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This paper studies assortative matching in a non-stationary search-and-matching
model with non-transferable payoffs. Non-stationarity entails that the number and
characteristics of agents searching evolve endogenously over time. Assortative match-
ing can fail in non-stationary environments under conditions for which Morgan (1995)
and Smith (2006) show that it occurs in the steady state. This is due to the risk of wors-
ening match prospects inherent to non-stationary environments. The main contribution
of this paper is to derive the weakest sufficient conditions on payoffs for which matching
is assortative. In addition to known steady state conditions, more desirable individuals
must be less risk-averse in the sense of Arrow–Pratt.
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1. INTRODUCTION

HOMER (ODYSSEY XVII, 218) claims that ‘Gods join like things with like things.’ This is
one of the oldest mentions of positive assortative matching (PAM), where individuals with
similar characteristics tend to match with one another. Interest in PAM is widespread,
partly because it is so frequently observed.1 To understand the determinants of PAM, it is
imperative to study individual match decisions, as first recognized by Becker (1973). We
follow his line of inquiry in a model with time-varying search frictions that render finding
a potential partner haphazard and time-consuming.

The theory of assortative matching amid search frictions is extensive (Smith (2006),
Morgan (1995), Shimer and Smith (2000), Atakan (2006)).2 However, and in line with
most of the literature on heterogeneous agent models (Achdou, Buera, Lasry, Lions, and
Moll (2014)), formal results are confined to the steady state where match prospects do
not evolve, and individual expectations over the future remain unchanged as time goes
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on. The assumption of stationarity makes complex models more tractable.3 But it also
eclipses time-changing intertemporal trade-offs (e.g., due to seasonality or gradual mar-
ket clearing) inherent in search.

This paper is the first to derive sufficient conditions for PAM in a non-stationary search-
and-matching model. Following Shimer and Smith (2000), PAM means that, upon meet-
ing, higher types match with sets of higher types. By deriving these conditions, we show
that the steady state requirement is not always necessary for achieving tractability, nor is
without loss: PAM fails in environments where it occurs in the steady state.

We consider a continuous-time, infinite-horizon matching model with two populations,
in which pairs of vertically differentiated agents meet randomly at time-varying rates.
Upon meeting, agents observe each other’s type. We follow the NTU (non-transferable
utility) paradigm where match payoffs solely depend on both partners’ types.4 If both
agents agree, they exit the search pool, without possibility of future re-entry, and en-
joy their respective match payoffs. Otherwise, they continue waiting for a more suitable
partner. Our model admits as a special case the classic pure search model without recall
(McCall (1970), Mortensen (1970)) when one side of the population values all partners
the same and is thus non-strategic.5

Much can be learned about PAM by studying partial equilibrium, that is, the one-sided
search problem where acceptance thresholds in the other population are exogenously
given. This is because PAM can be equivalently recast as a within-population sorting con-
dition: PAM holds if, for any two agents from the same population, the higher type has
a higher match acceptance threshold. When match acceptance is monotone in type for
all given thresholds on the other side, it is also monotone in equilibrium. Hence, suffi-
cient conditions for PAM in the one-sided search problem are also sufficient for PAM in
equilibrium.

To date, the literature has derived equilibrium sorting conditions by drawing on an ex-
plicit characterization of the value-of-search in the steady state. Non-stationary analysis
forecloses this avenue, as the time-varying value-of-search is a complicated object to han-
dle.6 We circumvent the ensuing tractability issues by using a revealed preference argu-
ment: superior types, being more desirable, can exploit their superior match opportunities
and replicate the expected match outcomes of any inferior type. These deviations must be
weakly dominated by the actual value-of-search—establishing lower bounds on superior
types’ value-of-search. The lower bounds serve as the keystone of all of our equilibrium
sorting results. In particular, we provide a concise proof that unifies several results that
hold in stationary environments—two well-known (Theorems 1 and 1′) and two that are
new (Propositions 2 and 2′): if payoffs are log supermodular, then there is PAM when search
is costly due to time discounting as established by Smith (2006); if payoffs are supermodular,

3For instance, Smith (2011) writes that “Almost all successful research on equilibrium search and matching
has assumed a steady-state model. For even the simplest of nonstationary environments can be notoriously
intractable.”.

4The NTU paradigm applies, for instance, in environments characterized by the absence of bilateral bar-
gaining (e.g., rent-controlled housing, collective bargaining agreements in the labor market, see Felbermayr,
Hauptmann, and Schmerer (2014), or national wage setting, see Hazell, Patterson, Sasons, and Taska (2022))
or those where bilateral bargaining does not precede match formation (e.g., the classical hold-up problem
in household bargaining or team production, see Mazzocco (2007), Rasul (2008), Doepke and Kindermann
(2019)).

5Smith (1999) studies a non-stationary pure search model without recall in which agents can quit employ-
ment and return to the search pool at will.

6The value-of-search is characterized by an integral over an infinite time horizon taking as its argument the
population dynamics, which are themselves a solution to an infinite-dimensional system of integral equations.
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then there is PAM when search entails an explicit time-invariant flow cost as established by
Morgan (1995). Moreover, we derive missing comparative static results in the pure search
model under both discounting and explicit search costs: under identical conditions, higher
types pursue higher prizes.

In a non-stationary environment, steady state sufficient conditions are insufficient to
guarantee PAM. Here, unlike in the steady state, the lowest type accepted today need not
be the worst possible match outcome for all future times. As the search pool evolves over
time, agents may face a less favorable selection of types to match with in the future. And
an agent who initially rejects a given type may accept an inferior type at a later stage. In
effect, the agent’s decision problem involves weighing a sure match payoff today against
both the upside risk of matching with a superior type and the downside risk of ending
up with an inferior type in the future. Supermodularity and log supermodularity do not
resolve this trade-off. Log supermodularity implies that higher types gain relatively more
from being matched with higher types. But it also implies that higher types lose out more
from being matched with a lower type. We provide an example of a gradually clearing
search pool in which the latter effect dominates: lower, not higher, types are choosier.
PAM does not occur despite log supermodular payoffs.

The main contribution of this article (Theorems 2 and 2′) is to derive an intuitive con-
dition that guarantees PAM in non-stationary environments. Propositions 3 and 3′ adapt
this result to a pure search model. We establish that if the respective steady state sufficient
condition holds and payoffs satisfy log supermodularity in differences, then there is positive
assortative matching across all equilibria. By log supermodularity in differences we mean
that, for all y1 < y2 < y3 and x1 < x2, we have

π(y3|x2) −π(y2|x2)
π(y2|x2) −π(y1|x2)

≥ π(y3|x1) −π(y2|x1)
π(y2|x1) −π(y1|x1)

�

where π(y|x) represents agent type x’s payoff if matched with an agent of type y . As-
suming differentiability, this condition is equivalent to log supermodularity of dyπ(y|x).
Log supermodularity in differences emerges as the missing condition because it ensures
that the upside of matching with a higher type vis-à-vis the downside of matching with a
lower type is always greater for higher types. Observe that this result holds irrespective of
how search cost is modeled. To ensure that PAM occurs in non-stationary environments,
we require log supermodularity in differences under both discounting and explicit search
cost.

We further prove that our conditions are the weakest sufficient ones under which equi-
librium matching away from the steady state is assortative: if one of the two is upset
locally, then there exist environments for which PAM does not occur (Propositions 4 and
4′).

To interpret our result, it is instructive to link PAM to a ranking over risk preferences.
In particular, when type x’s payoff over partners y corresponds to a utility function, log
supermodularity in differences defines a ranking over risk preferences in the sense of Ar-
row (1965)–Pratt (1964). Accordingly, if the respective steady state sufficient condition
holds, our main contribution states that the weakest sufficient condition for positive assor-
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tative matching is that more desirable individuals are less risk-averse.7 In applied models, by
contrast, the curvature of the payoff function may be unrelated to risk preferences.8

1.1. Related Work

Previous forays into non-stationary environments rely on two-type models or stylized
payoffs.9 Research shows that a sorting externality can give rise to endogenous cycli-
cal equilibria (Burdett and Coles (1998)), render welfare-maximizing matching deci-
sions non-stationary (Shimer and Smith (2001)), and sustain multiple equilibrium paths
(Boldrin, Kiyotaki, and Wright (1993)). A notable exception is Wu (2015), who reports a
limit result on the stability of equilibrium matches in a (non-stationary) gradually clearing
search pool as search frictions vanish.

“When is matching assortative?” is the central question in the theory of decentralized
matching. Becker (1973) famously studied it in an idealized frictionless marriage market.
His analysis emphasizes the role of pre-match negotiation in sorting. Under “complete
rigidity” in the division of output at the moment of match creation (the NTU paradigm),
for example, due to a hold-up problem, PAM occurs when match payoffs are increasing
in the partner’s type.10 Under “complete negotiability” at the moment of match creation
(the TU paradigm), PAM occurs when match output satisfies increasing differences.11,12

Various authors have since extended Becker’s initial analysis of frictionless matching mar-
kets.13 Most related to ours is the strand of literature that takes into account search fric-
tions, hitherto with an exclusive focus on the steady state.14 A common finding is that

7There is mounting empirical evidence that characteristics commonly attributed to desirability, such as cog-
nitive skills, education, health, or income, strongly correlate with risk preferences. See Dohmen, Falk, Huff-
man, and Sunde (2010) and Dohmen, Falk, Huffman, Sunde, Schupp, and Wagner (2011), as well as Guiso and
Paiella (2006), Frederick (2005), Benjamin, Brown, and Shapiro (2013), and Noussair, Trautmann, and Van
de Kuilen (2013) for evidence. For instance, Dohmen et al. (2010) find that individuals with higher cognitive
ability are both more willing to take financial risks and more patient. Moreover, Dohmen et al. (2011) find
significant correlations between financial and non-financial measures of risk-aversion. This suggests that those
individuals to which society attributes the greatest desirability are also the greatest risk-takers in matching
markets.

8The Supplemental Material, cf. Bonneton and Sandmann (2025), illustrates this point by examining mar-
riages between prospective partners who anticipate a hold-up problem over fertility decisions once matched.
Match payoffs derive from a model due to Rasul (2008) wherein spouses Nash bargain over transfers after
female fertility decisions have been made. The curvature of payoffs is unrelated to risk preferences and exclu-
sively depends on the relevant threat point in the Nash bargaining problem over ex post transfers.

9Recent applied papers, such as Baley, Figueiredo, and Ulbricht (2022) and Lise and Robin (2017), employ
new modeling paradigms and numerical analysis to gain quantitative insights into non-stationary matching
dynamics.

10More generally, Legros and Newman (2010) show that a co-ranking condition of types that requires local
monotonicity of payoffs only is necessary and sufficient for PAM.

11This condition is commonly thought of as complementarity between assortative types. Increasing differ-
ences also plays a role for comparative statics: there is no less PAM with a more complementary production
function, Cambanis, Simons, and Stout (1976); more recently, Anderson and Smith (2024) impose additional
structural assumptions under which they prove the stronger result that there is more PAM with a more com-
plementary production function.

12Legros and Newman (2007) consider imperfect transfers that constitute a middle ground between the
NTU and TU paradigm.

13The TU paradigm in particular has received great attention. Here the equilibrium matching coincides
with the output-maximizing matching, allowing techniques from optimal transport to aid the analysis. See, for
instance, Choo and Siow (2006), Chiappori, Salanié, and Weiss (2017) for the purpose of econometric analysis
and Lindenlaub (2017) for studying PAM when agents’ types are multidimensional.

14Following Postel-Vinay and Robin (2002), an applied literature incorporating search frictions in labor
economics focuses on match-to-match transitions and simplifies the complexity of initial match creation by
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Becker’s conditions alone are insufficient to guarantee PAM, the exception being Atakan
(2006). See Smith (2006) (time discounting) and Morgan (1995) (explicit search cost) for
the NTU paradigm as well as Shimer and Smith (2000) (time discounting) and Atakan
(2006) (explicit search cost) for the TU paradigm where payoffs are determined via Nash
bargaining.15 Smith (2011) reviews this literature.16

Log supermodularity in differences (LSD), often framed as a ranking of risk prefer-
ences (cf. Arrow (1965)–Pratt (1964) and Diamond and Stiglitz (1974)), plays a prominent
role in the literature on monotone comparative statics.17 It informs various sorting results
in moral hazard, test design, mechanism design without transfers, and menu pricing.18 The
search-and-matching literature, chiefly Shimer and Smith (2000) in the TU paradigm, has
been an early adopter. Smith’s (2011) review highlights that in their paper, ranking utility
functions in terms of risk preferences is key to deriving conditions for PAM. While an as-if
interpretation in the TU paradigm—marginal match output is recast as a utility function
of an auxiliary decision maker—our paper shows that theirs is a prescient insight that ap-
plies literally to match payoffs in the NTU paradigm: away from the steady state, match
payoffs satisfying LSD is the missing condition that guarantees PAM.

The link between risk preferences and assortative matching has also been made in fric-
tionless contexts in which the purpose of matching is to share risk that materializes after19

match creation (Serfes (2005), Chiappori and Reny (2016), Schulhofer-Wohl (2006), and
Legros and Newman (2007)). These papers suggest that risk-loving individuals match with
risk-averse ones to absorb the risk of the latter. Search frictions introduce risk that pre-
dates match creation.

2. THE MODEL

There are two distinct populations, denoted X and Y , each containing a continuum
of agents that seek to match with someone from the other population. Each agent is
characterized by a type which belongs to the unit interval [0�1].20 Throughout, we denote

allowing firms to make take-it-or-leave-it wage offers conditional on worker characteristics. Lindenlaub and
Postel-Vinay (2024) build on this framework to identify the dimensions in which matching is assortative when
agent characteristics are multidimensional.

15Eeckhout and Kircher (2010) depart from random search to derive sufficient conditions for PAM in a
model with directed search. One key difference is that the sellers cannot discriminate their prices based on
the buyer’s type. This may be attributed to information frictions that are not present in the random search
framework.

16In more recent work, Bonneton and Sandmann (2024), we expand the definition of positive assortative
matching by allowing intermediate matching probabilities upon meeting as driven by unobserved heterogene-
ity. We show that in the TU paradigm, the literature’s focus on binary match probabilities, zero or one, masks
a shift away from assortative matching as search frictions rise. Since search frictions erode more the bargain-
ing power of more productive agents, agents prioritize waiting for more productive agents over matching with
prospective partners of similar rank. On a technical level, this paper introduces a different inductive mimicking
argument that we also rely on in Sandmann and Bonneton (2025).

17In the terminology pioneered by Karlin (1968), log supermodularity (LS) is referred to as total positivity
of order 2 (STP2).

18See Chade and Swinkels (2019), de Moreno, Barreda, and Safonov (2024), Kattwinkel (2019), and Sand-
mann (2023)).

19Chade and Lindenlaub (2022) study how risk that precedes match creation affects risk-averse workers’ skill
investments. Atakan, Richter, and Tsur (2024) study efficiency of skill investments in a search-and-matching
model.

20Our focus on the continuum is without loss. Results on PAM extend naturally to the analogous model with
finitely many types or agents.
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by x a type of an agent from population X , and y a type of an agent from population Y .
Symmetric constructions apply throughout.

2.1. Individual Problem

Agents engage in time-consuming and random searches for partners. When two agents
meet, they observe each other’s type. If both agree, they match and permanently exit the
search pool; otherwise, they continue searching for a more suitable partner. Each agent
maximizes her expected present value of payoffs, discounted at rate ρ > 0.

Search. Meetings follow an (inhomogeneous) Poisson point process. Such a process is
characterized by the time-varying (Poisson) meeting rate λt = (λXt �λ

Y
t ) so that λXt (y|x) is

the rate at which type x meets type y agents at time t. We assume that higher types are
more likely to meet prospective partners:

ASSUMPTION 1—Hierarchical search: Higher types meet other agents at a weakly faster
rate; that is, λXt (y|x2) ≥ λXt (y|x1) for x2 > x1 and all y and λYt (x|y2) ≥ λYt (x|y1) for y2 > y1

and all x.

Assumption 1 encompasses the commonly studied case of anonymous search, where the
meeting rate does not depend on one’s type. However, it also allows for high-type-specific
advantages in the search process.21

Match payoffs. Agents derive a time-independent one-time payoff if matched with an-
other agent and zero if unmatched: denote by πX (y|x) > 0 the lump-sum payoff of agent
type x from populationX when matched with agent type y from populationY . Payoffs are
bounded and continuous in the partner’s type. We further assume that types are vertically
differentiated.

ASSUMPTION 2—Vertical differentiation: Match payoffs y ↦→ πX (y|x) and x ↦→
πY (x|y) are non-decreasing in the partner’s type, that is, πX (y2|x) ≥ πX (y1|x) for y2 > y1

and all x, and πY (x2|y) ≥ πY (x1|y) for x2 > x1 and all y .

Assumptions 1 and 2, maintained throughout (without further reference in the results),
embed two advantages for higher-ranked agent types. First, they meet prospective part-
ners at a weakly faster rate. Second, they are accepted by a greater number of prospective
partners. Both assumptions are key to deriving a bound on the value-of-search under
mimicking (Lemma 1).

Value-of-search. Upon meeting another unmatched agent, x weighs the immediate
match payoff πX (y|x) against the value-of-search V X

t (x). Naturally, the (weakly domi-
nant22) optimal matching decision is to accept to match with y whenever the payoff ex-
ceeds the option value-of-search:

πX (y|x) ≥ V X
t (x)� (1)

21Note that homophily (as in Alger and Weibull (2013)), where agents of similar characteristics meet more
frequently, is not encompassed by our analysis.

22By focusing on weakly dominant acceptance rules, we discard trivial equilibria in which agents mutually
reject advantageous matches.
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The optimal stopping rule determines the match indicator function:

mt (x� y) =
{︄

1 if πX (y|x) ≥ V X
t (x) and πY (x|y) ≥ V Y

t (y)�
0 otherwise.

(2)

We denote by yt (x) the infimum type with whom x is willing to match at time t so that
πX (y|x) ≥ V X

t (x). As types are vertically differentiated, an agent type x is willing to match
with any y > yt (x) at time t. A symmetric construction applies to xt (y).

The value-of-search is defined as the discounted expected future match payoff if cur-
rently unmatched:

V X
t (x) =

∫︂ ∞

t

∫︂ 1

0
e−ρ(τ−t)πX (y|x)pXt�τ(y|x)dy dτ� (3)

where pXt�τ(y|x) is the density of future matches with y at time τ conditional on x being
unmatched at time t. This is a standard object and is characterized by the matching rate
λXτ (y|x)mτ(x� y).23

2.2. General Equilibrium

Our main result characterizes how match decisions differ across agents. In line
with the literature (cf. Burdett and Coles (1997)), we consider a partial equilibrium
approach—analyze the individual optimization problem when the meeting rate and ac-
ceptance thresholds in the other population are exogenously given—to establish suffi-
cient conditions under which more desirable individuals set higher search cut-offs. Gen-
eral equilibrium, described in the following, emerges as a special case of this analy-
sis.

Endogenous meetings. Denote by μt = (μXt �μ
Y
t ) the state so that, for any U ⊆ [0�1],

the mass of types x ∈ U is
∫︁
U
μXt (x) dx. Functions introduced are Lebesgue measurable

throughout. This implies that the type distribution is atomless. The initial time 0 distribu-
tion is given by μ0. Then agent type x’s time t meeting rate λXt (y|x) is a function of the
underlying state variable μt and time t.

Coherence demands that the flow of meetings of agent types x with agent types y must
be equal to the flow of meetings of agent types y with agent types x24:

λXt (y|x)μXt (x) = λYt (x|y)μYt (y)�

Evolution of the search pool. Population dynamics are governed by entry and exit. The
rate at which an individual agent type x matches and exits the market at time t—the
hazard rate—is

∫︁ 1
0 mt (x� y)λXt (y|x)dy . Agent type x’s time t entry rate ηXt (x) is a function

23Formally, pXt�τ(y|x) = λXτ (y|x)mτ(x�y) exp
{︁ − ∫︁ τ

t

∫︁ 1
0 λ

X
r (z|x)mr (x�z) dz dr}. Refer to Appendix B.1 in

Sandmann and Bonneton (2025) for a formal derivation.
24To better understand the concepts of coherence and hierarchical search, write (without loss of general-

ity) λXt (y|x) =φt (x�y)μYt (y) and λYt (x|y) =ψt (x�y)μXt (x). Coherence then implies that ψt (x�y) =φt (x�y),
while hierarchical search further implies that these functions are non-decreasing in both arguments. Moreover,
if the populations are symmetric (and the equilibrium is symmetric), these functions are symmetric as well, that
is, ψt (x�y) =ψt (y�x).
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of time t and the state μt . We have

μXt+h(x) = μXt (x) +
∫︂ t+h

t

{︄
−μXτ (x)

∫︂ 1

0
λXτ (y|x)mτ(x� y)dy +ηXτ (x)

}︄
dτ� (4)

The economy is non-stationary whenever the integrand is non-zero so that μt+h ≠ μt .
Equilibrium. An equilibrium of the search-and-matching economy of given initial search

pool population μ0 is a triple (μ�V�m), solution to (2), (3), and (4). In a companion
paper, Sandmann and Bonneton (2025), we show that a non-stationary search equilibrium
exists under minimal regularity conditions.25

Note that our model relaxes common assumptions made in the literature, for example,
the economy is in the steady state, there are symmetric populations, search is anonymous,
and meeting and entry rates are given by specific functional forms. This level of gener-
ality helps identify the key assumptions to study equilibrium sorting: hierarchical search
(Assumption 1) and vertically differentiated types (Assumption 2).26

3. POSITIVE ASSORTATIVE MATCHING

This section presents our main results. We derive the weakest sufficient conditions for
positive assortative matching (PAM) in non-stationary environments.

3.1. Definition of PAM

PAM means that agents of similar characteristics or rank tend to match with one an-
other. When finding a partner entails search, the flow number of created matches depends
on both the number of meetings that take place and individual match decisions. We use
the definition of PAM by Shimer and Smith (2000) that disentangles physical search fric-
tions from individual matching decisions. They look at hypothetical matches that would
be formed if a meeting took place. Formally, define Ut ≡

{︁
(x� y) :mt (x� y) = 1

}︁
the set of

pairs who are willing to form a match at time t. Matching is assortative if, when any two
agreeable matches in Ut are severed, both the greater two and the lesser two types can be
agreeably rematched.

DEFINITION 1—PAM (Shimer and Smith (2000)): There is PAM at time t if (x1� y2) ∈
Ut and (x2� y1) ∈ Ut imply that (x1� y1) ∈ Ut and (x2� y2) ∈ Ut for all types x2 > x1 and
y2 > y1.

PAM can be recast in more intuitive terms: higher types match with sets of superior
types; or, equivalently, higher types are relatively more selective about who they match
with. The following proposition, adapted from Shimer and Smith (2000) who prove this in
the steady state with symmetric populations, develops this idea formally. Recall that yt (x)
is the infimum type with whom x is willing to match at time t so that πX (y|x) ≥ V X

t (x).

25Also see Shimer and Smith (2000), Smith (2006), Lauermann, Nöldeke, and Tröger (2020) in the context
of a stationary equilibrium with a continuum of agent types.

26The meeting technology λ encompasses the most commonly studied meeting rates found in the literature:
linear (e.g., Mortensen and Pissarides (1994), Burdett and Coles (1997)) and quadratic search technologies
(e.g., Shimer and Smith (2000) and Smith (2006)). The entry rate η encompasses several natural entry rates
such as no entry and constant flows of entry (as in Burdett and Coles (1997)). In addition, entry may be
generated by exogenous match destruction (as in Shimer and Smith (2000) and Smith (2006)) provided that
individual agents assign zero subjective probability to separation and re-entry once matched.
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PROPOSITION 1: (i) If x ↦→ yt (x) and y ↦→ xt (y) are non-decreasing, then there is PAM
at time t. (ii) If there is PAM at time t, then x ↦→ yt (x) and y ↦→ xt (y) are non-decreasing
for all types whose individual matching sets UX

t (x) ≡ {︁
y :mt (x� y) = 1} and UY

t (y) ≡ {︁
x :

mt (x� y) = 1} are non-empty.

3.2. The Mimicking Argument

To derive equilibrium sorting properties, we need to compare the value-of-search
across types. Such a comparison is challenging, as the law of motion is intractable in
non-stationary environments, making it impossible to characterize the value-of-search in
closed form. To circumvent this problem, we apply a revealed preference argument, which
we refer to as the mimicking argument.27

We first note that the value-of-search, defined in Equation (3), admits an integral rep-
resentation over payoffs that subsumes the time dimension:

V X
t (x) =

∫︂ 1

0
πX (y|x)QX

t (y|x)dy where QX
t (y|x) ≡

∫︂ ∞

t

e−ρ(τ−t)pXt�τ(y|x)dτ� (5)

Here QX
t (y|x) corresponds to a density that does not integrate to 1:

∫︁
U
QX
t (y|x)dy rep-

resents type x’s discounted probability of forming a match with some other agent type
y ∈U ⊆ [0�1] some time in the future.

Then observe that higher agent types have better match opportunities. The reasons are
twofold. Since match payoffs are monotone (Assumption 2), an agent that is willing to
match with a lower agent type x1 is also willing to match with a higher agent type x2.
And since search is hierarchical (Assumption 1), x2 meets other agents at a faster rate.
Thus, agent type x2 can in expectation match with all the agent types (and possibly even
other, more attractive ones) that agent type x1 is matching with. Both observations help
establish the following lemma,28 which is the keystone of our proofs for the sorting results
in Theorems 1, 1′, 2, and 2′.

LEMMA 1—Mimicking argument: The value-of-search admits the following lower
bound:

V X
t (x2) ≥

∫︂ 1

0
πX (y|x2)QX

t (y|x1) dy for all x2 > x1 ∈ [0�1]� (6)

To prove the lemma, we define an auxiliary decision problem that allows more highly
ranked agents x2 to exactly replicate (“mimic”) a lesser ranked agent x1’s matching rate.
Such mimicking is feasible because higher types have better match opportunities. Then, by
revealed preferences, mimicking leads to weakly smaller expected payoffs than following
the optimal stopping rule (1).

27Mimicking has a long tradition in economics, notably in the theory of incentives (cf. Laffont and Martimort
(2002)). See especially Lauermann (2013) in the context of a stationary TU matching model and Kirkegaard
(2009) in the context of asymmetric first-price auctions. A mimicking argument also plays a major role in our
companion paper, Sandmann and Bonneton (2025), where we show that a non-stationary equilibrium exists
under minimal regularity conditions.

28Lemma 5, and thereby all subsequent results on PAM, readily extends to an environment where higher
types are more patient as expressed by their discount factor, that is, ρ(x2) < ρ(x1) for all x2 > x1.
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PROOF: Fix x ∈ [0�1] and t ∈ ℝ+. And let 𝒬X
t (x) be the space of discounted probabili-

ties y ↦→Qt (y) ∈ ℝ+ generated by some matching rate (τ� y) ↦→ ντ(y) that is feasible, that
is, ντ(y) ≤ λXτ (y|x) and acceptable to y , i.e., ντ(y) = 0 if πY (x|y) < V Y

τ (y). The matching
rate (τ� y) ↦→ ντ(y) defines the match density p̃Xt�τ(y|x) = ντ(y) exp

{︁ − ∫︁ τ

t

∫︁ 1
0 νr (z)dz dr

}︁
as in the homogeneous Poisson process. The discounted match probability is then Q̃t (y) =∫︁ ∞
t
e−ρ(τ−t)p̃Xt�τ(y)dτ. By construction, QX

t (·|x) ∈𝒬X
t (x) and

V X
t (x) = sup

Q∈𝒬t (x)

∫︂ 1

0
πX (y|x)Q(y)dy�

Assumptions 1 and 2 imply that if y ↦→ ντ(y) is feasible and acceptable for x1, then it is
feasible and acceptable for x2. Hence, 𝒬t (x1) ⊆𝒬t (x2) and

V X
t (x2) ≥ sup

Q∈𝒬t (x1)

∫︂ 1

0
πX (y|x2)Q(y)dy�

The assertion of the lemma then follows because QX
t (·|x1) ∈𝒬t (x1). Q.E.D.

3.3. Stationary Environment

We first use the mimicking argument to revisit the known steady state analysis. This
allows us to make transparent how the assumption of stationarity facilitates PAM. A con-
dition on payoffs, log supermodularity, is sufficient for PAM in stationary environments:

DEFINITION 2—Log supermodularity: PopulationX ’s payoffs are log supermodular if,
for all y2 > y1 and x2 > x1,

πX (y2|x2)
πX (y1|x2)

≥ πX (y2|x1)
πX (y1|x1)

�

This condition means that higher types stand relatively more to gain from matching
with higher types. If the inequality is reversed, payoffs are log submodular. We find it
most instructive to view log supermodular payoffs as a property of time preferences: In
a toy model with two agents that have the same discount factors, the higher type will be
more inclined to choose a delayed, certain payoff over an immediate one if and only if
payoffs are log supermodular.

The following result is due to Smith (2006).

THEOREM 1—Stationary PAM (Smith (2006)): Suppose that both populations’ payoffs
are log supermodular. Then there is positive assortative matching (PAM) in any stationary
equilibrium.

Smith’s original proof, motivated by the analysis of block segregation, proceeds recur-
sively from the highest type to the lowest type. Here, we present a shorter proof of a more
granular result, Proposition 2, that is based on Lemma 1, which addresses the sorting pat-
terns within a single population. We deliver two new insights. First, our proof of Proposi-
tion 2 makes explicit why the sufficiency of log supermodular payoffs for PAM is specific
to stationary environments: our proof uses the fact that, in the steady state, agents always
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match with a weakly better type than the most desirable type rejected previously. Sec-
ond, our proof re-frames the across-population matching problem as a within-population
sorting problem where match acceptance thresholds from the opposite population are
exogenous. This shows that equilibrium behavior on one side of the market is not a pre-
condition for sorting on the other.

PROPOSITION 2: Suppose that population X ’s payoffs are log supermodular. Then, in any
stationary environment, higher types x have a higher search cutoff, y(x2) ≥ y(x1) for all x2 >
x1.

Theorem 1 follows from here: PAM holds according to Proposition 1(i) when higher
types from both populations have higher search cutoffs.

Observe that PAM is but one implication of Proposition 2: when one side of the popula-
tion acts non-strategically because of valuing all partners the same, πY (x1|y) = πY (x2|y)
for all x1�x2, our model simplifies to the classic pure search model without recall (McCall
(1970), Mortensen (1970)). In effect, under log supermodular payoffs, Proposition 2 as-
serts that under stationary search, higher types x pursue higher prizes (goods, assets, ideas...)
y .

PROOF OF PROPOSITION 2: We prove the contrapositive: if some lower types have
higher search cutoffs, then payoffs are not log supermodular. Let x2 > x1 be such that
yt (x2) < yt (x1) (the environment being stationary, this applies to all moments in time).
This means that for any type y ∈ (yt (x2)� yt (x1)), agent type x2 accepts y and x1 rejects y;
whence, due to (1), πX (y|x1) < V X

t (x1) and πX (y|x2) ≥ V X
t (x2). Then recall the integral

representation of the value-of-search (5) and apply the mimicking argument (Lemma 1):
∫︂ 1

0
πX (y|x1)QX

t (y|x1) dy > πX (y|x1) and

∫︂ 1

0
πX (y|x2)QX

t (y|x1) dy ≤ πX (y|x2)�

(7)

In the steady state, agents’ matching decisions do not change over time. This implies that
agents always match with a better type than any of the types that were rejected previously.
Formally, QX

t (y|x1) = 0 for all y < yt (x1) including y , and we may adjust the bounds of
integration in (7) accordingly. Finally, combining both inequalities yields

∫︂ 1

y

πX (y|x1)
πX (y|x1)

QX
t (y|x1)dy >

∫︂ 1

y

πX (y|x2)
πX (y|x2)

QX
t (y|x1) dy� (8)

which can only hold if match payoffs are not log supermodular. Q.E.D.

3.4. Non-Stationary Environments

In a non-stationary environment, log supermodularity is insufficient to guarantee PAM.
Here, unlike in the steady state, the lowest type accepted today need not be the worst
possible match outcome for all future times. As the search pool evolves over time, agents
may face a less favorable selection of types to match with in the future; an agent who
rejects a given type initially may accept an inferior type at a later stage. This requires an
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agent to weigh the current acceptance decision against both the upside risk of matching
with a superior type and the downside risk of ending up with an inferior type in the future.

Log supermodularity does not resolve this trade-off. On the one hand, payoff log su-
permodularity implies that higher types relatively better like to be matched with higher
types. On the other hand, it stipulates that higher types stand more to lose from match-
ing with a lower type. Depending on which effect dominates, higher or lower types are
choosier. In particular, the higher type’s fear of the worst outcome may upset PAM, even
though payoffs are log supermodular. To build intuition, we first develop a simple three-
type example that illustrates this point (see Figure 2 for an example with a continuum of
types).

EXAMPLE—PAM does not occur in a gradually clearing matching market: We con-
struct a three-type example in which PAM is upset despite log supermodular payoffs. Pop-
ulations are symmetric. The market gradually clears with no entrants joining the search
pool (ηt (x) = 0). Assuming quadratic search (λt (x′|x) = μt (x′)), meetings are less and
less likely to occur over time. Then consider payoffs that are increasing and log super-
modular. The intermediate x2 and high type x3 payoffs are given as follows where ϵ > 0
is small:

x3 x2 x1

π(·|x3) 10 + ϵ 1 ϵ
π(·|x2) 10 1 1 − ϵ

In effect, the high type x3 is highly averse to matching with the lowest type x1. The in-
termediate type, by contrast, is almost indifferent between the lesser two types. Low type
payoffs are not further specified—the lowest type accepts matching with everyone at all
times whenever payoffs are log supermodular (Corollary 1 in Appendix A.2).29 The ex-
ample is solved numerically30 and illustrated in Figure 1. Time is on the horizontal axis
and the value-of-search on the vertical axis. To facilitate the comparison of match accep-
tance thresholds across types, we use the payoff of matching with the medium type as a
reference point on the horizontal axis. Hence, agents accept matching with the medium
type whenever their value-of-search is above the horizontal axis. Owing to the gradually
decreasing meeting rate, the high type’s match opportunities deteriorate steadily. At the
beginning of time, she matches with high type agents x3 only. But after time t1, with only
few agents left in the search pool, she also accepts to match with agents of intermediate
type x2. The intermediate type initially accepts fellow agents of type x2. Yet, anticipating
the possibility of matching with the highest type, x2 experiences a surge in her value-of-
search. This leaves her not only to reject the lowest, but also her own type between t0 and
t1. (One could say that time interval [t0� t1] is spent away from the search pool: Agents of
type x2 do not match with anyone!) Between time t1 and t2, type x2, is the choosiest: the
highest type finds the intermediate type acceptable, whereas the intermediate type does
not. This upsets PAM.

The main contribution of this paper is to establish sufficient conditions for which PAM
occurs away from the steady state. First, a definition is in place.

29As an example, one can consider π(x3|x1) = 10 − ϵ�π(x2|x1) = 1�π(x1|x1) = 1 − ϵ
2 .

30When the meeting rate is quadratic, solving the HJB differential equation characterizing the value-of-
search in closed form is typically not possible. Closed-form solutions are reported in the examples on necessity
(see Proposition 4). The equilibrium is constructed backward in time, starting with an almost empty search
pool far into the future. We further consider ϵ= 0�01 and ρ= 1.
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FIGURE 1.—PAM is upset despite log supermodular payoffs—three type example.

DEFINITION 3: Population X ’s payoffs are log supermodular in differences if, for all
y3 > y2 > y1 and x2 > x1,

πX (y3|x2) −πX (y2|x2)
πX (y2|x2) −πX (y1|x2)

≥ πX (y3|x1) −πX (y2|x1)
πX (y2|x1) −πX (y1|x1)

�

If the inequality holds with the reverse sign, we say that payoffs satisfy log submod-
ularity in differences. Log supermodularity in differences, a term that we introduce here,
means that higher types stand relatively more to gain from matching with a high type than
they stand to lose from matching with a low type. Log supermodularity in differences is
equivalent to dyπX (y|x) being log supermodular, insofar as such a derivative exists.31 The

FIGURE 2.—PAM is upset despite log supermodular payoffs. Note: Consider a rapidly clearing search pool
with no entry. Symmetric payoffs are π(y|x) = exp(y/16 − 2x8(1 − y)8). These are log supermodular and
log submodular in differences. The figure depicts how match acceptance sets shrink over time: darker sets
represent match acceptance sets at an earlier date. Initially, only the highest and the lowest types match.
Intermediate types do not match up until they are accepted by the highest types. PAM fails initially because,
prior to reaching an almost empty search pool, the most desirable agents are not the choosiest. Visually, at the
top, the boundary of matching sets is decreasing.

31Log supermodularity is a condition that affects both the level and the curvature of a function. By contrast,
log supermodularity in differences governs the curvature of a function only and is invariant to its level. In
particular, if πX (y|x) is log supermodular in differences, then so is πX (y|x) −πX (0|x). Moreover, πX (y|x) −
πX (0|x) is also log supermodular, whereas πX (y|x) need not be.
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payoffs in the preceding example do not satisfy this condition, for the downside loss from
matching with x1 instead of x2 is much larger for higher types:

π(x3|x3) −π(x2|x3)
π(x2|x3) −π(x1|x3)

= 9 + ϵ
1 − ϵ <

9
ϵ

= π(x3|x2) −π(x2|x2)
π(x2|x2) −π(x1|x2)

�

We can interpret the payoff π(·|x) ≡ ux(·) as agent type x’s utility function. This af-
fords us an interpretation of log supermodularity in differences in terms of risk prefer-
ences. More specifically, Pratt (1964) shows that, given arbitrary x2 > x1, the following
statements are equivalent:

1. Agent type x1 is weakly more risk-averse than agent type x2; that is, x1 does not
accept a lottery that is rejected by x2.32

2. For any y3 > y2 > y1 we have

ux2 (y3) − ux2 (y2)
ux2 (y2) − ux2 (y1)

≥ ux1 (y3) − ux1 (y2)
ux1 (y2) − ux1 (y1)

�

The use of this result is twofold. First, it features prominently in the proof of Theorem 2.
Second, it provides a simple interpretation of log supermodularity in differences: lesser
ranked agent types are also more risk-averse. Here we are dealing with payoffs of course,
not utilities. This is why we caution against viewing log supermodularity in differences
solely in the guise of risk-aversion. The curvature of π is implied by the specific model
in mind. It may consequently be derived from economic fundamentals rather than risk
preferences.

Having established the terminology, we can now state the main result:

THEOREM 2—Non-stationary PAM: Suppose that both populations’ payoffs are log su-
permodular and log supermodular in differences. Then there is positive assortative matching
(PAM) at all times in any (non-stationary) equilibrium.

The proof of this theorem directly follows from a more granular statement about
within-population sorting, where higher types from one population are choosier about
their matches. Similar to the steady state, increasing choosiness can also be interpreted
through the lens of pure search theory (McCall (1970), Mortensen (1970)). Theorem 2
follows, as PAM holds when higher types in both populations have higher search cutoffs.

PROPOSITION 3: Suppose that population X ’s payoffs are log supermodular and log su-
permodular in differences. Then, higher types x have a higher search cutoff, yt (x2) ≥ yt (x1)
for all x2 > x1.

A clear division of labor emerges between the two sufficient conditions: one governs
time, the other risk. Log supermodularity in differences ensures that higher types are
more willing to bear the risk, while log supermodularity ensures that higher types are
more willing to endure the delay associated with prolonged search.

PROOF: We prove, as in the stationary case, the contrapositive. Let x2 > x1 be such that
yt (x2) < yt (x1) at some time t. This means that for any y ∈ (yt (x2)� yt (x1)), agent type x2

32Formally, it holds that if
∫︁ 1

0 ux1 (y)dF (y) ≥ (>)ux1 (y), then also
∫︁ 1

0 ux2 (y) dF (y) ≥ (>)ux2 (y).
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accepts y and x1 rejects y . Using identical arguments as in the proof of Proposition 2, that
is, representation (5) and Lemma 1, yields
∫︂ 1

0
πX (y|x1)QX

t (y|x1) dy > πX (y|x1) and
∫︂ 1

0
πX (y|x2)QX

t (y|x1) dy ≤ πX (y|x2)� (9)

Next, define y such that πX (y|x1)
∫︁ 1

0 Q
X
t (y|x1) dy = πX (y|x1). Since QX

t (·|x1) integrates
to strictly less than 1, y > y . (To see that such y ∈ [0�1] exists, one must prove that

πX (1|x1)
∫︁ 1

0 Q
X
t (y|x1)dy ≥ πX (y|x1) > πX (y|x1)

∫︁ 1
0 Q

X
t (y|x1)dy and apply the interme-

diate value theorem. The second inequality is trivially true. If the first inequality did not
hold, then it must be that

∫︁ 1
0

[︁
πX (y|x1)−πX (1|x1)

]︁
QX
t (y|x1) dy > 0 due to (9) and in spite

of non-decreasing match payoffs.) Log supermodularity implies that 1
/︁∫︁ 1

0 Q
X
t (y|x1) dy =

πX (y|x1)
πX (y|x1) ≤ πX (y|x2)

πX (y|x2) . Or, equivalently,

πX (y|x2) ≤ πX (y|x2)
∫︂ 1

0
QX
t (y|x1) dy� (10)

Finally, normalize QX
t to recast the agents’ decisions as a common choice in be-

tween a lottery F and the sure outcome y. Formally, define F (y) = ∫︁ y

0 Q
X
t (y ′|x1) dy ′/︁∫︁ 1

0 Q
X
t (y ′|x1)dy ′. It follows from (9) and (10) that

∫︂ 1

0
πX (y|x1)dF (y) >πX (y|x1) and

∫︂ 1

0
πX (y|x2) dF (y) ≤ πX (y|x2)�

Or, type x1 accepts the lottery that is rejected by type x2. This runs counter to the char-
acterization of log supermodularity in differences in terms of risk preferences and estab-
lishes a contradiction. Q.E.D.

To gain a visual understanding of the scope of Theorem 2, refer to Figure 3. In our
simulations, we consider match acceptance thresholds with non-stationary cyclical entry,
similar to the fluctuations in a dynamic seasonal housing market (cf. Ngai and Tenreyro
(2014)). Despite the complex dynamics, when the conditions for PAM are met (as shown
in Figure 3b), all acceptance thresholds remain in a specific order without any crossings.
However, if these conditions are not satisfied, the sorting of thresholds may become intri-
cate, leading to numerous crossings between agents’ acceptance thresholds (as shown in
Figure 3a). This is where PAM proves to be useful in imposing regularity on the dynamics
of the matching problem.

Discussion. It may come as a surprise that risk preferences do not play as prominent a
role in the steady state. After all, the decision to reject a certain match payoff today is a
revealed preference for a risky, random match payoff sometime in the future—regardless
of whether the environment is stationary or not. Our analysis shows that the randomness
of search translates into less risk in the steady state. Indeed, in a stationary world, the
lowest type accepted initially constitutes a bound on the worst possible match outcome for
all future dates; the prospect of future matches below one’s current acceptance threshold
does not arise. This renders downside risk a feature of non-stationary environments only.
In consequence, sorting in the steady state solely relies on a preference ranking over
upside risk: the uncertain prospect of a better match at the cost of delay. Non-stationarity,
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FIGURE 3.—Illustration of Theorem 2 with cyclical entry. Note: Populations are symmetric with payoffs
given by π(y|x) = y

1
2 + 1

2 x (b) and π(y|x) = y1− 1
2 x (a). The former is LS and LSD, that is, the conditions from

Theorem 2, and the latter is neither. Entry is cyclical: ηt (x) = 10 sin(8t)φ(x)(μt (x))4 where φ(x) is the log-
normal density with logmean and logvar equal to 0�5. Further parameters are λt (y|x) = μt (y)/(

∫︁ 1
0 μt (z)dz)

1
2

and ρ= 10. Each color band corresponds to the range of acceptance thresholds chosen by a small interval of
types. To highlight the crossing of acceptance thresholds, acceptance thresholds of types x ∈ [0�1�1] are de-
picted in plain color and acceptance thresholds of types x ∈ [0�0�1] are dashed. In the example where PAM
fails, it is not the most desirable agents, but rather agents of a lower-ranked type with x= 0�1, who exhibit the
highest level of selectivity.

in contrast, requires a preference ranking over any kind of lottery, entailing both upside
and downside risk.

3.5. Necessity

It is easy to provide examples in which PAM occurs, even when payoffs are neither log
supermodular nor log supermodular in differences. As higher types are more likely to
be accepted by others, higher types enjoy superior match opportunities and can there-
fore afford to be choosier, regardless of payoff curvature. Becker (1973) illustrates this
point in a frictionless matching market. Adachi (2003) (cloning model), Lauermann and
Nöldeke (2014) (steady state), and Wu (2015) (Markov equilibrium of the gradually emp-
tying search pool) prove this to be the case more generally as search frictions vanish. This
raises the question whether our conditions are needlessly strong.

In this section, we show that log supermodularity and log supermodularity in differ-
ences are the weakest sufficient conditions under which PAM occurs in non-stationary
environments.33 If either one condition reverses locally for some interval of types, then
there exist primitives of the model under which PAM is upset. We show that this is partic-
ularly true when there is a gradually emptying search pool, arguably the simplest instance
of a non-stationary environment. The additional requirement that there is zero entry and
populations are symmetric merely disciplines the result.

PROPOSITION 4—Weak sufficiency: Consider an economy with symmetric populations
and zero entry and suppose that payoffs satisfy either of the following:

1. payoffs restricted to [x�x]2 ⊆ [0�1]2 are strictly log submodular, or
2. payoffs restricted to [x�x]2 ⊆ [0�1]2 are strictly log submodular in differences;

33Legros and Newman (2007) prove an analogous necessity result in frictionless matching markets with
imperfectly transferable utility.
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then there exist meeting rates λ and an initial search pool μ0 such that PAM does not occur
for some time preceding the (empty) steady state.

The proof of Proposition 4 is deferred to the Appendix. To prove this statement, we
show that the set of model primitives for which PAM fails is non-empty, which entails
choosing an appropriate meeting rate and type distribution that foster negative sorting
for the entire class of payoffs considered. The proof thus revolves around two counterex-
amples.34

Counterexample 1 derives from a ranking of time preferences across types that is im-
plied by log submodular payoffs. This ranking states that lower ranked types will exhibit
more patient behavior in the following choice problem, variations of which naturally arise
in a non-stationary search pool: match instantaneously with a lower ranked type, or match
with delay (possibly but not necessarily with probability less than 1) with a more attractive
type in the future. In counterexample 2, we emphasize the role of risk as opposed to time
by letting the expected time spent in the search pool become exceedingly small, all the
while maintaining the downside risk of matching with the lowest type.

4. EXPLICIT SEARCH COSTS

So far, we have embedded search costs through time discounting (as espoused by
Shimer and Smith (2000) and Smith (2006)). In this section, we re-establish sufficient
conditions for PAM adopting the other prominent representation of search costs: explicit
search costs (see Morgan (1995), Chade (2001), and Atakan (2006)).35 Here, discounting
plays no role (ρ= 0), and each agent in the search pool pays a flow cost c. Whereas time
discounting captures the opportunity cost of time, explicit search costs elevate the act of
search to be the critical cost. As was the case under discounting, this framework has been
exclusively studied in the steady state (see Morgan (1995)). In what follows, we broaden
the scope of the analysis to consider all equilibria. We show that log supermodularity in
differences is as essential to PAM under explicit search costs as it is under discounting.

By adapting the proof of Proposition 2, Appendix B presents a short proof of the steady
state result due to Morgan (1995) (see Theorem 1′): Suppose that both populations’ pay-
offs are supermodular. Then there is positive assortative matching (PAM) at all times in any
stationary equilibrium.36 The corresponding search result (see Proposition 2′) is as follows:
Suppose that population X ’s payoffs are supermodular. Then, in any stationary environment,
higher types x have a higher search cutoff, y(x2) ≥ y(x1) for all x2 > x1.

Supermodularity is insufficient to guarantee positive assortative matching in non-
stationary environments for the same reasons given in the analysis of search with dis-
counting. Again, log supermodularity in differences turns out to be the missing sufficient
condition that ensures PAM across all equilibria:

34The proof of Proposition 4 relies on counterexamples involving finitely many types only. This is for an-
alytical convenience only. Using bump functions, distributions over finitely many types can be approximated
arbitrarily well by a continuous distribution over a continuum so that one can construct analogous counterex-
amples with a continuum of types for which PAM is equally upset.

35We are not aware of an existence result that applies under explicit search costs but conjecture that largely
similar arguments as in Sandmann and Bonneton (2025) would establish the result.

36PopulationX ’s payoffs are supermodular if πX (y2|x2) +πX (y1|x1) ≥ πX (y1|x2) +πX (y2|x1) for all y1 < y2

and x1 < x2.
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TABLE I

SUFFICIENT CONDITIONS FOR PAM.

π2 > 0
Frictionless Becker (1973)

Search frictions Stationary Non-stationary
(i) discounting π2 > 0, (logπ)12 > 0 π2 > 0, (logπ)12 > 0, (logπ2)12 > 0

Smith (2006) This paper
(ii) explicit π2 > 0, π12 > 0 π2 > 0, π12 > 0, (logπ2)12 > 0
search costs Morgan (1995) This paper

Note: Subscript 2 stands for the partial derivative in the partner’s type and subscript 1 stands for the partial derivative in one’s
own type (assuming that these exist).

THEOREM 2′—Non-stationary PAM with explicit search cost: Suppose that both popu-
lations’ payoffs are supermodular and log supermodular in differences. Then there is positive
assortative matching (PAM) at all times in any (non-stationary) equilibrium.

As with discounting, Theorem 2′ is due to a more granular result (proven in Ap-
pendix B):

PROPOSITION 3′: Suppose that population X ’s payoffs are supermodular and log super-
modular in differences. Then, higher types x have a higher search cutoff, yt (x2) ≥ yt (x1) for
all x2 > x1.

Observe that unlike steady state sufficient conditions, which differ between environ-
ments with discounting and explicit search cost, the additional condition of log supermod-
ularity in differences ensures monotone search cutoffs and thereby PAM in non-stationary
equilibrium irrespective of how search cost is modeled.37 We finally show that log super-
modularity in differences is the weakest sufficient condition that guarantees PAM (see the
Supplemental Material for a proof along the lines of Proposition 4).

PROPOSITION 4′—Weak sufficiency with explicit search costs: Consider an economy
with explicit search cost, symmetric populations, and zero entry and suppose that payoffs re-
stricted to [x�x]2 ⊆ [0�1]2 are strictly log submodular in differences. Then there exist meeting
rates λ and an initial search pool μ0 such that PAM does not occur for some time preceding
the (empty) steady state.

Table I summarizes the conditions on payoffs that ensure PAM for various environ-
ments in the NTU paradigm.

5. MODEL VARIATIONS

In this section, we discuss three natural alternative specifications of the model. Each of
these highlights the scope of our main sorting result.

37In the Supplemental Material, cf. Bonneton and Sandmann (2025), we consider the alternative explicit
search costs model where agents can quit the search pool and exit unmatched. Quits prevent future expected
search costs from accumulating to the point where the value-of-search becomes negative. Log supermodularity
in differences also plays a critical role in this model.
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5.1. Aggregate Uncertainty

Note that Theorem 2 straightforwardly extends to environments where aggregate fluc-
tuations are stochastic.38 Algebraically, aggregate uncertainty merely compounds the in-
dividual idiosyncratic risk. Irrespective of the source of randomness—idiosyncratic or
aggregate—future match prospects can be summarized by the discounted match probabil-
ity QX

t (y|x). Hence the integral representation of the value-of-search and the subsequent
proofs of our main sorting results continue to apply without modification.

Our insights, therefore, carry over to environments where aggregate fluctuations in the
state are uncertain, such as unemployment rising following a (random) economic crisis
or sex imbalances being inflicted due to a low-probability event such as a war. Log super-
modularity in differences plays a critical role whenever there is a positive probability that
one’s current match prospects deteriorate in the future.

5.2. Non-Stationary Types

It is also worthwhile to note that Theorem 2 extends to environments where time-
varying match opportunities arise due to a change in individual characteristics rather than
a change in the composition of the search pool. To ensure PAM in this context, we require
log supermodularity in differences, even in the steady state.

Formally, consider two-dimensional agent types (x�αt) and (y�βt). αt and βt capture,
depending on the application, time spent in the search pool or age. Then αt′′ −αt′ = t ′′ − t ′
and βt′′ −βt′ = t ′′ − t ′. We assume that age types αt and βt affect the agents’ attractiveness
to others, but not their preferences. Then y ’s match payoff when matching with an agent
of type (x�αt) is �Y (x�αt|y).39

The following theorem (proven in the Supplemental Material) states, as in our base-
line model, that higher types of similar or more desirable age match with more desirable
agents under identical conditions on payoffs as before.

THEOREM 3—PAM with non-stationary types: Suppose that both populations’ payoffs
are log supermodular and log supermodular in differences in x and y . Then, for all αt and
x2 ≥ x1, (x1�αt) accepts every (y�βt) that (x2�αt) accepts. If, moreover, βt ↦→�X (y�βt|x)
and αt ↦→ �Y (x�αt|y) are non-increasing, then, for all ages α′′

t ≥ α′
t and types x2 ≥ x1,

(x1�α
′′
t ) accepts every (y�βt) that (x2�α

′
t) accepts.

This result extends our previous insight: whenever there is downside risk, log super-
modularity in differences is necessary to sustain sorting. For downside risk to arise, the
economy need not be out of steady state. With non-stationary types, downside risk also
emerges when individual agents experience a decline in their value to others.

38Our focus on deterministic aggregate dynamics owes to the literature’s initial focus on the steady state. In
Bonneton and Sandmann (2024), we explore a model with aggregate uncertainty, where uncertainty is driven
by random entry into the search pool.

39To illustrate, consider non-stationary flow payoffs f Yαt (x|y) that depend on the partner’s age type αt . For
instance, flow payoffs may be given by f Yαt (x|y) = e−αt x. Then the match payoff of matching with an agent of
type (x�αt) is given by

�Y (x�αt|y) =
∫︂ ∞

αt

e−ρ(ατ−αt )f Yατ (x|y)dτ�



1654 N. BONNETON AND C. SANDMANN

5.3. Strategic Match Destruction

In our model, once a match is formed, agents do not expect to re-enter the search pool.
This provides a natural setting if (i) break-up costs are prohibitive (e.g., non-compete
clauses as studied by Shi (2023)), (ii) the purpose of the match serves a one-time goal, or
(iii) agents enter a different search pool upon match destruction (e.g., as divorcees). The
literature, by contrast, has largely considered environments in which agents repeatedly
enter and exit the search pool and derive flow payoffs while matched. In the steady state,
both modeling specifications are indistinguishable because there is no reason for agents
to match temporarily. In non-stationary environments, however, agents could be tempted
to break their matches strategically once their match opportunities have improved.

Whether PAM occurs in these environments depends on whether our mimicking argu-
ment holds, that is, whether higher types enjoy better match opportunities. Intuitively, if
agents cannot commit to staying in a match and leave whenever beneficial (as in Smith
(1992)), then the mimicking argument, hence PAM, will not hold. The reason is simple:
individuals may choose not to accept a match with a high-type agent because they antic-
ipate being dumped in the future. If, however, agents can commit to staying in a match,
they continue enjoying better match opportunities, so the mimicking argument, hence
PAM, should hold.40

6. CONCLUSION

This article studies sorting of heterogeneous agents in a general non-stationary match-
ing model, showing that the study of sorting need not confine itself to particular examples
or stationary environments. We hope that it will inspire future ventures into the study of
non-stationary dynamics in related frameworks.

Our analysis reveals a close link between the time-variant nature of search frictions
and risk preferences. We find that the weakest sufficient conditions for positive assorta-
tive matching entail that more desirable individuals are less risk-averse in the sense of
Arrow–Pratt. This result, taken together with the empirical evidence, provides a theoret-
ical foundation as to why positive assortative matching arises in decentralized matching
markets where there is no bilateral bargaining that precedes match formation.

APPENDIX A: POSITIVE ASSORTATIVE MATCHING

A.1. Definition of PAM

PROOF OF PROPOSITION 1: (i) Fix x1 < x2 and y1 < y2 so that (x1� y2)� (x2� y1) belong
to the set of pairs that match upon meeting, Ut . Then yt (x2) ≤ y1 and xt (y2) ≤ x1, whence
also yt (x2) ≤ y2 and xt (y2) ≤ x2 due to Assumption 2. It follows that (x2� y2) ∈ Ut . As to
(x1� y1), note that since yt (x) and xt (y) are non-decreasing, it holds that yt (x1) ≤ yt (x2) ≤
y1 and xt (y1) ≤ xt (y2) ≤ x1, whence (x1� y1) ∈Ut .

(ii) Suppose by contradiction that there is PAM, yet yXt (x2) < yXt (x1) for some types
x2 > x1 whose time t matching sets are non-empty.

Case 1: Suppose that there exists y1 ∈ [yt (x2)� yt(x1)) ∩ UX
t (x2). Then pick arbitrary

y2 ∈UX
t (x1). Clearly, y2 ≥ yt (x1) > y1. And due to the lattice property, (x2� y1)� (x1� y2) ∈

Ut implies that (x1� y1) ∈Ut . This contradicts the assertion that y1 < yt (x1).

40Refer to our previous working paper, Bonneton and Sandmann (2023), for a formal treatment of strategic
match destruction.
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Case 2: Suppose that [yt (x2)� yt (x1))∩UX
t (x2) is empty. Then pick arbitrary y2 ∈UX

t (x2)
and y1 ∈ [yt (x2)� yt (x1)). Clearly, y2 > y1 and xt (y1) > x2. Whence, for any x3 ∈ UY

t (y1) it
must be that x3 > x2. In particular, (x2� y2)� (x3� y1) ∈ Ut implies (x2� y1) ∈ Ut due to the
lattice property. This contradicts the assertion that xt (y1) > x2. Q.E.D.

A.2. Lowest-Type Self-Acceptance

In the example in Section 3.4, low type payoffs are left unspecified because the lowest
type always accepts any match when payoffs are log supermodular. We now formally state
this result:

COROLLARY 1: Suppose that payoffs are log supermodular and populations are symmetric.
Then the lowest type will accept everyone, 0 ∈Ut (0) for every t.

PROOF: We prove the contrapositive, that is, if self-acceptance fails at some point in
time, then payoffs cannot be log supermodular. Let (t0� t1) denote the maximal time in-
terval during which 0 /∈ Ut (0) for all t ∈ (t0� t1). If Ut (0) were empty throughout (t0� t1),
Vt0 (0) = e−(t1−t0)ρVt1 (x) < π(0|0), yet Vt0 (0) = π(0|0) which is absurd. Thus, there exists
t ∈ (t0� t1) and some non-zero type x2 ∈ Ut (0). Yet, due to identical arguments as in the
proof of Theorem 1,∫︂ 1

0

π(x′|0)
π(0|0)

Qt (x′|0)dx′ >
∫︂ 1

0

π(x′|x2)
π(0|x2)

Qt (x′|0)dx′�

As in the proof of Theorem 1, this can only hold if match payoffs are not log supermodu-
lar. Q.E.D.

A.3. Necessity

PROOF OF PROPOSITION 4: Counterexample 1. There are two types, x2 > x1, payoffs are
strictly log submodular, π(x2|x2)

π(x1|x2) <
π(x2|x1)
π(x1|x1) , search is quadratic, λ(t�μt) = μt , and there is no

entry.
As match prospects become bleaker over time, there exists a time t∗ beyond which

the high type will always accept the low type and Vt∗ (x2) = π(x1|x2). Drawing on the inte-
gral representation of the value-of-search, we can write Vt∗ (x2) = ∑︁

j∈{1�2}π(xj|x2)Qt∗ (xj),
where Qt∗ (xj) is the probability of type x2 matching with xj—discounted by the time at
which such event materializes. Now observe that if the low type found it desirable, she
could always exactly replicate discounted match probabilities of the high type, that is,
Vt∗ (x1) ≥ ∑︁

j∈{1�2}π(xj|x1)Qt∗ (xj). Then Vt∗ (x1) >π(x1|x1) and the low type rejects other
low types at time t∗. For otherwise the integral representation of the value-of-search com-
bined with the inequalities implies that

∑︂
j∈{1�2}

π(xj|x2)
π(x1|x2)

Qt∗ (xj) ≥
∑︂
j∈{1�2}

π(xj|x1)
π(x1|x1)

Qt∗ (xj) ⇔ π(x2|x2)
π(x1|x2)

≥ π(x2|x1)
π(x1|x1)

in spite of strict log submodularity.
Counterexample 2. Consider symmetric populations consisting of three types x1 < x2 <

x3. Omit superscripts. Suppose that π(x3|x3)−π(x2|x3)
π(x2|x3)−π(x1|x3) <

π(x3|x2)−π(x2|x2)
π(x2|x2)−π(x1|x2) . Then x3 is strictly more

risk-averse than x2.
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We construct a sequence of equilibra indexed by n in which, for n sufficiently large,
there exists a moment in time such that x3 accepts x2 whereas x2 rejects a fellow x2.
Specifically, consider two distinct moments in time, tn0 and 0, where tn0 precedes 0: at time
tn0 , the high type x3 begins accepting the intermediate type x2, and at time 0, the high type
begins accepting the low type x1; PAM will be upset because type x2 will reject another
type x2 at time tn0 .

The construction makes apparent that the failure of PAM at time tn0 arises due to a
reversal of risk preferences. As n grows large, both (i) tn0 → 0 and (ii) the probability of
matching after time 0 will go to zero. As a consequence, agent type x3’s future match
outcomes at time tn0 converge towards a lottery assigning positive probability to both the
event that x3 match with another x3 and to the event that x3 match with an agent type
x1. Crucially, at time tn0 , agent types x2 are accepted by agent types x3. They thus face
identical match opportunities. Like agent types x3, they may either choose to play the
lottery—or accept x2. Note that since agent type x3 is indifferent between playing the
lottery, that is, waiting, or accepting x2, by virtue of being less risk-averse agent type x2

must strictly prefer the lottery and therefore reject another type x2.
To construct the failure of PAM analytically, we consider the simplest non-stationary

matching environment conceivable. There is zero entry. Agent type x2 is present in zero
proportion and solely of hypothetical interest. Due to log supermodularity, agent type x1

will accept any agent he meets. Proceed then to define the (anonymous) meeting rate: it
becomes stationary eventually and is piecewise constant over time. We set

λt (x1) = n(1 − h(n)) if t ≥ 0 and λt (x3) =
{︄
nh(n) if t ≥ 0�
n if t < 0�

h(n) is determined as to ensure indifference of agent type x3 between accepting and
rejecting agent types x1 for all t ≥ 0. Then, at time t = 0,

ρV n
0 (x3) = n[︁h(n)π(x3|x3) + (1 − h(n))π(x1|x3) − V n

0 (x3)
]︁

and V n
0 (x3) = π(x1|x3)�

Here the equation on the left is the stationary HJB equation and the equation on the right
is the indifference condition. The latter holds if h(n) = ρ

n

π(x1|x3)
π(x3|x3)−π(x1|x3) .

We assume that at time 0, agent types x2 likewise accept agent types x1 (log supermod-
ular payoffs imply this). If they did not, PAM would be upset as we desire to show.

Finally, choose as time 0 ‘starting values’ (μ0(x1)�μ0(x2)�μ0(x3)) such that μ0(x2) = 0
and μ0(x3)

μ0(x1) = λ0(x3)
λ0(x1) .

Preceding time t = 0, the high type x3’s value-of-search is decreasing. Time tn0 < 0,
the moment in time at which agent type x3 is indifferent between accepting and reject-
ing agent type x2, likewise admits a closed-form representation: Recall that V n

0 (x3) =
π(x1|x3) so that, prior to time 0, the high type x3 exclusively matches with other high
types. Then an explicit characterization of x3’s value-of-search as defined in Equation (3)
gives

V n
tn0

(x3) =
∫︂ 0

tn0

e−ρ(τ−tn0 )π(x3|x3)ne−n(τ−tn0 ) dτ+ eρtn0 entn0π(x1|x3)�

And the indifference condition that characterizes tn0 is V n
tn0

(x3) = π(x2|x3). The solution is

given by tn0 = 1
ρ+n ln

n
ρ+n π(x3|x3)−π(x2|x3)
n
ρ+n π(x3|x3)−π(x1|x3) . Clearly, tn0 < 0 due to Assumption 2 and tn0 → 0 as n

goes to infinity.
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Agent type x3’s discounted match probabilities of matching with agent types x1 and x3,
as defined in Equation (5), are denoted by Qn

tn0
(x1) = π(x3|x3)−π(x2|x3)

π(x3|x3)−π(x1|x3) + o(1) ≡ q + o(1)
and Qn

tn0
(x3) = 1 − q + o(1), respectively.41 Here o(1) denotes the Landau notation:

limn→∞ o(1) = 0. In particular, note that Qn
tn0

(x1) +Qn
tn0

(x3) = 1 + o(1), meaning that the
x3’s probability of matching instantaneously approaches 1 as n tends to infinity.

Now observe that, beginning from time tn0 , agent type x2 is accepted by agent type x3,
and thus faces identical match opportunities as an agent type x3. Accordingly, x2 can
mimic the higher type x3’s match probabilities (see Lemma 1) so that

V n
tn0

(x2) ≥ π(x1|x2)q+π(x3|x2)(1 − q) + o(1)�

(Recall by construction that π(x2|x3) = V n
tn0

(x3) = π(x1|x3)q + π(x3|x3)(1 − q) + o(1).)
We then claim that V n

tn0
(x2) >π(x2|x2) for n sufficiently large, so that PAM does not occur

at time tn0 : the intermediate type x2 rejects a fellow intermediate type x2 that is accepted
by high type agents x3. Indeed, this follows from the characterization of risk preferences.
Suppose by contradiction that V n

tn0
(x2) ≤ π(x2|x2) for all n ∈ ℕ. Letting n→ ∞ gives

π(x2|x2) ≥ π(x1|x2)q+π(x3|x2)(1 − q) and

π(x2|x3) = π(x1|x3)q+π(x3|x3)(1 − q)�

This means that (i) agent type x3 is indifferent between the lottery assigning probability q
to x1 and 1 − q to x2 and the sure outcome x2, whereas (ii) agent type x2 weakly prefers
the sure outcome x2. This contradicts the assertion that agent type x2 is strictly less risk-
averse than agent type x3. Q.E.D.

APPENDIX B: EXPLICIT SEARCH COST

We begin by re-stating an adapted version of the mimicking argument that incorporates
explicit search cost. As under time-discounting, the value-of-search admits an integral

41Formally, following the above value-of-search, discounted probabilities are

Qn
tn0

(x1) = etn0 (ρ+n)
∫︂ ∞

0
e−ρτn(1 − h(n))e−nτ dτ = etn0 (ρ+n) n(1 − h(n))

ρ+ n

=
n

ρ+ nπ(x3|x3) −π(x2|x3)

n

ρ+ nπ(x3|x3) −π(x1|x3)

n(1 − h(n))
ρ+ n ≡ q+ o(1)�

Qn
tn0

(x3) =
∫︂ 0

tn0

e−ρ(τ−tn0 )ne−n(τ−tn0 ) dτ+ etn0 (ρ+n)
∫︂ ∞

0
e−ρτnh(n)e−nτ dτ

n

ρ+ n

− n(1 − h(n))
ρ+ n

n

ρ+ nπ(x3|x3) −π(x2|x3)

n

ρ+ nπ(x3|x3) −π(x1|x3)

= (1 − q) + o(1)�
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representation over payoffs:

V X
t (x) =

∫︂ 1

0
πX (y|x)QX

t (y|x)dy −CX
t (x) where QX

t (y|x) =
∫︂ ∞

t

pXt�τ(y|x)dτ� (11)

Here CX
t (x) is the expected time that agent type x spends in the search pool from time t

onward, multiplied by the explicit search cost c:

CX
t (x) = c

∫︂ ∞

t

∫︂ 1

0
(τ− t)pXt�τ(y|x)dydτ�

Higher types have better match opportunities, and so can mimic lesser ranked agents’
matching rates. Then an identical reasoning as in the proof of Lemma 1 establishes the
following lower bound on the value-of-search:

V X
t (x2) ≥

∫︂ 1

0
πX (y|x2)QX

t (y|x1) dy −CX
t (x1) for all x2 > x1 ∈ [0�1]� (12)

THEOREM 1′—Stationary PAM with explicit search cost (Morgan (1995)): Suppose
that both populations’ payoffs are supermodular. Then there is positive assortative matching
(PAM) at all times in any stationary equilibrium.

As under discounting, this holds if search cutoffs are monotone:

PROPOSITION 2′: Suppose that population X ’s payoffs are supermodular. Then, in any
stationary environment, higher types x have a higher search cutoff, y(x2) ≥ y(x1) for all x2 >
x1.

PROOF: We prove the contrapositive. Let x2 > x1 be such that yt (x2) < yt (x1) (the
environment being stationary, this applies to all moments in time). Then, for any type
y ∈ (yt (x2)� yt (x1)), the optimal matching decision implies that πX (y|x1) < V X

t (x1), yet
πX (y|x2) ≥ V X

t (x2). Then apply the integral representation of the value-of-search and
apply the mimicking argument:

πX (y|x1) <
∫︂ 1

0
πX (y|x1)QX

t (y|x1) dy −CX
t (x1) and

∫︂ 1

0
πX (y|x2)QX

t (y|x1)dy −CX
t (x1) ≤ πX (y|x2)�

In the steady state, agents always match with a weakly better type than the one rejected
initially. Formally, QX

t (y|x1) = 0 for all y < yt (x1) including y , and we may adjust the
bounds of integration accordingly. Isolating CX

t (x1), it follows that∫︂ 1

y

πX (y|x1)QX
t (y|x1) dy −πX (y|x1) >

∫︂ 1

y

πX (y|x2)QX
t (y|x1) dy −πX (y|x2)�

Since yt (x1) > 0, agent type x1’s value-of-search exceeds the match payoff from matching
with type 0. In effect, type x1 must almost surely eventually exit the search pool so that
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QX
t (·|x1) integrates to 1. If not, it must be that V X

t (x1) = −∞, because there is a non-zero
probability of incurring an infinite amount of search cost. The preceding inequality thus
simplifies to

∫︂ 1

y

[︁
πX (y|x1) +πX (y|x2) −πX (y|x1) −πX (y|x2)

]︁
QX
t (y|x1) dy > 0�

which can impossibly hold if payoffs are not supermodular. Q.E.D.

PROOF OF PROPOSITION 3′: Suppose that there exist x2 >x1 such that yt(x2)<yt(x1) at
some time t. Then, for any type y ∈ (yt(x2)�yt(x1)), the optimal matching decision implies
that πX(y|x1)<V X

t (x1), yet πX(y|x2) ≥V X
t (x2). As before, an application of the mimicking

argument implies that
∫︂ 1

0
πX(y|x1)QX

t (y|x1)dy−CXt (x1)>πX(y|x1) and

∫︂ 1

0
πX(y|x2)QX

t (y|x1)dy−CXt (x1) ≤πX(y|x2)�

(13)

Next, define y > y such that πX(y|x1) =πX(y|x1) +CXt (x1). Such y ∈ [0�1] does exist (for
πX(y|x1) + CXt (x1) ≤ V X

t (x1) + CXt (x1) ≤ πX(1|x1); then conclude using the intermediate
value theorem). Due to supermodularity,

πX(y|x2) +πX(y|x1) ≥πX(y|x2) +πX(y|x1) ⇔ πX(y|x2) ≥πX(y|x2) +CXt (x1)�

It follows that ∫︂ 1

0
πX(y|x1)QX

t (y|x1)dy >πX(y|x1) and

∫︂ 1

0
πX(y|x2)QX

t (y|x1)dy≤πX(y|x2)�

(14)

It remains to observe that, as in the steady state, QX
t (·|x1) is a density and integrates to

1. Then type x1 accepts a lottery that is rejected by type x2. This runs counter to the
characterization of log supermodularity in differences in terms of risk preferences and
establishes a contradiction. Q.E.D.
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