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Abstract

The development and evaluation of text classifiers in psychology depends on rigorous manual coding. Yet, the
evaluation of manual coding and computational algorithms is usually considered separately. This is problem-
atic because developing high-validity classifiers is a repeated process of identifying, explaining, and addressing
conceptual and measurement issues during both the manual coding and classifier development stages. To
address this problem, we introduce the Repeated Adjustment of Measurement Protocols (RAMP) method
for developing high-validity text classifiers in psychology. The RAMP method has three stages: manual coding,
classifier development, and integrative evaluation. These stages integrate the best practices of content analysis
(manual coding), data science (classifier development), and psychology (integrative evaluation). Central to this
integration is the concept of an inference loop, defined as the process of maximizing validity through repeated
adjustments to concepts and constructs, guided by push-back from the empirical data. Inference loops operate
both within each stage of the method and across related studies. We illustrate RAMP through a case study,
where we manually coded 21,815 sentences for misunderstanding (Krippendorff’s oo =.79), and developed
a rule-based classifier (Matthews correlation coefficient [MCC] = 0.22), a supervised machine learning clas-
sifier (Bidirectional Encoder Representations From Transformers; MCC = 0.69) and a large language model
classifier (GPT-40; MCC = 0.47). By integrating manual coding and classifier development stages, we were
able to identify and address a concept validity problem with misunderstandings. RAMP advances existing
methods by operationalizing validity as an ongoing dynamic process, where concepts and constructs are repeat-
edly adjusted toward increasingly widespread intersubjective agreement on their utility.

Translational Abstract

Text classifiers are algorithms that sort documents into categories. Modern text classifiers leverage artificial
intelligence (AI) and are tested by comparing their categorizations with those produced by human coders.
However, this human coding stage is rarely considered systematically. This is problematic because poor-
quality human classifications can be accurately reproduced by algorithms (garbage in, garbage out), creating
the illusion of a valid measure. To address this problem, we introduce the Repeated Adjustment of
Measurement Protocols (RAMP) method for developing and testing text classifiers. The method is designed
to ensure meaningful and accurate measurements of psychological concepts (e.g., personality and communi-
cation behaviors) in text. It formally integrates the best practices of content analysis (manual coding), data sci-
ence (classifier development), and psychology (integrative evaluation). We illustrate RAMP through a case
study on measuring misunderstandings in online dialogues. We developed three different text classifiers
using RAMP: one that counts words to identify misunderstandings, one that learns to reproduce manual coding
using human examples, and one that leverages an Al chatbot (OpenAI’s ChatGPT). By analyzing the problems
in human coding and text classifier output, our case study revealed problems with the underlying concept of
misunderstanding. RAMP reveals that high-validity measurement is an ongoing process, where guiding con-
cepts and constructs are continually being updated. To support the use of RAMP, we provide a checklist for
developing text classifiers, alongside all code and data for replicating the results reported in the case study.

Douglas Steinley served as action editor.

Alex Goddard (2 https://orcid.org/0000-0003-1382-2700

Alex Gillespie (2 https://orcid.org/0000-0002-0162-1269

The authors have no known conflict of interests to disclose. All data have
been made publicly available as the additional online materials on the Open
Science Framework (Goddard & Gillespie, 2025a) and can be accessed at
https:/osf.io/pedjy/. The code behind the analysis has been made publicly
available on GitHub (Goddard & Gillespie, 2025b) and can be accessed at
https:/github.com/alexiamhe93/RAMP_method.

Open Access funding provided by London School of Economics and
Political Science: This work is licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0; https:/creativecommons

.org/licenses/by/4.0). This license permits copying and redistributing the
work in any medium or format, as well as adapting the material for any
purpose, even commercially.

Alex Goddard served as lead for conceptualization, data curation, formal
analysis, investigation, methodology, project administration, software,
validation, visualization, writing—original draft, and writing—review and edit-
ing. Alex Gillespie served as lead for resources and supervision and served in
a supporting role for conceptualization, methodology, and writing—review
and editing.

Correspondence concerning this article should be addressed to Alex
Goddard, Department of Psychological and Behavioural Science, London
School of Economics and Political Science, Houghton Street, London
WC2A 2AE, United Kingdom. Email: a.j.goddard @lse.ac.uk


https://orcid.org/0000-0003-1382-2700
https://orcid.org/0000-0003-1382-2700
https://orcid.org/0000-0003-1382-2700
https://orcid.org/0000-0002-0162-1269
https://orcid.org/0000-0002-0162-1269
https://orcid.org/0000-0002-0162-1269
https://osf.io/pe4jy/
https://osf.io/pe4jy/
https://osf.io/pe4jy/
https://github.com/alexiamhe93/RAMP_method
https://github.com/alexiamhe93/RAMP_method
https://github.com/alexiamhe93/RAMP_method
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
mailto:a.j.goddard@lse.ac.uk
mailto:a.j.goddard@lse.ac.uk
mailto:a.j.goddard@lse.ac.uk
mailto:a.j.goddard@lse.ac.uk
mailto:a.j.goddard@lse.ac.uk
https://doi.org/10.1037/met0000787
https://doi.org/10.1037/met0000787
https://doi.org/10.1037/met0000787

2 GODDARD AND GILLESPIE

Keywords: text classification, construct validity, content analysis, large language models, conceptual clarity

Supplemental materials: https://doi.org/10.1037/met0000787.supp

Advanced text classifiers are increasingly used in psychological
research. However, there are few conventions for establishing their
validity (Birkenmaier et al., 2024). Rigorous manual coding is an
integral stage in developing a valid text classifier, yet this process
is rarely scrutinized (Song et al., 2020). This is problematic because
text classifiers can reliably and accurately reproduce low-validity
manual coding. To address this problem, we integrate the best prac-
tices for manual coding, classifier development, and psychometric
validation into a single iterative framework: the Repeated
Adjustment of Measurement Protocols (RAMP) method.

The RAMP method has three stages. The first stage employs con-
ventions from content analysis to generate a manually coded data set
(Krippendorff, 2019). The second stage uses a data science approach
to developing text classifiers, relying on withholding test data during
development (Donoho, 2017). The third stage assesses the concept
and construct validity of the classifier using an abductive process,
grounded in psychometric validation (Gillespie et al., 2024). While
each stage has been discussed in the literature, they have been concep-
tualized separately. RAMP integrates these stages, revealing the
importance of feedback from the latter stages (i.e., classifier develop-
ment and integrative evaluation) to the initial stage (i.e., conceptuali-
zation, manual coding). This backward propagating feedback, we
argue, is central to developing high-validity classifiers.

The engine of RAMP is the inference loop in which induction,
deduction, and abduction combine to incrementally increase the
construct validity of the classifier, and the validity of the underlying
concept. The inference loop underlies all three stages of RAMP, can
be applied to developing different types of classifiers, and conceptu-
alizes the process by which measurements and concepts are refined
over time across multiple studies.

We illustrate RAMP using a case study on measuring misunder-
standings (Laing et al., 1966) in social media data. We employed the
inference loop for manual coding, developing three different text clas-
sifiers (rule-based, supervised, and large language model [LLM]), and
for an integrative evaluation, where we uncovered a concept validity
problem with misunderstandings. To evaluate the effectiveness of iter-
ative inference loops, we compared our results to a noniterative
approach using the same data. We found that the RAMP method gen-
erates more reliable manual coding and more accurate text classifiers.
The case study thus showcases how inference loops, which reconcile
theory with data, power each stage of the method. We provide all
code and data for replicating the study, and a checklist for employing
and reporting the RAMP method (Appendix).

Validity in Psychological Text Classification

Validity is central to all measurement. RAMP focuses on two key
forms of validity: concept and construct validity. A concept is defined
as any term or idea that relates to a theory or model (Bringmann et al.,
2022). Concept validity is the degree to which a concept is justified
by a robust theoretical framework (Locke, 2012). A construct is
defined as any operationalization of a concept through a measurement
protocol. Construct validity refers to how well a protocol represents
concepts through its constructs (Cronbach & Meehl, 1955).

Concept and construct validity are prerequisites to conducting
rigorous empirical research and generating replicable findings
(Flake & Fried, 2020; Flake et al., 2022). The goal of science is
to establish intersubjective agreement about empirical findings,
defined as the process of scaffolding objectivity through the collec-
tive consensus of researchers (Freeman, 1973; Peirce, 1955; Popper,
1959). In psychology, intersubjective agreement on findings was
undermined when results, previously thought valid, failed to repli-
cate (Open Science Collaboration, 2015). These failures were ini-
tially attributed to poor statistical rigor (e.g., Nosek et al., 2018);
however, recent literature has also pointed to concept and construct
validity issues (Bringmann et al., 2022; Eronen & Bringmann, 2021;
Flake & Fried, 2020).

We introduce the inference loop to conceptualize how concept
and construct validity relate to the wider scientific process
(Figure 1). An inference loop is defined as the iterative process of
repeatedly adjusting a concept, construct, analysis, or finding follow-
ing new evidence and theorizing. The goal of an inference loop is to
build intersubjective agreement on the validity of knowledge pro-
duced at different steps in the scientific process. It is inspired by
the back-propagation algorithm that enables machine learning mod-
els to learn by updating their weights based on the results of a train-
ing iteration (Rumelhart et al., 1986). Such back-propagation
provides a powerful analogy for the repeated adjustment process
that enables learning (Lillicrap et al., 2020), not just at an individual
level, but also in science.

A concept is only valid if it is clearly delineated from other con-
cepts, robustly defined in theory, and operationalized in empirical
research (Bringmann et al., 2022; Locke, 2012). Importantly, new evi-
dence can always emerge to undermine concept validity (e.g., failure
to replicate and operationalization challenges). The same applies for

Figure 1
Locating Construct and Concept Validity Within the Research
Process
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constructs (Flake & Fried, 2020), for empirical studies (Banks et al.,
2016), and scientific findings (Freeman, 1973). Thus, inference
loops power every step of the scientific process, allowing for the back-
ward propagation of new evidence to adjust any of the previous steps.
Through the lens of inference loops, validity is not a static state but a
dynamic process for maximizing intersubjective agreement on utility
(i.e., what works; Gillespie et al., 2024).

Despite its importance, validity is rarely reported in psychological
studies (Flake et al., 2022). This issue extends to quantitative text
analysis, where data science has generally prioritized accurate pre-
dictions over measurement validity (Boyd & Schwartz, 2021;
Song et al., 2020). This is problematic because texts are an underuti-
lized and rich source of psychological data (Jackson et al., 2022).
Texts are generally unobtrusive, meaning they occur naturally with-
out interference from the researcher (Webb et al., 1966). This instills
them with ecological validity, meaning they reflect how people act
and behave outside of laboratory conditions (Albert & de Ruiter,
2018; Andersen, 2025).

Texts are increasingly analyzed using classifiers, which computa-
tionally assign a category (or categories) to a text. Classifiers are either
deductive or inductive, where the former involves sorting texts into
“known categories,” and the latter involves the generation of
“unknown categories” through clustering texts (Grimmer & Stewart,
2013, p. 268). The focus of our contribution is on deductive classifiers
because they aim to measure preexisting concepts, making them com-
parable to more traditional measurement instruments (e.g., surveys).

Rule-Based Classifiers

Rule-based classifiers employ a set of researcher-defined rules for
assigning categories to texts. The rule-based dictionary method was
the first text classification approach employed in psychology (Boyd
& Schwartz, 2021; Stone et al., 1966). It involves using word-
counting rules for representing a concept (if term X occurs, add 1
to the count). To illustrate, the words “happy” and “joy” might
imply the presence of positive emotions in a text, while “sad” and
“disgust” might imply negative emotions. These dictionaries are cre-
ated manually.

Rule-based dictionary classifiers became the conventional
method for quantifying text in psychology with the advent of the
Linguistic Inquiry and Word Count (LIWC) tool (Pennebaker &
Francis, 1999). LIWC’s ability to be used “off-the-shelf” made it
a go-to tool for psychological and social scientific research
(Grimmer & Stewart, 2013). It formalized word counting, making
it easy to use, and provided a large number of validated dictionaries
(Boyd et al., 2022; Pennebaker et al., 2015). Rule-based classifiers
are perfectly reliable in terms of reproducibility because they always
generate identical results if applied to the same data. This means
measurements can easily be replicated. Rule-based classifiers are
also transparent because one can observe how the rules are applied.

Compared to other rule-based classifiers, the LIWC dictionaries
benefit from ongoing evaluation and updating using psychometric
conventions (Boyd & Schwartz, 2021; Tausczik & Pennebaker,
2010). Researchers have extensively studied the predictive capabilities
of LIWC. For instance, meta-analyses have shown systematic correla-
tions between LIWC dictionaries and various personality scales
(Chen et al., 2020; Holtzman et al., 2019; Tackman et al., 2019).
These studies showed that the LIWC dictionaries have some construct
validity for measuring personality concepts. However, these studies

also highlighted how this construct validity has an upper bound
because rule-based classifiers struggle with measuring complex latent
concepts that are not manifest in simple word counts. To illustrate, the
meta-analyses employed LIWC dictionaries to predict personality
rather than measuring it directly. The effect sizes of the meta-analyses
were small (all » < .10 or Irl < .10), highlighting the limited construct
validity of using LIWC dictionaries for measuring personality in text
(Chen et al., 2020).

Rule-based classifiers’ main drawback is that they do not capture
the contextual meaning of words. Dictionaries represent a text by a
decontextualized “bag of words” that does not represent grammar or
word order (Grimmer & Stewart, 2013; Qader et al., 2019).
Although more complex rules are possible, dictionaries typically
count the frequency of words and ignore context (e.g., “not
happy” would still count as happy). Speech acts (word, utterance,
book, etc.) can mean very different things in different contexts
(van Dijk, 1977). Accordingly, dictionaries are limited by their per-
fect reliability; because dictionaries are fixed, they cannot adapt the
meaning of words to different contexts.

Supervised Machine Learning Classifiers

Supervised machine learning classifiers provide an alternative to
rule-based classifiers for measuring psychological concepts in text.
Machine learning is defined as “computer systems that automatically
improve their performance through experience” (Mitchell et al.,
1990, p. 417). Consistent with known and unknown classifier types
(Grimmer & Stewart, 2013), machine learning classifiers are either
“supervised,” which focus on deductive measurement, or “unsuper-
vised,” which focus on inductive clustering (Eichstaedt et al., 2021).
We only focus on supervised classifiers because they are deductive.

Supervised classifiers categorize texts through a statistical model
that is trained on data coded for the target categories. These data have
generally been produced through manually coding texts for concepts
(Song et al., 2020). Modern supervised classifiers employ deep
learning, which leverages artificial neural networks to represent
the input data (Urban & Gates, 2021). These networks are modeled
on the processes of representation found in biological neurons in
human and animal brains (Goodfellow et al., 2016).

Modern supervised classifiers quantify texts using dense vectors,
trained to understand the contextual meaning of words
(Chernyavskiy et al., 2021; Jackson et al., 2022; Wolf et al., 2020).
Each word in each text is represented by a vector denoting a position
in a high-dimensional feature space. This vector encodes word-
meaning by examining the words that occur nearby the target word.
In practical terms, the phrases “I'm not happy” and “I'm happy”
will be represented differently by the model. Supervised classifiers
can therefore measure complex concepts more directly than rule-based
classifiers and, consequently, offer increased construct validity.

Supervised classifiers also benefit from a simple evaluation pro-
cess, inherited from data science. First, the manually coded data set
is split into training and test data. The training data are used for devel-
oping and refining the algorithm, while the test data are withheld until
training is completed and used to evaluate the algorithm. Evaluating
the final model on withheld test data provides evidence of construct
validity because accurate predictions on unseen data indicate the algo-
rithm has generalized the categories from the training data.

Withholding test data enables an inference loop for classifier
development. Researchers can safely repeatedly adjust the training
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process, fine-tuning model parameters and strategies until they are
ready to evaluate the model on the test data. Data splitting is also
essential to the algorithm’s training process, which works as an auto-
matic inference loop. A subset of the data (the validation data) is sep-
arated from the training data and used to measure prediction errors,
update internal weights, and guide hyperparameter tuning after each
training iteration. By monitoring performance on validation data, the
researcher determines when to conclude training and carry out the
final evaluation on the test data.

The withholding of test data is also an essential feature of the com-
mon task framework, which is the “secret sauce” behind data sci-
ence’s exponential growth (Donoho, 2017, p. 752). First, a coded
data set is made publicly accessible with a competition to build
the best supervised classifier. Researchers then build a model to gen-
erate the best evaluation metrics, entering the competition by sharing
their final protocol publicly. When the competition ends, a referee
assesses the best classifier using withheld test data. Through its infer-
ence loop structuring, the common task framework has driven sig-
nificant advances in machine learning models, highlighting the
efficacy of withholding test data to develop measures.

The main drawback of supervised classifiers is that their construct
validity is dependent on the construct and concept validity of the
manually coded data used for training and testing. If the manually
coded data lack validity, so will any text classifier trained on it,
regardless of its performance on the test data (garbage in, garbage
out). As expressed by Song and colleagues, “there is a substantially
greater risk of a researcher reaching an incorrect conclusion regard-
ing the performance of automated procedures when the quality of
manual annotations used for validation is not properly ensured”
(2020, p. 550). This foundational manual coding stage is rarely scru-
tinized by data scientists, and validity has often been overlooked
when quantifying text (Birkenmaier et al., 2024). Instead, their
focus is generally on developing new model architectures for
improving predictions (e.g., Chernyavskiy et al., 2021), and predic-
tion is possible without validity (Anderson, 2008).

LLM Classifiers

LLM:s offer a new way of classifying texts. LLMs are deep learn-
ing models trained on huge quantities of textual data (Silva &
Hassani, 2023). Modern LLMs are generative in that they output
content (e.g., text, photos, and videos) in response to a user prompt,
generally written in natural language. Prompts can be used to direct
an LLM on how to classify text data (e.g., “Is the following text
happy?”’; Bahrami et al., 2023). The LLM’s response (e.g., “Yes”)
is taken as the classifier’s prediction. LLM classifiers are character-
ized by how many examples of correct classifications are included
within the prompt. An LLM classifier is zero-shot when it includes
no examples, one-shot when it includes one example, and few-shot
when it includes multiple examples.

The main benefit of LLM classifiers is their ease of use and acces-
sibility. Rule-based classifiers are time-consuming to make, and super-
vised classifiers require large amounts of training data, even in cases of
fine-tuning a pretrained algorithm (Sun et al., 2019). In contrast, LLM
classifiers can be developed without any training data because they rely
on prompts. Developing an LLM classifier can be performed exclu-
sively through iterative prompt engineering without hyperparameter
sweeps. This enables quick and efficient adjustments to the LLM clas-
sifier compared with supervised classifiers, which require time and

computationally intensive training or finetuning. The use of natural
language to prompt LLM classifiers also makes machine learning
methods more accessible to researchers with fewer programming skills.
LLM classifiers require some coding knowledge to implement (e.g.,
for automated application of the prompt); however, this is minimal
compared to supervised classification.

Another benefit of LLM classifiers is that they enable an ongoing
assessment of content validity during their development through an
inference loop. Content validity is defined as the degree to which the
content of a construct (e.g., a survey item) reflects the underlying
concept being measured (Cronbach & Meehl, 1955). Content valid-
ity cannot be adjusted during the development of supervised classi-
fiers, which rely on post hoc analysis of how the algorithm is making
its classification decisions (Ribeiro et al., 2016). LLM classifiers
resemble rule-based classifiers in that the researcher adjusts natural
language parameters while the language model itself is held cons-
tant. In contrast, supervised classifiers update their model through
learning the input data.

The main drawback of LLM classifiers is that their concept and
construct validity depend on manually coded data; the same problem
is associated with supervised classifiers. Another drawback is that
LLMs are stochastic parrots, meaning they respond to the prompt
probabilistically without understanding the meaning or significance
of the interaction (Bender et al., 2021). LLM classifiers can produce
different results based on the same input data, making them less reli-
able than rule-based or supervised classification. The large amounts
of data required for creating an LLM means it has likely been trained
on dubious texts with undesirable content (e.g., racial bias and
sexism). This risks a construct validity problem where the prompt
may not be understood in the way the researcher intends it to.
Finally, LLMs are also novel, meaning their viability for psycholog-
ical research has largely gone untested (Demszky et al., 2023). That
said, early research shows significant potential for integrating LLMs
into psychological and social scientific research (Rathje et al., 2023;
Ziems et al., 2023).

Integrating Manual Coding Into Psychological Text
Classifier Development

Construct validity is established for supervised and LLM classifiers
by assessing their predictions against withheld manually coded test
data. This evaluation method enables direct comparison between dif-
ferent types of classifiers (e.g., rule-based, supervised, and LLM) by
assessing their performance on the same test data. As long as classifiers
are developed to produce the same predictions (e.g., a binary categori-
zation), their performance can be compared using evaluation metrics
(van Atteveldt et al., 2021). However, these metrics are only useful
if the manually coded data are valid to begin with (Song et al., 2020).

Content analysis (Krippendorff, 2019) is the conventional approach
for rigorous manual coding. Content analysis has been used exten-
sively in psychology and the broader social sciences (Neuendorf,
2017). For instance, the method has been employed for measuring
emotions (Shiraishi & Reilly, 2022), workplace personality
(Ragsdale et al., 2013), and children’s happiness (Park & Peterson,
2006). Content analysis is deductive in that it defines the constructs
prior to operationalization (Neuendorf, 2017). It establishes rigor by
having two or more human coders score the same data and quantifying
their interrater reliability (Hayes & Krippendorff, 2007). Interrater
reliability is a minimum requirement for construct validity (rather
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than a direct measure) because, without it, the coders are coding
different underlying concepts (Krippendorft, 1970).

Despite the rigorous conventions, content analyses can still suffer
from concept validity issues, regardless of interrater reliability
between coders and construct validity checks. If a concept is poorly
theorized, coders can still produce reliable coding in the same way
text classifiers can accurately predict low-validity manual coding.
To illustrate, there exist multiple codebooks for assessing the delib-
erative quality of dialogue (Friess & Eilders, 2015); however, these
have often measured the same concept with different definitions
(Beauchamp, 2020; Goddard & Gillespie, 2023). Consequently,
the underlying concept being measured may differ significantly
between studies, indicating concept and construct validity problems.

Psychologists have recommended using an abductive approach to
identify and address concept validity problems (Gillespie et al.,
2024; Muthukrishna & Henrich, 2019). Abduction is a third and
underutilized form of inference that focuses on generating new the-
ory by identifying and explaining surprising findings (Peirce, 1965).
Deduction is used to test theories, induction is used to organize
observations, and abduction is used to generate new theory by
explaining anomalies. For instance, given the theory that all mam-
mals have hair, it follows that all dogs should also have hair (deduc-
tion). However, if a dog is found to have no hair, an alternative
theory is required to explain this anomaly; the abduction might be
that the dog is sick. Without the ability to use alternative theories
to explain surprising results, science would not be able to progress,
because it would forever be stuck in a single explanatory paradigm
(e.g., dogs are not mammals if they have no hair). Abduction is
related to inference loops as researchers may have to move beyond
existing explanations for measurement problems (e.g., a poor
model) to explain validity problems (e.g., conceptual incoherence).

This article addresses validity problems in text classification with
the RAMP method. The method integrates psychometric validation
using abduction with best practices for manual coding (content anal-
ysis) and classifier development (data science). It uses the concept of
inference loops to integrate the three approaches into a single
method, aimed at maximizing validity both within and across stud-
ies. Because inference loops transcend the different literatures and
practices, they provide a robust and flexible framework for psychol-
ogists to use when navigating the rapidly evolving field of text
classification. The RAMP method also contributes to data science
by conceptualizing a method for improving the validity of manual
coding and, subsequently, classifier development.

The RAMP Method

The RAMP method has three stages (Figure 2): a manual coding
stage for creating a data set, a classifier development stage that uses
this data for creating one or more text classifiers, and an integrative
evaluation stage for making a global assessment of concept and
construct validity. Each stage of RAMP is powered by an inference
loop.

The first stage of RAMP (manual coding) employs an inference
loop to maximize the construct validity of the manual coding. The
loop involves human coders scoring a sample of the raw data (cali-
bration data), evaluating the reliability of their coding, and evaluat-
ing problems (e.g., discrepancies in coder’s interpretations of the
concept) to make informed decisions on how the codebook should
be adjusted. The loop ends when predefined goals have been met

(e.g., high interrater reliability and saturation of operationalizations).
The final codebook is subsequently used to score the full data set.

The second stage of RAMP (classifier development) employs an
inference loop to create one or more text classifiers using the manu-
ally coded data from the first stage. Before conducting the loop, a
portion of the manually coded data (test data) is withheld for calcu-
lating final evaluation metrics. The loop involves training or pro-
gramming a classifier (the protocol), calculating evaluation metrics
on validation data, evaluating problems in classification (e.g., mis-
classifications and low metrics), and using these insights to adjust
the protocol. As with the manual coding, the loop ends when a set
of goals are met (e.g., reaching an upper bound on evaluation met-
rics). The final classifier is then applied to the test data to calculate
evaluation metrics for reporting.

The third stage of RAMP (integrative evaluation) employs an
inference loop to make a global assessment of the construct and con-
cept validity of the manual coding and text classifier. The loop
involves explaining surprising findings (e.g., interrater discrepancies
and classifier misclassifications) from the two previous stages in the
context of guiding theory, questioning whether the explanation ade-
quately explains the surprises, and adjusting the explanation accord-
ingly. The loop ends when the researcher is satisfied with their
explanation and makes an integrated assessment of the manual cod-
ing and text classifier’s construct and concept validity. The integra-
tive evaluation stage builds on an ongoing assessment of concept
and construct validity (dashed arrows, Figure 2), integrating any pre-
vious findings into a final evaluation of validity.

By employing abduction, the integrative evaluation stage is geared
toward concept validity because it requires the researcher to make
sense of outliers using theoretical and empirical insights gained during
manual coding and classifier development. The detection of concept
validity problems is prioritized because conceptual issues can invali-
date any presumed construct validity established during previous stages
(Figure 1). To illustrate, it could be uncovered that a classifier with high
evaluation metrics for measuring a novel personality trait—developed
on manually coded data with high interrater reliability—is measuring a
preexisting personality trait (e.g., through assessment of correlations
with other measures) or is incoherent and includes clearly distinct phe-
nomena (e.g., through qualitative assessment of the classifications). In
these cases, the classifier is either not measuring the intended concept
(construct validity problem) or the concept itself is confused (concept
validity problem).

Figure 2 also includes a fourth inference loop to indicate that
RAMP is part of an ongoing effort of adjusting concepts and theories
between studies. This incorporates a procedural definition of validity
as the accumulation of intersubjective agreement on the utility of a
concept and measurement tool. RAMP emphasizes incremental
validity (Y. Feng & Hancock, 2022), meaning it works to alter pro-
tocols and concepts iteratively based on repeated attempts at manual
and automated operationalization. The method is novel because it
promotes an iterative evaluation of validity within stages, between
stages, and across studies. These iterative processes span classifier
development processes that have hitherto been conceptualized sepa-
rately. The next sections describe the three stages in detail.

Manual Coding Stage

The first stage leverages an inference loop for creating a rigorous
manually coded data set. The input phase of manual coding requires
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a draft codebook for adjustment in the inference loop. Following
content analysis conventions, the draft codebook should take into
account previous operationalizations of the concept and be justified
in existing theory (Neuendorf, 2017). The throughput phase contains
the inference loop where coders repeatedly apply the latest version of
the codebook to a sample of the full data set (calibration data). Each
application is followed by an assessment of interrater reliability and

interrater discrepancies to infer construct validity problems and, sub-
sequently, adjust the codebook. Ending the throughput phase
requires evaluating whether the researcher’s goals have been met.
Goals involve stopping rules, which should include saturation of tex-
tual instances of the target phenomena, reaching adequate reliability,
and any relevant practical considerations (e.g., coder fatigue and lim-
ited budget).
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A similar iterative process of codebook development is common in
manual coding (e.g., MacPhail et al., 2016). For instance, Krippendorff
states that content analysis “may include iterative loops—the repetition
of particular processes until a certain quality is achieved” (2019, p. 85).
In practice, however, codebooks are often finalized before coder train-
ing and empirical testing (Neuendorf, 2017, 2018). In contrast,
RAMP’s manual coding stage makes visible how coder training is
used to develop the final codebook through repeated adjustment.
This iterative process, we argue, is central to improving validity.

Deliberations with coders can help identify validity problems
because they encourage intersubjective agreement on the causes of
discrepancies in their coding. For instance, coders may not fully
understand how to apply the codebook (construct validity), be unclear
on how the operationalizations represent concepts (construct validity),
or have trouble understanding the conceptualizations themselves (con-
cept validity). RAMP employs deliberations to uncover validity prob-
lems, as these provide an environment for abductive insights that can
feedback into the concept and construct to improve validity
(Krippendorff, 2019; Timmermans & Tavory, 2022).

The output phase involves manually coding the full data set using
the final codebook. The data are split among coders, and interrater reli-
ability is calculated on a shared subset of the coded data for reporting.
The final coding is done blind, with coders unaware of which texts
belong to this subsample. The choice of interrater reliability statistic
depends on the type of variable (binary/categorical, ordinal, continu-
ous), the number of coders (two or more), and whether the coded data
are imbalanced (Gisev et al., 2013). Imbalanced data create problems
for reliability as coders can achieve high values by attributing every-
thing to the same category. Table 1 provides an overview of common
statistics and when they should be used (G. C. Feng, 2014).

Reliability statistics generally produce a value between O and 1.
Ideally, researchers should aim for the highest reliability possible.
Content analysis recommends that a Krippendorff’s o should be .90
or above, but values between .80 and .90 are considered acceptable
(Krippendortf, 2019; Neuendorf, 2017). In practice, however, this
may not be achievable due to coder fatigue, variability in coders’
interpretation of the codebook, and validity issues unknown prior to
coding (Krippendorff, 2019).

Interrater reliability is the primary statistic used in content analysis
asitis a prerequisite for validity. But interrater reliability is not valid-
ity. To illustrate, coders could score texts describing dogs under
a “cat” category (high reliability), but this does not mean the texts
are describing cats (low validity). However, if coders cannot
agree on what texts should be coded under the dog category (low

reliability), the scores are inherently invalid. Thus, establishing
validity not only requires reliable coding but also conceptual assess-
ments during codebook development.

The output phase may also include further validity checks, such as
having coders score for similar concepts and then assess the results
against codes for the target concepts (discriminant validity). RAMP
is flexible in allowing different development pipelines; however,
more evidence for validity is always better for identifying problems
and addressing them as early in the pipeline as possible.

The RAMP method’s manual coding stage integrates content
analysis (Krippendorff, 2019) with data science principles through
the overarching conceptualization of inference loops. Data science
best practices emphasize iterative development of accurate measure-
ment tools through the withholding of test data and a common task
framework (Donoho, 2017). Content analysis best practices empha-
size iterative practice in the conceptualization of the codebook prior
to coder training (Krippendorff, 2019; Neuendorf, 2018). RAMP
integrates both through the concept of inference loops, aiming to
maximize validity.

Classifier Development Stage

The second stage employs another inference loop to develop a
classifier using the manually coded data produced in the first
stage. The input phase requires choosing the type of classifier to
develop and the splitting of the manually coded data into training
and test data. For supervised machine learning, the split sizes are
generally weighted toward the training data (60%—-80%) with the
remaining (40%—-20%) used for the test data (Rosenbusch et al.,
2021). However, rule-based and LLM classifiers do not rely on train-
ing data and, therefore, can use a larger proportion of the data set as
test data. By withholding the test data from the throughput phase, it
can be used to compare multiple classifiers. In this case, the choice
of split size is determined by the classifier selection (e.g., supervised
classifiers require most training data) and the test data must be the
same for all classifiers.

The throughput phase is structured by an inference loop for each
classifier being developed. At a macro level, each classifier is devel-
oped by creating the protocol (e.g., choosing terms, training a clas-
sifier, and writing a prompt), calculating evaluation metrics on
validation data, evaluating problems in its performance, adjusting
the protocol, and repeating the process. Evaluation metrics are deter-
mined by the number of correct and incorrect classifications. As with
interrater reliability, the choice of metric should be informed by the

Table 1
Interrater Reliability Statistics
Appropriate for

Statistic Variable type Number of coders imbalanced data
Cohen’s k Binary, categorical Two No
Spearman p Ordinal Two Yes
Krippendorff’s o Binary, continuous, Two or more Partial

categorical, ordinal

Gwet’s AC1 Binary, categorical Two or more Yes
Gwet’s AC2 Continuous, ordinal Two or more Yes
ICC (1) Continuous Two or more No
ICC (2) Continuous Two or more No

Note. AC1 = agreement coefficient 1; AC2 = agreement coefficient 2; ICC = intraclass coefficient.
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skew of the data as high values can be misleading if the classifier
assigns predominantly a single category. The simplest evaluation
metrics are those used in binary classification, where misclassifica-
tions are organized as true or false positives or negatives. Four com-
mon statistics are the accuracy of the binary classifier (ratio of correct
classifications to the total number of classifications), the precision
(ratio of true positives to predicted positive classifications), the recall
(the ratio of true positives to correct classifications), and the har-
monic mean of the precision and recall (F1 score).

The four basic evaluation metrics can reveal different construct
validity problems. The accuracy statistic is the least informative
but is useful for a rough gauging of a classifier’s overall perfor-
mance. Precision reflects the accuracy of positive classifications,
where low values indicate a high number of false positives. Recall
reflects the classifier’s ability to identify positive cases, where low
values indicate a high number of false negatives. The F1 score is
the harmonic mean of the precision and recall and is functionally
similar to accuracy. These metrics can be used to steer adjustments
to a classifier. Accuracy and F1 scores give an overall indication
of performance, precision problems indicate the classifier is too
broad in its representation of the construct (overfitting), and recall
problems indicate that it is too narrow (underfitting).

Rule-based, supervised, and LLM classifiers have different param-
eters that can be adjusted during the inference loop. They should there-
fore be developed in conjunction with existing literature and
conventions. A rule-based protocol consists of, at minimum, a list of
terms and a scoring method to be adjusted through the inference
loop. Terms can be added or removed based on evaluation metrics
and misclassifications. For instance, adding terms may improve recall
but lower precision, meaning the number of false positives has
increased. Examining false positives can thus help determine which
terms are causing precision problems and guide their removal in the
next iteration. Altering the counting method can also affect the evalu-
ation metrics. For instance, a classifier could generate many false pos-
itives if it were designed to classify a text when identifying the presence
of a single term (positive if text contains “happy” or “joy”). Increasing
the threshold to two or more words (positive if text contains “happy”
and “joy”’) might, therefore, reduce the false positive rate.

A supervised protocol requires, at minimum, a splitting of training
and validation data, selecting a model (e.g., Bidirectional Encoder
Representations From Transformers [BERT]), and specifying appro-
priate hyperparameters, which steer the model’s training. During
the inference loop, the model is trained and subsequently evaluated
on the validation data. Unlike rule-based and LLM classifiers, a
supervised classifier cannot be adjusted using insights gained from
examining misclassifications because the model is determined auto-
matically through its training process. Because a new model is
trained after each inference loop, the evaluation metrics (calculated
on the validation data) are used to steer changes in the hyperpara-
meters. For instance, increasing one parameter might improve the
overall performance of the classifier, but increasing another might
reduce performance. Once hyperparameters stabilize, the researcher
may try different training and validation splits to see if they consis-
tently lead to improved performance across different combinations
of data.

An LLM protocol requires an initial prompt and a chosen gener-
ative model (e.g., GPT-4, Claude, and Gemini); it may also include
numerical parameters (e.g., temperature to change the variability in
the output text). As with rule-based classifiers, the evaluation

metrics and misclassifications are used to steer adjustments. For
instance, a change in the prompt may lower recall, indicating the
change has increased the number of false negatives. Examining
the misclassifications can be used to determine which types of
texts the classifier is failing to identify, and the prompt can be broad-
ened accordingly (e.g., adding more example cases and extending
the concept definition). Similarly, a change of model might improve
all evaluation metrics, showing that the new model is better at iden-
tifying the target concept.

For any classifier, the decision to end the inference loop and pro-
ceed to the output phase is informed by stopping rules. These can
involve a mix of goals relating to evaluation metrics (e.g., improved
performance over preexisting classifiers and plateauing in a set num-
ber of inference loops), protocol features (e.g., adjusted all relevant
hyperparameters and trialed a set number of models), practical com-
ponents (e.g., limited resources), and qualitative assessments (e.g.,
saturation on LLM prompt or rule-based terms). We should also
note that stopping rules can be overridden if there is justification
to do so. For instance, the first iteration may have improved evalua-
tion metrics over preexisting classifiers, or the researcher might
decide to trial a new model. RAMP enables dynamic updating to
maximize construct validity in the throughput phase, including the
stopping rules themselves.

In the output phase, the researcher evaluates the best classifier
from the throughput phase on the withheld test data. It is essential
that the test data are kept independent from the training (and valida-
tion) data to ensure that the developed classifier can generalize to
new data and that different classifier types can be compared against
each other. If calculated on withheld test data, the evaluation metrics
reflect a degree of construct validity so long as the manual coding
and concepts measured are valid. This phase can also include
other validity checks, such as whether classifier predictions correlate
with similar measures (concurrent validity), predicts real-world
behaviors (ecological validity), or can be applied in other contexts
(transfer validity).

Integrative Evaluation Stage

The goal of the integrative evaluation stage is to uncover and
explain problems across manual coding and classifier development
stages to make an integrated assessment of concept and construct
validity. This stage emerged from the literature on psychometric val-
idation using abduction (Gillespie et al., 2024), and is not a typical
component of the text classification development pipeline. In the
input phase, surprising findings from the previous stages are collated
and given an initial explanation. A surprising finding refers to any
observation during manual coding or classifier development that
required explanation (Peirce, 1965). This might include any unex-
pected adjustments to the codebook, unresolved problems with
edge cases in the coding manual, aspects not captured, or unex-
pected problems with the performance of the classifier.

The throughput phase involves brainstorming, deliberating, and
potentially post hoc manual coding or statistical analysis to evaluate
possible explanations until a satisfactory one is found. Identifying
explanations may not require abduction (e.g., if it emerges from ran-
dom error) and may not yield any concept validity issues. However,
an inference loop should be conducted to make an integrated assess-
ment on whether the cause of the surprising findings is conceptual.
No psychological measure is perfect, and the development process
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may have obscured conceptual problems through high reliability or
evaluation metrics.

The output phase reports the explanations for the surprising findings
in relation to concept and construct validity problems. The integrative
evaluation stage aims to identify theoretical and conceptual anomalies
and try to resolve them through an abductive approach. It emphasizes
concept validity and, therefore, speaks to current issues in psycholog-
ical theory and methods (Eronen & Bringmann, 2021; Muthukrishna
& Henrich, 2019). Abductive processes are essential to validating man-
ual coding in content analysis, and “a computer aided content analysis
should do the same” (Krippendorff, 2019, pp. 260-261) for determin-
ing validity. This justifies RAMP’s integration of the manual coding
and classifier development stages for evaluating validity, as both stages
can produce surprises that can feedback into the current or prior stage
to increase validity. The output of the integrative evaluation stage
requires transparent reporting of concept and construct validity prob-
lems as to aid subsequent researchers in the macro between-studies
inference loop. These reports can build off each other and be used to
incrementally increase the validity of both our concepts and the way
we measure them in text.

Case Study

We assessed the viability of RAMP through an empirical case
study. The study compared RAMP with a noniterative method for
developing text classifiers for measuring misunderstandings in
online dialogue. We defined a noniterative method as the absence
of repeated adjustments (i.e., inference loops) in generating the man-
ually coded data set and developing classifiers. Noniterative meth-
ods are rarely done in practice; however, by using them as a
baseline, we could investigate the added value of the repeated adjust-
ments recommended by the RAMP method.

We chose to measure misunderstandings in online dialogue for two
reasons. First, the theoretical role of misunderstandings in online dia-
logue quality is unclear. On the one hand, misunderstandings might
drive deliberation by highlighting problems in mutual understanding
(Stromer-Galley, 2007). On the other, misunderstandings might drive
incivility as individuals become frustrated from feeling misunder-
stood. Second, psychology has mainly used surveys (e.g., Lees &
Cikara, 2020; Livingstone et al., 2020; Rubin, 1994) or mixed
experimental-qualitative designs (e.g., Corti & Gillespie, 2016;
Heasman & Gillespie, 2018) to study misunderstandings, with no
text classifier available to measure the phenomenon in context.

Misunderstanding is defined as an individual recognizing a prob-
lem in mutual understanding during dialogue (Table 2). Thus, misun-
derstanding is produced in social interactions by the combination of
different levels of perspective taking between a self and other

(Laing et al., 1966). Comparing direct perspectives reveals agreement
(I think X and you think X), comparing direct and metaperspectives
reveals understanding (you think X and I think you think X), and,
finally, comparing direct perspectives and meta-meta-perspectives
reveals felt understanding (I think X and I think you think I think X).
For example, uttering the phrase “you don’t understand my point”
indicates the self’s meta-meta-perspective does not match with the
self’s actual perspective.

The case study assumed that misunderstanding had a metaper-
spective and meta-meta-perspective component. It employed an ini-
tial (conceptual) definition of misunderstanding as any instance in
an online dialogue where the self directly misunderstands the
other or feels misunderstood. As misunderstandings are internal
states, we operationalized the concept through reported misunder-
standing, where the self makes explicit either direct or felt misunder-
standing in their contributions to the dialogue.

Method
Data

The data set comprised sentences from online dialogues, referring
to a linear thread of comments, organized by a “reply-to” function. We
sampled dialogues from three sources: Reddit data downloaded using
the website’s Application Programming Interface; “Twitter Customer
Support” data (Thought Vector & Axelbrooke, 2017), involving dia-
logues between organizations and Twitter users; and Wikipedia Talk
Pages data (Danescu-Niculescu-Mizil et al., 2012), involving dia-
logues between editors about the content of Wikipedia articles. The
three sources were chosen to represent different public communica-
tion contexts. About 1,000 dialogues were randomly sampled from
each data set, and 230 were removed manually for being unusable
(e.g., not in English), yielding 21,884 sentences from 2,770 online
dialogues. Table 3 reports the distribution of authors, dialogues, and
sentences across the three data sources. The same data set was used
for both noniterative and RAMP methods.

Sentences were used as the unit of analysis, and misunderstandings
were coded as a binary variable, determined by the presence of either
direct or felt misunderstandings (Table 2; Supplementary Materials
A and B in the online supplemental materials). The manual coding
thus involved coders scoring sentences as misunderstandings, and
classifiers were used to reproduce this binary categorization.
Sentences were parsed using the spaCy (Honnibal et al., 2022)
Python package and anonymized by algorithmically replacing user-
names, locations, hyperlinks, and dates with fake data. The study
and Reddit data collection were approved by the host institution’s
Research Ethics Committee (Reference: 56581).

Table 2
Perspective Taking and Misunderstanding According to Laing et al. (1966)

Concept Self Other Matching
Agreement Direct perspective, I think X Direct perspective, I think X Yes
Disagreement Direct perspective, I think X Direct perspective, I think not X No
Understanding Direct perspective, I think X Metaperspective, I think you think X Yes
Misunderstanding Direct perspective, I think X Metaperspective, I think you think not X No
Felt understanding Meta-meta-perspective, I think you think I think X Metaperspective, I think you think X Yes
Felt misunderstanding Meta-meta-perspective, You think I think not X, but I think X Metaperspective, I think you think not X No

Note. Underlined negations for emphasis.
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Table 3
Case Study Data Set Distribution

Source N authors N dialogues N sentences
Reddit 1,833 (43%) 899 (32%) 7,884 (36%)
Twitter Customer Support 1,081 (25%) 921 (33%) 5,621 (27%)
Wikipedia Talk Pages 1,383 (32%) 950 (34%) 8,489 (39%)
Full data set 4,297 2,770 21,884

Applying the RAMP Method

For the manual coding stage, the study employed five coders of MSc
level or above in psychology to classify the data. In the input phase, we
defined a draft codebook and gathered the raw data. In the throughput
phase, we used a small sample of dialogues (n << 100) to test the cod-
ers’ interrater reliability for each new version of the codebook. In the
throughput, we used Krippendorft’s o. (1970) to quantify interrater reli-
ability as it is a flexible reliability measure and fairly robust to skewed
distributions (Hayes & Krippendorff, 2007). For the output phase, and
once the distribution of the data was revealed, we also calculated
Gwet’s agreement coefficient 1 (AC1) as it is recommended for highly
imbalanced data (G. C. Feng, 2014). To troubleshoot the results, we
deliberated with coders about the scoring procedure in the context of
the literature and the latest reliability statistics and coding discrepan-
cies. We conducted five inference loops, stopping when there was
alignment between coders on the final codebook and acceptable inter-
rater reliability.

In the output phase, the coders scored the full data set. Each coder
received between 6,400 and 6,700 sentences to code, 1,610 of which
were common to all coders (the numbers varied as sentences were
embedded in dialogues with different lengths). The shared subset
was used for calculating the interrater reliability of coders. When
building the final data set, scoring discrepancies were resolved by
following the majority consensus, where three or more coders had
to agree it was or was not a misunderstanding.

For the classifier development stage, we created rule-based, super-
vised, and LLM text classifiers using the manually coded data pro-
duced in the previous stage. All three classifiers therefore had the
same unit of analysis (sentences scored for misunderstandings as a
binary variable). For the input phase, we split the coded data into train-
ing/validation (70%) and test (30%) data. For the throughput phase,
we used the training and validation data to conduct an inference
loop for each classifier. For the output phase, we compared the best
throughput classifiers on the withheld test data using a variety of eval-
uation metrics. We calculated the accuracy and the weighted F1 score
as these are commonly used evaluation metrics for binary classifica-
tion (Hand & Christen, 2018). Because our data were heavily skewed,
we also calculated metrics appropriate for imbalanced data: the
Matthews correlation coefficient (MCC; Chicco & Jurman, 2020),
the balanced accuracy, and the F1 score, precision, and recall for
the positive category (misunderstandings). These metrics also guided
the classifier adjustments in the throughput phase.

For all three classifiers, we stopped the iterations when we
observed a plateauing or decreasing of evaluation metrics from
changes to the classifier. For the purposes of demonstration and
comparison, we conducted the same number of inference loops
(21) for each classifier. This number was determined by the number
of iterations conducted in the first classifier developed (rule-based).
We then proceeded to assess each classifier on the test data.

Each classifier required a different inference loop. For the rule-
based classifier, we adjusted terms and term type (words and word
sequences) across iterations. We kept the scoring method the
same, where we assumed a sentence indicated misunderstanding if
any term was present. A ratio was inappropriate because sentences
are short, meaning the presence of multiple terms was unlikely.
The classifier was developed by inputting a set of terms, applying
them to the training data, troubleshooting results, adjusting the
terms, and repeating until satisfied that no more terms could be
added or removed. The troubleshooting was performed by examin-
ing misclassifications to remove or adjust terms, brainstorming
new terms, and deliberation among authors.

For the supervised classifier, we fine-tuned a BERT (Devlin et al.,
2019) model for each inference loop iteration. This entailed adding
an additional classification layer on top of BERT’s existing 12 layers
of transformers. We chose BERT because it performs well on small
data sets (Gonzélez-Carvajal & Garrido-Merchan, 2021) and has
been previously used for psychological text classification
(Biggiogera et al., 2021; Jun et al., 2021; Kumar & Jain, 2022).
We adjusted the classifier by changing hyperparameters after calcu-
lating evaluation metrics on validation data (sampled from the train-
ing data). We varied the proportion and sampling of data used for
validation (between 10% and 30%) after each training cycle was
completed. This helped determine whether the hyperparameter
changes led to consistent improvements to the evaluation metrics
across different data splits.

We focused on three hyperparameters—epochs, batch size, and
learning rate—chosen based on recommendations from the literature
(Devlin et al., 2019; Sun et al., 2019). The epochs are the number
of times the algorithm iterates over the training data to estimate its
parameters (Urban & Gates, 2021, p. 16). The batch size is the number
of data points observed by the algorithm before it refines its parame-
ters during training (Smith, 2018). Third, the learning rate is the size of
the steps taken by the algorithm for estimating the parameters’ optimal
values through gradient descent (Goodfellow et al., 2016, pp. 81-82).
BERT has been found to work best using two, three, or four epochs, a
batch size of 16 or 32 samples, and learning rates of 5e — 5, 3e — 5, or
2e — 5 (Devlin et al., 2019). We cycled through these different param-
eters through the 21 inference loops to determine the optimal config-
uration for the final classifier.

For the LLM classifier, we used OpenAI’s GPT-40 model (ver-
sion from May 13, 2024) and adjusted the prompt. We chose a
GPT-4 model (OpenAl et al., 2024) as it performs better on most
tasks than open-source alternatives (Nadeau et al., 2024). As with
the rule-based classifier, misclassifications were used to determine
areas of improvement for the prompt following an assessment of
evaluation metrics calculated on a different random subset of the
training data for each iteration. We moved from zero-shot to few-shot
after the first iteration, including samples from the training data
excluded from the subset used to calculate evaluation metrics.

For the integrative evaluation stage, we performed a qualitative
assessment of interrater discrepancies from the manual coding
stage and misclassifications from the automation. We deliberated
and explored different explanations. For instance, we examined the
misclassifications in relation to the codebook, identifying the ways
the concept is represented in the final operationalization (construct
validity). We also returned to the manually coded data to check if
the misclassifications related to errors in the original manual coding.
Finally, we sought to assess whether the cause of identified construct
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validity problems could be explained by problems with the concept
of misunderstandings (concept validity). We only ended the integra-
tive evaluation inference loop when both authors were satisfied with
the validity assessment.

Applying the Noniterative Method

The manual coding stage for the noniterative method involved two
coders scoring the full data set using the draft version of the codebook,
created before conducting inference loops (Supplementary Materials
B in the online supplemental materials). This codebook used our ini-
tial definition of misunderstanding with prototypical examples for
both direct and felt misunderstanding. Of these, 2,000 sentences
were shared among coders and used to calculate interrater reliability.
Coders were provided with a single introductory meeting to discuss
the codebook, and discrepancies were resolved by Alex Goddard.

For the classifier development stage, we employed the versions of
the protocol implemented in the first inference loop conducted in the
RAMP method (i.e., prior to any adjustments): for the rule-based
classifier, we used the initial set of terms; for the supervised classi-
fier, we used the initial hyperparameters (learning rate = Se — 5,
batch size = 32, epochs = 5, proportion of data used for validation
=30%); and for the LLM classifier, we used the initial zero-shot
prompt. We withheld 30% from the development stage to evaluate
the classifiers’ performance on unseen data.

Transparency and Openness

All data have been made publicly available on the Open Science
Framework (Goddard & Gillespie, 2025a) and can be accessed at
https:/ost.io/pe4djy/. The code behind the analysis has been made pub-
licly available on GitHub (Goddard & Gillespie, 2025b) and can be
accessed at https:/github.com/alexiamhe93/RAMP_method via a
Python Jupyter notebook. The GitHub repository also contains the
final codebooks used for manual coding (Supplementary Materials
A and B in the online supplemental materials).

Results
Manual Coding Stage

Table 4 reports the absolute agreement and interrater reliability of
the coders during the throughput phase. In Loop 1, we found high
agreement (95%) with weak reliability (oo = .57). This discrepancy
was explained by the low proportion of misunderstandings (around
8%), because the absolute agreement can be very high by not coding
for misunderstanding. Coders reported difficulties identifying mis-
understandings due to a reported lack of context. At this stage,

Table 4

Manual Coding Throughput Interrater Reliability Results

Inference Sample size Absolute Krippendorff’s Gwet’s
loop (sentences) agreement o AC1

1 713 0.95 57 0.94

2 1,228 0.97 71 0.97

3 1,101 0.97 72 0.96

4 808 0.94 78 0.92

5 862 0.98 5 0.97

Note. ACI = agreement coefficient 1.

they were given randomly sampled sentences (i.e., decontextualized
from the dialogue; see Supplementary Materials B in the online sup-
plemental materials) and instructed to make a scoring decision solely
on their lexical and semantic content. This was decided to be a cause
of the low reliability, and accordingly, from Loop 2, the sentences
were scored sequentially in the context of the dialogue.

Loop 2 saw a significant increase in the coder’s reliability
(0o=.71). The changes between Loop 2 and Loop 3 were more con-
servative, leading to a negligible increase in reliability (increase of
.01). The changes to the codebook between these loops were nominal,
focusing on the complexity of the operationalization. For Loop 4,
the changes were more substantial and included the addition of a
“Frequently Asked Questions” to provide clarification on edge cases
of misunderstandings, such as what to do when uncertain, and how
to address peculiarities of the scored texts (e.g., hashtags with
Twitter data). These changes drove a larger increase in the reliability
for Loop 4 (0. = .78). Loop 5 saw a drop in reliability following minor
adjustments to the codebook. We thus decided to end the inference
loop as discussions with coders did not reveal any new adjustments,
and a further increase in reliability seemed unlikely.

The final reliability calculated in the output phase was higher than
the previous loops on the training data (o = .79, Gwet’s AC1 = 0.98).
Our final coding found 1,715 misunderstandings, approximately 8%
of the sentences. Wikipedia Talk Pages contained the most misunder-
standings (n = 1,066, 62%), with Reddit (n = 373, 22%) and Twitter
Customer Support (n =276, 16%) containing far fewer.

Classifier Development Stage

Figure 3 reports the MCC for the 21 iterations of the inference
loop for each classifier. The statistics were calculated on validation
data of different proportions, sampled from the training data. The
MCC statistic was chosen because it is the most appropriate for
highly skewed data (Chicco & Jurman, 2020). For the rule-based
classifier, the performance was very low (MCC = 0.02) in the first
loop, ramping up until Loop 5 but remaining low (MCC = 0.19).
For Loops 6-15, we switched from counting words to word
sequences. There was little change in performance after Loop 6
(MCC =0.21), despite adding more patterns to boost recall.
Eventually, we returned to counting words in Loop 16 in the goal
of improving the performance, adjusting the items until the final
loop MCC =0.18).

The supervised classifier started with moderate performance
(MCC =0.58) and ramped up marginally across all the iterations
(maximum MCC = 0.65 for Loop 20). We found that lower learning
rates, larger batch sizes, and larger number of epochs improved perfor-
mance. Despite these marginal increases, the supervised classifier
appeared to perform better than the rule-based or LLM classifiers.
Finally, the LLM classifier followed a similar pattern to the rule-based
classifier, where the performance started very low (MCC = 0.05) but
ramped up rapidly until Loop 5 (MCC = 0.45) after we added exam-
ples and adjusted the prompt to the misclassifications. Unlike the rule-
based classifier, the performance at this point had improved substan-
tially. The subsequent iterations of the prompt yielded limited
improvement until Loop 13 (MCC = 0.51); however, the prompt
could not be improved upon in future iterations. The final loop
ended with low-moderate performance (MCC = 0.45).

For the output phase, we used the withheld test data to compare the
classifiers with the highest evaluation metrics from the throughput
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Figure 3

Increases in Matthews Correlation Coefficient for the LLM, Rule-Based, and Supervised Classifier
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phase. For the rule-based classifier, we used the terms (word
sequences) from Loop 14. For the supervised classifier, we trained a
model using the training (70%) and validation data (30%) and used
the hyperparameters of Loop 20 (learning rate = 2e — 5, batch size =
128, epochs = 4). For the LLM classifier, we used the prompt from
Loop 13 (few-shot). Table 5 reports the output phase evaluation met-
rics for the three classifiers on the test data.

As expected, the supervised classifier performed best across every
metric (MCC = 0.65). The supervised classifier had weaker precision
(0.65) than recall (0.79), indicating that the model was identifying
most misunderstandings but still generating many false positives.
This pattern was the same for all three classifiers. The LLM classifier
was second best and performed better than the rule-based classifier
across most metrics. The rule-based classifier had poor precision
and, therefore, a low MCC for misunderstanding. The weighted F1
score for the model was still high (0.89) despite the classifier’s poor
performance, demonstrating the importance of using appropriate eval-
uation metrics to the data balance.

Table 5
Performance of the RAMP Rule-Based, Supervised, and LLM
Classifier on the Test Data (n = 6,420)

Measure Rule-based Supervised LLM
Accuracy 0.89 0.95 0.89
Weighted F1 score (all) 0.89 0.95 0.90
Balanced accuracy 0.61 0.88 0.80
Precision (misunderstanding) 0.29 0.65 0.39
Recall (misunderstanding) 0.27 0.79 0.69
F1 score (misunderstanding) 0.28 0.71 0.50
MCC 0.22 0.69 0.47

Note. RAMP = Repeated Adjustment of Measurement Protocols; LLM =
large language model; F1 = harmonic mean of precision and recall; MCC =
Matthews correlation coefficient.

Integrative Evaluation Stage

There were two surprising findings from the previous phases.
First, the LLM classifier performed worse than the supervised clas-
sifier despite being easier to adjust (Figure 3). Second, we identified
sentences in both the interrater discrepancies and false positive mis-
classifications that involved overt corrections of other’s assumed
misunderstanding (Table 6). These were surprising because the
codebook dissuades coders from scoring corrections as they are
not misunderstandings. Instead, they evidence that the self has
understood the other’s misunderstanding in a previous turn. These
two surprising findings appear related as the LLM identified correc-
tions more frequently than the supervised classifier. Our analysis of
the false negatives, however, did not reveal any additional surprises.

To explain the surprising findings, we determined that misunder-
standings have a concept validity problem. Specifically, they were
explainable by a conceptual shift away from misunderstandings toward
conversational repairs (Schegloff et al., 1977). Conversational repairs
conceptualize the systematic ways people address miscommunications
and misunderstandings in dialogue. The interrater discrepancies and
misclassifications in Table 6 were better interpreted as instances of
other repair, where a self informs the other that they have misunder-
stood something (Collister, 2011).

Other repairs do not neatly fit into our operationalization as they
are neither direct nor felt misunderstanding and, instead, are a correc-
tion of someone else’s misunderstanding. However, direct and felt
misunderstandings can be integrated into the concept of repair. A
direct misunderstanding is an other-initiated repair, where the
other seeks clarification after misunderstanding the self (e.g.,
“What do you mean?”). A felt misunderstanding is a third turn
self repair, where the self notes the other has misunderstood their
previous statement and corrects them (e.g., “I didn’t mean to say
that”). The repair typology provides a broader set of constructs
that incorporate, but go beyond, direct and felt misunderstandings.
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Table 6
Surprising Interrater Discrepancies in the Manual Coding and Supervised Classifier
Misclassifications

Type Text

Interrater discrepancies

“You seem to have misread the guidelines,” “I mean yeah but your only

thinking of it as an asset and not as a character,” “This is AMC, but I feel
you,” “not by that title”

Supervised false positives

“It didn’t come from Lake Robert,” “T still feel that you shouldn’t have

sub-paged without consensus,” “No, he didn’t.”

LLM false positives

“Your arm is only from your elbow to your shoulder,” “You don’t have

layers of dab pages,” “Don’t fool yourself, that’s what’s going on,” “See,
totally not kids in cages,” ““You are ‘not’ the owner of the article,” “Some
of your comments are not helping,” “Not quite,” “They weren’t ‘trying to
be unique’, they were broken in eyes of majority”

Note. LLM = large language model.

The concept of misunderstanding is not invalid per se. Instead, it is
that misunderstandings are an internal state which repairs make visible
(Schegloff, 1992). Counterintuitively, this means repairs are a better
concept for operationalizing misunderstanding in text. The problem
is that once a participant explicitly indicates there has been a misun-
derstanding, they are in the process of repairing it. For instance, direct
misunderstandings are asking for clarification to the self’s misunder-
standing and felt misunderstandings are clarifying the other’s misun-
derstanding. Furthermore, people might misunderstand each other and
not say anything. These misunderstandings are undetectable to an
observer and, therefore, cannot be quantified directly. Measuring
repairs side-steps this problem and focuses only on misunderstandings
that have been made explicit by the participants themselves through
seeking understanding.

This conceptual problem provided a reasonable explanation for why
the supervised classifier performed better than the LLM classifier.
Repairs are simply more salient in the text than repairs. This means
that the coded sentences may have been semantically similar enough
for a supervised classifier to learn, but not conceptually coherent enough
to be correctly recognized by the LLM classifier’s prompt. Describing
how to identify misunderstandings in a prompt could have introduced
conceptual confusion that is absent for the supervised classifier.

A consequence of this concept validity problem was that it called
into question the construct validity of our supervised classifier.
However, the classifier was generally able to differentiate misunder-
standing sentences from nonmisunderstanding sentences, despite
the underlying conceptual problems. It provided a proof of concept
that supervised classification using deep learning is a promising ave-
nue for measuring repairs. It also feeds forward into future research,
which should consider scoring repairs at a turn level, reflecting direc-
tions from the literature (e.g., Dingemanse et al., 2016). But, the
important point for our current purposes is how, during the integrative
evaluation stage, examination of challenges in the measurement pro-
cess can backpropagate insights to the initiating concepts.

Comparing RAMP and Noniterative Methods

For the manual coding stage, the noniterative coders scored 592
(3%) sentences for misunderstandings, far fewer than the RAMP
coders. The noniterative coders had lower reliability (o=.28,
Gwet’s AC1 = 0.95) and agreement (95%) than those reported in the
RAMP output phase. Instead, they resembled Loop 1 of RAMP’s
throughput phase, which is unsurprising given that the same codebook

was employed. The noniterative coders disagreed with the RAMP cod-
ers on 1,453 (7%) sentences. Of these, the majority were cases where
noniterative coders did not score for misunderstanding, but RAMP cod-
ers did (n = 1,288, 88.6%). Most of the misunderstandings (452, 72%)
identified by noniterative coders were also identified by the RAMP
coders. This indicates that the iterative RAMP method led to more
inclusive operationalizations and coders becoming better able to iden-
tify more subtle forms of misunderstanding.

For the classifier development stage, Table 7 reports the evalua-
tion metrics for the three noniterative classifiers on the test data,
withheld from the supervised classifier’s training. All three classifi-
ers performed worse than the RAMP classifiers across most metrics
(Table 5). For the rule-based and supervised classifier, the accuracy
and weighted F1 scores were marginally higher; however, this is
explained by the statistics sensitivity to imbalanced data and the
lower frequency of misunderstandings in the noniterative data.
Like the RAMP classifiers, the supervised classifier performed
best. Contrasting with the RAMP classifiers, the LLM classifier
was the worst performing, with the negative MCC (—0.02) indicat-
ing that the model’s predictions were worse than chance.

Case Study Limitations

Our case study had limitations during the manual coding and clas-
sifier development stages. Regarding the manual coding, additional
independent coders (external to training) could have been employed
to test the generalizability of the final codebook. However, the

Table 7
Performance of the Noniterative Rule-Based, Supervised, and LLM
Classifier on the Test Data (n = 6,595)

Measure Rule-based Supervised LLM
Accuracy 0.97 0.97 0.65
Weighted F1 score (all) 0.96 0.97 0.77
Balanced accuracy 0.51 0.64 0.47
Precision (misunderstanding) 0.07 0.46 0.02
Recall (misunderstanding) 0.02 0.30 0.28
F1 score (misunderstanding) 0.03 0.36 0.04
MCC 0.03 0.35 —0.02

Note. Metrics where noniterative classifiers performed better than RAMP
classifiers are in bold. LLM = large language model; F1 = harmonic mean
of precision and recall; MCC = Matthews correlation coefficient;
RAMP = Repeated Adjustment of Measurement Protocols.
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operationalizations were complex, and the new coders would likely
have required training, potentially driving further changes to the
codebook and invalidating the point of using an independent
group. In addition, some sentences in the final interrater reliability
subsample had previously been seen by the coders in previous train-
ing loops. During the manual coding stage, keeping the calibration
data fully separate from the full data would have provided an extra
layer of rigor comparable to the train-test splitting practices in data
science (and in the RAMP classifier development stage). Finally,
misunderstandings were operationalized as a binary variable, rather
than categorical. We did this to demonstrate the RAMP method on a
minimal case of binary classification; however, future studies should
explore operationalizing misunderstandings at both direct and felt
levels (categorical).

Regarding the classifier development, the LLM classifier’s model
(GPT-40) is proprietary, meaning its training process and data are
not open to academic scrutiny, resulting in potentially hidden biases
(Liesenfeld et al., 2023). We opted for GPT-40 because, at the time
of writing, it was the most accurate model across multiple tasks
(OpenAl et al., 2024). Future studies should explore the use of open-
source LLMs that are becoming increasingly capable. Another
limitation is that we did not explore the role of temperature—the
parameter that determines variability—in developing the LLM clas-
sifier. If classifications remain reliable across inference loops with
higher temperature levels, confidence is gained on the prompt’s abil-
ity to produce correct classifications. Additionally, different training
examples included in the prompt can produce varied results, adding
an additional parameter to explore during LLM classifier develop-
ment. Finally, our limited number of loops in the classifier develop-
ment stage provided an arbitrary ceiling for development.

Discussion

We have introduced the RAMP method for developing text clas-
sifiers for psychological text analysis. The method proposes using
inference loops to integrate best practices of content analysis
(Krippendortf, 2019), data science (Donoho, 2017), and psychomet-
ric validation using abduction (Gillespie et al., 2024). The inference
loop offers a flexible framework for integrating the three stages and
highlights how repeated adjustments following new evidence relate
to validity in scientific processes and findings. All three stages of
RAMP rely on inference loops that enable an iterative assessment
of concept and construct validity. We showed how the inference
loop operates within three different approaches to text classification
(rule-based, supervised machine learning, and LLM) and demon-
strated its efficacy compared to a noniterative method. RAMP for-
malizes how validity is an ongoing dynamic process of adjustment
both within and across studies.

Manual coding, classifier development, and integrative evaluation
stages are rarely performed together in text classification (Song et al.,
2020). Our case study highlights why RAMP’s integration of the
three stages is advantageous for establishing concept and construct
validity. Without understanding how misunderstandings were opera-
tionalized in the manual coding, identifying the concept validity prob-
lems relating to conversational repairs would have been difficult. We
could have been fooled at the manual coding and classifier development
stage by the statistical outputs into thinking our best classifier was valid.
In manual coding, Gwet’s AC1 was very high and Krippendorff’s o rea-
sonably high considering the imbalance of the categories. This created

misplaced security as to the construct validity of the operationalization,
revealing why interrater reliability is not a direct measure of validity,
and only a minimal requirement (Krippendorff, 2019). A similar state-
ment also applies to evaluation metrics; in the classifier development
stage, the accuracy and weighted F1 scores were deceptively high
(a result of data imbalance), requiring us to use the more robust MCC
statistic to evaluate the classifier’s performance.

Without proper qualitative scrutiny of the results during RAMP’s
integrative evaluation stage, there could have been a significant risk
of misinterpreting statistics for construct validity. Our codebook and
classifier are not measuring misunderstandings, but rather attempts
to maintain mutual understanding, the conceptual opposite of mis-
understanding. Because of this concept validity problem, the super-
vised classifier does not have construct validity, regardless of its
evaluation metrics. This challenge arises because the measured con-
cept (misunderstandings) is a psychological state that sits behind the
text. Once verbalized—and therefore measurable—the original con-
cept changes form (resolving of misunderstanding) and is better
expressed as a different concept (repairs). This validity challenge
needs to be kept in mind when trying to measure psychological phe-
nomena in observable manifestations (e.g., text).

The RAMP method, by introducing inference loops, goes beyond a
simple integration of stages. The inference loop applies within and
across different iterations of RAMP, emphasizing a dynamic defini-
tion of validity as an ongoing process, rather than a static state.
Validating empirical findings in psychology requires intersubjective
agreement on concepts (Muthukrishna & Henrich, 2019). Currently,
there is not enough scrutiny of concepts or constructs in psychology
(Bringmann et al., 2022; Flake & Fried, 2020), and questions of valid-
ity are often ignored, even in replication studies (Flake et al., 2022).

By powering RAMP with inference loops, we seek to encourage a
common task framework in the development of textual constructs,
similar to the one found in data science for developing algorithms
(Donoho, 2017). For instance, an initial RAMP iteration (with asso-
ciated data) could be made public with a competition to perform a
further iteration that addresses the identified validity issues.
Competitors would perform their own manual coding, classifier
development, and integrative evaluation, with an independent
panel of judges determining the most compelling case for a valid
construct. Each competition would seek to maximize evaluation
metrics (construct validity) and justify any operational and theoreti-
cal changes from previous iterations (concept validity). This process
could be repeated until there is a widespread intersubjective agree-
ment on the concept and construct validity of a measure. Such a col-
laborative process would contribute toward a more robust
psychological science. To support the use of RAMP, we have
included a checklist for its reporting (Appendix).

RAMP Limitations

There are three key limitations and avenues for future research
relating to the RAMP method. First, it makes no use of external
validity checks, such as convergent or discriminant validity, which
enable more robust evaluation than internal validity checks alone
(Birkenmaier et al., 2024). For instance, we could have employed
another measure of mutual understanding (e.g., linguistic alignment;
Duran et al., 2019) to assess the convergent validity of our best mis-
understandings classifier. However, this was deliberate because
RAMP and the inference loops were designed to maximize concept
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and construct validity through conventional practices in classifier
development. RAMP is not a definitive list of statistical practices
for evaluating classifiers, but rather an overarching framework for
their implementation. Nonetheless, future iterations on RAMP
could be expanded to include external validity checks.

The second limitation is that RAMP was only demonstrated on a
binary classification case, with limited discussion of categorical,
ordinal, or continuous classification and unsupervised methods.
RAMP’s flexible design around inference loops means different reli-
ability and accuracy measures can easily be integrated into the
framework. The case of unsupervised classification could also utilize
the RAMP framework. For example, when developing topic models,
researchers are recommended to select models using both statistical
information and qualitative assessments based on the interpretability
of the algorithms clusters (Laureate et al., 2023). This process also
entails a repeated adjustment and, therefore, suggests potential for
integrating RAMP with unsupervised classification.

Third, RAMP was only validated by comparing it to a noniterative
method using the same data, and further evaluations are required to
verify the method’s utility. Future studies should employ RAMP for
different research contexts, comparing its performance on different
types of text data (e.g., diaries, emails, and open-text questions), dif-
ferent types of variables (e.g., latent and observable), and applications
(e.g., clinical and organizational). Further comparisons with alterna-
tive methods are also required. For instance, a RAMP measure
could be assessed against a measure developed using three different
researchers to coordinate the manual coding, classification, and inte-
grative evaluation stages independently. A third party could then com-
pare the quantitative results and their qualitative interpretation.

Conclusion

This article introduced the RAMP method for developing and val-
idating psychological text classifiers. It combines manual coding,
classifier development, and integrative evaluation stages into a sin-
gle framework designed for establishing construct and concept
validity. Each stage is powered by an inference loop, where research-
ers repeatedly adjust their approach given new evidence. The infer-
ence loop not only allows for the integration of the different stages of
RAMP but also provides a flexible structure for evaluating validity
both within and across studies. Integrating the best practices of con-
tent analysis and data science together with psychometric validation
using abduction emphasizes that measure development is a process
of repeatedly adjusting concepts and constructs, rather than a single-
shot evaluation of independent parts. There is always the possibility
that the manual coding was dubious, regardless of interrater reliabil-
ity, and that classifiers are reproducing conceptual confusion,
regardless of their evaluation metrics. An integrated framework for
evaluating validity across the classifier development pipeline pro-
vides an opportunity for detecting and avoiding these issues early
and thus improving the validity of text classifiers.
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Appendix

Repeated Adjustment of Measurement Protocols Checklist

Item

Checklist item

Item description

Manual coding stage

1
1

2

7

8
9
10
11

Define the concepts
Justification for measurement

Raw text data

Initial codebook
Interrater reliability method(s)

Coder training

Interrater reliability (calibration
data)

Codebook adjustments and
finalization

Final codebook

Interrater reliability (full data)

Interrater discrepancies

Coded data set

Classifier development stage

12

13

14
15

16

Coded data set*
Initial protocol

Statistical evaluation methods

Statistical evaluation (validation
data)

Protocol adjustments and
finalization

Final protocol

Statistical evaluation (test data)

Misclassifications*

Integrative evaluation stage

20
21
23
24

25
26

Interrater discrepancies*®
Misclassifications™
Surprising observations
Explaining surprises

Construct validity summary
Concept validity summary

Provide an explicit definition of the concepts and their theoretical background(s).

Provide details of how concepts have been operationalized in previous studies, explain why a new measurement
protocol for the concepts is needed.

Describe the type of documents used (e.g., sentences and paragraphs), how they were collected, how they relate
to the target concepts, and any cleaning and/or anonymization procedures applied prior to analysis.

Summarize the initial codebook.

Provide details of how interrater reliability was quantified, the number of coders, justification for using these
specific coders, and the proportion of data withheld for validation.

Describe how coders were trained, including their role in troubleshooting interrater discrepancies and adjusting
the codebook.

Report the changes in interrater reliability during training.

Describe how and why the codebook was adjusted across the training iterations and why the training was ended.

Summarize final operationalization and describe where the final codebook can be accessed.

Report the interrater reliability on the withheld test data and describe how coders scored the full data set.
Describe and provide examples of interrater discrepancies.

Describe the distribution of the concepts in the final coded data set.

Describe the type of documents used (e.g., sentences and paragraphs), how they were coded for the target
concept, details of any interrater reliability calculations, and justification for using it.

Describe and justify the type of classifiers chosen and the quantitative (e.g., hyperparameters and choice of
model) and qualitative (e.g., changes in prompts or dictionary items) parameters adjusted during training.

Describe and justify the how performance was quantified using evaluation metrics.

Report the changes in evaluation metrics during training.

Describe how and why the protocol was adjusted across the development iterations and why the development
was ended.

Summarize final protocol, provide details of implementation, provide instructions for replication.

Report the evaluation metrics on the withheld test data.

Describe and provide examples of misclassifications.

Describe and provide examples of interrater discrepancies.

Describe and provide examples of misclassifications.

Describe what surprised you about the process of operationalizing a concept.

Discuss potential adjustments to the concept and/or operationalizations which would explain the surprises (e.g.,
use a different concept).

Summarize the evidence of construct validity (does the protocol measure what it’s intended to measure?).

Summarize the evidence for concept validity (does my definition of the concept have intersubjective agreement
between scientists?)

Note.

The asterisk “*” provide details if not reported on in previous stage or make use of information provided from previous stage.
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