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Abstract
The study of matroid products traces back to the 1970s, when Lovász

and Mason studied the existence of various types of matroid prod-

ucts with different strengths. Among these, the tensor product is

arguably the most important, which can be considered as an ex-

tension of the tensor product from linear algebra. However, Las

Vergnas showed that the tensor product of two matroids does not

always exist. Over the following four decades, matroid products

remained surprisingly underexplored, regaining attention only in

recent years due to applications in tropical geometry, information

theory, and the limit theory of matroids.

In this paper, inspired by the concept of coupling in probability

theory, we introduce the notion of coupling for matroids – or,

more generally, for submodular set functions. This operation can

be viewed as a relaxation of the tensor product. Unlike the tensor

product, however, we prove that a coupling always exists for any

two submodular functions and can be chosen to be increasing if

the original functions are increasing. As a corollary, we show that

two matroids always admit a matroid coupling, leading to a novel

operation on matroids. Our construction is algorithmic, providing

an oracle for the coupling matroid through a polynomial number

of oracle calls to the original matroids.

We apply this construction to derive new necessary conditions

for matroid representability and establish connection between ten-

sor products and Ingleton’s inequality. In addition, we verify the

existence of set functions that are universal with respect to a given

property, meaning any set function over a finite domain with that

property can be obtained as a quotient.
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1 Introduction
Coupling of probability measures, generally attributed to Doe-

blin [11], is a key concept in probability theory through which

random variables can be compared with each other. For two proba-

bility measures, a coupling is a joint probability measure over the

product of the underlying spaces, such that the marginals corre-

spond to the given probability measures. Formally, if 𝜇1 and 𝜇2 are

probability measures on spaces (𝑆1,B1) and (𝑆2,B2), respectively,
a coupling is a joint probability measure 𝜇 on the product space

(𝑆1 ×𝑆2,B1 ⊗B2) such that the marginal of 𝜇 on 𝑆𝑖 is 𝜇𝑖 for 𝑖 = 1, 2,

i.e., 𝜇 (𝑋1 × 𝑆2) = 𝜇1 (𝑋1) for any 𝑋1 ∈ B1 and 𝜇 (𝑆1 ×𝑋2) = 𝜇2 (𝑋2)
for any 𝑋2 ∈ B2. Usually, the goal is to choose a coupling that

allows for comparisons between the probability measures, such

as minimizing differences or distances between them. Coupling

techniques have found applications in various areas. In optimal

transport theory, the goal is to find the most efficient way to trans-

form one distribution into another, with applications in economics,

statistical physics, and machine learning [9]. In stochastic processes,

coupling helps to describe the joint behavior of random variables

and to analyze and bound convergence rates in chains with more

complex dependencies [1, 24].

Interestingly, a similar notion has also appeared in a combinato-

rial line of research on matroids. Let𝑀1 = (𝑆1, 𝑟1) and𝑀2 = (𝑆2, 𝑟2)
be finite matroids over ground sets 𝑆1 and 𝑆2 with rank functions

𝑟1 and 𝑟2, respectively. A matroid𝑀 = (𝑆1 × 𝑆2, 𝑟 ) is called a quasi-
product of𝑀1 and𝑀2 if the restriction of𝑀 to {𝑥}×𝑆2 is isomorphic

to𝑀2 by the natural bijection with 𝑆2 for all non-loops 𝑥 ∈ 𝑆1 and is

the zero matroid for loops 𝑥 , and analogously with the two factors

interchanged. If furthermore 𝑋 × 𝑌 is a flat of𝑀 for all flats 𝑋 of

𝑀1 and 𝑌 of𝑀2, then 𝑀 is called a product of 𝑀1 and 𝑀2. Finally,

if 𝑟 (𝑋 ×𝑌 ) = 𝑟1 (𝑋 ) · 𝑟2 (𝑌 ) holds for every 𝑋 ⊆ 𝑆1, 𝑌 ⊆ 𝑆2, then𝑀

is a tensor product of 𝑀1 and 𝑀2. Note that at this point, it is not
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clear whether any two matroids admit a tensor product, a prod-

uct, or even a quasi-product. Mason [28] and Lovász [25] provided

constructions yielding a product of rank 𝑟1 (𝑆1) + 𝑟2 (𝑆2) − 1 via

Dilworth truncation. The existence of a tensor product, however,

was asked as an open question in [25]. Note that if both𝑀1 and𝑀2

are linear matroids over the same field, then it is easy to construct

a tensor product by taking the tensor product of the matrices repre-

senting them. Nevertheless, Las Vergnas [23] later showed that the

situation is generally not so fortunate, as, for example, the Vámos

matroid and the rank-2 uniform matroid on three elements do not

admit a tensor product.

One can think of the tensor product of twomatroids as a construc-

tion where the product of independent sets is itself independent.

However, since a tensor product does not exist for every pair of

matroids, Mason [29] raised the question of whether a freest prod-

uct exists among the possible products. Las Vergnas [23] answered

this question in the negative and showed that the matroid obtained

via Dilworth truncation as in [25, 29] is the freest quasi-product

among those satisfying 𝑟 ({𝑥, 𝑥 ′} × {𝑦,𝑦′}) ≤ 3 for all 𝑥, 𝑥 ′ ∈ 𝑆1
and 𝑦,𝑦′ ∈ 𝑆2, where 𝑟 denotes the rank function of the product

matroid.

1.1 Our Results and Techniques
In this paper, we extend the concept of coupling to matroids and,

more broadly, to submodular functions.We prove that, unlike tensor

products, couplings always exist, leading to a novel operation on

matroids. This result is particularly interesting because it shows

that a finite number of matroids can be encoded into a single one,

while also taking into account how these matroids interact with

each other. As an application, we establish the existence of functions

that are universal with respect to some property, meaning that any

set function with that property can be obtained as a quotient. This

result provides new insights into the developing limit theory of

matroids and submodular functions.

Let 𝜑1 : 2
𝑆1 → R and 𝜑2 : 2

𝑆2 → R be set functions defined over

finite ground sets 𝑆1 and 𝑆2, respectively. The notion of a tensor

product can be naturally extended to set functions by calling a

function 𝜑 : 2𝑆1×𝑆2 → R a tensor product of 𝜑1 and 𝜑2 if 𝜑 (𝑋1 ×
𝑋2) = 𝜑1 (𝑋1) · 𝜑2 (𝑋2) holds for every 𝑋1 ⊆ 𝑆1 and 𝑋2 ⊆ 𝑆2. As a

weaker concept, we call 𝜑 a coupling of 𝜑1 and 𝜑2 if 𝜑 (𝑋1 × 𝑆2) =
𝜑1 (𝑋1) ·𝜑2 (𝑆2) for every 𝑋1 ⊆ 𝑆1 and 𝜑 (𝑆1 ×𝑋2) = 𝜑1 (𝑆1) ·𝜑2 (𝑋2)
for every 𝑋2 ⊆ 𝑆2. In other words, a coupling is a set function

on the product set, where the projections onto each coordinate

return the corresponding 𝜑𝑖 , up to a constant multiplier. It is worth

emphasizing that neither a tensor product nor a coupling is uniquely

determined from the factors 𝜑1 and 𝜑2.

Motivated by the goal of defining the coupling of matroids, Sec-

tion 3 focuses on submodular functions. First, we show that any two

submodular functions admit a submodular coupling (Theorem 3.1).

One remarkable feature of the proof is that it provides an explicit

formula for the coupling function using two arbitrary modular

functions. However, the proof itself does not imply that if both 𝜑1
and 𝜑2 are monotonically increasing, then the coupling function 𝜑

is also monotonically increasing. Since this property is essential for

the coupling of two matroids to result in a matroid, next we show

that a 𝑘1-polymatroid function and a 𝑘2-polymatroid function have

a (𝑘1 ·𝑘2)-polymatroid coupling, which is also integer-valued if the

original functions are (Theorem 3.2); see Section 2 for definitions.

The proof follows a similar idea as that of the submodular case, but

the modular functions in question need to be chosen to be elements

in the base polyhedra of 𝜑1 and 𝜑2, respectively. As a corollary, we

get that any two matroids admit a coupling (Corollary 3.6) which

in turn implies that there exists a finite matroid that contains every

matroid of fixed rank over a ground set of fixed size (Corollary 3.7).

We provide several characterizations of two matroids having a

coupling that is also a tensor product (Theorem 3.8), and establish

a strong connection between tensor products and Ingleton’s in-

equality, a fundamental tool in the theory of representable matroids

(Theorem 3.11). As a corollary, we get a new proof for the fact that

the uniform matroid 𝑈2,3 and the Vámos matroid do not admit a

tensor product.

We separately study a subclass of increasing submodular func-

tions with strong structural properties, called “coverage functions”

in combinatorial optimization. These functions were originally in-

troduced by Choquet for analytical studies. He defined them in

terms of a sequence of inequalities strengthening submodularity,

and proved their equivalence with what is now the combinatorial

definition. We prove that a coverage function and an increasing

submodular function have an increasing submodular tensor prod-

uct (Corollary 3.14), and that any two coverage functions have a

tensor product that is a coverage function (Corollary 3.15). The

proofs rely on the characterization of the extreme rays of the cone

of coverage functions, as established by Choquet. Finally, we de-

scribe how to extend our results on submodular functions defined

on finite ground sets to those with infinite domains (Theorems 3.16

and 3.17).

Let 𝜑 be a set function over some finite ground set 𝑆 , and let

Q = (𝑆1, . . . , 𝑆𝑞) be a partition of 𝑆 into 𝑞 possibly empty parts.

The quotient of 𝜑 with respect to Q is a set function 𝜑Q over

𝑆Q = {𝑠1, . . . , 𝑠𝑞} defined by 𝜑Q (𝑋 ) = 𝜑 (⋃𝑠𝑖 ∈𝑋 𝑆𝑖 ) for 𝑋 ⊆ 𝑆Q .
In particular, if 𝜑 : 2𝑆1×𝑆2 → R is a coupling of 𝜑1 : 2

𝑆1 → R and

𝜑2 : 2
𝑆2 → R and Q1 and Q2 are the partitions of 𝑆1 × 𝑆2 into fibers

of the form {𝑥}×𝑆2 and 𝑆1×{𝑦}, respectively, then𝜑1 = 𝜑Q1
/𝜑2 (𝑆2)

and 𝜑2 = 𝜑Q2
/𝜑1 (𝑆1). The positive results of Section 3 motivate

the following question: Given a property of set functions, is there a

function that is universal with respect to that property, in the sense

that every function exhibiting the property can be obtained as its

quotient?

In Section 4, we examine this problem and show that, under

some natural assumptions, the answer is positive (Theorem 4.2).

Although the proof is analytical and may therefore be less appealing

to those interested in combinatorial optimization, the result has

far-reaching implications for functions defined on finite ground

sets as well. For example, we obtain that there exists a submodular

function 𝜑 : 2Z → [0, 1] such that any nonnegative normalized

submodular function is a quotient of𝜑 (Corollary 4.3), and we prove

an analogous result for coverage functions as well (Corollary 4.4).

It is worth emphasizing that for functions over finite ground sets,

our proofs are algorithmic in the sense that given value oracles for

𝜑1 and 𝜑2, one can construct a value oracle for their coupling 𝜑

with the desired properties in polynomial time.
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1.2 Related Work and Motivation
Understanding howmatroids can be combined does not only help in

studying properties of larger systems formed from simpler matroid

components, but it is closely related to a range of problems and

techniques in combinatorial optimization. In what follows, we give

a brief overview of related topics.

Tropical Geometry. Tensor products of matroids have deep con-

nections to tropical geometry. A key consequence of Las Vergnas’s

counterexample is that the tensor product of tropical linear spaces

does not always yield a tropical linear space, see e.g. [18]. The no-

tion of tensor products can be extended to more than two matroids.

If all 𝑘 matroids in the product are identical to a given matroid

𝑀 = (𝑆, 𝑟 ), the tensor product defines a matroid structure on the

set of ordered 𝑘-tuples from 𝑆 , known as the 𝑘-th power of𝑀 . For

unordered 𝑘-tuples, we consider symmetric tensors, which remain

invariant under any permutation of their variables. The concept of

symmetric powers of matroids was first introduced by Lovász [25]

and Mason [29], who noted that not all matroids admit higher sym-

metric powers. Draisma and Rincón [14] established a link between

tropical ideals and matroid symmetric powers by showing that the

Bergman fan of the direct sum of the Vámos matroid and𝑈2,3 is not

a tropically realizable variety. In [2], Anderson proved an equiva-

lence between valuated matroids with arbitrarily large symmetric

powers and tropical linear spaces represented as varieties of trop-

ical ideals. Brakensiek, Dhar, Gao, Gopi, and Larson [8] explored

the connection between rigidity matroids of graphs and matroids

arising from linear algebraic constructions like tensor products and

symmetric products. Matroid tensor products in tropical geometry

were also examined in [15, 20].

Linear Matroids. A matroid is called linear if its independent sets

can be represented by vectors in a vector space over some field F.
Such matroids are particularly interesting because they allow for

a rich connection between linear algebra and combinatorial struc-

tures. For deciding if a matroid is regular, i.e., representable over

every field, Seymour’s decomposition theorem [32] implies an algo-

rithm, as such decompositions can be found efficiently [33]. How-

ever, Truemper [33] showed that many representability questions

cannot be efficiently solved. This includes deciding representability

over a specific field, over all fields with a given characteristic, and,

most importantly, over any field. Since determining representability

is oracle-hard in general, the focus of research has shifted toward

finding necessary or sufficient conditions. Ingleton’s inequality [19]

is one of the most prominent examples, giving a necessary con-

dition for a matroid to be linear. Additional necessary conditions,

known as extension properties, have also been extensively studied;

see, e.g., [3, 4]. Surprisingly, we show that the representability of a

matroid is closely related to having a tensor product with𝑈2,3.

Limits of Matroids. The limit theory of graphs provides power-

ful tools for analyzing sequences of graphs and their structural

similarities through analytic methods. By defining convergence in

terms of distributions of small subgraphs (left-convergence) and

homomorphisms into small graphs (right-convergence), it aids in

understanding complex networks and their applications in various

fields of mathematics and computer science; we refer the interested

reader to [26] for a thorough introduction. In [5], a new form of

right-convergence called quotient-convergence was introduced for

set functions, which eventually led to a notion of convergence of

matroids through their rank functions. The limit object of such a

sequence is a submodular function [27]. One of the main research

subjects is understanding the structure and properties of these limit

objects, which heavily relies on examining their quotients and the

coupling of the functions in the sequence.

1.3 Organization
The rest of the paper is organized as follows. In Section 2, we intro-

duce basic definitions, notation, and relevant results on submodular

functions, matroids, and polymatroids. Section 3 is devoted to veri-

fying the existence of couplings for various functions, first focusing

on submodular functions in Section 3.1 and then extending these

results to polymatroid functions in Section 3.2. In Section 3.3, we

show how these observations lead to one of the main results of the

paper: the existence of matroidal couplings that are almost tensor

products. Section 3.3.1 explores applications of this result. To un-

derstand the fine line between couplings and tensor products, we

establish a necessary and sufficient condition for a coupling to be a

tensor product in Section 3.3.2. Finally, in Section 3.3.3, we provide

new necessary conditions for matroid representability. As an appli-

cation, we verify the existence of functions that are universal with

respect to certain properties in Section 4. The proof is analytical

and hence is not constructive; we encourage first-time readers to

skip the technical parts of Sections 4.1 and 4.2. As an application of

the abstract existence theorem, we deduce that universal functions

exist for several set function properties; these examples can be

found in Section 4.3.

2 Preliminaries
Basic Notation. We denote the sets of reals and integers by R and

Z, and add + or > 0 as a subscript when considering nonnegatives
or strictly positive values only. The cardinality of R is denoted by

𝔠. For a positive integer 𝑘 , we use [𝑘] B {1, . . . , 𝑘} while [0] = ∅
by convention. Given a ground set 𝑆 , a subset 𝑋 ⊆ 𝑆 and 𝑦 ∈ 𝑆 ,

the sets 𝑋 \ {𝑦} and 𝑋 ∪ {𝑦} are abbreviated as 𝑋 − 𝑦 and 𝑋 + 𝑦,
respectively. Moreover, we often denote a single element set {𝑥} by
𝑥 when this causes no confusion. The complement of 𝑋 is denoted

by 𝑋𝑐 = 𝑆 \ 𝑋 . Given a function 𝜇 : 𝑆 → R+, we use the notation
𝜇 (𝑋 ) B ∑

𝑥∈𝑋 𝜇 (𝑥). If 𝑆 = 𝑆1 × 𝑆2 for some sets 𝑆1 and 𝑆2, then

for any 𝑍 ⊆ 𝑆 , 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2, we use 𝑍𝑥 = 𝑍 ∩ ({𝑥} × 𝑆2) and
𝑍𝑦 = 𝑍 ∩ (𝑆1 × {𝑦}) to denote the 𝑥- and 𝑦-fibers of 𝑍 , respectively.
Furthermore, we use 𝜋𝑖 : 𝑆 → 𝑆𝑖 for denoting the coordinate maps,
that is, 𝜋1 (𝑍 ) = {𝑥 ∈ 𝑆1 | 𝑍𝑥 ≠ ∅} and 𝜋2 (𝑍 ) = {𝑦 ∈ 𝑆2 | 𝑍𝑦 ≠ ∅}.

Matroids. For basic definitions on matroids, we refer the reader

to [30]. Amatroid𝑀 = (𝑆, 𝑟 ) is defined by its finite ground set 𝑆 and

its rank function 𝑟 : 2𝑆 → Z+ that satisfies the rank axioms: (R1)
𝑟 (∅) = 0, (R2) 𝑋 ⊆ 𝑌 ⇒ 𝑟 (𝑋 ) ≤ 𝑟 (𝑌 ), (R3) 𝑟 (𝑋 ) ≤ |𝑋 |, and (R4)

𝑟 (𝑋 )+𝑟 (𝑌 ) ≥ 𝑟 (𝑋 ∩𝑌 )+𝑟 (𝑋 ∪𝑌 ). Here, (R1) is a standard normaliz-

ing assumption, while (R2) requires the rank function to be increas-

ing, (R3) its subcardinality, and (R4) its submodularity. The rank of
the matroid is 𝑟 (𝑆), and by the normalized rank function of𝑀 we

mean the set function 𝑟/𝑟 (𝑆). A subset𝑋 ⊆ 𝑆 is called independent if
|𝑋 | = 𝑟 (𝑋 ). An inclusionwise minimal non-independent set forms a

circuit, while a loop is a circuit consisting of a single element. A flat
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is a set 𝐹 ⊆ 𝑆 such that 𝑟 (𝐹 + 𝑒) = 𝑟 (𝐹 ) + 1 holds for every 𝑒 ∈ 𝑆 \ 𝐹 .
A matroid is calledmodular if 𝑟 (𝐹1) +𝑟 (𝐹2) = 𝑟 (𝐹1∩𝐹2) +𝑟 (𝐹1∪𝐹2)
for any pair of flats 𝐹1, 𝐹2. For sets 𝑋,𝑌 ⊆ 𝑆 , we say that 𝑋 spans 𝑌
in𝑀 if 𝑟 (𝑋 ∪ 𝑌 ) = 𝑟 (𝑋 ).

Given a subset 𝑆 ′ ⊆ 𝑆 , the restriction of 𝑀 to 𝑆 ′ is a matroid

𝑀 |𝑆 ′ = (𝑆 ′, 𝑟 ′) whose rank function is the restriction of 𝑟 to subsets

of 𝑆 ′. The contraction of 𝑆 ′ results in a matroid𝑀/𝑆 ′ = (𝑆 \ 𝑆 ′, 𝑟 ′)
with rank function 𝑟 ′ (𝑋 ) = 𝑟 (𝑋 ∪𝑆 ′) − 𝑟 (𝑆 ′) for each 𝑋 ⊆ 𝑆 \𝑆 ′. A
matroid𝑁 that can be obtained from𝑀 by a sequence of restrictions

and contractions is called a minor of 𝑀 . The direct sum 𝑀1 ⊕ 𝑀2

of matroids𝑀1 = (𝑆1, 𝑟1) and𝑀2 = (𝑆2, 𝑟2) on disjoint ground sets

is the matroid 𝑀 = (𝑆1 ∪ 𝑆2, 𝑟 ) whose independent sets are the

disjoint unions of an independent set of𝑀1 and an independent set

of𝑀2, that is, 𝑟 (𝑋 ) = 𝑟1 (𝑋 ∩ 𝑆1) + 𝑟2 (𝑋 ∩ 𝑆2) for 𝑋 ⊆ 𝑆1 ∪ 𝑆2.

A matroid is linear or representable over some field F if there
exists a family of vectors from a vector space over F whose linear
independence relation is the same as the independence relation of

the matroid. If the matroid is representable over any field, then it is

called regular. A uniformmatroid of rank 𝑟 over a ground set of size𝑛
has rank function 𝑟 (𝑋 ) = min{|𝑋 |, 𝑟 } and is denoted by𝑈𝑟,𝑛 . Given
pairwise disjoint sets 𝑆1∪· · ·∪𝑆𝑞 ⊆ 𝑆 , we define the corresponding

partition matroid𝑀 = (𝑆, 𝑟 ) by setting 𝑟 (𝑋 ) = |{𝑖 | 𝑋 ∩ 𝑆𝑖 ≠ ∅}| for
all 𝑋 ⊆ 𝑆 . It is not difficult to see that both uniform and partition

matroids are representable over the reals.

Submodular and Polymatroid Functions. By 𝑆 , we always denote
a finite ground set. A set function 𝜑 : 2𝑆 → R is normalized if

𝜑 (𝑆) = 1. We say that 𝜑 is increasing if𝑋 ⊆ 𝑌 implies 𝜑 (𝑋 ) ≤ 𝜑 (𝑌 ),
and decreasing if 𝑋 ⊆ 𝑌 implies 𝜑 (𝑋 ) ≥ 𝜑 (𝑌 ). The function 𝜑 is

submodular if

𝜑 (𝑋 ) + 𝜑 (𝑌 ) ≥ 𝜑 (𝑋 ∩ 𝑌 ) + 𝜑 (𝑋 ∪ 𝑌 )

for all 𝑋,𝑌 ⊆ 𝑆 , supermodular if −𝜑 is submodular, and modular if
it is both sub- and supermodular.

A function 𝜑 : 2𝑆 → R+ is called a polymatroid function if it is

an increasing, submodular function with 𝜑 (∅) = 0. Furthermore,

if 𝜑 (𝑋 ) ≤ 𝑘 · |𝑋 | holds for some 𝑘 ∈ R+ and for every subset

𝑋 ⊆ 𝑆 , then𝜑 is a 𝑘-polymatroid function. Observe that polymatroid

functions retain three of the four basic properties of matroid rank

functions: (R1), (R2), and (R4), omitting only the subcardinality

and integrality requirement. Thus, matroid rank functions form a

subclass of polymatroid functions.

For a nonnegative submodular function 𝜑 : 2𝑆 → R+, its base
polyhedron is defined as

𝐵(𝜑) B {𝑥 ∈ R𝑆+ | 𝑥 (𝑆) = 𝜑 (𝑆), 𝑥 (𝑍 ) ≤ 𝜑 (𝑍 ) for every 𝑍 ⊆ 𝑆}.

The following is a fundamental result in polyhedral combinatorics,

see e.g. [17, Corollary 14.2.3].

Proposition 2.1. If 𝜑 is a nonnegative submodular function, then
𝐵(𝜑) is non-empty. Furthermore, if 𝜑 is integer-valued, then the ver-
tices of 𝐵(𝜑) are integer-valued.

Coverage Functions. A coverage function 𝜑 : 2𝑆 → R+ is defined

by a bipartite graph 𝐺 = (𝑆,𝑇 ;𝐸) and weights 𝑤 ∈ R𝑇+ by setting

𝜑 (𝑋 ) =
∑
𝑡 ∈𝑁 (𝑋 ) 𝑤𝑡 for 𝑋 ⊆ 𝑆 , where 𝑁 (𝑋 ) denotes the set of

neighbours of 𝑋 in 𝐺 . It is less known that coverage functions

also have an alternative characterization involving inequalities [7].

Specifically, 𝜑 is a coverage function if and only if 𝜑 (∅) = 0 and,

for any 𝑘 ∈ Z>0, ∑︁
𝐾⊆[𝑘 ]

(−1) |𝐾 |𝜑
(
𝐴0 ∪

⋃
𝑖∈𝐾

𝐴𝑖

)
≤ 0 (𝑘-Alt)

holds for any choice of subsets 𝐴0, 𝐴1, . . . , 𝐴𝑘 ⊆ 𝑆 . It is worth not-

ing that for 𝑘 = 1 and 𝑘 = 2, inequality (𝑘-Alt) is equivalent with

the property that 𝜑 is increasing and increasing submodular, respec-

tively. In general, for 𝑘 ≥ 3, the inequality describes a strengthened

form of increasing submodularity. For any non-empty 𝐴 ⊆ 𝑆 , let

𝜑𝐴 : 2
𝑆 → R be defined as

𝜑𝐴 (𝑋 ) =

0 if 𝑋 ∩𝐴 = ∅,
1 if 𝑋 ∩𝐴 ≠ ∅.

(1)

It is not difficult to see that 𝜑𝐴 is a normalized coverage function.

Choquet [10, Section 43] showed that these set functions correspond

to the extreme rays of the convex cone of coverage functions; see

also [27] for a different proof.

Proposition 2.2 (Choqet). The set of normalized extremal ele-
ments of the convex cone of coverage functions over a finite set 𝑆 is
{𝜑𝐴 | ∅ ≠ 𝐴 ⊆ 𝑆}.

For further details on coverage functions, we recommend [7, 10,

27].

From Finite to Infinite Domain. The above definitions extend

naturally to set functions over an infinite domain. For clarity, we

denote the ground set by 𝐽 rather than 𝑆 whenever it is infinite. In

this context, let (𝐽 ,B) be a set algebra, i.e., B is a family of subsets

of 𝐽 with ∅ ∈ B and closed under taking complements and finite

unions. Note that these imply that B is also closed under taking

finite intersections. A set function 𝜑 assigns a real value to each

member ofB. By a slight abuse of terminology, we call the members

of B measurable. For set algebras (𝐽1,B1) and (𝐽2,B2), a function
𝑓 : 𝐽1 → 𝐽2 is measurable if 𝑓 −1 (𝐵) ∈ B1 for all 𝐵 ∈ B2. For a set

algebra (𝐽 ,B), we call a nonempty set 𝐵 ∈ B an atom of the algebra

if 𝐴 ⊆ 𝐵, 𝐴 ∈ B implies 𝐴 = ∅ or 𝐴 = 𝐵. We refer to a finitely

additive measure, which is not necessarily nonnegative, as a charge.
Properties of set functions, such as being normalized, increasing,

decreasing, submodular, supermodular, modular, and being a poly-

matroid can be generalized to functions over an infinite domain in

a straightforward manner. Moreover, using the inequality-based

definition, this is also doable for coverage functions. We call a set

function finite if its domain is finite, and a set function is bounded
if the range of the set function is bounded.

Let (𝐽1,B1) and (𝐽2,B2) be measurable spaces, and let 𝐽 = 𝐽1× 𝐽2.

The product algebra B on 𝐽 is defined as the algebra generated by

{𝑋1 × 𝐽2 | 𝑋1 ∈ B1} ∪ {𝐽1 × 𝑋2 | 𝑋2 ∈ B2}, and it is denoted by

B = B1 ⊗ B2, see e.g. [16]. We refer to the measurable space (𝐽 ,B)
thus obtained as the product of measurable spaces (𝐽1,B1) and
(𝐽2,B2). Let 𝜑1 : B1 → R and 𝜑2 : B2 → R be set functions. Then,

𝜑 : B → R is a coupling of 𝜑1 and 𝜑2 if 𝜑 (𝑋1× 𝐽2) = 𝜑1 (𝑋1) ·𝜑2 (𝐽2)
for every 𝑋1 ∈ B1 and 𝜑 (𝐽1 ×𝑋2) = 𝜑1 (𝐽1) · 𝜑2 (𝑋2) for every 𝑋2 ∈
B2. Similarly to the finite case, for 𝑥 ∈ 𝐽1, 𝑦 ∈ 𝐽2 and 𝑍 ∈ B, we use

𝑍𝑥 and 𝑍𝑦 for denoting the 𝑥- and 𝑦-fibers of 𝑍 , and 𝜋1, 𝜋2 denotes

the coordinate maps. By 1𝑍 we denote the indicator function of a

set 𝑍 .
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3 Coupling Submodular Functions
In this section we show that, unlike the tensor product, two ma-

troids always admit a coupling. We first prove this statement for

nonnegative submodular functions in Section 3.1 and then extend

the discussion to polymatroid functions in Section 3.2. Matroids and

the relation between coupling and tensor products are addressed

in Section 3.3. We study 𝑘-alternating and coverage functions in

Section 3.4. Finally, in Section 3.5 we explain how all these results

can be extended to functions over an infinite ground set.

3.1 Submodular Functions
As a first step, we verify that couplings exist for submodular func-

tions. Let 𝜑1 : 2
𝑆1 → R+ and 𝜑2 : 2

𝑆2 → R+ be submodular func-

tions over ground sets 𝑆1 and 𝑆2, and let 𝑆 = 𝑆1 × 𝑆2. Recall that

for any 𝑍 ⊆ 𝑆 , 𝑥 ∈ 𝑆1 and 𝑦 ∈ 𝑆2, we use 𝑍𝑥 = 𝑍 ∩ ({𝑥} × 𝑆2) and
𝑍𝑦 = 𝑍 ∩ (𝑆1 × {𝑦}) to denote the 𝑥- and 𝑦-fibers of 𝑍 , respectively.
For any 𝜇1 : 𝑆1 → R+ and 𝜇2 : 𝑆2 → R+, define the set function 𝑏

on 𝑆 by

𝑏 (𝑍 ) B
∑︁
𝑒1∈𝑆1

𝜇1 (𝑒1) · 𝜑2 (𝜋2 (𝑍𝑒1 )) +
∑︁
𝑒2∈𝑆2

𝜇2 (𝑒2) · 𝜑1 (𝜋1 (𝑍𝑒2 ))

−
∑︁

(𝑒1,𝑒2 ) ∈𝑍
𝜇1 (𝑒1) · 𝜇2 (𝑒2) . (2)

Note that, by the nonnegativity of 𝜑1 and 𝜑2, 𝜇1 and 𝜇2 can always

be chosen such that 𝜇1 (𝑆1) = 𝜑1 (𝑆1) and 𝜇2 (𝑆2) = 𝜑2 (𝑆2). There-
fore, the next theorem settles the existence of a coupling of two

nonnegative submodular functions whenever 𝜑1 (∅) = 𝜑2 (∅) = 0.

Theorem 3.1. Let 𝜑1 : 2𝑆1 → R+ and 𝜑2 : 2
𝑆2 → R+ be sub-

modular functions over ground sets 𝑆1 and 𝑆2, respectively, satisfy-
ing 𝜑1 (∅) = 0 and 𝜑2 (∅) = 0. Furthermore, let 𝜇1 : 𝑆1 → R+ and
𝜇2 : 𝑆2 → R+ be such that 𝜇1 (𝑆1) = 𝜑1 (𝑆1) and 𝜇2 (𝑆2) = 𝜑2 (𝑆2).
Then, the function 𝑏 defined in (2) is a submodular coupling of 𝜑1
and 𝜑2.

Proof. Take arbitrary 𝑋,𝑌 ⊆ 𝑆1 × 𝑆2, 𝑒1 ∈ 𝑆1 and 𝑒2 ∈ 𝑆2. Then

we have

𝜋2 ((𝑋 ∩ 𝑌 )𝑒1 ) = 𝜋2 (𝑋𝑒1 ) ∩ 𝜋2 (𝑌𝑒1 ),
𝜋2 ((𝑋 ∪ 𝑌 )𝑒1 ) = 𝜋2 (𝑋𝑒1 ) ∪ 𝜋2 (𝑌𝑒1 ),
𝜋1 ((𝑋 ∩ 𝑌 )𝑒2 ) = 𝜋1 (𝑋𝑒2 ) ∩ 𝜋1 (𝑌𝑒2 ),
𝜋1 ((𝑋 ∪ 𝑌 )𝑒2 ) = 𝜋1 (𝑋𝑒2 ) ∪ 𝜋1 (𝑌𝑒2 ).

Together with the submodularity of𝜑1 and𝜑2 and the nonnegativity

of 𝜇1 and 𝜇2, this implies that 𝑏 is a nonnegative combination of

submodular functions minus a modular function, and is therefore

submodular.

It remains to show that 𝑏 is a coupling. For each 𝑌1 ⊆ 𝑆1 and

𝑌2 ⊆ 𝑆2, we get

𝑏 (𝑌1 × 𝑌2) = 𝜇1 (𝑌1) · 𝜑2 (𝑌2) + 𝜇2 (𝑌2) · 𝜑1 (𝑌1)
− 𝜇1 (𝑌1) · 𝜇2 (𝑌2) (3)

= 𝜑1 (𝑌1) · 𝜑2 (𝑌2)
− (𝜑1 (𝑌1) − 𝜇1 (𝑌1)) · (𝜑2 (𝑌2) − 𝜇2 (𝑌2)) . (4)

Thus, by 𝜇1 (𝑆1) = 𝜑1 (𝑆1) and 𝜇2 (𝑆2) = 𝜑2 (𝑆2), we have𝑏 (𝑌1×𝑌2) =
𝜑1 (𝑌1) · 𝜑2 (𝑌2) whenever 𝑌1 = 𝑆1 or 𝑌2 = 𝑆2, concluding the proof

of the theorem. □

It is worth emphasizing that if 𝜑1 and 𝜑2 are integer-valued,

they admit an integer-valued submodular coupling. This follows

by choosing 𝜇1 and 𝜇2 to be integer-valued in the proof.

3.2 Polymatroid Functions
A noteworthy feature of the proof of Theorem 3.1 is that it relies on

two arbitrarily chosen nonnegative modular functions satisfying

𝜇1 (𝑆1) = 𝜑1 (𝑆1) and 𝜇2 (𝑆2) = 𝜑2 (𝑆2). However, the resulting func-

tion 𝑏 may not be increasing, even if 𝜑1 and 𝜑2 are so. Therefore,

to show that polymatroid functions admit a polymatroid coupling,

𝜇1 and 𝜇2 must be chosen carefully.

Theorem 3.2. Let 𝜑1 : 2𝑆1 → R+ be a 𝑘1-polymatroid function
and 𝜑2 : 2𝑆2 → R+ be a 𝑘2-polymatroid function over ground sets 𝑆1
and 𝑆2, respectively. Then, 𝜑1 and 𝜑2 have a (𝑘1 · 𝑘2)-polymatroid
coupling which is integer-valued if 𝜑1 and 𝜑2 are integer-valued.

Proof. Let 𝜇1 ∈ 𝐵(𝜑1) and 𝜇2 ∈ 𝐵(𝜑2) be arbitrary elements of

the base polyhedrons of 𝜑1 and 𝜑2, respectively, which are integers

if 𝜑1 and 𝜑2 are integers. Note that such elements exist by Proposi-

tion 2.1. Let 𝑏 denote the submodular coupling of 𝜑1 and 𝜑2 defined

as in (2) using 𝜇1 and 𝜇2.

Claim 3.3. We have 𝑏 (∅) = 0 and 𝑏 (𝑌1×𝑌2) ≤ 𝜑1 (𝑌1) ·𝜑2 (𝑌2) for
each 𝑌1 ⊆ 𝑆1 and 𝑌2 ⊆ 𝑆2, where equality holds if 𝜑1 (𝑌1) = 𝜇1 (𝑌1)
or 𝜑2 (𝑌2) = 𝜇2 (𝑌2).

Proof. The equality 𝑏 (∅) = 0 follows from 𝜑1 (∅) = 𝜑2 (∅) = 0.

For each 𝑌1 ⊆ 𝑆1 and 𝑌2 ⊆ 𝑆2, using (4), 𝜇1 (𝑌1) ≤ 𝜑1 (𝑌1), and
𝜇2 (𝑌2) ≤ 𝜑2 (𝑌2), we get

𝑏 (𝑌1 × 𝑌2) = 𝜑1 (𝑌1) · 𝜑2 (𝑌2)
− (𝜑1 (𝑌1) − 𝜇1 (𝑌1)) · (𝜑2 (𝑌2) − 𝜇2 (𝑌2))

≤ 𝜑1 (𝑌1) · 𝜑2 (𝑌2).
Here equality holds if 𝜑1 (𝑌1) = 𝜇1 (𝑌1) or 𝜑2 (𝑌2) = 𝜇2 (𝑌2). □

The function 𝑏 thus obtained is still not necessarily increasing.

To get an increasing set function, we define 𝜑 on 𝑆 by setting

𝜑 (𝑍 ) B min{𝑏 (𝑍 ′) | 𝑍 ′ ⊇ 𝑍 }.
The following technical claim is folklore, see e.g. [17]. We include

a proof to make the paper self-contained.

Claim 3.4. 𝜑 is an increasing submodular function over 𝑆1 × 𝑆2.

Proof. Clearly, 𝜑 is increasing by definition. To prove submod-

ularity, let 𝑍1, 𝑍2 ⊆ 𝑆1 × 𝑆2. Then, for 𝑖 = 1, 2, there exists 𝑍 ′
𝑖
⊇ 𝑍𝑖

such that 𝜑 (𝑍𝑖 ) = 𝑏 (𝑍 ′
𝑖
). Then, using the submodularity of 𝑏 and

the definition of 𝜑 , we get

𝜑 (𝑍1) + 𝜑 (𝑍2) = 𝑏 (𝑍 ′
1
) + 𝑏 (𝑍 ′

2
)

≥ 𝑏 (𝑍 ′
1
∩ 𝑍 ′

2
) + 𝑏 (𝑍 ′

1
∪ 𝑍 ′

2
)

≥ 𝜑 (𝑍1 ∩ 𝑍2) + 𝜑 (𝑍1 ∪ 𝑍2),
proving the claim. □

Finally, we show that 𝜑 and 𝑏 coincide on product sets.
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Claim 3.5. 𝜑 (𝑌1 × 𝑌2) = 𝑏 (𝑌1 × 𝑌2) holds for each 𝑌1 ⊆ 𝑆1 and
𝑌2 ⊆ 𝑆2.

Proof. Weneed to show that𝑏 (𝑍 ) ≥ 𝑏 (𝑌1×𝑌2) holds if𝑌1×𝑌2 ⊆
𝑍 ⊆ 𝑆1 × 𝑆2. Using that 𝜑2 is increasing and 𝜇2 (𝑋 ) ≤ 𝜑2 (𝑋 ) holds
for any 𝑋 ⊆ 𝑆2, we get∑︁

𝑒1∈𝑆1
𝜇1 (𝑒1) · 𝜑2 (𝜋2 (𝑍𝑒1 ))

≥
∑︁
𝑒1∈𝑌1

𝜇1 (𝑒1) · 𝜑2 (𝑌2) +
∑︁

𝑒1∈𝑆1\𝑌1
𝜇1 (𝑒1) · 𝜑2 (𝜋2 (𝑍𝑒1 ))

≥
∑︁
𝑒1∈𝑌1

𝜇1 (𝑒1) · 𝜑2 (𝑌2) +
∑︁

𝑒1∈𝑆1\𝑌1
𝜇1 (𝑒1) · 𝜇2 (𝜋2 (𝑍𝑒1 ))

= 𝜇1 (𝑌1) · 𝜑2 (𝑌2) +
∑︁

(𝑒1,𝑒2 ) ∈𝑍\(𝑌1×𝑆2 )
𝜇1 (𝑒1) · 𝜇2 (𝑒2). (5)

Similarly, using that 𝜑1 is increasing and 𝜇1 (𝑋 ) ≤ 𝜑1 (𝑋 ) holds for
any 𝑋 ⊆ 𝑆1, we get∑︁

𝑒2∈𝑆2
𝜇2 (𝑒2) · 𝜑1 (𝜋1 (𝑍𝑒2 ))

≥
∑︁
𝑒2∈𝑌2

𝜇2 (𝑒2) · 𝜑1 (𝑌1) +
∑︁

𝑒2∈𝑆2\𝑌2
𝜇2 (𝑒2) · 𝜑1 (𝜋1 (𝑍𝑒2 ))

≥
∑︁
𝑒2∈𝑌2

𝜇2 (𝑒2) · 𝜑1 (𝑌1) +
∑︁

𝑒2∈𝑆2\𝑌2
𝜇2 (𝑒2) · 𝜇1 (𝜋1 (𝑍𝑒2 ))

= 𝜇2 (𝑌2) · 𝜑1 (𝑌1) +
∑︁

(𝑒1,𝑒2 ) ∈𝑍\(𝑆1×𝑌2 )
𝜇1 (𝑒1) · 𝜇2 (𝑒2). (6)

Using the definition (2) of 𝑏, the equality (3), and the sum of the

inequalities (5) and (6), we get

𝑏 (𝑍 ) ≥ 𝜇1 (𝑌1) · 𝜑2 (𝑌2) +
∑︁

(𝑒1,𝑒2 ) ∈𝑍\(𝑌1×𝑆2 )
𝜇1 (𝑒1) · 𝜇2 (𝑒2)

+ 𝜇2 (𝑌2) · 𝜑1 (𝑌1) +
∑︁

(𝑒1,𝑒2 ) ∈𝑍\(𝑆1×𝑌2 )
𝜇1 (𝑒1) · 𝜇2 (𝑒2)

−
∑︁

(𝑒1,𝑒2 ) ∈𝑍
𝜇1 (𝑒1) · 𝜇2 (𝑒2)

= 𝜇1 (𝑌1) · 𝜑2 (𝑌2) + 𝜇2 (𝑌2) · 𝜑1 (𝑌1)

+
∑︁

(𝑒1,𝑒2 ) ∈𝑍
𝑒1∉𝑌1,𝑒2∉𝑌2

𝜇1 (𝑒1) · 𝜇2 (𝑒2) −
∑︁

(𝑒1,𝑒2 ) ∈𝑌1×𝑌2
𝜇1 (𝑒1) · 𝜇2 (𝑒2)

≥ 𝜇1 (𝑌1) · 𝜑2 (𝑌2) + 𝜇2 (𝑌2) · 𝜑1 (𝑌1) − 𝜇1 (𝑌1) · 𝜇2 (𝑌2)
= 𝑏 (𝑌1 × 𝑌2).

This concludes the proof of the claim. □

By Claim 3.4, 𝜑 is increasing submodular. Claim 3.5 implies that

𝜑 (∅) = 𝑏 (∅) = 0, thus 𝜑 ≥ 0. Using 𝜑1 (𝑆1) = 𝜇1 (𝑆1), 𝜑2 (𝑆2) =

𝜇2 (𝑆2), and Claims 3.3 and 3.5, we get that 𝜑 (𝑌1×𝑆2) = 𝑏 (𝑌1×𝑆2) =
𝜑1 (𝑌1) ·𝜑2 (𝑆2) and 𝜑 (𝑆1×𝑌2) = 𝑏 (𝑆1×𝑌2) = 𝜑1 (𝑆1) ×𝜑2 (𝑌2) holds
for 𝑌1 ⊆ 𝑆1 and 𝑌2 ⊆ 𝑆2, that is, 𝜑 is a coupling of 𝜑1 and 𝜑2. For

(𝑒1, 𝑒2) ∈ 𝑆1 × 𝑆2, by Claims 3.3 and 3.5, we have

𝜑 ({(𝑒1, 𝑒2)}) = 𝑏 ({(𝑒1, 𝑒2)}) ≤ 𝜑1 ({𝑒1}) · 𝜑2 ({𝑒2}) ≤ 𝑘1 · 𝑘2,
that is, 𝜑 is a (𝑘1 · 𝑘2)-polymatroid function. Finally, if 𝜑1 and 𝜑2
are integer-valued, then 𝜑 is integer-valued as well by construction.

This finishes the proof of the theorem. □

3.3 Matroids and Tensor Products
One of the main motivations for our work was to extend the no-

tion of coupling to matroids. For ease of discussion, we say that

𝑀 = (𝑆1 × 𝑆2, 𝑟 ) is a coupling of matroids 𝑀1 = (𝑆1, 𝑟1) and

𝑀2 = (𝑆2, 𝑟2) if 𝑟 is a coupling of 𝑟1 and 𝑟2. In Section 3.3.1, we

show that matroids always admit a coupling that nearly satisfies

the requirements of being a tensor product. Then, in Section 3.3.2,

we characterize couplings that are tensor products as well. Based

on our observations, in Section 3.3.3, we highlight a surprising phe-

nomenon: the linearity of a matroid is closely related to whether it

admits a tensor product with the uniform matroid 𝑈2,3. This result

could serve as a useful tool in studying linear matroids.

3.3.1 Matroid Couplings. Since the rank function of any matroid

is an integer-valued 1-polymatroid function, Theorem 3.2 can be

applied. Actually, the proof implies an even stronger result.

Corollary 3.6. Let𝑀1 = (𝑆1, 𝑟1) and𝑀2 = (𝑆2, 𝑟2) be matroids,
let 𝐵1 be a basis of𝑀1 and 𝐵2 be a basis of𝑀2, and set 𝑆 B 𝑆1 × 𝑆2.
Then,𝑀1 and𝑀2 have a coupling𝑀 = (𝑆, 𝑟 ) such that 𝑟 (𝑌1 × 𝑌2) =
𝑟1 (𝑌1) · 𝑟2 (𝑌2) whenever 𝑌1 ⊆ 𝐵1 or 𝑌2 ⊆ 𝐵2.

Proof. Let 𝜇1 B 𝜒𝐵1 and 𝜇2 B 𝜒𝐵2 be the characteristic vectors

of 𝐵1 and 𝐵2, respectively. Clearly, 𝜒𝑖 ∈ 𝐵(𝑟𝑖 ) holds for 𝑖 = 1, 2. By

Theorem 3.2,𝑀1 and𝑀2 admit a coupling𝑀 = (𝑆, 𝑟 ), where 𝑟 (𝑍 )
is

min

𝑊 ⊇𝑍

{ ∑︁
𝑒1∈𝐵1

𝑟2 (𝜋2 (𝑊𝑒1 )) +
∑︁
𝑒2∈𝐵2

𝑟1 (𝜋1 (𝑊 𝑒2 )) − |𝑊 ∩ (𝐵1 × 𝐵2) |
}
.

Let 𝑌1 ⊆ 𝑆1 and 𝑌2 ⊆ 𝑆2. By Claim 3.5, the minimum is attained on

𝑊 = 𝑍 for 𝑍 = 𝑌1 × 𝑌2. Furthermore, if 𝑌1 ⊆ 𝐵1 or 𝑌2 ⊆ 𝐵2, then

𝜑1 (𝑌1) = 𝜇1 (𝑌1) or 𝜑2 (𝑌2) = 𝜇2 (𝑌2), and thus 𝑟 (𝑌1 × 𝑌2) = 𝑟1 (𝑌1) ·
𝑟2 (𝑌2) by Claim 3.3. This completes the proof of the corollary. □

Corollary 3.6 has a somewhat surprising implication: for a fixed

rank 𝑟 and ground set size 𝑛, there exists a function defined on a

finite ground set that contains every rank-𝑟 matroid in some sense.

For 𝑟, 𝑛 ∈ Z+, let 𝑁𝑟,𝑛 denote the number of rank-𝑟 matroids on 𝑛

elements up to isomorphism.

Corollary 3.7. There exists a matroid 𝑀 over [𝑛]𝑁𝑟,𝑛 of rank
𝑟𝑁𝑟,𝑛 such that any rank-𝑟 matroid on [𝑛] is a projection of𝑀 to one
of its coordinates up to a constant factor.

Proof. The result follows by applying the coupling of matroid

pairs iteratively for every rank-𝑟 matroid over a ground set of size

𝑛. □

Recall that two matroids do not necessarily admit a tensor prod-

uct. However, the main message of Corollary 3.6 is that there always

exists a coupling that locally satisfies the properties of the tensor

product in the sense that 𝑟 (𝑌1 ×𝑌2) = 𝑟1 (𝑌1) · 𝑟2 (𝑌2) holds, not uni-
versally for all 𝑌1, 𝑌2, but specifically when at least one of 𝑌1 ⊆ 𝐵1
or 𝑌2 ⊆ 𝐵2 is satisfied. In particular, this implies that𝑀 | (𝑆1 × {𝑦})
is isomorphic to 𝑀1 for each 𝑦 ∈ 𝐵2 by the natural bijection to

𝑆1, and 𝑀 | ({𝑥} × 𝑆2) is isomorphic to 𝑀2 for each 𝑥 ∈ 𝐵1 by the

natural bijection to 𝑆2.

It turns out that our construction is closely related to the notion

of amalgams of matroids; see the full version [6] of the paper for

further details.
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3.3.2 Tensor Products. From the definitions alone, it is clear that

coupling and the tensor product are closely related concepts. The fol-

lowing theorem characterizes which couplings satisfy the stronger

properties of the tensor product.

Theorem 3.8. Let𝑀1 = (𝑆1, 𝑟1),𝑀2 = (𝑆2, 𝑟2) and𝑀 = (𝑆, 𝑟 ) be
matroids such that 𝑆 = 𝑆1 × 𝑆2. Then, the following are equivalent:

(i) 𝑟 (𝑌1 × 𝑌2) = 𝑟1 (𝑌1) · 𝑟2 (𝑌2) for each 𝑌1 ⊆ 𝑆1 and 𝑌2 ⊆ 𝑆2,
(ii) 𝑟 ({𝑒1} × 𝑌2)) = 𝑟1 (𝑒1) · 𝑟2 (𝑌2) for each 𝑌2 ⊆ 𝑆2 and 𝑒1 ∈ 𝑆1,

𝑟 (𝑌1 × {𝑒2})) = 𝑟1 (𝑌1) · 𝑟2 (𝑒2) for each 𝑌1 ⊆ 𝑆1 and 𝑒2 ∈ 𝑆2,
and 𝑟 (𝑆) = 𝑟1 (𝑆1) · 𝑟2 (𝑆2),

(iii) 𝑀 is a coupling of𝑀1 and𝑀2 and 𝑟 ((𝑒1, 𝑒2)) = 𝑟1 (𝑒1) · 𝑟2 (𝑒2)
for each (𝑒1, 𝑒2) ∈ 𝑆 .

Proof. Las Vergnas [23] showed the equivalence of (i) and (ii),

and it is also clear that (i) implies (iii). Assume now that (iii) holds,

we prove that it implies (ii). For the proof, we will use the following

simple observation.

Claim 3.9. If 𝐽1 ⊆ 𝑆1 is independent in 𝑀1 and 𝐽2 ⊆ 𝑆2 is inde-
pendent in𝑀2, then

𝑀 | (𝐽1 × 𝑆2) =
⊕
𝑒1∈ 𝐽1

𝑀 | ({𝑒1} × 𝑆2)

and

𝑀 | (𝑆1 × 𝐽2) =
⊕
𝑒2∈ 𝐽2

𝑀 | (𝑆1 × {𝑒2}) .

Proof. Using that𝑀 is a coupling, we get that∑︁
𝑒1∈ 𝐽1

𝑟 ({𝑒1} × 𝑆2) =
∑︁
𝑒1∈ 𝐽1

𝑟1 (𝑒1) · 𝑟2 (𝑆2)

= |𝐽1 | · 𝑟2 (𝑆2)
= 𝑟1 (𝐽1) · 𝑟2 (𝑆2)
= 𝑟 (𝐽1 × 𝑆2),

implying𝑀 | (𝐽1×𝑆2) =
⊕

𝑒1∈ 𝐽1 𝑀 | ({𝑒1}×𝑆2). The second statement

follows similarly. □

First we show that 𝑟 (𝑌1×𝑌2) ≥ 𝑟1 (𝑌1) ·𝑟2 (𝑌2) holds for each𝑌1 ⊆
𝑆1 and 𝑌2 ⊆ 𝑆2. Let 𝐼1 ⊆ 𝑌1 and 𝐼2 ⊆ 𝑌2 be maximal independent

sets of 𝑀1 and 𝑀2 contained in 𝑌1 and 𝑌2, respectively. Claim 3.9

implies that each circuit contained in 𝐼1 × 𝑆2 intersects at most one

of the sets of the form {𝑒1} × 𝑆2 for 𝑒1 ∈ 𝐼1. Similarly, each circuit

contained in 𝑆1 × 𝐼2 intersects at most one of the sets of the form

𝑆1× {𝑒2} for 𝑒2 ∈ 𝐼2. These show that each circuit in 𝐼1× 𝐼2 is a loop.

Since 𝑟 ((𝑒1, 𝑒2)) = 𝑟1 (𝑒1) · 𝑟2 (𝑒2) = 1 holds for (𝑒1, 𝑒2) ∈ 𝐼1 × 𝐼2 by

assumption, the set 𝐼1 × 𝐼2 does not contain any loops. This proves

that 𝐼1 × 𝐼2 is independent in𝑀 , thus 𝑟 (𝑌1 × 𝑌2) ≥ 𝑟1 (𝑌1) · 𝑟2 (𝑌2).
Next we show that 𝑟 ({𝑒1} × 𝑌2) = 𝑟1 (𝑒1) · 𝑟2 (𝑌2) holds for each

𝑒1 ∈ 𝑆1 and 𝑌2 ⊆ 𝑆2. If 𝑒1 is a loop in 𝑀1, then 𝑟 ({𝑒1} × 𝑆2) =

𝑟1 (𝑒1) · 𝑟2 (𝑆2) = 0, thus 𝑟 ({𝑒1} × 𝑌2) = 0. Otherwise, let 𝐵1 be

a basis of 𝑀1 containing 𝑒1. By the previous paragraph, we have

𝑟 ({𝑏1} × 𝑌2) ≥ 𝑟2 (𝑌2) for 𝑏1 ∈ 𝐵1. Furthermore, 𝑀 | (𝐵1 × 𝑌2) =

⊕
𝑏1∈𝐵1 𝑀 | ({𝑏1} × 𝑌2) by Claim 3.9. Thus,

𝑟 (𝑆1 × 𝑌2) ≥ 𝑟 (𝐵1 × 𝑌2)

=
∑︁
𝑏1∈𝐵1

𝑟 ({𝑏1} × 𝑌2)

≥
∑︁
𝑏1∈𝐵1

𝑟2 (𝑌2)

= 𝑟1 (𝑆1) · 𝑟2 (𝑌2)
= 𝑟 (𝑆1 × 𝑌2),

where the last equality holds by the assumption that𝑀 is a coupling.

Therefore, equality holds throughout, implying that 𝑟 ({𝑏1} ×𝑌2) =
𝑟2 (𝑌2) for each 𝑏1 ∈ 𝐵1. In particular, this shows that 𝑟 ({𝑒1}×𝑌2) =
𝑟1 (𝑒1) · 𝑟2 (𝑌2). Similarly, we get that 𝑟 (𝑌1 × {𝑒2}) = 𝑟1 (𝑌1) · 𝑟2 (𝑒2)
for each 𝑌1 ⊆ 𝑆1 and 𝑒2 ∈ 𝑆2. Finally, 𝑟 (𝑆) = 𝑟1 (𝑆1) · 𝑟2 (𝑆2) follows
from the assumption that𝑀 is a coupling. □

If 𝑒1 or 𝑒2 is a loop in the corresponding matroid, then (𝑒1, 𝑒2) is
a loop in any coupling by definition. Hence if (𝑒1, 𝑒2) is not a loop
in a coupling, then 𝑟 ((𝑒1, 𝑒2)) = 𝑟1 (𝑒1) · 𝑟2 (𝑒2) holds. Therefore, an
interesting consequence of Theorem 3.8 is the following.

Corollary 3.10. Any loopless coupling of two matroids is also a
tensor product.

3.3.3 Linear Matroids and Ingleton’s Inequality. Tools for deter-
mining the linear representability of a matroid include the use of

excluded minors and Ingleton’s inequality [19], who showed that

the rank function of any linear matroid𝑀 = (𝑆, 𝑟 ) satisfies
𝑟 (𝐴 ∪ 𝐵) + 𝑟 (𝐴 ∪𝐶) + 𝑟 (𝐴 ∪ 𝐷) + 𝑟 (𝐵 ∪𝐶) + 𝑟 (𝐵 ∪ 𝐷) ≥
𝑟 (𝐴) + 𝑟 (𝐵) + 𝑟 (𝐴 ∪ 𝐵 ∪𝐶) + 𝑟 (𝐴 ∪ 𝐵 ∪ 𝐷) + 𝑟 (𝐶 ∪ 𝐷) (7)

for every 𝐴, 𝐵,𝐶, 𝐷 ⊆ 𝑆 . In this sense, the inequality describes a

necessary condition for linearity. Since the uniform matroid 𝑈2,3 is

regular, it has a matroid tensor product with any linear matroid. In

other words, for a matroid, the existence of a matroid tensor product

with𝑈2,3 is also a necessary condition for linearity. Our next result

shows that this property does not only imply Ingleton’s inequality

for polymatroid functions but also yields a slightly weaker form

for general submodular functions; the proof is deferred to the full

version of the paper [6].

Theorem 3.11. Let 𝜑1 : 2𝑆1 → R be a submodular function and
let 𝜑2 : 2𝑆2 → R+ denote the rank function of the uniform matroid
𝑈2,3.

(a) If 𝜑1 and 𝜑2 have a submodular tensor product, then 𝜑1 sat-
isfies Ingleton’s inequality (7) for all pairwise disjoint sets
𝐴, 𝐵,𝐶, 𝐷 ⊆ 𝑆1.

(b) If 𝜑1 and 𝜑2 have a tensor product which is a polymatroid
function, then 𝜑1 satisfies Ingleton’s inequality (7) for all sets
𝐴, 𝐵,𝐶, 𝐷 ⊆ 𝑆1.

It was shown by Las Vergnas [23] that the Vámos matroid and the

uniform matroid𝑈2,3 do not have a matroid tensor product. The Vá-

mosmatroid is thematroid on ground set {𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑑1, 𝑑2}
in which each subset of size 4 is a basis except for𝐴∪𝐵,𝐴∪𝐶 ,𝐴∪𝐷 ,

𝐵 ∪𝐶 and 𝐵 ∪𝐷 , where 𝐴 = {𝑎1, 𝑎2}, 𝐵 = {𝑏1, 𝑏2},𝐶 = {𝑐1, 𝑐2} and
𝐷 = {𝑑1, 𝑑2}. As the rank function of the Vámos matroid does not

satisfy Ingleton’s inequality (7) for the pairwise disjoint sets 𝐴, 𝐵,
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𝐶 , and 𝐷 , Theorem 3.11 implies the following strengthening of the

result of Las Vergnas [23].

Corollary 3.12. The rank function of the Vámos matroid does
not have a submodular tensor product with the rank function of the
uniform matroid𝑈2,3.

For any fixed ground set 𝑆1 and fixed matroid 𝑁 = (𝑆2, 𝑟2), the
set of submodular (or polymatroid) functions 𝜑1 : 2

𝑆1 → R which

have a tensor product with 𝑟2 forms a polyhedron in R2
𝑆
1

, that is,

they can be described as functions 𝜑1 : 2
𝑆1 → R satisfying certain

linear inequalities. If we choose𝑁 to be a regular matroid, then each

of these inequalities is a linear rank inequality, that is, a linear in-
equality satisfied by the rank function of any representable matroid.

Ingleton’s inequality (7) was the first known linear rank inequality,

and since then infinite families of independent linear rank inequal-

ities have been found [12, 21]. Interestingly, all currently known

linear rank inequalities follow from the so-called common informa-
tion property of the rank function of representable matroids [3, 12],

though other linear inequalities have been found that are satisfied

by rank functions of matroids representable over fields of certain

characteristics but not by all representable matroids [13]. For defin-

ing the common information property, let us call every polymatroid

function 0-CI-compliant, and call a polymatroid function 𝑓 : 2𝑆 → R
𝑘-CI-compliant if for any subsets 𝐴, 𝐵 ⊆ 𝑆 , there exists a (𝑘 − 1)-
compliant polymatroid function 𝑓 ′ : 2𝑆

′ → R and a subset 𝑍 ⊆ 𝑆 ′

such that 𝑆 ⊆ 𝑆 ′, 𝑓 ′ (𝑋 ) = 𝑓 (𝑋 ) for all 𝑋 ⊆ 𝑆 , 𝑓 ′ (𝐴 ∪ 𝑍 ) = 𝑓 (𝐴),
𝑓 ′ (𝐵 ∪ 𝑍 ) = 𝑓 (𝐵), and 𝑓 ′ (𝑍 ) = 𝑓 (𝐴) + 𝑓 (𝐵) − 𝑓 (𝐴 ∪ 𝐵). Then, a
polymatroid satisfies the common information property if it is 𝑘-CI-
compliant for each integer𝑘 ≥ 0. Note that the common information

property is not sufficient for the representability of a matroid, e.g. all

rank-3 matroids satisfy it [3] while e.g. the non-Desargues matroid

is not representable [19]. It would be interesting to see the relations

between the class of polymatroid functions having tensor products

with𝑈2,3, the class of polymatroid functions having tensor product

with all regular matroids, and the class of polymatroid functions

satisfying the common information property.

3.4 Coverage and 𝑘-Alternating Functions
Coverage functions naturally arise in applications like set cover,

influence maximization, sensor placement, feature selection, and

data summarization. The goal of this section is to show that if one

of the functions is a coverage function, then there exist couplings

with stronger properties. For some 𝑘 ∈ Z>0, let us call a function
𝜑 : 2𝑆 → R+ 𝑘-alternating if 𝜑 (∅) = 0 and it satisfies (𝑘-Alt) for

the given 𝑘 .

Theorem 3.13. Let 𝜑1 : 2𝑆1 → R+ be a coverage function and
𝜑2 : 2

𝑆2 → R+ be a 𝑘-alternating function over ground sets 𝑆1 and
𝑆2, respectively. Then, 𝜑1 and 𝜑2 have a 𝑘-alternating tensor product
which is integer-valued if 𝜑1 and 𝜑2 are integer-valued.

Proof. Assume first that 𝜑1 = 𝜑𝐴 for some ∅ ≠ 𝐴 ⊆ 𝑆1 as

defined in (1). We define the tensor product of 𝜑𝐴 and 𝜑2 to be

(𝜑𝐴 ⊗ 𝜑2) (𝑋 ) B 𝜑2 (𝜋2 ((𝐴 × 𝑆2) ∩ 𝑋 ))
for any 𝑋 ⊆ 𝑆1 × 𝑆2. For each pair of sets 𝑌1 ⊆ 𝑆1, 𝑌2 ⊆ 𝑆2, we have

(𝜑𝐴⊗𝜑2) (𝑌1×𝑌2) = 𝜑2 (𝑌2) if𝐴∩𝑌1 ≠ ∅ and (𝜑𝐴⊗𝜑2) (𝑌1×𝑌2) = 0

if𝐴∩𝑌1 = ∅, thus 𝜑𝐴 ⊗𝜑2 is indeed a tensor product. We claim that

it is 𝑘-alternating as well. To see this, let 𝑋0, 𝑋1, . . . , 𝑋𝑘 ⊆ 𝑆1 × 𝑆2.

Then, the 𝑘-alternating condition (𝑘-Alt) requires that∑︁
𝐾⊆[𝑘 ]

(−1) |𝐾 | (𝜑𝐴 ⊗ 𝜑2)
(
𝑋0 ∪

⋃
𝑖∈𝐾

𝑋𝑖

)
=

∑︁
𝐾⊆[𝑘 ]

(−1) |𝐾 |𝜑2
(
𝜋2

(
(𝐴 × 𝑆2) ∩ (𝑋0 ∪

⋃
𝑖∈𝐾

𝑋𝑖 )
))

=
∑︁

𝐾⊆[𝑘 ]
(−1) |𝐾 |𝜑2

(
𝜋2

(
(𝐴 × 𝑆2) ∩ 𝑋0

)
∪
⋃
𝑖∈𝐾

𝜋2

(
(𝐴 × 𝑆2) ∩ 𝑋𝑖 )

))
=

∑︁
𝐾⊆[𝑘 ]

(−1) |𝐾 |𝜑2
(
𝑌0 ∪

⋃
𝑖∈𝐾

𝑌𝑖

)
≤ 0.

This follows from the 𝑘-alternating condition (𝑘-Alt) for 𝜑2 and

sets 𝑌𝑖 = 𝜋2 ((𝐴 × 𝑆2) ∩ 𝑋𝑖 ).
In general, if 𝜑1 is a coverage function, then by Proposition 2.2,

𝜑1 =
∑

∅≠𝐴⊆𝑆1 𝑐𝐴 · 𝜑𝐴 for some nonnegative coefficients 𝑐𝐴 ∈ R+
for all nonempty 𝐴 ⊆ 𝑆1. Define the tensor product of 𝜑1 and 𝜑2 to

be

𝜑1 ⊗ 𝜑2 B
∑︁

∅≠𝐴⊆𝑆1
𝑐𝐴 · (𝜑𝐴 ⊗ 𝜑2).

Then, the resulting function over 𝑆1×𝑆2 is a tensor product of𝜑1 and
𝜑2. Indeed, (𝜑1 ⊗𝜑2) (𝑌1×𝑌2) =

∑
∅≠𝐴⊆𝑆1 𝑐𝐴 · (𝜑𝐴 ⊗𝜑2) (𝑌1×𝑌2) =

(∑𝐴∩𝑌1≠∅ 𝑐𝐴)·𝜑2 (𝑌2) = 𝜑1 (𝑌1)·𝜑2 (𝑌2). Finally, observe that𝜑1⊗𝜑2
is 𝑘-alternating as it is a nonnegative combination of 𝑘-alternating

functions. □

As noted earlier, (𝑘-Alt) for 𝑘 = 1 corresponds to the increasing

property, while for 𝑘 = 2 it is equivalent to the increasing submod-

ularity of the function. Thus, by applying Theorem 3.13 to the case

when 𝑘 = 2, we get the following.

Corollary 3.14. Any coverage function 𝜑1 and increasing sub-
modular function 𝜑2 have an increasing submodular tensor product.

Another interesting special case is when both 𝜑1 and 𝜑2 are

coverage functions.

Corollary 3.15. Any two coverage functions have a coverage
tensor product.

3.5 Extension to the Infinite Case
The main results of Section 3.1 and Section 3.2 can be extended to

pairs of bounded submodular set functions defined on infinite set

algebras. Essentially the same ideas work as in the finite cases, i.e.,

in the proofs of Theorem 3.1 and Theorem 3.2, but the reasoning

is slightly more technical, and we have to integrate instead of

taking sums. Moreover, we will need to integrate with respect to

nonnegative charges. We follow the definitions of [27]. Let (𝐽 ,B) be
a set algebra, 𝛼 : B → R+ be a nonnegative charge, and 𝑓 : 𝐽 → R+
be a nonnegative bounded measurable function. Define

𝛼 (𝑓 ) B
∫ ∞

0

𝛼 ({𝑓 ≥ 𝑡}) d𝑡 .

Note that 𝛼 is linear in the sense that 𝛼 (𝑐1 𝑓1 + 𝑐2 𝑓2) = 𝑐1𝛼 (𝑓1) +
𝑐2𝛼 (𝑓2) for all nonnegative bounded measurable functions 𝑓1, 𝑓2,

and 𝑐1, 𝑐2 ∈ R+. Furthermore, 𝛼 is positive, meaning that 𝛼 (𝑔) ≥
𝛼 (𝑓 ) if 𝑔(𝑥) ≥ 𝑓 (𝑥) for all 𝑥 ∈ 𝐽 .
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Let (𝐽1,B1) and (𝐽2,B2) be set algebras and denote their product
space by (𝐽 ,B). Let 𝜑1 : B1 → R+, 𝜑2 : B2 → R+ be bounded sub-

modular functions satisfying 𝜑1 (∅) = 𝜑2 (∅) = 0, and let 𝛼1 : B1 →
R+, 𝛼2 : B2 → R+ be charges. To make it easier to draw parallels

with the finite case, by a slight abuse of notation, we denote by

𝜑2 (𝜋2 (𝑍𝑥 )) the function 𝑥 ↦→ 𝜑2 (𝜋2 (𝑍𝑥 )) and by 𝜑1 (𝜋1 (𝑍𝑦)) the
function 𝑦 ↦→ 𝜑1 (𝜋1 (𝑍𝑦)) for any set 𝑍 ∈ B. Any set 𝑍 of the

product algebra has the form 𝑍 = ∪𝑛
𝑖=1

𝐴𝑖 × 𝐵𝑖 , where 𝐴𝑖 ∈ B1 and

𝐵𝑖 ∈ B2 for 𝑖 ∈ [𝑛]. Consider the finite algebras A1, A2 generated

by the sets {𝐴𝑖 }𝑛𝑖=1 and the sets {𝐵𝑖 }𝑛𝑖=1, respectively. It is not dif-
ficult to see that 𝜑2 (𝜋2 (𝑍𝑥 )) is constant on the atoms of A1 and

𝜑1 (𝜋1 (𝑍𝑦)) is constant on the atoms of A2. Consequently, both

functions take only finitely many values, and the preimages of these

values belong to A1 and A2, respectively. As A𝑖 ⊆ B𝑖 for 𝑖 ∈ [2],
we conclude that both functions are measurable. Similarly to (2),

we can define

𝑏 (𝑍 ) B 𝛼1 (𝜑2 (𝜋2 (𝑍𝑥 ))) +𝛼2 (𝜑1 (𝜋1 (𝑍𝑦))) −𝛼1 (𝛼2 (𝜋2 (𝑍𝑥 ))) (8)

for all 𝑍 ∈ B. While this definition does not look symmetric at first,

note that 𝛼1 (𝛼2 (𝜋2 (𝑍𝑥 ))) and 𝛼2 (𝛼1 (𝜋1 (𝑍𝑦))) agree on the semi-

algebra of product sets and thus agree on the generated algebra, see

e.g. [31, Theorem 3.5.1 (ii)]. Observe that if 𝑍 = 𝑌1 × 𝑌2 for some

𝑌1 ∈ B1 and 𝑌2 ∈ B2, then

𝛼1 (𝜑2 (𝜋2 (𝑍𝑥 ))) = 𝛼1 (𝑌1)𝜑2 (𝑌2),
𝛼2 (𝜑1 (𝜋1 (𝑍𝑦))) = 𝜑1 (𝑌1)𝛼2 (𝑌2),
𝛼1 (𝛼2 (𝜋2 (𝑍𝑥 ))) = 𝛼1 (𝑌1)𝛼2 (𝑌2).

First we extend the statement of Theorem 3.1.

Theorem 3.16. Let 𝜑1, 𝜑2 be nonnegative submodular functions
over the set algebras (𝐽1,B1) and (𝐽2,B2), respectively, satisfying
𝜑1 (∅) = 0 and 𝜑2 (∅) = 0. Furthermore, let 𝛼1 : B1 → R+ and
𝛼2 : B2 → R+ be charges such that 𝛼1 (𝑆1) = 𝜑1 (𝑆1) and 𝛼2 (𝑆2) =
𝜑2 (𝑆2). Then, the function 𝑏 defined in (8) is a submodular coupling
of 𝜑1 and 𝜑2.

Proof. By the definition of 𝑏, we have

𝑏 (𝑌1 × 𝑌2)
= 𝛼1 (𝑌1) · 𝜑2 (𝑌2) + 𝛼2 (𝑌2) · 𝜑1 (𝑌1) − 𝛼1 (𝑌1) · 𝛼2 (𝑌2)
= 𝜑1 (𝑌1) · 𝜑2 (𝑌2) − (𝜑1 (𝑌1) − 𝛼1 (𝑌1)) · (𝜑2 (𝑌2) − 𝛼2 (𝑌2))
= 𝜑1 (𝑌1) · 𝜑2 (𝑌2),

if 𝑌1 = 𝐽1 or 𝑌2 = 𝐽2, hence 𝑏 is indeed a coupling. To prove

submodularity, note that for fix 𝑥 ∈ 𝐽1 and 𝑦 ∈ 𝐽2, the functions

𝜑2 (𝜋2 (𝑍𝑥 )) and 𝜑1 (𝜋1 (𝑍𝑦)) are submodular while 𝛼2 (𝜋2 (𝑍𝑥 )) is
modular, hence 𝑏 is submodular by the linearity and nonnegativity

of 𝛼1 and 𝛼2. □

To extend the result of Theorem 3.2, we first have to define

the measurable analogue of a base polytope. Let (𝐽 ,B) be a set

algebra and 𝜑 : B → R+ be a polymatroid function. We say that a

nonnegative charge 𝛼 : B → R+ is a minorizing charge if 𝛼 (𝐴) ≤
𝜑 (𝐴) for all 𝐴 ∈ B. A minorizing charge is called basic if 𝛼 (𝐽 ) =
𝜑 (𝐽 ). The set of all basic minorizing charges is denoted by bmm(𝜑).
It was proved in [27, Corollary 5.3.] that bmm(𝜑) is nonempty.

Theorem 3.17. Let 𝜑1, 𝜑2 be polymatroid functions on measur-
able spaces (𝐽1,B1) and (𝐽2,B2), respectively. Then, there exists a
polymatroid coupling 𝜑 of 𝜑1 and 𝜑2 on the product space (𝐽 ,B).

Proof. Choose 𝛼1 ∈ bmm(𝜑1) and 𝛼2 ∈ bmm(𝜑2), and define

𝑏 as in (8).

Claim 3.18. Wehave𝑏 (∅) = 0 and𝑏 (𝑌1×𝑌2) ≤ 𝜑1 (𝑌1)·𝜑2 (𝑌2) for
each 𝑌1 ∈ B1 and 𝑌2 ∈ B2, where equality holds if 𝜑1 (𝑌1) = 𝛼1 (𝑌1)
or 𝜑2 (𝑌2) = 𝛼2 (𝑌2).

Proof. The equality 𝑏 (∅) = 0 follows from 𝜑1 (∅) = 𝜑2 (∅) = 0.

For each 𝑌1 ∈ B1 and 𝑌2 ∈ B2, 𝛼1 (𝑌1) ≤ 𝜑1 (𝑌1) and 𝛼2 (𝑌2) ≤
𝜑2 (𝑌2), thus we get

𝑏 (𝑌1 × 𝑌2)
= 𝜑1 (𝑌1) · 𝜑2 (𝑌2) − (𝜑1 (𝑌1) − 𝛼1 (𝑌1)) · (𝜑2 (𝑌2) − 𝛼2 (𝑌2))
≤ 𝜑1 (𝑌1) · 𝜑2 (𝑌2) .

Here equality holds if 𝜑1 (𝑌1) = 𝛼1 (𝑌1) or 𝜑2 (𝑌2) = 𝛼2 (𝑌2). □

The function 𝑏 is not necessarily monotone. To overcome this,

let 𝜑 (𝑍 ) B inf𝑍 ′⊇𝑍 𝑏 (𝑍 ′) for all 𝑍 ∈ B.

Claim 3.19. 𝜑 is increasing and submodular.

Proof. Clearly, 𝜑 is increasing by definition. To prove submod-

ularity, let 𝑍1, 𝑍2 ∈ B. Then, for any 𝜀 > 0 and for 𝑖 = 1, 2, there

exists 𝑍 ′
𝑖
⊇ 𝑍𝑖 such that 𝜑 (𝑍𝑖 ) + 𝜀 ≥ 𝑏 (𝑍 ′

𝑖
). We get

𝜑 (𝑍1) + 𝜑 (𝑍2) ≥ 𝑏 (𝑍 ′
1
) + 𝑏 (𝑍 ′

2
) + 2𝜀

≥ 𝑏 (𝑍 ′
1
∩ 𝑍 ′

2
) + 𝑏 (𝑍 ′

1
∪ 𝑍 ′

2
) + 2𝜀

≥ 𝜑 (𝑍1 ∩ 𝑍2) + 𝜑 (𝑍1 ∪ 𝑍2) + 2𝜀.

The claim follows by taking 𝜀 → 0. □

Claim 3.20. 𝜑 (𝑌1 × 𝑌2) = 𝑏 (𝑌1 × 𝑌2) holds for each 𝑌1 ∈ B1 and
𝑌2 ∈ B2.

Proof. Weneed to show that𝑏 (𝑍 ) ≥ 𝑏 (𝑌1×𝑌2) holds if𝑌1×𝑌2 ⊆
𝑍 ∈ B. Using that 𝜑2 is increasing and 𝛼2 (𝑋 ) ≤ 𝜑2 (𝑋 ) holds for
any 𝑋 ∈ B2, we get

𝛼1 (𝜑2 (𝜋2 (𝑍𝑥 )))
= 𝛼1 (1𝑌1 · 𝜑2 (𝜋2 (𝑍𝑥 ))) + 𝛼1 (1𝐽1\𝑌1 · 𝜑2 (𝜋2 (𝑍𝑥 )))
≥ 𝛼1 (𝑌1) · 𝜑2 (𝑌2) + 𝛼1 (𝛼2 (𝜋2 ((𝑍 \ (𝑌1 × 𝐽2))𝑥 ))) .

Similarly,

𝛼2 (𝜑1 (𝜋1 (𝑍𝑦)))
= 𝛼2 (1𝑌2 · 𝜑1 (𝜋1 (𝑍

𝑦))) + 𝛼2 (1𝐽2\𝑌2 · 𝜑1 (𝜋1 (𝑍
𝑦)))

≥ 𝜑1 (𝑌1) · 𝛼2 (𝑌2) + 𝛼2 (1𝐽2\𝑌2 · 𝛼1 (𝜋1 (𝑍
𝑦)))

= 𝜑1 (𝑌1) · 𝛼2 (𝑌2) + 𝛼1 (𝛼2 (𝜋2 ((𝑍 \ (𝐽1 × 𝑌2))𝑥 ))).
Finally,

𝛼1 (𝛼2 (𝜋2 (𝑍𝑥 )))
= 𝛼1 (𝑌1) · 𝛼2 (𝑌2) + 𝛼1 (𝛼2 (𝜋2 ((𝑍 \ (𝑌1 × 𝑌2))𝑥 )))
≤ 𝛼1 (𝑌1) · 𝛼2 (𝑌2) + 𝛼1 (𝛼2 (𝜋2 ((𝑍 \ (𝑌1 × 𝐽2))𝑥 )))
+ 𝛼1 (𝛼2 (𝜋2 ((𝑍 \ (𝐽1 × 𝑌2))𝑥 ))) .

Combining these three inequalities, the claim follows. □
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Combining Claims 3.18, 3.19 and 3.20, we deduce that 𝜑 is a

polymatroid coupling of 𝜑1 and 𝜑2. This concludes the proof of the

theorem. □

4 Universal Functions
In this section we show that, under certain conditions, if there exists

a coupling of any two functions with some property 𝑃 , then there

exists a universal function with property 𝑃 , i.e., a function that

contains any finite function with property 𝑃 as a quotient.

4.1 Preparations
If Q = {𝑄𝑖 }𝑛𝑖=1 is a finite measurable partition of 𝐽 , i.e., {𝑄𝑖 }𝑛𝑖=1 is a
partition and 𝑄𝑖 ∈ B for 𝑖 ∈ [𝑛], then the quotient 𝜑/Q : 2

[𝑛] →
R denotes the function defined by (𝜑/Q)(𝑋 ) = 𝜑 (⋃𝑖∈𝑋 𝑄𝑖 ) for
𝑋 ⊆ [𝑛]. The notion of coupling can be naturally extended to more

than two functions. Let (𝐽1,B1), . . . , (𝐽𝑛,B𝑛) be set algebras and
denote their product space by (𝐽 ,B). Furthermore, let 𝜑𝑖 : B𝑖 → R
be set functions for 𝑖 ∈ [𝑛]. We say that a function 𝜑 : B → R is a

coupling of 𝜑1, . . . , 𝜑𝑛 if 𝜑 (𝑆1 × · · · × 𝑆𝑖−1 ×𝑋𝑖 × 𝑆𝑖+1 × · · · × 𝑆𝑛) =
𝜑𝑖 (𝑋𝑖 ) ·

∏
ℓ∈[𝑛]\{𝑖 } 𝜑 𝑗 (𝐽ℓ ) for every 𝑋𝑖 ∈ B𝑖 , 𝑖 ∈ [𝑛].

Let (𝐽1,B1) and (𝐽2,B2) be two set algebras. The functions

𝜑1 : B1 → R and 𝜑2 : B2 → R are isomorphic if there exists a

bijection 𝑓 : 𝐽1 → 𝐽2 such that 𝑓 and 𝑓 −1 are measurable and

𝜑2 (𝑓 (𝑋 )) = 𝜑1 (𝑋 ) for all 𝑋 ∈ B1. By a property of set functions,

we mean an isomorphism invariant class of set functions. We call

a property 𝑃 of set functions finitary if a function 𝜑 : B → R is

in 𝑃 if and only if 𝜑/Q is in 𝑃 for any finite measurable partition

Q of 𝐽 . A finitary property 𝑃 is closed if for any measurable space

(𝐽 ,B) and any finite measurable partition of 𝐽 , the set of functions

{𝑓 : B → R | 𝑓 /Q ∈ 𝑃} is closed. We call a finitary property 𝑃

extendable if for any 𝜑 : 2[𝑛] → R with property 𝑃 and any finite,

pairwise disjoint sets 𝐴1, . . . , 𝐴𝑛 with union 𝐴, there exists a func-

tion 𝜓 : 2
𝐴 → R with property 𝑃 that extends 𝜑 in the sense that

that 𝜑 (𝑆) = 𝜓 (⋃𝑖∈𝑆 𝐴𝑖 ) for all 𝑆 ⊆ [𝑛]. We call a finitary property

𝑃 liftable if any two finite functions with property 𝑃 admit a cou-

pling with property 𝑃 on the product of their ground sets. Note that

liftability implies that any finite number of finite functions with

property 𝑃 admit a coupling with property 𝑃 on the product of their

ground sets. We say that property 𝑃 is 𝑏-bounded for some 𝑏 ∈ R+
if the range of any function with property 𝑃 is contained in [−𝑏, 𝑏].
Finally, a normalized function with property 𝑃 is called universal
for property 𝑃 , if it contains all finite, normalized functions with

property 𝑃 as a quotient.

We need the following well-known lemma (which follows from

e.g. [22, Problem 4.43]) and include a proof for completeness.

Lemma 4.1. There exists a family of subsetsH ⊆ 2
Z with |H | = 𝔠

such that for any disjoint finite subsetsH1,H2 ⊆ H , we have⋂
𝐻 ∈H1

𝐻 ∩
⋂
𝐻 ∈H2

𝐻𝑐 ≠ ∅.

Proof. Let

R B
{
𝐴 ⊆ R | 𝐴 =

⋃𝑛
𝑖=1 [𝑝𝑖 , 𝑞𝑖 ] for some 𝑛 ∈ Z+ and

rational numbers 𝑝𝑖 , 𝑞𝑖 for 𝑖 ∈ [𝑛]
}
.

Note that R is countable, hence it is enough to find an appropriate

system with H ⊆ 2
R
. For any 𝑥 ∈ R, let H𝑥 B {𝐴 ∈ R | 𝑥 ∈ 𝐴}.

For any disjoint finite subsets 𝑋1 ⊆ R and 𝑋2 ⊆ R we can clearly

find 𝐴 ∈ R with 𝑋1 ⊆ 𝐴 and 𝑋2 ∩ 𝐴 = ∅. Hence the set system
{H𝑥 }𝑥∈R satisfies the condition of the lemma. □

The proof of Theorem 4.2 relies on a compactness argument. For

a set algebra (𝐽 ,B), the space of set functions {𝑓 : B → R} can
be identified with the product topological space

∏
𝐴∈B R. For any

𝑟 : B → R+, the space of functions{
𝑓 : B → R

�� |𝑓 (𝐴) | ≤ 𝑟 (𝐴) for all 𝐴 ∈ B
}
=

∏
𝐴∈B

[−𝑟 (𝐴), 𝑟 (𝐴)]

is compact, as the product of compact sets is compact by Tychonoff’s

theorem [34]. We will use that a topological space 𝑋 is compact if

and only if

⋂
𝐶∈C 𝐶 ≠ ∅ for any collection C of closed subsets of 𝑋

such that

⋂
𝐶∈C′ 𝐶 ≠ ∅ for all finite subcollections C′ ⊆ C.

4.2 Proof of Existence
Now we are ready to state the main result of this section.

Theorem 4.2. For any finitary, closed, extendable, liftable and 𝑏-
bounded property 𝑃 for some 𝑏 ≥ 1, there exists a universal function
on the set algebra (Z, 2Z).

Proof. Let H ⊆ 2
Z
be a set given by Lemma 4.1. Let Φ be a set

of representatives of functions with property 𝑃 with finite domain

whose size is a power of two, i.e., for all such isomorphism class Φ
contains exactly one function. For a function 𝜑 ∈ Φ, denote by 𝑆𝜑
the domain of 𝜑 . We may assume that for any two distinct 𝜑,𝜓 ∈ Φ,
their domains are disjoint, that is, 𝑆𝜑 ∩𝑆𝜓 = ∅. Since 𝑃 is extendable,

it is enough to find a function 𝐹 : 2Z → R with property 𝑃 that

contains every member of Φ as a quotient.

Up to isomorphism, there are continuum real-valued functions

on finite domain, hence |Φ| ≤ 𝔠. Consequently, we can choose

𝐻
𝜑

1
, . . . , 𝐻

𝜑
𝑛 ∈ H for all 𝜑 ∈ Φ, where 𝑛 = log

2
( |𝑆𝜑 |), such that

𝐻
𝜑1

𝑖
= 𝐻

𝜑2

𝑗
only if 𝜑1 = 𝜑2 and 𝑖 = 𝑗 . Furthermore, for all 𝜑 ∈ Φ

and all 𝑎 ∈ 𝑆𝜑 , define 𝐼𝑎 ⊆ [𝑛] and

𝑇𝑎 B
⋂
𝑖∈𝐼𝑎

𝐻
𝜑

𝑖
∩

⋂
𝑖∈[𝑛]\𝐼𝑎

(
𝐻
𝜑

𝑖

)𝑐
,

where 𝑛 = log
2
( |𝑆𝜑 |), such that 𝐼𝑎 ≠ 𝐼𝑏 for distinct 𝑎, 𝑏 ∈ 𝑆𝜑 . It is

enough to prove the existence of a function 𝐹 : 2Z → R such that 𝐹

has property 𝑃 (which is equivalent to every finite factor having

property 𝑃 ) and

𝐹

(⋃
𝑎∈𝐴

𝑇𝑎

)
= 𝜑 (𝐴)

for all 𝜑 ∈ Φ and 𝐴 ⊆ 𝑆𝜑 , as the latter condition guarantees that

it contains every finite function with property 𝑃 as a quotient.

Note that, by the property of the family H given by Lemma 4.1,⋃
𝑎∈𝐴𝑇𝑎 ≠

⋃
𝑏∈𝐵 𝑇𝑏 for any 𝜑,𝜓 ∈ Φ and 𝐴 ⊆ 𝑆𝜑 , 𝐵 ⊆ 𝑆𝜓 .

The function space {𝑓 : B → R | |𝑓 (𝐴) | ≤ 𝑏 for all 𝐴 ∈ 2
Z} is

compact. The condition that 𝐹/Q has property 𝑃 is closed for every

finite measurable partition Q of Z. Furthermore, conditions of the

form 𝐹 (⋃𝑎∈𝐴𝑇𝑎) = 𝜑 (𝐴) are also closed. Hence, it is enough to

prove that for any finite number of these conditions, we can find a

function satisfying all of them. Let Q1, . . . ,Q𝑛 be finite partitions of

Z, and let

⋃
𝑎∈𝐴𝑖

𝑇𝑎 be sets for some 𝐴1, . . . , 𝐴𝑚 , where there exist

distinct 𝜑1, . . . , 𝜑𝑘 ∈ Φ such that 𝐴𝑖 ⊆ 𝑆𝜑𝑓 (𝑖 ) for all 1 ≤ 𝑖 ≤ 𝑚 and
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some function 𝑓 : [𝑚] → [𝑘]. We need to show that there exists

a function 𝐹 ′ : 2Z → R such that 𝐹 ′ (⋃𝑎∈𝐴𝑖
𝑇𝑎) = 𝜑𝑓 (𝑖 ) (𝐴𝑖 ) for

1 ≤ 𝑖 ≤ 𝑚, and 𝐹 ′/Q𝑖 has property 𝑃 for 1 ≤ 𝑖 ≤ 𝑛.

Let𝜑 be a coupling of𝜑1, . . . , 𝜑𝑘 on ground set 𝑆 B 𝑆𝜑1
×. . .×𝑆𝜑𝑘 .

Denote by A1 the algebra generated by the sets {𝐻𝜑𝑖
𝑗

| 1 ≤ 𝑖 ≤
𝑘, 1 ≤ 𝑗 ≤ log

2
( |𝑆𝜑𝑖 |). The atoms of A1 are of the form

⋂𝑘
𝑖=1𝑇𝑎𝑖

for some (𝑎1, . . . , 𝑎𝑘 ) ∈ 𝑆 . Note that none of these atoms are empty

by Lemma 4.1. The set algebra of 𝑆 andA1 are isomorphic, as to an

atom (𝑎1, . . . , 𝑎𝑘 ) ∈ 𝑆 we can assign

⋂𝑘
𝑖=1𝑇𝑎𝑖 ofA1, which induces

the isomorphism 𝜂 : 2𝑆 → A1,

𝜂 (𝐴) =
⋃

(𝑎𝑖 )𝑘𝑖=1∈𝐴

( 𝑘⋂
𝑖=1

𝑇𝑎𝑖

)
for all 𝐴 ∈ 2

𝑆
. Now we can define the function 𝐹1 : A1 → R by

𝐹1 (𝐴) = 𝜑 (𝜂−1 (𝐴)) for all 𝐴 ∈ A1. By definition, this satisfies

all equalities of the form 𝐹1 (
⋃
𝑎∈𝐴𝑖

𝑇𝑎) = 𝜑𝑓 (𝑖 ) (𝐴𝑖 ), and 𝐹1 has

property 𝑃 as 𝜑 has property 𝑃 . LetA2 be the algebra generated by

the sets ofA1 and the sets appearing in one of the partitions Q𝑖 for
1 ≤ 𝑖 ≤ 𝑛. This is a refinement ofA1 still having a finite number of

atoms, hence, by extendability, there exists a function 𝐹2 : A2 → R
with property 𝑃 that extends 𝐹1, i.e., 𝐹2 |A1

= 𝐹1. It follows that

𝐹2/Q𝑖 has property 𝑃 for 1 ≤ 𝑖 ≤ 𝑛. Finally, an arbitrary extension

𝐹 ′ of 𝐹2 to the domain 2
Z
concludes the proof of the theorem. □

4.3 Applications
We show two applications of Theorem 4.2. First, we show that there

exists a universal increasing submodular set function, using Theo-

rem 3.2. Any increasing, submodular set function which has value

0 on the empty set (apart from the constant 0) can be normalized,

hence such a universal function contains all increasing, submod-

ular set functions with value 0 on the empty set up to a constant

multiplier.

Corollary 4.3. There exists a universal increasing submodular
set function.

Proof. Let 𝑃 be the property of being normalized, increasing,

and submodular. To apply Theorem 4.2, we have to show that 𝑃 is

a finitary, closed, extendable, liftable, 1-bounded property. For a set

function 𝜑 : B → R on (𝐽 ,B), having property 𝑃 means

𝜑 (𝐴) ≤ 𝜑 (𝐵) and 𝜑 (𝐶 ∩ 𝐷) + 𝜑 (𝐶 ∪ 𝐷) ≤ 𝜑 (𝐶) + 𝜑 (𝐷) (9)

for all𝐴, 𝐵,𝐶, 𝐷 ∈ B with𝐴 ⊆ 𝐵, and being normalized. Hence, it is

clear that 𝑃 is finitary, and 1-boundedness also holds by monotonic-

ity and 𝜑 (𝐽 ) = 1. Liftability follows from Theorem 3.2. Note that

every inequality in (9) is satisfied by a closed subset of {𝑓 : B → R},
and the functions with normalized property also form a closed sub-

set, hence the set of functions having property 𝑃 in {𝑓 : B → R}
is closed, as it is the intersection of closed subsets. Consequently,

{𝑓 : B → R | 𝑓 /Q ∈ 𝑃} is closed for all finite measurable partitions,

as it is a projection of {𝑓 : B → R} to the algebra generated by

Q, proving that 𝑃 is closed. Finally, if 𝜑 : 2[𝑛] → R has property

𝑃 , and 𝐴1, 𝐴2, . . . , 𝐴𝑛 are finite, pairwise disjoint sets with union

𝐴, then the set function 𝜓 : 2
𝐴 → R defined by 𝜓 (𝑋 ) B 𝜑 (𝜈 (𝑋 ))

for all 𝑋 ⊆ 𝐴, where 𝜈 (𝑋 ) B {𝑖 ∈ [𝑛] | 𝑋 ∩𝐴𝑖 ≠ ∅} for all 𝑋 ⊆ 𝐴,

is an extension with property 𝑃 . Indeed,𝜓 is clearly an increasing

extension, and for any 𝑋,𝑌 ⊆ 𝐴,

𝜓 (𝑋 ) +𝜓 (𝑌 ) = 𝜑 (𝜈 (𝑋 )) + 𝜑 (𝜈 (𝑌 ))
≥ 𝜑 (𝜈 (𝑋 ) ∩ 𝜈 (𝑌 )) + 𝜑 (𝜈 (𝑋 ) ∪ 𝜈 (𝑌 ))
≥ 𝜑 (𝜈 (𝑋 ∩ 𝑌 )) + 𝜑 (𝜈 (𝑋 ∪ 𝑌 ))
= 𝜓 (𝑋 ∩ 𝑌 ) +𝜓 (𝑋 ∪ 𝑌 ) .

Hence property 𝑃 is extendable as well, so we can apply Theorem 4.2

to finish the proof of the corollary. □

In particular, Corollary 4.3 implies that there exists a function

𝐹 : 2Z → R that contains all normalized matroid rank functions as

a quotient.

As a second application, we show that there exists a universal

function for coverage functions using Corollary 3.15.

Corollary 4.4. There exists a universal coverage function.

Proof. The proof is similar to that of Corollary 4.3. The coverage

property is given by the inequalities of (𝑘-Alt), hence this prop-

erty is finitary, closed, and by monotonicity it is 1-bounded. Corol-

lary 3.15 gives liftability. It remains to prove that if 𝜑 : 2[𝑛] → R is

a coverage function and 𝐴1, 𝐴2, . . . , 𝐴𝑛 are finite, pairwise disjoint

sets with union 𝐴, then we can extend 𝜑 on 𝐴. By Proposition 2.2,

we can write

𝜑 =
∑︁

∅≠𝑋 ⊆[𝑛]
𝑐𝑋𝜑𝑋 ,

where 𝜑𝑋 is defined as in (1) and 𝑐𝑋 ≥ 0 for all ∅ ≠ 𝑋 ⊆ [𝑛]. Let
𝑢 (𝑋 ) B ⋃

𝑖∈𝑋 𝐴𝑖 for all 𝑋 ⊆ [𝑛] and define

𝜓 B
∑︁

∅≠𝑋 ⊆[𝑛]
𝑐𝑋𝜑𝑢 (𝑋 ) .

Then 𝜓 is a coverage function by Proposition 2.2, and it clearly

extends 𝜑 , proving extendability. Hence the corollary follows by

Theorem 4.2. □
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