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 A B S T R A C T

Since the legalisation of recreational marijuana in certain US states, traffic fatalities involving drivers testing 
positive for marijuana have markedly increased, thereby prompting the need to understand how this policy 
change affects road safety. While marijuana is well-known to impair driving, determining if its recreational 
use directly causes more traffic fatalities remains contentious due to challenges in roadside impairment testing. 
Additional challenges arise because (i) Simulations may not accurately replicate driver impairment and road 
conditions, (ii) Estimation based on observational data must adjust for (unobserved) confounding factors, 
requiring an innovative model to generate causal inference, and (iii) The dynamic, evolving nature of the 
process requires capturing temporal relationships. This paper contributes by employing a rigorous study 
design based on an augmented synthetic control method to assess the causal impact of recreational marijuana 
legalisation on traffic fatalities. It identifies a consistent but lagged pattern of increased fatality rates in several 
states post-legalisation, with the effect primarily linked to the drug’s retail availability. These findings disprove 
any prevailing conjectures that dismiss the link between recreational marijuana use and fatal traffic crashes, 
highlighting the need for informed policy responses.
1. Introduction

Recreational marijuana, or adult-use cannabis, refers to the non-
medical or therapeutic use of marijuana for relaxation, socialisation, 
or to experience its psychoactive effects, akin to alcohol consumption 
in social settings. Recreational marijuana remains legally regulated in 
most regions around the world, with guidelines typically governing 
its distribution, possession, and consumption. In 2012, Colorado and 
Washington became the first two states in the United States to legalise 
recreational marijuana for adult use. Since then, twenty-one other 
states, the District of Columbia, and three permanently inhabited US 
territories have enacted laws to legalise recreational marijuana as of 
August 1, 2023, as shown in Fig.  1.1 These states comprise over 50 
percent of the US population. Results from the 2022 National Survey 
on Drug Use and Health suggest that the estimated number of past-
month marijuana users in the US aged 12 and older increased from 18.9 
million in 2012 to 42.3 million in 2022 (Abuse and Administration, 
2023).

With the expansion of marijuana access and use across a substan-
tial share of the US population; and with further liberalisation under 
consideration in other states; policymakers and researchers face an 
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1 Source: Wikipedia — By Lokal Profil, CC BY-SA 2.5, https://tinyurl.com/yc5v4efr.

increasingly urgent need to understand the broader public health and 
safety implications of these legal changes. Notably, the public discourse 
surrounding marijuana use is marked by both promise and concern. On 
one hand, proponents of legalisation cite its potential to reduce criminal 
justice burdens and serve as a substitute for more harmful substances 
like alcohol. On the other, critics highlight marijuana’s psychoactive 
effects, its potential impact on young people, and its possible threats to 
public safety (Chiu et al., 2021; Anderson and Rees, 2023). This paper 
contributes to one of these debated areas by evaluating the road safety 
impacts of recreational marijuana in the US.

It is well-established that marijuana contains tetrahydrocannabinol 
(THC), a psychoactive ingredient which impairs cognitive abilities re-
quired for driving by reducing visual and motor coordination, slowing 
reaction time, and distorting multitasking abilities that require split 
attention (Sewell et al., 2009; Veldstra et al., 2015; Bondallaz et al., 
2017). Yet the role of marijuana in fatal traffic crashes remains unclear 
because of the following key reasons. First, there are no reliable tests 
for detecting marijuana intoxication at the time of a crash. Delayed 
blood tests can miss THC’s mind-altering effects, while urine tests detect 
non-psychoactive carboxy-THC, possibly mislabelling sober drivers as 
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Fig. 1. Legality of recreational marijuana in the United States.
intoxicated (Sewell et al., 2009; Terhune et al., 1992). This undermines 
epidemiological studies that assess crash risks for drivers under the 
influence of the drug (Li et al., 2013). Second, the understanding of 
the driving behaviours of marijuana users is limited. Evidence suggests 
they may adopt compensatory actions like driving at reduced speeds 
or steering clear of hazardous manoeuvres, unlike alcohol-impaired 
drivers who take more risks (Sewell et al., 2009; Kelly et al., 2004; 
Ronen et al., 2008). However, this evidence is mostly from laboratory 
studies, not real-world driving. Further, another pool of driving studies 
shows that marijuana increases body sway, impairs essential driving 
functions, and reduces control over speed and lane position, leading 
to more lane weaving and closer vehicle spacing (Smiley et al., 1981; 
Liguori et al., 1998; Lenné et al., 2010; Preedy, 2016). The reasons 
stated above have tainted the findings of previous studies, leaving the 
impact of marijuana on traffic safety ambiguous. Some reviews and 
meta-analyses find that marijuana use increases crash risk, consistent 
with driving simulations (National Academies of Sciences, Engineering, 
and Medicine, 2017; Hartman and Huestis, 2013; Ramaekers et al., 
2009; Asbridge et al., 2012; Li et al., 2012; Elvik, 2013; Pearlson et al., 
2021). Conversely, studies by the National Highway Traffic Safety Ad-
ministration and others show insignificant or negative effects (Terhune 
et al., 1992; Lacey et al., 2016; Hostiuc et al., 2018). Additionally, a 
recent review noted publication bias towards studies linking marijuana 
to traffic crashes (Hostiuc et al., 2018).

The literature indicates that the relationship between marijuana and 
alcohol consumption is central to understanding marijuana’s impact on 
traffic fatalities (Cole, 2018). Alcohol-impaired drivers are at a high risk 
of fatal crashes (Williams et al., 1985; Martin et al., 2017), and studies 
have suggested that combining alcohol and marijuana significantly 
increases impairment (Li et al., 2013; Robbe, 1998; Hartman et al., 
2016). If marijuana availability reduces alcohol consumption, traffic 
fatalities might decrease. Conversely, if marijuana increases alcohol 
use, fatalities could rise. However, evidence on whether marijuana and 
alcohol are complements or substitutes is inconclusive. A meta-analysis 
found support for both complementary and substituting relationships 
between marijuana and alcohol (Guttmannova et al., 2016). For in-
stance, a study on French accidents showed that half of the drivers who 
tested positive for marijuana also tested positive for alcohol (Martin 
et al., 2017). Similarly, other studies based on FARS data from 1991 to 
2018 indicated that more drivers tested positive for both substances 
than for THC alone (Dubois et al., 2015; Lira et al., 2021). These 
findings suggest a complementary relationship. Conversely, some stud-
ies argue that marijuana and alcohol are substitutes (Anderson et al., 
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2013; Santaella-Tenorio et al., 2017). Building upon this hypothesis, 
their research on medical marijuana laws in the US found a 10 percent 
decrease in traffic fatalities in states with such laws. However, another 
study found statistically insignificant effects of medical marijuana legal-
isation on traffic fatalities and alcohol-related crashes (Sevigny, 2018). 
Similarly, a recent study (Brubacher et al., 2022) found a statistically 
insignificant effect of marijuana legalisation on alcohol-related crashes 
in British Columbia, Canada. A review of recent studies on marijuana 
liberalisation laws in the US and Canada concluded that the evidence on 
the relationship between marijuana and alcohol consumption remains 
inconclusive (Pacula et al., 2022). Overall, the debate on this theme 
continues in the research community.

Following the liberalisation of recreational marijuana laws in Wash-
ington and Colorado, many studies have examined recreational mari-
juana’s impact on fatal traffic crashes. However, researchers face consis-
tent methodological challenges. Some studies (Lee et al., 2018; Windle 
et al., 2021; Farmer et al., 2022) explored the association between 
marijuana laws and traffic fatalities, but their results may be biased 
by temporal trends and effects unrelated to the change in law. Studies 
using causal inference methods like differences-in-differences (DID) aim 
to address this limitation, but their findings vary. A few report in-
significant change (Aydelotte et al., 2017; Gunadi, 2022), while others 
suggest increases in fatalities ranging from 8% to 17% (Cole, 2018; 
Lane and Hall, 2019; Vogler, 2017; Aydelotte et al., 2019; Kamer et al., 
2020; Adhikari et al., 2023). In a similar vein, another study has found 
a statistically insignificant effect of recreational cannabis dispensary 
sales on traffic crashes in Colorado counties (Gunadi, 2022). González-
Sala et al. (2023) reviewed several recent studies on this theme and 
suggested a negative effect of the law change on road safety. Inter-
estingly, a recent study suggests that the impact varies over time, 
with earlier legalising states seeing greater increases (Adhikari et al., 
2023). The key idea underlying these causal inference approaches is to 
understand the impact of recreational marijuana legalisation on traffic 
fatality rates (the outcome) by comparing the average outcome in states 
that passed the law with the estimated counterfactual outcomes — 
what those outcomes would have been had the law not been enacted. 
In the DID approach, the counterfactual outcomes are constructed by 
considering the average changes in traffic fatality rates in states that did 
not pass the law. Crucially, the DID approach relies on the assumption 
that, in the absence of the law change, the changes in traffic fatality 
rates would have been similar in both the states with and without the 
law. Nevertheless, some studies rightly argue that DID estimates may be 
biased in this context due to state-level reporting differences, regional 
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consumption preferences, and spillover effects from legalisation efforts, 
complicating the identification of a true counterfactual trend for the 
states passing the law (Hansen et al., 2017; Romano et al., 2017).

To address these methodological challenges, we estimate the causal 
impact of recreational marijuana legalisation on traffic fatalities using 
an augmented synthetic control method (ASCM) proposed by Ben-
Michael et al. (2021). The method allows us to construct the counterfac-
tual by assigning weights for states that have not legalised marijuana to 
match the pre-legalisation trends of traffic fatalities. The closest prece-
dents to our analysis, Hansen et al. (2020) and Santaella-Tenorio et al. 
(2020), use the original synthetic control method (SCM) to evaluate 
the impact of recreational marijuana legalisation on traffic fatalities in 
Washington and Colorado. They consider data until 2016 and 2017, 
respectively. While the former study found a statistically insignificant 
effect in both states, the latter observed a statistically significant in-
crease in Colorado but an insignificant impact in Washington. These 
differing results suggest that (i) the effect of the law may vary across 
states due to contextual differences, such as variations in population, 
travel behaviour and traffic enforcement, and (ii) the effect may change 
over time. Nevertheless, we note that these analyses are limited to a 
couple of states and only cover a few years post-legalisation, where 
attitudes towards marijuana use and associated driving preferences 
may be highly transitory. Moreover, their studies do not test for the 
year-on-year variation in the statistical significance of the estimated 
effect of the law. We argue that the process of interest is dynamic, 
evolving over time, and it is therefore of vital importance to capture 
the temporal phasing of the underlying relationship. Furthermore, there 
is a noticeable imbalance between the outcome trajectories of the 
states with the law and the synthetic control counterparts in their 
studies, which, as suggested by Abadie et al. (2015), may undermine 
the validity of results from the SCM. This imbalance can lead to biased 
estimates and unreliable conclusions.

Our study makes critical contributions to the growing literature on 
the causal impact of recreational marijuana on traffic fatalities by:

1. Providing novel estimates of the heterogeneity in the effect of 
recreational marijuana legalisation across different states where 
the law change was introduced before 2019, which includes new 
individualised insights from states such as Alaska, California, 
Oregon, Maine, Massachusetts, Nevada and Michigan.

2. Quantifying how the effect of the legalisation and its statistical 
significance varies over the years until 2019 in these states.

3. Delivering new insights on whether marijuana and alcohol are 
substitutes or complements in consumption.

4. Finally, yet importantly, developing a rigorous study design to 
understand the link between recreational marijuana and traffic 
fatalities, which can be used for further research.

Our study uses data on state-wise annualised traffic fatality rates 
over the period 1994–2019 as reported in the Fatality Analysis Re-
porting System (FARS). It is worth noting that marijuana and alcohol-
related fatalities are explicitly recorded in the FARS data. However, 
as pointed out by previous studies (Cole, 2018; Hansen et al., 2020), 
such data may suffer from a sampling error because there may be 
cases where individuals involved in traffic accidents are not tested for 
drugs or alcohol. We, therefore, do not consider marijuana and alcohol-
related fatalities but rather focus on total traffic fatalities and (week-
end) night-time fatalities. Data on alcohol-related fatalities is used to 
validate the estimated marijuana-alcohol consumption relationship.

2. Model and data

We aim to study the causal impact of recreational marijuana le-
galisation on fatal traffic crashes using an augmented synthetic con-
trol method (SCM). The data we have collated for estimation is for 
forty-eight US states; thirty-nine states without liberalised recreational 
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marijuana laws, equivalently, the control states, and nine states with 
the law, that is, the treated states; for the period 1994–2019. The 
treated states include Washington, Colorado, Alaska, Oregon, Califor-
nia, Maine, Massachusetts, Nevada, and Michigan. We exclude Hawaii 
from the control group due to its unique archipelagic topography, 
which limits the extent and type of its road network (Hawaii has very 
few highways and major roads) compared to other US states. Moreover, 
the District of Columbia (DC) and Vermont are omitted from the treated 
group, for which we were unable to obtain ideal synthetic matches. This 
is due to DC’s unique size and the lack of rural roads. For Vermont, a 
substantially higher proportion of rural roads and lower traffic volumes 
results in disproportionately lower traffic fatality rates compared to the 
rest of the US.

It is worth emphasising that we restrict our study period to 2019 
because using traffic safety data from both pre-2019 and post-2019 
periods within the same SCM model can be challenging due to signif-
icant disruptions and changes in travel behaviour and traffic patterns 
caused by the COVID-19 pandemic. Conducting separate analyses for 
pre-2019 and post-2019 periods, where covariates such as lockdown 
measures and traffic volume changes are included in the post-2019 
model, may appear as a solution. However, note that SCM inherently 
assumes that the covariates used to estimate the synthetic control 
weights remain stable and do not change substantially between pre-
intervention and post-intervention periods. This stability is crucial for 
ensuring that the synthetic control accurately represents what the 
treated unit would have experienced in the absence of the intervention. 
Pertinent to the COVID-19 pandemic, given the significant disruptions 
and rapidly evolving changes in travel behaviour, particularly in the 
first two years, the assumption of covariate stability is likely violated. 
The pandemic caused dramatic changes in many factors that could 
affect the outcomes of interest, such as traffic patterns, enforcement 
practices, and general travel behaviour. This instability complicates the 
use of SCM in a straightforward manner when using post-2019 data.

2.1. Data and relevant variables

The three main categories of variables relevant to this analysis 
are traffic safety outcomes, treatment status, and state-wise baseline 
characteristics (or auxiliary covariates). The data used to represent 
variables in each category are as follows.

2.1.1. Traffic safety outcomes
We consider three traffic safety outcomes: (i) log-transformed total 

traffic fatalities per 100,000 population, (ii) log-transformed night-
time (0:00 - 3:00 h) traffic fatalities per 100,000 population, and 
(iii) log-transformed weekend night-time traffic fatalities per 100,000 
population.

The traffic fatalities data are obtained from the accident files of 
the Fatality Analysis Reporting System (FARS),2 a public repository 
maintained by the US Department for Transportation. The accident file 
contains a record of every accident that resulted in at least one fatality. 
The data entries corresponding to each record include the total number 
of fatalities, the time of the crash, whether any drivers tested positive 
for alcohol and additional indicators like road type and weather con-
ditions. We translate the data into unique state-years via aggregating 
relevant crash statistics. Note that while it is possible to use higher 
granularity time units (such as monthly or quarterly) with the available 
data, we focus on annualised crash statistics for two key reasons. Firstly, 
the weight of evidence in the literature (refer to Section 1) corresponds 
to changes in annualised traffic safety performance indicators. Using a 
similar time unit of aggregation ensures the comparability of our find-
ings with previous studies. Secondly, and more critically, monthly or 
quarterly traffic safety records often exhibit strong seasonal variations 

2 Available at https://tinyurl.com/sf3754s3.
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due to weather, holidays, and school schedules, introducing noise that 
can complicate the analysis. Additionally, such data might be dispro-
portionately affected by reporting errors, inconsistencies, or anomalous 
events like extreme weather. Using annual data alleviates these issues 
by reducing the impact of noise and outliers, thereby providing a 
more stable and reliable foundation for long-term trend analysis and 
policy evaluation. While weather normalisation techniques, such as 
those proposed by Grange and Carslaw (2019), can help mitigate the 
influence of extraneous factors, these methods are data-intensive and 
require millions of data points for precise implementation. The data in 
hand, owing to its smaller size, limits the applicability of such methods 
in our analysis.

Data on annual state-wise population is obtained from the United 
States Census Bureau website.3

One of the key objectives of this study is to deliver an understanding 
of whether marijuana and alcohol are supplements or complements 
in consumption. The FARS data reports whether one or more drivers 
involved in any reported incident were under the influence of alcohol 
or not. However, as mentioned in the Introduction, we do not rely 
on this data as our primary source of information as there may be 
sampling bias in the data across states and years, driven by the non-
requirement for the responding officers to administer a breath analyser. 
Instead, in line with previous studies (Cole, 2018; Dee, 1999; Ruhm, 
1996; Dee, 2001; Fell and Nash, 1989), we consider two proxy variables 
for drunk driving: (i) night-time (midnight to 3:00 h) traffic fatalities 
per 100,000 population, and (ii) weekend night-time traffic fatalities 
per 100,000 population. The proxy is reasonable as the proportion of 
drunk drivers at night is substantially larger compared to the rest of 
the day, with weekend nights being the most likely time for drivers to 
be drunk (Dee, 1999; Ruhm, 1996; Portman et al., 2013), while the 
proportion of drivers under the influence of marijuana tends to remain 
constant from day to night (Berning et al., 2015). However, we note 
that the definition of night-time varies across studies. For instance, Dee 
(1999) and Cole (2018) use midnight to 4:59 am, Ruhm (1996) uses 
midnight to 3:59 am, Dee (2001) uses 6 pm to 5:59 am, and Fell and 
Nash (1989) uses 8 pm to 3:59 am. We adopt a definition of night-
time from midnight to 3:00 am, which intersects all these definitions 
while also representing the typical range of bar closing (last call) times 
across US states. Additionally, we validate the insights provided by 
these proxies using the FARS data on alcohol-related fatalities.

2.1.2. Treatment status
We classify US states into control and treatment groups based on 

whether the state enacted recreational marijuana legalisation at any 
point during the study period (1994–2019). Accordingly, for each 
treated state, the treatment year corresponds to the effective enact-
ment year, that is, the year in which the law came into effect and 
legal possession or use was permitted, rather than the date of ballot 
passage or legislative approval. To ensure accuracy and transparency, 
policy dates were initially compiled using publicly available sources 
and then cross-validated using multiple authoritative datasets, includ-
ing the Prescription Drug Abuse Policy System (PDAPS) dataset on 
Recreational Marijuana Laws4 and the National Conference of State 
Legislatures (NCSL) State Cannabis Legislation Database.5 Table  1 sum-
marises, for each treated state, the year the law was enacted (effective 
date), the year retail sales commenced, and the corresponding pre- and 
post-treatment periods used in our analysis.

3 Available at https://tinyurl.com/s8mum77j.
4 Available at https://tinyurl.com/544bws5p.
5 Available at https://tinyurl.com/prbavdk3.
4 
2.1.3. Auxiliary covariates
To aid the matching of pre-treatment trends in the traffic safety 

outcomes of the treated unit and its synthetic control, we consider 
several auxiliary covariates that could be relevant to the traffic safety 
outcomes of each state. Following previous studies (such as Cole, 2018; 
Lee et al., 2018; Smart and Doremus, 2023; Fowles and Loeb, 2021; 
Das et al., 2021; Cook et al., 2020), we gather state-wise data on 
annual vehicle miles travelled (VMT), rural percentage of VMT, length 
of rural and urban roads, speed limits (rural and urban), and number of 
licenced drivers per population (aged 14 and above) from the Highway 
Statistic series published by the Federal Highway Administration,6 
employment data published by the US Bureau of Labour Statistics,7 
real GDP published by the US Bureau of Economic Analysis,8 and av-
erage annual temperature and precipitation published by the National 
Centers for Environmental Information.9 We consider the logarithms of 
these covariates within our model.

It is worth noting that a key principle underlying covariate selection 
for causal inference models is that covariates should remain unaffected 
by the intervention. This is because conditioning on covariates that 
change in response to the intervention can obscure important causal 
pathways through which the intervention can affect the outcome, lead-
ing to biased estimates of the impact of the intervention. This issue, 
extensively discussed in previous studies such as Wooldridge (2005), 
has been referred to in the recent causal inference literature as collider 
bias (Munafò et al., 2018; Holmberg and Andersen, 2022; Tönnies 
et al., 2022). Accordingly, we exclude covariates related to impaired 
driving enforcement (for instance, number of patrol officers, number 
of DUI arrests, or marijuana or alcohol testing rates as in Hansen 
(2015)) from our model. Although these factors might initially seem 
to be confounders, they are actually colliders, as traffic enforcement 
levels seem to have increased across the US, although not uniformly, in 
response to the legalisation of recreational marijuana (see, for instance, 
Wiens et al., 2018). A recent review (Hasan et al., 2022) on the 
effectiveness of various enforcement approaches to drug driving across 
several jurisdictions around the world also suggests that changes in 
drug-related laws can influence the number of roadside enforcement 
activities. Including these covariates could, therefore, introduce bias by 
blocking important causal pathways.

2.2. Statistical analysis

2.2.1. The synthetic control method
Our analysis uses the potential outcomes framework for causal 

inference (Rubin, 1976). We have longitudinal data on 𝑁 states indexed 
with 𝑖 = 1,… , 𝑁 , each of which has 𝑇𝑖 observations made over 
years 𝑡, 𝑡 = 1,… , 𝑇𝑖, giving aggregate of 𝑛 =

∑𝑁
(𝑖=1) 𝑇𝑖 samples. Data 

available for estimation is treated as realisations of a random vector, 
𝛹𝑖𝑡 = (𝑌𝑖𝑡,𝑊𝑖𝑡, 𝑍𝑖𝑡), where, 𝑌𝑖𝑡 denotes the traffic safety outcome of 
interest, for instance, log-transformed fatal traffic crashes per 100,000 
population, in state 𝑖 and year 𝑡. 𝑊𝑖𝑡 signifies the treatment status 
and 𝑍𝑖𝑡 a vector of covariates. As discussed before, the treatment 
corresponds to the enactment of the recreational marijuana legalisation 
law. 𝑊𝑖𝑡 defined in binary form.

The key quantity of interest in our calculations is the average 
treatment effect (ATE, denoted by 𝜏), or in other words, the difference 
in outcome that would occur under treatment status (with the law) 
(𝑊 = 1) relative to control status (without the law) (𝑊 = 0).

𝜏𝑖𝑡 = 𝐸[𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0)],

 where 𝑌𝑖𝑡(1) and 𝑌𝑖𝑡(0) are the outcomes for state 𝑖 under treatment 
and control status respectively. Based on the above equation, the causal 

6 Available at https://tinyurl.com/yfezptbp.
7 Available at https://tinyurl.com/2p9h7ce9.
8 Available at https://tinyurl.com/y6s4usev.
9 Available at https://tinyurl.com/55xk7e4b.
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Table 1
Treated states and the intervention years.
 Treated state Year law enacted (effective date) Year retail sales began Pre-treatment period Post-intervention period 
 Washington 2012 2014 1994–2011 2012–2019  
 Colorado 2012 2014 1994–2011 2012–2019  
 Alaska 2015 2016 1994–2014 2015–2019  
 Oregon 2015 2015 1994–2014 2015–2019  
 California 2016 2018 1994–2015 2016–2019  
 Massachusetts 2016 2018 1994–2015 2016–2019  
 Maine 2017 2020 1994–2016 2017–2019  
 Nevada 2017 2017 1994–2016 2017–2019  
 Michigan 2018 2019 1994–2017 2018–2019  
estimate of the impact of the treatment for state 𝑖 can be obtained 
by comparing the average outcome in treated units and the average 
counterfactual outcome in those units if untreated. The fundamental 
challenge herein is that the counterfactual outcomes for treated units 
remain unobserved. Nevertheless, the potential outcomes approach 
suggests that causal effects can still be validly identified if the focus 
remains on estimating average causal effects (for a conceptual review, 
refer to Graham, 2022). This can be achieved by comparing the mean 
outcomes across treated and potential control units, netting out any 
confounding influences that create differences between the mean out-
comes of the treated and control units beyond those from the treatment. 
However, in the context of our study, achieving explicit adjustment 
for all confounding factors may be challenging. This is because mean 
outcomes in treated and control states could differ due to unobserved 
factors, such as variations in driver behaviour across populations and 
differences in state-wise traffic fatality reporting.

The synthetic control method (SCM), originally pioneered by Abadie 
and Gardeazabal (2003), offers a means to estimate the missing average 
counterfactual outcomes, 𝐸[𝑌𝑖𝑡(0)], by constructing a synthetic unit that 
is designed to closely match the averages and trajectories of key vari-
ables observed in each treated unit. By design, the SCM does not rely on 
explicit adjustment for all confounding factors, making it particularly 
useful when several confounders remain unobserved. SCM has been 
applied to investigate various policy interventions, particularly in the 
fields of labour, development, and health economics (see, for instance, 
Cavallo et al., 2013; Kreif et al., 2016; Johnston and Mas, 2018).

In our study, we seek to assess the impact of recreational marijuana 
legalisation (the treatment) on traffic safety outcomes in various treated 
states. Ideally, for each treated state, we would find a state in the US 
that did not undergo legalisation but closely matches the treated state 
in various aspects, such as traffic safety outcomes, traffic infrastructure, 
and macroeconomic indicators, among others. However, in reality, it is 
unlikely to find an exact match for each treated state. To address this 
challenge, we adopt the SCM, a data-driven method that calculates a 
weighted average of potential control states to construct a synthetic 
or an artificial version of each treated state. The goal of this synthetic 
unit is to replicate the trajectory of traffic safety outcomes in the actual 
treated state before the intervention (that is, the legalisation of recre-
ational marijuana). By comparing the trajectories of the synthetic and 
real treated state after the intervention, we can determine the causal 
impact of the intervention on the outcome of interest. Essentially, the 
synthetic unit serves as a counterfactual representation of how traffic 
fatalities in the treated state would have evolved if it had not been 
subjected to the intervention (Abadie et al., 2015; Athey and Imbens, 
2017).

More specifically, consider a pool of 𝐽 potential control states that 
did not receive the treatment. The SCM estimates the causal impact of 
the treatment for treated state 𝑖 at time 𝑡 as:
𝜏𝑖𝑡 = 𝑌𝑖𝑡 −

∑

𝑗
𝛾𝑗𝑌𝑗𝑡

where 𝛾𝑗 represents the estimated weight for control unit 𝑗. The weights 
𝛾𝑗 are chosen to minimise the distance between the treated unit and a 
weighted average of the control units in terms of pre-treatment charac-
teristics. Specifically, the SCM selects weights such that the weighted 
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combination of control units most closely replicates the treated unit’s 
trajectory during the pre-treatment period. This is achieved by solving 
the following optimisation problem:

min
𝛾

∑

𝑡∈Pre

(

𝑌𝑖𝑡 −
∑

𝑗
𝛾𝑗𝑌𝑗𝑡

)2

+ 𝜆 ⋅ Penalty(𝛾)

where the first term represents the mean squared prediction error be-
tween the treated unit and its synthetic control over the pre-treatment 
period, and the second term is a regularisation penalty (for instance, 
ridge penalty, as used in ASCM). The minimisation is typically subject 
to the constraints ∑𝑗 𝛾𝑗 = 1 and, in the original SCM, 𝛾𝑗 ≥ 0 for all 
𝑗. However, the ASCM used in our study relaxes the non-negativity 
constraint to allow for negative weights, improving the fit when exact 
matches are difficult to obtain (see Appendix A for details). In our 
implementation, the distance is computed using lagged values of the 
outcome variable (traffic fatalities) and a subset of auxiliary variables 
described in Section 2.1.3, ensuring that the synthetic unit closely 
mimics the treated state’s pre-treatment trends.

Adopting the SCM approach offers several advantages. Firstly, there 
is no need for extrapolation, and the synthetic weights are determined 
without using post-intervention data, which eliminates the risk of 
cherry-picking or manipulating specifications. Additionally, the explicit 
presentation of each control unit’s contribution to the overall synthetic 
unit enhances transparency, enabling experts to validate the weights us-
ing their knowledge (Abadie, 2021). However, as cautioned by Abadie 
et al. (2015), the SCM may not yield meaningful estimates if the 
outcome trajectory of the synthetic unit does not closely align with 
the outcome trajectory of the treatment unit before the intervention. 
In such cases, the reliability of the results may be compromised.

Ben-Michael et al. (2021) present a potential solution to address 
concerns regarding outcome trajectories through an augmented syn-
thetic control method (ASCM). The ASCM is an extension of the orig-
inal SCM designed to handle situations where obtaining a suitable 
pre-intervention match between the treatment and synthetic unit is 
challenging. In such cases, the ASCM employs an outcome model 
to estimate the bias resulting from the mismatch and subsequently 
corrects the original SCM estimate for this bias. The approach proposed 
by Ben-Michael et al. (2021) involves using a ridge-regularised linear 
regression model, which relaxes the non-negative weights constraint 
of the original SCM. This allows for incorporating negative weights 
within the Ridge ASCM, offering more flexibility in the selection and 
assignment of weights to control units.

Other notable extensions to the original SCM include the demeaned 
or intercept shift SCM (Doudchenko and Imbens, 2016), the synthetic 
DID (Arkhangelsky et al., 2021), the generalised SCM (Xu, 2017), the 
matrix completion method (Athey et al., 2021), the micro SCM (Rob-
bins and Davenport, 2021) and the Bayesian SCM (Kim et al., 2020). 
The first two approaches, the demeaned SCM and the synthetic DID 
focus on balancing the outcomes after removing unit-specific and both 
unit-specific and time-specific effects, respectively, thus focusing on the 
deviations from these averages. In contrast, the adopted approach, the 
ASCM, balances the raw outcomes, thus providing a better match to 
the pre-treatment outcome data by design. The next two approaches, 
the generalised SCM and the matrix completion method focus on 
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outcome modelling rather than SCM-style weighting. On the contrary, 
the ASCM begins with the original SCM estimate, uses an outcome 
model to estimate the bias due to imperfect pre-treatment fit, and then 
uses this to de-bias the SCM estimate. This makes them analogous to 
standard doubly robust estimators which are more robust to model 
misspecification and better suited for small sample (small 𝑁 and small 
𝑇 ) settings similar to this study. The micro SCM offers extensions for 
granular, individual-level data analysis, rather than aggregated groups 
(for instance, states). Finally, the Bayesian SCM extends the original 
SCM with Bayesian methods to allow for probabilistic inferences and 
a more nuanced understanding of the uncertainty surrounding the 
estimates. The extension, however, relies on the availability of prior 
information on the distribution of weights. By contrast, the ASCM 
does not require the specification of prior distributions, which can 
be subjective and challenging to determine. It relies purely on the 
observed data, avoiding potential biases introduced by incorrect priors. 
Technical details of the ASCM are attached in Appendix A.

The analysis is conducted in R using the augsynth package.

2.2.2. Model validation
To ensure that the estimated ASCM weights do not overfit to noise, 

we apply extensive in-time placebo checks as recommended in Abadie 
et al. (2015) and adopted by Ben-Michael et al. (2021). These in-
time placebo tests validate the estimated ATE by applying the ASCM 
to pre-treatment periods assuming the treatment occurred earlier. The 
process involves constructing synthetic controls for these placebo peri-
ods and comparing the estimated placebo effects to the actual ATE. If 
statistically insignificant effects are observed in the placebo periods, 
it suggests the estimated ATE is credible; significant effects indicate 
potential model issues or spurious results.

2.2.3. Model selection and assessment of model fit
Further, to assess the quality of the ASCM fit, we use a normalised 

𝐿2 imbalance score, referred to as the fit index. Here, 𝐿2 imbalance 
signifies the Euclidean distance between the pre-treatment outcome 
vectors of the treated and its synthetic counterparts.

𝐿2 imbalance =
√

√

√

√

𝑇0
∑

𝑡=1
(𝑌𝑡𝑟𝑒𝑎𝑡𝑒𝑑,𝑡 − 𝑌𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐,𝑡),

where 𝑡 ∈ [1, 𝑇0] represents the pre-treatment period. This measure is 
further normalised by the norm of a zero fit model to obtain the fit 
index.

Fit index =

√

∑𝑇0
𝑡=1(𝑌𝑡𝑟𝑒𝑎𝑡𝑒𝑑,𝑡 − 𝑌𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐,𝑡)2
√

∑𝑇0
𝑡=1(𝑌𝑡𝑟𝑒𝑎𝑡𝑒𝑑,𝑡)

2
× 100%.

The above index intuitively evaluates the overall quality of the fit 
by calculating the percentage deviation of the predicted synthetic 
outcomes from the actual outcomes during the pre-treatment period. 
Following Adhikari and Alm (2016), we use a 5% threshold for the fit 
index, indicating a 95% match between the synthetic and actual paths 
of the outcome variable in the pre-treatment period.

We also use the 𝐿2 imbalance score as the criterion for the inclusion 
of auxiliary covariates into our ASCM models. For each treated unit, 
we start with a baseline ASCM model that comprises an outcome 
model with only pre-treatment outcomes as predictors (see Equation 
4 attached in Appendix A). We record the deviation between the pre-
treatment outcomes of the treated and synthetic units using the 𝐿2

imbalance score discussed. Next, we introduce various combinations 
of auxiliary covariates alongside the pre-treatment outcomes into the 
outcome model underlying the ASCM, re-generate the synthetic units 
using Equation 6 attached in Appendix A, and record the 𝐿2 imbalance 
scores. The final model is chosen based on two criteria: (i) it must 
minimise the 𝐿2 imbalance score without leading to overfitting, which 
we check using in-time placebo tests in Appendix F, and (ii) the 
6 
estimated ATE curve must not differ substantially from the baseline 
ASCM model, ensuring our estimates are not sensitive to the choice of 
covariates. If these criteria are not met, we retain the baseline ASCM 
model estimates.

It is important to clarify that the inclusion of auxiliary covariates is 
not required for estimation in ASCM. The method can validly proceed 
using only lagged outcome variables in the outcome model. In fact, as 
noted by Ben-Michael et al. (2021), this approach is often preferred 
when covariates do not improve the pre-treatment match or introduce 
instability. Our key motivation behind using this iterative process is 
to improve the precision of our ATE estimates while also avoiding 
the issue of cherry-picking for specification in SCM models highlighted 
by Ferman et al. (2020). Technical details on the formulation and esti-
mation of the ASCM model; with and without covariates; are provided 
in Appendix A.

3. Results

We first discuss our estimates of the year-on-year impact of recre-
ational marijuana legalisation on traffic fatalities in nine states with 
the law, or in other words, the treated states. Thereafter, we present 
our results on the marijuana-alcohol consumption relationship. These 
results are supplemented with appendices F to I that present a series of 
in-time placebo tests to validate our results. For these tests, we consider 
two scenarios. In the first scenario, we assume that the legalisation 
law was enacted in the treated states four years earlier than the actual 
year of the intervention, and in the second scenario, we pre-pone the 
intervention by three years.

3.1. Evolution of the causal effect of the law change on total traffic fatalities

We use our ASCM models to infer the impact of recreational mari-
juana on our primary traffic safety outcome of interest, traffic fatalities 
per 100,000 population, in the nine treated states: Washington (WA), 
Colorado (CO), Alaska (AK), Oregon (OR), California (CA), Maine (ME), 
Massachusetts (MA), Nevada (NV), and Michigan (MI). 

Fig.  2 (left) illustrates the evolution of log-transformed traffic fa-
talities per 100,000 population in the nine treated states and in their 
respective synthetic control units. The figure (right) also shows the 
corresponding estimates of the average treatment effect, ATE, (in log 
points) in each year, that is, the estimated year-on-year change in 
the log-transformed traffic fatalities per 100,000 population due to 
the intervention. The corresponding 95-percent confidence intervals 
are given by the shaded grey area in the figure. The orange and red 
vertical dotted lines mark the year of enactment of the recreational 
marijuana legalisation law (as in Table  1) and the year of the beginning 
of retail sales in the state, respectively. Consistent with the discussion 
in Section 2.1.2, the former line represents the treatment (intervention) 
year used to develop the synthetic control units, whereas the latter line 
serves merely as an illustration. Table  2 tabulates the yearly estimates 
of the ATE in percentage points. Further, the auxiliary covariates and 
the estimated weights for the generation of the synthetic control units 
are summarised in Table  3 and Appendix B, respectively. The set of 
auxiliary covariates relevant to each synthetic unit, as shown in Table 
3, is identified through an iterative process described in Section 2.2.3.

Fig.  2(b) suggests that the enactment of the recreational marijuana 
legalisation law had a statistically insignificant impact on traffic fatal-
ities in Washington in the entire post-treatment period under study, 
that is,2012–2019. Overall, the ATE curve shows an increasing trend, 
but the values remain statistically insignificant until the end of our 
study period, that is, 2019. The obtained fit index (discussed in Sec-
tion 2.2.2, threshold for acceptance = 5%) of 2.2%, see Table  3, 
and the statistically insignificant placebo effects (see Figures F.1a and 
F.2a) support the credibility of the estimated ATE. These findings align 
with Hansen et al. (2020) and Santaella-Tenorio et al. (2020), who also 
reported a statistically insignificant impact of recreational marijuana 
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Fig. 2. Figures on the left present a comparison of traffic fatalities per 100,000 population (in log-scale) in different states with their synthetic counterparts. The orange line 
indicates the year of intervention, that is, the enactment of the recreational marijuana legalisation law and the red line indicates the year when retail sales of recreational marijuana 
began. Figures on the right show the corresponding estimates of the average treatment effect. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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Fig. 2. (continued).
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Fig. 2. (continued).
legalisation on traffic fatalities in Washington for the post-treatment 
periods 2012–2016 and 2012–2017, respectively.

For Colorado (see Fig.  2)(d), the estimated impact on traffic fa-
talities remains statistically insignificant for the first five years post-
intervention (2012–2016). However, the ATE estimates become statis-
tically significant in 2017 and 2018 before turning insignificant again 
in 2019. Notably, while the aggregated ATE in the pre-retail sales 
9 
period (2012–2013) is statistically insignificant (estimate = −0.44, 
95% confidence intervals (CI) = [-15.16, 14.27]), the period following 
the commencement of retail sales (2014–2019) shows a statistically 
significant aggregated ATE estimate of +15.16 (95% CI = [0.15, 30.16]) 
at the 95% confidence level. The aggregated post-retail ATE estimate 
implies an average increase of 15 percent in traffic fatality rates in the 
years 2014 to 2019 due to the law change. Similar to Washington, the 
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Table 2
The estimated average treatment effect in percentage points.
 State 2012 2013 2014 2015 2016 2017 2018 2019 Average ATE Pre-retail ATE Post-retail ATE 
 WA −10.06 −7.69 −3.25 4.39 −0.80 3.87 1.51 7.57 −0.55 −8.87 2.22  
 [−24.13,4.02] [−22.08,6.71] [−18.18,11.68] [−10.05,18.84] [−17.13,15.54] [−12.73,20.48] [−14.71,17.74] [−8.33,23.47] [−15.95,14.84] [−23.11,5.36] [−13.54,17.98] 
 CO −1.59 0.70 3.67 10.52 13.77 26.87 21.90 14.22 11.26 −0.44 15.16  
 [−16.14,12.97] [−14.17,15.58] [−11.37,18.7] [−4.04,25.07] [−1.32,28.86] [11.56,42.18] [6.97,36.83] [−0.87,29.32] [−3.68,26.19] [−15.16,14.27] [0.15,30.16]  
 AK 24.48 82.21 81.30 68.54 68.37 64.98 24.48 75.11  
 [−9.75,58.72] [49.15,115.28] [44.06,118.54] [35.59,101.49] [30.06,106.68] [29.75,100.21] [−9.75,58.72] [39.63,110.58] 
 OR 15.03 16.30 4.19 20.56 25.48 16.31 16.31  
 [−3.59,33.64] [−2.32,34.92] [−14.38,22.75] [1.84,39.29] [6.59,44.37] [−2.37,34.99] [−2.37,34.99]  
 CA 19.01 22.38 19.36 17.35 19.53 20.70 18.36  
 [7.96,30.05] [11.13,33.64] [8.58,30.14] [6.15,28.55] [8.45,30.6] [9.54,31.85] [7.36,29.35]  
 MA 12.64 −6.20 6.93 2.63 4.00 3.22 4.78  
 [0.96,24.32] [−17.56,5.16] [−4.17,18.03] [−9.52,14.79] [−7.58,15.58] [−8.30,14.74] [−6.86,16.42]  
 ME 0.30 −9.79 −8.61 −6.03 −6.03  
 [−16.84,17.45] [−28.02,8.45] [−25.75,8.54] [−21.20,9.14] [21.20,9.14]  
 NE −2.66 −1.49 −0.20 −1.45 −1.45  
 [−24.75,19.42] [−23.46,20.49] [−22.12,21.72] [−23.45,20.54] [−23.45,20.54] 
 MI 1.41 6.08 3.74 1.41 6.08  
 [−9.27,12.08] [−4.60,16.75] [−6.93,14.42] [−9.27,12.08] [−4.6,16.75]  
 All 13.40 6.18 17.07  
 [−5.57,32.37] [−12.07,24.44] [−1.70,35.84]  
*Figures in square brackets denote the 95 percent confidence intervals (CI).
Table 3
Auxiliary variables for the development of synthetic control units for the analysis of 
total fatalities.
 Covariates WA CO AK OR CA ME MA NE MI  
 Real GDP * * * * *  
 Population * * * * * *  
 Area * * *  
 No. of employees * * * * * * *  
 Length of all roads * * * *  
 Length of rural roads * * * * *  
 licenced driver per unit population *  
 Total vehicle miles travelled * * * * * *  
 𝐿2 imbalance 0.20 0.24 0.06 0.30 0.05 0.02 0.01 0.36 0.19 
 Fit Index 2.20 2.35 0.61 2.85 0.48 0.14 0.14 3.02 1.65 

ATE curve for Colorado shows an increasing trend until 2017, after 
which it declines, although the rise is steeper for Colorado. With a 
fit index of 2.35% (see Table  3) and statistically insignificant placebo 
effects (see Figures F.1b and F.2b), our estimates are credible. Our 
findings align with Hansen et al. (2020), who found a statistically 
insignificant impact from marijuana legalisation on traffic fatalities in 
Colorado during 2012–2016, and with Santaella-Tenorio et al. (2020), 
who found a significant impact when extending the period to 2017. 
Nevertheless, unlike these studies, we do not focus on the statistical 
significance of ATE estimates averaged over the entire post-treatment 
period. Instead, we examine the variation in ATE estimates and their 
significance across the post-treatment years to better understand the 
long-term effects of the law change.

Similar to Colorado, we observe a statistically insignificant effect of 
the law in Alaska (Fig.  2(f)) in the pre-retail sales period, that is, 2015 
(aggregated ATE estimate = +24.48, 95% CI = [−9.75,58.72]), and a 
statistically significant effect during the study period when the drug is 
commercially available, that is,2016–2019 (aggregated ATE estimate 
= +75.11, 95% CI = [39.63,110.58]). The aggregated post-retail ATE 
estimate implies an average increase of +75 percent in traffic fatality 
rates in the years 2016 to 2019 due to the law change. Nevertheless, 
unlike Colorado, the ATE in Alaska is statistically significant over the 
entire post-retail study period (2016–2019) and is substantially higher, 
being roughly five times that of Colorado. Again, the obtained fit index 
of 0.61% (see Table  3) and the statistically insignificant placebo effects 
(see Figures F.1c and F.2c) support the credibility of the estimated ATE.

The estimated ATE curve for Oregon (Fig.  2(h)) exhibits statis-
tically insignificant effects of recreational marijuana legalisation on 
traffic fatalities in Oregon in the initial three years post-intervention, 
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that is, until 2017. However, the estimated ATE becomes statistically 
significant and positive for 2018 and 2019. The legalisation law’s 
enactment and the commencement of retail sales of recreational mar-
ijuana coincide, with the aggregated post-retail ATE estimate being 
+16.31 (95% CI = [−2.37, 34.99]). This estimate suggests an average 
increase of 16 percent in traffic fatality rates from 2015 to 2019 due 
to the law change, similar in magnitude to Colorado’s experience. 
Additionally, the ATE curve indicates an increasing trend similar to that 
of Washington. With a fit index of 2.85% (see Table  3) and statistically 
insignificant placebo effects (see Figures F.1d and F.2d), our estimates 
are once again credible.

Interestingly, according to Fig.  2(j), the estimated ATE in California 
is positive and statistically significant over the entire post-treatment 
study period (that is,2016–2019). The aggregated pre-retail and post-
retail ATE estimates are roughly similar in magnitude, +20.70 (95% 
CI = [9.54,31.85]) and +18.36 (95% CI = [7.36,29.35]), respectively. 
These estimates suggest an average increase of +20 percent and +18 
percent in traffic fatality rates due to the legalisation in the post-
intervention periods 2016–2017 and 2018–2019, respectively. The ob-
tained fit index of 0.48% (see Table  3) and the statistically insignificant 
placebo effects (see Figures F.1e and F.2e) again support the credibility 
of the estimated ATE.

Further, according to our estimates, the legalisation of recreational 
marijuana had a statistically insignificant effect on traffic fatalities 
in the remaining four treated states, Massachusetts (Fig.  2(l)), Maine 
(Fig.  2(n)), Nevada (Fig.  2(p)) and Michigan (Fig.  2(r)). For Maine, we 
note that although recreational marijuana was legalised in Maine in 
January 2017, the legislature made many changes and compromises 
and had to overcome vetoes to pass an amended law. Among the 
changes was reducing the number of marijuana plants a recreational 
consumer can grow at home from six to three. The legislature also 
postponed consideration of marijuana social clubs until 2023, leaving 
private property as the only place where recreational marijuana can 
be consumed. Given such restrictions on marijuana use, people may 
have had less incentive to drive when high. Furthermore, recreational 
marijuana did not become commercially available during the post-
treatment period under study. The year-on-year effect in Massachusetts 
is highly variable, with no discernible trend in the ATE over the 
years. Further, similar to Washington, the estimated ATE curves for 
Nevada and Michigan show an increasing trend, but the values remain 
statistically insignificant until the end of our study period, that is, 2019. 
Likewise, the obtained fit indices of 0.14%, 0.14%, 3.02% and 1.65%, 
respectively (see Table  3) and the statistically insignificant placebo 
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effects (see Figures F.1f - F.1i and F.2f - F.2i) support the credibility 
of the estimated ATE for the four states.

Overall, our findings indicate that the strong temporal trend in 
the ATE is primarily driven by the retail availability of marijuana. 
However, variations in impact over time may also reflect shifting atti-
tudes towards marijuana use and its perceived safety while driving. For 
instance, many Americans, especially young adults, increasingly believe 
that driving under the influence of marijuana is safe (McCarthy et al., 
2007; Cavazos-Rehg et al., 2018; Greene, 2018; Keyhani et al., 2018). 
In terms of regional differences in ATE, our results align with those 
of Adhikari et al. (2023), showing that states that legalised recreational 
marijuana earlier experienced larger increases compared to those that 
did so more recently. Washington, however, is an exception. Notably, 
Washington is the only treated state among the nine studied that did not 
decriminalise marijuana before legalising its recreational use, which 
may influence these differing results.

Additionally, factors such as traffic enforcement intensity, the per-
ceived likelihood of apprehension, and the chances of avoiding pun-
ishment (Hasan et al., 2022) could also contribute to the observed 
state-level variations. Among the nine treated states, Washington, Col-
orado, and Nevada implemented per se driving laws, while Michigan 
introduced a zero-tolerance law after legalising recreational marijuana. 
Per se drugged driving laws, similar to per se alcohol laws, establish 
a specific impairment threshold, making it easier to prosecute im-
paired drivers (DuPont et al., 2012). Zero-tolerance laws, which set 
the threshold at zero, mean any detectable amount of the drug can 
lead to charges of intoxication. Although per se alcohol laws have 
been effective in reducing traffic fatalities (Dee, 2001; Freeman, 2007; 
Hansen, 2015), evidence regarding the impact of per se drugged driving 
laws on traffic fatalities remains limited (Anderson and Rees, 2015). 
The lack of statistical significance in the ATE for Washington, Nevada, 
and Michigan, along with the decline in ATE for Colorado in later 
years, may suggest that these drugged driving laws are influencing the 
observed trends.

In the analyses presented above, we define the intervention as the 
enactment of recreational marijuana laws, that is, the point at which 
possession and personal use become legal because this represents the 
earliest legally sanctioned change that could shift public norms, risk 
perceptions, and enforcement practices. Moreover, our results indicate 
that in states such as California (Fig.  2(j)), there are significant changes 
in traffic safety outcomes occurring prior to the commencement of 
retail sales. Nonetheless, to evaluate the potential distinct effects of 
cannabis commercialisation, we have conducted a supplementary sen-
sitivity analysis (see Appendix J) where the intervention is re-defined 
as the year when retail sales began. Importantly, in this alternative 
specification the previously significant results for California (Figure 
J.1h) are no longer statistically significant. This finding underscores the 
challenges associated with framing commercialisation as the primary 
intervention and reaffirms our choice to focus on legalisation enactment 
as the core treatment point. We present the commercialisation analysis 
as exploratory and as a means to assess effect heterogeneity, without 
altering our central identification strategy.

3.2. The relationship between marijuana and alcohol consumption

Next, we use our ASCM models to infer the impact of recreational 
marijuana on proxy outcome measures for drunk driving: (i) log-
transformed night-time traffic fatalities per 100,000 population, and 
(ii) log-transformed weekend night-time traffic fatalities per 100,000 
population, in the nine treated states. We also investigate the impact 
on log-transformed traffic fatalities per 100,000 population where one 
or more drivers tested positive for alcohol, but only with the view 
of validating these proxy measures. Before proceeding, we emphasise 
that our interpretation of the results presented below relies on the 
assumption that legalising recreational marijuana led to an increase in 
adult marijuana use. This assumption is supported by previous research 
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showing a positive link between such legal changes and increased adult 
marijuana consumption (Cerdá et al., 2020; Hall and Lynskey, 2020; 
Zellers et al., 2023).

Figs  3 (left), 4 (left), and 5 (left) illustrate the evolution of log-
transformed night-time fatalities per 100,000 population,
log-transformed weekend night-time fatalities per 100,000 population, 
and log-transformed alcohol-related fatalities per 100,000 population, 
respectively, in the nine treated states and in their respective synthetic 
control units. The figures (right) show the corresponding estimates of 
the ATE (in log points) in each year for the three outcomes, where the 
ATE signifies the estimated year-on-year change in the outcome due 
to the intervention. The corresponding 95-percent confidence intervals 
are shown by the shaded grey area in the figures. The orange and red 
vertical dotted lines mark the year of enactment of the recreational 
marijuana legalisation law (as in Table  1) and the year of the beginning 
of retail sales in the state, respectively. As before, the former line rep-
resents the treatment year used to develop the synthetic control units, 
whereas the latter line serves merely as an illustration. Further, the 
auxiliary covariates and the estimated weights for the generation of the 
synthetic control units are summarised in Tables  4–6 and Appendices 
C - E, respectively. The set of auxiliary covariates relevant to each 
synthetic unit, as shown in Tables  4–6, are identified using the iterative 
process described in Section 2.2.3. Note that we do not present the ATE 
estimates in percentage points, as the exact magnitude of the impact is 
not central to our discussion. Instead, Figs.  3–5 sufficiently convey the 
nature of the impact — whether it indicates an increase, decrease, or 
no change.

From Fig.  3, we observe a statistically significant increase in night-
time traffic fatality rates in Colorado, Oregon, and California (see Figs. 
3(d), 3(h), and 3(j) following the enactment of recreational marijuana 
legalisation in these states. In contrast, Washington (Fig.  3(b) experi-
enced a statistically significant decrease in night-time traffic fatality 
rates in the early years after the law was passed, though this effect 
became statistically insignificant in later years. The ATE estimates for 
other treated states remain statistically insignificant. Washington is 
unique among the nine treated states in that it did not decriminalise 
marijuana before legalising its recreational use. The initial decline 
in nighttime fatal crashes in Washington, a pattern that may reflect 
reduced alcohol-impaired driving, is consistent with a possible substitu-
tion away from alcohol use following marijuana legalisation. However, 
this substitution effect diminishes over time. Conversely, the evidence 
from Colorado, Oregon, and California indicates that marijuana and 
alcohol may be complementary substances. It is important to note 
that night-time fatalities represent a restricted subset of total incidents, 
which reduces the effective sample size and increases data noise. This 
can limit our ability to obtain precise synthetic matches for the treated 
states, even though the number of aggregate observations remains 
unchanged. For this reason, our best-fitting models fail to meet the 
fit index threshold of 5% for most states (see Table  4). This limitation 
also affects the placebo tests presented in Appendix C, which, though 
statistically insignificant, do not meet the fit index criterion.

The estimates presented in Fig.  4, which pertain to weekend night-
time traffic fatality rates, reveal similar trends in ATE for Washington 
and California. In Washington, there is evidence of a substitutionary 
relationship between alcohol and marijuana in the early years following 
recreational marijuana legalisation, with no significant relationship 
observed in later years. Conversely, the estimates for California suggest 
a complementary relationship between alcohol and marijuana through-
out most of the post-legalisation study period. Estimates from other 
treated states remain statistically insignificant, indicating no clear re-
lationship between alcohol and marijuana consumption. Additionally, 
with further restrictions on effective sample size as noted above, fit 
indices (see Table  5) generally fall short of acceptable thresholds, and 
placebo tests (Appendix D) also remain limited in their ability to justify 
the credibility of our estimates.
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Fig. 3. Figures on the left present a comparison of night-time traffic fatalities per 100,000 population (in log-scale) in different states with their synthetic counterparts. The orange 
line indicates the year of intervention, that is, the enactment of the recreational marijuana legalisation law and the red line indicates the year when retail sales of recreational 
marijuana began. Figures on the right show the corresponding estimates of the average treatment effect. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Accident Analysis and Prevention 220 (2025) 108106 

12 



Anupriya et al.

Fig. 3. (continued).
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Fig. 3. (continued).
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Fig. 4. Figures on the left present a comparison of weekend night-time traffic fatalities per 100,000 population (in log-scale) in different states with their synthetic counterparts. 
The orange line indicates the year of intervention, that is, the enactment of the recreational marijuana legalisation law and the red line indicates the year when retail sales of 
recreational marijuana began. Figures on the right show the corresponding estimates of the average treatment effect. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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Fig. 4. (continued).
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Fig. 4. (continued).
Given the limitations discussed earlier, we further validate these 
findings using alcohol-related crash data. Fig.  5 shows the results from 
the corresponding ASCM models. In Washington, the trends in ATE 
are consistent with our previous results, indicating a substitutionary 
relationship between alcohol and marijuana in the early years fol-
lowing the law change, with no discernible relationship thereafter. 
17 
Additionally, we observe a statistically significant increase in alcohol-
related traffic fatalities in Colorado, Oregon, and California, though this 
effect is present only in certain years. Estimates for other treated states 
remain statistically insignificant. Most fit indices (see Table  6) meet the 
acceptable threshold, and placebo effects are statistically insignificant 
(Appendix E), supporting the reliability of these estimates. In sum, the 
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Fig. 5. Figures on the left present a comparison of alcohol-related traffic fatalities per 100,000 population (in log-scale) in different states with their synthetic counterparts. 
The orange line indicates the year of intervention, that is, the enactment of the recreational marijuana legalisation law and the red line indicates the year when retail sales of 
recreational marijuana began. Figures on the right show the corresponding estimates of the average treatment effect. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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Fig. 5. (continued).
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Fig. 5. (continued).
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Table 4
Auxiliary variables for the development of synthetic control units for the analysis of 
night-time fatalities.
 Covariates WA CO AK OR CA ME MA NE MI  
 Real GDP * *  
 Population * *  
 Area * * *  
 No. of employees * * *  
 Length of all roads * *  
 Length of rural roads * * *  
 licenced driver per unit population  
 Total vehicle miles travelled * *  
 𝐿2 imbalance 0.21 0.011.51 0.78 0.31 0.050.73 0.77 0.32  
 Fit index 17.270.6071.2750.6331.782.9260.6240.7017.28 

Table 5
Auxiliary variables for the development of synthetic control units for the analysis of 
weekend night-time fatalities.
 Covariates WA CO AK OR CA ME MA NE MI  
 Real GDP * * * *  
 Population * * * * *  
 Area * * *  
 No. of employees * * * * *  
 Length of all roads * * * *  
 Length of rural roads * * * *  
 licenced driver per unit population * * *  
 Total vehicle miles travelled * * * * *  
 𝐿2 imbalance 0.43 0.60 2.49 1.18 0.000.020.001.39 0.41  
 Fit index 22.9036.0160.1634.330.160.620.0640.4022.10 

Table 6
Auxiliary variables for the development of synthetic control units for the analysis of 
alcohol-related fatalities.
 Covariates WA CO AK OR CA ME MA NE MI  
 Real GDP * * *  
 Population * *  
 Area * * *  
 No. of employees * * * *  
 Length of all roads * * * *  
 Length of rural roads * * *  
 licenced driver per unit population * *  
 Total vehicle miles travelled * * * *  
 𝐿2 imbalance 0.24 0.36 0.16 0.47 0.49 0.64 0.33 0.46 0.24 
 Fit index 4.23 5.49 2.57 7.60 3.92 9.67 11.69 6.35 3.99 

weight of the evidence presented in this section points towards no clear 
relationship between marijuana use and alcohol consumption.

4. Discussion

4.1. Principal findings

Based on our results, we observe the following trends: Washington, 
which was the first state to legalise recreational marijuana in 2012, 
did not experience a statistically significant change in fatal traffic 
crashes due to the law. The subsequent states – Colorado (2012), 
Alaska (2015), and Oregon (2015) – did show a statistically significant 
increase in traffic fatality rates, but this effect was only evident once 
the drug became commercially available. Among these states, Alaska 
experienced an immediate rise in fatalities following the start of retail 
sales, while Colorado and Oregon saw a delayed increase over a couple 
of years. By the end of our study period, that is,1994–2019, the increase 
in traffic fatalities in Colorado had become statistically insignificant. In 
contrast, California, which legalised recreational marijuana a year after 
Alaska and Oregon, also saw an immediate rise in traffic fatality rates. 
The four other states, Maine, Massachusetts, Nevada, and Michigan, 
that enacted legalisation in 2016, 2016, 2017, and 2018, respectively, 
did not experience statistically significant changes in traffic fatality 
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rates. However, year-on-year changes in traffic fatalities in Washing-
ton, Nevada, and Michigan, while not statistically significant, showed 
an upward trend. Furthermore, we find no discernible link between 
marijuana and alcohol consumption.

4.2. Strengths and weaknesses of the study

Our study employs a rigorous framework that uses observational 
(non-experimental) data on traffic fatality rates and an augmented 
synthetic control method to assess the causal impact of recreational 
marijuana legalisation on fatal traffic crashes in the US. This innovative 
causal inference framework is a key strength of our study for several 
reasons:

1. It is not hindered by the lack of accurate roadside tests for 
marijuana impairment or sampling errors arising from drivers 
involved in accidents not being tested for the drug.

2. Unlike driving simulation studies, it does not rely on experimen-
tal conditions, which may not accurately replicate real-world 
driver impairment and traffic conditions.

3. Synthetic control methods do not require explicit adjustment 
for all potential confounding factors, some of which may be 
unobserved. Instead, these methods determine causal effects by 
comparing the post-treatment trajectories of traffic fatality rates 
in each treated state with their synthetic counterparts, developed 
to match the pre-treatment trajectory of the treated state.

4. The adopted approach captures the temporal dynamics of the 
relationship, offering a more accurate characterisation of the 
evolving process over time.

Using this framework, we demonstrate a consistent pattern of increased 
traffic fatality rates across several US states following their legalisation 
of recreational marijuana. Our analysis provides a robust look at the 
causal linkages between the law and traffic fatality rates across different 
geographical regions and across time.

Regardless, we recognise that our analysis may suffer some general 
limitations in drawing causal inferences from observational data. Our 
findings may lack generalisability, potentially not applying to different 
regional settings or populations beyond the studied sample. Moreover, 
measurement errors, such as inaccurate or incomplete data on traffic 
fatalities, may distort the true relationship we aim to understand. There 
may also be residual confounding or unaccounted temporal trends. 
Overall, we emphasise that our findings are based on an ecological 
study design and should be interpreted accordingly.

Furthermore, while the use of night-time and weekend night-time 
traffic fatalities as proxies for alcohol impairment allows us to over-
come limitations in direct testing data – such as inconsistent en-
forcement or reporting across states – these proxies are not without 
shortcomings. Specifically, they may capture fatalities not directly 
attributable to alcohol or drug impairment, potentially inflating raw 
fatality rates relative to the actual number of impairment-related inci-
dents. Although this trade-off is acknowledged in prior literature (Dee, 
1999; Ruhm, 1996), and we validate our proxy-based insights us-
ing FARS data on alcohol-related fatalities, it remains important to 
interpret these results with this caveat in mind.

4.3. Comparisons with other studies

Since the liberalisation of recreational marijuana laws in Wash-
ington and Colorado, several studies have adopted causal inference 
approaches, especially differences-in-differences (DID), to understand 
the impact of the change in law on traffic fatality rates in the US (Cole, 
2018; Aydelotte et al., 2017; Gunadi, 2022; Lane and Hall, 2019; 
Vogler, 2017; Aydelotte et al., 2019; Kamer et al., 2020; Adhikari et al., 
2023). The findings from these studies vary — some have reported a 
statistically insignificant change, while others have suggested increases 
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in fatalities ranging from 8% to 17%. Some studies (Hansen et al., 2017; 
Romano et al., 2017) have suggested that DID estimates may be biased 
in this context due to challenges pertaining to the identification of the 
true counterfactual trend for the states passing the law.

Accordingly, two studies, Hansen et al. (2020) and Santaella-Tenorio
et al. (2020), have applied the original synthetic control method to 
investigate the impact of the law on traffic fatality rates in both 
Washington and Colorado for the post-treatment periods of 2012–2016 
and 2012–2017, respectively. Both studies have found a statistically 
insignificant impact of the intervention in Washington. However, their 
estimates for Colorado differ — the former study has found a statisti-
cally insignificant impact, while the latter has estimated an increase in 
traffic fatality rates. In contrast to these studies that have focused on ag-
gregated effects of the intervention over the entire post-treatment study 
period, we leveraged the synthetic control method to understand year-
on-year impacts and their statistical significance. We also expanded 
the study period up to 2019 and included additional states; Alaska, 
California, Oregon, Maine, Massachusetts, Nevada and Michigan; for 
no individualised insights were available in the literature. Our findings 
reveal a consistent, albeit delayed, increase in traffic fatality rates 
across many treated states. Further, similar to recent studies such 
as Hansen et al. (2020) and Cole (2018), this study found no clear 
link between marijuana and alcohol consumption, refuting the idea that 
marijuana and alcohol serve as substitutes.

In sum, our study complements and extends (with new spatial 
and temporal insights) existing studies that have found evidence of a 
negative impact of recreational marijuana on traffic safety. The findings 
from this study disproved prevailing conjectures that have dismissed 
the link between recreational marijuana and fatal traffic crashes (see, 
for instance, McCarthy et al., 2007; Cavazos-Rehg et al., 2018; Greene, 
2018; Keyhani et al., 2018).

4.4. Meaning of the study for clinicians and policy makers

States and countries considering the legalisation of recreational 
marijuana must carefully evaluate its impact on traffic safety. While 
legalising commercial marijuana may reduce illicit market activity 
and generate state tax revenue, our study presents compelling evi-
dence of a significant increase in traffic fatalities associated with the 
drug’s greater availability. We also find indicative evidence that per 
se drugged driving laws may help mitigate some of these negative 
effects. However, enforcing such laws remains challenging due to the 
absence of a reliable roadside test for THC, analogous to alcohol 
breathalysers. Identifying marijuana-impaired drivers typically requires 
resource-intensive training of officers in drug recognition techniques 
and introduces subjectivity relative to alcohol enforcement. Although 
blood tests for THC levels are currently the most accurate option, 
they are invasive, time-sensitive, and logistically difficult to implement 
during traffic stops.

Given these enforcement limitations, public education is a critical 
policy lever. The evolving legal and cultural status of marijuana has 
created mixed perceptions about its risks, especially in comparison to 
alcohol. Education campaigns can play an important role in promoting 
awareness about the real dangers of driving under the influence. In 
addition to broad-based public service announcements, states should 
also consider complementary policies such as: (i) stricter labelling 
requirements for commercial cannabis products to indicate THC and 
other cannabinoid concentrations clearly; (ii) guidance on safe waiting 
periods before driving after cannabis use, based on available evidence; 
and (iii) improved systems for measuring drug-impaired driving, in-
cluding more consistent post-accident drug testing protocols across 
states. These measures, in combination with well-designed education 
strategies, can help reduce the unintended road safety consequences of 
marijuana legalisation.
22 
4.5. Unanswered questions and future research

Our study employed a causal inference approach on observational 
data to assess the impact of recreational marijuana legalisation on 
traffic safety outcomes, such as traffic fatality rates. By design, this 
approach limits the inclusion of certain factors – such as traffic enforce-
ment measures and public awareness campaigns – that influence traffic 
safety but have themselves changed in response to the legalisation. This 
is because conditioning the estimated average treatment effect (ATE) on 
such variables risks obscuring critical causal pathways through which 
legalisation may affect the outcomes of interest. Consequently, while 
we find preliminary evidence suggesting that per se drugged driving 
laws may have helped mitigate some negative impacts of legalisation 
on traffic safety, we cannot isolate the independent effects of legali-
sation and these enforcement responses. In states such as Washington, 
Colorado, Nevada, and Michigan, where such laws were introduced in 
response to legalisation, our estimates reflect the combined package of 
effects arising from both interventions.

At the same time, it is important to acknowledge that these post-
treatment factors, though excluded from estimation, may partially ex-
plain the heterogeneity in estimated treatment effects across states and 
over time. For instance, variation in how states implemented traffic 
enforcement measures, public messaging, or law enforcement capacity 
could mediate the observed effects. As such, even if excluded from 
the formal estimation process, they remain critical to interpreting the 
differences in outcomes across treated cases. Future research should ex-
plore methods for separately identifying and quantifying the mediating 
roles of such policy responses, which could help guide more targeted 
strategies for mitigating adverse effects of marijuana legalisation on 
traffic safety.

Further, this study is limited to examining the effects of legalisation 
up to 2019. While states such as Washington, Nevada, and Michigan 
exhibit an upward trend in the estimated treatment effect on traf-
fic fatalities, these effects remain statistically insignificant within the 
observed window. The exclusion of post-2019 data reflects a method-
ological choice rather than a data availability constraint. The onset 
of the COVID-19 pandemic introduced major disruptions to traffic 
volumes, travel behaviour, enforcement patterns, and broader socioe-
conomic conditions. These disruptions represent a structural break in 
the data-generating process that undermines the assumptions required 
for causal identification in this context. In particular, when a large, 
exogenous shock coincides with or closely follows the treatment, and 
its effects cannot be separately identified or appropriately controlled 
for, it becomes fundamentally difficult, regardless of the chosen causal 
inference framework, to isolate the treatment effect of interest. This is 
not a limitation of any one method, but a general challenge inherent 
to causal inference: if credible counterfactual outcomes cannot be 
constructed due to overlapping influences, no estimation strategy can 
recover unbiased effects without invoking strong and often untestable 
assumptions. Given that our intervention predates the pandemic and 
that the pandemic’s effects are both widespread and heterogeneous, we 
judged that including post-2019 data would risk confounding the policy 
signal with unrelated behavioural shocks.

Recent evidence suggests that global work and travel patterns are 
only now converging towards a new post-pandemic equilibrium.10 As 
such, the years immediately following 2020 may reflect a period of 
adjustment rather than stability. Future research should revisit this 

10 See, for instance, the WFH Research Project (https://wfhresearch.com), 
that presents a long-running international survey and data initiative led by 
Professor Nicholas Bloom (Stanford University). The project has collected 
monthly survey data since May 2020 on changes in working arrangements, 
commuting patterns, and related economic behaviours across major global 
economies. Their findings consistently show that the early post-COVID years 
represent a transitional phase, with structural changes in work and travel 
habits stabilising only in recent periods.

https://wfhresearch.com
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question once a longer post-pandemic time series becomes available, 
ideally using methods that can explicitly account for structural change, 
such as dynamic causal models. This would allow researchers to exam-
ine whether the effects of marijuana legalisation persist, intensify, or 
shift in a post-pandemic policy and behavioural landscape.

4.6. Summary

We studied the causal impact of recreational marijuana legalisation 
on traffic fatality rates in various US states that passed the law by 
2019. Our study found that the change in law caused an increase in 
fatal traffic crashes in many of these states until 2019. This increase 
is particularly observed in the years following the start of retail sales. 
Given the widespread push for recreational marijuana legalisation in 
the US and several other countries, including Canada, New Zealand, 
Germany, Switzerland, and the UK, and the significant rise in the 
proportion of traffic fatalities involving US drivers testing positive for 
marijuana in recent years (Banta-Green et al., 2016), the question of 
how recreational use of marijuana affects traffic safety is particularly 
pressing. Overall, our study contributes to understanding the link be-
tween recreational marijuana and traffic fatalities and its implications 
for public policy and safety.
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