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Abstract
A large empirical literature examines how judges’ traits affect how cases get resolved. This
literature has led many to conclude that judges matter for case outcomes. But how much do
they matter? Existing empirical findings understate the true extent of judicial influence over
case outcomes since standard estimation techniques hide some disagreement among judges.
We devise a machine learning method to reveal additional sources of disagreement.
Applying this method to the Ninth Circuit, we estimate that at least 38% of cases could be
decided differently based solely on the panel they were assigned to.

Keywords: judicial decision-making; inconsistency; legal realism; Ninth Circuit; machine learning; causal
inference

How much do judges matter for the resolution of legal cases? This question haunts
the American legal profession. During the confirmation hearings for Chief Justice
John Roberts, he argued that “judges wear black robes, because it doesn’t matter who
they are as individuals. That’s not going to shape their decision” (Roberts 2005,
p. 178). But other judges have vociferously rejected this notion, offering a range of
rationales for why it is unreasonable to presume (or even aspire to the notion that)
judges do not matter for case outcomes. Perhaps most famously, then-Judge Sonia
Sotomayor said in a 2001 speech that “I would hope that a wise Latina woman, with
the richness of her experiences, would more often than not reach a better conclusion
than a white male who hasn’t lived that life” (Sotomayor 2002, p. 92).
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Among those who study the legal system, there is widespread agreement that
judges domatter for the resolution of cases. But just howmuch theymatter is a source
of debate. In this paper, we have a simple goal: to offer a novel way to quantitatively
measure the extent to which judges matter for case outcomes.

We build on an unusually rich set of prior research findings. An enormous
empirical literature examines the myriad ways that cases could get resolved differ-
ently depending solely on the circumstances under which they are heard. Perhaps
most importantly, judicial politics scholars have studied how case outcomes depend
on judges’ traits – their ideologies, races, genders, etc.1 For example, many studies have
documented that federal appeals are resolved differently when assigned to majority
Republican panels instead of majority Democratic panels (e.g., Revesz 1997; Sunstein
et al. 2006; Epstein, Landes, and Posner 2013). Others have documented that federal
appeals are resolved differently when assigned to panels containing women or Black
judges instead of all-male or all non-Black panels (e.g., Farhang and Wawro 2004;
Boyd, Epstein, and Martin 2010; Kastellec 2013).

These studies provide important data points for evaluating the extent to which
judges matter. Their focus is on characterizing the extent to which judges that share
certain traits systematically disagree with other judges. Systematic disagreement
among judges is also our focus,2 but our starting point is that empirical estimates
like these almost always obscure some amount of the overall disagreement among
judges or panels of judges. They are therefore best understood to be downward biased
estimates of the overall disagreement between judges. To be clear, this is not
intentional, as these estimates typically are not meant to quantify overall disagree-
ment among judges. But, if one were to try to learn about overall disagreement by
looking at these findings, they will generally understate the overall extent to which
judges matter for case outcomes.

The core methodological issue is well known: estimates of average treatment effects
(ATEs) can mask underlying heterogeneity. In particular, there are two distinct ways
that the “standard” judicial politics ATEs mask heterogeneity. First, by lumping
together a collection of judges by a shared trait (e.g., political ideology, race or gender),
estimates will not pick up on important differences among judges who share that trait
(see alsoGiles,Hettinger, and Peppers 2001). Second, evenwhen a group of judgeswho
share a trait behave similarly to one another, it is possible that, as a group, they respond
differently to different kinds of cases. For example, Democratic appointees may be
more likely than Republican appointees to reverse a lower court decision favoring the
defendant but less likely to reverse a lower court decision favoring the plaintiff. Effects
going in different directions cancel out when averaging, making it seem like there are
smaller differences among judges than there truly are.

In this paper, we offer a new way to quantitatively characterize the extent of
disagreement between judges that reveals substantially more disagreement than these
traditional ATEs in the court’s literature. Our core innovation is to recast the
methodological problem above as one of developing a new treatment variable that,
by construction, minimizes heterogeneity in unit-level effect directions. Then, an

1For our purposes here, we set aside methodological debates about the extent to which these analyses
identify causal effects, a point that is developed in, for example, Hübert and Copus (2022) andCopus, Hübert,
and Pellaton (Forthcoming).

2We set aside the issue of whether judges are disagreeing with themselves across cases – that is, intra-judge
disagreement – which has been the subject of many prior studies (e.g., Chen, Moskowitz, and Shue 2016;
Kahneman, Sibony, and Sunstein 2022).
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average treatment effect estimated using this new treatment variable will (at least in
principle) reveal the full extent of disagreement between judges.

We begin with a simple theoretical model that allows us to derive amonotonicity-
robust treatment (orMRT) that we formally demonstrate yields an unbiased estimate
of disagreement. While this treatment variable is primarily a statistical creation that
allows us to more accurately estimate disagreement, it also has a substantive inter-
pretation. For example, if the outcome of interest in a particular setting is whether a
case is reversed (as in our empirical application), then a binary version of the MRT
indicates whether cases are assigned to the panel more likely to reverse it or to the
panel less likely to reverse it. Importantly, this is a unit-by-unit determination. For
example, Panel Amay bemore likely to reverse than Panel B on Case 1, but less likely
to reverse on Case 2. In this scenario, Case 1 would be in the MRT “treatment group”
if it were assigned to Panel A, while Case 2 would be in theMRT “treatment group” if
it were assigned to Panel B.

The core practical challenge is measuring MRTs accurately using real-world data.
Any measurement error in an MRT will cause resulting estimates of disagreement to
be downward biased since measurement error means the “hidden” heterogeneity in
the dataset has not been fully eradicated. Since all real-world measures are measured
with some error, any estimate of disagreement using our technique will be somewhat
downward biased. To mitigate this problem, we develop a machine learning method
for measuringMRTs, which is designed to aggressively minimize measurement error
and can be applied in a wide variety of contexts.We demonstrate that this method for
measuring MRTs is robust and generates quantitative estimates that reveal substan-
tially more disagreement among judges than traditional ATEs.

We apply our method to an original dataset of civil appeals heard by the Ninth
Circuit from 1995 to 2013. We begin by measuring an MRT for the cases in our
dataset, which in our specific application, we term the “panel reversal quantile”
(or PRQ). We show that the PRQ we measure preserves random assignment and has
strong face and construct validity. Since PRQs are meant to measure a latent trait –
that is, the reversal proclivity of a panel – an assessment of the construct validity of
our PRQs requires us to demonstrate that our measure does indeed correlate with
whether cases are reversed. As we discuss in more detail below, since our PRQs are
measured entirely out of sample using a cross-validation approach, it is not a
foregone conclusion that they will be correlated with whether cases are reversed.
Our measurement strategy might not work, meaning that PRQs could have low
construct validity. We show that in our dataset, PRQs are strongly correlated with
whether a panel reverses or affirms, and even more strongly correlated with case
outcomes than political ideology.

Using our newly measured PRQs, we then quantitatively characterize disagree-
ment among the panels of judges in the Ninth Circuit by calculating the frequency
with which reversals of lower court decisions would have been affirmances had they
been assigned to different panels of judges (and vice versa). Since we are seeking to
calculate a summary measure of disagreement between panels in a court that has
many unique panels that hear cases,3 it is not immediately obvious how to aggregate
disagreement between each pair of panels to an overall court-level estimate. We
calculate three different summary measures of disagreement in the Ninth Circuit,

3In our dataset, there are 3,130 unique three judge panels with 371 unique judges.
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which we argue are highly informative about how much judges matter for outcomes
in the court.

First, we divide up our dataset into PRQ quintiles so that cases are assigned to one
of five treatment arms indicating differing levels of panel reversal proclivity.We show
that, as compared to the lowest (least reversal prone) quintile, cases assigned to panels
in the third, fourth, and fifth quintiles are significantly more likely to be reversed. For
example, cases in the fifth PRQ quintile are at least4 16% more likely to be reversed
than cases in the first quintile. Second, we ask, What share of cases could have come
out differently solely based on panel assignment? In other words, if we switched the
case loads of the most reversal-prone and the least reversal-prone panels, how many
cases would have come out differently? We estimate that at least 38% of cases could
have come out differently. Third, we ask, If all cases had been randomly reassigned,
howmany of themwould come out differently?We estimate that at least 6.5% of cases
would have come out differently if all the cases in our dataset had been randomly
reassigned. Importantly, these estimates capture disagreement among judges and not
other “nonjudicial” factors. They therefore give us two quantitative measures of the
extent to which judges matter for case outcomes in our dataset of Ninth Circuit cases.

In this paper, we take as given that it is important to quantify disagreement between
judges because it allows us to empirically understand howmuch judges matter for case
outcomes. Indeed, quantitative estimates like these speak to weighty normative issues
relating to nature of justice in the United States, as well as policy debates over the
functioning of the courts, such as whether the Ninth Circuit is too big (e.g., Kozinksi
et al. 2006). However, many court scholars and observers want to knowmore than just
the extent to which judges disagree in cases. They often seek to understandwhy judges
disagree.We too find it interesting and important to understand the reasons that judges
make systematically different decisions.We readily acknowledge that standard judicial
politics ATEs have been carefully chosen to shed light on substantively important
sources of disagreement, such as political ideology and personal background, even if
they do not show the full extent of inter-judge disagreement. This is not our goal here.
We are focused on quantifying the extent of disagreement, regardless of its sources.

We contribute most directly to a small number of recent studies attempting to
quantify disagreement among decision-makers (e.g., Fischman 2014; Kahneman et al.
2016; Kahneman, Sibony, and Sunstein 2022). A core challenge that arises in this prior
work is that disagreement is difficult to estimate. Fischman (2014) is the first to
elucidate the averaging problem we describe. Much of our theoretical discussion is
similar in spirit (althoughwith some differences), but our core focus is different.While
Fischman is primarily concerned with mathematically characterizing upper and lower
bounds, we are focused on using novel computational techniques to try to aggressively
push up the lower bound to reveal more inter-judge disagreement. Moreover, Fisch-
man’s approach to measuring the lower bound on inconsistency introduces finite
sample bias, which requires a subsampling correction. Because our measurement
technique does not involve taking absolute values, our method avoids introducing
finite sample bias in the first place. Kahneman, Sibony, and Sunstein (2022) urges
researchers to run experiments. For example, one could create simulated casematerials
and ask a set of decision-makers to evaluate each one and come to a (hypothetical)

4As we discuss below, since our PRQs are measured with measurement error, our estimates are always
lower bounds, or “floors” on the true estimates.
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decision.While thismay have high internal validity (and help get around the averaging
problem), it has low external validity to real-world data. Our major contribution is to
provide a method for mitigating the averaging problem so that researchers can better
estimate disagreement between judges sitting in real-world courts.

Until now, judicial politics researchers have formed their impressions about how
much judges matter for case outcomes based on disparate empirical estimates that
understate the extent of disagreement among judges. By revealing more of the
disagreement among judges, we think our method has the potential to allow scholars
to peer into the black box of judicial decision-making and see what else is there.While
in this paper we are primarily focused on explicating the method (and applying it to a
dataset of Ninth Circuit cases), in the conclusion, we briefly touch on some poten-
tially promising applications.

Quantifying how much judges “matter”
We use a simple formal model of appeals to precisely characterize what we mean
when we talk about whether judges “matter” in our empirical context (the Ninth
Circuit).Wewill not explore intra-panel dynamics in this article, so we treat panels as
unitary actors. We will therefore interchangeably refer to “judges mattering” and
“panels mattering.” Exploring intra-panel dynamics in our empirical setting is an
interesting avenue for future research, but there are additional methodological
challenges that would make it more difficult.5 Our analysis would easily extend to
contexts where judges hear cases on their own, such as U.S. District Courts. In the
main text below, we provide an abbreviated discussion of themodel so that we can get
quickly to the main points. In Online Appendix A, we analyze the model in detail.

In the model, cases are defined by sets of “case features” (labeled f) as well as
idiosyncratic “fact patterns” (labeled x∈ℝ). At an intuitive level, case features define
clusters of similar cases (e.g., civil rights cases about racial discrimination brought by
the EEOC), whereas case patterns represent the specific facts of a case that signal the
strength of each litigant’s arguments. More formally, case features define a specific
case space (see Lax 2011) over which there is a distribution of fact patterns. That is, x
is distributed according to some conditional distribution with probability density
function f xjfð Þ.

Each case i is assigned to a panel p, which issues a decision yi p,xi, f ið Þ upon seeing
xi and f i. For ease of exposition, we will just assume y¼ 1 indicates a decision to
reverse a lower court decision, and y¼ 0 indicates a decision to affirm a lower court
decision. Each panel p has an ideal point for each case space. Formally, we denote this
ideal point as bxp fð Þ and assume that on a specific case i drawn from the case space
defined by f , a panel p strictly prefers yi ¼ 1 if xi ≤bxp f ið Þ and strictly prefers yi ¼ 0
otherwise. Since each panel has its own ideal point for each case space f , then two
panels with ideal points bx1 f ið Þ <bx2 f ið Þ will disagree about how to resolve a case i
whenever bx1 fð Þ < xi ≤bx2 fð Þ. In this situation, we say that judges “matter” for the
case’s outcome (see Definition 6 in Online Appendix A).

5Our own conversations with officials at the Ninth Circuit, as well as prior academic research (e.g., Chilton
and Levy 2015), suggests that judges may not be randomly allocated to panels. As a result, we cannot be
confident about any inferences we draw about individual judges mattering for the outcome of cases.
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Empirical implications

Consider a population of cases that are resolved according to the model of judicial
decision-making summarized above. From an ex ante perspective, and given the
uncertainty in the model, we can think of case outcomes as a random variable, Yi pð Þ,
which depends on the assigned panel. In themodel,Yi pð Þ is well defined for all p∈P,
and it is on the equilibrium path if p is actually assigned to case i, and off the
equilibrium path otherwise. Using the terminology from the standard potential
outcomes framework (see part 1 of Imbens and Rubin 2015), for every p∈P,
Yi pð Þ is a potential outcome of case i. In all of our analysis below, we will make a
stable unit treatment value assumption (SUTVA). This means that we will assume
that each case i has a set of exactly ∣P∣ potential outcomes, one for each panel, which
are “stable” in that they do not depend on how other cases were assigned to panels.
We return to this below.

In the population of cases under consideration, howmuch do judgesmatter? Since
we say that judgesmatter for outcomes when panels disagree about how a case should
be resolved, we need to quantify howmany cases feature inter-panel disagreement in
order to quantify how much judges matter. It is not obvious how to quantify
disagreement among a large set of potential decision-makers. We will work with a
foundational definition of disagreement that is dyadic.

Definition 1. For a population of cases, the disagreement between panels p1 and p2
can be quantified by

δ p1,p2
� ��Ei jYi p1

� ��Yi p2
� �j� �

:

At a theoretical level, this is how we formally quantify how much judges matter.
We acknowledge there may be other conceptualizations of judicial disagreement, or
for what it means for judges to “matter,” but we think ours is reasonable. It amounts
to the simple idea that if a case would come out differently if assigned to another
panel, then judges mattered for the outcome. To use this definition in the context of a
court with more than two decision-makers, one has to decide which dyads of
decision-makers to examine when quantifying how much judges matter. We will
return to this issue farther below, but we will first develop all of our core ideas
imagining a setting with just two panels that could hear cases.

Disagreement, as defined above, is a purely theoretical quantity since it is impos-
sible to estimate due to the fundamental problem of causal inference (Holland 1986).
However, there is another quantity that can, in principle, be estimated and which
under certain conditions is equivalent to δ p1,p2

� �
.

Definition 2. For a population of cases, the disparity between panels p1 and p2 is
given by

ϕ p1,p2
� �� E Yi p1

� ��Yi p2
� �� ��� ��:

Below, we show that the disparity between two panels can be estimated, but before
we do, we must show that the disagreement between any two panels is equivalent to
the disparity between those two panels. This is only true if the ideal points of the
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panels retain the same ordering across all cases in the population.We formally define
this condition as follows.

Definition 3. For a case i, let pi be a profile of sets of panels ordered in increasing
order of ideal points and where each set contains all panels sharing an ideal point.6 A
population of cases M satisfies monotonicity if and only if pi ¼ pj for all i, j∈M.

Our first formal result demonstrates that disagreement and disparities are equiv-
alent in populations of cases where monotonicity holds. All proofs of formal results
included in the main text are in Online Appendix B.

Lemma 1. For a population of cases M such that monotonicity is satisfied, then
δ p1,p2
� �¼ ϕ p1,p2

� �
.

We have claimed that the disparity is estimable, but the definition above is still
expressed in terms of counterfactual quantities. It can be estimated with observ-
able quantities as long as the potential outcomes are independent of panel
assignment. This is a well-known idea from the Neyman-Rubin potential out-
comes framework for causal inference. In our substantive context, it would be reason-
able to assume independence of the potential outcomes if cases are randomly assigned
to panels.

Definition 4. For a population of casesR, let Ai indicate the panel assigned to case
i∈R. Then, R satisfies random assignment if and only if YiðpÞ⊥Ai for all p.

In most applied empirical settings (including ours), cases can only be considered
randomly assigned conditional on some known confounders. For example, casesmay
be randomly assigned within a courthouse and within a period of time. For exposi-
tion, our following results presume unconditional random assignment. However,
they can be easily modified to accommodate random assignment conditional on
known confounders (e.g., see p. 54 of Angrist and Pischke 2009). The next result
formally shows that the disparity above can be estimated if random assignment holds.

Lemma 2. For a population of cases R that satisfies random assignment,

ϕ p1,p2
� �¼ E Yi p1

� ��Yi p2
� �� ��� ��¼ Ei Yijp1

� ��Ei Yijp2
� ��� ���D p1,p2

� �
:

It is well known that if treatment is randomly assigned, then an unbiased and
consistent estimator for the difference in means is the difference in sample means
(see, for example, Theorem 16.3 in Wasserman 2004), which we label bD p1,p2

� �
. We

now have our first major result.

Proposition 1. In a sample of cases, the sample disparity between panels p1 and p2,bD p1,p2
� �

, is an unbiased and consistent estimator for disagreement if

(i) the population of cases satisfies random assignment; and
(ii) the population of cases satisfies monotonicity.

6For example, with three panels with ideal points on case i: bx1 ¼bx3 ¼ 0:3, and bx2 ¼ 0:7, then

pi ¼ pjbxp ¼ 0:3
� �

, pjbxp ¼ 0:7
� �� �¼ p1,p3

� �
, p2
� �� �

:
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What if these conditions are not satisfied?
Unless both conditions in Proposition 1 are satisfied, the sample disparity will not be
an unbiased and consistent estimator for disagreement. We now characterize what
happens when each of the conditions is not satisfied. Themost straightforward of these
is the first, random assignment, as it is already well known that a difference in means
estimator may be biased in the absence of independence of potential outcomes and
treatment assignment. Because failure to satisfy random assignment prevents us from
making a clear statement about the link between the estimator and the estimand,weuse
the common practice of referring to it as an “identification” problem.

Proposition 2. (The Identification Problem). For a population of cases, if random
assignment is not satisfied, then it is possible that ϕ p1,p2

� �
≠D p1,p2

� �
.

However, if monotonicity is not satisfied, then the disparity between panels p1 and
p2 will always understate true disagreement, as the following proposition shows.

Proposition 3. (The Averaging Problem). For a population of cases, if monotonicity
is not satisfied, then δ p1,p2

� �
> ϕ p1,p2

� �
.

The conceptual point underlying this proposition is not original to us and has been
discussed elsewhere, most most prominently in Fischman (2014). But, the basic idea
is intuitive. Since unit-level treatment effects can be positive or negative, if one
averages them before taking the absolute value, this will push the magnitude of the
resulting estimate toward zero. We term this the “averaging problem.”

To see this more concretely, consider two hypothetical panels depicted in Figure 1
who are randomly assigned to hear five cases each. A black circle indicates a panel
would reverse the lower court decision, and a white circle indicates a panel would
affirm. In the observed dataset depicted on the left, Panel 1 reverses in 60% of cases
while Panel 2 reverses in 80% of cases. Then we would calculate a sample disparity
of 20%.

A disparity is informative about disagreement: a high disparity between two panels
indicates that disagreement between them is also high. However, the converse is not
true, since a low disparity (i.e., close to zero) does not indicate a lack of disagreement.
For example, consider again Figure 1. On the right, we depict all the potential
outcomes for each panel, which demonstrates that these two panels would come to
a different decision in every single case, yielding a 100% disagreement. This is
substantially more disagreement than the sample disparity revealed.

The underlying problem is that Panel 1 is more inclined than Panel 2 to reverse
some cases, while the converse is true for other cases. For example, Panel 1 is more
inclined to reverse Case 2, but Panel 2 ismore inclined to reverse Case 3. This suggests
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Figure 1. A hypothetical example of a court that hears ten cases, randomly split among two panels. The left
panel shows an observed dataset, and the right panel shows all potential outcomes for all ten cases. A black
circle indicates a reversal of the lower court decision, and awhite circle indicates an affirmance of the lower
court decision.
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that that the ordering of the two panels’ ideal points may differ between Case 2 and
Case 3.7 In other words, in this set of cases, monotonicity is not satisfied since the
ordering of the panels’ ideal points is not the same across all cases. The averaging
problem is downstream of a violation of monotonicity.

Solving the averaging problem by measuring a new treatment variable

We propose a solution to the averaging problem that entails measuring a new
treatment variable that we call the monotonicity-robust treatment (or MRT). At a
theoretical level, the basic idea is that a straightforward transformation of the original
treatment variable (i.e., panel assignment) can retain the informational content of
that variable while ensuring that observed treatment effects all have the same sign.
Specifically, under our MRT, a case is “treated” for a case i if it was assigned to the
panel with the higher ideal point for that case (and thus the panel more likely to
reverse). Formally,

Definition 5. Let ai indicate the panel assigned to case i. Then, the monotonicity-
robust treatment (MRT) is defined by

mi p1,p2
� �¼

1 if ai ∈ argmax
p∈ p1,p2f g

bxp� �

0 if ai ∈ argmin
p∈ p1,p2f g

bxp� �

∅ otherwise:

8>>>>><
>>>>>:

This definition of the MRT relies on unobservable quantities (the panels’ ideal
points), but there is an observable quantity that allows us to infer the orderings. In
Lemma 4 in Online Appendix B, we show that E Yijp1, f

� �
<E Yijp2, f

� �
if and only ifbx1 fð Þ <bx2 fð Þ. We can rewrite the definition of mi p1,p2

� �
as follows:8

mi p1,p2
� �¼

1 if ai ∈ argmax
p∈ p1,p2f g

E Yijp, f½ �f g

0 if ai ∈ argmin
p∈ p1,p2f g

E Yijp, f½ �f g

∅ otherwise:

8>>>><
>>>>:

(1)

Finally, we can define an average treatment effect using this MRT, which we refer
to as the monotonicity-robust observable disparity (MROD), which we now show is,
by construction, equivalent to disagreement whenever cases are randomly assigned.

7To see this, recall that in a case space setting, two panels would come to different decisions if and only if a
case’s fact pattern is between their ideal points.

8An equivalent, but more notationally cumbersome way to write (1) is

mi p1,p2
� �¼

1 if ai ¼ p1 andE Yijp1,f
� �

>E Yijp2, f
� �� �

or ai ¼ p2 andE Yijp2, f
� �

>E Yijp1, f
� �� �

0 if ai ¼ p1 andE Yijp1,f
� �

<E Yijp2, f
� �� �

or ai ¼ p2 andE Yijp2, f
� �

<E Yijp1, f
� �� �

∅ otherwise:

8><
>:
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Proposition 4. Define the monotonicity-robust observable disparity (MROD) as
M p1,p2
� ��E Yijmi p1,p2

� �¼ 1
� ��E Yijmi p1,p2

� �¼ 0
� �

. Then, for a population of
cases satisfying random assignment, M p1,p2

� �¼ δ p1,p2
� �

.

We denote estimates of theMROD in a sample as bM p1,p2
� �

. However, to estimate
an MROD, we need to know mi for each case, which itself must be estimated. In
principle, for two panels p1 and p2, we can estimatemi p1,p2

� �
for each case heard by

these panels by estimating E Yijp, f½ � and plugging into (1) to yield bmi p1,p2
� �

.
Unfortunately, estimates of E Yijp, f½ � from finite samples will be inaccurate. This

will generate measurement error where some cases will be incorrectly classified asbmi p1,p2
� �¼ 1 when in reality,mi p1,p2

� �¼ 0, and vice versa. The measurement error
reintroduces a (milder form) of the averaging problem,9 which we formally show next.

Proposition 5. (The Floor Problem). If there is measurement error in bmi p1,p2
� �

,
then bM p1,p2

� �
<M p1,p2

� �
.

We call this the floor problem because anyMROD estimated with noisy measures
of the MRT will only give a lower bound – or “floor” – on the true estimate of
disagreement. Since a researcher is always working with a finite dataset, there is
nothing that can be done about the fact that there will be some error in the estimates
of bmi; the floor problem always exists to some extent. However, the silver lining of the
previous result is that we know the direction of the bias in our estimates: our estimates
will always understate the true level of disagreement between panels. Plus, as the
proof of the result implies, the bias due to the floor problem will decline as estimates
of mi p1,p2

� �
become more accurate.

Accommodating more than two panels

Most courts have more than two panels. We can apply all the ideas above to a large
court in a flexible manner. Recall that what matters for defining a MRT such as
mi p1,p2

� �
is the ordering of the two panels’ ideal points, not their cardinality. So, for

each case, if we order all panels by their ideal points and determine which quantile the
assigned case was in, then we can generate a “composite” measure of the MRT.

Consider the scenario in Figure 2, which depicts the case space for cases that share
case features f . There are 10 possible panels who could have been assigned to cases,
but only one is actually assigned for each case. Two hypothetical cases are depicted.
With respect to the panels’ ideal points, the first case was assigned to a panel in the
30th quantile (30% of panels have lower ideal points), and the second case was
assigned to a panel in the 80th quantile (80% of panels have lower ideal points).

If cases are randomly assigned, this means that Case 1 was was randomly assigned
to a “30th quantile panel,”whereas Case 2 was randomly assigned to a “80th quantile
panel.” Formally, let ai be the panel assigned to case i. Thenwe can define the quantile
to which case i was assigned as

qi ¼
∣ p∈P :bxp <bxai� �

∣
∣P∣ ¼ ∣ p∈P :E Yijp, f½ � <E Yijai, f½ �f g∣

∣P∣ ∈ 0,1½ � (2)

9Or, perhaps more accurately, measurement error means we do not fully solve the averaging problem.
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(The latter equality is guaranteed by Lemma 4 from Online Appendix B.) We call
qi a case i’s “panel reversal quantile” (which we abbreviate as PRQ) because they
capture panels’ proclivities to reverse. From an ex ante perspective, panels in low
PRQs are less likely to reverse a randomly drawn case than panels in higher PRQs.

The PRQ is a continuous generalization of the binary MRT that we had defined
above for a specific pair of panels. Then, we can analogously define an MROD for a
pair of two specific PRQs such as Q1 and Q2:

M Q1,Q2ð Þ¼ E Yijqi ¼Q1

� ��E Yijqi ¼Q2

� ��� ��:
Since PRQs are a type of MRT, we will refer to them interchangeably in the

following sections.

A side note on SUTVA

We assume SUTVA holds in our setting. However, this assumption is likely to be
controversial. First, since cases makes precedents – and more generally, judges and
litigants learn from resolution of prior cases – a prior case’s panel assignment might
indeed influence future cases’ outcomes. Second, each treatment (i.e., panel) is very
likely to have different “versions” of itself that might amount to entirely different
treatments.

In our empirical application below, we take an important step to try tomitigate the
threat of SUTVA violations. Specifically, all of our effects are estimated within each
year. In addition to ensuring that we satisfy the random assignment assumption, this
also reduces the impact that learning from prior cases has on the resolution for future
cases. For example, it is much less reasonable to assume SUTVA when comparing
cases decided in 1995 to cases decided in 2013 than it is when comparing cases
decided in 1995 to other cases decided in 1995.

Stepping back, however, SUTVA is implicit in all studies of judicial decision-
making that make a claim to unbiased effects, so this issue is not unique to our
analysis. Exactly how and why SUTVA affects average treatment effects in judicial
politics research is an interesting issue for future research.

Measuring MRTs in the Ninth Circuit
In this section, we measure MRTs in an original dataset of all civil appeals from
district courts that were filed between 1995 and 2013 in the Ninth Circuit and that

Figure 2. A hypothetical case space with case features f and ten panels with differing ideal points. Two
cases – Case 1 and Case 2 – are assigned to different panels, which are marked in the figure. Case 1 was
assigned to a panel at the 30th quantile, and Case 2 was assigned to a panel at the 80th quantile.
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were randomly assigned to three-judge panels. To do this, we need to (1) justify the
assumption that panels are randomly assigned to cases (see Proposition 2), (2) assure
that our MRTs preserve randomization (i.e., are not correlated with pretreatment
characteristics), and (3) measure MRTs with as little measurement error as possible
(see Proposition 5).

In order to measure MRTs and assure that they preserve randomization, we draw
from the growing literature on estimating heterogeneous treatment effects withmeta-
learners. As explained below, we use a modified version of the S-Learner and use
cross-fitting to protect the assumption that the MRTs are as if randomly assigned to
cases. While we develop our approach using data from the Ninth Circuit, this
approach could be easily adapted for other judicial decision-making contexts.
However, we cannot say anything general about how well it will work in all settings.
While better algorithms, better data, andmore data can reducemeasurement error in
MRTs, there is little that can be said about which exact combinations of algorithms,
predictors, and data will sufficiently reduce measurement error. As a result, a key
component of our approach is validation. Below, we validate our Ninth Circuit
measures in two ways. First, we provide support for the assumption that the MRTs
are not correlated with pretreatment characteristics. Our measurement strategy thus
preserves random assignment. Then, we demonstrate the strong face and construct
validity of our measured MRTs. In particular, we demonstrate that the MRTs are
indeed strongly predictive of case outcomes, which is what they are designed for.

Our dataset consists of 11,359 appeals, and the outcome variable in our analyses is
whether a case is affirmed or not. When a case is not affirmed, we generally refer to
the outcome as a “reversal,” although that includes decisions to vacate or remand,
decisions to reverse or vacate in part, and, on rare occasion (approximately 1%),
decisions labeled as “Other.”10 Our dataset has 3,130 unique three-judge panels that
are composed of 371 unique judges.

Verifying random assignment of panels to cases

TheNinthCircuit reports that it randomly assigns panels of three judges tomost of its
cases. As we verified in a conversation with the Clerk of Court, some cases are
prescreened and assigned to panels nonrandomly. We drop these cases from our
analysis. Of course, case assignment is only random within a time period and region.
Thus, when using MRTs to estimate treatment effects, we include region-year fixed
effects.

We test the assumption that cases are randomly assigned to panels by testing if
case characteristics can predict whether a panel is majority Republican. If they can,
then this would indicate that certain types of cases are more likely to be assigned to
certain types of judges, violating random assignment. Fortunately, in our dataset, we
cannot predict judge partisanship with case characteristics. More specifically,
Figure 3 shows that a stacking ensemble with access to case predictors is no better
able to predict whether a case is assigned to a majority Republican panel than is a
stacking ensemble with only access to region-year fixed effects. The results provide
evidence that panels are randomly assigned to cases.

10Though it may be tempting to drop cases with an “Other” outcome, it risks introducing posttreatment
bias into any causal estimates (for a detailed discussion of this issue, see Hübert and Copus 2022).
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Measuring MRTs with a modified S-Learner

Obtaining the most accurate measures of the relevantMRT (i.e., the PRQbqi) requires
obtaining the most accurate ordering of bE Yijp, f½ � for all combinations of panels and
case characteristics. For modeling complex interactions in a conditional expectation,
it is now common to use machine learning, specifically ensemble learning. We use
Automatic Machine Learning (AutoML) within H2O, an open-source environment
in R. The stackingmethodology employs supervised learning based on loss functions,
leveraging k-fold cross-validation to determine the optimal combination of diverse
base algorithms. The process begins by generating cross-validated predictions for
each base learning algorithm in the ensemble, which may include generalized linear
models, random forests, and neural networks. This is accomplished by dividing the
dataset into k folds, where training occurs on k�1 folds while generating predictions
on the remaining fold. This procedure repeats k times, ensuring each fold serves as
validation data exactly once. Subsequently, the system regresses these predictions
against actual outcomes to determine appropriate weights for each base algorithm.
The resulting weighted combination yields an ensemble prediction function that is
then applied across the entire dataset. The approach is asymptotically optimal for
learning outcomes (Polley and Van der Laan 2010). Details regarding our ensemble
learner are available in Online Appendix C.2.

But there is still the question of how to employ ensemble learning to achieve themost
accurate ordering of bE Yijp, f½ �. For this, we take guidance from the literature on meta-
learners, techniques to employ machine learning to optimally estimate heterogeneous
treatment effects. This literature has almost entirely focused on contexts with binary
treatments (Goplerud, Imai, and Pashley, Forthcoming). Even though we have many
more treatments (i.e., each unique panel), the research on meta-learners is instructive.

One common meta-learner is the S-Learner, or the “Single Learner.” With a
standard S-Learner, we would fit a single model of bE Yijp, f½ �. Then, using that model,
wewould generate predictions of bE Yijp, f½ � for each panel in each case. For a case i, the
quantile of the assigned panel’s predicted outcome in a distribution of counterfactual
panels’ predicted outcomes would be that case’s estimated PRQ, bqi.

A well-understood problem with this approach is that, by maximizing accuracy ofbE Yijp, f½ �, the S-Learner may poorly estimate the ranking of bE Yijp, f½ � among panels
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Figure 3.We plot two ROC curves for machine learning models that attempt to predict whether a panel is
majority Republican (i.e., judge characteristics). Onemodel has access only to region-year fixed effects (the
red line), while the othermodel has access to these fixed effects plus all other case predictors in our dataset
(blue line). These additional case predictors do not provide any additional predictive power, indicating that
they are not associated with judge characteristics.
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(Salditt, Eckes, and Nestler 2024). This is because the learner may place excessive
weight on predictors other than the assigned panel, especially if those predictors are
highly predictive of the outcome. (In fact, a standard S-Learnermight entirely exclude
panel variables from its fitted model!) Since case characteristics are highly predictive
of outcomes, and data from each unique panel is sparse, it is likely that a standard
S-Learner would place excessive weight on case characteristics and fail to accurately
discern the ranking among panels.

One way to “force” a learner to place sufficient weight on panel variables in its
fitted model would be to estimate a separate model for each panel – for example,
separately fitbE Yijp1, f

� �
, bE Yijp2, f

� �
, and so on. In contexts where researchers are

dealing with binary treatment variables, this kind of meta-learner is referred to as a
T-Learner (short for “Two Learner”). Unfortunately, a T-Learner is not an option in
our context. As indicated by its name, it is designed for a binary treatment, but we
have many more treatments – each unique panel is a treatment. And because each
unique panel decided few cases together, it is not feasible to fit separate, high-quality
models for each unique panel.11

So, we modify the S-Learner to increase algorithmic emphasis on rankingbE Yijp, f½ � for different panels. Recall that the core problem with the standard
S-Learner is that the variable of core interest, the panel, may be excluded or given
little weight. We make three modifications to address this problem.

Add panel characteristics. As discussed above, because data from each unique
panel is sparse, an S-Learner is unlikely to place sufficient weight on those variables
when estimating bE Yijp, f½ �. To improve the likelihood that the learner will use panel
characteristics to fit its models, we add a collection of panel characteristic variables,
such as how many Republican appointees are on the panel; the median, average,
maximum, and minimum DIME score of the panel’s judges (Bonica and Sen 2017);
and dummy variables indicating whether each judge was on the panel. The full list of
panel characteristics included in our learner is available in Table C.2 in Online
Appendix C.1. By including panel characteristics in the model, we make it easier for
the algorithm to predict how different panels would decide different cases. Formally
speaking, this transforms the target of estimation from bE Yijp, f½ � to bE Yijp,c, f½ �, where
c is a vector of panel characteristics.

Residualize outcome variable. S-Learners are prone to put too much weight on
highly predictive variables, such as case characteristics. To counteract that, we first
“residualize” the outcome variable to remove information about case characteristics,
and then change the target outcome of the S-Learner to this residualized outcome in
order to better focus the learner on panel variables. The residualization process
proceeds as follows. We first estimate E Yijf½ � with ensemble learning to best capture
the variation in the outcome explained solely by case characteristics. We then isolate
the residual variation in the outcome by subtracting those estimates from the
outcome. We use those residuals as the target outcome for our S-Learner. More
formally, our S-Learner’s target of estimation is bE ~Yijp,c, f

� �
, where ~Yi ¼Yi� bE Yijf½ �.

Note that we keep case features in our S-Learner despite residualizing because it is
possible (indeed likely) that interactions between panel and case characteristics are
predictive.

11While there are other meta-learners (see, for example, X-Learner), they also have not been adapted to
contexts with a large number of treatments.
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Screen for predictive case characteristics. Our third, final, and most minor
modification is to screen case characteristics for promising interactions with panel
characteristics. That is, before estimating E ~Yijp,c, f

� �
, we select a subset of the case

characteristics that have strong interactions with panel variables. This again
modifies the S-Learner’s target of estimation to bE ~Yijp,c,~f

� �
, where ~f is a smaller,

prescreened collection of case features.
The screening function we use to determine ~f is as follows:

1. Run a LASSO regression on the panel predictors and select all panel predictors
with a scaled importance greater than 0.8.

2. Run a LASSO regression that interacts the selected panel predictors with all case
predictors and select the case predictors with a scaled importance greater
than 0.8.

3. Include all panel predictors and only the case predictors selected in Step 2 in the
ensemble, estimating bE ~Yijp,c,~f

� �
.

The cutoffs we used for scaled importance were selected via testing the performance
on data that is not used in the analysis. This third modification does not substantially
alter our estimates ofbqi. It is simply one last nudge for the S-Learner to focus on panel
variables and their interactions with case features.

Cross-fitting to preserve the assumption that panels are randomly assigned to cases

Above, we provided evidence that panels are randomly assigned to cases. For valid
causal inference, it is critical that our new treatment variable, bqi, preserves that
randomization such that the newly constructed treatment variable is not associated
with pretreatment characteristics.

Machine learningmodels that predict outcomes (like ours) can introduce bias when
they are used to construct variables for downstream causal inference analyses. The core
problem is that outcomes in a training set may be correlated with predictors in that
training set, even though there is no true correlation. For example, a correlation in a
training set could simply be spurious, which is possible due to random chance alone.
This is a classic example of over-fitting. In our context, this would mean that estimated
PRQs could be correlated with pretreatment case characteristics even though actual
panel assignments are random (as we showed above).

To deal with this problem, we draw on recent methodological work showing that
cross-fitting can help preserve causal identification when using machine learning
methods to estimate heterogeneous treatment effects (Chernozhukov et al. 2018). In
our context, cross-fitting helps preserve the random assignment assumption by
ensuring that the predictions used to construct the PRQs are generated from models
trained on different data than the data for which we are making predictions.
Specifically, we do the following:

1. Randomly partition our dataset into K folds.
2. For each fold k≤K :

• train our modified S-Learner on all folds except fold k; and
• use that model to generate predictions and construct PRQs only for
observations in fold k.

3. Combine the PRQs from all K folds to form our final dataset.
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This procedure ensures that the data used to construct each case’s PRQ was not used
to train the model that yielded that PRQ. As a result, any spurious correlations
between our machine learning predictions and case characteristics that might arise
during training cannot affect our PRQ measures. We use K ¼ 10 folds for our cross-
fitting procedure, a standard choice in machine learning.

Importantly, we apply the cross-fitting procedure to both stages of our modified
S-Learner: both when generating the initial panel-free predictions used for resi-
dualization (i.e., estimating bE Yijf½ �) and when generating the panel-specific pre-
dictions used to construct the PRQs (i.e., estimating bE ~Yijp,c,~f

� �
). This comprehensive

approach helps ensure that wemaintain the random assignment assumption through-
out our entire estimation procedure.

Evidence that random assignment is preserved

Although cross-fitting should suffice to preserve randomization, we conduct an
additional test for verification. We examine whether cases that are more likely to
be reversed are disproportionately assigned to panels with higher PRQs.

To implement this test, we employ the predictions from an ensemble learner
trained on only case features that we obtained to residualize outcomes inMeasuring
MRTs with a modified S-Learner. These predictions represent the baseline prob-
ability that each case would be reversed, independent of which panel hears it. If our
measured PRQs preserve random assignment, they should not be systematically
related to these “reversibility” predictions.

We test for potential nonrandom assignment by regressing PRQs on the panel-
independent predictions of reversal, including region-time fixed effects. The results
support the assumption that random assignment is preserved: we estimate a statis-
tically insignificant coefficient of�0.07 (p-value: 0.11). Thus, we do not find evidence
that more reversable cases are being disproportionately assigned to panels with
higher PRQs. This finding, combined with our use of cross-fitting and our earlier
evidence that panels are randomly assigned to cases, provides strong support for the
validity of our measurement strategy.

Face validity of PRQs

In Figure 4, we provide some substantive texture for our PRQ variable, which
demonstrates that it actually captures patterns of decision-making that Ninth Circuit
observers would find intuitive. First note that the cases heard by panels including
Judge Reinhardt tend to be clustered at the high end of the PRQ distribution. This
indicates that these panels are unusually likely to reverse the cases that they are
assigned. It is thus noteworthy that Judge Reinhardt’s decision-making earned him a
number of nicknames, which included “Bad Boy of the Federal Judiciary.”However,
consider the cases heard by panels including Judge Kozinski. While these are more
concentrated at lower percentiles, they are more spread out. This suggests that Judge
Kozinski’s presence on these panels was more moderating than Judge Reinhardt,
perhaps unsurprising given that he was Chief Judge during much of the period we
study andwas thus likely to have been especially concerned with the overall operation
of the court and the collegiality between judges.
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Construct validity of PRQs

We have argued – and shown formally – that PRQs capture the extent to which an
assigned panel is inclined to reverse or affirm. Before we proceed to our substantive
analysis in which we empirically quantify disagreement among panels in the Ninth
Circuit, we demonstrate that our measured PRQs have strong construct validity.

In particular, PRQs will have strong construct validity if they strongly predict
whether a case is more or less likely to be reversed. To demonstrate construct validity,
we bin cases into PRQ deciles and calculate the mean reversal rate in each decile. We
plot this in black in Figure 5, which shows that PRQs are strongly correlated with
reversal rates. The correlation between PRQ decile and reversal rates is 0.92.

We further demonstrate the strength of ourmeasure by comparing it to a different
treatment variable – political ideology – that has been shown to explain substantial
disagreement between panels (see, ch. 3 of Friedman et al. 2020). In Figure 5, we show
the correlation between DIME scores and reversal rates in gray.12 The correlation is
substantially weaker (0.64), indicating that political ideology (at least as measured by
DIME scores) does not explain as much disagreement between panels as we have
been able to explain with PRQs.

How much do judges matter in the Ninth Circuit?
Now that we have measured a new MRT, and we can perform several analyses to
characterize howmuch judges matter in the Ninth Circuit. In real-world datasets like
ours, the number of cases heard by panels at each PRQwill be fairly small. So, if we try
to estimate MRODs with specific PRQs, our MROD estimates will be very imprecise.
Just to illustrate, suppose we wanted to estimate an MROD to quantify disagreement
between the panels exactly at the 10th PRQ and exactly at the 90th PRQ. In our
dataset, there are two cases at the 10th percentile and one case at the 90th percentile.
Obviously, estimating this MROD is not feasible.
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Panel Reversal Quantiles (PRQs)

D
en

si
ty

Panels

Panels that Include Judge Kozinski
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Figure 4.We plot the distribution of PRQs for cases assigned to panels containing Judge Reinhardt and the
distribution of PRQs for cases assigned to panels containing Judge Kozinski. The former indicates that
Judge Reinhardt was unusually influential, since cases assigned to his panels were much more inclined to
reverse than the court norm. The latter indicates that Judge Kozinski was more conciliatory, since cases
assigned to his panels were distributed fairly uniformly across PRQs. This is an indication that he “went
along” with the other judges on his panel.

12In the plot, we order DIME scores in reverse order so that higher percentiles are lower DIME scores. We
do this so that the correlation between DIME and reversals is the same sign as the correlation between PRQs
and reversals. This makes it easier to see the difference in correlations.
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The easiest and simplest way to deal with this is to simply “bin” PRQs into
(approximately) equal-sized intervals. For example, if we bin into five groups, then
all cases whose assigned panel has a PRQ less than or equal to 0.20 will be “treated” to
the first quintile. Obviously, the downside of doing this is that we are consolidating
potentially very different panels into single treatment groups. This will mechanically
tend to yield lower estimates of disagreement in exchange for more precise ones.13

Comparing quintiles

We begin by binning the PRQs into five equal bins, or PRQ quintiles. In Figure 6, we
show the estimated effect of assigning cases to different PRQ quintiles relative to the
lowest PRQ quintile. For example, assignment to a panel in the highest PRQ quintile
rather than the lowest PRQ quintile results in an approximately 16 percentage point
increase in the reversal rate.

Comparing extremes of the PRQ distribution

We now estimate several MRODs that allow us to quantify the extent to which judges
couldmatter by comparing outcomes in cases heard by the most outlier panels in the
PRQ distribution. Of course, the practical difficulty is again in choosing which outlier
panels to compare. Too far on the extremes of the distribution, our estimates will be
quite noisy, but not far enough, we will uncover less hidden disagreement. We thus
test a number of different options. Figure 7 displays the estimated effect of assigning a
case to the top X% PRQs relative the lowest X% PRQs, where X can be either 10, 5, 4,
3, 2, or 1.

Substantively, each of these estimates gives the percentage of appeals that would be
decided differently if each case were assigned to a panel most likely to reverse it versus
a panel least likely to reverse it. Looking at the right-most estimate, we estimate that at
least 38% of cases would be decided differently if they were assigned to a panel in the

Correlation for DIME: 0.64
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Figure 5. We show the correlation between PRQs and reversal rates (in black), and between DIME scores
and reversal rates (in gray). For the latter, we use the median DIME score of each assigned panel, which we
then normalize into percentiles for ease of comparison.

13To take a simple example, an MROD comparing the lowest percentile to the highest percentile will, in
theory, yield a larger but much noisier estimate of disagreement than an MROD comparing the lowest
quartile to the highest quartile. The former comparison compares more extreme outlier panels than the latter
comparison, but there are many fewer of them.
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top 1% of panelsmost likely to reverse instead of to a panel in the bottom 1%of panels
most likely to reverse (and vice versa).

How much would re-randomization change outcomes?

Another potentially interesting quantity for evaluating how much judges matter for
case outcomes is to calculate what percentage of cases would be decided differently
had cases been re-randomized. In other words, how many cases’ outcomes were due
solely to the random allocation of their assigned panel?

Formally, this amounts to calculating the average of a large set of (pairwise)
MRODs. For example, suppose we bin PRQs into quartiles; then the average MROD
would simply average each pairwise MROD across all combinations of the four
quantiles. Figure 8 plots averageMRODs using increasingly fine binning of the PRQs.

0.023

0.059

0.090

0.157

(0.014)

(0.014)

(0.014)

(0.016)

0.00

0.05

0.10

0.15

0.20

2 3 4 5

Panel Quintile

E
ff

ec
t 

o
n
 R

ev
er

sa
l 

R
at

e

R
el

at
iv

e 
to

 L
o
w

es
t 

Q
u
in

ti
le

Figure 6. The effect of assigning cases to panels predicted to bemore likely to reverse. The reference group
is cases assigned to panels in the lowest PRQ quintile. Error bars reflect 95% confidence intervals. Point
estimates and standard errors (in parentheses) are also included above each confidence interval.
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Figure 7. Estimates of the extent towhich judgesmatter for case outcomes in theNinth Circuit. The leftmost
estimate is the estimated effect on the likelihood of reversal from reassigning cases that were assigned to
the 10% of panels with the lowest predicted probability of reversing them to the 10% of panels with highest
predicted probability of reversing them. Each subsequent comparison is of the same form (e.g., lowest 5%
versus highest 5%). Error bars reflect 95% confidence intervals. Point estimates and standard errors
(in parentheses) are also included above each confidence interval.
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As the bins become more numerous, our estimates increase because we are uncover-
ing more hidden disagreement among judges. The estimates eventually level off once
increasing the number of partitions no longer helps us uncover additional hidden
disagreement. The resulting “asymptote” is our best estimate of how many cases
would be decided differently if they were randomly reassigned. In this case, we
estimate that at least 6.5% of cases would be decided differently if all the cases in
our dataset were randomly reassigned.

Conclusion
Quantifying how much judges matter for case outcomes is critical to evaluating the
American courts. If there are stark differences in the way judges resolves cases, this
casts doubt on the notion that judges are simply “neutral arbiters” and raises
questions about whether judge-made law can ever be truly consistent.

Yet, decades after the quantitative revolution in judicial politics research, there are
still serious challenges to identifying the full extent of disagreement among judges.
Traditional average treatment effects paint an incomplete and piecemeal picture of
the total amount of disagreement among judges. We demonstrate how advances in
machine learning can be leveraged to create a treatment variable that is optimized for
quantitatively exposing disagreement between decision-makers. With the introduc-
tion of our monotonicity robust treatment variable, the PRQ, we hope to encourage
the development of a more robust and wide-reaching quantitative literature evalu-
ating the breadth of judicial influence over cases.

There are many ways that high-quality estimates of disagreement can aid sub-
stantive scholarly research on courts. Perhapsmost obviously, advances in estimating
disagreement among judges could help resolve the debate over whether the Ninth
Circuit’s exceptional size has resulted in heightened levels of decision-making
inconsistency. Our method might also help the very research it has taken inspiration
from: the judicial politics literature that focuses on how politics, race, and gender
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Figure 8. Estimates of howmany cases would have a different outcome if theywere randomly reassigned to
panels. Estimates are the average of the pairwise estimated effects of assigning cases from a lower quantile
partition to a higher quantile partition, including an effect of zero for each partition (allowing for cases to be
reassigned to a panel in the same quantile range).
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influence decision-making. Scholars in that fieldmight use our aggressivemethod for
uncovering disagreement to evaluate the plausibility of theoretical explanations. For
example, if inter-judge disagreement is much higher than an average treatment effect
motivated by a theoretical explanation, this provides information about the relative
importance of the theoretical explanation (similar to the way R-squared is sometimes
interpreted). We could also imagine court scholars using our method to identify
outlier decisions so as to explore strategic judicial behavior with those decisions – for
example, do judges tend to leave outlier decisions unpublished so as to avoid drawing
attention from their colleagues? We think the possibilities are plentiful, and we
encourage researchers to take the study of judicial disagreement seriously.

Supplementary material. The supplementary material for this article can be found at http://doi.org/
10.1017/jlc.2025.10006.
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