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 A B S T R A C T

This paper examines the macroeconomic impact of chronic disease in the United Kingdom (UK). We use 
individual-level data to estimate how diagnoses of six major diseases affect labor market transitions and 
combine these with a tractable growth model with age-specific productivity and labor force participation to 
quantify the impact of chronic disease on UK economic growth. Using a novel machine learning approach to 
classify National Health Service (NHS) cost data, we also provide new estimates of disease-specific treatment 
costs. Our findings indicate that a 20% reduction in disease incidence would increase annual GDP by 0.99% 
after five years and 1.51% after ten years. Most of the gains are due to increased participation in the labor force, 
especially among workers aged 50 to 65 years. Reductions in mental health conditions and musculoskeletal 
conditions contribute the most to these effects. Our analysis points to three important features of preventative 
health policies: (1) the potential welfare gains are substantial and manifest themselves in terms of both 
improved population health and increased output growth, (2) only around 40% of long-term effects appear 
after five years, and (3) the 50–65 age group experiences the largest labor force participation gains. This last 
feature is due to two factors: improved health at those ages prevents transitions into health-related inactivity 
and a larger share of workers reaches this age band as a result of reduced transitions into inactivity at earlier 
ages. This compounding effect underscores the importance of targeting prevention efforts at earlier ages.
Introduction

A large body of work has considered the links between health 
and economic growth.1 Although not uncontroversial, this literature 
generally points to a positive relationship (Barro, 1996; Arora, 2001; 
Bhargava et al., 2001; Aghion et al., 2010; Barro, 2013; Bloom et al., 
2014b). It is this positive relationship that underpins economic fears 
of an aging society (Lee and Mason, 2017; Goodhart and Pradhan, 
2020). As the population ages and the proportion of older individuals 
increases, a shift in the disease burden is occurring towards chronic 
long-lasting diseases (GBD 2019 Diseases and Injuries Collaborators, 
2020). The consequence is a substantial projected increase in health 
costs and lower GDP as an increased incidence of disease lowers labor 
supply and rising health costs divert funds from capital accumulation. 
The substantial negative magnitude of these impacts has been demon-
strated for Asian countries (Bloom et al., 2014a; Chen and Bloom, 2019; 
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the London Business School ‘‘Health and Growth’’ conference in April 2024 for helpful comments. Thanks are also due to Katerina Nikalexi for excellent research 
assistance. We gratefully acknowledge funding from ESRC Research, United Kingdom Grant T002204.
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E-mail address: y.schindler@lse.ac.uk (Y. Schindler).

1 See Bloom et al. (2004) for a survey.

Bloom et al., 2020), for Central and South America (Bloom et al., 2018), 
and for the United States (US) (Chen et al., 2018).

In this paper, we consider the impact of chronic disease on the UK 
economy. The UK is an interesting example as in recent years it has 
significantly increased its health expenditure but has witnessed a large 
increase in health-related economic inactivity and a deterioration in 
health, life expectancy, and GDP trends relative to many other countries 
(see OBR (2024b) Chapter 3).

Given these trends, the UK faces mounting pressure to recalibrate 
its healthcare strategy (Ara Darzi, 2024). One particular recommenda-
tion, is to switch emphasis from ex-post treatment of chronic diseases 
towards prevention, which currently accounts for only 5% of total 
UK health expenditure (ONS, 2024). Such a shift represents a delicate 
fiscal challenge. An increase in spending on preventative health would 
need to come at the expense of ex post treatment of diseases given 
https://doi.org/10.1016/j.jeoa.2025.100590
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constraints on public finances. However, if preventative healthcare gen-
erates positive economic returns through improved population health 
and productivity, this could potentially resolve the apparent fiscal 
dilemma. This possibility motivates our central research question: what 
would be the impact on UK economic growth if targeted investments 
in preventative health measures successfully reduced the incidence of 
the six most prevalent chronic diseases?

To answer this question we pay particular attention to the link 
between health outcomes and labor market participation by using 
individual level data from the UK Labour Force Survey (LFS) and 
the UK Household Longitudinal Study (UKHLS). An extensive litera-
ture has shown that adverse health shocks have sizable impacts on 
individual transitions from employment into retirement (Bound et al., 
1999; Disney et al., 2006; Hagan et al., 2009; Jones et al., 2010; 
Christensen and Kallestrup-Lamb, 2012) into unemployment (García-
Gómez et al., 2010; Christensen and Kallestrup-Lamb, 2012), or out 
of the labor force (Cai and Kalb, 2006; García-Gómez, 2011). In this 
paper we estimate the impact of six chronic diseases on the probability 
of transitioning out of the labor force and from full-time to part-time 
employment using the estimator proposed by Dube et al. (2024), which 
accounts for biases that arise in staggered treatment contexts when 
using traditional two-way fixed effects (TWFE) estimators (de Chaise-
martin and D’Haultfœuille, 2020; Goodman-Bacon, 2021; Borusyak 
et al., 2024).

We combine these estimates of how disease impacts labor market 
transitions with an augmented (Solow, 1956) growth model (similar 
to Chen et al., 2018) in which labor force participation and productivity 
vary by age. In the model, changes in disease incidence affect the rate 
at which workers transition from employment to inactivity—and from 
full-time to part-time employment—leading to changes in aggregate 
employment and labor productivity. We then simulate how improve-
ments in population health, through reduced disease incidence, would 
affect both short-run and long-run economic growth by altering labor 
market transition patterns and the aggregate labor supply.

The structure of the paper is as follows: Section ‘‘UK health and 
labor market trends’’ provides a brief summary of UK health and its re-
cent trends; Section ‘‘Model’’ outlines our model; Section ‘‘Calibration’’ 
discusses the data we use and our model calibration; Section ‘‘Esti-
mating the impact of disease on labor force participation’’ estimates 
the impact of disease on labor force participation; Section ‘‘Results’’ 
analyzes our results; and the final section concludes.

UK health and labor market trends

The UK, like many countries, is experiencing population aging. The 
share of the population aged over 50 has risen from 36% in 1970 to 
43% today, and United Nations projections indicate it will reach 51% 
by 2070. The proportion aged over 65 has similarly increased from 
18% in 1970 to 24% today, with projections showing 32% by 2070. 
The most dramatic proportional change is among those aged over 80, 
where the share has risen from 4% in 1970 to 8% today and is projected 
to reach 15% by 2070 (UN, 2024).

This increase in the proportion of older individuals has implications 
for the disease burden. As shown in Fig.  1, the overall prevalence 
of disease rises strongly with age, particularly for cardiovascular dis-
ease (CVD), chronic obstructive pulmonary disease (COPD), cancer, 
and diabetes. As the proportion of people reaching advanced ages 
increases, the burden of disease rises and shifts toward chronic non-
communicable diseases (NCDs). In 2019, it is estimated that there 
were 6.6 million people in the UK with a major illness, of whom 3.6 
million were over 70. By 2040, this figure is predicted to reach 9.1 
million, of whom 5.6 million will be over 70 (Toby Watt et al., 2023). 
Furthermore, because the disease burden increases with age, so does 
health expenditure. Health expenditure rises sharply with age: while 
annual spending per person averages £2300 at age 50, it more than 
doubles to £4800 by age 65 and nearly triples again to £13,400 by age 
2 
90 (OBR, 2024b). This steep age gradient in healthcare costs means 
that population aging places significant upward pressure on total health 
expenditure.

As well as this shifting age structure, the UK is also experiencing 
a slowdown in health and life expectancy improvements. While life 
expectancy has risen dramatically over the past century—from 55 years 
in 1922 to over 81 in 2022—the pace of improvement has recently 
faltered. For most of the past 70 years, life expectancy increased 
steadily by about 1.8 years each decade. However, in the last decade, 
it rose by just 0.7 years—a more pronounced slowdown than seen in 
most other high-income countries. This slower life expectancy growth 
has been accompanied by declining healthy life expectancy, which fell 
by over one year between 2011–13 and 2020–22. While there are some 
positive signs of health improvements at older ages (Old and Scott, 
2023), the overall picture is concerning: a combination of demographic 
aging and rising disability rates among younger people (OBR, 2024b) 
has led to a deterioration in population health.

The impact of health on employment becomes increasingly signifi-
cant with age. Data from the UK Labour Force Survey shows that the 
prevalence of work-limiting health conditions rises sharply across age 
groups: from 10% among those aged 30–35, to 19% among those aged 
50–55, and 26% for those aged 60 and above (ONS, 2024c). As the 
population ages and more people work into their later years, this age-
related rise in health conditions becomes increasingly consequential 
for the overall workforce. Moreover, the deterioration of health among 
younger age groups has compounded this problem. The combined effect 
has led to a substantial increase in health-related economic inactiv-
ity (Haskel and Martin, 2022): by July 2023, 2.8 million working-age 
people (30% of the total) were economically inactive due to ill health, 
up from 2.3 million (24%) a decade earlier.

Model

Key to our analysis is an augmented Solow–Swan growth model 
(Solow, 1956, Swan 1956) similar to that used in (Bloom et al., 2020). 
We assume output is produced according to a Cobb–Douglas aggregate 
production function: 
𝑌𝑡 = 𝐴𝑡𝐾

𝛼
𝑡 𝐿

1−𝛼
𝑡 (1)

where 𝑌𝑡 is aggregate output, 𝐴𝑡 is total factor productivity, 𝐾𝑡 is the 
capital stock, 𝐿𝑡 is the effective labor supply, and 𝛼 is the capital share 
of output. The subscript 𝑡 denotes time. Capital accumulates according 
to the law of motion: 
𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 + 𝑠(1 − 𝜔)𝑌𝑡 (2)

where 𝛿 is the depreciation rate, 𝑠 the savings rate, and 𝜔 the share 
of output spent on healthcare. The implicit assumption in (2) is that a 
fraction 𝑠 of any reductions in healthcare spending is invested into the 
physical capital stock, while the remaining fraction is consumed.

A key channel through which chronic illness affects aggregate out-
put is through the aggregate labor supply. To capture this mechanism 
and to reflect that labor supply varies with age, we decompose effective 
labor supply into : 

𝐿𝑡 =
𝐴
∑

𝑎=0
𝑁𝑡(𝑎) × 𝜇𝑡(𝑎) × 𝐸𝑡(𝑎) ×𝐻𝑡(𝑎) (3)

where 𝑎 indexes age, 𝐴 is maximum age of agents, 𝑁𝑡(𝑎) is total 
population, 𝜇𝑡(𝑎) is worker productivity, 𝐸𝑡(𝑎) is the share of the labor 
force that is working (i.e. the labor force participation rate), and 𝐻𝑡(𝑎)
is a variable that reflects hours worked. Hours worked is determined 
by the fraction of workers who are working full-time or part-time: 
𝐻𝑡(𝑎) = 𝑓𝑡(𝑎) +

[

1 − 𝑓𝑡(𝑎)
]

𝜆 (4)

where 𝑓𝑡(𝑎) is the fraction working full-time and 𝜆 is the fraction of 
full-time hours provided by part-time workers.
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Fig. 1. Years Lived with Disability (YLD) rates by age.
Note: This figure illustrates the Years Lived with Disability (YLD) rates by age for six leading chronic diseases—cardiovascular disease (CVD), chronic obstructive pulmonary disease 
(COPD), cancer, diabetes, musculoskeletal conditions, and mental health conditions—along with all other diseases. Data are sourced from the 2021 Global Burden of Disease (GBD) 
dataset (IHME, 2021).
Population dynamics are governed by fertility, migration, and age-
specific mortality rates so that the population aged 𝑎 in time 𝑡 is given 
by: 
𝑁𝑡(𝑎) = 𝑁𝑡−1(𝑎 − 1)

(

1 − 𝛾𝑡−1(𝑎 − 1)
)

+ 𝐼𝑡(𝑎) (5)

where 𝛾𝑡(𝑎) is the age-specific mortality rate and 𝐼𝑡(𝑎) is the number of 
immigrants aged 𝑎 in time 𝑡. The population at 𝑎 = 0 is given by the 
number of births in time 𝑡: 𝑁𝑡(0) = 𝐵𝑡.

Agents in the model begin work at age �̃�. Labor force partici-
pation varies by age and is endogenously determined by a set of 
age-specific transition probabilities that dictate the likelihood of mov-
ing between employment, unemployment, and inactivity. The entire 
three-state system can be expressed in matrix form as:
⎡

⎢

⎢

⎣

𝐸𝑡(𝑎)
𝑈𝑡(𝑎)
𝑁𝑡(𝑎)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜏𝑡,𝐸→𝐸 (𝑎) 𝜏𝑡,𝑈→𝐸 (𝑎) 𝜏𝑡,𝑁→𝐸 (𝑎)
𝜏𝑡,𝐸→𝑈 (𝑎) 𝜏𝑡,𝑈→𝑈 (𝑎) 𝜏𝑡,𝑁→𝑈 (𝑎)
𝜏𝑡,𝐸→𝑁 (𝑎) 𝜏𝑡,𝑈→𝑁 (𝑎) 𝜏𝑡,𝑁→𝑁 (𝑎)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐸𝑡(𝑎)
𝑈𝑡(𝑎)
𝑁𝑡(𝑎)

⎤

⎥

⎥

⎦

where 𝐸𝑡(𝑎), 𝑈𝑡(𝑎), and 𝑁𝑡(𝑎) are the share of employed, unemployed, 
and inactive workers of age 𝑎 in time 𝑡 respectively, and 𝜏𝑡,𝑖→𝑗 (𝑎) is 
the transition probability from state 𝑖 to state 𝑗 for workers aged 𝑎
in time 𝑡. The transition probability depends on 𝑎, reflecting the fact 
that the likelihood of moving between employment, unemployment, 
and inactivity varies by age and the dependence on 𝑡 reflects the 
evolution of transition probabilities over time. The main counterfactual 
we perform in the model is to reduce the incidence of a set of chronic 
diseases which in turn affects the transition probabilities in the matrix 
above.

The distribution of employed workers across full-time and part-time 
working status is modeled in a similar fashion. Conditional on being 
employed, a worker can transition between full-time and part-time. The 
fraction of employed workers working full-time at age 𝑎 in time 𝑡 is 
given by: 
𝑓𝑡(𝑎) = 𝜏𝐹𝑇→𝐹𝑇 𝑓𝑡−1(𝑎 − 1) + 𝜏𝑃𝑇→𝐹𝑇 (1 − 𝑓𝑡−1(𝑎 − 1)) (6)

where 𝜏𝐹𝑇→𝐹𝑇  is the probability of remaining full-time employed condi-
tional on being full-time employed in the previous period and 𝜏𝑃𝑇→𝐹𝑇  is 
the probability of transitioning from part-time to full-time employment.
3 
Calibration

We follow Bloom et al. (2020) and set the capital stock depreciation 
rate 𝛿 to 5%. The capital share of income 𝛼 is set to 60% in accordance 
with the Office for National Statistics (ONS) Labour Costs and Labour 
Income Statistical Bulletin ONS (2022a).

We consider 𝑡 = 0 to be the period in which the reduction in disease 
incidence is realized. We therefore abstract from any issues related 
to the practical implementation of a prevention policy and any lags 
between the start of the policy and its impact on disease. We set 𝐴0 =
1 and calibrate total factor productivity (TFP) growth such that the 
growth trajectory of our baseline model matches that of the March 2024 
Office for Budget Responsibility (OBR) Economic and Fiscal Outlook 
report (OBR, 2024a).

In our simulations, we assume that in 𝑡 = 0 the economy starts 
from a steady-state level of capital. With 𝛿, 𝛼, and 𝐴0 calibrated, we 
set the savings rate 𝑠 such that the model’s capital–output ratio in 𝑡 = 0
matches the ONS estimate of the UK’s capital–output ratio of 3.9 (ONS, 
2017). This calibration results in an estimate for 𝑠 of 20.3%, close to 
the UK gross fixed capital formation rate of 18%, as reported by the 
World Bank (World Bank, 2024).

Treatment costs

To calibrate how changes in disease incidence affect the share of 
output spent on healthcare, we use the National Health Services (NHS) 
National Cost Collection (NCC) data for the fiscal year 2021–2022.2 The 
NCC process aims to provide a comprehensive overview of costs associ-
ated with delivering various healthcare services across NHS providers. 
Healthcare costs are broken down by Healthcare Resource Group 
(HRG), which are standardized groupings of clinically similar treat-
ments (e.g., heart transplant or hand fracture). In the NCC process, costs 
are allocated across HRGs by matching NHS outlays to specific patient 

2 Fiscal year 2021–2022 is the latest time period for which publicly 
available data in accessible format is available.
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Fig. 2. Flowchart of AI classification pipeline.
Note: This flowchart illustrates the steps of the classification pipeline used to categorize HRG codes into one of six disease categories. The pipeline consists of three main steps: data 
preprocessing, context extraction, and classification. The data preprocessing step involves cleaning the HRG descriptions and removing unnecessary details. The context extraction 
step entails gathering additional information about the HRG codes from web searches for each HRG description. The classification step utilizes a large language model (LLM) to 
categorize each HRG into one of six disease categories based on the cleaned HRG description and the extracted context.
episodes within the NHS (e.g., a patient visiting the A&E department 
after a heart attack). Critically, the cost data reflect not just the direct 
costs of treatment but also the indirect costs of treatment, such as wages 
for administrative staff or other overhead.3 One limitation of the NCC 
data is that it only includes NHS costs incurred by NHS trusts—which 
provide secondary, tertiary, and community care—and does not include 
costs incurred by primary care providers such as general practitioners 
(GPs).

3 For a more detailed description of the NCC process, see Amies-Cull et al. 
(2023).
4 
The NCC cost data is broken down across 2825 HRGs. To esti-
mate how the incidence of a particular disease affects NHS healthcare 
spending, we develop a classification pipeline that leverages recent 
advances in natural language processing (NLP). The classification pro-
cess starts with a large language model (LLM) pre-processing the HRG 
descriptions, stripping away unnecessary details like complication and 
comorbidity (CC) scores, as these are not pertinent to the classification 
task. We then utilize the Google Search API to gather comprehensive 
context for each cleaned HRG string, including the Google Knowledge 
Graph entry and relevant snippets from the top five search results. 
The Google Knowledge Graph is a knowledge database that provides 
information alongside Google’s online search results. As of May 2020, 
it contained 500 billion facts about 5 billion entities. Table  1 shows 
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Table 1
Top 25 Base URLs with cumulative percentage.
 Base URL Count Cumulative % 
 ncbi.nlm.nih.gov 4080 15.37  
 england.nhs.uk 2718 25.61  
 assets.publishing.service.gov.uk 1913 32.82  
 elht.nhs.uk 1282 37.65  
 nhs.uk 723 40.37  
 sciencedirect.com 602 42.64  
 nice.org.uk 581 44.83  
 my.clevelandclinic.org 460 46.56  
 digital.nhs.uk 439 48.21  
 emedicine.medscape.com 422 49.80  
 en.wikipedia.org 332 51.05  
 mayoclinic.org 332 52.31  
 hopkinsmedicine.org 286 53.38  
 dhcw.nhs.wales 281 54.44  
 alderhey.nhs.uk 206 55.22  
 cancerresearchuk.org 201 55.97  
 uhbristol.nhs.uk 179 56.65  
 ambulatoryemergencycare.org.uk 165 57.27  
 mtw.nhs.uk 159 57.87  
 thelancet.com 157 58.46  
 salisbury.nhs.uk 136 58.97  
 sbuhb.nhs.wales 123 59.44  
 webmd.com 119 59.89  
 ahajournals.org 117 60.33  
 cddft.nhs.uk 105 60.72  
Note: This table shows the unique base URLs from which information about each 
HRG code was extracted to generate additional contextual information before the LLM 
classification task. The table is sorted by the total count of times that information 
from a particular base URL was extracted. A base URL is the root domain of a website, 
excluding the protocol (e.g. https://) and any subdirectories. For example, nhs.uk is 
the base URL of https://www.nhs.uk/conditions/laryngeal-cancer/.

the top 25 base URLs from which information about the HRG codes was 
extracted to generate additional contextual information before the LLM 
classification task. In the final step, we pass each HRG description with 
its respective text context to an LLM, which uses the provided context 
to categorize each HRG into our six predefined chronic disease cate-
gories: cancer, diabetes, respiratory disorders, cardiovascular disease, 
musculoskeletal disorders, and mental health disorders.

To ensure the accuracy of our classification approach, we conducted 
a validation exercise using a random sample of 450 HRG codes (ap-
proximately 16% of the total 2825 HRGs). We then evaluated our 
LLM-based classification against these expert assessments using stan-
dard performance metrics including precision, recall, and F1 scores. 
The full validation methodology and detailed results are presented in 
Appendix ‘‘Validation of LLM-based healthcare cost classification’’. Fig. 
2 provides a visual representation of the classification pipeline.

Table  2 summarizes how our review of the NCC cost data apportions 
NHS costs across our six chronic diseases. We find that approximately 
a quarter (£12.89 bn) of all NHS Trust expenditures (£53.5 bn) in 
the 2021–2022 period can be explicitly allocated to the treatment of 
these chronic diseases. One limitation of our analysis is that it does 
not account for general healthcare categories, such as NHS expenditures 
on ambulance services that may be associated with chronic disease. 
For example, ambulance transport to a hospital for someone suffering 
from a heart attack is not counted as a CVD cost, whereas expenditures 
on performing coronary angioplasties do count. For this reason, our 
estimates are likely conservative.

To arrive at an estimate of total UK healthcare expenditure on our 
six chronic diseases, we apportion the UK’s total healthcare spending 
for 2023 as reported in the UK Health Accounts (£292 bn) into the 
six disease based on Table  2. As a last step, we divide these estimated 
healthcare expenditures by UK GDP to arrive at an estimated fraction 
of output spent on each disease.4 Our results compare favorably with 

4 For UK GDP we use the ONS chain volume measure of GDP for 2022 (ONS, 
2024a)
5 
existing studies of NHS healthcare expenditures of £12 billion for 
mental health (Department of Health & Social Care, 2023), £7.4 billion 
for CVD (Raleigh et al., 2022), £5.81 billion for cancer (Aggarwal 
and Sullivan, 2014), £4.9 billion for COPD and asthma (NHS Eng-
land, 2024a), and £4.76 billion for MSK conditions (Office for Health 
Improvement & Disparities, 2022).

For diabetes, our estimate is substantially lower than most figures 
reported by public health authorities and existing studies. We believe 
there are at least two reasons that explain this discrepancy: (1) existing 
studies (e.g. Hex et al. (2024)) include treatment costs for diseases that 
are well-established co-morbidities of diabetes, such as coronary heart 
disease, which we apportion exclusively to our CVD disease category, 
and (2) much of the treatment costs for diabetes likely fall to GP care 
in the UK, which is not included in the NHS NCC data. To the extent 
that expenditure on diabetes appears in other disease categories, our 
overall estimates of the impact of GDP are valid; however, the relative 
importance of cost savings per disease will be incorrect.

Labor force participation

Agents in our model can either be employed, unemployed, or in-
active. The transition probabilities between these states are estimated 
from the ONS LFS Longitudinal Data (ONS, 2024c).5 To reduce noise, 
we employ locally weighted smoothing to generate smoothed values 
of transition probabilities by age. The LFS data contain information on 
workers up until the age of 69, so we extrapolate transition rates from 
age 70 through age 100. Fig.  3 shows the estimated and extrapolated 
transition probabilities. By age 21, around 27% of females and 36.3% 
of males are working in full-time education (ONS, 2024d), enabling us 
to estimate reliable transition probabilities from that age. We use the 
age-specific transition probabilities to infer the steady-state LFP-by-age 
curve and use this to set values for 𝐿𝐹𝑃0(𝑎) for all 𝑎. Fig.  4 shows that 
the steady-state LFP-by-age curve implied by the age-specific transition 
probabilities matches well with the empirically observed LFP-by-age 
curve in the LFS dataset. We use the same methodology to calibrate 
the transition probabilities between full-time and part-time work.

Productivity by age

To calibrate how productivity varies with age we use data from 
UKHLS to estimate a Mincer-type equation, regressing individual wages 
on age while controlling for other relevant characteristics that influence 
earnings. The UKHLS is a large-scale, longitudinal survey collecting 
annual data from households across the United Kingdom. More details 
about this dataset are given in Section ‘‘Estimating the impact of disease 
on labor force participation’’. The UKHLS extract we use covers the 
period from 2009 through 2019 and the dataset comprises 86,096 
individuals.

To estimate the wage-age profile we estimate: 

ln(Wage𝑖,𝑡) =
80
∑

𝑎=20
𝛽𝑎𝐷𝑎 + 𝛼𝑖 + 𝛿𝑡 + 𝐗′

𝑖,𝑡𝜽 + 𝜀𝑖,𝑡 (7)

where Wage𝑖,𝑡 is an individual’s total monthly gross labor income 
(variable fimnlabgr_dv in UKHLS), 𝐷𝑎 is a dummy variable for each 
age 20 through 80 (we use age 19 as the reference period), 𝛼𝑖 is an 
individual fixed effect, 𝛿𝑡 is a year fixed effect, 𝐗𝑖,𝑡 is a vector of addi-
tional fixed effects and control variables, 𝜽 is the corresponding vector 
of coefficients, and 𝜀𝑖,𝑡 is an error term. The vector 𝐗𝑖,𝑡 includes fixed 
effects for industry, education level, labor force status (i.e. employed 
vs. unemployed vs. inactive), and working mode (i.e. full-time vs. 
part-time). We control for these additional fixed effects as individuals 

5 Estimates of the annual transition rates are obtained from LFS 
Five-Quarter Longitudinal Datasets from January 2013 through December 
2019.

https://
https://www.nhs.uk/conditions/laryngeal-cancer/


Y. Schindler and A.J. Scott The Journal of the Economics of Ageing 32 (2025) 100590 
Table 2
Healthcare costs by disease (in £millions).
 Disease Inpatient Outpatient Other Total cost Percentage of 

NHS trust spend
Estimated total 
UK health spend

Percentage of 
UK GDP (2022)

 

 Mental health 797 39 10,117 10,953 12.32% 35,974 1.58%  
 CVD 4101 831 310 5242 5.90% 17,228 0.76%  
 Cancer 3503 990 678 5171 5.82% 16,994 0.75%  
 COPD 2960 430 221 3611 4.06% 11,855 0.52%  
 Musculoskeletal 1451 1362 618 3430 3.86% 11,271 0.50%  
 Diabetes 208 239 157 604 0.68% 1986 0.09%  
 Total 13,020 3891 12,101 29,011 32.64% 95,300 4.20%  
Note: This table shows the costs recorded in the NHS National Cost Collection (NCC) data for the fiscal year 2021–2022 for each of the six disease categories, 
broken down by inpatient (HRG), outpatient, and other costs. The table also displays the percentage of the total NHS Trust spend (£88.89 billion), the estimated 
total UK health spend based on the proportion of NHS Trust spend (total UK health spend £292 billion), and the percentage of the UK GDP (£2,271 billion in 
2022) that each disease category represents.
Fig. 3. Labor force transition probabilities from employment by age.
Note: This figure shows the estimated probabilities of labor force transitions from employment for ages 18–100, using the ONS Labour Force Survey (LFS). The plot displays 
three transition probabilities: remaining employed, transitioning to unemployment, and transitioning to inactivity. Solid lines represent smoothed estimates using LOWESS (Locally 
Weighted Scatterplot Smoothing), while markers show the raw data points. The shaded area indicates extrapolated predictions for ages beyond the observed data. Data for ages 
18–69 are directly estimated from the LFS; transitions for ages 70–100 are extrapolated using sigmoid and exponential decay functions. The smoothing parameter used in the 
LOWESS estimation is 0.2.
change the industry in which they work, their level of education, their 
labor force status, and their working mode as they age.

Our specification differs from the traditional Mincer approach in 
two key ways. First, we use education level fixed effects rather than 
years of schooling to better reflect the UK education system, where 
qualifications (e.g., A-levels, vocational certificates, university degrees) 
matter more for earnings than the simple duration of schooling. Second, 
we replace the standard quadratic experience terms with age fixed 
effects to allow for a more flexible age-earnings relationship that can 
capture potential non-linearities in the lifecycle earnings profile. While 
we refer to our regression as ‘‘Mincer-type’’, our primary goal is to 
estimate the wage-age profile of UK workers while controlling for a rich 
set of covariates. This empirical specification generates age-earnings 
profiles that we can directly use to calibrate our macroeconomic model.

The resulting profile of estimates is shown in Fig.  6. Because very 
few individuals in UKHLS are in paid work after the age of 80 it is 
6 
difficult to obtain accurate estimates of the association between age 
and wage at older ages. For our simulations, we therefore extrapolate 
the estimated earnings through to age 100 using an exponential decay 
function, with earnings set to zero at age 100.

Disease incidence, population, and mortality

We calibrate disease incidence by age for our six chronic diseases 
from the Global Burden of Disease (GBD) dataset (IHME, 2021), plotted 
in Fig.  5. Population and mortality statistics are obtained from the 
ONS (ONS, 2021, 2020).

Estimating the impact of disease on labor force participation

Our analysis uses longitudinal data from UKHLS, following 86,063 
individuals between 2009 and 2019. The average individual is observed 



Y. Schindler and A.J. Scott The Journal of the Economics of Ageing 32 (2025) 100590 
Fig. 4. Labor force participation by age: Data vs Steady-state.
Note: This figure compares the observed and steady-state labor force participation (LFP) rates across ages 21–100. The blue (round marker) lines represent the steady-state LFP 
curves, which are derived by iterating forward the age-specific labor force transition probabilities until the age-LFP distribution converges. The brown (square marker) lines 
represent the smoothed estimates from the January 2013 through December 2019 Labour Force Survey (LFS) Five-Quarter Longitudinal Datasets. Data were smoothed using the 
LOWESS (Locally Weighted Scatterplot Smoothing) technique.
Fig. 5. Disease incidence rate by age.
Note: This figure shows the annual disease incidence rates for the six chronic diseases we study by age. Data are taken from the 2021 Global Burden of Disease (GBD) dataset (IHME, 
2021). The data aggregate disease incidence by age brackets; therefore, we interpolate the individual age-specific disease incidence rates.
for 4.8 waves (years) of the survey, with a median observation length 
of 4 waves. Disease incidence varies substantially across conditions: 
48.0% of individuals experience a musculoskeletal condition during 
the sample period, while 27.0% report a mental health episode. The 
incidence of other chronic conditions is lower, with 4.0% developing 
respiratory conditions, 3.7% cardiovascular disease, 3.3% diabetes, 
and 2.9% cancer. Many individuals develop multiple conditions over 
time—while 44.7% of the sample never reports a chronic condition, 
28.5% develop one condition, 21.1% develop two conditions, and 5.6% 
develop three or more conditions during the observation period. This 
pattern of multiple diagnoses underscores the importance of accounting 
for comorbidities, a limitation of our current analysis that we discuss 
7 
in Section ‘‘Impact on growth’’.

Disease classification and variable construction

For cancer, diabetes, COPD, and CVD, we identify onset through 
respondents’ reports of formal medical diagnoses. However, for mus-
culoskeletal and mental health conditions, which typically develop 
gradually rather than having clear onset points, we take a different 
approach that better captures when these conditions begin to affect 
work capacity. For musculoskeletal conditions, we identify onset as 
the point in time when an individual transitions from reporting that 



Y. Schindler and A.J. Scott The Journal of the Economics of Ageing 32 (2025) 100590 
Fig. 6. Estimated wage-age profile of UK workers.
Note: This figure shows estimated percentage changes in gross monthly earnings relative to age 19 for ages 19–100, using UKHLS data from 2009–2019 for employed individuals. A 
Mincer-type regression is estimated with log gross monthly earnings as the dependent variable, including age fixed effects with age 19 as the reference. Controls include individual, 
year, education, and industry fixed effects. For age, the variable age_dv was used. For gross monthly earnings, the variable fimnlabgrs_dv was used. Total observations: 
216,173 on 51,965 unique individuals.
Table 3
Disease diagnosis in UK Household Longitudinal Study (UKHLS)
 Disease Disease diagnosis in UKHLS  
 Cancer Cancer or malignancy  
 Diabetes Diabetes  
 Respiratory Asthma, Chronic bronchitis, Emphysema  
 Cardiovascular Disease Congestive heart failure, Coronary heart disease,

Angina, Heart attack or myocardial infarction, Stroke
 

 Musculoskeletal (MSK) Respondent reports pain interferes with work  
 Mental Health (MH) GHQ-12 score ≥ 3  
 Note: This table presents the mapping of diseases to their corresponding diagnoses in the UK Household Longitudinal Study 
(UKHLS).
pain does not interfere with their work to reporting that it does. For 
mental health conditions, we identify onset when an individual’s GHQ-
12 score (a validated screening tool for psychological distress) crosses 
the clinical threshold of 3. The GHQ-12 is an established screening 
tool for detecting psychological distress and minor psychiatric disorders 
in general populations (Goldberg, 1988). This measurement strategy 
focuses on capturing meaningful changes in mental health status that 
affect work capacity rather than relying solely on formal medical 
diagnoses, which may lag behind actual changes in a person’s mental 
health. Table  3 provides an overview of how the onsets of different 
chronic diseases are defined for the purpose of our estimation exercise.

Sample construction

Our analysis follows several steps. For each disease, we create a 
panel that includes all individuals who report a diagnosis of the given 
disease (treated individuals) as well as individuals who never report 
a diagnosis of the given disease (control individuals). To balance the 
panel across treated and untreated individuals, we construct matching 
cells by first dividing individuals into groups based on their charac-
teristics: we assign individuals to five-year age bands based on their 
median age across all observations, and to pay categories based on their 
median earnings when employed (using deciles for the employed, plus 
8 
a separate category for those predominantly inactive). Each possible 
combination of these age bands and pay categories forms a matching 
cell. We then ensure that each cell contains an equal number of treated 
and control individuals.

We then create indicators of employment status, converting the 
original categorical variables in UKHLS into binary indicators for eco-
nomically active, unemployed, and economically inactive. An individ-
ual is classified as economically active if they report being in paid 
employment (either full-time or part-time) or self-employed. Economic 
inactivity encompasses those who report being retired, long-term sick 
or disabled, taking care of home or family, or ‘‘doing something else’’.

We only include treated individuals who remain in the sample for at 
least three years post-diagnosis. This restriction mitigates potential bias 
that could arise from individuals leaving the sample due to mortality, 
which would otherwise distort our transition probability estimates. 
Additionally, we restrict our treated sample to individuals who were 
economically active in the wave immediately preceding diagnosis, as 
our primary interest lies in estimating the effect of chronic disease 
diagnosis on labor market transitions among the working population. 
Similarly, when estimating the effect of a chronic disease diagnosis 
on full-time-to-part-time transitions, we restrict the treated sample 
to individuals who were working full-time in the wave immediately 
preceding diagnosis.
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Empirical strategy

Our estimation employs the local projection difference-in-differen
ces (LP-DiD) method proposed by Dube et al. (2024) to address chal-
lenges associated with staggered treatment timing, as individuals expe-
rience the onset of disease at different points in time. Traditional TWFE 
estimators can be biased in such settings because they may inadver-
tently compare newly treated individuals to those previously treated 
who might still be experiencing treatment effects (de Chaisemartin and 
D’Haultfœuille, 2020; Goodman-Bacon, 2021; Callaway and Sant’Anna, 
2021; Sun and Abraham, 2021; Athey and Imbens, 2022; Borusyak 
et al., 2024). The LP-DiD approach accounts for this source of bias 
by employing local projections to estimate dynamic treatment effects 
while implementing a ‘‘clean control’’ condition. This condition ensures 
that only observations unaffected by prior treatments are included in 
the control group, thereby avoiding the bias.

Our baseline regression takes the form: 

𝑦𝑖,𝑡+ℎ − 𝑦𝑖,𝑡−1 = 𝛽ℎ𝛥𝐷𝑖,𝑡 + 𝜸ℎ𝐗𝑖,𝑡 + 𝛿ℎ𝑡 + 𝑒ℎ𝑖,𝑡 (8)

where 𝑦𝑖,𝑡 is the outcome variable of interest (transition to inactivity or 
transition to part-time employment), 𝐷𝑖,𝑡 is a binary treatment variable 
indicating disease onset, 𝐗𝑖,𝑡 is a vector of controls including age 
polynomials, lagged employment status, and industry indicators, 𝛿ℎ𝑡  is 
a time fixed effect, and 𝑒ℎ𝑖,𝑡 is the error term. The subscript 𝑖 indexes 
individuals, 𝑡 indexes survey waves, and ℎ indexes the treatment time 
horizon relative to disease onset.

Identification assumptions

The key assumptions required for the LP-DiD estimator to identify 
the effect of chronic disease onset on labor market outcomes are that 
individuals are not able to anticipate their diagnosis (no anticipation) 
and that the labor market outcomes of treated individuals would have 
continued to evolve in parallel with the labor market outcomes of 
untreated individuals in the absence of disease onset (parallel trends). 
No anticipation is more plausible for sudden-onset conditions like can-
cer and certain components of CVD—such as stroke—where diagnoses 
often occur without prior warning. This assumption is less likely to hold 
for diagnoses such as mental health and MSK conditions. Nevertheless, 
the absence of significant effects in the pre-treatment periods—even for 
mental health and MSK conditions—suggests that treated individuals 
are not changing their labor force participation any differently than 
untreated individuals, at least at the annual frequency, providing some 
support for the assumption.

A threat to the parallel trends assumption arises in two ways. First, 
there may be unobserved factors that simultaneously affect both the 
probability of a diagnosis and the probability of transitioning from 
employment to inactivity. For instance, if high-stress jobs both increase 
the risk of health conditions and lead to earlier retirement, this would 
violate our identifying assumptions. We address this concern by includ-
ing a comprehensive set of controls in our estimation: individual fixed 
effects to account for time-invariant individual characteristics, calendar 
year fixed effects to capture economy-wide trends, age polynomials 
to flexibly control for life-cycle patterns, lagged employment status to 
accounts for path dependence in labor market outcomes, and industry 
indicators to control for sector-specific working conditions. Second, 
the direction of causality might run from employment status to health 
diagnosis rather than vice versa. This reverse causality is particularly 
concerning for mental health conditions, where job loss itself might 
trigger or lead to the diagnosis of depression or anxiety. While we see 
no evidence that individuals systematically switch into inactivity prior 
to any of the health diagnoses, we would require higher-frequency data 
to more substantively rule out the possibility of reverse causality for 
mental health diagnoses.
9 
Estimation results

Our empirical results suggest that the onset of chronic diseases 
significantly increases the likelihood of workers transitioning from 
employment to inactivity. For instance, a cancer diagnosis increases 
the probability of exiting employment by 11.5 percentage points in the 
diagnosis year. Similarly, CVD diagnoses lead to an immediate increase 
of 9.1 percentage points in the likelihood of becoming inactive, with 
the effect remaining elevated at 4.1 percentage points two years after 
diagnosis. Mental health episodes consistently raise the probability of 
exiting the workforce by 1.3 to 2.9 percentage points in the years 
following diagnosis. In contrast, the effects of COPD on labor force 
exit are less pronounced and not statistically significant beyond the 
diagnosis year.

Fig.  8 presents scaled estimates of the impact of a CVD diagnosis on 
labor force participation, expressed as relative risks across age groups. 
For individuals aged 40–49, a CVD diagnosis is associated with an 11-
fold increase in the relative risk of employment exit during the year 
of diagnosis. This elevated risk persists, with affected individuals still 
experiencing a sixfold increase in the relative likelihood of employment 
exit two years post-diagnosis.

It is worth noting that the hump-shaped effect pattern observed in 
Fig.  7 may partly reflect a selection mechanism. In particular, patients 
with more severe symptoms might exit employment relatively quickly 
after diagnosis, leading to an early, pronounced effect. Over time, as 
these more severely affected individuals leave the sample, the remain-
ing group largely comprises workers with milder symptoms, which can 
result in a diminished treatment effect in later periods.

In addition to influencing exits from employment, chronic diseases 
affect transitions from full-time to part-time work. As shown in Table 
5, mental health conditions increase the probability of transitioning 
to part-time work by 2.5 percentage points in the diagnosis year, 
with effects persisting up to three years post-diagnosis (1.1 percentage 
points). MSK conditions demonstrate a similar pattern, with a 2.9 
percentage point increase in transition probability during the diagnosis 
year; however, the persistence of these effects is less pronounced. 
Fig.  9 illustrates the dynamic evolution of these effects, underscoring 
that health shocks induce labor supply adjustments not only through 
complete withdrawal but also through the intensive margin of hours 
worked. While we attempted to estimate similar effects for the other 
four chronic conditions, the resulting estimates proved too imprecise 
to support reliable inference.

Limitations of analysis and implications for causal interpretation

A key limitation of our approach is that we generally treat the 
timing of diagnosis as equivalent to disease onset. This assumption is 
more reasonable for acute conditions with sudden onset, such as cancer, 
than for gradually developing conditions like mental health disorders or 
musculoskeletal problems. To address this issue for gradual-onset con-
ditions, our empirical strategy attempts to capture meaningful changes 
in health status rather than formal medical diagnoses. For muscu-
loskeletal conditions, we identify ‘‘onset’’ as the point in time when 
an individual transitions from reporting that pain does not interfere 
with their work to reporting that it does. This approach likely captures 
the actual onset of work-limiting musculoskeletal problems more ac-
curately than formal diagnostic records, as we are directly measuring 
when these conditions begin to affect work capacity. Similarly, for men-
tal health conditions, we identify onset based on when an individual’s 
GHQ-12 score crosses the clinical threshold indicating psychological 
distress, rather than relying on formal psychiatric diagnoses. This ap-
proach better reflects the emergence of mental health challenges that 
affect work capacity.

Nevertheless, some caution in causal interpretation remains war-
ranted. While our event study estimates show no significant pre-trends 
in labor market transitions before these health status changes, this 



Y. Schindler and A.J. Scott The Journal of the Economics of Ageing 32 (2025) 100590 
Table 4
Effect of chronic disease on likelihood of transitioning from employment into inactivity.
 Cancer COPD CVD Diabetes Mental Musculoskeletal 
 Diagnosis Year +3 0.017 0.003 −0.004 −0.009 0.013*** 0.011  
 (0.024) (0.009) (0.008) (0.010) (0.001) (0.006)  
 Diagnosis Year +2 0.028 0.010 0.041*** −0.004 0.014** 0.015**  
 (0.021) (0.009) (0.010) (0.007) (0.005) (0.005)  
 Diagnosis Year +1 0.032 0.008 0.049*** 0.021 0.025*** 0.019**  
 (0.021) (0.011) (0.013) (0.011) (0.006) (0.006)  
 Diagnosis Year 0.115*** 0.024** 0.091*** 0.076*** 0.029*** 0.023***  
 (0.009) (0.009) (0.021) (0.011) (0.003) (0.004)  
 Diagnosis Year −1 (Omitted) 0 0 0 0 0 0  
  
 Diagnosis Year −2 0.002 0.002 0.012 0.007 0.001 −0.002  
 (0.009) (0.007) (0.015) (0.005) (0.003) (0.002)  
 Diagnosis Year −3 −0.007 0.001 −0.002 −0.006 −0.001 −0.003  
 (0.023) (0.005) (0.008) (0.006) (0.002) (0.002)  
 Diagnosis Year −4 −0.006 0.003 0.006 −0.001 0.005* 0.003  
 (0.018) (0.009) (0.010) (0.004) (0.002) (0.004)  
 Control for age + age2 ✓ ✓ ✓ ✓ ✓ ✓  
 Control for LF status ✓ ✓ ✓ ✓ ✓ ✓  
 Control for industry ✓ ✓ ✓ ✓ ✓ ✓  
 N with diagnosis 358 638 319 444 7,165 12,605  
 N without diagnosis 358 638 319 444 7,165 12,603  
Standard errors in parentheses: ∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.
Note: This table presents the results from the LP-DiD estimation for different time horizons and across six chronic diseases. The outcome variable 
is the probability of transitioning from employment to inactivity, and the reported coefficient estimates are to be interpreted as percentage 
point (in decimal form) increases in the likelihood of transitioning from employment to inactivity. For example, the ‘‘Diagnosis’’ coefficient 
for cancer is 0.115, meaning that workers with a cancer diagnosis are 11.5 percentage points more likely to transition from employment to 
inactivity following their diagnosis compared to workers who do not have such a diagnosis. Standard errors are clustered at the individual and 
(annual) survey level. Estimates and 95% confidence intervals are plotted in Fig.  7.
Fig. 7. Effect of chronic disease diagnosis on likelihood of transitioning into inactivity.
Note: This figure presents estimates of the percentage point change in the likelihood of transitioning from employment to inactivity following a chronic disease diagnosis. Estimates 
are obtained from using the LP-DiD estimator to estimate the specification in Eq.  (8) using a panel that is balanced across age and income. To obtain estimates for the effect on 
individuals who received their diagnosis while in employment, the pool of treated individuals is restricted to include only those who receive a given disease diagnosis while in 
employment (i.e., those who report being actively in the labor force in the survey wave prior to the wave in which they report their diagnosis). The shaded areas indicate 95% 
confidence intervals around the point estimates.
10 
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Fig. 8. Relative Risk of CVD diagnosis on likelihood of transitioning into inactivity (by age group).
Note: This figure displays the estimated Relative Risk (RR) of transitioning from employment to inactivity following a chronic disease diagnosis, using the LP-DiD estimation 
method across different time horizons and age groups. The RR is calculated by scaling the estimated coefficients with the average baseline transition rates specific to each age 
group (40–49, 50–59, and 60–69 years old). An RR greater than 1 indicates an increased likelihood of transitioning to inactivity compared to individuals without a diagnosis. 
For example, in the case of cardiovascular disease (CVD) for the 60–69 age group, a Relative Risk of 2 at Year +1 means that diagnosed individuals are twice as likely to exit 
employment one year after diagnosis compared to their healthy counterparts. The shaded areas represent the 95% confidence intervals around the RR estimates for each age group.
Fig. 9. Effect of chronic disease diagnosis on likelihood of transitioning into part-time employment.
Note: This figure presents estimates of the percentage point change in the likelihood of transitioning from full-time to part-time employment following a chronic disease diagnosis. 
Estimates are obtained from using the LP-DiD estimator to estimate the specification in Eq.  (8) using a panel that is balanced across age, sex, and income. To obtain estimates for 
the effect on individuals who received their diagnosis while in employment, the pool of treated individuals is restricted to only include those who receive a given disease diagnosis 
while in full-time employment (i.e. those who report working full-time in the survey wave prior to the wave in which they report their diagnosis). The shaded areas indicate 95% 
confidence intervals around the point estimates.
could reflect the annual frequency of our data rather than true ab-
sence of pre-onset effects. Additionally, for mental health conditions 
in particular, the relationship with labor market outcomes may be 
bidirectional—deteriorating mental health may affect work capacity, 
but job loss or work stress could also trigger mental health episodes.

In Appendix ‘‘Calculation of counterfactual transition rates’’ we 
explain how we translate our estimates of disease impacts on labor 
market outcomes into changes in aggregate transition rates between 
employment states in our model. The aggregate transition rate from 
employment to inactivity at each age is a weighted average of transition 
rates for healthy individuals and those with each disease, where the 
weights are determined by disease incidence. A reduction in disease 
incidence therefore reduces these transition rates proportionally to 
three factors: the additional transition risk associated with each disease, 
the size of the reduction in disease incidence, and the initial incidence 
rate of the disease at each age.
11 
Results

To quantify the effect of chronic disease on UK output we use our 
model to analyze the impact of a 20% reduction at all ages in the 
incidence of cancer, CVD, COPD, diabetes, MSK, and mental health 
conditions. To be clear, in our counterfactual scenario, we model a 
permanent 20% reduction in disease incidence that begins in period 
𝑡 = 0 and persists throughout the simulation horizon. This reduction 
means that in every period from 𝑡 = 0 onward, individuals face a 
20% lower probability of being diagnosed with any of the six chronic 
diseases we study.

The choice to focus on a 20% reduction in incidence is to some 
extent arbitrary, reflecting a balance between ambition and feasibility. 
Clinical evidence from Cholesterol Treatment Trialists  (CTT) suggests 
that statin therapy can reduce the risk of a major vascular event in pa-
tients by 22% within one year of the therapy’s start. Clark (2018) finds 



Y. Schindler and A.J. Scott The Journal of the Economics of Ageing 32 (2025) 100590 
Fig. 10. Effect of 20% reduction in chronic diseases on UK macroeconomic aggregates.
Note: This figure shows how the model’s aggregate labor supply, capital stock, output, and population evolve in the healthy scenario relative to the baseline scenario. Each line 
represents the ratio of the given aggregate in the healthy scenario to the same aggregate in the baseline.
.

Table 5
Effect of chronic disease on likelihood of transitioning from full-time to part-time work
 Mental health Musculoskeletal 
 Diagnosis Year +3 0.011*** 0.003  
 (0.002) (0.003)  
 Diagnosis Year +2 0.012** 0.010**  
 (0.003) (0.003)  
 Diagnosis Year +1 0.019*** 0.010**  
 (0.003) (0.003)  
 Diagnosis Year 0.025*** 0.020***  
 (0.004) (0.004)  
 Diagnosis Year −1 (Omitted) 0 0  
  
 Diagnosis Year −2 0.002 0.003  
 (0.003) (0.003)  
 Diagnosis Year −3 0.002 0.003  
 (0.004) (0.002)  
 Diagnosis Year −4 0.003 −0.002  
 (0.005) (0.005)  
 Control for age +age2 ✓ ✓  
 Control for LF status ✓ ✓  
 Control for industry ✓ ✓  
 N with diagnosis 5,246 8,850  
 N without diagnosis 5,246 8,850  
Standard errors in parentheses: ∗ 𝑝 < 0.10, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.
Note: This table shows the LP-DiD estimates for the effect of a chronic disease 
diagnosis on switching from full-time to part-time work, focusing on two conditions: 
mental health and musculoskeletal disorders. The outcome variable is the probability of 
transitioning from full-time to part-time work. The coefficient estimates are interpreted 
as percentage point (in decimal form) increases in the likelihood of transitioning from 
full-time to part-time work. For example, a coefficient of 0.025 implies a 2.5 percentage-
point increase in the probability of switching to part-time work following a diagnosis, 
compared to individuals without that diagnosis. Standard errors are clustered at the 
individual and year levels.

that a variety of therapies for treating mental health conditions offered 
in the UK—ranging from counselling to mindfulness-based cognitive 
therapy—were able to significantly improve anxiety and depression 
12 
symptoms in over half of enrolled patients. Friedson et al. (2021) 
provide evidence that a one US dollar increase in cigarette taxes is 
associated with an 8% reduction in adult smoking leading to a 6% 
reduction in mortality from heart disease and lung cancer. However, 
our simulations are not intended to assess the impact of any specific 
prevention program but to estimate a ‘‘growth-health’’ elasticity for the 
UK economy.

In interpreting our results, it is important to bear in mind three key 
factors. Firstly, as our results are broadly linear in incidence, the choice 
of 20% is not particularly limiting. The impact of a 10% reduction is 
approximately half of the impact reported in this section. Secondly, we 
are focusing on the economic consequences of a given reduction in dis-
ease incidence, not the effects of any particular treatment or prevention 
program. Different prevention programs will have varying timelines 
to achieve reductions in disease incidence, which would introduce 
additional lags to our results that we do not consider. Thirdly, we do 
not make any attempt to identify the interventions that would achieve 
these hypothetical reductions; our focus is purely on the magnitude of 
gains from any successful intervention.

Impact on growth

Fig.  10 shows the differential evolution of aggregate labor supply, 
output, capital stock, and population levels in the healthy scenario ver-
sus the baseline scenario. Our analysis suggests that a 20% reduction in 
chronic disease would have substantial effects on output growth, with 
annual output being 0.99 percentage points higher after 5 years, 1.51 
percentage points higher after 10 years, and 2.07 percentage points 
higher after 20 years. These magnitudes align well with findings from 
similar studies in other economies. When we model a 20% reduction in 
the same five chronic diseases examined by Chen et al. (2018) for the 
US economy, we find that the cumulative output gain over 30 years 
would amount to 56.1% of current UK output, comparable to their 
projected gain of 51.2% of US output. Our results are also consistent 
with Bloom et al. (2020)’s analysis of Asian economies, where a 20% 
reduction in disease prevalence yields cumulative output gains of 25% 
for China, 12% for Japan, and 18% for South Korea relative to current 
output. These comparisons should be interpreted cautiously, given 
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differences in methodology. Bloom et al. (2020), for instance, focuses 
on reductions in disease prevalence rather than incidence.

Broader comparisons with the existing literature are challenging 
for several reasons. Many studies focus on different countries with 
distinct demographic profiles, healthcare systems, and labor market 
institutions. Others examine different combinations of diseases or mea-
sure disease burden using alternative metrics such as disability-adjusted 
life years or healthcare expenditure rather than output growth. Stud-
ies also vary in their methodological approaches, with some using 
cost-of-illness frameworks that, as discussed below, can overstate eco-
nomic impacts by not accounting for labor market adjustment mecha-
nisms. These differences in scope, context, and methodology make di-
rect comparisons of magnitudes across studies difficult and potentially 
misleading.

Our estimates of the economic impact of chronic disease are lower 
than those typically found in cost-of-illness studies (see e.g. McKinsey, 
2020). This difference likely reflects two key methodological differ-
ences in our approach. First, cost-of-illness studies often treat income 
losses from labor force exit as permanent and complete, whereas our 
analysis permits workers to return to the labor force after exit. Second, 
while cost-of-illness studies typically treat healthcare costs as a pure 
economic burden and assume that any reduction in these costs would 
directly boost GDP, our approach takes a more nuanced view. In our 
model, when disease prevention reduces healthcare costs, these savings 
are partially reinvested into the economy’s capital stock at the national 
savings rate, while the remainder contributes to consumption. This 
better reflects the reality that when society needs to spend less of 
the economy’s output on healthcare, this frees up resources for other 
productive uses—and additional consumption—rather than translating 
one-for-one into higher GDP.

As shown in Fig.  11, the majority of the output impact arises from 
changes in the aggregate labor force participation rate and in the 
proportion of full-time workers—together accounting for more than 
three-quarters of the output boost. Increases in aggregate labor supply 
due to reduced mortality account for 9% of the 10-year effect while 
changes in the rate of capital accumulation—stemming both from an 
endogenous adjustment of the capital stock to increased labor supply 
and treatment cost savings being re-invested—account for 11% of the 
10-year effect.

Breakdown by disease type and age brackets

Fig.  12 provides a breakdown of the output effect into the six dif-
ferent chronic diseases considered. Mental health and MSK conditions 
account for the majority of the output boost in the improved-health 
scenario. This is because the incidence rates of these conditions are 
significantly higher than those of other chronic diseases. Although the 
immediate effects of the onset of mental health and MSK conditions on 
labor force participation are less severe than those for cancer, CVD, or 
diabetes (see Table  4), the larger incidence of mental health and MSK 
conditions results in a greater total impact. Furthermore, the higher 
incidence of mental health and MSK conditions at earlier ages means 
that intervening early boosts future labor force participation over many 
years and enhances labor force participation at ages when workers are 
most productive (see Fig.  6).

Reduced disease incidence lowers the likelihood that workers of any 
age will transition from employment to inactivity, leading to increases 
in the aggregate labor force participation rate. Fig.  13 shows how 
this effect varies with age and how it builds over time, demonstrating 
that the labor force participation rate is hump-shaped across age and 
peaks between the ages of 50 and 65. The employment effects of 
disease reduction are determined by the interaction between disease 
incidence and labor force participation across age groups. Prior to age 
50, the relatively low incidence of disease limits the impact of disease 
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reduction, despite high labor force participation rates. Beyond age 65, 
the diminishing size of the active workforce constrains the potential 
pool of workers who could be prevented from health-related labor 
market exit, notwithstanding elevated disease rates. This interaction 
produces maximum employment effects in the 50–65 age range, where 
both disease incidence and labor force participation are substantial.

Compounding effects of improved transition probabilities

It is important to note that in Fig.  13, the effect on labor force 
participation for the 50–65 age band is nearly four times greater five 
years after the intervention compared to the effect size in the first year 
after the intervention. Even after five years, only around 60% of the 
full effect has been realized. The reason for this is a key compound-
ing channel associated with preventative health measures: prevention 
reduces ill-health-related exits at a given age while also increasing the 
share of individuals employed at that age due to reduced exit rates at 
earlier ages. To illustrate this, recall that employment at age 𝑎 and time 
𝑡 is given by: 

𝐸𝑡(𝑎) = 𝜏𝑡,𝐸→𝐸 (𝑎)𝐸𝑡−1(𝑎−1)+ 𝜏𝑡,𝑈→𝐸 (𝑎)𝑈𝑡−1(𝑎−1)+ 𝜏𝑡,𝑁→𝐸 (𝑎)𝑁𝑡−1(𝑎−1)

(9)

where 𝐸𝑡(𝑎) denotes the share of employed individuals at age 𝑎 in 
period 𝑡, 𝑈𝑡(𝑎) and 𝑁𝑡(𝑎) denote the share of unemployed and non-
participating individuals at age 𝑎 and time 𝑡, 𝜏𝑡,𝐸→𝐸 (𝑎) is the probability 
that an individual who was employed at age 𝑎 − 1 in period 𝑡 − 1 re-
mains employed at age 𝑎 in period 𝑡. Similarly, 𝜏𝑡,𝑈→𝐸 (𝑎) and 𝜏𝑡,𝑁→𝐸 (𝑎)
represent the probabilities that an unemployed or non-participating 
individual, respectively, transitions into employment.

When the incidence of chronic disease is reduced at 𝑡 = 0, 𝐸1(𝑎)
increases solely through the higher retention rate 𝜏𝑡,𝐸→𝐸 (𝑎) applied 
to the predetermined labor force participation rate 𝐸0(𝑎 − 1). In the 
next period, 𝐸2(𝑎) benefits from both the higher retention rate and 
the elevated labor force participation rate 𝐸1(𝑎 − 1); this rate is higher 
because these workers have already benefited from improved retention 
when aging from 𝑎 − 2 to 𝑎 − 1 in Period 1. The process continues in 
future periods until 𝐸𝑡(𝑎 − 1) reaches a new steady state. This simple 
chain of reasoning demonstrates why a small improvement in the 
probability of remaining employed across the age distribution can have 
a significant effect on labor force participation rates several periods into 
the future.

It is also worth noting that the gains in labor force participation 
shown in Fig.  13 cannot be achieved simply by targeting preventative 
health measures at workers aged 50–65, even though that group ex-
hibits the largest labor force participation response. While the labor 
force participation impact is indeed greatest for the 50–65 age band, 
these gains would be substantially lower if prevention were confined 
solely to older workers. In fact, the full benefits of a reduction in 
chronic disease incidence arise only when prevention is also targeted at 
younger workers. Early intervention improves health at younger ages 
and increases the probability that they remain employed, giving rise 
to the compounding effect described above. By the time these workers 
reach ages 50–65, the earlier improvements in labor force participation 
have accumulated, leading to much larger overall gains.

The impact on health

So far the analysis has focused only on the increases in economic 
growth arising from better health. But from a welfare perspective, 
health is extremely valuable in its own right beyond any impact on 
earnings capacity (see Topel and Murphy, 2006). Table  6 shows how 



Y. Schindler and A.J. Scott The Journal of the Economics of Ageing 32 (2025) 100590 
Fig. 11. Effect of 20% reduction in chronic diseases on UK output.
Note: This figure shows the effect on the model’s aggregate output of a 20% reduction in disease incidence across six major chronic diseases and all age groups. The effects are 
decomposed into four main channels. To apportion the total effect to each of these channels, we run the healthy scenario simulation four times, activating an additional channel 
in each iteration.
Fig. 12. Effect of 20% reduction in chronic diseases on UK output (by disease).
Note: This figure illustrates the cumulative effect on GDP at 5, 10, 15, and 20 years following a 20% reduction in the incidence of six major chronic diseases. The stacked bars 
represent the contribution of each disease to the total output effect at different time horizons after the reduction in disease incidence has taken effect. The reduction in disease 
incidence is assumed to occur instantaneously at Year 0.
various dimensions of health and longevity are affected by our hypo-
thetical 20% reduction in chronic disease prevalence.6

6 In this section we base our analysis on the long-run case when a 20% 
reduction in disease incidence has fed through into a 20% reduction in 
prevalence.
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Table  6 shows that, alongside improvements in economic output, 
there are substantial gains in a variety of health measures. Most no-
tably, there is an increase in life expectancy of 1.23 years and a rise 
in healthy life expectancy of 2.13 years, resulting in a compression of 
morbidity. As emphasized in Goldman et al. (2013) and Scott et al. 
(2021), there are substantial welfare gains from raising life expectancy; 
however, those from achieving a compression of morbidity are even 
greater. Fig.  15 shows how a 20% reduction in chronic disease would 
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Fig. 13. Effect of 20% reduction in chronic diseases on labor force participation rate (by age).
Note: This figure shows the effect on the model’s labor force participation by age following a 20% reduction in the incidence of six major chronic diseases (CVD, cancer, COPD, 
diabetes, mental health conditions, and MSK conditions) across age. The colored lines represent the percentage point increase in the age-specific labor force participation rate at 
different years after implementing the disease reduction (i.e., the Year 5 line corresponds to five years after the 20% reduction in disease incidence has gone into effect). The 
disease incidence reduction is assumed to occur instantaneously at Year 0.
Fig. 14. Percentage increase in expected remaining working life in healthy scenario (by starting age).
Note: This figure shows the percentage increase in expected remaining working life by age following a 20% reduction in the incidence of six chronic diseases (CVD, cancer, 
COPD, diabetes, mental health conditions, and MSK conditions). Expected working life is calculated as the expected number of years an individual will spend in employment from 
their current age onward, taking into account age-specific probabilities of transitioning between employment, unemployment, and inactivity. The calculation assumes individuals 
are employed at the time of the disease reduction. The 𝑦-axis shows the percentage increase in expected working life relative to the baseline scenario without disease reduction. 
Appendix ‘‘Calculating expected working life’’ provides additional details on how the expected remaining working life for each age is calculated.
affect the Years Lived With Disabilityy (YLD) rate at different ages in 
the UK.

Furthermore, as the burden of chronic disease is reduced and fewer 
workers are forced into inactivity due to illness, average working lives 
increase. According to the model, a 20% reduction in the incidence of 
15 
chronic diseases extends expected working life by 0.66 years. However, 
this extension is predicated on workers beginning their careers after 
the disease reduction has been implemented, thereby benefiting from 
lower morbidity risks throughout their entire working lifecycle. As 
illustrated in Fig.  14, the magnitude of this benefit exhibits substantial 
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Fig. 15. Reduction in Life Years Lived With Disability (YLD) rate.
Note: This figure shows the baseline and healthy scenario total Years Lived With Disability (YLD) rates across age, illustrating the effect of a 20% reduction in our selected chronic 
diseases on the proportion of life years lived with disability. The solid line represents the baseline YLD rate, while the dashed line represents the healthy scenario YLD rate after 
the chronic disease reduction. Vertical lines at ages 20, 40, 60, and 80 indicate the percentage point reduction in YLD rates at those specific ages.
heterogeneity across age cohorts, with peak gains of approximately 
2.2% for workers in their mid-forties. The observed hump shape re-
flects the interplay between mechanical and behavioral factors: the 
shortening of remaining working life as workers age initially amplifies 
the percentage impact of additional working years, but this effect is 
eventually overwhelmed by the reduced importance of health interven-
tions among older cohorts, where workforce detachment has already 
occurred through standard retirement processes. This age-dependent 
variation in benefits underscores the differential economic impacts of 
health interventions across the workforce.

Table  6 also shows the improvement in the total years of life lost to 
death and disease across the whole population and over time (DALY). 
In the UK, the National Institute for Health and Care Excellence (NICE) 
assesses health expenditure as cost-efficient if a Quality Adjusted Life 
Year (QALY) can be achieved for less than £30,000. Based on this 
threshold—and assuming an approximate equivalence of DALY and 
QALY measures of life years—the value of the improvements in health 
from reducing the incidence of chronic diseases by 20% is worth £433 
billion after five years and £1.58 trillion after ten years. Given that 
our model projects a cumulative increase in GDP over five years of 
£64 billion and over ten years of £254 billion, it is clear that health 
improvements on their own are the main source of welfare gains. Nev-
ertheless, the main focus of this paper has been on the GDP gains from 
improved health because these gains provide a funding mechanism for 
preventative care.

Policy discussion

Our results suggest a misalignment between the economic benefits 
of prevention and current fiscal policy constraints. While preventative 
health investments deliver substantial economic growth benefits, only 
around 40% of these benefits accrue within five years. This creates 
a challenge under the UK’s current fiscal framework, where the gov-
ernment must demonstrate that the current budget will balance by 
2029/30 and that net financial debt will fall as a share of GDP in that 
year.
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Table 6
Change in health metrics.
 Health metric Change due to healthy scenario 
 Life expectancy +1.23 years  
 Healthy life expectancy +2.13 years  
 Expected working life at age 22 +0.66 years  
 Average reduction in YLD across all ages −10.09%  
 Cumulative DALYs Saved:  
  After 5 Years 14 million (£432.9 bn)  
  After 10 Years 53 million (£1,575.9 bn)  
  After 20 Years 202 million (£6,069.1 bn)  
  After 30 Years 453 million (£13,595.0 bn)  
  After 40 Years 807 million (£24,213.5 bn)  
Note: The impact on life expectancy is obtained by first calculating the proportion 
of deaths caused by chronic diseases at different ages, then determining the overall 
reduction in mortality when that proportion is decreased by 20% across all age groups. 
Healthy life expectancy is calculated by first calculating the share of the population 
living without chronic disease at each age and then using these shares to calculate 
the number of years a newly born person can expect to live without chronic disease. 
Working lives are calculated through an iterative process using the approach outlined 
in Appendix A. YLD stands for Years Lived with Disability and YLD rates are obtained 
from the Global Burden of Disease dataset (IHME, 2021). The healthy scenario YLD 
rate is calculated by first determining the share of YLD due to chronic diseases at each 
age, then reducing that share by 20% across all age groups. DALYs are the sum of YLD 
and YLL where YLL stands for Years of Life Lost. YLLs are calculated as the number 
of deaths at a given age multiplied by remaining life expectancy at that age, summed 
across all ages. The value of a single DALY is taken from the National Institute for 
Health and Care Excellence (NICE) QALY threshold of £30,000 (National Institute for 
Health and Care Excellenc, 2022).

Several institutional mechanisms could help align political incen-
tives with these valuable long-term health investments. Outcome-based 
contracting offers one promising approach. Social Impact Bond struc-
tures, for instance, allow governments to transfer the upfront costs 
and risks of prevention programs to private or philanthropic investors, 
who are repaid only when defined health improvements are achieved.7 

7 See, for example, Tortorice et al. (2020) for more background and 
examples of Social Impact Bonds.
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This model reduces the short-term budgetary burden while maintaining 
accountability for results. Additionally, dedicated prevention funds or 
‘‘Health Investment Trusts’’ can provide stable, ring-fenced financing 
that transcends individual political terms. Cross-party agreements to 
maintain multi-year prevention budgets could also be effective, as they 
make it politically costly for successive administrations to dismantle 
existing prevention commitments. A target for the health system to 
achieve specific gains in healthy life expectancy would also help with 
a focus on prevention and offset the demands of fiscal policy.

The framing of prevention programs also matters for political feasi-
bility. While our model shows 40% of long-term GDP impacts emerging 
in the first five years of disease reduction, prevention initiatives can be 
designed to deliver observable improvements within a single political 
term. Early indicators like reduced emergency room visits or declin-
ing obesity rates allow implementing administrations to demonstrate 
progress, even if the full economic benefits emerge later. Starting 
with local pilot programs that generate quick feedback on effective-
ness can build the evidence base and political momentum for broader 
implementation.

The magnitude of potential gains from reduced chronic disease 
underscores the importance of finding workable solutions to these 
implementation challenges. The challenge lies less in demonstrating 
the value of prevention but in designing institutional frameworks that 
can sustain commitment to these investments over appropriate time 
horizons.

Limitations

A limitation of our analysis is that we do not account for disease 
comorbidities. Chronic conditions often cluster within individuals, and 
their combined effect on labor market outcomes may exceed the sum 
of their independent effects. While explicitly modeling disease interac-
tions would be valuable, data limitations and computational complexity 
make this challenging in our current framework.

Another limitation of our analysis is that we do not fully capture 
general equilibrium effects that could arise from large-scale improve-
ments in population health. In practice, significant increases in labor 
supply might affect wage levels, which could in turn influence both 
labor force participation decisions and firms’ input choices. Addition-
ally, structural changes in healthcare demand could affect the sectoral 
composition of employment and output. Our model also does not 
capture how improved life expectancy might change individuals’ labor 
force participation decisions across their lifecycle—for instance, people 
might choose to extend their careers given expectations of a longer, 
healthier life. These adjustment channels are beyond the scope of our 
current modeling framework, which focuses on capturing the first-order 
effects of improved population health on aggregate labor supply and 
the induced capital accumulation response.

Conclusion

Our results show that substantial gains in UK output can be realized 
within five years of achieving reductions in the incidence of chronic 
disease. We find that these gains primarily stem from keeping people 
in full-time employment, with the most significant conditions driving 
this result for the UK being mental health and musculoskeletal (MSK) 
conditions. In addition to providing a substantial boost to output, 
we quantify how reductions in chronic disease incidence lead to an 
increase in life expectancy and an even greater increase in healthy life 
expectancy, resulting in a compression of morbidity.

The largest labor force participation effects occur among workers 
aged 50–65; yet, achieving these gains requires prevention across the 
entire age distribution of workers rather than targeting older workers 
alone. Early intervention creates two reinforcing channels: it improves 
the probability of remaining employed at each age (through higher re-
tention rates) while simultaneously increasing the share of individuals 
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employed at that age (through accumulated retention from previous 
periods). These channels compound over time, generating substantially 
larger participation gains at older ages than would be possible through 
late-life intervention alone.

This compounding channel is key to the magnitude of the impact but 
has the important implication that the majority of economic gains only 
materialize in the long run. This issue is exacerbated by our focus on the 
economic impacts arising from successfully reducing incidence. There 
will be further lags introduced due to the gap between interventions 
and their impact on disease incidence. These lags will act as a deterrent 
to governments with medium-term fiscal constraints, such as the UK.

Our analysis demonstrates the substantial macroeconomic potential 
of chronic disease prevention in the context of population aging. While 
we find significant output gains within five years, primarily through 
increased full-time employment retention, the compounding nature of 
prevention creates larger long-term effects. Although implementation 
lags and medium-term fiscal constraints may pose political challenges, 
our results indicate that successful prevention could significantly offset 
the economic pressures of population aging. While important questions 
remain regarding specific interventions, their costs, financing mecha-
nisms, and institutional requirements, we view our analysis as evidence 
that preventative health investment represents a meaningful policy 
lever for addressing demographic challenges to economic growth.
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Appendix A. Calculating expected working life

Calculating expected working lives at any age is done using recur-
sion. In the model, individuals can be in one of three states at any age 
𝑡: Employed (E), Unemployed (U), or Not in the Labor Force (N). The 
transition probabilities between these states are denoted as follows:
𝑃𝑖𝑗 (𝑡)

where 𝑖, 𝑗 ∈ {𝐸,𝑈,𝑁} represent the states an individual transitions 
between from age 𝑡 to 𝑡 + 1. For example, 𝑃𝐸𝐸 (𝑡) represents the prob-
ability of remaining employed, while 𝑃𝐸𝑈 (𝑡) represents the probability 
of transitioning from employed to unemployed.

Let 𝑉𝐸 (𝑡) denote the expected total years of employment from age 
𝑡 onwards, given that an individual is employed at age 𝑡 (i.e. expected 
working life). Similarly, 𝑉𝑈 (𝑡) and 𝑉𝑁 (𝑡) denote the expected years of 
employment starting in the unemployed and not in the labor force 
states, respectively. These expected working life values are defined 
recursively as follows.

For individuals starting in the employed state at age 𝑡:
𝑉𝐸 (𝑡) = 1 + 𝑃𝐸𝐸 (𝑡) ⋅ 𝑉𝐸 (𝑡 + 1) + 𝑃𝐸𝑈 (𝑡) ⋅ 𝑉𝑈 (𝑡 + 1) + 𝑃𝐸𝑁 (𝑡) ⋅ 𝑉𝑁 (𝑡 + 1)

For individuals starting in the unemployed state at age 𝑡:
𝑉𝑈 (𝑡) = 𝑃𝑈𝐸 (𝑡) ⋅ 𝑉𝐸 (𝑡 + 1) + 𝑃𝑈𝑈 (𝑡) ⋅ 𝑉𝑈 (𝑡 + 1) + 𝑃𝑈𝑁 (𝑡) ⋅ 𝑉𝑁 (𝑡 + 1)
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For individuals starting in the not in labor force state at age 𝑡:
𝑉𝑁 (𝑡) = 𝑃𝑁𝐸 (𝑡) ⋅ 𝑉𝐸 (𝑡 + 1) + 𝑃𝑁𝑈 (𝑡) ⋅ 𝑉𝑈 (𝑡 + 1) + 𝑃𝑁𝑁 (𝑡) ⋅ 𝑉𝑁 (𝑡 + 1)

The recursive process starts at the maximum age 𝑇 = 100, where it 
is assumed that no further working life remains, i.e.,
𝑉𝐸 (101) = 𝑉𝑈 (101) = 𝑉𝑁 (101) = 0

With the recursive relationships defined above and this boundary 
condition, 𝑉𝐸 (𝑡) can be obtained for any 𝑡 ∈ [0, 100].

Appendix B. Validation of LLM-based healthcare cost classification

This appendix provides details of our validation of the Large Lan-
guage Model (LLM) classification pipeline, which we used to categorize 
Healthcare Resource Groups (HRGs) from the NHS National Cost Col-
lection (NCC) data into six major disease categories. The validation ex-
ercise addresses whether the LLM-based classification produces reliable 
disease categorizations when compared to expert human judgment.

Validation methodology: To validate our classification approach, 
we performed a systematic evaluation using a random sample of 450 
HRG codes drawn from the LLM-classified records set in the NCC 
dataset. This sample represents approximately 16% of the total of 2825 
HRG codes.

The validation process involved two primary steps. First, we catego-
rized each of the 450 randomly drawn HRG codes into the six chronic 
disease categories. This categorization was then reviewed by two medi-
cal experts: Dr. Roshni Joshi, who holds a PhD in Genetic Epidemiology 
of Cardiovascular Disease from UCL and has extensive experience in 
health technology assessment at NICE, and Dr. Naomi Lee, who holds 
an MD from King’s College London and has served as Senior Executive 
Editor at The Lancet. In case of disagreement, consensus was reached 
through discussion. These manual classifications served as the reference 
standard against which we evaluated the performance of our LLM-based 
classification pipeline.

Second, we computed a comprehensive set of classification metrics 
comparing the LLM’s existing categorizations against our manual clas-
sifications. These metrics include precision, recall, F1 score, accuracy, 
Cohen’s Kappa, and Matthews Correlation Coefficient (MCC). Precision 
measures the proportion of HRGs that were actually disease-related 
among all HRGs that the LLM classified as belonging to that disease. 
For example, if the LLM classified 100 HRGs as CVD and 97 of these 
were confirmed as CVD by the medical experts, the precision would be 
0.97. Recall measures the proportion of disease-related HRGs that the 
LLM successfully identified out of all HRGs that the medical experts 
classified as belonging to that disease. For instance, if the medical 
experts identified 100 HRGs as CVD and the LLM correctly identified 
67 of these, the recall would be 0.67. The F1 score provides a balanced 
measure of precision and recall. Accuracy represents the overall propor-
tion of correct classifications. Cohen’s Kappa quantifies the agreement 
between human and LLM classifications while accounting for chance 
agreement. The Matthews Correlation Coefficient offers a balanced 
measure of classification quality that is particularly useful for categories 
with uneven sizes.

Classification performance: Details for the various performance 
metrics across disease categories are given in Table  .7. The validation 
results demonstrate strong overall performance of the LLM classifica-
tion pipeline, with a macro-average F1 score of 0.81 across all disease 
categories.

The relationship between our classification metrics and cost esti-
mation has important implications for interpreting our results. Low 
precision indicates that the LLM is incorrectly classifying HRGs as be-
longing to a disease category when they do not (false positives), leading 
to potential cost overestimation. Conversely, low recall indicates that 
the LLM is missing HRGs that should be classified in that category (false 
negatives), suggesting potential cost underestimation.
18 
For CVD, the high precision (0.97) but lower recall (0.67) suggests 
that our cost estimates are likely conservative, potentially underes-
timating the true economic burden of CVD. COPD shows balanced 
performance, with both precision (0.79) and recall (0.88) above 0.75, 
indicating relatively reliable cost estimates. Cancer similarly demon-
strates balanced metrics, with precision at 0.76 and recall at 0.89, 
suggesting reasonably accurate cost estimation. Mental health presents 
an interesting case where high recall (1.00) but lower precision (0.72) 
indicates that we may be overestimating costs by incorrectly including 
non-mental health HRGs. For musculoskeletal conditions, both preci-
sion (0.77) and recall (0.68) are lower, with the low recall suggesting 
potential cost underestimation. Diabetes shows the strongest overall 
performance, with perfect precision (1.00) and high recall (0.80), indi-
cating particularly reliable cost estimates; however, the small number 
of diabetes-related HRGs in our sample suggests that these results 
should be interpreted cautiously.

Appendix C. Event study analysis with placebo tests

To validate our empirical strategy we conduct an additional analysis 
consisting of placebo tests using an event study framework.

First, we balance our panel as done for the main analysis de-
scribed in Section ‘‘Estimating the impact of disease on labor force 
participation’’. We create cells based on time-invariant characteristics 
by computing each individual’s median age across all observations, 
assigning them to five-year age bands, and categorizing them by their 
position in the earnings distribution when employed. Specifically, we 
assign individuals to earnings deciles if they are observed in employ-
ment at least 50% of the time, with a separate category for those who 
are predominantly inactive. These categorizations combine to create 
balancing cells defined by the interaction of age band and earnings 
group.

Within each balancing cell, we ensure that we have an equal number 
of treated individuals (those who report a diagnosis and have at least 
three years of post-diagnosis data) and control individuals who never 
receive a diagnosis. We require treated individuals to be economically 
active in the wave immediately preceding their diagnosis to focus our 
analysis on labor market transitions among the working population. 
When a cell contains more potential controls than treated individuals, 
we randomly sample from the control pool to achieve equal numbers. In 
cases with fewer potential controls than treated individuals, we either 
use control individuals multiple times or reduce the number of treated 
individuals included in the analysis.

For these balanced treatment and control groups, we then imple-
ment our placebo test methodology. We first identify the empirical 
distribution of diagnosis timing in our sample of treated individuals. 
We then randomly assign placebo ‘‘diagnosis’’ dates to our control 
individuals, drawing from this empirical distribution of actual diagnosis 
timing. This approach ensures that the temporal distribution of placebo 
events matches that of actual disease diagnoses.

For both treated and control groups, we estimate the following event 
study specification: 

𝑦𝑖,𝑡 = 𝛿𝑡 +
3
∑

𝑘=−4
𝛽𝑘𝐷

𝑘
𝑖,𝑡 + 𝛾𝑋𝑖,𝑡 + 𝜖𝑖,𝑡 (10)

where 𝑦𝑖,𝑡 is an indicator for transitioning from employment to inactiv-
ity, 𝛿𝑡 represents time fixed effects, 𝐷𝑘

𝑖,𝑡 denotes indicator variables for 
being 𝑘 periods away from diagnosis (or placebo diagnosis), 𝑋𝑖,𝑡 is a 
vector of controls for age and age squared, and 𝜖𝑖,𝑡 is the error term. 
The coefficients of interest are the 𝛽𝑘 parameters, which trace out the 
dynamic response of labor market transitions relative to the diagnosis 
event. We normalize 𝛽−1 = 0, making all effects relative to the period 
immediately preceding diagnosis.

We restrict our sample to individuals observed for at least seven 
consecutive waves and with event times between −4 and +3 years rel-
ative to diagnosis. Standard errors are clustered at both the individual 
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Table .7
Classification metrics by disease.
 Disease Precision Recall F1 Accuracy Cohen’s 

Kappa
MCC % of rows 

(Manual)
% of rows 
(LLM)

 

 Cardiovascular Disease 0.97 0.67 0.79 0.97 0.77 0.79 9.33% 6.44%  
 Chronic Obstructive Pulmonary Disease 0.79 0.88 0.83 0.99 0.83 0.83 3.78% 4.22%  
 Cancer 0.76 0.89 0.82 0.97 0.80 0.80 8.44% 10.00%  
 Mental Health 0.72 1.00 0.84 0.97 0.82 0.83 7.33% 10.22%  
 Musculoskeletal 0.77 0.68 0.72 0.97 0.71 0.71 5.56% 4.89%  
 Diabetes 1.00 0.80 0.89 1.00 0.89 0.89 1.11% 0.89%  
 Macro Average 0.83 0.82 0.81 0.98 0.80 0.81 – –  
Note: This table reports the per-disease Precision, Recall, F1, Accuracy, Cohen’s Kappa, and Matthews Correlation Coefficient (MCC), as well as the percentage of rows allocated 
to each disease by manual review and by the LLM. The analysis was conducted on a random sample of 450 rows from the NHS National Cost Collection data. Each row was 
manually labeled and then classified by the LLM into six categories: Cardiovascular Disease (CVD), Chronic Obstructive Pulmonary Disease (COPD), Cancer, Mental Health Condition, 
Musculoskeletal (MSK) Condition, and Diabetes. Cohen’s Kappa is a measure of agreement between two raters, accounting for chance. The Matthews Correlation Coefficient (MCC) 
is a correlation coefficient for binary classifications that takes into account true and false positives and negatives.
Fig. 16. Event study estimates: Treated vs Control groups.
Note: This figure presents event study estimates for the effect of disease diagnosis on transitions from employment to inactivity. The red lines show estimates for treated individuals 
around their actual diagnosis dates, while the blue lines show estimates for control individuals around randomly assigned placebo diagnosis dates. Shaded areas represent 95% 
confidence intervals. The vertical axis measures the percentage point change in the probability of transitioning to inactivity. The vertical dotted line at 𝑡 = −1 indicates the reference 
period. The sample is restricted to individuals observed for at least seven consecutive waves with event times between −4 and +3 years relative to diagnosis. Standard errors are 
clustered at both the individual and year levels.
and year levels to account for serial correlation in outcomes within 
individuals and common shocks within time periods.

Fig.  16 presents the results of this analysis. For each disease cate-
gory, we plot the estimated 𝛽𝑘 coefficients separately for the treated 
group (red) and control group (blue), along with associated 95% con-
fidence intervals. For all six disease categories, we observe relatively 
flat pre-trends in both the treated and control groups, with coefficients 
statistically indistinguishable from zero in the pre-diagnosis period. At 
the time of diagnosis, we observe sharp increases in transition proba-
bilities for treated individuals, while control individuals with placebo 
diagnoses show no significant changes in their transition patterns.

These placebo tests provide additional evidence that our estimated 
effects reflect genuine responses to disease diagnosis rather than un-
derlying differences between treated and control individuals or general 
trends in labor market transitions.
19 
Appendix D. Calculation of counterfactual transition rates

We can use the estimates obtained in the previous section to infer 
how transition rates between employment and inactivity for a given 
age 𝑎 would change in response to a reduction of 𝛿𝑗 percent in disease 
incidence for disease 𝑗. The total transition rate 𝑇𝑎 is a weighted 
average of the transition rates for healthy individuals and those with 
each disease, namely: 

𝑇𝑎 = 𝑡𝐻𝑎

(

1 −
∑

𝑗∈𝐽
𝑝𝑗,𝑎

)

+
∑

𝑗∈𝐽

(

𝑡𝐻𝑎 + 𝛥𝑡𝑗
)

𝑝𝑗,𝑎

= 𝑡𝐻𝑎 +
∑

𝑗∈𝐽
𝛥𝑡𝑗𝑝𝑗,𝑎

(11)

where 𝑇𝑎 denotes the total observed transition rate from employment 
to inactivity at age 𝑎, 𝑡𝐻𝑎  denotes the transition rate for healthy in-
dividuals (those without any of the six chronic diseases) at age 𝑎, 
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𝐽 represent the set of six chronic diseases under consideration, 𝑝𝑗,𝑎
denotes the prevalence of disease 𝑗 ∈ 𝐽 at age 𝑎, and 𝛥𝑡𝑗 denotes the 
additional probability—in percentage points—that an individual with 
disease 𝑗 transitions from employment to inactivity, compared to a 
healthy individual.

Assume a reduction in the incidence of disease 𝑗 by a proportion 𝛿𝑗
(e.g., a 20% reduction implies 𝛿𝑗 = 0.20). The new prevalence of disease 
𝑗 at age 𝑎 becomes 𝑝′𝑗,𝑎 = (1 − 𝛿𝑗 )𝑝𝑗,𝑎.

The counterfactual total transition rate 𝑇 ′
𝑎 after the reduction is:

𝑇 ′
𝑎 = 𝑡𝐻𝑎 +

∑

𝑗∈𝐽
𝛥𝑡𝑗 (1 − 𝛿𝑗 )𝑝𝑗,𝑎

which implies: 
𝑇 ′
𝑎 − 𝑇𝑎 = −

∑

𝑗∈𝐽
𝛥𝑡𝑗𝛿𝑗𝑝𝑗,𝑎 (12)

The above has the simple interpretation that the aggregate transi-
tion rate 𝑇𝑎 is reduced by 𝛥𝑡𝑗𝑝𝑗,𝑎𝛿𝑗 for a 𝛿𝑗 percentage reduction in 
the incidence of disease 𝑗. This means the decrease in the transition 
rate is directly proportional to (1) the additional transition risk 𝛥𝑡𝑗
associated with each disease 𝑗, (2) the proportionate reduction 𝛿𝑗 in 
disease incidence, and (3) the initial incidence 𝑝𝑗,𝑎 of a given disease 
at age 𝑎.
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