(2k
k

)
, then for each basis B, M has a B-minor isomorphic to Uk,2k.

Proof. We prove this by induction on k. The statements clearly hold for k = 0, so assume that
it holds for k− 1. Let E := E(M), n := |E|, and H :=

(
E
r

)
\ B(M). Then, by Proposition 2.1,

|H1 ∩ H2| ≤ r − 2 holds for all H1, H2 ∈ H with H1 ̸= H2. Since min{r, n − r} ≥
(2k−2

k−1
)
,

by induction there exist X,Y with Y ⊆ B ⊆ X ⊆ E such that (M |X)/Y is isomorphic to
Uk−1,2k−2. Note that (M |X)/Y has rank r − |Y |, thus |Y | = r − k + 1.

Let S := X \ Y and H0 := {H ∈ H | H ⊆ X, |H ∩ S| = k }. Observe that |Y \ H| =
|Y |−|H|+|H∩S| = (r−k+1)−r+k = 1 for each H ∈ H0. This together with Proposition 2.1
implies that for each set Z ⊆ S, there exists at most one H ∈ H0 with H ∩ S = Z, implying
|H0| ≤

(2k−2
k

)
. Since |Y \H| = 1 for H ∈ H0 and |Y | = r−k+1 ≥

(2k
k

)
−k+1 >

(2k−2
k

)
≥ |H0|,

there exists y ∈ Y ∩
⋂

H∈H0
H. Let Y ′ := Y − y. We claim that (M |X)/Y ′ is isomorphic

to Uk,2k−1, i.e., for each subset Z ⊆ S + y with |Z| = k, Z ∪ Y ′ is a basis of M . Indeed, if
y ∈ Z, then Z ∪ Y ′ being a basis follows from (M |X)/Y being isomorphic to Uk−1,2k−2. If
y /∈ Z, then |Z ∩S| = k, thus Z ̸∈ H follows from y ∈

⋂
H∈H0

H. This shows that (M |X)/Y ′

is indeed isomorphic to Uk,2k−1.
Let T := X\Y ′ and H1 := {H ∈ H | Y ′ ⊆ H, |H ∩ T | = k − 1 }. Observe that |H\X| = 1

for each H ∈ H1. Then, by Proposition 2.1, for each set Z ⊆ T , there exists at most one
H ∈ H1 with H ∩ T = Z, implying |H1| ≤

(2k−1
k−1

)
. Since |H \ X| = 1 for H ∈ H1 and

|E \ X| ≥ |E| − r − k + 1 ≥
(2k

k

)
− k + 1 >

(2k−1
k−1

)
≥ |H1|, there exists x ∈ E \ X with

x ∈ (E \X) \
⋃

H∈H1
H. Let X ′ := X + x. We claim that (M |X ′)/Y ′ is isomorphic to Uk,2k,

i.e., for each subset Z ⊆ T + x with |Z| = k, Z ∪ Y ′ is a basis of M . Indeed, if x /∈ Z, then
Z ∪ Y ′ being a basis follows from (M |X)/Y ′ being isomorphic to Uk,2k−1. If x ∈ Z, then
|Z ∩ T | = k − 1, thus Z ∪ Y ′ /∈ H follows from x ̸∈

⋃
H∈H1

H. Therefore, (M |X ′)/Y ′ is
indeed isomorphic to Uk,2k, finishing the proof. ◀

▶ Remark 5.8. We note that Pendavingh and van der Pol [41] showed that for a fixed
k, asymptotically almost all matroids contain Uk,2k as a minor. If M is a sparse paving
matroid, then a counting argument found in [41, Lemma 4.7] combined with the observation
|B(M)| ≥ r

r+1
(|E|

r

)
implies that if r ≥

(2k
k

)
and |E(M)| − r ≥ k hold, then M contains Uk,2k

as a minor. It is not clear whether a similar argument can be used to give a simple proof of
the existence of such a B-minor for any basis B as in Theorem 5.7.

▶ Corollary 5.9. Every sparse paving matroid is (
(2k

k

)
, k)-weakly base orderable for any k ∈ N.

Proof. Let A and B be bases of a sparse paving matroid M with |A \ B| ≥
(2k

k

)
, and let

N := M |(A ∪B)/(A ∩B). Then, N is a sparse paving matroid having rank |A \B| ≥
(2k

k

)
and |E(N)| = 2|A \B|, thus Theorem 5.7 implies that N has a (B \A)-minor isomorphic to
Uk,2k, that is, there exist X,Y with Y ⊆ B \ A ⊆ X ⊆ E(N) such that N ′ := (N |X)/Y is
isomorphic to Uk,2k. Observe that B ∩ (X \ Y ) has size k as it is a basis of N ′, and so does
A∩ (X \Y ) as |E(N ′)| = 2k. Let B ∩ (X \Y ) = {b1, . . . , bk} and A∩ (X \Y ) = {a1, . . . , ak}.
Then, (B \ { bi | i ∈ Z }) ∪ { ai | i ∈ Z } is a basis for each Z ⊆ [k], showing that M is
(
(2k

k

)
, k)-weakly base orderable. ◀
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▶ Remark 5.10. Following the terminology of [20], the proof of Corollary 5.9 also shows that
sparse paving matroids are elementarily (

(2k
k

)
, k)-weakly base orderable for k ∈ N, that is,

the sets X1, . . . , Xk and Y1, . . . , Yk in the definition of (
(2k

k

)
, k)-weak base orderability can

be chosen to be singletons. Moreover, a proof similar to that of Theorem 5.7 shows that
sparse paving matroids are even elementarily (2k, k)-weakly base orderable for k ∈ N.

Theorem 5.6, Corollary 5.9, and Lemma 5.2 immediately verify Conjecture 1.6 for matroids
representable over a fixed, finite field and sparse paving matroids.

▶ Corollary 5.11. Let M be the class of (1) GF(q)-representable matroids for a fixed prime
power q or (2) sparse paving matroids. Then, there is a computable function d : N → N
such that if M ∈ M, ψt : E(M) → Γt are group labelings, ft ∈ Γt are group elements for
t ∈ [k], and A is a basis of M , then M has a basis B with ψt(B) ̸= ft for all t ∈ [k] and
|A \B| ≤ d(k), provided that M has at least one basis B′ with ψt(B′) ̸= ft for all t ∈ [k].

Proof. (1) Suppose that M is GF(q)-representable. Let h be the function provided by
Theorem 5.6, and define d(k) := h(q, ⌊(e− 1/2)k!⌋) − 1. Let B be a basis with ψt(B) ̸= ft for
all t ∈ [k] such that |A \B| is minimum. If |A \B| > d(k), then by the definition of h, for
ℓ := ⌊(e− 1/2)k!⌋, there exist pairwise disjoint nonempty subsets X1, . . . , Xℓ ⊆ B \ A and
Y1, . . . , Yℓ ⊆ A \B such that

(
B \

⋃
i∈Z Xi

)
∪
⋃

i∈Z Yi is a basis for each Z ⊆ [ℓ]. Then, we
get a contradiction by Lemma 5.2 to A and B being closest.

(2) By Corollary 5.9 sparse paving matroids are (
(2k

k

)
, k)-weakly base orderable for each

k ≥ 1. Therefore, as with Case (1), we get the desired function d(k). ◀

6 Conclusion

In this paper, we have proven Conjecture 1.1 for the case where the matroid is sparse paving
or |F | ≤ 4, and settled Conjecture 1.6 for k = 2 and some classes of matroids. We conclude
this paper by making a new conjecture and a question.

▶ Conjecture 6.1. Every sparse paving matroid is SIBO.

We have checked the validity of the conjecture up to rank 6 using a SAT solver. If true,
Conjecture 6.1 would give another proof of Theorem 3.1. Unfortunately, the proof [5] of
Conjecture 1.4 for sparse paving matroids does not seem to generalize to this conjecture.

We also pose the following refinement of Conjecture 1.6 in light of our lower bound on
d(k). We state it in the form of a question rather than a conjecture as we do not expect it
to hold for general matroids, whereas it is more likely to hold for uniform, SBO, and SIBO
matroids.

▶ Question 6.2. Let M be a matroid with the ground set E, ψt : E → Γt a group labeling,
and ft ∈ Γt a group element for t ∈ [k]. Then, if at least one such basis exists, for any basis
A of M , is there a basis B of M with ψt(B) ̸= ft for t ∈ [k] and |A \B| ≤ 2k − 1?
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A CNF formulation of finding a non-SIBO matroid

In this section, we describe how we can reduce the problem of finding a 2r-elements, rank-r,
non-SIBO matroid to SAT by describing a CNF (conjunctive normal form) formulation.

Let E = [2r] be the ground set. We prepare
(2r

r

)
Boolean variables xB indexed by

B ∈
(

E
r

)
. We build a CNF such that

{
B ∈

(
E
r

) ∣∣ xB is true
}

forms the basis family of
a matroid, [r] and E \ [r] are bases, and ([r], E \ [r]) has no SI-ordering by collecting the
following clauses.
Basis exchange property: for every A,B ∈

(
E
r

)
and e ∈ A \B,

¬xA ∨ ¬xB ∨
∨

f∈B\A

xA−e+f . (3)

Fixed basis:

x[r]. (4)

Fixed basis:

xE\[r]. (5)

No SI-ordering: for every permutation a1, . . . , ar of [r] and b1, . . . , br of E \ [r],∨
0≤i<j≤r

¬x{a1,...,ai,bi+1,...,bj ,aj+1,...,ar}. (6)

Note that if a non-disjoint basis pair (A,B) of a matroid M has no SI-ordering, then
(A\B,B \A) has no SI-ordering as well in M/(A∩B). Thus, we can restrict our attention to
the disjoint basis pair ([r], E \ [r]) by verifying the unsatisfiability of the CNF from small r.

Our Python script to solve the above SAT instance is available at https://github.com/
taiheioki/sibo.
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