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Abstract

Hierarchies are common in political settings. From judges to elected politicians, as well as
from activists to bureaucrats, political agents compete for promotion to higher positions.
This paper studies political tournaments and their impact on two aspects of political
performance: accountability and selection. While larger tournaments discourage effort,
they improve selection. We also discuss the optimal design of tournaments as a function of
the principal’s objectives and the features of the environment. We find that tournaments
of size two (such as two-candidate elections) are generally suboptimal. Our analysis also
highlights that increased desirability of promotion always increases effort but can reduce
the optimal tournament size under certain conditions. We also present a range of other
comparative statics.

Keywords: political hierarchies; tournaments; accountability and selection; political institutions

1. Introduction
Hierarchies are common in political settings. Electoral careers often begin at the local

level and progress to the provincial or national level (Myerson, 2006). Judges move through
the various strata of the judicial system (Epstein et al., 2003). Authoritarian leaders fill
vacancies by drawing on administrators at lower levels (Lu & Landy, 2014). Bureaucrats are
promoted through various grades of pay and responsibility (Cameron et al., 2013). Political
parties have their own set of rules and structures, with members competing for positions
on party lists or in leadership roles (Michels, 1915). Legislators seek ministerial positions
(Eggers & Spirling, 2016) or assignments to desirable committees (Fong & McCrain, 2024;
Groseclose & Stewart, 1998). Even electoral campaigns can be understood in this light,
where candidates seek to win office by proving themselves in the eyes of a voter.

Hierarchical structures allow a principal (e.g., a party leader, the president, or an
authoritarian ruler) to select the most capable agent (legislator, bureaucrat, or local ad-
ministrator) to fill a vacant position (cabinet post, agency head, or provincial position).
Hierarchies thus presuppose the possibility of promotions. From the perspective of agents,
promotions are prizes to be won by besting fellow contestants. From the perspective of the
principal, promotions are a way to select the most competent agents while also incentivizing
effort. Promotion-based hierarchies are thus best understood as tournaments with a twist.
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Rather than just being about incentives—the focus of a large portion of literature since
Lazear and Rosen (1981)—the tournament we study also serves as a tool for selection. In
our setting, effort is a by-product of selection. Effort occurs as an attempt to mislead the
principal, which is an attempt that fails in equilibrium. We emphasize that, within the
class of symmetric equilibria, the effort level is uniquely pinned down—something that is
not guaranteed in all tournament models that rely on effort incentives. Furthermore, the
unique equilibrium level of effort we obtain is equal to the highest level of effort agents
exert in traditional tournament models.

Our first key result shows that selection in promotion-based tournaments comes at
almost no cost. The principal can use a tournament to select the ablest agent and still obtain
a very high level of effort from everyone involved. Yet, this does not imply that selection
and accountability—defined as the level of effort agents exert—always go hand in hand.1

Increasing the number of agents competing with each other can yield an accountability–
selection tradeoff for the principal. Having more agents competing always improves the
expected ability of the selected agent but also reduces the amount of effort each agent
exerts. This has implications for the design of the optimal tournament (i.e., the number
of participants allowed to compete), which is a question we briefly study at the end of
our paper.

We show that in some settings (e.g., if the principal cares about average performance),
a principal may choose to restrict the number of participants in a tournament to provide
greater incentives for effort. Yet, we nonetheless find that whenever the principal cares
about effort in addition to selection, tournaments with two competing agents are generally
dominated by larger tournaments. This result suggests that two-candidate elections are
suboptimal from the electorate’s perspective unless the cost of running larger elections is
very high.

Our paper also provides a host of additional comparative statics—some are intuitive,
while others are more subtle. Effort is increasing with the value of the prize (as agents
find promotion more valuable) and decreasing with the heterogeneity of ability and the
informativeness of agents’ outputs as signals of their skills (since in both cases, effort is less
likely to determine promotion). In turn, selection always improves with the variance in
agents’ types, as the principal only cares about the highest draw of ability. More surprisingly,
perhaps, even though effort increases with the value of the prize, the optimal tournament
size decreases with the desirability of promotion whenever the principal cares about the
promoted agent’s effort. The key force behind this result is that the principal weighs the
gain and loss of adding one competitor when designing a tournament. A higher prize
exacerbates the negative effect on the effort of increasing the pool of competitors. In turn,
greater desirability of promotion leads to a larger tournament when the principal cares
about total effort, since a larger prize enhances the gain from increased size.

Literature Review. The theoretical analysis of tournaments is not new. Beginning with
the seminal work of Lazear and Rosen (1981), tournament incentives have been studied
extensively (see Waldman, 2013, for a review). Early results emphasized that tournaments
are dominated by (sufficiently rich) contracts when it comes to incentive provision, since
they introduce noise into compensation schemes (Green & Stokey, 1983).

Later studies justified tournaments as an optimal response to specific features of
the environment, such as common shocks (Maskin et al., 2000) or commitment problems
(Malcomson, 1986), or assumed a tournament and characterized the optimal prize structure
(Krishna & Morgan, 1998, builds on Nalebuff & Stiglitz, 1983). Connelly et al. (2014)
provided a useful review of the large literature on tournaments as a tool for accountability,
from both a theoretical and an empirical angle.
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For a long time, tournament models failed to consider selection. This was one of the
critiques raised by Prendergast (1999). Since then, tremendous progress has been made in
addressing this gap. While some works have focused exclusively on selection (e.g., Clark &
Riis, 2001; Ryvkin, 2010), others, like us, have incorporated both effort and selection. Gürtler
and Gürtler (2015) showed how two agents may be motivated to exert greater effort when
they are known to have different average abilities. Höchtl et al. (n.d.) looked at a two-stage
tournament and found that selection benefits from heterogeneous competitors competing
early with each other. Levy and Zhang (2024) argue that, if agents are homogeneous in
their ability, pooled contests (where all participants compete with each other) may be better
than two-stage tournaments.

While these contributions are important, we advance the literature along two fronts.
First, we return to the traditional model of the tournament (Höchtl et al., n.d.; Levy & Zhang,
2024, use a contest function) and solve a tournament game with promotion involving a
large number of agents (Gürtler & Gürtler, 2015, whereas prior work only considered a
two-agent tournament). Second, we discuss the gains and losses from increasing the size of
the tournament, taking into consideration both accountability and selection.2

By considering accountability and selection, our work is related to agency models of
elections (see Ashworth, 2012, for a review). Canonical political career concerns models
(e.g., Ashworth, 2005) are, however, a special case of political tournaments in which only
the performance of one agent is observed and compared to a benchmark. Our richer
setup allows us to compare how electoral incentives differ from other types of tourna-
ments and generate novel comparative statics relating the optimal size of a tournament to
model parameters.

Further, while electoral accountability models focus on bottom-up accountability,
promotion-based hierarchies are best understood as top-down accountability problems.
Ghosh and Waldman (2010) studied how promotions can be used to screen agents. They
focused on a one-to-one relationship between firm owners and workers and so had nothing
to say about the size effect of promotion tournaments. Our approach, instead, is rooted
in the idea that top-down accountability is a many-to-one problem, and agents are rarely
judged in isolation. Montagnes and Wolton (2019) and Wang et al. (2022) studied a related
question. However, they assumed that the principal has coarse information about her
agents’ performances and emphasized the role of punishments (purges in authoritarian
countries) rather than rewards.

2. Formal Model of Tournaments with Selection
We consider a one-period game with a principal and a set of available agents with

cardinality n > 2. The principal first decides the number of agents n ∈ {1, . . . , n} to
be considered for promotion to a unique higher-up position valued by all agents. The
n randomly selected agents then compete by exerting costly effort to manipulate the
principal’s promotion decision. We thus describe the subgame played by the selected
agents as an n-agent tournament.

Each agent i is characterized by their ability θi. Following canonical models of tour-
naments (e.g., Lazear & Rosen, 1981) and career concerns models (e.g., Ashworth, 2005;
Holmström, 1999), we assume that θi is unknown to all players at the beginning of the
game. It is, however, common knowledge that for all i ∈ {1, . . . , n}, θi is independently
and identically distributed (i.i.d.) over the interval [−θ, θ] (possibly unbounded) according
to the cumulative distribution function (CDF) Fθ , with variance σ2

θ and symmetric and
single-peaked probability density function (pdf) fθ .3 We further assume that Fθ and fθ are
continuously differentiable (i.e., Fθ ∈ C2). The principal cares about the promoted agent’s
ability. She, however, only observes a noisy signal of agents’ skills before making her
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promotion decision for those considered for promotion; otherwise, she observes nothing.
More specifically, an agent considered for promotion produces an output—denoted qi for
all i ∈ {1, . . . , n}—which consists of the sum of the agent’s ability θi, their effort ai, and a
noise (luck) term ηi:

qi = ai + θi + ηi (1)

Effort ai is unobserved by the principal. As in career concerns models, agents try to
manipulate the signal available to the principal. However, unlike career concerns models,
n agents simultaneously compete for promotion by exerting effort. The noise term ηi is also
unknown to all players, but it is common knowledge that ηi is i.i.d. over the interval [−ϵ, ϵ]

(possibly unbounded) according to the CDF Fη ∈ C2m with variance σ2
η and symmetric

and single-peaked pdf fη .4 Notice that the output function only incorporates independent
shocks. This assumption is without loss of generality since, as extensively noted in the
literature (e.g., Green & Stokey, 1983; Maskin et al., 2000), any shock that would similarly
impact all agents would be differenced out by the principal, who evaluates agents on their
relative rather than absolute performance.

An agent receives a payoff V if promoted and 0 if otherwise. The agent also pays a
cost c(ai) to exert effort and manipulate the signal qi available to the principal. We assume
that c(·) is C∞, increasing, and convex. Agent i’s utility function thus takes the following
form (with I{promoted} being the indicator function equal to 1 if i is promoted):

Ui(ai) = VI{promoted} − c(ai) (2)

The principal’s utility depends on both the ability of the promoted agent and the
agents’ efforts. We assume that increasing the size of the tournament is costly, with the
convex cost function CP(n). The principal’s utility can be represented as

UP(n) = ωg(ai, . . . , an) + (1 − ω)I{i=promoted}θi − CP(n), (3)

where ω ∈ [0, 1] is the weight on agents’ effort, g(ai, . . . , an) is a continuous function weakly
increasing in all its arguments,5 and I{i=promoted} is an indicator function equal to 1 if i is
promoted and 0 if otherwise.

To summarize, the timing of the game is as follows:

1. Nature draws relative abilities (θi) and noise (ηi) for each agent i ∈ {1, . . . , n}, and
these values are unobserved by all players.

2. The principal selects the number of agents to be considered for promotion, where
n ∈ {1, . . . , n}. For notational convenience and without loss of generality, we assume
that the first n agents are selected.

3. Each selected agent i simultaneously chooses their effort ai.
4. For each selected agent i, the output qi is observed by all players.
5. The principal promotes one agent among the n selected agents. The game ends, and

payoffs are realized.

The equilibrium concept is Perfect Bayesian Equilibrium in pure strategies. We focus
on symmetric equilibria. Two well-known aspects of Perfect Bayesian Equilibrium are
worth stressing: (i) All players consistently anticipate other players’ strategies so that
(ii) agent i and the principal have the same expectation about agent j’s effort for all j ̸= i.
Throughout, we posit variance parameters for ability and noise that place the game in
the well-behaved region identified in the tournament literature—conditions under which
a single symmetric equilibrium is generally obtained. We adopt that equilibrium for all
subsequent analysis (This assumption is common in the literature; see Green & Stokey,
1983; Krishna & Morgan, 1998; Nalebuff & Stiglitz, 1983).6
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As a preliminary, note that given the principal’s objective, she always promotes the
agent with the highest expected ability. To form a correct assessment of agents’ skills, she
adjusts for agents’ anticipated effort from the observed outputs. Since her anticipation is
correct in equilibrium, we can study promotion and effort separately. We thus depart from
the usual (backwards) order of analysis and focus first on agents’ effort and how it varies
with the model parameters and the size of the tournament.

3. Agents’ Effort
We first consider effort in a tournament of size n. Agents not competing for promotion

(i.e., agents m ∈ {n + 1, n}) do not exert any effort. Likewise, in a tournament of size one,
agent 1 exerts no effort. Therefore, in what follows, we focus on tournaments of size at least
2. We introduce the following notation: let ae

j be the principal’s anticipation of j’s effort.
Agent i ∈ {1, . . . , n} is promoted if and only if the principal expects their ability to

be the highest. This occurs whenever they produce the highest output net of anticipated
effort, i.e., qi − ae

i ≥ max
j ̸=i

qj − ae
j . Agent i, however, does not observe qj and must form

beliefs about other agents’ performances based on (i) their anticipation of the realization
of their ability (θj) and luck (ηj) and (ii) their effort (aj). Denote âe

j as i’s anticipation
of j’s effort for all j ̸= i. The probability that i is promoted given their output qi is

Pr(Promoted|qi) := Pr
(

qi − ae
i ≥ max

j ̸=i
(θj + ηj + âe

j − ae
j )

)
. Imposing the assumption that

anticipated efforts are consistent (i.e., ae
j = âe

j ), this reduces to

Pr(Promoted|qi) := Pr
(

qi − ae
i ≥ max

j ̸=i
(θj + ηj)

)
(4)

Equation (4) highlights that only the joint effect of θj and ηj enters into agent i’s
assessment. Since the two random variables are independent, it is convenient to merge the
terms into a ‘combined noise’ ϵj := θj + ηj for all j. For each j, the combined noise is i.i.d.
over [−ϵ, ϵ] (ϵ = θ + η) according to the CDF Fϵ ∈ C2, with variance σ2

ϵ = σ2
θ + σ2

η and pdf
fϵ. Observe that due to the independence of θi and ηi, fϵ is single-peaked and symmetric.
Using the independence of ϵj’s, the probability that i is promoted for a given output qi is
thus Fϵ(qi − ae

i )
n−1.

Agent i, however, only chooses their effort, not their output qi, which corresponds
to the sum of effort ai and their own combined noise ϵi. Since agent i correctly treats
ϵi as a random variable, they maximize the following objective function (with Eϵi (·) the
conditional operator over ϵi):

Ki(ai) :=VEϵi

(
Pr(Promoted|ai, ϵi)

)
− c(ai)

=V
∫ ϵ

−ϵ
Fϵ

(
ϵ + ai − ae

i
)n−1 fϵ(ϵ)dϵ − c(ai) (5)

Through standard maximization (our assumption on variances guarantees that the
second-order condition holds), we can then characterize the agents’ effort.

Proposition 1. There exists a unique equilibrium effort in pure strategies. The equilibrium effort is
symmetric—denoted as a(n, σϵ, V)—and characterized by the following equation:

c′(ā(n, σϵ, V)) = V
∫ ϵ

−ϵ
fϵ(ϵ)dFϵ(ϵ)

n−1 (6)

Proof. Proofs for this section are collected in Appendix A.
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Our next set of results establishes how the tournament structure—the value of the prize
(V), the variance of the combined noise (σϵ), and the size of the tournament (n)—affects the
equilibrium effort.

Proposition 2. The equilibrium level of effort a(n, σϵ, V) is as follows:

(i) Decreasing in n (i.e., a(n′′, σϵ, V) ≤ a(n′, σϵ, V) for n′′ > n′ ≥ 2);
(ii) Strictly decreasing in σϵ;
(iii) Strictly increasing in V.

Points (ii) and (iii) of Proposition 2 are intuitive. As the prize becomes more attractive
(the value of promotion V increases), agents have more incentive to exert effort. As the
variance of the combined noise grows, effort is less and less likely to determine the outcome
of the tournament. As a consequence, all agents have reduced incentive to exert effort.

The intuition for point (i) is more subtle. As the size of the tournament grows, compe-
tition to be promoted becomes more intense. Naive economic reasoning then suggests that
effort should increase. This intuition fails to consider the effect of the combined noises on
agents’ effort choices. When choosing their effort, agent i does not compare their output
with every other agent’s. Rather, as explained above, they only take into account their
best-performing competitor. As the number of competing agents increases, the combined
noise associated with agent i’s best competitor becomes increasingly likely to take high
values (more precisely, Fϵ(ϵ)n′′−1 strictly first-order stochastically dominates Fϵ(ϵ)n′−1 for
all n′′ > n′ ≥ 2).

Better performance by the highest competitor alone, however, is not sufficient to
discourage effort by agent i ∈ {1, . . . , n}. Indeed, agent i’s effort equates the marginal cost
with the marginal gain in promotion probability. Their total winning probability has little
effect on their effort choice. In turn, the marginal gain in promotion probability depends on
the distribution of their own combined noise ϵi. Since fϵ(·) is single-peaked and symmetric,
agent i’s effort is more likely to be complemented by low (in absolute value) rather than
large combined noise. Consequently, as the size of the tournament grows, the probability
that their output is close to their highest competitor’s decreases, as does the likelihood that
a marginal increase in effort significantly increases their promotion probability.

The reasoning above thus indicates that an agent’s performance decreases with the size
of the tournament due to the combination of two effects. First, their highest competitor’s
performance increases. Second, more effort is less and less likely to significantly impact
their promotion probability. Absent either of these two effects, the size of the tournament
has no impact on an agent’s effort choice.7 In particular, when ϵi is uniformly distributed
so that all levels of combined noise are equally likely, the size of the tournament has no
effect on agents’ effort.8

Figure 1 illustrates these scenarios. We display three pdfs of the combined noise ϵ: the
pdf for agent i (in red, dotted), the pdf for the best competitor in a tournament of size 4
(blue, dashed), and the pdf for the highest competitor in a tournament of size 10 (black,
plain). In Figure 1a, the ϵj of tournament participants is normally distributed (mean 0,
variance 0.25). In Figure 1b, the ϵj of participants is uniformly distributed (over [−2, 2]). For
both distributions, agent i’s chances of winning are lower when there are 10 participants
than when there are 4 participants in the tournament: The red curve crosses the blue
dashed curve before the black curve and, as we noted, the best competitor’s pdf when
n = 10 is to the left of the best competitor’s pdf when n = 4 (i.e., Fϵ(ϵ)9 strictly first-order
stochastically dominates Fϵ(ϵ)3). Yet, agent i does not consider his total chances of winning
when deciding their effort but the marginal change in winning probabilities. The increase
in their chances of winning following greater effort is illustrated by the yellow filled zone
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when n = 4 and the orange filled zone when n = 10 in Figure 1a,b. With a singled-peaked
distribution like the normal distribution, we can visually see that increased effort has a
smaller effect on i’s winning chances when n = 10 than when n = 4 (the orange zone is
smaller than the yellow zone). Hence, agent i has less incentives to exert effort in a larger
tournament. In contrast, with the uniform distribution, the effect of increased effort is the
same for both tournament sizes (the yellow zone and the orange zone have the same area).
In this case, the incentive to exert effort is independent of the tournament size.

-0.5 0.0 0.5 1.0 1.5 2.0
0

0.5

1

n = 4

n = 10

i’s pdf

(a) Normal distribution

-0.5 0.0 0.5 1.0 1.5 2.0
0

0.5

1

n = 4

n
=

10

i’s pdf

(b) Uniform distribution

Figure 1. Comparing distributions. The graphs display the pdf of ϵi for agent i and the pdf of ϵ for
the best competitor for tournament of size 4 (dashed blue line) and size 10 (plain black line). (a) ϵj for
all participants is normally distributed with mean 0 and variance 0.25. (b) ϵj for all participants is
uniformly distributed over [−2, 2].

As Corollary 1 also shows, 2-agent and 3-agent tournaments yield the same equilib-
rium effort, as the negative effect of the highest competitor’s increased performance is
counterbalanced by a positive effect of lower variance, which increases the marginal value
of effort.

Corollary 1. The equilibrium effort satisfies a(n + 1, σϵ, V) < a(n, σϵ, V) if and only if n > 2
and there exists ϵ ∈ [0, ϵ] such that f ′ϵ(ϵ) < 0.

Without imposing additional conditions on the shape of agents’ cost function c(·), we
cannot characterize further features of equilibrium effort. Since effort is determined by
the marginal cost, any second-order prediction depends on the third derivative of the cost
function. In the next corollary, we instead examine certain properties of the marginal benefit
of effort, which we denote as b(n, σϵ, V) := V

∫ ϵ
−ϵ fϵ(ϵ)dFϵ(ϵ)n−1 (see the right-hand side

of Equation (6)).

Corollary 2. The marginal benefit of effort satisfies the following properties:

(i) Convex in n (i.e., b(n′′ + k, σϵ, V) − b(n′′, σϵ, V) ≥ b(n′ + k, σϵ, V) − b(n′, σϵ, V) for
n′′ > n′ ≥ 2 and k ≥ 1), strictly if f ′ϵ(ϵ) > 0 for some ϵ ∈ [0, ϵ];

(ii) Strictly convex in σϵ;
(iii) Neither concave nor convex in V.

Point (iii) follows from the risk neutrality of the agent. Any increase in the prize linearly
increases the benefit from winning the tournament and, in turn, the marginal benefit of
effort. Point (ii) follows from the effect of higher variance on fϵ(·). As σϵ increases, the pdf
of the combined noise flattens, and an increase in effort becomes marginally more likely
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to affect the tournament outcome. This second-order effect attenuates the direct effect of
variance identified above.

Point (i) indicates that the negative effect on incentives of increased tournament size
on effort attenuates as the tournament grows larger. This arises because of the effect of
adding one more agent on the highest performance (in expectation). The direct effect is
that expected highest performance increases. However, this also implies, as a second-order
effect, that higher and higher realizations of the combined noise are necessary to improve
the highest performance. Since fϵ(·) is single-peaked (i.e., low values of ϵ in absolute
terms are more likely), such events are increasingly unlikely. Consequently, the expected
highest performance increases at a decreasing rate with the number of participants. Since
the marginal benefit of effort is inversely related to the highest performance of other agents,
it is convex in n.

Figure 2 summarizes the results of this section. There, we display how the marginal
benefit of effort (V

∫ ϵ
−ϵ fϵ(ϵ)dFϵ(ϵ)n−1) varies with the size of the tournament (left panel),

the value of the prize V (middle panel), and the variance of the combined noise σ2
ϵ (right

panel), assuming that both ability and luck are normally distributed. Figure 2a highlights
that (i) the marginal benefit of effort (and thus the equilibrium effort itself) is the same
for n = 2 and n = 3 tournaments, and (ii) the marginal benefit of effort is decreasing and
convex nature in the number of participants. In Figure 2b, we see how the marginal benefit
increases linearly with the value of the prize, whereas the marginal benefit of effort is
decreasing and convex with the variance of ϵ = θ + η, as shown in Figure 2c. In these last
two figues, we also observe how the marginal benefit of effort is lower for large than for
small tournaments.

2 4 6 8 10 12 14 16 18 20
0

0.25

Tournament size n

(a) Size of the tournament

0.0 0.5 1.0 1.5 2.0
0

0.5

n = 10

n =
4

Prize value V

(b) Value of the prize

0.0 0.5 1.0 1.5 2.0
0

0.5

1

n = 10

n = 4

Variance of ϵ

(c) Variance of ϵ

Figure 2. Comparative statics on the marginal benefit. The graphs display the marginal benefit as
a function of the tournament size (a), the prize (b), and the variance of ϵ (c). (b,c) we display the
marignal benefit for a tournament of size 4 (blue dashed curve) and of size 10 (dark plain curve).
(a,b) σ2

ϵ takes value one. (a,c) V takes value one. In all panels, Fϵ is normally distributed with
mean zero.

Having established the general properties of the marginal benefit of effort, we can
provide some predictions for the effect of the tournament parameters on effort. The second-
order effect of V on effort depends on the sign of c′′′(·). In turn, the equilibrium effort is
convex for both σϵ and the number of agents n whenever c′′′(·) is not too large.

4. Tournament and Selection
As highlighted by Equation (3), the principal cares not only about the agents’ effort

(through g(a1, . . . , an)) but also about the ability of the promoted agent. Because all agents
exert the same level of effort a(·), the principal simply promotes the best performer. Further,
since she correctly anticipates effort, she can recover the combined noise of the best per-
former, which is denoted as ϵmax(n, σθ , ση) (i.e., ϵmax(n, σθ , ση) = max

i∈{1,...,n}
qi − a). From the
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principal’s perspective, the promoted agent’s expected ability—denoted as θmax(n, σθ , ση)—
is then, for a given output,

θmax(n, σθ , ση) := Eθ(θ|ϵ = ϵmax(n, σθ , ση)) (7)

When deciding the tournament size, the principal can only condition her decision to
select n agents on the expected realizations of agents’ ability and luck. From an ex ante
perspective, the important statistic for the principal is

θW(n, σθ , ση) := Eϵmax
(
Eθ(θ|ϵ = ϵmax(n, σθ , ση))

)
(8)

Our first result is quite intuitive. As the tournament size grows, the (ex ante) ex-
pected ability of the promoted agent θW(·) increases. Given that effort does not affect
the principal’s promotion decision, adding agents can only increase the probability that a
large combined noise is realized. While effort declines in a larger tournament, selection
strictly improves.

Proposition 3. The ex ante expected ability of the promoted agent increases with the size of
the tournament.

Additional conditions on the distribution of ability θi and luck ηi are required to
establish further properties of θW(·). As is common in the literature on career con-
cerns, we impose that θi and ηi are both normally distributed (i.e., θi ∼ N (0, σ2

θ ) and
ηi ∼ N (0, σ2

η)). Under these assumptions, θmax(n, σθ , ση) takes a very simple form:

θmax(n, σθ , ση) =
σ2

θ

σ2
θ +σ2

η
ϵmax(n, σθ , ση)). Denoting ϵW(n, σθ , ση)) = Eϵmax (ϵmax(n, σθ , ση))),

we obtain

θW(n, σθ , ση) :=
σ2

θ

σ2
θ + σ2

η

ϵW(n, σθ , ση) (9)

Under the assumption of normality, we can provide a fuller picture of the impact of
tournament characteristics on the ex ante ability of the promoted agent, which is defined
as θW(·).

Proposition 4. Suppose θi and ηi are normally distributed. The ex ante expected ability of the
promoted agent θW(n, σθ , ση) is defined as follows:

(i) Strictly increasing in σθ ;
(ii) Strictly decreasing in ση .
(iii) Strictly concave in n.

As the variance in abilities increases, extreme realizations of ability become more likely.
Since the principal only cares about the highest realization, not the average of realizations,
at the time of promotion, this always benefits the principal. In turn, when the variance of
the noise component η increases, high output is more likely to be due to luck than ability.
This, therefore, tends to depress the expected ability of the promoted agent. Finally, the
last point of the proposition indicates that the gain from adding contestants decreases with
the size of the tournament. The logic is the same as for the convexity of effort in n. As the
expected highest ability rises (i.e., θW(n, σθ , ση) increases with n), it becomes less and less
likely that the ability of an additional agent will surpass θW(n, σθ , ση).

Figure 3 summarizes the results of this section. There, we display the expected ability
of the tournament winner θW(·) as a function of the size of the tournament (left panel),
the variance of ability σ2

θ (middle panel), and the variance of the noise σ2
η (right panel),

assuming that both ability and noise are normally distributed. As indicated above, the
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selection improves with the size of the tournament, though in a concave fashion (Figure 3a).
Increased variance in ability also benefits selection (Figure 3b), whereas more noise is
detrimental to selection (Figure 3c). It is interesting (though not so surprising) to contrast
this last point with the effect of σ2

θ and σ2
η on effort. Increasing randomness (from the

perspective of an agent i) is always detrimental for effort, since it implies that an agent’s
effort is less likely to matter for their success. As such, we did not need to distinguish
between the effect of greater variance for ability and noise above (see e.g., Figure 2c). In
turn, for selection, only one type of randomness has negative consequences: pure luck. The
principal actually cares for a high degree of randomness in ability, since it increases the
expected ability of the tournament winner, especially when the tournament is of a large
size (see how the black line increases faster than the blue dashed line in Figure 3b).

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Tournament size n

(a) Size of the tournament

0.0 0.5 1.0 1.5 2.0

0

1

2

3

n = 4

n =
10

Variance of θ

(b) Variance of θ

0.0 0.5 1.0 1.5 2.0

1

n = 10

n = 4

Variance of η

(c) Variance of η

Figure 3. Comparative statics on the expected ability of tournament winner. The graphs display the
expected ability of the tournament winner as a function of the tournament size (a), the variance of
ability θ (b), and the variance of the noise η (c). (a,c) σ2

θ takes value 1/2. (a,b) σ2
η takes value 1/2. In

all panels, ability and noise are normally distributed with mean zero.

5. Tournament Design
Having discussed both the effects of tournament size on effort (Section 3) and selection

(Section 4), we can now consider how many agents the principal selects to compete in
the promotion tournament. In what follows, we refer to ‘optimal tournament size’ as the
number of contestants that maximize the principal’s expected utility given agents’ unique
equilibrium pure strategies.

When choosing the number of competitors, the principal maximizes her ex ante
expected utility, taking into account the effect of tournament size on effort and selection.
That is, her maximization problem is

max
n∈{1,...,n}

ωg(a(n, ·), . . . , a(n, ·), 0, . . . , 0) + (1 − ω)θW(n, ·)− CP(n) (10)

Our first result establishes that tournaments of size 2 are generally suboptimal from
the principal’s perspective.

Remark 1. The optimal tournament size is strictly less than 3 only if CP(3)− CP(2) > (1 − ω)(
θW(3, σθ , ση)− θW(2, σθ , ση)

)
.

Proof. Proofs for this section are collected in Appendix C.

Note that this result does not require any restriction on g(a1, . . . , an) (besides the
assumption that it is weakly increasing in its arguments) or on the distributions of θi and
ηi. It is a direct consequence of Corollary 1 and Proposition 3. Increasing the size of the
tournament from two to three agents has no effect on an agent’s effort. Since the principal
always gains in terms of selection, she prefers not to restrict the set of contestants to two
unless the cost of adding a third competitor is very large.
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This result has important implications when one interprets elections as a tourna-
ment. Effort in this case can be understood as campaign spending meant to manipulate
the voter’s evaluation of candidates. In this case, g(a1, . . . , an) is constant in agents’ out-
put. Alternatively, effort may correspond to commitment to targeted spending, with
g(a1, . . . , an) = I{i=promoted}ai, and c(·) as the cost of advertising campaign promises (see
Prato & Wolton, 2016). Alternatively, candidates may actually invest in policy quality, with
this investment depending on the candidates’ ability and being imperfectly observable
by voters (a setting adapted from Hirsch & Shotts, 2015). Finally, stretching the analogy
slightly, one could think of effort in a more Downsian fashion. Under this perspective, the
principal is the median voter, and effort is the cost of moving away from one’s ideal point
(in this mapping we briefly describe, voters need to have linear utility in policy position,
whereas candidates have non-linear utility functions). Then, ability θi can be thought as a
common-value valence shock. The policy promises and valence of each candidate need
then to be imperfectly observable due to the noise of the campaign (captured by ηi). Re-
mark 1 indicates that, independently of the interpretation of agents’ output, two-candidate
elections are generally inefficient from the electorate’s point of view. It suggests that there
may be some welfare gain for voters from encouraging at least one more candidate to
participate in elections (as long as the marginal cost of increasing the number of candidates
is relatively small).

To provide more details on the optimal tournament size, we return throughout the
remainder of this section to the case of normally distributed ability (θ) and luck (η). We
further impose that the agents’ cost function is quadratic: c(a) = a2

2β , with β sufficiently
small so that the second-order conditions hold. This second assumption allows us to
identify the direct effect of size on effort, not the effect mediated through the shape of the
cost function.9

We focus on two natural situations. First, we suppose that the principal’s preference
for effort depends only on the output of a single agent; that is, g(a(n, ·), . . . , a(n, ·), 0, . . . , 0)
= a(n, ·). Second, we assume that the principal cares about total effort (equivalently, total
output): g(a(n, ·), . . . , a(n, ·), 0, . . . , 0) = na(n, ·).

5.1. Optimal Tournament Size When the Principal Cares About Single Effort

This first situation subsumes several distinct objectives that a principal might have. It
corresponds to a principal valuing average output (since agents play a symmetric strategy).
This naturally occurs when the principal delegates policies to subordinate units and is
concerned about all entities receiving similar treatment—either to avoid inconsistencies, as
in the case of judicial decisions, or to ensure some common standards, as in the case of edu-
cation policies. Such an objective is also consistent with the principal seeking to maximize
minimum output. In domains where negative spillovers are present (e.g., environmental
policy), a principal may want to minimize the damage caused by the worst performer. In the
case of antiterrorism policies, a principal wants to strengthen the weakest link (De Mesquita,
2007; Powell, 2007). Finally, the function g(a(n, ·), . . . , a(n, ·), 0, . . . , 0) = a(n, ·) is also con-
sistent with a principal only taking into account the performance of the promoted agent
(or, equivalently, the best performance). Examples of such objectives include elections
(as discussed above), maximizing the quality of implemented policies (Hirsch & Shotts,
2015), or innovation.10

Under our conditions on the cost function, there exists a unique size maximizing the
principal’s expected welfare, which we denote as n∗

A. The next proposition describes how
n∗

A varies with the model parameters.

Proposition 5. When g(a(n, ·), . . . , a(n, ·), 0, . . . , 0) = a(n, ·), Equation (10) has a unique
maximum n∗

A with the following properties:
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(i) n∗
A is decreasing with V;

(ii) n∗
A is increasing with σθ .

Recall that the expected ability of the promoted agent does not depend on the tourna-
ment prize V, whereas an agent’s effort is strictly increasing in V. Nonetheless, Proposition 5
indicates that the optimal size is decreasing in the value of promotion. To understand
this result, observe that when choosing n∗

A, the principal compares the marginal gain from
increasing the size of the tournament by one agent with the marginal cost. As highlighted
in Proposition 2, effort is decreasing with size. Further, since effort is linear in V (under
our assumption of quadratic cost of effort), as the value of the prize increases, so does the
difference between a(n, σϵ, V) and a(n + 1, σϵ, V) (see in Figure 2b how the gap between
the marginal benefits of effort for tournament of size 4 and tournament of size 10 increases
with V). Therefore, as V increases, it becomes more costly, in terms of reduced effort, to
increase the size of the tournament by one agent. Hence, n∗

A is decreasing in V.
A similar logic explains why the optimal size is increasing in the variance of ability

even though σθ tends to depress effort. An increase in variance reduces the loss in effort
terms from increasing the size of the tournament (see Figure 2c for an illustration of this
reduced difference). Further, greater variance in abilities not only increases the (expected)
quality of the promoted agent, but it also enhances the selection gain from adding one
agent, as the chance of getting a high-ability agent increases (see Figure 3b, where the
distance between the expected ability of the winner of a tournament of size 10 and the
expected ability of the winner of a tournament of size 4 is much larger for high than for
low σθ).

5.2. Optimal Tournament Size When the Principal Cares About Total Effort

Situations when the principal values total effort are quite common. For example,
a profit-maximizing firm seeks to maximize the performance of its semi-independent
divisions competing in different markets. Similarly, an editor wants to increase the quality
of reporting among all journalists. Totalitarian leaders aim to maximize the performance of
all party members—whether regional heads (Li & Zhou, 2005; Lu & Landy, 2014; Maskin
et al., 2000) or rank-and-file members (Montagnes & Wolton, 2019).

The next Lemma establishes that while individual effort is decreasing and convex in n,
total effort is increasing and concave in n.

Lemma 1. Total equilibrium effort na(n, σθ , V) is strictly increasing (i.e., (n + 1)a(n + 1, σθ , V)

> na(n, σθ , V)) and strictly concave (i.e., (n′′ + 1)a(n′′ + 1, σθ , V)− n′′a(n′′, σθ , V) < (n′ + 1)
a(n′ + 1, σθ , V)− n′a(n′, σθ , V) for all n′′ > n′).

We can then use Lemma 1 to establish the properties of the optimal tournament
size—denoted as n∗

T—when the principal cares about total effort.

Proposition 6. When g(a(n, ·), . . . , a(n, ·)) = na(n, ·), Equation (10) has a unique maximum
n∗

T with the following properties:

(i) n∗
T ≥ n∗

A;
(ii) n∗

T is increasing with V;
(iii) n∗

T is decreasing with ση .

When the principal cares about individual effort, an increase in tournament size
only improves selection. In contrast, when the principal values total effort, increasing the
size of the tournament has a positive effect on the effort (na(n, ·)) and selection (θW(n, ·))
components of her objective function. As a direct consequence, the principal has more
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incentive to increase the size of the tournament in the latter case, and this is reflected in
point (i) of Proposition 6.

Points (ii) and (iii) follow from similar reasoning as for Proposition 5. Observe,
however, that since total effort is increasing with n, an increase in V tends to magnify
the benefit of adding contestants. Consequently, n∗

T is increasing with V. The impact of
ση , in turn, is due to its negative impact on effort (which attenuates the positive effect of
increasing tournament size) and selection (as higher performances are more likely to be
due to luck than ability).

Notice that Proposition 6 says nothing about the effect of an increase in the variance
of abilities. This results from the conflicting effects of increased σθ on the marginal benefit
of adding a participant. Greater variance in abilities, by depressing effort (Proposition 2),
mitigates the gain in total effort, whereas by improving θW(n, σθ , ση) (Proposition 4), it
enhances the selection gain.

6. Discussion
Any hierarchical structure presupposes promotion—the selection of the agent(s) most

able to perform at the higher level. In turn, promotion generates incentives akin to tourna-
ments. Consequently, tournaments should primarily be understood as a selection mecha-
nism rather than a scheme to promote effort.

Not surprisingly, a large body of work on tournaments in economics has long es-
tablished that (sufficiently complete) contracts always generate higher output than tour-
naments (Green & Stokey, 1983; Nalebuff & Stiglitz, 1983; Prendergast, 1999). But this
literature misses much of the story. As in elections (Fearon, 1999), effort in promotion-
based hierarchies is a by-product of selection incentives, as competing agents attempt to
manipulate the principal’s evaluation of their ability.

Because promotions are intrinsically a selection mechanism, the principal cannot
commit to any fixed promotion standards other than promoting the agent with the highest
expected ability. Any setting that presupposes other promotion rules falls short of Fearon’s
(1999) critique.

Agents’ efforts do not matter at the time of promotion, but they do affect the design of
the tournament. Importantly, we cannot evaluate the effectiveness of a tournament without
a proper understanding of the principal’s objective. When she values total effort, tourna-
ments tend to be large and generate low individual effort. When she values individual
effort, tournaments are relatively smaller and generate relatively high effort. When the
principal’s objective is unobservable to researchers, the relationship between size and the
value of promotion can help to recover it. Indeed, the correlation is positive if the principal
values total effort.

We derived our results under additive separability of ability and effort. The qualitative
story, however, carries over if output is instead multiplicative, qi = θiai + ηi, where each θi is
drawn from the same distribution and remains unknown to the agent when choosing effort.
In that setting, a higher realization of θi still makes effort more valuable, so equilibrium
effort again hinges on the probability that an extra unit of effort shifts the promotion
ranking. Although the algebra becomes less transparent—agents must reason about the
product θa rather than a simple sum—the central comparative statics insight survives: once
the tournament has more than two contestants, the expected output of the leading rival
continues to rise with tournament size, preserving the accountability–selection tradeoff
highlighted in the paper.

We also assume that the principal can perfectly control the number of tournament
participants. This can easily be accomplished by an autocrat (who can include agents and
exclude others, without too much concern for participation constraints). This may be more
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difficult in democratic settings. We believe that democratic leaders have other tools at their
disposal to obtain tournaments of optimal size. For example, they can manipulate rewards
or costs to participate in a tournament.11 Yet, the prevalence of two-candidate elections
(or rather elections with only two viable candidates), despite their inefficiency for voters
(Remark 1), suggests that the incentives of those who design tournaments—office-holders—
may be distinct from the incentives of the principal within a tournament—the electorate.
We leave the analysis of this question for future research.
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Appendix A. Properties of Agents’ Effort
Throughout the Appendix, we assume that ϵ is distributed over [−ϵ, ϵ] (with ϵ not

necessarily finite). Denote F̂ϵ(·) and f̂ϵ(·) as the associated standardized (resp.) cumulative
distribution function (CDF) and probability density function (pdf). Since fη(·) and fθ(·)
are symmetric and unimodal around 0, and η and θ are independent, fϵ(·) is symmetric
and unimodal around 0. Consequently, f ′ϵ(ϵ) = − f ′ϵ(−ϵ) over the relevant domain.

In this section, we establish properties of the agents’ level of effort. In doing so, we
prove Propositions 1 and 2.

Proof of Proposition 1. As explained in the text, agent i’s objective is

max
ai

Ki(ai) = VPr(Promoted|ai)− c(ai)

Denote a as the (symmetric) effort of all other agents. The probability that i is promoted
is as follows (recall that ·̂ indicates the standardized distribution): Pr(Promoted|ai) =∫ ϵ
−ϵ

1
σϵ

F̂ϵ

(
ai−a+ϵ

σϵ

)n−1
f̂ϵ

(
ϵ
σϵ

)
dϵ.

The first order condition is

K′
i(ai) = V

∫ ϵ

−ϵ

n − 1
σ2

ϵ
F̂ϵ

(
ai − a + ϵ

σϵ

)n−2
f̂ϵ

(
ai − a + ϵ

σϵ

)
f̂ϵ

(
ϵ

σϵ

)
dϵ − c′(ai) ≤ 0 (A1)

Imposing symmetry, we obtain that the agent’s effort in the symmetric equilibrium—a—is
implicitly defined by

c′(a) = V
∫ ϵ

−ϵ
fϵ(ϵ)dFϵ(ϵ)

n−1 =
V
σ2

ϵ

∫ ϵ

−ϵ
(n − 1)F̂

(
ϵ

σϵ

)n−2
f̂
(

ϵ

σϵ

)2
dϵ (A2)

Accordingly, we concentrate on the symmetric equilibrium derived in Proposition X. Stan-
dard arguments imply that this equilibrium is in fact the only one satisfying the usual
regularity and stability criteria; we therefore do not reproduce those arguments here.
In what follows, we look at the property of effort in the symmetric equilibrium. Denote
the equilibrium effort a(n, σϵ, V) to be implicitly defined by Equation (A2). To establish
Proposition 2, it is useful to denote the equilibrium marginal benefit of effort as follows:
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b(n, σϵ, V) :=
V
σ2

ϵ

∫ ϵ

−ϵ
(n − 1)F̂

(
ϵ

σϵ

)n−2
f̂
(

ϵ

σϵ

)2
dϵ (A3)

Lemma A1. The marginal benefit of effort is defined as follows:
1. Linearly increasing in V;
2. Decreasing and convex in the variance σϵ;
3. Decreasing and concave in the number of participants n for n ≥ 3.

Proof. The proof of point 1 follows directly from an examination of Equation (A3) and is
thus omitted.

Regarding points 2 and 3, first we use a change of indices (z = ϵ/σϵ) to rewrite b(·) as

b(n, σϵ, V) :=
V
σϵ

∫ ϵ/σϵ

−ϵ/σϵ

(n − 1)F̂(z)n−2 f̂ (z)2dz (A4)

By integrating by parts, we then obtain

b(n, σϵ, V) =
V
σϵ

[
F̂(z)n−1 f̂ (z)

]ϵ/σϵ

−ϵ/σϵ

− V
σϵ

∫ ϵ/σϵ

−ϵ/σϵ

F̂(z)n−1 f̂ ′(z)dz

=
V
σϵ

f̂
(

ϵ

σϵ

)
− V

σϵ

∫ ϵ/σϵ

0
F̂(z)n−1 f̂ ′(z)dz − V

∫ 0

−ϵ/σϵ

F̂(z)n−1 f̂ ′(z)dz

=
V
σϵ

f̂
(

ϵ

σϵ

)
− V

σϵ

∫ ϵ/σϵ

0
F̂(z)n−1 f̂ ′(z)dz + V

∫ 0

ϵ/σϵ

F̂(−z)n−1 f̂ ′(−z)dz

=
V
σϵ

f̂
(

ϵ

σϵ

)
+

V
σϵ

∫ ϵ/σϵ

0
(− f̂ ′(z))

(
F̂(z)n−1 − (1 − F̂(z))n−1

)
dz (A5)

For point 2, differentiating b(·) then yields

∂b(n, σϵ, V)

∂σϵ
=− b(n, σϵ, V)

σϵ
− Vϵ

σ3
ϵ

f̂ ′
(

ϵ

σϵ

)
+

V
σϵ

(
− ϵ

σ2
ϵ

)(
− f̂ ′

(
ϵ

σϵ

))
=− b(n, σϵ, V)

σϵ
< 0 (A6)

It can then be checked that ∂2b(n,σϵ ,V)
(∂σϵ)2 > 0.

For point 3, denote B(n, k, σϵ, V) = b(n + k, σϵ, V)− b(n, σϵ, V).12 First, notice that for
all n ≥ 2,

B(n, 1, σϵ, V) =
V
σϵ

∫ ϵ/σϵ

0
(− f̂ ′(z))

((
F̂(z)n − (1 − F̂(z))n

)
−

(
F̂(z)n−1 − (1 − F̂(z))n−1

))
dz

=− V
σϵ

∫ ϵ/σϵ

0
(− f̂ ′(z))

(
F̂(z)n−1(1 − F̂(z))− (1 − F̂(z))n−1 F̂(z)

)
dz

=− V
σϵ

∫ ϵ/σϵ

0
(− f̂ ′(z))F̂(z)(1 − F̂(z))

(
F̂(z)n−2 − (1 − F̂(z))n−2

)
dz (A7)

Clearly, B(n, 1, σϵ, V) < 0. Since B(n, k, σϵ, V) = (b(n + 1, σϵ, V) − b(n, σϵ, V)) + (b(n +

2, σϵ, V) − b(n + 1, σϵ, V)) + · · · + (b(n + k, σϵ, V) − b(n + k − 1, σϵ, V)), or equivalently,

B(n, k, σϵ, V) =
k−1
∑

j=0
B(n + j, 1, σϵ, V), we obtain B(n, k, σϵ, V) < 0.

To prove the concavity argument, we use the following claim:

Claim A1. B(n, 1, σϵ, V) < B(n, 1, σϵ, V) for all n > n ≥ 4.
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Proof. To prove the claim, define the function Q(x, α) = xα − (1 − x)α for all x ∈ [1/2, 1]
and α ≥ 2. Notice that Q

(
F̂(z), n − 2

)
= F̂(z)n−2 − (1 − F̂(z))n−2 for all z ∈ [0, ϵ/σϵ]. It

is thus sufficient to show that Q(x, α) is decreasing in α (strictly for some x ∈ [1/2, 1]) to
prove the claim.

Since the function is C∞ in both arguments for x ∈ [1/2, 1] and α ≥ 2, we obtain

G(x) =
∂Q(x, α)

∂α
= ln(x)xα − ln(1 − x)(1 − x)α

Observe that G(1/2) = G(1) = 0. Further,

G′(x) =xα−1(1 + α ln(x)) + (1 − x)α−1(1 + α ln(1 − x))

G′′(x) =(α − 1)
(

xα−2(1 + ln(x))− (1 − x)α−2(1 + ln(1 − x))
)
+ α

(
xα−2 − (1 − x)α−2

)
Observe that 1 + α ln(x) ≥ 0 ⇔ x ≥ exp(−1/α) and 1 + α ln(1 − x) ≥ 0 ⇔ x ≤
1 − exp(−1/α). Notice that since α ≥ 2, exp(−1/α) > 1/2. This implies that
1 + α ln(1 − x) < 0 for all x ≥ 1/2. Further, G′(x) < 0 for all x ∈ [1/2, exp(−1/α)]

and G′′(x) > 0 for all x ∈ [exp(−1/α), 1]. Putting together all the properties of G(·), we
obtain that G(x) < 0 for all x ∈ (1/2, 1), which proves the claim.

Using the claim, for all n > n ≥ 4 and all k ≥ 1, we thus have B(n, k, σϵ, V) =
k−1
∑

j=0
B(n +

j, 1, σϵ, V) <
k−1
∑

j=0
B(n + j, 1, σϵ, V) = B(n, k, σϵ, V). To complete the proof, notice that

B(4, 1, σϵ, V)− B(3, 1, σϵ, V) =
V
σϵ

∫ ϵ/σϵ

0
(− f̂ ′(z))F̂(z)(1 − F̂(z))×(

F̂(z)2 − (1 − F̂(z))2 −
(

F̂(z)− (1 − F̂(z))
))

dz = 0

Thus, point 3 holds for all n ≥ 3.

Remark A1. The marginal benefit of effort is the same in tournaments with two and three participants.

Proof. See Equation (A7), with n = 2.

Remark A2. For n ≥ 3, effort is constant in the number of players if and only if ϵ is uniformly
distributed over [−ϵ, ϵ].

Proof. If ϵ is uniformly distributed over [−ϵ, ϵ], then f̂ ′ϵ(z) = 0 for all z ∈ [0, ϵ/σϵ] and
B(n, 1, σϵ, V) = 0 for all n. If ϵ does not follow a uniform distribution, then there exists
z ∈ (0, ϵ/σϵ), such as f ′ϵ(z) > 0. By Equation (A7), then B(n, 1, σϵ, V) > 0.

Proof of Proposition 2. The proof follows directly from Lemma A1 and the convexity
of c(·).

Proof of Corollary 1. Observe that (ignoring arguments whenever possible)

c′′(a)
(

∂a(n, σϵ, V)

∂V

)2

+ c′′(a)
∂2a(n, σϵ, V)

∂V2 =
∂2b(n, σϵ, V)

∂V2

Since ∂2b(n,σϵ ,V)
∂V2 = 0 by Lemma A1 and c′′′(·) ≤ 0 by assumption, the result holds.

A similar reasoning holds for σϵ, noting that ∂2b(n,σϵ ,V)
∂V2 < 0.
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For the concavity in n, denote h(·) := (c′)−1(·). Notice that h(·) is increasing and
convex, given the properties of c′(·). The effort is concave in n if and only if for all n > n
and all k ≥ 1,

a(n + k, σϵ, V)− a(n, σϵ, V)−
(
a(n + k, σϵ, V)− a(n, σϵ, V)

)
≥ 0

⇔ h(b(n + k, σϵ, V))− h(b(n, σϵ, V))−
(
h(b(n + k, σϵ, V))− h(b(n, σϵ, V))

)
≥ 0 (A8)

By Lemma A1, B(n, k, σϵ, V) > B(n, k, σϵ, V). By the convexity of h(·), Equation (A8)
holds.13

Finally, we establish some additional properties of the marginal benefit of effort.

Lemma A2. The marginal benefit of effort satisfies, for all n ≥ 2 and k ≥ 1, the following:

(i) ∂2b(n,σϵ ,V)
∂V∂σϵ

< 0;

(ii) ∂B(n,k,σϵ ,V)
∂V < 0;

(iii) B(n,k,σϵ ,V)
∂σϵ

> 0;

(iv) (n + 1)b(n + 1, σϵ, V)− nb(n, σϵ, V) > 0;
(v) (n+ 1)b(n+ 1, σϵ, V)− nb(n, σϵ, V) < (n+ 1)b(n+ 1, σϵ, V)− nb(n, σϵ, V), n > n ≥ 2.

Proof. The proof of point (i) follows directly from Equation (A6) and ∂b(n, σϵ, V)/∂V > 0.
The proof of point (ii) follows directly from examination of Equation (A7) and B(n, k, σϵ, V)

=
k−1
∑

j=0
B(n + j, 1, σϵ, V).

To prove point (iii), observe that B(n,1,σϵ ,V)
∂σϵ

= V
σ2

ϵ

∫ ϵ/σϵ

0 (− f̂ ′(z))F̂(z)(1 − F̂(z))(
F̂(z)n−2 − (1 − F̂(z))n−2

)
dz > 0 by Equation (A7), so B(n,k,σϵ ,V)

∂σϵ
< 0.

To prove point (iv), we obtain, using Equation (A5) for n ≥ 2,

(n + 1)b(n + 1, σϵ, V)− nb(n, σϵ, V) =
V
σϵ

∫ ϵ/σϵ

0
(− f̂ ′(z))

[
(n + 1)

(
F̂(z)n − (1 − F̂(z))n

)
− n

(
F̂(z)n−1 − (1 − F̂(z))n−1

)]
dz

=
V
σϵ

∫ ϵ/σϵ

0
(− f̂ ′(z))

[(
F̂(z)n − (1 − F̂(z))n

)
− nF̂(z)(1 − F̂(z))(F̂(z)n−1 − (1 − F̂(z))n−1

)]
dz (A9)

Consider for x ∈ [1/2, 1] and n ≥ 1, n ∈ N the function

H(x, n) :=(n + 1)
(
xn − (1 − x)n)− n

(
xn−1 − (1 − x)n−1)

:=xn − (1 − x)n − nx(1 − x)(xn−1 − (1 − x)n−1)

Observe that H(1/2, n) = 0 for all n ≥ 1. We prove by induction that H(x, n) > 0 for all
x ∈ (1/2, 1] and all n ≥ 1. For n = 1, observe that H(x, 1) = 2x − 1 > 0 for all x > 1/2.
Suppose that the claim holds for n = d ≥ 1. Denote Hx(x, n) as the (partial) derivative of
H(·) with respect to its x. Observe that

Hx(x, d + 1) =(d + 1)(xd − (1 − x)d)− (d + 1)dx(1 − x)(xd−1 − (1 − x)d−1)

− (d + 1)(1 − 2x)(xd − (1 − x)d)

=(d + 1)H(x, d) + (d + 1)(2x − 1)(xd − (1 − x)d) > 0,
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where the inequality follows from x > 1/2 and H(x, d) > 0 (by induction). Given
H(1/2, d + 1) = 0, this implies that H(x, d + 1) > 0 for all x ∈ (1/2, 1].

Observe that H(F̂(z), n) =
(

F̂(z)n − (1 − F̂(z))n
)
− nF̂(z)(1 − F̂(z))(F̂(z)n−1 − (1 −

F̂(z))n−1) > 0 for all z > 0, so (n + 1)b(n + 1, σϵ, V)− nb(n, σϵ, V) > 0 by Equation (A9).
For point (iii), notice that for all n ≥ 2,

H(x, n + 1)−H(x, n) =
(
xn+1 − (1 − x)n+1)− (

xn − (1 − x)n)
− x(1 − x)

[
(n + 1)

(
xn − (1 − x)n)− n

(
xn−1 − (1 − x)n−1)

)]
=− x(1 − x)

(
xn−1 − (1 − x)n−1)− x(1 − x)H(x, n) < 0

From Equation (A8), (n + 1)b(n + 1, σϵ, V)− nb(n, σϵ, V) = V
σϵ

∫ ϵ/σϵ

0 (− f̂ ′(z))H(F̂(z), n)dz
for all n ≥ 2. Using the properties of H(x, n), (n + 1)b(n + 1, σϵ, V) − nb(n, σϵ, V) >

(n + 2)b(n + 2, σϵ, V)− (n + 1)b(n + 1, σϵ, V) for all n ≥ 2. The claim follows by iterating
the inequality.

Proof of Corollary 2. This is directly determined from Lemma A2.

Appendix B. Properties of Tournament Winner
As explained in the text, the principal selects (in the symmetric equilibrium) the agent

with the highest performance. Since the principal correctly anticipates all agents’ efforts, this
is equivalent to selecting the highest realization of the uncertainty component ϵ = θ + η. De-
note ϵW(n, σθ , ση) = E(max

i
ϵi). We thus have ϵW(n, σθ , ση) =

∫ ∞
−∞ ϵdFϵ(ϵ)n. Using the stan-

dardized pdf and CDF, this is equivalent to ϵW(n, σθ , ση) =
∫ ∞
−∞ n ϵ

σϵ
F̂ϵ(

ϵ
σϵ
)n−1 f̂ϵ(

ϵ
σϵ
)dϵ =

σϵ

∫ ∞
−∞ nzF̂ϵ(z)n−1 f̂ϵ(z)dz (the second equality follows from change of indices). Hence,

we have
ϵW(n, σθ , ση) = σϵ

∫ ∞

−∞
zdF̂ϵ(z)n (A10)

The expected competence of the tournament winner (using ϵ = θ + η) is then

θW(n, σϵ, ση) = E
(
θ|θ + η = ϵW(n, σθ , ση)

)
(A11)

Proof of Proposition 3. To prove the proposition, we just need to show that eW(n, σθ , ση)

is increasing with n (since θ and θ + η are positively correlated). Notice that for all ϵ ∈ R,
F̂(ϵ)n ≥ F̂(ϵ)n+1 (with strict inequality for all finite ϵ). Hence, F̂(·)n+1 strictly first-order
stochastically dominates F̂(·)n. Hence, ϵW(n, σθ , ση) > ϵW(n, σθ , ση) for all n > n.

To prove concavity, it is useful to denote S(n, k) = ϵW(n + k, σθ , ση)− ϵW(n, σθ , ση).
Using Equation (A10),

S(n, k) = σϵ

∫ +∞

−∞
xdF(x)n+k − σϵ

∫ +∞

−∞
xdF(x)n

= σϵ

∫ +∞

−∞
xd(F(x)n+k − F(x)n)

= σϵ[x(F(x)n+k − F(x)n)]|+∞
−∞ − σϵ

∫ +∞

−∞
(F(x)n+k − F(x)n)dx

= σϵ

∫ +∞

−∞
(F(x)n − F(x)n+k)dx

= σϵ

∫ +∞

−∞
F(x)n(1 − F(x)k)dx (A12)
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The third equality follows from integration by parts. This implies that

S(n, k)− S(n, k) = σϵ

∫ +∞

−∞
[F(x)n − F(x)n](1 − F(x)k)dx (A13)

For all n > n and k ≥ 1, S(n, k)− S(n, k) < 0.

Imposing the normal distributions on θ and η, θW(·) can be expressed as

θW(n, σϵ, ση) =
σ2

θ

σ2
θ + σ2

η

ϵW(n, σϵ, ση)

θW(n, σϵ, ση) =
σ2

θ√
σ2

θ + σ2
η

∫ ∞

−∞
zdF̂ϵ(z)n, (A14)

where the second line uses σϵ =
√

σ2
θ + σ2

η .

Proof of Proposition 4. Points 1 and 2 follow from taking the derivative of σ2
θ√

σ2
θ +σ2

η

with

respect to σ2
θ and σ2

η , respectively.

We now prove some additional properties of selection in tournament. To do so, it is
useful to define

∆W(n, k, σϵ, ση) := θW(n + k, σϵ, ση)− θW(n, σϵ, ση) (A15)

Lemma A3. For all n ≥ 2 and all k ≥ 1, ∆W(n, k, σϵ, ση) is increasing with σθ and decreasing
with ση .

For all n > n and k ≥ 1, ∆W(n, k, σϵ, ση) − ∆W(n, k, σϵ, ση) is decreasing with σθ and
increasing with ση .

Proof. Observe that, using Equations (A11) and (A12),

∆W(n, k, σϵ, ση) =
σ2

θ√
σ2

θ + σ2
η

S(n, k),

with S(n, k) > 0 defined in the proof of Proposition 3. The claim then follows from a similar
reasoning as in the proof of Proposition 4.

The comparative statics are reversed for ∆W(n, k, σϵ, ση) − ∆W(n, k, σϵ, ση), since
S(n, k)− S(n, k) < 0 by Proposition 3.

Appendix C. Optimal Tournament Design
Throughout, we use the notation h(·) := (c′)−1(·). We provide general conditions for

our comparative results to hold before imposing the assumption c(a) = a2

β . Further, we

assume that θ and η are normally distributed with respective variances σ2
θ and σ2

η .
The existence of n∗

A and n∗
T is guaranteed by the properties of CP(n) detailed in the text

and the bounded nature of the choice set available to the principal (i.e., n ∈ {2, · · · , nmax}).

Proof of Remark 1. By Remark A1, effort is the same in tournaments with two or three
competitors. When the principal cares about average effort, the marginal gain from increas-
ing the tournament from two to three players is thus θW(3, σθ , ση)− θW(2, σθ , ση). When
the principal cares about total effort, the marginal gain from increasing the tournament
from two to three players is thus h(b(3, σϵ, V)) + θW(3, σθ , ση)− θW(2, σθ , ση). In both cases,
the principal is worse off with a tournament with more than two competitors only if the
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condition stated in the text of the remark holds (note that the condition is also sufficient for
average-effort tournament).

Proof of Proposition 5. By Milgrom and Shannon (1994), the solution is increasing (de-
creasing) in a parameter if the objective function exhibits the single-crossing property which
is implied by showing increasing (decreasing) differences in the parameter.

Denote the benefit of increasing the size of a tournament as

KA(n, σθ , ση , V) = ωa(n, ση , σθ , V) + (1 − ω)θW(n, ση , σθ) (A16)

Further, let, for n > n ≥ 2,

KA(σθ , ση , V) = KA(n, σθ , ση , V)− KA(n, σθ , ση , V). (A17)

The objective function exhibits increasing (decreasing) differences in σθ , ση , or V whenever
KA(σθ , ση , V) is increasing (decreasing) in the variable.

To prove point (i), observe that, using Equations (A6) and (A14), and

σϵ =
√

σ2
θ + σeta2,

∂KA(σθ , ση , V)

∂σ2
θ

=− ω
1

2σ2
ϵ

(
b(n, σϵ, V)h′(b(n, σϵ, V))− b(n, σϵ, V)h′(b(n, σϵ, V))

)
+ (1 − ω)

σ2
θ
2 + σ2

η

σ2
θ σϵ

(
θW(n, σθ , ση)− θW(n, σθ , ση)

)
Imposing the quadratic cost assumption (i.e., h′(a) = β), ∂KA(σθ ,ση ,V)

∂σ2
θ

> 0 by Corollary 2

and Proposition 3.14

The proof of points (ii) and (iii) follows from a similar reasoning in noting that θW(·)
does not depend on V.

Proof of Proposition 6. The proof again uses the increasing (decreasing) differences prop-
erty of the objective function. Denote the benefit of a tournament as

KT(n, σθ , ση , V) = ωna(n, ση , σθ , V) + (1 − ω)θW(n, ση , σθ) (A18)

Further, let, for n > n ≥ 2,

KT(σθ , ση , V) = KT(n, σθ , ση , V)− KT(n, σθ , ση , V). (A19)

To prove point (i), observe that, using Equations (A9) and (A14), and σϵ =
√

σ2
θ + σeta2,

∂KT(σθ , ση , V)

∂σ2
η

=− ω
1

2σ2
ϵ

(
nb(n, σϵ, V)h′(b(n, σϵ, V))− nb(n, σϵ, V)h′(b(n, σϵ, V))

)
− (1 − ω)

1
σ2

ϵ

(
θW(n, σθ , ση)− θW(n, σθ , ση)

)
Imposing the quadratic cost assumption (i.e., h′(a) = β), ∂KT(σθ ,ση ,V)

∂σ2
η

< 0 by Lemma A1

and Proposition 3.15

The proof of point (ii) follows from a similar reasoning noting that θW(·) does not
depend on V.
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Appendix D. Tournaments with Proportional Prize Price
In this last Appendix, we study some properties of tournament when the prize in-

creases with the size of the tournament. Throughout, we focus on the case when luck
and ability are both normally distributed (η̃ ∈ N (0, σ2

η) and θ̃ ∼ N (0, σ2
θ )). Recall that

ϵ = θ + η.

Remark A3. Consider a proportional prize increase in a tournament, with a prize equal to nv. As
the size of the tournament increases, the effort (ai) of each agent increases.

Proof of Remark A3. We want to show that effort is increasing in n.
The new equilibrium effort for agent i is defined by

c′(ai) = nv
∫

fϵ(x) dFϵ(x)n−1. (A20)

Adapting from Proposition 2, it is sufficient to show that b(n + 1, σϵ, nv) > b(n, σϵ, nv) to
prove increasing effort. By integration-by-parts, b(n, σϵ, nv) = nv

(
fϵ(x)Fϵ(x)n−1)|bigg|+∞

−∞ −
nv

∫ +∞
−∞ Fϵ(x)n−1 f ′ϵ(x) dx, which yields b(n, σϵ, nv) = −v

∫ +∞
−∞ nFϵ(x)n−1 f ′ϵ(x) dx. We exploit

the integration-by-parts technique again, which yields

b(n, 1, v) = −v
∫ +∞

−∞

f ′ϵ(x)
fϵ(x)

dFϵ(x)n (A21)

= −v
(

f ′ϵ(x)
f (x)

Fϵ(x)n
)∣∣∣∣+∞

−∞
−

∫ +∞

−∞
Fϵ(x)nd

f ′ϵ(x)
f (x)

(A22)

We can then write the difference in effort between n- and n + 1-person tournament
as follows:

b(n + 1, 1, v)− b(n, 1, v)

=
f ′ϵ(x)
fϵ(x)

[Fϵ(x)n − Fϵ(x)n+1]

∣∣∣∣+∞

−∞
+

∫ +∞

−∞
Fϵ(x)n+1d

f ′ϵ(x)
fϵ(x)

−
∫ +∞

−∞
Fϵ(x)nd

f ′ϵ(x)
fϵ(x)

=
∫ +∞

−∞
(Fϵ(x)n+1 − Fϵ(x)n)

f ′′ϵ (x) fϵ(x)− f ′ϵ(x)2

fϵ(x)2 d x

=
∫ +∞

−∞
(Fϵ(x)n+1 − Fϵ(x)n)

(
− 1

σ2
ϵ

)
d x

= − 1
σ2

∫ +∞

−∞
(Fϵ(x)n+1 − Fϵ(x)n)d x

= − 1
σ2

∫ +∞

0
(Fϵ(x)n+1 − Fϵ(x)n) + [(1 − Fϵ(x))n+1 − (1 − Fϵ(x))n]d x (A23)

To see how we reach (A23), notice that in the second equality, we have f ′(x)
f (x) [F(x)n −

F(x)n+1]|+∞
−∞ = 0 given the assumption of normal distributions. Also note that for

any normal distribution with mean 0 and variance σ2, we have f ′′(x) f (x)− f ′(x)2

f (x)2 =

(−σ2+x2

σ4 ) f (x)2− x2

σ4 f (x)2

f (x)2 =
−σ2

σ4 f (x)2

f (x)2 = − 1
σ2 < 0.

To finish the proof, it is enough to note that the first and second bracketed terms in
line (A23) are negative, and so the whole expression is positive as required.

Remark A4. There exists v such that, for prizes v > v, the ex ante utility of agents is decreasing.
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Proof of Remark A4. Consider the agent’s FOC as

c′(ai) = V
∫

Fn−1
ϵ (x) fϵ(x) dx.

Let V
∫

Fn−1
ϵ (x) fϵ(x) = VP, and then the equilibrium effort a∗ is

a∗ = (c′−1)(VP).

The ex ante total cost for the agent is thus c((c′−1)(VP)), which follows as

∂c((c′−1)(VP))
∂V

=
c′(.)P

c′′(c−1(VP))
> 0 (A24)

And

∂2c((c′−1)(VP))
∂2V

=
(c′′)2 − c′c′′′

(c′′)2 (A25)

If we assume that (c′′)2 − c′c′′′ > 0, then the second order of the total cost function
(Equation (A25)) is strictly convex; hence, the total benefit is concave. There would thus
exist a V beyond which the total benefit starts declining.

Notes
1 Note that throughout the paper, we use a forward-looking notion of accountability: An institution is more accountable when it

gives agents stronger incentives to exert costly effort before outcomes are realized.
2 In our model, effort is always beneficial for the principal. This does not have to be the case. For example, Hvide and Kristiansen

(2003) and Fang and Noe (2022) highlight that tournaments can lead to excessive risk-taking from the principal’s perspective.
3 This assumption is consistent with evidence on politicians’ skills (albeit in Sweden) collected in Dal Bó et al. (2017).
4 Our assumption that output is a linear sum of effort, ability, and noise is closest to the model of Lazear and Rosen (1981), but see

Nalebuff and Stiglitz (1983) for a model where effort and shocks are not linearly separable.
5 Equivalently, the principal may care about agent output rather than their effort. This generally does not affect our results (recall

agents not considered for promotion produce no output) but only complicates the exposition (see note 10 for more details). We
define g(·) over n and not n so that the function is well defined for all tournament sizes.

6 Absent this assumption on variances, selection plays a limited role. The competition between agents resembles an all-pay
contest with equilibrium supported by mixed strategies over a support that includes zero effort. We implicitly assume that the
second-order conditions for the maximization problems are well defined and hold in what follows.

7 Furthermore, as the proof of Proposition 2 shows, if the single-peaked assumption is reversed and f ′ϵ(ϵ) > 0 for all ϵ > 0, the
result is reversed. Assuming the existence of a symmetric equilibrium, effort is increasing with the size of the tournament.

8 Hence, the null effect of tournament size on effort found in Orrison et al. (2004) is a knife-edge result that relies on their
distributional assumption.

9 See the discussion around Corollary 2. All our results hold as long as |c′′′(a)| < c for all a ≥ 0, with c strictly positive but not
too large.

10 If the principal cares about agents’ outputs rather than effort, her objective function becomes ωE⃗ϵg(a(n, ·) + ϵ1, . . . , a(n, ·) +
ϵn, 0 . . . , 0) + (1 − ω)θW(n, ·) − CP(n), with ϵ⃗ = (ϵ1, . . . , ϵn). In this case, when the principal seeks to maximize the lowest
(highest) performance, and the objective function reduces—using the symmetry—to ωa(n, ·) + (1 − ω)θW(n, ·) − ωϵW(n, ·)
(ωa(n, ·) + (1 − ω)θW(n, ·) + ωϵW(n, ·)). All our results remain unchanged for the case of maximizing the best performer and
require ω sufficiently small for the case of maximizing the lowest performer. Focusing on agents’ effort allows us to keep the
objective function the same in all three cases described in the text.

11 An alternative approach would be to vary the degree of centralization in a given state. Greater centralization can be understood
as greater tournament. Greater centralization would, however, also increase the value of the prize. Hence, it is different from
simply varying the reward of the tournament winner or the cost of participation.
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12 In the text, we consider the slightly different form of differences b(n′′, σϵ, V)− b(n′, σϵ, V), where n′′ > n′ ≥ 2. Considering fixed
differences of size k allows for clearer proofs.

13 To see this, assume that n is a continuous variable (observe that b(·) is well defined for n continuous), and note that Equation (A8)

is equivalent to
∫ k

0

∫ n
n

∂2b(n,σϵ ,V)
∂n2 h′′(b(n, σϵ, V))dndn, with ∂2b(n,σϵ ,V)

∂n2 > 0 and h′′(·) ≥ 0.
14 Observe that the result still holds true as long as h′′(a) < h for all a ≥ 0 and h is strictly positive.
15 Observe that the result still holds true as long as h′′(a) > −h for all a ≥ 0 and h is strictly positive.
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