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Abstract
Using Credit Default Swap spreads, we construct and validate a forward-
looking, market-implied carbon risk (CR) factor and show that the im-
pact of carbon regulations on firms’ credit risk varies with the regula-
tion’s scope and stringency, and with the speed of mandated carbon
reduction. We find that explicit carbon pricing sharpens lenders’ eval-
uations, resulting in firms under such regimes incurring three times the
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1 Introduction

The transformation of the economy required to achieve net-zero targets will be profound
and could generate sizable costs. Unquestionably, these costs could significantly impact
firms’ cash flows and valuations, undermining their ability to service and repay their debt,
eventually leading to higher credit risks and probabilities of default (Kölbel et al., 2022;
BIS, 2021; Carbone et al., 2021; DiVirgilio et al., 2022). There is already some evidence
that climate regulation risk,1 codified using firms’ current carbon emissions data, influences
credit risk (Ilhan et al., 2020; Duan et al., 2021; Zhang and Zhao, 2022). However, these
studies do not clarify whether and how firms’ emissions are actually regulated by carbon
policies. Our findings suggest that the extent to which carbon regulations influence firms’
credit risk is significantly determined by the policies’ scope, stringency, and the pace at which
they mandate carbon transformation. Together, these factors shape the actual impact and
financial implications of carbon pricing policies, beyond mere emission levels or the emission
intensity of firms. Understanding the drivers of carbon risk exposure is crucial because it
directly influences how lenders assess and re-evaluate firms’ creditworthiness. Firms perceived
as more exposed to carbon risk see their valuations decrease, whereas those deemed less
exposed may witness an increase in their valuations. Qualifying and quantifying the effect of
these drivers form the core of our analysis in this paper.

While there has been increasing academic, industry, and regulatory attention to the risks
associated with the low-carbon transition (e.g. Bolton et al., 2020; NZAM, 2022; NGFS,
2019), there is no comprehensive theoretical framework linking these risks to credit dynamics.
Notwithstanding the complexity of precisely modeling specific risk drivers and transmission
channels, markets are already recognizing that carbon policy, changing preferences, and on-
going technological change are reshaping economic growth patterns, potentially increasing
default risks or reducing asset values for firms more exposed to transition risk.

Building on the understanding that firms may adapt to these changes at different times and
at varied paces, we posit that lenders incorporate these differences into their valuation of
firms. Capitalizing on this premise, we employ the daily spreads of Credit Default Swap
(CDS) contracts to construct a market-implied, high-frequency and forward-looking carbon
risk (CR) factor. The construction of this CR factor is our first main contribution. CDSs
provide distinct benefits over traditional credit risk indicators, such as corporate bonds or
ratings, due to their rapid responsiveness to macroeconomic, corporate, and, arguably, pol-
icy shifts (Jorion and Zhang, 2007, Acharya and Johnson, 2007, Berndt and Ostrovnaya,
2014, and Hana et al., 2017). Unlike equity and bond markets, the CDS market swiftly
integrates changes in credit, market, and policy conditions (Blanco et al., 2005; Zhu, 2006).
Additionally, the standardized trading terms of CDSs reduce distortions related to contrac-
tual variations (Blanco et al., 2005; Zhu, 2006; Norden and Weber, 2009) or liquidity issues
(Longstaff et al., 2005; Ederington et al., 2015). Last, since there are CDS contracts with
varying short-, medium- and long-term tenors, they allow us to incorporate lenders’ collective
forward-looking considerations.

1Climate change affects the economy through two main channels: Physical risks arise from damage to
infrastructure, property, and business operations. Transition risk results from changes in climate policy reg-
ulations, technology, and consumer and market sentiment during the adjustment to a lower-carbon economy.
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The CR factor is constructed as the difference between the daily median CDS spreads of high-
emission-intensity (polluting) firms and low-emission-intensity (clean) firms. This difference
is used to identify how the lenders market perceives the differential exposure of polluting and
clean firms to carbon risk.2 When policy events (e.g. an announcement of tightening regu-
lations) trigger a rise in carbon risk, lenders to more (less) exposed firms demand increased
(decreased) protection, widening the CDS wedge – the distance between the price of default
protection for polluting and clean companies. Conversely, if a loosening of regulation is ex-
pected, there is a narrowing of the wedge (or even a negative wedge). The CR factor thereby
captures the perceived general carbon risk. By construction, the financial performance of
this factor mimics the dynamics of a lending portfolio in which default protection is bought
for a polluting firm and sold for a clean firm.

We then introduce a series of hypotheses aimed at identifying the drivers behind the impact
of carbon price regulation, assessing their relevance and quantifying their influence. Specif-
ically, using daily CDS data for more than 280 firms in Europe and North America for the
period 2013 to 2019, we investigate how firms’ CDS spread returns change in response to
variations in the CR factor. We find that an increase in the market’s perception of carbon
risk leads to an increase in CDS spread returns. Considering a European 5-year CDS con-
tract with a notional value of US$100million and a spread of 100 basis points (hence a yearly
premium of US$1million), one standard deviation increase in carbon risk exposure results
in lenders demanding US$0.21million more annual credit protection on this CDS contract.3
The additional protection cost doubles under extraordinary credit conditions, namely when
firms experience large shifts in their credit spreads. To investigate the impact of carbon risk
under these extraordinary conditions, we employ quantile regressions. This method enables
us to explore the full conditional distribution of the dependent variable, revealing variations
in the response across different quantiles of the distribution. These findings are especially
relevant for the regulatory framework of carbon risk. By quantifying the additional costs
associated with carbon risk under various credit conditions, regulators can better assess the
potential systemic risk posed to the financial system by the transition.

We find that increased perception of carbon risk exposure generally leads to higher default
protection costs, yet the magnitude of this effect varies significantly by region. Specifically,
the influence of carbon risk on CDS spread returns is more pronounced in Europe compared
to North America – a disparity attributable to the distinct carbon pricing regulations in
each area. Europe employs explicit carbon pricing mechanisms, such as the European Union
Emission Trading System (EU ETS), whereas North America has largely utilized non-pricing
emissions regulations (Aldy et al., 2022, Pryor et al., 2023). Nevertheless, a firm’s carbon
risk exposure is not solely determined by where it operates. Our findings show that the
impact of carbon risk on CDS spread returns is also affected by the precise scope of the
regulation. Firms subject to direct carbon pricing face an estimated additional annual cost

2Emission intensity is a commonly used measure – it allows for a more accurate comparison of emissions
between different industries and firms. In Appendix F, we consider several alternative specifications for the
construction of the CR factor, including absolute emissions. Importantly, the robustness of the proposed CR
factor is maintained across these different factor construction approaches.

3Although arbitrarily chosen, these numbers represent a realistic setup for CDS contracts both in Europe
and North America. For the sake of simplification, we will keep using this setup throughout the remainder
of this paper.
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of US$0.35million for a one standard deviation increase in carbon risk – almost thrice the
impact on firms outside direct carbon pricing frameworks (US$0.12million). Since this holds
across both Europe and North America, it underscores the influence of direct carbon pricing
on perceived exposure to carbon risk. The lending market, with its inherently forward-looking
approach, shows a keen sensitivity to these substantial regulatory differences, adapting its
assessment of carbon risk based on the nature of firms’ regulatory exposure.

Our analysis also reveals that the impact of carbon pricing on perceived carbon risk exposure
is influenced by the share of a firm’s direct emissions regulated by carbon pricing – the
stringency of the carbon policy in question. Firms with a significant portion of their emissions
covered by carbon pricing show a heightened responsiveness to changes in the CR factor. This
is observable in both Europe and North America, with the effect being notably stronger in
Europe. A 1% increase in the proportion of emissions under regulation translates to an
estimated additional annual cost of US$0.24million for every US$100million of exposure in
Europe, and US$0.11million for every US$100million of exposure in North America. These
findings highlight the critical role of carbon policy stringency.

The literature finds that the effect of carbon risk becomes more pronounced when considering
exposures that are specific to certain industries (Bolton and Kacperczyk, 2021 and Ardia et
al., 2022). Consequently, we explore whether the regulatory coverage of a specific sector’s
emissions amplifies the effect of carbon risk on CDS spread returns. Our findings suggest
that lenders consider firms within the carbon-intensive sectors of Basic Materials, Utilities,
and Energy as carrying increased risks. As carbon regulations become more stringent, it is
plausible that these sectors will face rising operational costs, adversely affecting their financial
stability and credit ratings. Indeed, our findings show that a one standard deviation rise in
the CR factor equates to an additional estimated financial impact of US$0.23million for
European firms in Basic Materials, with this impact being more than two times higher for
Utilities (US$0.52million) and more than eight times greater for Energy (US$1.94million).
This underlines the escalating financial implications that tighter carbon regulations – aimed
at achieving net-zero ambitions – would have for these sectors.

Finally, we find that carbon risk is influenced not only by the scope and stringency of reg-
ulations, but also by the expected speed of the transition towards a low-carbon economy.
By analyzing the relationship between the term structures of CDS spreads and carbon risk,
we show that an increase in carbon risk leads lenders to foresee higher costs for short-term
transitions. This expectation is manifested through a more pronounced rise in CDS spreads
for shorter tenors relative to longer ones, signaling a market anticipation of immediate finan-
cial implications stemming from increased carbon regulation. Such findings carry profound
policy implications for central banks, particularly in relation to monetary strategies aimed at
cushioning the potential negative impacts of a disorderly transition.4 Our analysis suggests
that re-pricing activities, spurred by the anticipated quickening pace of carbon reduction
initiatives, are expected to occur predominantly in the near future.

This paper contributes to the literature on the effect of climate policies on credit risk, and is
related to the wider literature on climate finance and credit risk.

4This disorderly transition is characterized by abrupt repricing of risks, and the risk of assets becoming
stranded.
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First, this paper studies the amplifying effect of a climate-related transition on credit risk.
Undoubtedly, the changes induced by a transition to a net-zero economy will cause adjust-
ments in firms’ valuations, which may contribute to the deterioration of firms’ creditworthi-
ness and ultimately translate to higher credit risk (BIS, 2021; Bingler and Senni, 2022).

Evaluation of firms’ exposure to carbon risk involves quantifying the effort necessary to suc-
cessfully transition to a low-carbon economy. Although different approaches exist, most of
the recent literature has focused on carbon emissions and show that investors seek higher
returns and require a higher premium for firms with greater emissions (Bolton and Kacper-
czyk, 2021; Cheema-Fox et al., 2020; Görgen et al., 2020; Hsu et al., 2023; Lioui, 2022), that
the market requires adjustments in the capital structure of firms with emissions-intensive
operations compared to their low-carbon counterparts (Nguyen and Phan, 2020; Kleimeier
and Viehs, 2018), and that engagement efforts concentrate on large firms with high carbon
emissions (Azar et al., 2021). In other words, firms with an emissions-intensive business
model face higher carbon risks than their low-carbon peers. However, this approach does
not reveal whether the emissions are subject to any carbon policies, nor does it indicate the
policy’s scope, ambition, or the actual impact of carbon regulations. It fails to measure the
breadth of coverage (scope), proportion of emissions under regulation (stringency), or the
targets and deadlines (speed) required by these policies. We extend this literature by docu-
menting that the impact of carbon risk can vary significantly depending on the presence of
carbon regulation – specifically direct carbon pricing – as well as the scope, stringency, and
mandated transition speed of the carbon policy. By isolating these key regulatory factors –
scope, stringency and speed – we enhance our ability to qualify and quantify the impact of
carbon risk on credit risk.

There is a growing body of empirical work investigating the effects of transition risk on credit
risk through the lens of the cost of debt (Kleimeier and Viehs, 2018; Jung et al., 2018; Delis
et al., 2018), corporate bonds (Duan et al., 2021; Seltzer et al., 2024), distance-to-default
(Capasso et al., 2020), options (Ilhan et al., 2020) and CDSs (Barth et al., 2022; Christ et al.,
2022; Kölbel et al., 2022). This literature tends to find increased financing and protection
costs for firms that are relatively more exposed to the low-carbon transition. Several of
these studies document a strengthening of the effect after the Paris Agreement. Barth et al.
(2022), Christ et al. (2022) and Kölbel et al. (2022) are the most closely related works in
this literature. While Barth et al. (2022) and Christ et al. (2022) use environmental ratings,
Kölbel et al. (2022) construct their proxy of carbon risk from a textual analysis of the 10-K
financial form filings of US firms. Our paper extends the analysis by using firms’ emissions
to discipline the construction of a forward-looking and market-implied CR factor.

Second, this paper contributes more broadly to the literature on the empirical determi-
nants of credit risk spreads. It is important to understand the directional effects beyond
regular credit phases, and examine the effect of each credit risk driver during a firm’s more
extreme credit phases. Within the CDS literature, recent evidence indicates that the main
drivers – such as stock return or volatility – do not act uniformly on CDS spreads, but that
the effects differ significantly across different parts of the distribution (Pires et al., 2015;
Koutmos, 2019). While these observations are important for risk management purposes,
there has been limited research on this topic regarding carbon risk. The only exception is
Barth et al. (2022) who establish a U-shaped effect pattern for ESG ratings on CDS spreads.
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However, there is still no comprehensive investigation on this matter and we attempt to fill
this gap.

The remainder of this paper is organized as follows. Section 2 delves into the transition
from carbon risk to credit risk, details the construction of the CR factor, and outlines the
hypotheses for empirical testing. In Section 3, we describe the data and introduce the panel
quantile regression framework. Section 4 presents the results and Section 5 concludes. In the
appendix, we test the robustness of our findings by considering several alternative specifica-
tions for the construction of the CR factor. The appendix also includes a number of additional
tables and figures, the results of an event study, and further evidence of the transmission of
policy shifts through the CDS market.

2 From carbon risk to credit risk

The transition to a low-carbon economy will be effected through a combination of changes
in public regulation, technology and consumers’ preferences, triggering changes in demand-
related factors (TCFD, 2017; BIS, 2021). The risks related to this transition arise from
uncertainties regarding the characteristics and nature of the low-carbon pathway – specifically
the scope and stringency of carbon regulations, and the speed of carbon emission reductions,
which will necessarily restructure the economy. It is difficult to measure these transitions
though; since the transition path cannot easily be observed, it must be inferred. However,
it is far from clear which proxies are appropriate, especially for technologies and consumer
preferences. To date, the finance literature has primarily focused on carbon emissions as
the observable outcome of changes in the governmental policies and public regulations aimed
at limiting these emissions (hereafter carbon policies). This literature has approached the
pricing of carbon risk by focusing on how various financial assets reflect market concerns
about these carbon policies. As of now, firms’ exposure to carbon risk is most often codified
using firms’ actual emissions data.5 However, this approach does not reveal whether the
emissions are effectively subject to any carbon policies, nor does it indicate the scope of
policy application or the ambition behind these policies. Essentially, it does not accurately
measure the actual impact of carbon regulations or effectively capture the scope (breadth
of coverage), stringency (proportion of emissions under regulation) and speed (targets and
deadlines) of the carbon transformation required by these policies.

Carbon policies can generally be divided into two main types: pricing and non-pricing instru-
ments (Pryor et al., 2023). The former assigns a direct monetary value to carbon emissions,
thereby establishing an explicit carbon price, while the latter regulates carbon emissions
without setting a direct monetary value. Although there may be costs associated with non-
pricing policies, they are not explicit. Even in scenarios where an explicit carbon price exists,
gauging the financial impact of carbon policies remains complex. The overall effect depends
on a range of factors: the scope of application of the carbon policy across different sectors, the
stringency of the policy, the pace implied, and the presence of measures that might mitigate

5Investigating carbon risk in the equity and debt markets, scholars have used levels and changes in carbon
emissions (Bolton and Kacperczyk, 2021, Bolton and Kacperczyk, 2023, Atilgan et al., 2023, among others)
and carbon intensities (Aswani et al., 2023, Atilgan et al., 2023, Ardia et al., 2022, among others).
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the policy impact.6 These factors collectively determine the real effect and financial conse-
quences (cost) of carbon pricing policies. For example, firms may incur additional direct costs
from emissions control and abatement initiatives, or through policy compliance and product
modifications in response to changes in carbon policies and consumer preferences. Firms
might increase their investment in research and development to reduce operating costs in the
future, but this comes at the expense of lower cash flows in the present. Carbon policies
can also affect firms indirectly in various ways. For example, because carbon emissions are
tied to fossil fuels, carbon abatement regulations often translate into higher energy costs for
firms.7 Furthermore, carbon costs can affect the entire supply chain. Suppliers, facing their
own carbon regulation compliance costs, may pass these expenses on to their customers. This
increase in energy prices or input costs leads to higher operating costs, which, in turn, result
in lower cash flows. In other words, both pricing and non-pricing policies could significantly
affect firms’ cash flow, financial health and the value of their collateral. This may undermine
their capacity to service and repay their debt, eventually leading to higher probabilities of
default.8 This results in repricing – with more exposed firms’ valuations being bid down, and
less exposed firms’ valuations being bid up – in response to changing lender beliefs about
firms’ exposure to carbon risk. Crucially, firms may transition to a low-carbon business model
at different times and different speeds, depending on the type, scope and stringency of the
carbon regulations to which they are subjected. In other words, superficially similar firms
can face vastly different levels of carbon risk depending on how and where they do business,
and the actual effect of the carbon policies. This means that differential valuations (Mein-
erding et al., 2020) may depend on all of these factors, in addition to how much they emit.
Furthermore, the way firms adapt, innovate and reorganize their operations in reaction to
shifts in carbon regulations and market demands will further influence their unique exposure
to carbon risk.

2.1 Measuring carbon risk

Examining how the market perceives firms’ exposures to carbon risk requires a measurement
of firms’ carbon profiles. This is commonly proxied by firms’ current emission levels, changes
in emissions, and emission intensity (Bolton and Kacperczyk, 2021; Azar et al., 2021; Görgen
et al., 2020; Nguyen and Phan, 2020, Bolton and Kacperczyk, 2023, Aswani et al., 2023,
Zhang, 2023), although academics and practitioners recognize the need to include firm-specific
information on expected future emissions as well. Recent work attempts to address this by
adding information about firms’ abatement commitments and strategies (Carbone et al.,

6These measures often reduce the scope and speed of the carbon policy, either by limiting the amount
of emissions subject to the policy or by decreasing the carbon cost for businesses that meet specific criteria
(Pryor et al., 2023).

7The European Central Bank recently acknowledged the potential risks that the transition to a low-
carbon economy could have on the economy, particularly due to an increase in the contribution of energy to
overall inflation (Schnabel, 2022).

8In Appendix A, we illustrate the differential impact of carbon-related costs on the valuation of diverse
firms through the application of the Merton, 1974 model of credit risk. This model provides an insightful
foundation for understanding how costs related to carbon regulations influence the credit spread. It also
enables us to establish a theoretically grounded connection between a firm’s exposure to carbon risk and the
corresponding credit spread.
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2021; Bolton and Kacperczyk, 2022; ECB and ESRB, 2022).9 Yet, headline pledges are
often ambiguous and emission reduction commitments are limited, raising credibility issues
and demanding a more appropriate way to assess firms’ efforts to align with the net-zero
trajectory. Additionally, and perhaps more importantly, evaluating market perceptions of
firms’ carbon risk exposures requires insight into how carbon policies impact firms’ carbon
emission profiles (BIS, 2021 and ECB and ESRB, 2022, Carradori et al., 2023).

Our approach to measuring carbon risk therefore relies on analyzing credit spreads, which
indicate how the market perceives the actual impact of carbon policies on firms’ emission
profiles. Changes in these credit spreads encapsulate the collective assessment of lenders
regarding the financial and credit impact of these policies. To capture this variation, we utilize
the information contained in the spreads of the CDS contracts. CDS contracts have four
crucial advantages: CDS have a higher degree of informational efficiency, with a number of
studies showing that the CDS market responds more rapidly to macroeconomic and corporate
events compared to equity and bond markets (Jorion and Zhang, 2007, Acharya and Johnson,
2007, Berndt and Ostrovnaya, 2014, and Hana et al., 2017). Furthermore, CDS spreads
respond quickly to changes in credit and market (and arguably policy) conditions (Blanco
et al., 2005; Zhu, 2006). This swiftness in incorporating new information highlights the CDS
market’s ability to translate changes in (perceived) carbon risk exposure into changes in credit
spreads. This responsiveness to new developments is further demonstrated in Appendix B,
where we compare the integration of new information related to unexpected policy changes by
both the CDS and equity markets for the same entities. Also, CDSs are typically traded on
standardized terms, eliminating distortions due to differences in contractual arrangements
or liquidity concerns (Longstaff et al., 2005). Finally, CDS contracts have varying tenors
up to 30 years, allowing us to (i) incorporate the collective forward-looking considerations
of lenders, and (ii) shed light on the expected degree of carbon risk within distinct time
horizons.10 Investigating carbon risk in the US corporate bond market, Xia and Zulaica
(2022) document that the carbon risk differs across maturities, giving rise to a hump-shaped
term structure of carbon premia. Given these reasons, CDS spreads provide a unique window
for viewing the effect of carbon risk through the lens of lenders’ perceptions of carbon risk.
The fundamental insight is illustrated in Figure 1, where we plot the evolution of the CDS
spreads for two pairs of companies (starting with a similar credit rating on 02 November
2015) before and after the 2015 Conference Of the Parties (COP21), which culminated in the
landmark Paris Agreement.11 Similar reactions to policy changes are explored in Meinerding

9We refer to Campiglio et al. (2022) for a review of the emerging literature that uses forward-looking
methodologies to estimate the effect of transition risks on asset prices.

10The analysis presented in the main text focuses on CDS contracts with tenors up to 10 years. Findings
related to contracts with a 30-year tenor are detailed in the Appendix G.

11In this figure, we provide data on two exemplary high-emitting/polluting firms (ConocoPhillips and
Holcim AG) and two exemplary low-emitting/clean firms (Deere & Company and Philips NV) in North
America and Europe. Beginning with the North American examples, ConocoPhillips is a multinational
corporation engaged in hydrocarbon exploration and production, and was ranked 21st among the World’s
Top 100 Polluters (CDP, 2017). Deere & Company, the world’s largest agricultural equipment manufacturer,
has demonstrated leading practice in controlling and reducing their emissions in recent years. For Europe,
Holcim AG is a global manufacturer of construction materials, including emissions-intensive cement and
concrete (IEA, 2021). Philips is a diversified global healthcare company that has effected emissions reductions
through increased use of renewable energy.
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et al., 2020. A formal analysis is presented later.

Figure 1 illustrates that the distance in CDS spreads is approximately constant until the
occurrence of a policy-relevant event – the Paris Agreement – at which point the spreads
diverge. We interpret this as the result of lenders expecting higher carbon impacts for high-
emitting firms. They seek higher protection, demanding more of the CDSs of relatively more
carbon-exposed firms (in this example, ConocoPhillips and Holcim), ultimately paying higher
spreads.12 Following this argument, we use the information contained in the CDS spreads
themselves to construct a proxy that captures firms’ evolving carbon risk, representing vari-
ation in lenders’ concerns over time about carbon regulation-related aspects that can impact
firms’ credit risk profiles.13 Effectively, we compute a market-implied and forward-looking CR
factor, offering a tool to evaluate the cumulative effect of public carbon pricing regulations
together with firms’ voluntary actions aligned with their net-zero ambitions.

(a) North America (b) Europe

Figure 1: Evolution of the 5Y-CDS spreads of ConocoPhillips (blue) and Deere & Co (orange) on the left diagram, and Holcim
AG (blue) and Koninklijke Philips NV (orange) on the right diagram. The time period spans from 02 November 2015 to 29
February 2016. The gray-shaded area indicates the time period of COP21 (30th Nov 2015 – 12th Dec 2015).

2.2 Construction of the carbon risk factor

To date, the finance literature on climate change has approached the pricing of carbon risk by
focusing on how various financial assets reflect investor concerns. In most studies, firms’ expo-
sure to carbon risk is codified using their emission data,14 on the premise that high-emitting
firms may incur greater costs from carbon policy changes – through emissions abatement

12Figure 14 in Appendix D illustrates comparable trends among companies within the same sectors –
Energy and Basic Materials – highlighting that markets acknowledge firms may adapt to carbon policies at
varying times and speeds. This underscores the importance of the insights gleaned from CDS data.

13While factors constructed in the equity space (e.g. the “Brown-Minus-Green” factor by Görgen et al.
(2020) or the “Pollutive-Minus-Clean” factor by Huij et al. (2021)) encapsulate many different types of risk,
the CDS market concentrates on the credit risk component.

14The Greenhouse Gas Protocol distinguishes between three sources of emissions: Scope 1 emissions cover
direct emissions from establishments that are owned or controlled by the company, including all emissions
from fossil fuel used in production. Scope 2 emissions come from the generation of purchased heat, steam
and electricity consumed by the company. Scope 3 emissions are caused by the operations and products of
the company but are generated by sources not owned or controlled by the company.
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and the adoption of new technologies – and product changes in response to shifting con-
sumer preferences. This literature asserts that the size of these costs, and the consequent
size of carbon risks, are proportional to the size of firms’ emissions and emission intensities,
and to the rate of growth of these emissions (Bolton and Kacperczyk, 2021; Azar et al., 2021;
Cheema-Fox et al., 2020; Görgen et al., 2020; Hsu et al., 2023; Nguyen and Phan, 2020;
Bolton and Kacperczyk, 2023; Aswani et al., 2023).

As with this literature, we construct firms’ carbon profiles using yearly emissions intensities
(Scope 1 & 2 emissions normalized by revenue) from LSEG Data & Analytics (formerly
known as Refinitiv) as our primary dataset.15 Estimates are used in cases where no actual
emissions were reported. These data have been shown to be sufficiently consistent across
different data providers (Busch et al., 2018).16 The emissions of firms in our sample account
for a significant fraction – approximately 30% – of the total emissions in the universe of
companies represented in the LSEG Data & Analytics database.

The construction of our CR factor is informed by existing literature, which suggests that
businesses with higher emissions are potentially more exposed to carbon risk than those
with lower emissions. This increased exposure arises from factors such as the potentially
higher direct costs of compliance with emission control and abatement policies (depending
on the scope and stringency of those policies), and adjustments in production processes in
anticipation of potential new carbon regulations, or as part of a voluntary initiative to achieve
net-zero targets. Ideally, the CR factor should track shifts in firms’ carbon risk exposure,
mirroring the evolution in lenders’ perceptions and expectations regarding this risk. To that
end, we follow the standard approach used in empirical asset pricing for factor construction
(Fama and French, 1992). Specifically, we sort the universe of firms according to each one’s
emission intensity profile, and then subdivide them into quintiles. In this and subsequent
sections, we focus on our baseline factor construction and results. We also conduct an
extensive set of robustness tests on the formulation of the CR factor by experimenting with
absolute emissions, and then including bivariate sorts that account for firm characteristics
such as size, book-to-market ratio, and leverage (Bolton and Kacperczyk, 2023, Pastor et al.,
2021, Bauer et al., 2023, and Zhang, 2023). Baseline findings are robust to these alternative
CR factor constructions and are discussed in Appendix F.
We group the firms into portfolios to mimic the underlying risk factor in returns related to
carbon.17 In fact, this grouping allows us to capture the gradient of carbon intensity per
unit of revenue, while retaining a sufficient number of firms within each group. We then
define firms below the first quintile as “clean”, and gather their CDS spreads in the set Cmt .
Analogously, we define firms above the last quintile as “polluting” and gather their CDS
spreads in the set Pmt . We repeat this procedure for every day t.18

15Refinitiv firm-level carbon emissions data follow the Greenhouse Gas Protocol, which sets the standards
for measuring corporate emissions.

16We chose firms’ emissions because other prominent metrics (e.g. environmental ratings provided by
Asset4, MSCI, etc.) have been shown to deliver mixed signals, seriously weakening their reliability in terms
of constructing the carbon risk classification (Görgen et al., 2020; Berg et al., 2021; Berg et al., 2022; Dimson
et al., 2020).

17We refer to Fama and French (1992), Fama and French (1993) and Hou et al. (2017) for a detailed
description of the factor construction.

18Table 3 in Appendix E contains a comprehensive list of all firms entering the “clean” and “polluting”
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We then obtain the median cost of default protection for clean and polluting firms by cal-
culating the median m-year CDS spread level for each tenor m ∈ {1, 3, 5, 10} at every time
t:

Cm
t = Med (Cmt ) ,

Pmt = Med (Pmt ) .

Finally, we calculate the difference between the median CDS spreads of polluting and clean
firms. The difference, or wedge, between these two spreads represents the differential credit
risk exposure of polluting versus clean firms. We call this the carbon risk (CR) factor:

CRm
t = Pmt − Cm

t

Essentially, the CR factor mimics the dynamics of a portfolio in which default protection
is bought for a representative (median) polluting company and sold for a representative
(median) clean firm.19 When policy events (e.g. expectation of a tighter future regulatory
framework) trigger a rise in carbon risk, the demand for protection of more (less) exposed
firms increases (decreases), resulting in a widening of the wedge. Conversely, if the market
expects a loosening of the regulatory framework, there is a narrowing of the wedge, or possibly
even a negative wedge.20 These changes in perceived exposure to carbon risk are accurately
represented by the behavior of the CR factor.21

To illustrate the relevance of the CR factor, we first examine its behavior in response to
events that affect firms’ exposure to carbon risk. Figure 2 displays the evolution of the CR
factor over time, for tenors of 1, 5 and 10 years for the universe of CDSs of firms listed in
Europe (top panel) and North America (bottom panel), respectively.22 These graphs also
highlight two events, identified in Meinerding et al. (2020), that oppositely affected market
perceptions of carbon risk: the signing of the Paris Agreement and the election of Donald
Trump in the US; these events are represented in Figure 2 with vertical dark green and brown
lines, respectively. We validate the informational content of our proposed CR factor using
a model-free, event-study approach. Borrowing from the work of Meinerding et al., 2020,
we analyze how the CR factor reacts to a series of additional climate-policy-relevant events.
We utilize news data in conjunction with the CR factor to identify possible dates associated
with important climate policy events. The subsequent analysis reveals that the identified
dates indeed match real-world climate policy events and shows that the CR factor is highly
sensitive to these occurrences. As such, the changes in the CR factor validate our proposed

class (including median firms), respectively, during our sample period.
19A long–short portfolio is similarly constructed in Meinerding et al. (2020) by sorting firms on their

carbon footprints. Combined with a climate news index, Meinerding et al. (2020) use these portfolios to
identify the differential effect of carbon risk. Essentially, portfolios are used to identify shocks that affect
clean and polluting firms differently.

20This might occur where the expected profits of actively compliant firms are hampered by a policy
reversal. The increased costs associated with the previously tighter regulation are perceived as unnecessary
expenditure.

21The value of the CR factor appears similar to the measure proposed in van Binsbergen and Brøgger
(2022), but is perhaps easier to derive in practice since it does not require the introduction of a new financial
instrument, namely firm-level emission futures contracts.

22All available tenors, including 3Y and 30Y, are reported in Appendix G and illustrated in Figure 15.

11



(a) Europe

(b) North America

Figure 2: Evolution of the CR factor over time for maturities 1Y (blue), 5Y (orange) and 10Y (red) for Europe (top) and North
America (bottom). The vertical solid lines indicate the timing of the Paris Agreement (dark green) and Trump election (brown),
respectively.

metric as an effective tool for tracking market responses to shifts in climate policy. A detailed
description of the event-study analysis is provided in Appendix C.

Examining the figure, we observe that the CR factor displays two significant traits. First, we
observe that the CR factor squarely reflects changes in lenders’ demand for default protection
in response to significant policy-relevant events. For instance, COP21 advocated for more
ambitious emission reduction policies and plans, which positively influenced carbon risk,
indicating a heightened awareness and concern about this risk. It is reasonable to argue that
policies following this event can increase the expected costs for firms that are less prepared to
transition to a low-carbon economy, and benefit firms that are more adequately prepared.23

23Similar reactions have been documented in the equity and bond markets (Meinerding et al., 2020),
Bolton and Kacperczyk, 2021, Ardia et al., 2020, Engle et al., 2020).
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The CR factor response is significantly more marked in North America, where explicit carbon
pricing mechanisms are less common, meaning the outcome of COP21 will have potentially
heavier financial implications. Conversely, the election of Donald Trump, known for his
skepticism towards climate change, likely led to a distinctly negative CR factor reaction,
indicating a decreased perception of carbon risk due to expected policy relaxations. In this
case, however, the impact of this election was geographically confined to the North American
CR factor, mainly reflecting the limited influence of US climate policy on European firms.
Second, it is notable that all CR factor time series in Europe remain consistently non-negative,
likely influenced by the more prominent implementation of carbon pricing regulations in the
region: lenders demand more (less) protection for European firms that are perceived to
be more (less) exposed to carbon risk in Europe. This contrasts with the CR factor time
series in North America, where the 5-year and 10-year tenors exhibit periods of prolonged
positivity before experiencing a reversal in the sign after 2018. Collectively, these findings
underscore the CR factor’s ability to reflect the continual evolution in aggregate lenders’
perceptions of carbon risk. This includes the ambiguity in North America surrounding short-
term carbon policies (1-year) – indicated by fluctuations in the 1-year tenor between positive
and negative values – and the absence of uniform, nationwide carbon pricing strategies –
indicated by shifts in policy direction (5-year and 10-year). Thus, the CR factor allows us
to understand lenders’ demand for more or less protection according to their perception of
a firm’s ability to absorb the costs associated with changes in carbon regulations. This leads
to continuous adjustments in the CDS spread wedge. Essentially, this is what makes the CR
factor an observable, forward-looking and market-implied proxy for carbon risk exposure.

Furthermore, we can extract valuable information about carbon risk over a specific time
horizon by considering the difference between a long- and a short-tenor CR factor. This
difference constitutes the slope of the CR factor (CR slope),24 constructed as

CRSlopemnt = CRm
t − CRn

t ,

where the relationship between tenors is m>n. Conceptually, starting from a carbon risk
exposure over the next n years, CRSlopemnt describes how the exposure to carbon risk is
perceived over the remaining m-n years. CRSlopemnt can take positive and negative values,
depending on how the market’s perception of carbon risk evolves. Essentially, the slope of
the CR factor represents the relationship between carbon risk (anticipated costs induced by
policy) and various time horizons. Compared to the next n years, a positive (negative) CR
slope reflects expectations of an increasingly tighter (looser) carbon regulatory framework in
the later m-n years, resulting in larger (smaller) policy-induced costs.

This is depicted in Figure 3. Pre-COP21, the CRSlopemnt for 5Y-1Y and 10Y-5Y in both
Europe and North America are very close to each other, indicating expectations of similar
carbon risk in the near term and the longer term. However, in the immediate aftermath
of COP21, the distance between these slopes widens, with lenders anticipating significantly
higher policy-implied costs in the near term, especially in North America. As the Trump
election approached, the distance between the 5Y-1Y and 10Y-5Y slopes decreased. This con-
vergence suggests that, just prior to the Trump election, lenders’ expectations for significant

24Later in the analysis, we examine the effect of said information about carbon risk on the entire CDS
spread curve.
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(a) Oct. 15 – Feb. 16 (Europe) (b) May 16 – Jan. 17 (Europe)

(c) Oct. 15 – Feb. 16 (NA) (d) May 16 – Jan. 17 (NA)

Figure 3: Evolution of the CR slope over different time periods for 5Y-1Y (blue) and 10Y-5Y (orange) for Europe (top three)
and North America (bottom three). The vertical solid lines indicate the timing of the Paris Agreement (dark green) and Trump
election (brown), respectively.

differences in policy-implied costs across varying time frames began to diminish, indicating
a re-calibration of risk perceptions towards a more uniform outlook.

2.3 Hypothesis development

In the previous section, we argued that CR factor represents lenders’ perceptions of carbon
risk exposure, such that a higher CR factor corresponds to a higher perceived market-wide
carbon risk. We also argued that a firm with higher actual exposure to carbon risk may
experience a decline in its valuation, a higher probability of default, and, therefore, a higher
CDS spread. We thus propose the first hypothesis:

Hypothesis 1. There is a positive relationship between carbon risk and CDS spread returns.

Recent studies suggest that carbon risk differs across regions due to their varying degrees
of ambition in environmental regulations and diverse restrictions on carbon emissions (Huij
et al., 2021; Bolton and Kacperczyk, 2023).25 Europe is widely recognized as a global leader
in deploying explicit carbon pricing policies through mechanisms like the European Union
Emissions Trading System (EU ETS), while North America, especially the US, has mainly

25There are currently 68 carbon pricing instruments in operation (36 carbon taxes and 32 emissions trading
systems), spanning a broad range of carbon tax rates and carbon caps (World Bank Group, 2024).
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focused on non-pricing emissions regulations (Aldy et al., 2022 and Pryor et al., 2023).
Consequently, carbon pricing visibility is notably higher in Europe than in North America.
This should lead to increased CDS spreads for firms operating predominantly in Europe,
and the difference should underscore the higher salience of carbon risks within the European
regulatory framework. We undertake tests to explore these variations further, aiming to
quantify and understand the regional regulatory disparities in carbon risk exposure.

Hypothesis 2. The influence of carbon risk on CDS spread returns is significantly stronger
in regions that have explicit carbon pricing mechanisms, such as Europe, in contrast with
regions like North America, where explicit carbon pricing has not been widely adopted.

A firm’s exposure to carbon pricing is not solely determined by the presence or absence
of the policy in the country where it predominantly operates. The breadth of coverage
of the regulation – the scope – is also a crucial factor. When companies are subject to
explicit carbon pricing, they incur specific costs for their emissions, leading to more immediate
and predictable adjustments in their operational tactics and financial strategies. There is
mounting evidence that explicit carbon pricing mechanisms have environmental and economic
impacts on companies directly subjected to them (Martin et al., 2014 and Colmer et al., 2024).
But while the presence or absence of an explicit carbon pricing regime can indicate a firm’s
potential carbon-related financial liabilities, its impact will depend on the specific scope of
the carbon policy. Lenders, as keen risk assessors, are likely to take this into account when
evaluating a company’s creditworthiness, directly influencing the CDS spreads. Given this
backdrop, our third hypothesis emerges:

Hypothesis 3. The impact of carbon risk on CDS spread returns is not uniformly deter-
mined by the presence of carbon pricing within a region, but is significantly influenced by the
specific scope of the regulation.

While the presence of carbon pricing regulations matters, their influence on firms extends
beyond the scope of the regulation. A second critical aspect is the stringency of the carbon
policy, highlighting that the effect on firms depends not only on being subject to regulation
but also on the proportion of their emissions that fall under the regulatory framework. For
instance, two similar firms under explicit carbon pricing regulations could face varying finan-
cial consequences based on the extent of their emissions coverage. If one firm has 50% of
its direct emissions regulated, while another has just 30%, the financial repercussions for the
firms could be markedly distinct. From a lender’s perspective, the proportion of a firm’s reg-
ulated emissions can serve as a barometer for potential financial liabilities and, consequently,
for the firm’s credit risk. Thus, the stringency of the carbon regulation should be considered
in addition to merely being subject to carbon regulation. This leads to our fourth hypothesis:

Hypothesis 4. The impact of carbon risk on CDS spread returns depends on the stringency
of the carbon regulation.

The exposure to carbon risk is not uniformly distributed across all sectors of the economy,
as highlighted by Dietz et al., 2020. While every firm, on average, might grapple with
the implications of carbon risk, the intensity of this exposure is more pronounced in certain
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sectors – especially those that are inherently carbon-intensive. Their carbon intensity not only
puts them at the forefront of regulatory scrutiny, but also amplifies the financial risks they
face from carbon pricing. As carbon regulations tighten, these sectors could see escalating
operational costs, which in turn can impact their financial stability and creditworthiness.
Lenders are likely to perceive heightened risks associated with firms operating in these sectors,
leading them to seek additional credit protection, manifesting as increased CDS spreads. This
is expressed in our fifth hypothesis:

Hypothesis 5. The emissions intensity of a sector intensifies or mitigates the impact of
carbon risk on CDS spread returns.

Last, we examine whether carbon risk also depends on the speed at which a transition to
a low-carbon economy is expected to occur. Essentially, carbon risk depends on both the
stringency and the deadline of the policy. For example, if a new carbon regulation with a
more pressing deadline is introduced, one would expect the costs associated with transitioning
to be higher in the short-term than in the long-term. This should be noticeable in the term
structure of the CDS. The relative adjustment in the spread of the CDS with shorter tenors
would be higher (steeper sloped) than in the spread of the CDS with longer tenors. We
therefore propose the following testable hypothesis:

Hypothesis 6. The influence of carbon risk on the term structure of CDS spreads is more
pronounced in the short-term

3 Data and methodological framework

We first describe the CDS data, then the variables to control for the effects of known deter-
minants of CDS spread returns, and we report some summary statistics. Last, we introduce
our methodological framework.

3.1 Credit default swap (CDS) spreads

We obtained price quotes of CDS spread data from Refinitiv for the period January 1, 2013
to December 31, 2020. The dataset covers single-name CDS spreads across tenors of 1, 3,
5 and 10 years for publicly listed European26 and North American (US & Canada) entities.
Each CDS is denominated in US dollars and refers to senior-unsecured debt. For Europe we
use CDSs with the “modified modified restructuring” clause (MM), whereas North American
CDSs contain the “no restructuring” clause (XR).27 We exclude all firms that defaulted during
the sample period or that exhibit illiquid CDSs, but in general retain firms with large CDS

26The European countries included in the sample are: Austria, Belgium, Denmark, Finland, France, Ger-
many, Greece, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Russia, Spain, Sweden, Switzer-
land and the UK.

27MM and XR represent the standard clauses within their respective region and as such provide the best
coverage of CDSs.
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spreads.28 To account for possible distorting effects from the COVID-19 pandemic, we exclude
the year 2020 from our sample. Additionally, we exclude financial firms from the sample
because of their special business models (Hasan et al., 2016). In total, our sample contains
202,860 and 264,617 CDS spreads-day observations for an unbalanced panel covering 119
European firms and 164 North American firms, respectively.

The emerging consensus in the literature is that (log) CDS spread levels tend to be non-
stationary (Collin-Dufresne et al., 2001; Avramov et al., 2007; Ericsson et al., 2009; Galil
et al., 2014; Huang, 2019; Koutmos, 2019). In line with the majority of previous studies, we
find that log CDS spread series are not level-stationary and so we analyze first-differences.
Following Koutmos (2019), we thus calculate the daily CDS spread log returns as:

smi,t = log(CDSmi,t)− log(CDSmi,t−1),

where CDSmi,t is the m-year CDS spread of firm i at day t. smi,t quantifies the daily relative
change in a firm’s CDS spread. The relative change consents a straightforward comparison
of credit improvement (or credit deterioration, respectively) across all firms.

When investigating the term structure of CDS spreads, we proceed in a similar fashion to
the construction of the CR slope. Namely, we first calculate the CDS slope as the difference
between two CDS spreads of differing maturities m 6= n

CDSSlopemni,t = CDSmi,t − CDSni,t.

Second, due to the nonstationarity of the CDS slope time series, we calculate the change in
the CDS slope as

∆CDSSlopemni,t = CDSSlopemni,t − CDSSlopemni,t−1.

Note that log transformation of the time series is not possible. Although the CDS curve
is typically upward-sloping, and consequently the CDS slopes are positive, we occasionally
observe hump-shaped term structures denoting negative slopes.

3.2 Other control variables

To isolate the impact of carbon risk on CDS spreads, we employ a comprehensive list of firm-
specific and market-specific variables that have commonly been identified in the literature
as determinants of CDS spreads. Following structural credit risk models, particularly Mer-
ton (1974), firm-specific measures include stock return and stock volatility. Market-specific
measures include general market conditions, interest rates and the term structure of inter-
est rates. These have been shown to adequately account for the general behavior of CDS
spreads, largely outperforming alternative models that consider the inclusion of further firm-
level fundamental determinants (Galil et al., 2014; Han and Zhou, 2015; Koutmos, 2019).29

28Illiquid CDSs are those contracts where no spread movement is recorded for a minimum of 25 consecutive
trading days. Some studies also exclude firms with CDS spreads exceeding specific thresholds (Zhang et al.,
2009; Kölbel et al., 2022; Barth et al., 2022). The quantile regression modeling approach (described later)
allows us to dispense with this exclusionary criterion by eliminating exclusively illiquid CDSs.

29Additionally, the construction of a daily carbon factor, as well as our quantile regression approach (which
requires a lot of data), automatically excludes all variables that are not reported on a daily basis.
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By controlling for these variables, we can isolate the effect of carbon risk on the probability
of default.

Stock return (Return) is calculated as the difference of the natural log of daily stock prices;
ri,t = log (Si,t) − log (Si,t−1) where Si,t denotes the stock price of firm i at time t (obtained
from Refinitiv). By measuring the relative change in a firm’s market value of equity, the stock
return is considered to be one of the main explanatory variables of a firm’s probability of
default (Galil et al., 2014; Koutmos, 2019). Model-based expectations indicate that default
probability decreases with the firm’s past stock returns. Consequently, we expect a negative
relationship between CDS spread and stock return ri,t. Additionally, we include the stock
volatility (Vol) measured as the annualized variance of a firm’s returns (estimated on a 245-
day rolling window). The volatility of a firm’s assets captures the general business risk of
a firm and provides crucial information about the firm’s probability of default. Theoretical
results indicate that default probability increases with stock return volatility, and hence we
expect a positive relationship between CDS spread and changes in stock volatility ∆σi,t.

We incorporate information that reflects the current state of the credit market, specifically
focusing on a market condition variable known as the Median Rated Index (MRI). The
MRI is a vital indicator that captures the perceived general economic climate, serving as a
barometer for market-wide conditions. Defined as the median CDS spread of all firms in the
S&P rating supercategories “AAA/AA”, “A”, “BBB” and “BB+ or lower,” the MRI provides
insights into the broader financial environment. The general assumption underlying the use
of the MRI is that improvements in these market-wide conditions are indicative of a decreased
probability of default among firms, leading automatically to lower credit spreads. We follow
Galil et al. (2014) and measure the current business climate using the change in the MRI
∆MRImi,t. Previous research, such as that documented by Galil et al., 2014, has established a
positive relationship between the MRI and CDS spreads, further underscoring its significance
in reflecting the overall economic sentiment.

Moving beyond CDS spreads, we consider the term structure of CDS spreads that reflects
the shape of the conditional default probability over different time horizons (Han and Zhou,
2015). Following Collin-Dufresne et al. (2001) and Han and Zhou (2015), we include the risk-
free interest rate (IR). Specifically, we measure the change in the 10-year constant maturity
Treasury yield (∆IRt) using data collected from the St Louis Federal Reserve (FRED). Our
starting observation is that an increase in the IR reduces risk-adjusted default probabilities,
and hence the CDS spread falls. Therefore, we expect a negative relationship between the
slope of the CDS spreads and the IR.

Finally, following Han and Zhou (2015), we include the market’s view on the future interest
rate proxied by the change in the difference between short- and long-term risk-free interest
rates. We calculate the change of the slope of the risk-free yield curve ∆Termt as the difference
between the 10-year and 1-year constant maturity Treasury yields. An upward-sloping curve
reflects the market’s expectation of lower future interest rates. Consequently, an increase
in the change of ∆Termt increases default probabilities, and hence CDS spreads rise. We
therefore expect a positive relationship between the slope of the CDS spreads and the risk-free
yield curve.
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3.3 Descriptive statistics

To gain more intuition about the data under investigation, Table 1 presents descriptive
statistics for all dependent and independent variables under consideration in both regions.30
The extreme CDS spread statistics presented in Table 1 align with findings in existing lit-
erature, highlighting the unconventional characteristics of CDS data (Pires et al., 2015).31
These descriptive statistics reveal that CDS returns are fraught with outliers and extremely
heavy-tailed distributions, challenging standard assumptions typically employed in standard
statistical methods. To effectively address these challenges, we introduce Quantile Regression
in the subsequent section as a suitable analytical approach.

3.4 Panel quantile regression

In the CDS literature, various analyses reveal ambiguous results concerning fundamental
drivers, hinting at heterogeneous effects across the conditional distribution of CDS spreads
(Collin-Dufresne et al., 2001; Pereira et al., 2018; Kölbel et al., 2022). A standard linear con-
ditional mean regression framework can obscure the full distributional relationship, where
the impact of variables may vary by sign and magnitudes across the distribution. For this
reason, we use a quantile regression (QR) approach. QR allows for a more comprehensive
analysis by examining the entire conditional distribution of CDS spread returns. It enables
the exploration of carbon risk’s link to CDS spread returns across both normal and extraor-
dinary circumstances, such as notable shifts in credit spreads. Within the QR framework,
these scenarios are represented by the extreme deciles of the CDS distribution. Introduced
by Koenker and Bassett (1978), QR extends the classical conditional mean model to a series
of models for different conditional quantile functions, allowing for a nuanced examination of
variable effects across the distribution. This is crucial in credit risk analysis, where under-
standing the tails of the distribution is vital. QR’s ability to capture the marginal impact of
carbon risk across the distribution presents a more thorough view of its influences on credit
spread returns under both standard and exceptional circumstances.

Additionally, QR can mitigate some of the typical empirical problems frequently encountered
in the CDS literature (e.g. the presence of outliers, non-normality) which also apply to our
data as illustrated in Table 1. While these empirical characteristics challenge the validity of
Ordinary Least Squared (OLS) estimates and their standard errors, QR is robust to these
data characteristics and thus a better option.

The use of QR is rather scant in the credit risk literature, although Pires et al. (2015) and
Koutmos (2019) are notable exceptions. Since several scholars report that the presumed ex-
planatory variables actually have varying degrees of explanatory power on the center of the
distribution of CDS spreads and CDS spread changes, both these studies adopt a QR frame-
work documenting a varying degree of sensitivity on parts of the CDS spread distribution.
In particular, Pires et al. (2015) shows that the impacts of the explanatory variables on CDS

30We omit descriptive statistics for the variables used in term structure models (e.g. CDSSlopem,n
i,t , IRt,

etc.). They resemble the statistics shown here and are available upon request.
31Compared to previous literature, these descriptive measures are even smaller in magnitude by some

margin. Also, due to the financial crisis, the data of Han and Zhou (2015) (for example) are interspersed
with many more outliers and move on a relatively larger scale in general.
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Variable Mean Q25 Median Q75 SD Min Max Skew Kurt

Europe

Dependent variables

s1
i,t (%) -0.05 -1.19 0.00 0.46 6.95 -514.39 514.31 0.69 671.21
s3
i,t (%) -0.06 -1.18 0.00 0.38 3.81 -93.02 123.19 1.73 45.08
s5
i,t (%) -0.05 -0.72 0.00 0.17 2.26 -85.00 103.68 1.96 80.24
s10
i,t (%) -0.03 -0.49 0.00 0.18 1.67 -67.49 89.16 1.87 143.34
s30
i,t (%) -0.02 -0.45 -0.01 0.22 2.18 -74.53 85.84 0.75 98.16

Independent variables

ri,t (%) 0.01 -0.78 0.00 0.83 1.64 -44.33 28.98 -0.65 18.61
∆σi,t (%) 0.00 -0.03 0.00 0.03 0.24 -19.80 15.28 -1.93 943.63
∆MRI1i,t -0.01 -0.20 0.00 0.14 1.15 -54.28 50.78 2.11 156.62
∆MRI3i,t -0.03 -0.48 0.00 0.27 1.92 -112.16 119.99 1.78 340.47
∆MRI5i,t -0.04 -0.49 -0.01 0.26 2.33 -171.28 164.54 0.81 721.00
∆MRI10

i,t -0.04 -0.50 -0.01 0.36 2.58 -222.69 210.01 -2.09 1221.55
∆MRI30

i,t -0.04 -0.54 -0.02 0.41 3.07 -230.02 215.69 -1.69 683.98
∆CR1

t 0.00 -0.28 0.00 0.26 1.02 -11.34 10.28 -0.37 27.89
∆CR3

t -0.01 -0.50 0.00 0.50 1.31 -10.03 8.70 0.17 11.29
∆CR5

t -0.01 -0.50 0.00 0.48 1.52 -9.38 12.81 0.98 16.99
∆CR10

t -0.01 -0.50 0.01 0.50 1.77 -24.38 16.86 -1.10 36.88
∆CR30

t 0.00 -0.52 0.01 0.54 2.09 -22.06 16.89 -0.86 26.12

North America

Dependent variables

s1
i,t (%) -0.05 -0.66 0.00 0.24 7.00 -272.69 310.39 0.88 73.23
s3
i,t (%) -0.05 -0.62 0.00 0.17 3.06 -84.50 113.88 1.26 42.57
s5
i,t (%) -0.04 -0.52 0.00 0.13 2.30 -84.93 106.74 1.58 56.44
s10
i,t (%) -0.03 -0.41 0.00 0.14 2.15 -84.67 95.49 0.74 96.40
s30
i,t (%) -0.02 -0.38 -0.01 0.17 2.40 -87.95 110.88 0.41 135.47

Independent variables

ri,t (%) 0.03 -0.73 0.01 0.85 1.81 -42.79 42.06 -0.31 24.14
∆σi,t (%) 0.00 -0.03 0.00 0.03 0.29 -25.81 18.21 -3.97 874.90
∆MRI1i,t -0.01 -0.17 0.00 0.10 0.97 -28.92 41.83 0.86 95.10
∆MRI3i,t -0.03 -0.30 0.00 0.18 1.68 -96.49 112.05 0.89 456.40
∆MRI5i,t -0.04 -0.47 -0.01 0.22 2.30 -161.90 188.12 0.16 1174.07
∆MRI10

i,t -0.04 -0.55 -0.01 0.37 2.84 -197.51 214.31 0.004 1057.63
∆MRI30

i,t -0.04 -0.65 -0.01 0.46 3.10 -196.34 231.70 -0.83 846.14
∆CR1

t 0.01 -0.25 0.00 0.26 0.81 -5.38 6.18 0.31 13.45
∆CR3

t 0.00 -0.48 0.00 0.42 1.41 -11.08 16.73 0.77 25.99
∆CR5

t 0.00 -0.62 0.00 0.50 2.46 -22.32 54.54 6.50 158.07
∆CR10

t 0.00 -0.90 0.01 0.76 3.48 -21.68 71.42 6.17 130.86
∆CR30

t 0.00 -1.04 -0.01 0.96 3.92 -31.10 51.19 1.53 37.48

Table 1: This table presents descriptive statistics (mean, 1st quartile, median, 3rd quartile, standard deviation, minimum,
maximum, skewness, kurtosis) for all independent and dependent variables (except term structure variables) in our sample.
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spreads vary according to whether firms have conditionally high or low credit risk. Koutmos
(2019) finds that the impacts of the explanatory variables on CDS spread changes depend
on the overall conditions of the credit market.

We adopt the QR framework for a panel setup with firm-specific fixed effects. Formally, let
yi,t be the response of firm i at time t and xi,t the m-dimensional covariate vector where
i = 1, . . . , N and t = 1, . . . , T . For a fixed quantile level τ ∈ (0, 1), the conditional quantile
of yi,t given xi,t is

Qyi,t (τ |xi,t) = ατ,i + x′i,tβτ + εi,t,

where ατ,i are the firm-specific fixed effects parameters and εi,t is the error term. Note that
this model cannot be straightforwardly estimated using the standard centering decomposi-
tion, as conditional quantiles are not linear operators. Consequently, numerous estimation
techniques have been established over the past two decades (Koenker, 2004; Canay, 2011;
Kato et al., 2012; Galvao and Wang, 2015; Galvao and Kato, 2016).32 We follow Zhang et al.
(2019) and implement a two-stage approach to estimate the parameter vector βτ .33 In a first
stage, we run firm-specific quantile regressions to estimate the fixed effects αt,i(

α̃τ,i, β̃τ,i

)
= argmin

a∈Aτ ,b∈Θτ

1

T

T∑
t=1

ρτ
(
yi,t − a− x′i,tb

)
,

where Aτ ∈ R,Θτ ∈ Rm and ρτ (u) = u
(
τ − 1{u<0}

)
denotes the quantile loss function.

Provided T is sufficiently large, α̃τ,i is
√
T -consistent estimate of ατ,i and so yit− α̃τ,i can be

considered a proper approximation of yit − ατ,i. In a second stage, we then estimate

β̂τ = argmin
b∈Θτ

1

NT

N∑
i=1

T∑
t=1

ρτ
{
yi,t − x′i,tb− α̃τ,i

}
.

The estimator at hand is easily implemented and, due to the dimensionality reduction, com-
putationally inexpensive. However, to get reliable fixed effects estimates in the first stage, it
is crucial to have sufficient data on the T dimension. Hence, most previous studies relying on
lower frequency data, instead apply a pooling approach or consider a quantile-independent
αi.

To gauge the significance of the estimates, we rely on the asymptotic normality of βτ . Specif-
ically, inference within the panel QR framework is based on the asymptotic result

√
NT

(
β̂τ − βτ

)
d→ N

(
0,Λ−1

τ VτΛ
−1
τ

)
,

where Λ−1
τ VτΛ

−1
τ is the sandwich formula for the variance–covariance matrix. To estimate

Λ−1
τ VτΛ

−1
τ we follow Yoon and Galvao (2016) and estimate robust variants of Λτ and Vτ that

account for heteroscedasticity and serial correlation.34

32A comprehensive overview of QR methods can be found in Koenker et al. (2017).
33Initially introduced to model different effects across subgroups, Zhang et al. (2019) propose a cluster-

based fixed effects estimator for the group-specific slopes. Imposing the homogeneous slope assumption
results in an estimator with quantile-specific fixed effects.

34An alternative approach for the estimation of standard errors in a panel QR setting is bootstrapping
(see Hagemann, 2017). This is commonly used when the data sample is small, as convergence rates of the
asymptotic estimates can be slow. This is not the case for the sample at hand.

21



4 Empirical results

4.1 The general and regional impact of carbon risk

In this subsection, we examine the relationship between the CR factor (proxy for the general
perception of carbon risk exposure) and CDS spread returns. Following prior literature on
CDS (Collin-Dufresne et al., 2001; Ericsson et al., 2009; Galil et al., 2014; Pereira et al.,
2018) we include key known determinants of CDS spread returns in the baseline quantile
regression, as follows:

Qsmi,t
(τ |xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRIi,t + βτ,4∆CRt + εi,t,

where, for the CDS issued by firm i, day t, we consider firm-specific factors (i.e. stock return
ri,t and volatility ∆σi,t), a common factor (i.e. the market condition ∆MRIi,t) and, finally,
the market-implied factor for carbon risk exposure ∆CRt.

The regression is run for every decile τ ∈ {0.1, . . . , 0.9} to model the effect of each explanatory
variable on the entire conditional distribution of CDS spread returns. In this way, we are
able to model the relationship between CDS spread returns and the CR factor for firms that
behave according to the median of the conditional distribution, as well as for firms that
overperform or underperform relative to the median.35 Note that (i) an increase in the CDS
spread {τ > 0.5} reflects a deterioration in a firm’s creditworthiness (credit deterioration), (ii)
a decrease in the CDS spread {τ < 0.5} reflects an improvement in a firm’s creditworthiness
(credit improvement), and (iii) the mid-decile {τ = 0.5} corresponds to the unchanged CDS
spread case (invariant credit). In essence, the quantile regression allows us to distinctly
examine the effect of each explanatory variable along the entire distribution of credit spread
returns and, at the same time, investigate the marginal impact of carbon risk above and
beyond these explanatory variables.

Figure 4 reports the estimated coefficients at the first, fifth, and ninth deciles for three key
tenors in Europe.36 For completeness, Figure 4 also includes coefficient estimates from a
fixed-effect (FE) model estimated using ordinary least squares (OLS).37 First, focusing on
the QR results across all maturities, we observe a positive relationship between CDS spread
returns and the CR factor. That is, an increase in the market’s perception of carbon risk is
associated with a rise in CDS spread returns. The coefficients are statistically significant at
the 1% level and are also economically significant. For example, considering the 5Y tenor
and τ = 0.5, a one standard deviation increase in the perceived carbon risk exposure (1.52) is
associated with a rise of 0.08 (= 1.52×0.05097) percentage points in the median CDS spread

35It is important to note that the notion of performance here refers to the credit dimension, and does not
include unobserved firm-specific fundamental factors – these are incorporated in the fixed effects. Instead,
the performance shock may be thought of as an idiosyncratic shock (e.g. good or bad news) causing a change
in a firm’s credit performance.

36The coefficients for each decile across all tenors under study can be found in the Appendix G.
37OLS estimates give an average effect of the explanatory variables on CDS spread returns across the entire

sample, offering a baseline comparison. This is useful for understanding the overall relationship between
variables under standard conditions.

22



return.38 To contextualize this impact, assuming a 5-year CDS contract with a notional value
of US$100million and a spread of 100 basis points (hence a yearly premium of US$1million),
a one standard deviation rise in the CR factor equates to an additional estimated annual cost
of US$0.21million in protection expenses.

Second, starting from the median value τ = 0.5, we observe that the coefficients are larger
toward the ninth and first deciles. Essentially, the more the firm’s credit improves or dete-
riorates, the larger the effect of the CR factor. Notably, the effect increases symmetrically
– the coefficients are virtually the same for a given distance from the median, whether left
or right. Essentially, an increase (decrease) in the CR factor, indicating greater (lesser) ex-
posure to carbon risk, amplifies the existing deterioration (enhancement) in creditworthiness
for firms experiencing a significant positive (negative) CDS spread shock. In fact, at the
extremes, a one standard deviation rise in the CR factor corresponds to an estimated saving
of US$0.40million (first decile), or an extra cost of US$0.55million (ninth decile), for every
US$100million exposure. These results are consistent with Hypothesis 1: there is a posi-
tive relationship between carbon risk and CDS spread returns. The relationship significantly
intensifies for firms undergoing exceptionally large positive or negative shocks in the credit
market.

Next we examine Hypothesis 2, which posits that the effect of carbon risk is stronger in
Europe than in North America. We re-estimate our baseline QR separately for each North
American tenor. Consistent with the prediction of Hypothesis 2, Figure 5 shows a weaker
relationship between CDS spread returns and the CR factor for the North American sample.
For instance, considering the 5Y tenor, the coefficient estimate of the CR factor for the
median CDS spread return is approximately 20 times smaller than its European counterpart.
Interestingly, the symmetrical intensification of the effect persists as we move towards the
extremes of the distribution.
To better understand the difference in the results between Europe and North America, it is
crucial to examine the carbon pricing regulations prevalent in each region (Pryor et al., 2023).
Europe has been at the forefront of implementing explicit carbon pricing mechanisms, most
notably through the EU ETS. This system mandates companies to pay for emission permits,
effectively introducing a direct cost for emitting carbon dioxide and other greenhouse gases.
Since these costs can directly impact companies’ operational expenses and profitability, such
explicit carbon pricing may have a more salient and pronounced effect on firms’ financials.
These financial implications are likely to be reflected in their CDS spread returns. On the
other hand, North America has predominantly relied on non-pricing emissions regulations
(Aldy et al., 2022). In fact, neither the US nor Canada have very much explicit carbon
pricing at national or subnational levels. The US and Canada are more likely to opt for
policies that have the effect of reducing emissions, but without directly targeting carbon.
At the US federal level, these include tax credits for renewable energy, electric vehicle tax
credits, vehicle fuel economy standards, other efficiency standards, and the renewable fuel
standard (Aldy et al., 2022). While these non-pricing regulations can still impose costs on

38In comparison to the CR factor, a one standard deviation increase in the MRI (2.33), which is the most
significant driver of CDS spread returns, increases the median CDS spread return by 0.9 (= 2.33× 0.38815)
percentage points. MRI and carbon risk contribute, respectively, 17% and 2% to the standard deviation of
the CDS spread return.
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1Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
StockReturn −414.24∗∗∗ −81.90∗∗∗ −436.19∗∗∗ −4.78∗∗∗

(14.24) (3.36) (23.71) (0.29)
∆Volatility −581.53∗∗∗ 35.82∗ 1106.00∗∗∗ 4.67∗∗∗

(32.27) (13.98) (37.66) (0.94)
∆MRI 1608.99∗∗∗ 1433.21∗∗∗ 1831.08∗∗∗ 17.86∗∗∗

(34.20) (36.27) (92.70) (1.54)
∆CR 349.28∗∗∗ 126.31∗∗∗ 445.79∗∗∗ 4.84∗∗∗

(22.10) (7.97) (29.92) (0.43)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

3Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
StockReturn −305.04∗∗∗ −82.06∗∗∗ −362.10∗∗∗ −3.75∗∗∗

(8.06) (3.23) (15.23) (0.20)
∆Volatility −500.54∗∗∗ 33.27∗ 948.30 3.90∗∗∗

(59.56) (14.55) (30.33) (0.56)
∆MRI 638.54∗∗∗ 645.99∗∗∗ 748.49∗∗∗ 6.54∗∗∗

(17.32) (15.23) (40.51) (0.58)
∆CR 271.37∗∗∗ 87.44∗∗∗ 239.89∗∗∗ 3.05∗∗∗

(8.67) (4.67) (18.22) (0.21)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

5Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
StockReturn −198.54∗∗∗ −52.32∗∗∗ −231.51∗∗∗ −2.60∗∗∗

(4.95) (2.00) (9.14) (0.14)
∆Volatility −335.62∗∗∗ 16.11· 650.17 3.04∗∗∗

(20.04) (8.43) (11.76) (0.45)
∆MRI 379.33∗∗∗ 388.15∗∗∗ 447.97∗∗∗ 3.32∗∗∗

(9.78) (8.96) (15.03) (0.29)
∆CR 132.63∗∗∗ 50.97∗∗∗ 115.18∗∗∗ 1.62∗∗∗

(3.61) (3.32) (6.19) (0.11)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

10Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
StockReturn −135.14∗∗∗ −38.63∗∗∗ −159.59∗∗∗ −1.83∗∗∗

(3.35) (1.44) (6.46) (0.11)
∆Volatility −234.11∗∗∗ 7.00· 436.88 1.74∗∗∗

(13.59) (4.00) (7.88) (0.33)
∆MRI 264.37∗∗∗ 270.45∗∗∗ 304.63∗∗∗ 2.02∗∗∗

(5.32) (5.76) (7.65) (0.19)
∆CR 80.74∗∗∗ 34.46∗∗∗ 76.91∗∗∗ 1.09∗∗∗

(2.18) (1.82) (4.72) (0.08)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Figure 4: Left panels: Coefficient estimates of the base panel QR model as well as the mean (OLS) regression model for 1-year
(top), 3-year (upper center), 5-year (lower center), and 10-year (bottom) CDS spread returns. The sample comprises data for
119 European firms from 2013/01/01 to 2019/12/31 in daily frequency. Estimates and standard errors (in brackets) are reported
for the 1st, 5th, and 9th decile, and the mean. All estimates are scaled by factor 1000. Right panels: Graphic visualization of
the ∆CR QR estimates for all nine deciles. The pink-shaded area indicates the 95% confidence interval. The blue dashed line
represents the respective value of the OLS estimate.
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1Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
StockReturn −257.76∗∗∗ −18.97∗∗∗ −274.10∗∗∗ −4.02∗∗∗

(12.91) (1.15) (17.54) (0.26)
∆Volatility −603.47∗∗∗ 6.69 961.42 3.85∗∗∗

(35.80) (4.39) (100.12) (0.85)
∆MRI 768.00∗∗∗ 136.48∗∗∗ 1040.43∗∗∗ 13.20∗∗∗

(42.05) (11.85) (74.67) (0.84)
∆CR 11.97 1.79∗∗ 76.53∗∗∗ 1.08∗∗

(9.70) (0.68) (16.13) (0.39)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

3Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
StockReturn −228.51∗∗∗ −40.72∗∗∗ −224.44∗∗∗ −2.97∗∗∗

(7.07) (1.63) (10.94) (0.18)
∆Volatility −378.54∗∗∗ 6.65 742.54 2.15∗∗∗

(27.89) (4.68) (27.34) (0.39)
∆MRI 286.68∗∗∗ 176.04∗∗∗ 417.01∗∗∗ 4.14∗∗∗

(10.64) (7.47) (15.79) (0.27)
∆CR 24.83∗∗∗ 1.44∗∗ 23.55∗∗∗ 0.51∗∗∗

(3.45) (0.48) (6.05) (0.10)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

5Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
StockReturn −186.54∗∗∗ −39.26∗∗∗ −182.94∗∗∗ −2.58∗∗∗

(4.94) (1.60) (6.66) (0.16)
∆Volatility −326.67∗∗∗ 13.24∗ 630.46 2.19∗∗∗

(14.61) (5.70) (8.88) (0.38)
∆MRI 205.82∗∗∗ 156.34∗∗∗ 283.21∗∗∗ 2.45∗∗∗

(7.27) (5.72) (8.86) (0.20)
∆CR 18.27∗∗∗ 2.64∗∗∗ 37.96∗∗∗ 0.43∗∗∗

(1.28) (0.31) (4.20) (0.04)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

10Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
StockReturn −137.33∗∗∗ −25.89∗∗∗ −138.23∗∗∗ −1.88∗∗∗

(3.33) (1.14) (5.83) (0.12)
∆Volatility −232.67∗∗∗ 9.83∗ 469.83 1.71∗∗∗

(12.97) (4.05) (10.83) (0.31)
∆MRI 128.02∗∗∗ 72.55∗∗∗ 168.73∗∗∗ 1.43∗∗∗

(4.28) (3.89) (7.43) (0.11)
∆CR 10.61∗∗∗ 0.61∗∗∗ 8.41∗∗∗ 0.18∗∗∗

(0.86) (0.12) (1.90) (0.03)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Figure 5: Left panels: Coefficient estimates of the base panel QR model as well as the mean (OLS) regression model for 1-year
(top), 3-year (upper center), 5-year (lower center), and 10-year (bottom) CDS spread returns. The sample comprises data for
164 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. Estimates and standard errors (in brackets) are
reported for the 1st, 5th, and 9th decile, and the mean. All estimates are scaled by factor 1000. Right panels: Graphic
visualization of the ∆CR QR estimates for all nine deciles. The pink-shaded area indicates the 95% confidence interval. The
blue dashed line represents the respective value of the OLS estimate.
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firms, such as through compliance and operational adjustments, they do not have the same
direct and immediate financial implications as an explicit carbon price. This difference in
regulatory approach could be a significant factor in the weaker relationship between CDS
spread returns and the CR factor in North America compared to Europe. Fundamentally,
the direct carbon costs incurred by European companies under explicit pricing regulations
might result in more noticeable changes in their exposure to carbon risk. This is reflected in
CDS spreads. This contrasts with the more indirect financial impacts experienced by North
American firms operating under non-explicit pricing regulations. The presence or absence
of explicit carbon pricing, and its implications for credit risk perception, is the focus of our
subsequent analysis.

4.2 Explicit carbon pricing matters

The disparity in the regulatory landscape between Europe and North America begs further
investigation into how the scope and stringency of carbon policies differentially shape lenders’
perceptions. To interrogate this, we make use of CDP (formerly the Carbon Disclosure
Project) questionnaires. The CDP, a global disclosure system that enables companies to
measure and manage their environmental impacts, has been instrumental in shedding light
on how firms are affected by and respond to carbon pricing regulations. Originally capturing
whether companies were subject to mandatory carbon pricing at the time of responding, the
questionnaire has evolved over time to capture anticipated pricing regulation as well.

(a) Europe (b) North America

Figure 6: Breakdown of North American (left panel) and European (right panel) firms, categorizing them by their exposure to
carbon price regulation, versus those not subject to such regulation or who did not respond to the survey.

CDP questionnaire responses reveal that 25% of the North American firms, but 50% of the
European firms, in our sample are subject to explicit carbon pricing, as illustrated in Figure
6. The significant difference in explicit carbon pricing coverage between Europe and North
America underscores the varying scope of regulations.39

39In the context of carbon pricing, the scope of regulations refers to the range and extent of sectors and
activities that are covered by carbon pricing mechanisms.
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The difference between Europe and North America, in terms of the relationship between CDS
spread returns and the CR factor, can potentially be explained by this difference in carbon
pricing coverage, coupled with differing levels of regulatory pressure.40 This observation
forms the premise of Hypothesis 3. To test this hypothesis, we turn to question C11.1 of the
CDP questionnaire, which inquires, “Are any of your operations or activities regulated by
a carbon pricing system (i.e. Emission Trading System, Cap and Trade or Carbon Tax)?”
This question not only captures the current scope of regulations but also anticipates future
carbon policy changes. If companies respond positively to this question, they are then asked
to identify the specific systems that apply to them. Utilizing this information, we can classify
companies according to whether, and with what stringency, they are currently or expect to
be regulated. We classify companies into four distinct categories. First, those that did
not provide any feedback are labeled as “No response”. Those who confirmed that they are
not under any carbon regulation are categorized as “No”. Companies that are not currently
regulated, but expect to be in the future, we termed “No but anticipation”. Finally, companies
that are actively regulated or subject to emission pricing are grouped under “Yes”. With this
refined classification in hand, we re-estimate our baseline QR for each European and North
American tenor. This enables us to investigate whether explicit carbon pricing can more
accurately account for the observed variations in CDS spread returns. In particular, we
estimate the following model:

Qsmi,t
(τ |xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRImi,t + βτ,4∆CRm

t

+
7∑
j=5

βτ,jETSi +
10∑
k=8

βτ,k(∆CRm
t × ETSi,t) + εi,t,

where ETSi,t denotes firm i’s response to question C11.1 from the CDP questionnaire at time
t.
Figure 7 reports the coefficient estimates of the interaction terms for the 5-year model of the
European sample.41 Figure 7 reveals that being subject to direct carbon pricing matters.
Firms not subject to carbon pricing regulations, or those who did not respond to the ques-
tion, show reduced exposure to carbon risk, evidenced by a significantly weaker relationship
between CDS spread returns and the CR factor. On the other hand, firms operating under
explicit carbon pricing (∆CR × ETS (Yes)) exhibit a markedly higher exposure to carbon
risk. Their coefficient estimates are roughly twice as large as those for firms not governed
by explicit price regulation. For firms under direct carbon pricing, a rise in the CR fac-
tor equates to an estimated additional annual cost of US$0.35million per US$100million of
exposure, which is thrice the impact experienced by firms not under direct carbon pricing.
This stark difference underscores the heightened financial implications these companies face,
as they grapple with the tangible costs of explicit carbon pricing mandates. This holds
across both Europe and North America, underscoring the marked influence of being subject
to direct carbon pricing on perceived carbon risk. The lenders’ market, in its characteristic

40In examining the bond market, Seltzer et al. (2024) finds a greater impact on the credit risk of firms
operating in states with stricter environmental regulations.

41The estimation results for the remaining maturities do not differ qualitatively, as reported in Appendix
G.
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Europe
5Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
∆CR× ETS (No response) 84.50∗∗∗ 27.48∗∗∗ 69.15∗∗∗ 1.24∗∗∗

(12.82) (5.20) (16.70) (0.23)
∆CR× ETS (No) 102.30∗∗∗ 30.80∗∗∗ 75.96∗∗∗ 1.03∗∗∗

(11.35) (5.14) (8.82) (0.15)
∆CR× ETS (No but anticipation) 34.48 8.16 1.11 0.25

(37.67) (14.54) (22.80) (0.27)
∆CR× ETS (Yes) 184.25∗∗∗ 78.59∗∗∗ 177.04∗∗∗ 2.12∗∗∗

(5.00) (5.10) (14.49) (0.17)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

North America
5Y τ = 0.1 τ = 0.5 τ = 0.9 OLS
∆CR× ETS (No response) 19.55∗∗∗ 2.70∗∗∗ 40.07∗∗∗ 0.38∗∗∗

(1.70) (0.61) (5.77) (0.07)
∆CR× ETS (No) 13.44∗ 2.00∗∗∗ 31.18∗∗∗ 0.32∗∗∗

(5.72) (0.52) (7.30) (0.06)
∆CR× ETS (No but anticipation) 31.20∗∗∗ 2.44 60.29∗ 0.37∗∗∗

(5.56) (1.63) (28.96) (0.07)
∆CR× ETS (Yes) 36.04∗∗∗ 6.33∗∗∗ 77.27∗∗∗ 0.66∗∗∗

(1.68) (1.60) (9.56) (0.09)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Figure 7: Left panels: Coefficient estimates of the ETS QR model as well as the respective mean (OLS) regression model for
5-year CDS spread returns in Europe (top) and North America (bottom). The sample comprises data for 119 European firms
and 164 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. Estimates and standard errors (in brackets)
are reported for the 1st, 5th, and 9th decile, and the mean. All estimates are scaled by factor 1000. Right panels: Graphic
visualization of all ETS interaction estimates for all nine deciles. The blue dashed line represents the zero line.

forward-looking manner, appears to be acutely sensitive to these differences in regulatory
exposure, adjusting its perception of carbon risk accordingly.
The impact of explicit carbon pricing is evident, and transcends the binary existence or
absence of regulation. The extent of a firm’s affectedness, determined by the proportion
of its direct emissions subject to these regulations and the stringency of the policy, are
also important considerations. For example, two firms facing direct carbon pricing may
be subject to differing levels of stringency within the regulation, leading to significantly
different implications for their credit risk. This brings into focus the per-ton cost of carbon
price regulation, which can provide a more accurate measure of a firm’s exposure to carbon
risk.42 We examine this dimension through Hypothesis 4, aiming to elucidate the role of
policy stringency – the proportion of a firm’s direct emissions subject to regulation – as a
crucial factor in carbon risk.
To that end, we compute the ratio of verified emissions to total direct emissions. Verified
emissions are the officially measured, reported, and independently validated greenhouse gases
emitted by a firm. We derive this data from the CDP questionnaire to reflect the share of
a firm’s emissions officially subject to carbon pricing. The firm’s total emissions profile,
drawn from Refinitiv LSEG data, provides information on Scope 1 emissions – those emitted
directly from sources owned or controlled by the firm. By comparing verified emissions with
total direct emissions, we can assess policy stringency and its effect on the credit risk faced

42This approach parallels the ECB and ESRB (2022) method of using the emission-to-allowance gap to
gauge firms’ exposure to transition risk.
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5Y (Europe) τ = 0.1 τ = 0.5 τ = 0.9 OLS
∆CR× ETS (No response) 84.41∗∗∗ 27.43∗∗∗ 69.15∗∗∗ 1.24∗∗∗

(12.66) (5.19) (16.70) (0.23)
∆CR× ETS (Yes)× ETS Share 21.18 57.10∗∗ 0.60 0.85

(14.69) (18.67) (44.55) (0.60)
∆CR× ETS (No) 102.32∗∗∗ 30.80∗∗∗ 75.98∗∗∗ 1.03∗∗∗

(11.35) (5.13) (8.83) (0.15)
∆CR× ETS (No but anticipation) 32.95 8.40 1.12 0.25

(38.66) (14.60) (22.80) (0.27)
∆CR× ETS (Yes) 175.34∗∗∗ 59.73∗∗∗ 176.75∗∗∗ 1.80∗∗∗

(7.52) (6.79) (25.34) (0.24)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

5Y (North America) τ = 0.1 τ = 0.5 τ = 0.9 OLS
∆CR× ETS (No response) 19.56∗∗∗ 2.70∗∗∗ 40.09∗∗∗ 0.38∗∗∗

(1.71) (0.60) (5.79) (0.07)
∆CR× ETS (Yes)× ETS Share 69.49∗∗ 28.08∗ 84.85 0.36

(26.77) (14.14) (216.73) (0.85)
∆CR× ETS (No) 13.44∗ 2.01∗∗∗ 31.14∗∗∗ 0.32∗∗∗

(5.75) (0.52) (7.31) (0.06)
∆CR× ETS (No but anticipation) 31.21∗∗∗ 2.44 60.29∗ 0.37∗∗∗

(5.48) (1.63) (28.95) (0.07)
∆CR× ETS (Yes) 31.54∗∗∗ 3.99∗ 70.18∗∗∗ 0.63∗∗∗

(4.56) (1.55) (17.10) (0.10)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Figure 8: Left panels: Coefficient estimates of the ETS share QR model as well as the respective mean (OLS) regression model
for 5-year CDS spread returns in Europe (top) and North America (bottom), respectively. The sample comprises data for 119
European firms and 164 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. Estimates and standard
errors (in brackets) are reported for the 1st, 5th, and 9th decile, and the mean. All estimates are scaled by factor 1000. Right
panels: Graphic visualization of the ∆CR × ETS(Yes) × ETS share QR estimates for all nine deciles. The pink-shaded area
indicates the 95% confidence interval. The blue dashed line represents the respective value of the OLS estimate.

by firms. Formally, our model reads

Qsmi,t
(τ |xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRImi,t + βτ,4∆CRm

t

+
7∑
j=5

βτ,jETSi +
10∑
k=8

βτ,k(∆CRm
t × ETSi,t)

+ βτ,11(∆CRm
t × ETS(Yes)i,t × ETS Sharei,t) + εi,t,

where ETS(Yes)i,t is a dummy that takes the value 1 if firm i is subject to an ETS at time t,
and zero otherwise. ETS Sharei,t denotes firm i’s share of regulated emissions to their total
emissions at time t.

In Figure 8, we present the key coefficient estimates, specifically focusing on the interaction
term ∆CR×ETS (Yes) and the double interaction term ∆CR×ETS (Yes)×ETS Share. We
restrict the discussion to the 5-year model within the European and North American sam-
ples.43 The coefficients reported in the table reveal that the greater the share of a firm’s total
direct (Scope 1) emissions are covered by carbon pricing regulation, the more pronounced the
CR factor’s impact becomes. Specifically, firms with a larger fraction of their emissions regu-
lated by carbon pricing show increased sensitivity to CR factor fluctuations. This holds true
for both the European and the North American samples, with the effect being significantly
more marked in Europe. A 1% increase in the percentage of total emissions under regula-
tion equates to an estimated additional annual cost of US$0.24million per US$100million of
exposure in Europe and US$0.11million per US$100million of exposure in North America.
This underscores the importance of accounting for carbon policy stringency, as it has a direct
bearing on how the firm’s credit profile responds to perceived carbon risks.

43The estimation results for the remaining maturities do not differ qualitatively, as reported in Appendix
G.
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So far, we have observed the exposure of the average firm in Europe and North America to
carbon risk. However, carbon regulation frequently hinges on the specific emissions profile
of an industry. Heavy manufacturing and energy production, for example, inherently in-
volve processes that emit substantial amounts of carbon.44 Consequently, companies in these
industries are more likely to be subject to carbon pricing, as illustrated in Figure 9.

(a) Europe (b) North America

Figure 9: The proportion of firms across sectors subject to carbon pricing is represented by bars, while the average share of
emissions under regulation (verified against Scope 1 emissions) per sector is represented by the red line.

Hypothesis 5 proposes that lenders primarily base their assessment of carbon risk on industry
categorizations, rather than on individual company characteristics, and may not perform a
nuanced analysis of the diverse intrasectoral exposure. To test this hypothesis, we regroup the
firms according to LSEG’s nine sectors, as described in the Refinitiv Business Classification
(RBC), and re-estimate our baseline QR.45 We include sector dummies and interaction terms
with our CR factor in the baseline regression:

Qsmi,t
(τ |xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRImi,t + βτ,4∆CRm

t

+
12∑
j=5

βτ,jSectori +
20∑

k=13

βτ,k(Sectori ×∆CRm
t ) + εi,t,

where Sectori indicates firm i’s Refinitiv Business Classification.

Figure 10 reports the coefficient estimates of the interaction terms for the 5-year sector model
of the European and North American samples, respectively.46 Figure 10 reveals important
sectoral differences. Specifically, the interaction term is both positive and highly significant
for firms within the Basic Materials and Energy sectors. This indicates a strong and direct
correlation between increased carbon risk and CDS spread returns in these sectors. Utilities

44A growing body of empirical literature identifies activities directly related to the production of energy
and emissions-intensive goods, especially steel and cement (Dietz et al., 2020), as the most exposed categories.

45A detailed description of the Refinitiv Business Classification RBC is available here.
46The estimation results for the remaining maturities do not differ qualitatively, as reported in Appendix

G.
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5Y (Europe) τ = 0.1 τ = 0.5 τ = 0.9 OLS
BM×∆CR 153.23∗∗∗ 54.34∗∗∗ 139.93∗∗∗ 1.73∗∗∗

(8.33) (8.00) (10.24) (0.22)
CCGS×∆CR 130.35∗∗∗ 47.96∗∗∗ 94.18∗∗∗ 1.35∗∗∗

(6.09) (6.80) (23.93) (0.26)
Energy×∆CR 423.46∗∗∗ 284.61∗∗∗ 489.91∗∗∗ 4.30∗∗∗

(29.68) (34.37) (46.42) (0.35)
Healthcare×∆CR 119.06∗∗∗ 19.59∗ 106.36∗∗∗ 1.04∗∗

(20.63) (9.58) (19.84) (0.40)
Industrials×∆CR 123.93∗∗∗ 36.34∗∗∗ 106.18∗∗∗ 1.42∗∗∗

(6.89) (7.05) (19.01) (0.26)
NCGS×∆CR 93.26∗∗∗ 11.95∗∗∗ 72.63∗∗∗ 0.89∗∗∗

(21.76) (3.53) (14.50) (0.19)
Real Estate×∆CR 107.29∗∗∗ 25.14· 102.42∗∗∗ 1.25∗

(9.82) (13.19) (12.62) (0.49)
Technology×∆CR 130.55∗∗∗ 47.87∗∗∗ 83.89∗∗∗ 1.18∗∗∗

(16.50) (8.97) (12.30) (0.23)
Utilities×∆CR 172.65∗∗∗ 110.75∗∗∗ 148.95∗∗∗ 2.56∗∗∗

(11.27) (15.04) (27.28) (0.45)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

5Y (North America) τ = 0.1 τ = 0.5 τ = 0.9 OLS
BM×∆CR 46.05∗∗∗ 17.42∗∗∗ 97.91∗∗∗ 0.88∗∗∗

(4.47) (5.07) (9.91) (0.14)
CCGS×∆CR 19.72∗∗∗ 2.61∗∗∗ 44.03∗∗∗ 0.34∗∗∗

(2.61) (0.75) (9.88) (0.07)
Energy×∆CR 61.60∗∗∗ 19.12∗∗∗ 166.85∗∗∗ 1.19∗∗∗

(5.53) (4.83) (30.82) (0.14)
Healthcare×∆CR 13.57∗∗∗ 0.26 25.38 0.18∗∗

(2.24) (0.64) (17.86) (0.06)
Industrials×∆CR 12.34∗∗∗ 2.28∗∗ 31.77∗ 0.31∗∗

(1.24) (0.75) (14.42) (0.10)
NCGS×∆CR 5.79∗∗∗ 0.06 17.77∗ 0.24∗∗

(0.83) (0.40) (6.91) (0.07)
Real Estate×∆CR 44.66∗∗∗ 12.79 76.88∗∗∗ 0.81∗∗

(1.36) (9.50) (12.68) (0.26)
Technology×∆CR 7.68· 0.32 25.26∗∗∗ 0.17

(4.16) (0.91) (5.78) (0.12)
Utilities×∆CR 34.86∗∗∗ 4.32 63.32∗∗∗ 0.60∗∗∗

(6.06) (3.10) (14.08) (0.07)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Figure 10: Left panels: Coefficient estimates of the sector QR model as well as the respective mean (OLS) regression model for
5-year CDS spread returns in Europe (top) and North America (bottom). The sample comprises data for 119 European firms
and 164 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. Estimates and standard errors (in brackets)
are reported for the 1st, 5th, and 9th decile, and the mean. All estimates are scaled by factor 1000. Right panels: Graphic
visualization of all sectoral interaction estimates for all nine deciles. The blue dashed line represents the zero line.
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also exhibit this relationship, though to a slightly lesser degree. This indicates that industries
such as Basic Materials, Energy, and Utilities are especially sensitive to carbon risk, leading
to a heightened impact on CDS spread returns. This sensitivity is attributable to their
operational characteristics and the regulatory landscape to which they are subjected. The
pronounced effect observed in Europe can be attributed to the substantial portion of firms
within these sectors that are subject to carbon pricing – about 50% as illustrated in Figure 9.
The economic impact of these findings is significant: An increase in the CR factor translates
to an additional estimated cost of US$0.23million for Basic Materials, with the effect being
more than two times greater for Utilities (US$0.52million) and more than eight times greater
for Energy (US$1.94million) per US$100million of exposure. These findings echo previous
results in the equity market, highlighting that the economic impact of the carbon risk effect
intensifies when accounting for industry-specific exposures (Bolton and Kacperczyk, 2021).
However, we also quantify these impacts, providing a more detailed understanding.

4.3 Term structure

The earlier sections offer evidence of the dependency of firms’ credit risk on the scope and
stringency of carbon regulations. The regulatory environment is also an important determi-
nant of the speed with which the economy will decarbonize, creating a link between carbon
risk and the anticipated pace of transformation. We therefore shift our focus to examining
lenders’ expectations about how fast the transition to a low-carbon economy needs to be.
For instance, if a new carbon regulation with a more pressing deadline is introduced, do
lenders anticipate higher transition costs in the near term rather than the longer term? If so,
this expectation is likely reflected in the term structure of CDS spreads. By comparing the
adjustment in CDS spreads of shorter tenors against those with longer tenors, we can gauge
lenders’ projections regarding the pace of transition to a low-carbon economy. This compari-
son forms the basis of Hypothesis 6. To empirically test this, we examine how a change in the
expected temporal materialization of carbon risk affects the term structure of a firm’s credit
risk. This involves leveraging the CR factor’s slope, which represents the variation in carbon
risk across different time horizons, to derive insights about carbon risk over specific periods.
An upward shift in the CR slope suggests escalating default protection costs for longer-term
tenors. Then, we build up a model similar to the base model from Section 4.1, replacing
the relevant variables with the appropriate slope measures ∆CDSSlopemni,t and ∆CRSlopemnt .
We analyze the overall 10Y-1Y period, dividing it into a short-term slope (5Y-1Y) and a
long-term slope (10Y-5Y). This division enables us to assess whether an accelerated transfor-
mation towards a low-carbon economy is manifested in a more rapid deterioration of credit
quality in the near term compared to the long term. We thus estimate the model with the
inclusion of the term structure control variables:

Q∆CDSSlopemni,t (τ |xi,t) = ατ,i + βτ,1∆σi,t + βτ,2∆MRISlopemni,t + βτ,3∆IRt + βτ,4∆IR2
t

+ βτ,5∆Termt + +βτ,6∆CRSlopemnt + εi,t.

Figure 11 reports the estimation results for the entire period 10Y-1Y CR slope and for the
5Y-1Y and 10Y-5Y CR slopes for Europe and North America.47

47The results with the estimates for all control variables can be found in Tables 16 and 17 in Appendix G.

32



Europe τ = 0.1 τ = 0.5 τ = 0.9 OLS
5Y-1Y

∆CRSlope 37.08∗∗∗ 3.71∗∗∗ 25.34∗∗∗ 59.01∗∗∗

(2.43) (0.28) (2.93) (8.71)
10Y-5Y

∆CRSlope −1.34∗∗∗ −0.14∗∗∗ −0.43 −6.91∗∗

(0.28) (0.04) (0.45) (2.23)
10Y-1Y

∆CRSlope 45.35∗∗∗ 7.11∗∗∗ 30.99∗∗∗ 77.13∗∗∗

(1.69) (0.51) (3.39) (9.66)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

North America τ = 0.1 τ = 0.5 τ = 0.9 OLS
5Y-1Y

∆CRSlope 12.17∗∗∗ 0.66∗∗∗ 22.57∗∗∗ 70.23∗∗∗

(0.68) (0.12) (2.20) (8.12)
10Y-5Y

∆CRSlope −1.13· −0.00 −2.25∗∗ 2.98
(0.65) (0.02) (0.87) (5.19)

10Y-1Y
∆CRSlope 8.92∗∗∗ 0.14∗∗ 4.96∗∗∗ 39.16∗∗∗

(0.82) (0.05) (1.27) (6.69)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Figure 11: Left panels: Coefficient estimates of the term structure QR model as well as the respective mean (OLS) regression
model for 5Y-1Y, 10Y-5Y, and 10Y-1Y CDS spread slope changes in Europe (top) and North America (bottom). The sample
comprises data for 119 European firms and 164 North American firms from 2013/01/01 to 2019/12/31 in daily frequency.
Estimates and standard errors (in brackets) are reported for the 1st, 5th, and 9th decile, and the mean. All estimates are scaled
by factor 1000. Right panels: Graphic visualization of all three slope estimates for all nine deciles. The blue dashed line
represents the zero line.

The findings presented in Figure 11 suggest that an overall rise in the CR slope leads to a
steeper CDS curve across a decade, with this effect predominantly observed in the initial five
years in both Europe and North America. This indicates a quicker deterioration in credit
quality in the short term compared to the long term, reflecting lenders’ anticipation of more
immediate, significant financial impacts associated with an accelerated low-carbon transition.
This analysis has significant policy implications, directly informing the debate on fiscal and
monetary policies to mitigate the potential adverse effects of a disorderly transition, marked
by sudden repricing risks and the possibility of assets becoming stranded. Our findings
indicate that possible re-pricing activities, triggered by the potential acceleration of carbon
reduction efforts, are more likely to manifest in the short term. This is especially relevant for
central banks, given that collateral for monetary policy operations is often pledged for short
periods. Consequently, if carbon risk poses predominantly short-term challenges, central
banks might have a strong interest in closely monitoring carbon risk and its potential fallout.

5 Conclusions

The push towards net-zero carbon emissions necessitates a profound economic overhaul,
with carbon emission regulations potentially imposing significant costs affecting business
valuations. Recent studies highlight that firms with emissions-intensive models face greater
carbon risk compared to their low-carbon counterparts. We extend and qualify these results,
showing that the impact of carbon regulations on firm credit risk varies with the regulations’
scope, stringency, and the pace at which they mandate carbon transformation. Our findings
show that the influence of carbon regulations on credit risk is heavily contingent upon these
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dimensions, which collectively determine the true effect and fiscal consequences of carbon
policies. This insight is essential for understanding how carbon emission regulations shape
lenders’ evaluation and pricing of firms’ carbon risk exposure.

Using daily spreads of Credit Default Swap (CDS) contracts, we construct a market-implied,
high-frequency, and forward-looking carbon risk (CR) factor that reflects the changing per-
ceptions of overall carbon risk. This CR factor is defined by the differential in daily median
CDS spreads between firms with high emission intensity (polluters) and those with low emis-
sion intensity (clean). This difference serves to gauge the lending market’s perception of the
relative carbon risk exposure of polluting versus clean firms.

We then study how carbon risk affects firms’ creditworthiness using daily CDS data for more
than 280 firms in Europe and North America for the period from 2013 to 2019. We find a
positive relationship between lenders’ perceived exposure to carbon risk – our CR factor –
and firms’ cost of default protection. Using quantile regression, we show that an increase in
the CR factor leads to a doubling of its impact on the increase in CDS spread returns when
firms experience extraordinary credit movements (i.e. when a firm’s credit improvement or
deterioration is especially strong). This speaks directly to the relevance of this work for the
risk management practices of institutional investors and regulators.
Carbon risk exposure shows significant differences across regions, reflecting the disparity in
carbon regulations between Europe and North America. The impact of carbon risk on CDS
spread returns is notably stronger in Europe, where explicit carbon pricing mechanisms are
more prevalent, compared to North America. Despite regional differences, it is crucial to
recognize that not every firm in our sample is subject to carbon pricing regulation. Firms
that are currently subject to, or expect to be subject to, explicit carbon pricing experience a
significantly higher exposure to carbon risk. This holds in both Europe and North America,
highlighting the substantial impact that direct carbon pricing has on the perception of carbon
risk. But the impact on firms goes beyond the mere existence or absence of regulation;
the influence of carbon risk on CDS spread returns is also contingent upon the regulated
proportion of a firm’s direct emissions, evident in both Europe and North America. This
highlights the critical role of carbon policy stringency, directly affecting a firm’s credit profile
in response to perceived carbon risks. Finally, we find that the degree of regulatory coverage
over a sector’s emissions amplifies the effect of carbon risk on CDS spread returns. Lenders
view firms in the carbon-intensive sectors of Basic Materials, Utilities, and Energy as bearing
increased risks. This perception is primarily due to these high-emission sectors frequently
falling within the scope of carbon policies and facing more stringent regulations. Last, we
find that carbon risk is shaped by more than just the scope and stringency of regulations; it is
also affected by the anticipated pace of the transition to a low-carbon economy. When there
is an increase in the CR factor, lenders anticipate higher costs for short-term transitions.

Overall, our results suggest that the lending market is keenly sensitive to variations in regu-
latory exposure. Essentially, a firm’s carbon risk exposure is not solely determined by how
much it emits or where it operates. Our findings indicate that lenders adjust their assess-
ments of carbon risk based on the specific scope of the regulation, its stringency, and the
pace at which carbon reduction is mandated, indicating the clearer consequences of direct
carbon pricing on a firm’s valuation. These findings have important policy implications.

34



First, explicit carbon pricing enables a more accurate evaluation of firm-level carbon and
(the associated portion of) credit risks. This, in turn, aids lenders (and financial markets)
in regulating carbon emissions by pricing both current and anticipated future carbon poli-
cies. A broader regulatory framework, and the resulting pricing, would also motivate firms
to strategize more effectively regarding their carbon emissions. Second, the observed dispar-
ities in exposure within industries suggest that comparing emissions to those from previous
years, or to emissions from peer firms, could be instrumental in evaluating firms’ commit-
ments to achieving net zero and other future carbon reduction pledges. This approach could
ultimately pave the way for sustained reductions in emissions. Third, our findings related
to term structure indicate that the market views carbon risk as a concern in the short to
medium term. This insight holds significant implications for central banks, contributing to
ongoing discussions about the time frame of carbon risk and the appropriateness of adjusting
monetary policies in response.
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A Theoretical basis for varying effects of carbon regula-
tion

To illustrate how carbon risk differentially impacts the valuation of dissimilar firms, we use
the Merton (1974) model of credit risk. The model provides a convenient basis for intuition on
the effect of costs associated with carbon regulations on the credit spread. Integrating carbon
costs into the Merton (1974) model provides a theoretical foundation for a straightforward
translation of carbon risk into credit risk.

Consider a zero-coupon debt contract that matures in T years with a face value of F . The
risk-free interest rate is r. As per convention, assume the value of the firm’s assets is Vt and it
follows a geometric Brownian motion with volatility σ. In the presence of carbon regulations,
firms’ cash flows are reduced – this reflects a possible combination of revenue reductions and
operating expenditures due to restrictions on emissions. We call this the “carbon tax rate”.
The actual cost implied by the carbon tax rate is uncertain, reflecting the complexity of
carbon regulation. This uncertainty is shaped by numerous factors, including changes in
economic conditions and the varying expenses tied to strategies for reducing emissions. This
contributes to the uncertainty in the transition path of each firm. We label the actual carbon
tax rate δ. Our working assumption is that each firm, depending on their exposure to carbon
risk, pays δ per unit of time, where 0 < δ < r.48 Adopting these parameters, the dynamics
of the firm value are

dVt
Vt

= (r − δ)dt+ σdWt, V (0) = V0, (1)

where Wt is a Brownian motion under an equivalent martingale measure P∗.
At t = 0 the credit spread, defined as the difference between the yield on the firm’s risky
debt and the risk-free interest rate, is given by:

s(δ) = − 1

T
log
{
V0e

−δTΦ(−d1) + Fe−rTΦ(d2)
}
,

with Φ(·) being the cumulative standard normal distribution function, and

d1 =
log(V0/F ) + (r − δ + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T .

We can now express the conditional probability of default as a function of the actual carbon
tax rate δ:

PD(δ) = P∗(VT (δ) < F |F0) = Φ(−d2), (2)

and observe that, when higher carbon-related costs materialize, firms may respond by in-
creasing leverage, which can increase default risk. In fact,

∂PD(δ)

∂δ
=
φ(−d2)

√
T

σ
> 0.

Extant literature argues that high-emitting firms (polluting firms) may incur greater costs
compared to low-emitting firms (clean firms). For an unspecified value of the continuous

48The formulation is equivalent to the case where the firm pays a random dividend rate δ.
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variable δ for clean and polluting firms, respectively, we can calculate the default probabilities
(under uncertainty) by taking the default probability from Expression (2) and integrating it
with respect to the relevant distribution of δC and δP :

PDC =

∫ r

0

PD(δ)dFC(δ) and PDP =

∫ r

0

PD(δ)dFP (δ).

Naturally, δC ≤ δP and hence FP ≥ FC . By stochastic dominance, we obtain PDC ≤
PDP . Combining the relationship δC ≤ δP and the fact that the default probabilities have a
monotonic relationship with the actual carbon tax rate, we retrieve a theoretically founded
link between carbon risk exposure and the credit spread. Namely, depending on market’s
perception of how carbon regulation translates into the actual carbon tax rate, changes in
the credit spreads should respond to changes in (perceived) carbon risk exposure.

B Carbon policy-related information transmission: the
case of the automotive sector

The CDS market efficiently reflects changes in perceived carbon risk exposure through ad-
justments in credit spreads, owing to its high informational efficiency. This is exemplified by
recent policy shifts in the European automotive sector.

In June 2021, the European Union (EU) unveiled a groundbreaking proposal that effectively
signaled the end of new fossil-fuel cars by 2035. This ambitious plan aimed to accelerate the
transition to zero-emission electric vehicles (EVs) as part of a broader strategy to achieve
net-zero emissions in 2030. The European Commission, the EU’s executive arm, proposed
a 55% cut in carbon dioxide emissions from cars by 2030 – a significant increase from the
existing target of a 37.5% reduction. Furthermore, a 100% cut in carbon dioxide emissions
by 2035 would render the sale of new internal combustion engine (ICE) vehicles impossible
within the 27-country bloc. The subsequent months saw a series of critical developments.
Germany initially opposed this proposal – forming an alliance with Italy and some Eastern
European countries – and refused to vote in favor, but eventually agreed when the European
Commission made an exception for ICE cars that run on e-fuels.

We use these policy changes to visually illustrate that CDSs effectively reflect lenders’ percep-
tions of shifting carbon risk exposure. Figure 12 plots the CDS spreads and equity movements
for major car manufacturers like BMW, Volvo and Volkswagen, for which we have CDS data
in our sample. The figure is marked by vertical lines representing the three pivotal events:
the EU proposal announcement (dark green), Germany’s support for the phase-out after
initial opposition (dark blue), and the final EU agreement (magenta). While for Volkswa-
gen, the responses of both CDS spreads and equity to the three events are closely aligned,
for BMW and Volvo, these events seem to have little impact on equity, whereas their CDS
spreads demonstrate significant responsiveness. This highlights the CDS as a forward-looking
tool that offers prompt insights into market perception changes, especially regarding regula-
tory developments affecting companies’ creditworthiness. This contrasts with equity, which
reflects a broader range of factors.
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(a) BMW (b) Volvo (c) VW

Figure 12: Daily evolution of 5-year CDS spreads (blue) and equity (orange) of BMW (top), Volvo (center) and Volkswagen
(bottom) from Jan 1, 2021 until Dec 31, 2022. The vertical lines indicate the announcement of the EU proposal (dark green),
Germany’s decision to finally back up the phase-out (dark blue), and the final EU agreement (magenta).

In the automotive sector, the shift to EVs and the EU’s aggressive carbon dioxide reduction
targets are transforming the industry, and CDS spreads offer immediate insights into lenders’
perceptions of how companies are positioned to navigate this transition. The differential
response observed in the CDS spreads for each automotive company may be linked to specific
factors related to their business models and strategies. While companies like Volvo have
already set ambitious plans to become a fully electric car brand by 2030, others like BMW and
Volkswagen have adopted a more gradual approach to electrification, aiming for a significant
share of their sales to come from electric vehicles. Currently, Volvo’s fully electric vehicle
percentage stands at 22%, compared to 15% for BMW and 8% for Volkswagen. Therefore,
companies with a higher proportion of electric or hybrid models may be perceived as better
positioned to comply with new regulations, leading to narrower CDS spreads. Conversely,
companies heavily reliant on traditional combustion engines may face wider spreads, reflecting
higher perceived risk.

While we acknowledge that this case provides anecdotal evidence, it serves as a compelling
illustration of how the CDS market’s informational efficiency can be observed in real-world
scenarios. By focusing on CDS, we can extract valuable insights for investors, regulators and
industry analysts seeking to understand the evolving landscape of carbon risk exposure.

C Validation of the CR factor

In Section 2.2, we illustrate that our CR factor responds to significant climate policy events,
such as the Paris Agreement and the election of Donald Trump in the U.S. To validate the
effectiveness of the proposed CR factor as a tool for tracking market responses to shifts
in climate policy beyond these two selected events, we conduct a model-free event study.
In particular, we utilize news data alongside the CR factor to demonstrate how relevant
climate-related information is embedded in it.

We adopt the Transition Risk Concern (TRC) index of Bua et al. (2022) and the Media
Climate Change Concerns (MCCC) index of Ardia et al. (2022) as our aggregated news
measures for Europe and North America, respectively. The TRC index scans Reuters News
for items with a European regional focus related to the introduction of new regulations to
curb emissions or changes in regulations. The MCCC index generates an aggregate daily
score based on the number of articles related to climate change in major US newspapers
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and their tone. Since the aggregate MCCC index includes news on physical climate risk, we
use a variant that only incorporates topics under the superordinate themes “Financial and
Regulation”, “Agreement and Summit” and “Public Impact”. This adjusted MCCC index
provides daily information on the coverage and sentiment of North American carbon-related
news while excluding any physical climate component. Finally, we normalize both indices to
ensure they have comparable scales.

To identify relevant events captured by our CR factor, we analyze the joint behavior of news
indices and our carbon risk metric. Specifically, we pinpoint dates where both the news index
and the respective CR series (1Y, 3Y, 5Y, and 10Y) jointly deviate by 1.5 standard deviations
from their respective means. Figure 13 illustrates these identified events (grey and red vertical
lines) and plots the CR factors for all tenors in Europe and North America. In the interest
of brevity, Table 2 provides descriptions of a subset of the identified events, specifically those
corresponding to the red vertical lines in Figure 13. Each event described is a potential driver
of carbon risk exposure, either through the implementation or non-implementation of climate
policies (including their announcements) or through public pressure.
Let us consider two examples, one for Europe and one for North America. In September 2015,
the European Commission established the Market Stability Reserve (MSR) as a measure to
address potential imbalances between the demand and supply of emission allowances. The
MSR mechanism allows the Commission to withhold allowances from the primary market
or potentially cancel them at later stages. The MSR was planned to begin operating in
January 2019, making it a relevant event for the longer tenors of 5Y and 10Y. This policy
event highlights the advantage of our CR metric compared to other comparable metrics, as
it allows us to extract risk exposures with respect to different horizons. Now, let us consider
an example for North America: Barack Obama’s announcement of a new climate plan in
June 2013. This plan included new rules to cut carbon dioxide emissions from U.S. power
plants and additional measures to promote renewable energy. The relevance of this decision
is evident for the tenors of 3Y and 5Y, indicating that its impact is expected to materialize
in the mid-term rather than within the very short term of one year. These two examples
illustrate how our CR metric can discern the temporal horizon over which different policy
measures are expected to influence carbon risk exposure.
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Date Event Description
Europe

Mar. 2013 2030 Framework Green Paper The European Commission adopted the Green Paper on “A 2030 framework for climate and energy
policies” to provide scientifically robust policy analysis on targeted issues within the debate on the
post-2020 climate and energy policy framework.

Oct. 2014 EU Climate Deal European leaders reached an agreement on a comprehensive climate change pact, committing the EU
to reduce greenhouse gases by at least 40% by 2030.

Sep. 2015 Establishment of the MSR Scheduled to take effect in 2019, the EU established the Market Stability Reserve (MSR) as a measure
to address potential imbalances between the demand and supply of emission allowances by withholding
allowances from the primary market and cancelling them at a later stage.

North America
Jun. 2013 Obama’s climate plan President Barack Obama presented his new climate plan, which included new rules to cut carbon dioxide

emissions from power plants, as well as additional measures to promote renewable energy.
Sep. 2014 People’s Climate March More than 310,000 people in New York, along with hundreds of thousands globally, rallied to pressure

politicians to take action on climate change. The march also included several high-profile officials, such
as then-UN Secretary General Ban Ki-moon and former U.S. presidential candidate Al Gore.

Oct. 2015 Limit on super GHGs The U.S. announced plans to limit super greenhouse gases, with the Obama administration unveiling a
series of executive actions and commitments from over a dozen companies to reduce their use.

Oct. 2017 Halt of trucks regulations A federal appeals court halted the implementation of part of an Obama administration regulation that
established emissions-reduction standards for truck trailers.

Table 2: Brief description of selected identified climate policy events.
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(a) 1Y (Europe) (b) 1Y (North America)

(c) 3Y (Europe) (d) 3Y (North America)

(e) 5Y (Europe) (f) 5Y (North America)

(g) 10Y (Europe) (h) 10Y (North America)

Figure 13: Evolution of CR factor over time for maturities 1Y (top), 3Y (top center), 5Y (bottom center) and 10Y (bottom) for
Europe (left) and North America (right). The vertical solid lines indicate events where both the news index and the CR jointly
deviate by a factor of 1.5 standard deviations from their respective means.
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D Lenders’ perception of differential exposure to carbon
risk: sectoral examples

Similar to Figure 1 this section provides two additional examples of firm pairs who operate
in the same industry, but are still differently exposed to carbon risk. In particular, Figure
14 depicts the evolution of the CDS spreads of two pairs of companies operating in the
same industry (with the same credit rating) in North America (left panel) and Europe (right
panel) before and after COP21. The selected firms in North America (Anadarko Petroleum
and Valero Energy) operate in the Energy sector, whereas the selected firms in Europe (Rio
Tinto and Svenska Cellulosa) operate in the Basic Materials sector.

Anadarko Petroleum (acquired by Occidental Petroleum in 2019) was a US-based energy
corporate engaged in hydrocarbon exploration, and was ranked 47th among the World’s Top
100 Polluters (CDP, 2017). On the other hand, Valero Energy – an international, US-based
manufacturer and marketer of transportation fuels – is among the corporates with the lowest
emission intensity in their industry – albeit a carbon-intensive industry.

Rio Tinto is a multinational, UK-based corporation mainly engaged in mining and production
of metals. It was ranked 24th among the World’s Top 100 Polluters (CDP, 2017). Svenska
Cellulosa – a Swedish forestry company producing wood-based products and biofuel – is
Europe’s largest private forest owner. With its large-scale provision of lease of land for wind
farm operators it is considered an environmental forerunner within the Basic Materials sector.

(a) North America (b) Europe

Figure 14: Evolution of the 5Y-CDS spreads of Anadarko Petroleum (blue) and Valero Energy (orange) on the left diagram,
and Rio Tinto (blue) and Svenska Cellulosa (orange) on the right diagram. The time period spans from 02 November 2015 to
29 February 2016. The gray-shaded area indicates the time period of COP21 (30th Nov 2015 – 12th Dec 2015).

This figure exemplifies how the gap in CDS spreads expands following the Paris Agreement,
underscoring the intuitive notion that lenders, in pursuit of greater protection, increase de-
mand for the CDSs of firms more exposed to carbon risk (such as Anadarko Petroleum and
Rio Tinto), leading to wider spreads.
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E Constituents of clean & polluting class

Table 3 displays all firms that were constituents of the clean and polluting class, respectively,
at some point during our sample period of 2013 to 2019. Firms in bold are those that represent
the median firm (based on the 5Y CDS spread) at least once within their respective group.
In total, 34 (35) firms entered the clean (polluting) class in Europe, whereas 82 (73) firms
entered the clean (polluting) class in North America. In Europe, the majority of clean firms
are in the Industrials sector with a share of approximately 35% of the sample, while the
majority of polluting firms come from the Basic Materials and Utilities sectors, respectively,
with a share of 40% each. In North America, the majority of clean firms are in the Consumer
Cyclicals (CCGS) sector with a share of approximately 38% of the sample, while the majority
of polluting firms come from the Utilities sector with a share of approximately 29%.

Europe
Pollutive Clean
Accor SA, Anglo American PLC, ArcelorMittal SA, Carnival PLC,
Deutsche Lufthansa AG, E.ON SE, EDP Energias de Portu-
gal SA, Edison SpA, Electricite de France SA, Endesa SA, Enel
SpA, Engie SA, Eni SpA, Fortum Oyj, Gazprom PAO, Heidel-
bergCement AG, Holcim AG, Iberdrola SA, Koninklijke DSM NV,
L’Air Liquide Societe Anonyme pour l’Etude et l’Exploitation des Pro-
cedes George, Lafarge SA, Lanxess AG, Linde AG, National Grid
PLC, Naturgy Energy Group SA, RWE AG, Repsol SA, Rio
Tinto PLC, SSE PLC, Solvay SA, Svenska Cellulosa SCA AB, Tate
& Lyle PLC, UPM-Kymmene Oyj, Veolia Environnement SA,
thyssenkrupp AG

Adecco Group AG, Airbus SE, Alstom SA, Atlas Copco AB,
Bayerische Motoren Werke AG, Compass Group PLC, Daily Mail
and General Trust PLC, Experian Finance PLC, ITV PLC, Impe-
rial Brands PLC, Kering SA, Koninklijke KPN NV, Koninklijke
Philips NV, LVMHMoet Hennessy Louis Vuitton SE, Nokia Oyj, Pear-
son PLC, PostNL NV, Publicis Groupe SA, SES SA, Scania AB,
Schneider Electric SE, Siemens AG, Sodexo SA, Svenska Cellulosa
SCA AB, Swisscom AG, Telecom Italia SpA, Telefonaktiebolaget
LM Ericsson, Television Francaise 1 SA, Telia Company AB,
Thales SA, Vivendi SE, Volvo AB, Wendel SE, Wolters Kluwer
NV

North America
Pollutive Clean
AES Corp, Air Products and Chemicals Inc, Alliant Energy Corp,
Ameren Corp, American Airlines Group Inc, American Electric Power
Company Inc, Anadarko Petroleum Corp, Avis Budget Group Inc,
Avnet Inc, Barrick Gold Corp, CMS Energy Corp, Canadian
National Railway Co, Canadian Natural Resources Ltd, Carni-
val Corp, CenterPoint Energy Inc, Chevron Corp, Conocophillips,
DTE Energy Co, Delta Air Lines Inc, Devon Energy Corp, Domin-
ion Energy Inc, Domtar Corp, Dow Chemical Co, E I Du Pont De
Nemours and Co, Eastman Chemical Co, Encana Corp, Entergy
Corp, Exelon Corp, Exxon Mobil Corp, FirstEnergy Corp,Glatfel-
ter Corp, Hess Corp, Husky Energy Inc, International Paper Co,
JetBlue Airways Corp,Kinder Morgan Energy Partners LP, Legacy
Vulcan Corp, Linde Inc, Marathon Oil Corp, Marriott International
Inc, Martin Marietta Materials Inc, Murphy Oil Corp, NRG Energy
Inc, Newmont Corporation, Nextera Energy Inc, Noble Energy
Inc, Norbord Inc, Nucor Corp, ONEOK Inc, Occidental Petroleum
Corp, Olin Corp, PPL Corp, Pepco Holdings LLC, Pioneer Nat-
ural Resources Co, RPM International Inc, Republic Services
Inc, Royal Caribbean Cruises Ltd, Sempra Energy, Southern Califor-
nia Edison Co, Southern Co, Southwest Airlines Co, Suncor En-
ergy Inc, TECO Energy Inc, TransAlta Corp, Transcanada Pipelines
Ltd, USG Corp, Union Pacific Corp, United States Steel Corp, Waste
Management Inc, Westrock MWV LLC, Williams Companies
Inc, Xcel Energy Inc, Yellow Corp

Advanced Micro Devices Inc, Agilent Technologies Inc, Aller-
gan Inc, Altria Group Inc, Amerisourcebergen Corp, Amgen Inc,
Anthem Inc, Applied Materials Inc, Arrow Electronics Inc, Avon
Products Inc, Bath & Body Works Inc, Beazer Homes USA Inc, Belo
Corp, Best Buy Co Inc, Biomet Inc, Boeing Co, Bombardier Inc,
Boston Scientific Corp, Bristol-Myers Squibb Co, Brunswick Corp,
Bunge Ltd, CA Inc, Cablevision Systems Corp, Cardinal Health Inc,
Cincinnati Bell Inc, Cisco Systems Inc, Comcast Corp, Costco Whole-
sale Corp,D R Horton Inc,DST Systems Inc, Danaher Corp,Deere
& Co, Deluxe Corp, Dillard’s Inc, EMC Corp, Estee Lauder Compa-
nies Inc, First Data Corp, HP Inc, Hasbro Inc, Health Net Inc, Hu-
mana Inc, International Business Machines Corp, International
Game Technology, Interpublic Group of Companies Inc, Intuit Inc,
Johnson & Johnson, KB Home, Kate Spade & Co, L3harris Technolo-
gies Inc, Lennar Corp, Lockheed Martin Corp, MDC Holdings Inc,
Masco Corp, Mattel Inc, Mckesson Corp, Meritage Homes Corp,
Microsoft Corp, Motorola Solutions Inc, New York Times Co,
Nike Inc, Nordstrom Inc, Northrop Grumman Corp, Omnicom Group
Inc, Oracle Corp, Prologis Inc, Pultegroup Inc, RR Donnelley &
Sons Co, Raytheon Co, Rogers Communications Inc, Sandisk LLC,
Sysco Corp, Tenet Healthcare Corp, Thomson Reuters Corp, Time
Warner Cable Inc, Time Warner Inc, Toll Brothers Inc, United
States Cellular Corp, UnitedHealth Group Inc, VF Corp, Viacom Inc,
ViacomCBS Inc, Western Union Co

Table 3: This table displays all firms that were constituents of the green resp. brown class at some point time (2013-2019) in
Europe (top) and North America (bottom). Firms in bold are firms that represent the median firm (based on the 5Y CDS
spread) at least once within their respective group.
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F Robustness checks

In this section, we perform a number of robustness checks to confirm our baseline findings.
We carry on the robustness checks for the remaining models too (i.e. sectoral, attention,
and term structure models) and find no significant differences. Results for these models are
available upon request.

The baseline CR factor is constructed by a univariate sorting of firms with respect to their
emission profiles. That is, our CDS universe is sorted by emission intensity from low to
high. The use of firms’ emission intensity allows for a straightforward interpretation of the
CR factor. Such a construction, however, might have shortcomings. Alternative emission
classifications may be more suitable (absolute emissions vs emission intensity). Also, uni-
variate sorting might have its own limitations. Double sorting helps control for the possibility
that other firm-specific characteristics (size, leverage, etc.) may consistently coincide with
the firm’s emission profile. To demonstrate that the identification of carbon risk exposure
via firms’ emission profiles is not misspecified, we examine alternative specifications for the
construction of the CR factor and rerun our base model.

F.1 Absolute emissions

While the classification of firms’ emission profiles via their emission intensities allows for a
straightforward comparison between firms’ carbon footprints, there is some evidence that
the absolute level of emissions is of the upmost importance. For example, for stock returns,
Bolton and Kacperczyk (2021) explain that a companies’ total level of carbon emissions is
what matters most. For this study, however, we show that our main results do not depend
on firms’ emission classification. Table 4 shows that new coefficient estimates (using absolute
emissions to construct the CR factor) remain broadly in line with baseline results (using
emissions intensity to construct our CR factor). Our main results suggest that the amplifying
effect of carbon risk on credit risk is present in Europe, but virtually absent in North America,
regardless of whether the CR factor is based on absolute emissions or emissions intensity.
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1 2 3 4 5 6 7 8 9
Europe
1Y

∆CR 462.09∗∗∗ 349.06∗∗∗ 238.21∗∗∗ 163.59∗∗∗ 122.68∗∗∗ 161.98∗∗∗ 248.93∗∗∗ 376.70∗∗∗ 521.56∗∗∗

(22.87) (16.30) (12.93) (9.89) (8.73) (10.70) (14.88) (24.00) (37.17)
3Y

∆CR 339.82∗∗∗ 288.41∗∗∗ 232.13∗∗∗ 174.15∗∗∗ 137.76∗∗∗ 156.03∗∗∗ 209.04∗∗∗ 270.16∗∗∗ 319.65∗∗∗

(12.10) (8.71) (7.29) (6.95) (6.45) (6.96) (7.99) (10.36) (17.33)
5Y

∆CR 224.84∗∗∗ 193.53∗∗∗ 158.53∗∗∗ 127.77∗∗∗ 103.60∗∗∗ 110.54∗∗∗ 142.22∗∗∗ 179.05∗∗∗ 215.70∗∗∗

(5.89) (5.83) (5.35) (4.97) (4.84) (4.59) (5.15) (6.57) (9.22)
10Y

∆CR 104.56∗∗∗ 85.20∗∗∗ 71.64∗∗∗ 57.69∗∗∗ 47.01∗∗∗ 51.12∗∗∗ 64.06∗∗∗ 81.32∗∗∗ 108.40∗∗∗

(3.25) (2.91) (2.95) (2.29) (2.23) (2.34) (2.64) (3.04) (3.51)
30Y

∆CR 52.56∗∗∗ 49.02∗∗∗ 43.00∗∗∗ 35.33∗∗∗ 28.05∗∗∗ 28.53∗∗∗ 33.37∗∗∗ 41.78∗∗∗ 43.52∗∗∗

(2.62) (2.19) (2.01) (1.64) (1.66) (1.71) (1.80) (2.54) (5.20)
North America

1Y
∆CR −19.88∗∗∗ −8.75∗∗∗ −2.19∗∗∗ −0.34∗∗∗ −0.09∗∗∗ −0.83∗∗∗ −5.42∗∗∗ −23.03∗∗∗ −71.85∗∗∗

(2.09) (0.94) (0.28) (0.05) (0.02) (0.10) (0.60) (2.42) (7.71)
3Y

∆CR −2.08∗∗∗ −0.93∗∗ −0.64∗∗ −0.27∗ −0.06 −0.38∗∗ −1.05∗∗∗ −2.90∗∗∗ −10.85∗∗∗

(0.55) (0.29) (0.20) (0.12) (0.07) (0.13) (0.24) (0.50) (1.53)
5Y

∆CR −3.10∗∗∗ −1.23∗∗∗ −0.64∗∗∗ −0.24∗∗∗ −0.08∗ −0.15∗∗ −0.33∗∗ −0.75∗ −2.77∗∗∗

(0.40) (0.18) (0.10) (0.06) (0.04) (0.06) (0.12) (0.29) (0.72)
10Y

∆CR −4.21∗∗∗ −1.98∗∗∗ −1.14∗∗∗ −0.68∗∗∗ −0.27∗∗∗ −0.47∗∗∗ −0.84∗∗∗ −1.56∗∗∗ −4.44∗∗∗

(0.26) (0.13) (0.08) (0.05) (0.03) (0.04) (0.08) (0.18) (0.56)
30Y

∆CR −0.84∗∗∗ −0.61∗∗∗ −0.51∗∗∗ −0.39∗∗∗ −0.31∗∗∗ −0.42∗∗∗ −0.68∗∗∗ −1.16∗∗∗ −2.70∗∗∗

(0.21) (0.13) (0.08) (0.05) (0.04) (0.06) (0.11) (0.20) (0.48)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 4: This table reports the coefficient estimates of ∆CR (sorted on absolute emissions) of the base panel quantile regression
model for CDS spread returns of all tenors in both regions. The sample includes data for 137 European firms from 2013/01/01
to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to present nonstationarity. Estimates
and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor 1000.
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F.2 Possible confounding variables

We begin by noting the strong relationship documented in the literature between firms’
emissions and some key firm characteristics. High absolute emissions are related to (log)size,
high book-to-market ratios, and highly leveraged firms. Conversely, emission intensities are
weakly negatively related to size (Bolton and Kacperczyk, 2023; Huij et al., 2021). Thus,
sorting firms solely on emissions intensity may result in an inappropriate categorization of
small firms as polluting firms and big firms as clean firms. Double sorting helps control
for this potential bias and inaccurate representation of firms’ emission profiles, ultimately
reducing the risk of over- or underestimating exposure to carbon risk.

We therefore construct alternative, conditionally double-sorted versions of the CR factor. For
every day t, we first sort the CDS sample into two quantiles Xm

t and Ymt of the (one-year
lagged) candidate variable (size, book-to-market ratio, leverage, etc.). Then, we sort firms
within each group into five quantiles of one-year lagged emission intensities. Firms below the
first quintile are the clean subgroup (XCmt or YCmt ), whereas firms above the fifth quintile
are the polluting subgroup (XPmt or YPmt ). Then, we compute the median CDS spread in
each subgroup resulting in four different medians (XPmt , XC

m
t , YP

m
t , YC

m
t ) in total. Finally,

we compute the conditional, double-sort CR factor as follows:

CRm
t =

1

2
(XPmt + YPmt )− 1

2
(XCm

t + YCm
t ) , (3)

and replace the original CR factor with the new CR factor in the base model from Section
4.1 to check the robustness of our baseline CR factor.

F.2.1 Size

First, we consider firms’ market capitalization – the size variable. We sort the CDS sample
into two quantiles of market capitalization (lagged by one year) to distinguish between small
(S) and big firms (B). Sorting on emission intensities afterwards, and computing the median
CDS spread, leaves us with four groups: small and polluting SPmt , small and clean SCm

t ,
big and polluting BPmt , and big and clean BCm

t . We can then straightforwardly obtain the
size-adjusted CR factor by using Equation (3) and replace X with small (S) and Y with big
(B):

CRm
t =

1

2
(SPmt + BPmt )− 1

2
(SCm

t + BCm
t ) ,

Table 5 reports the new coefficient estimates and shows that using the size-adjusted CR
leaves results virtually unchanged with respect to the baseline.
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1 2 3 4 5 6 7 8 9
Europe
1Y

∆CR 528.60∗∗∗ 430.50∗∗∗ 321.71∗∗∗ 259.19∗∗∗ 207.47∗∗∗ 254.19∗∗∗ 345.97∗∗∗ 489.90∗∗∗ 693.25∗∗∗

(25.40) (17.98) (18.40) (15.07) (15.26) (16.14) (20.12) (27.57) (47.67)
3Y

∆CR 295.24∗∗∗ 280.36∗∗∗ 250.29∗∗∗ 201.32∗∗∗ 159.19∗∗∗ 185.81∗∗∗ 242.81∗∗∗ 301.14∗∗∗ 354.31∗∗∗

(9.73) (10.13) (9.02) (8.74) (9.13) (8.57) (10.07) (13.00) (19.44)
5Y

∆CR 162.33∗∗∗ 162.72∗∗∗ 145.93∗∗∗ 124.96∗∗∗ 111.58∗∗∗ 127.79∗∗∗ 163.15∗∗∗ 195.92∗∗∗ 227.36∗∗∗

(7.23) (7.40) (6.06) (5.37) (5.67) (5.56) (5.45) (7.07) (9.83)
10Y

∆CR 81.72∗∗∗ 78.38∗∗∗ 76.48∗∗∗ 65.83∗∗∗ 56.72∗∗∗ 65.53∗∗∗ 83.01∗∗∗ 102.28∗∗∗ 134.31∗∗∗

(3.51) (4.30) (3.56) (3.10) (3.04) (3.00) (3.22) (4.06) (5.43)
30Y

∆CR 62.81∗∗∗ 57.61∗∗∗ 55.41∗∗∗ 49.52∗∗∗ 44.64∗∗∗ 49.73∗∗∗ 60.52∗∗∗ 76.13∗∗∗ 99.96∗∗∗

(2.70) (2.53) (2.79) (2.48) (2.40) (2.39) (2.86) (3.70) (4.83)
North America

1Y
∆CR −5.88∗∗∗ −0.11 0.27· 0.09∗ 0.02 0.03 0.27 1.08 2.04

(1.32) (0.48) (0.14) (0.04) (0.02) (0.05) (0.22) (1.03) (2.60)
3Y

∆CR −7.38∗∗∗ −2.52∗∗∗ −0.96∗∗ −0.26∗∗ −0.13∗∗ −1.18∗∗∗ −2.04∗∗∗ −3.88∗∗∗ −9.80∗∗∗

(1.14) (0.51) (0.30) (0.08) (0.05) (0.17) (0.28) (0.59) (1.41)
5Y

∆CR −9.19∗∗∗ −3.91∗∗∗ −2.46∗∗∗ −1.56∗∗∗ −0.81∗∗∗ −1.32∗∗∗ −1.79∗∗∗ −2.57∗∗∗ −4.80∗∗∗

(0.97) (0.43) (0.24) (0.14) (0.08) (0.14) (0.23) (0.41) (0.80)
10Y

∆CR −4.27∗∗∗ −1.95∗∗∗ −1.09∗∗∗ −0.67∗∗∗ −0.31∗∗∗ −0.58∗∗∗ −0.97∗∗∗ −1.72∗∗∗ −3.95∗∗∗

(0.40) (0.19) (0.10) (0.07) (0.04) (0.06) (0.09) (0.20) (0.44)
30Y

∆CR 1.58∗∗∗ 0.35∗ 0.06 −0.02 −0.07· −0.35∗∗∗ −0.63∗∗∗ −1.26∗∗∗ −2.43∗∗∗

(0.29) (0.15) (0.09) (0.06) (0.04) (0.05) (0.09) (0.18) (0.39)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 5: This table reports the coefficient estimates of ∆CR (double-sorted on size) of the base panel quantile regression model
for CDS spread returns of all tenors in both regions. The sample includes data for 134 (276) European (North American)
firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to present
nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor
1000.
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F.2.2 Book-to-market ratio

Second, we consider the book-to-market ratio (B/M), defined as the book value of equity
divided by the market value of equity (market cap). The literature notes a trend where firms
with higher pollution levels are more frequently classified as value firms, while those with
lower emissions are often seen as growth firms. In particular, Huij et al. (2021) observe that
the most polluting firms typically align with value firms, whereas cleaner firms align with
growth firms. Similarly, Pastor et al. (2021) find a negative correlation between their green
factor and the value factor, indicating that value stocks are more likely to be associated
with higher emissions than green stocks. Furthermore, Bauer et al. (2023) suggests that
returns on a portfolio differential between high-emission (brown) and low-emission (green)
firms positively correlate with the value factor. This implies that firms with higher emissions
tend to be value stocks, while those with lower emissions tend to be categorized as growth
stocks. Similar to size, we use the median B/M (lagged by one year) to divide firms between
value (H) and growth (L) firms – where now X=H and Y=L in Equation (3). Table 6 shows
again that, using the B/M-adjusted CR factor, the baseline findings remain valid.

1 2 3 4 5 6 7 8 9
Europe
1Y

∆CR 369.88∗∗∗ 280.11∗∗∗ 218.97∗∗∗ 172.09∗∗∗ 131.28∗∗∗ 158.64∗∗∗ 245.88∗∗∗ 377.94∗∗∗ 565.10∗∗∗

(20.82) (17.19) (14.18) (11.43) (10.37) (11.43) (15.60) (23.06) (46.31)
3Y

∆CR 272.95∗∗∗ 234.97∗∗∗ 188.86∗∗∗ 139.09∗∗∗ 93.75∗∗∗ 114.95∗∗∗ 165.16∗∗∗ 206.45∗∗∗ 254.22∗∗∗

(12.83) (8.41) (8.34) (6.75) (5.49) (6.06) (8.21) (10.61) (12.77)
5Y

∆CR 162.40∗∗∗ 130.91∗∗∗ 107.89∗∗∗ 83.51∗∗∗ 62.48∗∗∗ 70.44∗∗∗ 102.26∗∗∗ 137.10∗∗∗ 173.71∗∗∗

(4.60) (4.25) (3.98) (3.54) (3.08) (3.25) (4.11) (5.94) (10.11)
10Y

∆CR 116.89∗∗∗ 92.30∗∗∗ 74.19∗∗∗ 58.33∗∗∗ 46.64∗∗∗ 52.62∗∗∗ 70.34∗∗∗ 87.55∗∗∗ 125.58∗∗∗

(3.72) (2.78) (2.50) (2.48) (2.05) (2.03) (2.59) (3.06) (3.61)
30Y

∆CR 90.61∗∗∗ 70.85∗∗∗ 59.64∗∗∗ 48.83∗∗∗ 42.45∗∗∗ 47.93∗∗∗ 59.24∗∗∗ 72.35∗∗∗ 105.55∗∗∗

(3.57) (2.60) (2.45) (2.31) (1.88) (2.07) (2.64) (3.22) (4.26)
North America

1Y
∆CR −13.08∗∗∗ −4.17∗∗∗ −0.31· 0.02 0.02 0.10· 0.46 0.79 −0.21

(2.04) (0.89) (0.18) (0.04) (0.02) (0.06) (0.29) (0.96) (1.58)
3Y

∆CR −7.91∗∗∗ −3.04∗∗∗ −1.35∗∗∗ −0.57∗∗∗ −0.25∗∗∗ −1.48∗∗∗ −2.84∗∗∗ −4.89∗∗∗ −11.51∗∗∗

(1.22) (0.62) (0.31) (0.14) (0.07) (0.20) (0.36) (0.76) (2.31)
5Y

∆CR −2.37∗∗∗ −1.13∗∗∗ −0.76∗∗∗ −0.47∗∗∗ −0.22∗∗∗ −0.49∗∗∗ −0.69∗∗∗ −0.93∗∗∗ −2.09∗∗

(0.49) (0.22) (0.13) (0.08) (0.05) (0.08) (0.14) (0.24) (0.70)
10Y

∆CR 1.72∗∗∗ 0.31∗ 0.11 0.01 −0.05 −0.16∗∗ −0.25∗∗ −0.55∗∗∗ −2.02∗∗∗

(0.31) (0.15) (0.09) (0.05) (0.03) (0.05) (0.09) (0.15) (0.42)
30Y

∆CR 0.98∗ −0.36· −0.11 −0.13 −0.16∗∗ −0.55∗∗∗ −0.79∗∗∗ −1.24∗∗∗ −1.70∗∗

(0.41) (0.19) (0.13) (0.09) (0.06) (0.09) (0.14) (0.24) (0.55)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6: This table reports the coefficient estimates of ∆CR (double-sorted on book-to-market ratio) of the base panel quantile
regression model for CDS spread returns of all tenors in both regions. The sample includes data for 134 (276) European (North
American) firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to
present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled
by factor 1000.
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F.2.3 Leverage

Third, we consider the leverage ratio, defined as the book value of debt divided by the
book value of assets, for the first sorting. Polluting firms tend to have disproportionately
more tangible assets compared to clean firms (Iovino et al., 2021), hence we control for the
possibility that higher leverage ratios entirely capture the exposure to carbon risk. We use
the median leverage ratio (lagged by one year) to distinguish between firms with high (HL)
and low (LL) leverage ratios; where now X=HL and Y=LL in Equation (3). Table 7 displays
the results of the base model using the leverage-adjusted CR factor for Europe and North
America, respectively. Again, using the leverage-adjusted CR factor leaves results virtually
unchanged with respect to the baseline.

1 2 3 4 5 6 7 8 9
Europe
1Y

∆CR 649.63∗∗∗ 483.81∗∗∗ 328.43∗∗∗ 222.79∗∗∗ 162.19∗∗∗ 203.31∗∗∗ 298.94∗∗∗ 459.84∗∗∗ 677.61∗∗∗

(26.17) (22.85) (17.90) (14.32) (12.96) (14.17) (19.50) (27.28) (33.88)
3Y

∆CR 317.12∗∗∗ 283.38∗∗∗ 247.58∗∗∗ 199.84∗∗∗ 158.24∗∗∗ 183.13∗∗∗ 240.93∗∗∗ 302.28∗∗∗ 354.94∗∗∗

(12.12) (8.61) (9.06) (8.28) (7.73) (7.94) (9.54) (11.78) (21.32)
5Y

∆CR 181.15∗∗∗ 160.50∗∗∗ 132.16∗∗∗ 107.91∗∗∗ 91.67∗∗∗ 98.75∗∗∗ 124.60∗∗∗ 155.24∗∗∗ 188.77∗∗∗

(5.97) (5.92) (5.26) (5.21) (4.99) (5.21) (5.28) (7.08) (9.58)
10Y

∆CR 90.74∗∗∗ 76.21∗∗∗ 66.39∗∗∗ 56.11∗∗∗ 47.28∗∗∗ 53.22∗∗∗ 67.93∗∗∗ 86.08∗∗∗ 108.92∗∗∗

(2.26) (3.41) (2.96) (2.85) (2.67) (2.81) (2.93) (3.70) (5.40)
30Y

∆CR 66.58∗∗∗ 59.44∗∗∗ 51.15∗∗∗ 42.38∗∗∗ 38.40∗∗∗ 42.42∗∗∗ 52.10∗∗∗ 66.27∗∗∗ 83.85∗∗∗

(1.94) (2.37) (2.16) (2.13) (2.19) (2.36) (2.57) (2.89) (3.87)
North America

1Y
∆CR −3.25∗∗ 0.73 0.56∗∗ 0.11∗ 0.03 0.11· 0.70∗ 3.50∗∗ 5.96·

(1.22) (0.59) (0.17) (0.05) (0.02) (0.06) (0.30) (1.19) (3.23)
3Y

∆CR −6.82∗∗∗ −2.79∗∗∗ −1.35∗∗∗ −0.34∗∗∗ −0.13∗ −0.42∗∗∗ −1.18∗∗∗ −2.68∗∗∗ −6.32∗∗∗

(0.94) (0.46) (0.26) (0.09) (0.05) (0.12) (0.28) (0.64) (1.37)
5Y

∆CR −11.17∗∗∗ −5.02∗∗∗ −3.06∗∗∗ −2.10∗∗∗ −1.17∗∗∗ −2.02∗∗∗ −3.28∗∗∗ −5.01∗∗∗ −9.05∗∗∗

(0.90) (0.40) (0.24) (0.16) (0.10) (0.15) (0.28) (0.54) (1.34)
10Y

∆CR −3.10∗∗∗ −1.58∗∗∗ −0.95∗∗∗ −0.59∗∗∗ −0.34∗∗∗ −0.66∗∗∗ −1.09∗∗∗ −1.72∗∗∗ −3.67∗∗∗

(0.41) (0.18) (0.12) (0.06) (0.04) (0.06) (0.10) (0.20) (0.64)
30Y

∆CR −0.63 −1.09∗∗∗ −0.91∗∗∗ −0.80∗∗∗ −0.59∗∗∗ −1.17∗∗∗ −2.08∗∗∗ −3.83∗∗∗ −8.97∗∗∗

(0.44) (0.22) (0.14) (0.10) (0.07) (0.09) (0.15) (0.29) (0.82)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 7: This table reports the coefficient estimates of ∆CR (double-sorted on leverage ratio) of the base panel quantile regression
model for CDS spread returns of all tenors in both regions. The sample includes data for 134 (276) European (North American)
firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to present
nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor
1000.
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G Online appendix

This section provides the complete list and description of figures and tables.

G.1 Additional figures

Figure 15 depicts the evolution of the CR factor for all tenors (1Y, 3Y, 5Y, 10Y, 30Y) in
Europe (top) and North America (bottom). Figure 16 displays the evolution of the CR
slope for all considered slopes (5Y-1Y, 10Y-5Y, 10Y-1Y) in Europe (top) and North America
(bottom).

G.2 Additional tables

Table 8 and Table 9 present the estimates of the base model from Section 4.1 for all deciles
and tenors in Europe and North America, respectively. Table 12 and Table 13 comprise the
results of the ETS model from Section 4.2 for the remaining tenors 1Y, 3Y, 10Y, and 30Y
in Europe and North America, respectively. Similarly, Table 14 and Table 15 depict the
remaining ETS models but with the additional inclusion of the ETS share variable. Table
10 and Table 11 report the estimates of the interaction terms of the sector model for the
remaining tenors 1Y, 3Y, 10Y and 30Y in Europe and North America, respectively. Finally,
Table 16 and Table 17 report all coefficient estimates of the term structure model from Section
4.3 for all considered slopes in Europe and North America, respectively.
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(a) Europe

(b) North America

Figure 15: Evolution of the CR factor over time for maturities 1Y (blue), 3Y (orange), 5Y (red), 10Y (black) and 30Y (green)
for Europe (top) and North America (bottom). The vertical solid lines refer to the Paris Agreement (dark green) and Trump
election (brown), respectively.
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(a) Europe

(b) North America

Figure 16: Evolution of the CR slope over time for the slopes 5Y-1Y (blue), 10-5Y (orange), and 10Y-1Y (red) for Europe (top)
and North America (bottom). The vertical solid lines refer to the Paris Agreement (dark green) and Trump election (brown),
respectively.
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1 2 3 4 5 6 7 8 9
1Y

StockReturn −414.24∗∗∗ −322.80∗∗∗ −222.27∗∗∗ −138.52∗∗∗ −81.90∗∗∗ −120.54∗∗∗ −216.05∗∗∗ −338.64∗∗∗ −436.19∗∗∗

(14.24) (8.91) (6.64) (4.62) (3.36) (4.06) (6.08) (13.07) (23.71)
∆Volatility −581.53∗∗∗ −448.71∗∗∗ −285.46∗∗∗ −103.03∗∗∗ 35.82∗ 308.53∗∗∗ 648.21∗∗∗ 930.61∗∗∗ 1106.00∗∗∗

(32.27) (51.32) (44.53) (21.77) (13.98) (25.95) (28.33) (28.28) (37.66)
∆MRI 1608.99∗∗∗ 1619.83∗∗∗ 1543.03∗∗∗ 1471.78∗∗∗ 1433.21∗∗∗ 1454.27∗∗∗ 1561.10∗∗∗ 1699.73∗∗∗ 1831.08∗∗∗

(34.20) (27.59) (37.30) (38.38) (36.27) (35.56) (35.82) (53.97) (92.70)
∆CR 349.28∗∗∗ 273.19∗∗∗ 217.40∗∗∗ 158.56∗∗∗ 126.31∗∗∗ 147.87∗∗∗ 207.46∗∗∗ 310.97∗∗∗ 445.79∗∗∗

(22.10) (12.86) (11.69) (8.60) (7.97) (9.33) (11.93) (19.79) (29.92)
3Y

StockReturn −305.04∗∗∗ −255.72∗∗∗ −196.62∗∗∗ −130.76∗∗∗ −82.06∗∗∗ −114.10∗∗∗ −192.59∗∗∗ −266.42∗∗∗ −362.10∗∗∗

(8.06) (5.98) (5.17) (4.27) (3.23) (3.53) (4.64) (8.50) (15.23)
∆Volatility −500.54∗∗∗ −370.70∗∗∗ −250.35∗∗∗ −96.80∗∗∗ 33.27∗ 285.55∗∗∗ 541.77∗∗∗ 715.75∗∗∗ 948.30∗∗∗

(59.56) (41.39) (30.33) (23.46) (14.55) (18.82) (12.34) (27.28) (30.33)
∆MRI 638.54∗∗∗ 666.60∗∗∗ 668.00∗∗∗ 658.14∗∗∗ 645.99∗∗∗ 646.32∗∗∗ 676.72∗∗∗ 720.08∗∗∗ 748.49∗∗∗

(17.32) (13.37) (15.22) (14.82) (15.23) (14.76) (16.43) (22.72) (40.51)
∆CR 271.37∗∗∗ 210.12∗∗∗ 159.27∗∗∗ 114.01∗∗∗ 87.44∗∗∗ 99.78∗∗∗ 141.18∗∗∗ 186.62∗∗∗ 239.89∗∗∗

(8.67) (5.86) (5.22) (5.12) (4.67) (5.31) (7.07) (10.22) (18.22)
5Y

StockReturn −198.54∗∗∗ −161.76∗∗∗ −125.51∗∗∗ −83.69∗∗∗ −52.32∗∗∗ −69.32∗∗∗ −117.57∗∗∗ −170.56∗∗∗ −231.51∗∗∗

(4.95) (3.82) (3.25) (2.64) (2.00) (2.08) (2.82) (4.77) (9.14)
∆Volatility −335.62∗∗∗ −224.24∗∗∗ −153.43∗∗∗ −66.25∗∗∗ 16.11· 166.52∗∗∗ 351.50∗∗∗ 502.85∗∗∗ 650.17∗∗∗

(20.04) (21.60) (18.36) (13.06) (8.43) (11.68) (11.26) (9.29) (11.76)
∆MRI 379.33∗∗∗ 396.39∗∗∗ 396.99∗∗∗ 391.09∗∗∗ 388.15∗∗∗ 390.04∗∗∗ 405.07∗∗∗ 426.01∗∗∗ 447.97∗∗∗

(9.78) (9.03) (8.61) (9.08) (8.96) (8.95) (8.82) (11.43) (15.03)
∆CR 132.63∗∗∗ 102.25∗∗∗ 80.67∗∗∗ 61.81∗∗∗ 50.97∗∗∗ 56.28∗∗∗ 73.61∗∗∗ 95.10∗∗∗ 115.18∗∗∗

(3.61) (3.45) (3.53) (3.50) (3.32) (3.30) (3.60) (5.11) (6.19)
10Y

StockReturn −135.14∗∗∗ −106.90∗∗∗ −81.91∗∗∗ −57.44∗∗∗ −38.63∗∗∗ −49.99∗∗∗ −79.49∗∗∗ −114.32∗∗∗ −159.59∗∗∗

(3.35) (2.48) (2.18) (1.75) (1.44) (1.56) (1.90) (3.23) (6.46)
∆Volatility −234.11∗∗∗ −169.29∗∗∗ −110.08∗∗∗ −50.62∗∗∗ 7.00· 101.25∗∗∗ 217.68∗∗∗ 334.65∗∗∗ 436.88∗∗∗

(13.59) (13.91) (13.26) (8.67) (4.00) (8.16) (6.93) (6.24) (7.88)
∆MRI 264.37∗∗∗ 276.60∗∗∗ 275.59∗∗∗ 271.50∗∗∗ 270.45∗∗∗ 270.47∗∗∗ 279.03∗∗∗ 292.65∗∗∗ 304.63∗∗∗

(5.32) (4.61) (5.30) (5.50) (5.76) (5.51) (5.02) (6.13) (7.65)
∆CR 80.74∗∗∗ 59.10∗∗∗ 48.20∗∗∗ 40.98∗∗∗ 34.46∗∗∗ 37.64∗∗∗ 48.25∗∗∗ 61.73∗∗∗ 76.91∗∗∗

(2.18) (1.88) (1.86) (1.87) (1.82) (2.00) (2.45) (3.00) (4.72)
30Y

StockReturn −126.32∗∗∗ −98.60∗∗∗ −76.87∗∗∗ −55.49∗∗∗ −41.14∗∗∗ −50.12∗∗∗ −75.75∗∗∗ −104.57∗∗∗ −147.31∗∗∗

(3.55) (2.48) (2.01) (1.67) (1.49) (1.54) (2.04) (3.20) (6.74)
∆Volatility −244.66∗∗∗ −168.41∗∗∗ −101.83∗∗∗ −40.59∗∗∗ 14.10∗ 103.93∗∗∗ 220.91∗∗∗ 304.64∗∗∗ 422.24∗∗∗

(23.54) (14.65) (14.64) (9.32) (6.17) (7.51) (8.30) (6.16) (7.54)
∆MRI 289.35∗∗∗ 284.03∗∗∗ 278.48∗∗∗ 277.44∗∗∗ 277.52∗∗∗ 277.53∗∗∗ 284.71∗∗∗ 302.47∗∗∗ 326.61∗∗∗

(5.80) (5.48) (5.63) (5.38) (5.70) (5.91) (6.81) (8.01) (10.02)
∆CR 53.77∗∗∗ 43.88∗∗∗ 35.92∗∗∗ 27.19∗∗∗ 21.41∗∗∗ 22.15∗∗∗ 29.17∗∗∗ 40.51∗∗∗ 48.73∗∗∗

(3.57) (2.15) (1.66) (1.36) (1.49) (1.47) (2.37) (2.90) (4.70)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 8: This table reports the coefficient estimates of ∆CR (sorted on lagged emission intensities) of the base panel quantile
regression model for CDS spread returns of all tenors in both regions. The sample includes data for 119 European firms from
2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to present nonstationarity.
Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor 1000.
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1 2 3 4 5 6 7 8 9
1Y

StockReturn −257.76∗∗∗ −150.49∗∗∗ −99.87∗∗∗ −56.37∗∗∗ −18.97∗∗∗ −46.77∗∗∗ −89.46∗∗∗ −154.38∗∗∗ −274.10∗∗∗

(12.91) (6.27) (4.70) (2.70) (1.15) (2.20) (4.44) (8.69) (17.54)
∆Volatility −603.47∗∗∗ −324.42∗∗∗ −155.45∗∗∗ −45.12∗∗∗ 6.69 138.80∗∗∗ 335.85∗∗ 621.86∗∗∗ 961.42∗∗∗

(35.80) (37.56) (19.47) (9.99) (4.39) (7.72) (114.31) (30.31) (100.12)
∆MRI 768.00∗∗∗ 555.93∗∗∗ 362.05∗∗∗ 239.11∗∗∗ 136.48∗∗∗ 222.62∗∗∗ 373.83∗∗∗ 630.52∗∗∗ 1040.43∗∗∗

(42.05) (29.46) (23.18) (16.64) (11.85) (17.43) (26.55) (38.02) (74.67)
∆CR 11.97 14.99∗∗∗ 12.90∗∗∗ 7.10∗∗∗ 1.79∗∗ 3.62∗∗ 11.52∗∗∗ 32.39∗∗∗ 76.53∗∗∗

(9.70) (4.02) (2.54) (1.43) (0.68) (1.15) (2.96) (6.61) (16.13)
3Y

StockReturn −228.51∗∗∗ −158.11∗∗∗ −120.23∗∗∗ −76.37∗∗∗ −40.72∗∗∗ −62.32∗∗∗ −108.28∗∗∗ −145.56∗∗∗ −224.44∗∗∗

(7.07) (4.45) (4.04) (2.84) (1.63) (2.13) (3.25) (5.94) (10.94)
∆Volatility −378.54∗∗∗ −244.02∗∗∗ −144.90∗∗∗ −60.46∗∗∗ 6.65 159.13∗∗∗ 322.92∗∗∗ 492.85∗∗∗ 742.54∗∗∗

(27.89) (25.33) (17.55) (8.98) (4.68) (10.94) (13.25) (8.04) (27.34)
∆MRI 286.68∗∗∗ 272.58∗∗∗ 249.08∗∗∗ 212.44∗∗∗ 176.04∗∗∗ 204.91∗∗∗ 264.95∗∗∗ 326.87∗∗∗ 417.01∗∗∗

(10.64) (10.83) (11.32) (10.55) (7.47) (9.41) (10.37) (12.68) (15.79)
∆CR 24.83∗∗∗ 13.59∗∗∗ 8.09∗∗∗ 4.30∗∗∗ 1.44∗∗ 0.43 2.64· 10.65∗∗∗ 23.55∗∗∗

(3.45) (2.39) (1.75) (0.80) (0.48) (0.67) (1.44) (3.01) (6.05)
5Y

StockReturn −186.54∗∗∗ −133.56∗∗∗ −104.55∗∗∗ −70.71∗∗∗ −39.26∗∗∗ −57.13∗∗∗ −93.71∗∗∗ −121.01∗∗∗ −182.94∗∗∗

(4.94) (3.50) (3.34) (2.61) (1.60) (1.97) (2.74) (4.66) (6.66)
∆Volatility −326.67∗∗∗ −210.57∗∗∗ −125.13∗∗∗ −50.43∗∗∗ 13.24∗ 149.31∗∗∗ 287.39∗∗∗ 421.39∗∗∗ 630.46∗∗∗

(14.61) (19.41) (14.78) (9.92) (5.70) (11.15) (10.07) (5.34) (8.88)
∆MRI 205.82∗∗∗ 197.96∗∗∗ 187.41∗∗∗ 169.39∗∗∗ 156.34∗∗∗ 165.91∗∗∗ 196.38∗∗∗ 229.51∗∗∗ 283.21∗∗∗

(7.27) (5.55) (6.12) (6.15) (5.72) (5.85) (5.57) (6.23) (8.86)
∆CR 18.27∗∗∗ 13.42∗∗∗ 8.71∗∗∗ 5.01∗∗∗ 2.64∗∗∗ 5.08∗∗∗ 10.85∗∗∗ 20.72∗∗∗ 37.96∗∗∗

(1.28) (1.21) (0.97) (0.72) (0.31) (0.78) (1.08) (1.98) (4.20)
10Y

StockReturn −137.33∗∗∗ −98.33∗∗∗ −74.46∗∗∗ −49.24∗∗∗ −25.89∗∗∗ −39.73∗∗∗ −67.68∗∗∗ −92.26∗∗∗ −138.23∗∗∗

(3.33) (2.62) (2.34) (1.91) (1.14) (1.44) (2.11) (3.69) (5.83)
∆Volatility −232.67∗∗∗ −158.29∗∗∗ −88.52∗∗∗ −34.26∗∗∗ 9.83∗ 107.87∗∗∗ 218.29∗∗∗ 316.94∗∗∗ 469.83∗∗∗

(12.97) (11.45) (10.38) (8.26) (4.05) (6.98) (8.39) (3.07) (10.83)
∆MRI 128.02∗∗∗ 114.51∗∗∗ 102.64∗∗∗ 86.58∗∗∗ 72.55∗∗∗ 82.56∗∗∗ 104.78∗∗∗ 129.88∗∗∗ 168.73∗∗∗

(4.28) (3.51) (3.42) (3.53) (3.89) (3.63) (3.12) (4.34) (7.43)
∆CR 10.61∗∗∗ 6.69∗∗∗ 4.33∗∗∗ 1.99∗∗∗ 0.61∗∗∗ 0.95∗∗∗ 1.46∗∗ 3.71∗∗∗ 8.41∗∗∗

(0.86) (0.65) (0.46) (0.25) (0.12) (0.25) (0.53) (0.98) (1.90)
30Y

StockReturn −135.20∗∗∗ −95.36∗∗∗ −70.29∗∗∗ −44.71∗∗∗ −25.30∗∗∗ −37.47∗∗∗ −62.87∗∗∗ −89.31∗∗∗ −134.70∗∗∗

(3.79) (2.60) (2.28) (1.68) (1.08) (1.38) (1.95) (3.48) (5.20)
∆Volatility −250.30∗∗∗ −158.14∗∗∗ −89.52∗∗∗ −33.64∗∗∗ 9.65∗ 102.11∗∗∗ 202.44∗∗∗ 308.35∗∗∗ 452.04∗∗∗

(3.49) (6.72) (11.28) (6.94) (4.17) (7.27) (6.61) (6.37) (5.88)
∆MRI 94.95∗∗∗ 81.80∗∗∗ 71.09∗∗∗ 58.72∗∗∗ 48.48∗∗∗ 56.00∗∗∗ 74.73∗∗∗ 96.92∗∗∗ 128.66∗∗∗

(2.81) (2.34) (1.81) (2.59) (2.55) (2.53) (2.42) (3.30) (4.96)
∆CR 4.89∗∗∗ 2.47∗∗∗ 1.78∗∗∗ 1.04∗∗∗ 0.41∗∗∗ 0.62∗∗ 1.30∗∗∗ 2.36∗∗∗ 5.66∗∗∗

(0.77) (0.56) (0.36) (0.21) (0.12) (0.20) (0.39) (0.69) (1.61)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 9: This table reports the coefficient estimates of the base panel quantile regression model for 1-year (top), 3-year (upper
center), 5-year (center), 10-year (lower center) and 30-year (bottom) CDS spread returns. The sample comprises of data for 164
North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences due
to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled
by factor 1000.
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1 2 3 4 5 6 7 8 9 OLS
1Y

BM×∆CR 293.26∗∗∗ 249.19∗∗∗ 176.74∗∗∗ 153.50∗∗∗ 111.95∗∗∗ 130.80∗∗∗ 171.07∗∗∗ 228.41∗∗∗ 364.07∗∗∗ 3.47∗∗

(28.95) (30.40) (22.44) (17.68) (17.48) (20.47) (23.00) (42.74) (59.14) (1.08)
CCGS×∆CR 243.55∗∗∗ 194.71∗∗∗ 166.33∗∗∗ 122.09∗∗∗ 94.54∗∗∗ 108.52∗∗∗ 162.88∗∗∗ 281.33∗∗∗ 357.80∗∗∗ 3.74∗∗∗

(28.86) (38.88) (31.40) (20.93) (18.93) (20.70) (33.61) (53.14) (86.13) (1.08)
Energy×∆CR 1179.29∗∗∗ 913.71∗∗∗ 742.05∗∗∗ 561.67∗∗∗ 488.17∗∗∗ 538.07∗∗∗ 621.18∗∗∗ 896.09∗∗∗ 1252.43∗∗∗ 14.01∗∗∗

(77.80) (57.07) (61.53) (58.41) (64.55) (79.76) (70.62) (80.23) (308.58) (1.93)
Healthcare×∆CR 78.08∗ 22.43 23.01 41.56· 19.59 27.44 51.43 145.61 386.37∗ 3.83·

(38.42) (88.98) (32.43) (24.13) (15.67) (21.60) (42.36) (123.16) (189.00) (2.29)
Industrials×∆CR 326.33∗∗∗ 288.04∗∗∗ 229.64∗∗∗ 176.36∗∗∗ 135.68∗∗∗ 162.68∗∗∗ 222.92∗∗∗ 336.63∗∗∗ 503.82∗∗∗ 5.01∗∗∗

(59.65) (29.01) (27.08) (22.13) (18.35) (24.23) (26.30) (37.23) (60.98) (1.15)
NCGS×∆CR 225.36∗∗∗ 169.66∗∗∗ 110.55∗∗ 67.78∗∗∗ 40.47∗ 67.08∗∗ 109.21∗∗ 203.57∗ 322.13∗∗∗ 3.23∗∗∗

(62.66) (49.71) (36.12) (19.99) (17.44) (22.05) (38.36) (82.37) (58.46) (0.75)
Real Estate×∆CR 405.47∗∗∗ 298.54∗∗∗ 214.53∗∗ 147.78∗∗∗ 113.23∗ 134.34∗ 176.49∗∗ 340.55 598.63∗∗∗ 5.18∗∗∗

(113.50) (78.21) (70.25) (30.94) (49.25) (63.54) (62.29) (208.80) (180.36) (0.68)
Technology×∆CR 167.45 177.47∗∗∗ 168.90∗∗∗ 113.57∗∗∗ 93.49∗∗ 113.84∗∗∗ 151.22∗∗∗ 163.89∗ 207.61 1.01

(111.30) (40.63) (45.94) (28.75) (28.86) (34.21) (43.13) (74.39) (169.20) (0.96)
Utilities×∆CR 783.37∗∗∗ 573.33∗∗∗ 467.30∗∗∗ 378.24∗∗∗ 326.59∗∗∗ 367.29∗∗∗ 482.21∗∗∗ 637.74∗∗∗ 766.52∗∗∗ 10.71∗∗∗

(80.79) (61.17) (44.67) (42.89) (40.50) (50.08) (58.92) (81.79) (198.56) (1.78)
3Y

BM×∆CR 302.68∗∗∗ 224.63∗∗∗ 164.49∗∗∗ 119.88∗∗∗ 87.59∗∗∗ 100.78∗∗∗ 143.08∗∗∗ 189.46∗∗∗ 259.34∗∗∗ 2.87∗∗∗

(21.08) (13.70) (12.36) (12.23) (9.88) (11.47) (13.56) (22.82) (45.84) (0.49)
CCGS×∆CR 220.22∗∗∗ 195.77∗∗∗ 142.11∗∗∗ 109.08∗∗∗ 83.13∗∗∗ 89.55∗∗∗ 118.42∗∗∗ 173.69∗∗∗ 216.36∗∗∗ 2.37∗∗∗

(28.72) (17.96) (12.43) (11.90) (10.34) (12.02) (16.84) (19.14) (62.53) (0.55)
Energy×∆CR 822.12∗∗∗ 763.24∗∗∗ 663.93∗∗∗ 539.73∗∗∗ 478.05∗∗∗ 493.70∗∗∗ 597.52∗∗∗ 768.69∗∗∗ 798.58∗∗∗ 7.65∗∗∗

(23.76) (30.71) (36.31) (39.61) (42.51) (39.41) (40.56) (44.64) (66.03) (0.72)
Healthcare×∆CR 243.61∗∗∗ 157.01∗∗∗ 93.93∗∗∗ 46.87∗∗ 26.28∗ 31.50∗ 55.74∗ 116.69∗∗∗ 217.83∗∗∗ 1.73∗

(26.82) (28.28) (23.53) (17.73) (12.65) (15.65) (21.72) (32.53) (57.62) (0.87)
Industrials×∆CR 251.88∗∗∗ 193.53∗∗∗ 139.21∗∗∗ 97.35∗∗∗ 72.57∗∗∗ 84.59∗∗∗ 120.06∗∗∗ 177.28∗∗∗ 242.40∗∗∗ 3.10∗∗∗

(32.45) (19.05) (12.48) (12.41) (10.39) (12.01) (14.42) (19.76) (50.35) (0.57)
NCGS×∆CR 175.56∗∗∗ 128.63∗∗∗ 86.59∗∗∗ 41.70∗∗∗ 22.07∗∗ 27.86∗∗∗ 48.73∗∗∗ 87.91∗∗ 118.40∗∗ 1.86∗∗∗

(26.42) (19.45) (11.10) (8.43) (7.47) (8.16) (12.26) (28.36) (36.78) (0.40)
Real Estate×∆CR 301.17∗∗∗ 177.27∗∗∗ 118.77∗∗∗ 74.05∗∗∗ 42.78∗ 52.51∗∗ 103.70∗∗∗ 181.36∗∗∗ 266.46∗∗∗ 2.92∗∗

(14.14) (11.08) (15.51) (15.29) (16.99) (19.50) (21.01) (20.28) (42.65) (1.10)
Technology×∆CR 205.85∗∗∗ 142.53∗∗∗ 119.68∗∗∗ 82.57∗∗∗ 57.15∗∗∗ 73.13∗∗∗ 95.19∗∗∗ 118.85∗∗∗ 184.08∗∗∗ 1.87∗∗∗

(18.87) (17.22) (14.97) (13.06) (12.14) (14.75) (17.34) (29.53) (27.87) (0.48)
Utilities×∆CR 362.32∗∗∗ 335.06∗∗∗ 316.88∗∗∗ 267.07∗∗∗ 212.86∗∗∗ 234.88∗∗∗ 298.31∗∗∗ 333.01∗∗∗ 372.49∗∗ 5.45∗∗∗

(34.59) (29.72) (27.84) (27.08) (22.68) (24.10) (29.76) (44.72) (114.18) (0.91)
10Y

BM×∆CR 93.60∗∗∗ 71.63∗∗∗ 55.16∗∗∗ 45.45∗∗∗ 39.26∗∗∗ 44.07∗∗∗ 56.17∗∗∗ 68.20∗∗∗ 92.32∗∗∗ 1.22∗∗∗

(4.95) (5.98) (4.53) (4.48) (5.04) (5.47) (4.17) (7.11) (7.43) (0.14)
CCGS×∆CR 86.06∗∗∗ 61.58∗∗∗ 47.07∗∗∗ 42.68∗∗∗ 34.20∗∗∗ 38.71∗∗∗ 49.27∗∗∗ 66.30∗∗∗ 82.63∗∗∗ 0.96∗∗∗

(4.55) (4.16) (3.91) (4.08) (4.09) (5.25) (6.07) (9.05) (8.84) (0.16)
Energy×∆CR 279.69∗∗∗ 280.96∗∗∗ 250.26∗∗∗ 218.01∗∗∗ 197.83∗∗∗ 198.38∗∗∗ 222.27∗∗∗ 267.21∗∗∗ 314.60∗∗∗ 2.94∗∗∗

(21.25) (31.24) (24.89) (27.86) (25.97) (30.27) (27.10) (22.24) (27.80) (0.16)
Healthcare×∆CR 82.32∗∗∗ 60.32∗∗∗ 50.36∗∗∗ 32.24∗∗∗ 29.10∗∗ 35.07∗∗∗ 39.39∗∗∗ 54.98∗∗∗ 77.63∗∗∗ 0.98∗∗∗

(6.82) (7.27) (9.93) (9.58) (9.22) (8.45) (11.97) (16.03) (16.77) (0.23)
Industrials×∆CR 71.96∗∗∗ 50.36∗∗∗ 41.48∗∗∗ 31.92∗∗∗ 28.34∗∗∗ 31.77∗∗∗ 42.04∗∗∗ 54.71∗∗∗ 60.72∗∗ 0.84∗∗∗

(9.50) (5.12) (3.52) (4.32) (5.10) (4.20) (4.83) (7.26) (23.57) (0.18)
NCGS×∆CR 44.40∗∗∗ 28.18∗∗∗ 18.58∗∗∗ 12.60∗∗∗ 7.94∗∗∗ 9.98∗∗ 17.36∗∗∗ 20.83∗∗∗ 35.30∗∗ 0.38∗

(5.21) (6.55) (3.60) (2.32) (2.30) (3.21) (3.34) (6.23) (11.47) (0.15)
Real Estate×∆CR 65.74∗∗ 30.80∗∗∗ 22.15∗∗∗ 14.61∗ 12.50∗∗ 16.07· 16.61∗ 28.56∗ 64.66· 0.80∗∗

(22.47) (5.30) (4.48) (6.86) (3.90) (8.47) (6.52) (11.60) (33.79) (0.26)
Technology×∆CR 73.78∗∗∗ 47.75∗∗∗ 40.23∗∗∗ 31.71∗∗∗ 24.90∗∗∗ 27.50∗∗∗ 32.97∗∗∗ 39.11∗∗∗ 47.08∗∗∗ 0.78∗∗∗

(5.80) (4.75) (4.68) (3.55) (3.07) (3.87) (4.62) (10.30) (4.32) (0.13)
Utilities×∆CR 103.31∗∗∗ 87.89∗∗∗ 85.59∗∗∗ 76.75∗∗∗ 68.16∗∗∗ 73.45∗∗∗ 88.03∗∗∗ 100.57∗∗∗ 114.53∗∗∗ 1.82∗∗∗

(6.82) (6.76) (12.19) (9.86) (9.96) (10.17) (12.50) (16.39) (30.19) (0.28)
30Y

BM×∆CR 82.11∗∗∗ 60.36∗∗∗ 45.06∗∗∗ 37.05∗∗∗ 29.26∗∗∗ 28.89∗∗∗ 38.60∗∗∗ 50.88∗∗∗ 62.07∗∗∗ 0.52∗∗∗

(6.51) (3.68) (2.99) (3.49) (3.56) (4.16) (6.14) (6.37) (7.96) (0.15)
CCGS×∆CR 43.45∗∗∗ 41.60∗∗∗ 36.65∗∗∗ 27.81∗∗∗ 20.07∗∗∗ 21.86∗∗∗ 27.76∗∗∗ 39.33∗∗∗ 45.82∗∗ 0.05

(11.60) (5.49) (3.30) (3.08) (3.25) (3.02) (5.10) (5.04) (14.69) (0.16)
Energy×∆CR 164.56∗∗∗ 138.24∗∗∗ 127.73∗∗∗ 111.04∗∗∗ 99.81∗∗∗ 100.51∗∗∗ 119.28∗∗∗ 149.84∗∗∗ 195.08∗∗∗ 1.33∗∗∗

(10.03) (18.33) (26.58) (20.06) (18.57) (18.71) (21.42) (26.65) (31.21) (0.21)
Healthcare×∆CR 90.72∗∗∗ 54.16∗∗∗ 35.24∗∗∗ 22.59∗∗∗ 15.87∗∗∗ 17.59∗∗ 29.47∗∗ 44.34∗∗ 57.78∗∗∗ 0.20∗

(7.39) (6.61) (9.54) (5.78) (4.55) (5.55) (9.74) (16.37) (12.97) (0.10)
Industrials×∆CR 24.46∗∗∗ 31.67∗∗∗ 26.26∗∗∗ 20.33∗∗∗ 14.72∗∗∗ 16.16∗∗∗ 19.44∗∗∗ 29.23∗∗∗ 33.60∗ −0.24

(4.94) (4.27) (4.67) (4.11) (2.68) (3.08) (4.97) (7.73) (15.76) (0.20)
NCGS×∆CR 15.16∗ 17.08∗∗∗ 13.77∗∗∗ 9.47∗∗∗ 5.88∗ 5.84· 8.24· 12.95 24.01∗ −0.31

(5.89) (4.58) (4.11) (2.71) (2.69) (3.39) (4.94) (8.93) (11.36) (0.23)
Real Estate×∆CR 46.10∗∗∗ 33.47∗∗∗ 24.56∗∗∗ 11.87∗ 14.49∗∗ 13.19 17.14∗ 21.90 57.14∗∗ −0.12

(5.99) (4.51) (5.86) (5.74) (4.61) (10.08) (7.63) (26.09) (20.91) (0.10)
Technology×∆CR 11.71 23.08∗ 22.71∗∗∗ 17.27∗∗∗ 11.30∗∗ 11.13∗ 11.02· 8.76 12.11 −0.51∗∗

(20.71) (10.60) (6.11) (3.72) (4.21) (5.43) (5.72) (8.20) (14.93) (0.17)
Utilities×∆CR 81.66∗∗∗ 66.92∗∗∗ 54.01∗∗∗ 47.75∗∗∗ 42.01∗∗∗ 46.62∗∗∗ 59.14∗∗∗ 67.39∗∗∗ 78.00∗∗ 0.91∗∗∗

(5.88) (6.50) (5.64) (9.82) (8.22) (8.04) (9.82) (8.78) (24.91) (0.23)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 10: This table reports the coefficient estimates of the interaction terms of the sector panel quantile and mean regression
model for 1-year (top), 3-year (upper center), 10-year (lower center), and 30-year (bottom) CDS spread returns in Europe. The
sample comprises data from 119 European firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model
are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine
deciles. All estimates are scaled by factor 1000.
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1 2 3 4 5 6 7 8 9 OLS
1Y

BM×∆CR 456.23∗∗∗ 223.27∗∗∗ 105.22∗∗∗ 46.42∗∗∗ 14.87∗∗∗ 30.19∗∗∗ 77.72∗∗∗ 208.26∗∗∗ 509.26∗∗∗ 5.35∗∗∗

(74.93) (23.45) (16.54) (7.15) (3.53) (5.90) (16.46) (40.86) (143.50) (0.96)
CCGS×∆CR −118.49∗∗ −49.06· −16.16 −2.79 −1.35 −7.08∗ −21.60∗ −16.83 −53.49 −1.30

(36.24) (26.51) (10.83) (3.93) (1.87) (3.50) (10.22) (17.60) (52.53) (0.89)
Energy×∆CR 415.18∗∗∗ 197.99∗∗∗ 112.11∗∗∗ 53.68∗∗∗ 17.91∗∗∗ 36.99∗∗∗ 76.64∗∗∗ 199.57∗∗∗ 474.54∗∗∗ 3.99∗∗∗

(78.37) (26.58) (11.41) (7.85) (3.79) (5.91) (12.45) (34.39) (101.72) (1.21)
Healthcare×∆CR −147.04∗∗ −39.87∗∗ −10.71· −1.25 −0.02 −0.27 −3.81 0.05 42.50 −0.25

(49.89) (13.33) (6.21) (2.81) (1.56) (2.36) (5.94) (14.96) (56.88) (0.58)
Industrials×∆CR 99.84∗∗ 29.94· 18.70∗ 8.16· 2.22 4.55 23.64∗∗ 60.82∗ 157.84· 2.38∗∗∗

(31.08) (18.15) (7.93) (4.38) (1.87) (2.95) (9.08) (25.44) (81.83) (0.65)
NCGS×∆CR −38.99 −3.29 −0.79 −0.18 −0.18 0.56 4.39 21.28 74.18· 1.44∗

(24.09) (10.90) (4.74) (2.02) (1.07) (1.85) (5.03) (14.37) (41.79) (0.56)
Real Estate×∆CR 72.93∗ −81.87∗∗ −9.59 7.18 2.61 9.83 14.82 107.87∗ 124.35 0.98

(30.32) (25.52) (10.62) (9.30) (5.19) (8.32) (19.14) (45.88) (216.43) (1.54)
Technology×∆CR −128.44∗∗∗ −32.16· −6.84 −0.38 −0.05 −2.46 −7.44 −0.84 1.69 −1.36

(29.64) (18.29) (7.92) (2.51) (1.37) (2.56) (8.99) (22.67) (89.35) (1.13)
Utilities×∆CR 465.22∗∗∗ 150.10∗∗∗ 45.13∗∗∗ 18.99∗∗∗ 5.78∗ 12.47∗ 27.48∗ 141.75∗∗ 330.75∗∗ 3.13∗

(27.78) (41.91) (10.74) (5.23) (2.77) (5.53) (11.78) (46.96) (102.71) (1.23)
3Y

BM×∆CR 145.18∗∗∗ 90.11∗∗∗ 54.99∗∗∗ 29.54∗∗∗ 14.72∗∗∗ 18.96∗∗∗ 47.62∗∗∗ 91.20∗∗∗ 169.47∗∗∗ 1.79∗∗∗

(11.50) (11.32) (8.74) (4.80) (3.66) (4.77) (8.61) (18.53) (39.58) (0.36)
CCGS×∆CR −20.28∗ −10.89 −11.79∗ −4.95· −2.16 −4.95∗∗ −14.51∗∗ −8.22 −0.70 −0.03

(8.28) (10.22) (5.26) (2.66) (1.32) (1.61) (5.55) (6.62) (15.80) (0.16)
Energy×∆CR 169.18∗∗∗ 107.83∗∗∗ 66.51∗∗∗ 37.47∗∗∗ 15.47∗∗∗ 21.16∗∗∗ 44.92∗∗∗ 81.74∗∗∗ 186.76∗∗∗ 1.75∗∗∗

(11.72) (10.85) (8.78) (5.53) (3.58) (5.00) (7.70) (15.20) (33.86) (0.29)
Healthcare×∆CR 12.10 2.70 0.28 −0.29 −0.55 −2.50 −3.23 2.84 15.88 0.18

(12.25) (6.24) (4.34) (1.84) (1.10) (1.56) (3.71) (8.33) (17.09) (0.16)
Industrials×∆CR 22.74 11.90 9.33∗ 5.21∗ 1.17 0.22 2.45 8.07 26.24 0.32∗

(14.50) (7.44) (3.62) (2.41) (1.47) (2.15) (5.02) (13.66) (31.16) (0.16)
NCGS×∆CR 20.64∗∗ 13.55∗∗∗ 5.68∗ 2.75∗ 0.57 −0.46 0.95 4.94 20.23 0.57∗∗∗

(7.14) (3.20) (2.56) (1.24) (0.97) (1.12) (2.21) (8.42) (16.14) (0.13)
Real Estate×∆CR 21.14 12.86 −19.59 −4.68 0.92 −1.54 −3.02 29.68 −30.21 0.74

(40.95) (35.25) (21.16) (11.46) (5.69) (7.10) (23.74) (46.47) (44.66) (0.51)
Technology×∆CR −17.55 −6.60 −5.80 −0.66 −0.29 −1.86 −3.70 0.55 −9.83 0.03

(15.24) (7.02) (5.40) (2.20) (1.08) (1.83) (3.21) (8.07) (18.62) (0.30)
Utilities×∆CR 58.20 45.39∗∗∗ 12.30∗∗ 2.74 1.85 0.13 −2.29 15.44 56.51 0.44∗

(53.27) (12.99) (4.66) (2.40) (1.32) (1.88) (6.21) (14.37) (61.66) (0.20)
10Y

BM×∆CR 28.53∗∗∗ 17.69∗∗∗ 12.61∗∗∗ 7.88∗∗∗ 4.11∗∗∗ 5.53∗∗ 12.68∗∗∗ 25.80∗∗∗ 48.14∗∗∗ 0.54∗∗∗

(1.27) (2.03) (2.55) (1.82) (1.03) (1.88) (3.20) (4.69) (9.41) (0.11)
CCGS×∆CR 16.38∗∗∗ 10.66∗∗∗ 6.40∗∗∗ 2.89∗∗∗ 0.84∗∗ 1.75∗∗ 3.51· 6.45∗ 13.79· 0.14∗∗∗

(1.04) (0.71) (0.47) (0.48) (0.29) (0.68) (2.04) (2.70) (7.25) (0.04)
Energy×∆CR 33.91∗∗∗ 23.15∗∗∗ 13.15∗∗∗ 7.52∗∗∗ 3.95∗∗∗ 5.95∗∗ 11.94∗∗∗ 31.39∗∗∗ 77.81∗∗∗ 0.63∗∗∗

(1.28) (2.79) (3.12) (1.51) (0.79) (1.91) (3.50) (5.17) (10.60) (0.10)
Healthcare×∆CR −2.52 −0.56 −0.33 −0.02 0.00 −0.27 −0.88 −1.27 −4.37∗∗ −0.01

(4.78) (2.63) (1.16) (0.47) (0.18) (0.30) (0.60) (1.51) (1.41) (0.04)
Industrials×∆CR 6.13∗∗∗ 3.52· 2.35∗ 0.72 0.29 0.04 0.20 1.70 −3.63 0.11∗∗

(1.33) (2.08) (1.11) (0.44) (0.26) (0.40) (1.10) (3.68) (6.14) (0.04)
NCGS×∆CR −5.73∗∗∗ −1.44 0.60 0.20 0.02 −0.26 −0.48 −0.63 −2.70 −0.01

(0.92) (1.70) (0.41) (0.26) (0.16) (0.25) (0.59) (0.93) (6.67) (0.05)
Real Estate×∆CR 23.17∗∗∗ 11.86∗∗∗ 12.63∗∗∗ 3.98 1.67 3.28· 8.56∗ 17.43∗∗∗ 11.05· 0.43∗∗∗

(0.58) (0.90) (2.64) (5.57) (2.37) (1.96) (4.10) (4.82) (5.79) (0.07)
Technology×∆CR 3.25 1.04 0.56 0.45 0.23 −0.19 −1.00 −1.13 −1.28 −0.00

(3.44) (3.51) (1.10) (0.40) (0.29) (0.28) (0.77) (1.04) (1.94) (0.09)
Utilities×∆CR 19.10∗∗∗ 9.86∗∗∗ 4.46∗∗∗ 2.64· 1.47· 2.16· 3.63∗∗∗ 11.97∗ 49.64∗∗∗ 0.32∗∗∗

(0.43) (1.91) (0.78) (1.50) (0.89) (1.16) (0.93) (5.12) (6.68) (0.08)
30Y

BM×∆CR 26.09∗∗∗ 17.68∗∗∗ 11.50∗∗∗ 6.71∗∗∗ 4.35∗∗∗ 6.13∗∗∗ 11.42∗∗∗ 19.23∗∗∗ 38.57∗∗∗ 0.56∗∗∗

(1.67) (3.07) (2.12) (1.12) (0.90) (1.03) (2.44) (3.23) (5.66) (0.09)
CCGS×∆CR −1.54 0.05 0.16 0.11 0.32 0.23 0.61 1.23 0.36 −0.02

(3.14) (1.94) (0.92) (0.56) (0.27) (0.39) (1.04) (2.37) (4.25) (0.04)
Energy×∆CR 41.53∗∗∗ 21.13∗∗∗ 12.00∗∗∗ 6.67∗∗∗ 4.10∗∗∗ 4.99∗∗∗ 10.78∗∗∗ 22.91∗∗∗ 56.20∗∗∗ 0.53∗∗∗

(2.78) (2.96) (2.25) (1.47) (1.15) (1.10) (2.27) (3.83) (5.46) (0.12)
Healthcare×∆CR −3.00· −1.55 −1.12 −0.93· −0.31 −0.77· −1.56 −5.63∗∗ −8.15∗∗∗ −0.04

(1.69) (1.58) (1.30) (0.55) (0.34) (0.46) (1.16) (1.91) (1.54) (0.07)
Industrials×∆CR 2.80 0.69 1.92∗∗ 0.71 0.07 −0.21 0.30 1.47 4.85 0.14∗∗

(4.43) (3.07) (0.74) (0.52) (0.34) (0.47) (1.31) (2.53) (6.57) (0.05)
NCGS×∆CR 1.11 0.60 0.34 0.22 0.13 −0.02 0.07 0.02 −1.54 0.02

(2.72) (1.29) (0.75) (0.35) (0.22) (0.26) (0.63) (1.68) (6.06) (0.08)
Real Estate×∆CR 8.93∗∗∗ −9.10· −5.79 −3.73 −0.57 −0.57 −2.88 −4.83 −19.65 0.14∗

(0.62) (5.36) (3.66) (2.61) (2.01) (1.59) (3.15) (7.63) (19.43) (0.06)
Technology×∆CR −3.02 −3.32∗ −0.05 0.33 0.14 0.12 0.04 0.93 2.91 −0.10

(2.18) (1.59) (1.34) (0.70) (0.31) (0.38) (1.13) (1.33) (4.92) (0.13)
Utilities×∆CR 14.10 5.15· 2.68· 1.08· 0.34 −0.07 2.06 7.71∗ 22.84∗∗∗ 0.12∗∗

(14.74) (2.66) (1.44) (0.56) (0.36) (0.44) (2.00) (3.17) (5.84) (0.04)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 11: This table reports the coefficient estimates of the interaction terms of the sector panel quantile and mean regression
model for 1-year (top), 3-year (upper center), 10-year (lower center), and 30-year (bottom) CDS spread returns in North America.
The sample comprises data from 164 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in
the model are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all
nine deciles. All estimates are scaled by factor 1000.

61



1 2 3 4 5 6 7 8 9 OLS
1Y

∆CR× ETS (No response) 108.39∗∗ 141.01∗∗∗ 134.07∗∗∗ 99.73∗∗∗ 74.85∗∗∗ 86.67∗∗∗ 127.42∗∗∗ 174.30∗∗ 304.91∗∗ 3.15∗∗

(34.19) (31.07) (21.60) (16.52) (15.84) (16.59) (24.75) (54.43) (95.00) (1.01)
∆CR× ETS (No) 187.61∗∗∗ 171.87∗∗∗ 137.42∗∗∗ 88.58∗∗∗ 77.38∗∗∗ 92.09∗∗∗ 133.45∗∗∗ 196.71∗∗∗ 281.48∗∗ 2.29∗∗∗

(33.26) (32.24) (30.51) (18.42) (16.01) (19.40) (24.20) (48.03) (90.16) (0.68)
∆CR× ETS (No but anticipation) 202.67 102.45∗∗∗ 187.90∗∗∗ 142.12∗∗∗ 132.36∗∗∗ 181.16∗∗ 260.57∗∗∗ 302.82∗∗ 103.91 4.05∗∗∗

(23.98) (49.21) (39.97) (38.70) (60.75) (78.58) (116.80) (170.81) (1.23)
∆CR× ETS (Yes) 569.94∗∗∗ 421.10∗∗∗ 315.40∗∗∗ 229.10∗∗∗ 180.19∗∗∗ 214.36∗∗∗ 295.08∗∗∗ 455.17∗∗∗ 647.81∗∗∗ 6.96∗∗∗

(41.30) (21.32) (17.56) (13.70) (12.88) (16.24) (22.54) (26.50) (50.30) (0.73)
3Y

∆CR× ETS (No response) 135.33∗∗∗ 132.91∗∗∗ 114.63∗∗∗ 75.59∗∗∗ 51.11∗∗∗ 59.60∗∗∗ 90.05∗∗∗ 120.36∗∗∗ 112.13∗∗∗ 2.21∗∗∗

(21.60) (14.34) (11.10) (9.87) (8.90) (9.32) (15.02) (23.14) (28.64) (0.46)
∆CR× ETS (No) 188.75∗∗∗ 128.01∗∗∗ 94.26∗∗∗ 63.26∗∗∗ 44.67∗∗∗ 56.00∗∗∗ 80.63∗∗∗ 117.39∗∗∗ 160.78∗∗∗ 1.80∗∗∗

(15.40) (15.78) (10.66) (8.12) (6.87) (8.87) (11.14) (17.82) (28.03) (0.30)
∆CR× ETS (No but anticipation) 8.26 53.24 40.75 25.61 28.39 33.87 13.35 57.88 91.29∗∗ 0.68

(38.95) (44.04) (25.79) (18.90) (19.63) (21.37) (23.53) (37.22) (31.41) (0.42)
∆CR× ETS (Yes) 398.49∗∗∗ 306.94∗∗∗ 234.88∗∗∗ 177.74∗∗∗ 135.57∗∗∗ 147.95∗∗∗ 209.75∗∗∗ 281.86∗∗∗ 386.74∗∗∗ 4.11∗∗∗

(13.35) (9.64) (9.11) (9.63) (8.09) (8.18) (11.30) (15.36) (27.12) (0.36)
10Y

∆CR× ETS (No response) 58.08∗∗∗ 46.32∗∗∗ 35.46∗∗∗ 28.39∗∗∗ 22.55∗∗∗ 24.50∗∗∗ 33.53∗∗∗ 40.52∗∗∗ 48.05∗∗∗ 0.86∗∗∗

(6.89) (3.07) (3.14) (3.47) (2.58) (3.58) (4.74) (7.21) (6.08) (0.16)
∆CR× ETS (No) 56.30∗∗∗ 38.11∗∗∗ 32.79∗∗∗ 26.87∗∗∗ 22.61∗∗∗ 23.08∗∗∗ 28.87∗∗∗ 36.45∗∗∗ 48.31∗∗∗ 0.66∗∗∗

(8.72) (3.77) (2.50) (2.40) (1.71) (2.25) (3.14) (6.16) (4.64) (0.10)
∆CR× ETS (No but anticipation) 5.70 18.28∗∗∗ 19.75 8.25 0.57 8.78 8.64 3.58 −27.82∗∗∗ 0.32·

(3.88) (3.74) (14.06) (11.49) (7.30) (8.34) (8.35) (11.66) (6.15) (0.17)
∆CR× ETS (Yes) 113.10∗∗∗ 87.93∗∗∗ 73.37∗∗∗ 60.54∗∗∗ 51.28∗∗∗ 56.12∗∗∗ 69.01∗∗∗ 89.16∗∗∗ 117.23∗∗∗ 1.42∗∗∗

(3.61) (3.44) (3.96) (3.59) (3.39) (3.54) (3.66) (6.27) (6.58) (0.12)
30Y

∆CR× ETS (No response) 23.31∗∗∗ 25.61∗∗∗ 23.29∗∗∗ 18.52∗∗∗ 12.71∗∗∗ 12.95∗∗∗ 16.43∗∗∗ 20.64∗∗∗ 19.94 −0.14
(6.21) (5.50) (3.64) (3.16) (2.41) (3.10) (4.20) (5.57) (18.08) (0.16)

∆CR× ETS (No) 16.72∗∗∗ 23.53∗∗∗ 23.40∗∗∗ 17.14∗∗∗ 11.61∗∗∗ 12.25∗∗∗ 14.56∗∗∗ 19.75∗∗ 25.85∗∗ −0.27
(4.92) (4.38) (3.99) (2.58) (2.72) (2.99) (3.07) (6.31) (8.16) (0.18)

∆CR× ETS (No but anticipation) −15.02 −3.22 −3.00 −9.85 −6.99 −5.54 −8.89 −24.43 −38.16 −0.57
(9.31) (9.38) (13.19) (18.89) (10.18) (8.45) (14.76) (18.96) (38.20) (0.35)

∆CR× ETS (Yes) 86.22∗∗∗ 63.24∗∗∗ 49.08∗∗∗ 37.98∗∗∗ 32.17∗∗∗ 34.97∗∗∗ 46.50∗∗∗ 59.54∗∗∗ 76.51∗∗∗ 0.51∗∗∗

(3.25) (2.47) (2.18) (2.31) (2.64) (3.09) (3.37) (3.75) (4.84) (0.12)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 12: This table reports the coefficient estimates of the interaction terms of the ETS panel quantile and mean regression
model for 1-year (top), 3-year (upper center), 10-year (lower center), and 30-year (bottom) CDS spread returns in Europe. The
sample comprises data from 119 European firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model
are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine
deciles. All estimates are scaled by factor 1000.
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1 2 3 4 5 6 7 8 9 OLS
1Y

∆CR× ETS (No response) 38.39 21.37∗ 11.51∗ 6.74∗∗ 1.56 4.06∗ 11.80∗ 48.51∗∗ 103.27∗ 0.24
(35.05) (10.17) (4.89) (2.29) (1.22) (2.04) (5.59) (15.89) (43.68) (0.76)

∆CR× ETS (No) −66.54∗∗ −17.25· 2.32 1.31 0.04 −1.29 −0.80 6.87 29.63 0.32
(23.46) (9.97) (3.90) (2.01) (0.96) (1.72) (4.64) (12.51) (44.52) (0.62)

∆CR× ETS (No but anticipation) 29.55 58.34 33.64∗ 20.17∗∗∗ 5.42 12.60∗ 40.19∗ 114.14∗∗ 270.31∗∗ 2.03∗∗

(198.52) (61.01) (16.53) (6.07) (3.41) (5.77) (16.00) (42.44) (99.15) (0.76)
∆CR× ETS (Yes) 177.26∗∗∗ 60.61∗∗∗ 32.45∗∗∗ 14.62∗∗∗ 4.08∗∗ 9.56∗∗∗ 28.27∗∗∗ 85.08∗∗∗ 214.07∗ 3.03∗∗∗

(48.99) (14.55) (7.30) (3.46) (1.47) (2.70) (6.49) (19.38) (104.40) (0.63)
3Y

∆CR× ETS (No response) 26.32∗∗ 25.32∗∗∗ 12.18∗∗∗ 4.68∗∗ 1.26 −0.01 2.59 11.57∗ 27.92∗ 0.46∗∗

(8.03) (5.96) (3.15) (1.44) (0.87) (1.18) (3.12) (4.84) (11.19) (0.16)
∆CR× ETS (No) 2.65 4.51 1.30 0.95 0.03 −1.54 −0.67 4.66 8.91 0.25·

(7.94) (4.56) (3.09) (1.23) (0.68) (1.12) (2.47) (5.74) (15.72) (0.15)
∆CR× ETS (No but anticipation) 64.39∗∗∗ 48.01∗ 17.63 5.86 2.41 −0.91 0.64 19.19 76.73∗∗∗ 0.44

(12.55) (20.21) (11.06) (3.62) (2.48) (2.95) (9.26) (14.52) (14.51) (0.43)
∆CR× ETS (Yes) 87.75∗∗∗ 36.32∗∗∗ 18.32∗∗∗ 6.84∗∗∗ 2.95∗∗ 3.91∗∗ 11.15∗ 30.95∗∗∗ 68.99∗ 0.93∗∗∗

(17.24) (7.37) (4.32) (1.72) (0.92) (1.37) (4.72) (8.27) (27.21) (0.19)
10Y

∆CR× ETS (No response) 15.77∗∗∗ 9.55∗∗∗ 5.88∗∗∗ 2.75∗∗∗ 0.78∗∗∗ 0.90∗ 1.81 4.93∗∗∗ 9.52∗ 0.19∗∗∗

(1.60) (0.98) (0.49) (0.43) (0.23) (0.42) (1.14) (1.25) (3.78) (0.04)
∆CR× ETS (No) 4.14∗∗∗ 2.32∗ 1.58∗∗ 0.91∗∗ 0.44∗∗ 0.51· 0.47 1.26 5.16 0.09∗

(0.90) (0.99) (0.60) (0.30) (0.17) (0.26) (0.53) (1.95) (4.13) (0.04)
∆CR× ETS (No but anticipation) 18.10∗∗∗ 9.30∗∗∗ 5.53∗∗∗ 2.09∗ 1.34 1.54 3.39 9.90· 22.66 0.19∗∗∗

(1.00) (1.20) (1.26) (1.07) (0.97) (1.16) (4.96) (5.53) (15.10) (0.05)
∆CR× ETS (Yes) 19.53∗∗∗ 10.06∗∗∗ 6.08∗∗∗ 2.62∗∗∗ 1.00∗∗ 1.84∗∗ 4.26∗∗∗ 10.54∗∗∗ 22.49∗∗ 0.30∗∗∗

(1.03) (1.23) (0.53) (0.58) (0.34) (0.62) (0.90) (3.14) (8.72) (0.06)
30Y

∆CR× ETS (No response) 9.14∗∗∗ 5.92∗∗∗ 4.00∗∗∗ 2.03∗∗∗ 0.70∗∗ 1.46∗∗∗ 2.80∗∗∗ 5.97∗∗∗ 13.33∗∗∗ 0.15∗∗

(1.44) (1.10) (0.83) (0.41) (0.25) (0.39) (0.70) (1.20) (2.25) (0.05)
∆CR× ETS (No) 0.86 −0.31 0.32 −0.00 0.08 −0.07 0.08 −0.17 −1.54 −0.02

(1.96) (0.98) (0.73) (0.37) (0.19) (0.29) (0.55) (1.27) (2.71) (0.06)
∆CR× ETS (No but anticipation) 19.36 8.50 3.38 1.30 0.43 0.32 0.59 2.53 14.73 0.22∗

(13.61) (8.83) (4.30) (1.38) (0.80) (1.04) (2.99) (2.98) (20.96) (0.11)
∆CR× ETS (Yes) 8.78∗∗∗ 4.41∗∗ 3.29∗∗∗ 1.46∗∗ 0.52∗ 1.08∗ 2.20∗ 5.48∗∗ 10.67∗ 0.22∗∗∗

(1.48) (1.70) (0.72) (0.45) (0.23) (0.42) (1.03) (1.75) (4.68) (0.06)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 13: This table reports the coefficient estimates of the interaction terms of the ETS panel quantile and mean regression
model for 1-year (top), 3-year (upper center), 10-year (lower center), and 30-year (bottom) CDS spread returns in North America.
The sample comprises data from 164 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in
the model are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all
nine deciles. All estimates are scaled by factor 1000.
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1 2 3 4 5 6 7 8 9 OLS
1Y

∆CR× ETS (No response) 108.59∗∗ 140.94∗∗∗ 134.19∗∗∗ 99.71∗∗∗ 75.08∗∗∗ 86.68∗∗∗ 127.42∗∗∗ 174.26∗∗ 304.95∗∗ 3.15∗∗

(34.01) (31.00) (21.55) (16.52) (15.84) (16.59) (24.76) (54.35) (95.02) (1.01)
∆CR× ETS (Yes)× ETS Share 15.52 −54.43 65.67 106.48∗∗ 107.50∗ 128.19∗∗ 102.62 4.95 50.19 2.78

(117.61) (63.83) (55.24) (40.12) (45.59) (46.41) (75.33) (92.60) (187.80) (2.32)
∆CR× ETS (No) 187.73∗∗∗ 171.86∗∗∗ 137.45∗∗∗ 88.70∗∗∗ 77.32∗∗∗ 92.07∗∗∗ 133.21∗∗∗ 197.19∗∗∗ 281.18∗∗ 2.29∗∗∗

(32.97) (32.23) (30.52) (18.43) (16.00) (19.46) (24.16) (48.27) (90.00) (0.68)
∆CR× ETS (No but anticipation) 202.65 102.53∗∗∗ 187.75∗∗∗ 142.14∗∗∗ 132.38∗∗∗ 181.17∗∗ 260.39∗∗∗ 302.99∗∗ 104.66 4.05∗∗∗

(24.00) (49.20) (39.95) (38.69) (60.72) (78.64) (117.59) (170.71) (1.23)
∆CR× ETS (Yes) 563.55∗∗∗ 441.83∗∗∗ 285.42∗∗∗ 188.53∗∗∗ 140.83∗∗∗ 166.74∗∗∗ 255.39∗∗∗ 454.10∗∗∗ 636.31∗∗∗ 5.95∗∗∗

(83.26) (37.07) (28.18) (20.68) (17.82) (22.62) (30.58) (35.54) (66.48) (0.93)
3Y

∆CR× ETS (No response) 135.33∗∗∗ 132.82∗∗∗ 114.85∗∗∗ 75.60∗∗∗ 51.20∗∗∗ 59.60∗∗∗ 90.04∗∗∗ 120.37∗∗∗ 112.78∗∗∗ 2.22∗∗∗

(21.60) (14.34) (11.12) (9.86) (8.91) (9.29) (15.00) (23.14) (28.26) (0.46)
∆CR× ETS (Yes)× ETS Share 4.06 41.38 63.90∗ 108.72∗∗∗ 103.61∗∗∗ 112.94∗∗∗ 114.73∗∗∗ 57.57 4.08 1.24

(39.93) (27.08) (29.06) (31.97) (26.13) (26.86) (32.14) (38.13) (85.46) (1.11)
∆CR× ETS (No) 188.63∗∗∗ 128.13∗∗∗ 94.12∗∗∗ 63.56∗∗∗ 44.88∗∗∗ 55.72∗∗∗ 80.39∗∗∗ 117.39∗∗∗ 160.58∗∗∗ 1.80∗∗∗

(15.42) (15.74) (10.65) (8.12) (6.89) (8.85) (11.10) (17.78) (28.07) (0.30)
∆CR× ETS (No but anticipation) 8.14 53.01 41.65 25.70 28.12 33.61 13.27 57.62 91.16∗∗ 0.69

(38.84) (44.05) (26.16) (18.88) (19.63) (21.46) (23.57) (37.67) (31.24) (0.42)
∆CR× ETS (Yes) 396.92∗∗∗ 291.43∗∗∗ 211.89∗∗∗ 138.37∗∗∗ 99.12∗∗∗ 109.85∗∗∗ 167.71∗∗∗ 261.61∗∗∗ 385.34∗∗∗ 3.64∗∗∗

(18.29) (13.36) (11.68) (12.24) (10.72) (11.03) (13.91) (18.83) (40.03) (0.49)
10Y

∆CR× ETS (No response) 58.31∗∗∗ 46.32∗∗∗ 35.47∗∗∗ 28.37∗∗∗ 22.53∗∗∗ 24.53∗∗∗ 33.62∗∗∗ 40.50∗∗∗ 47.77∗∗∗ 0.86∗∗∗

(7.14) (3.06) (3.14) (3.46) (2.58) (3.59) (4.74) (7.21) (5.60) (0.16)
∆CR× ETS (Yes)× ETS Share 37.92∗ 39.86∗∗∗ 47.37∗∗∗ 54.84∗∗∗ 53.10∗∗∗ 52.68∗∗∗ 50.90∗∗∗ 37.17∗ 37.45 0.88∗

(14.82) (11.78) (12.36) (11.84) (10.06) (10.46) (12.40) (15.15) (25.33) (0.39)
∆CR× ETS (No) 56.43∗∗∗ 38.12∗∗∗ 32.89∗∗∗ 26.89∗∗∗ 22.59∗∗∗ 23.06∗∗∗ 28.92∗∗∗ 36.51∗∗∗ 48.23∗∗∗ 0.66∗∗∗

(8.83) (3.78) (2.52) (2.39) (1.71) (2.24) (3.15) (6.13) (4.65) (0.10)
∆CR× ETS (No but anticipation) 5.70 18.30∗∗∗ 19.68 8.27 0.56 8.75 8.59 3.60 −27.88∗∗∗ 0.32·

(3.89) (3.75) (13.95) (11.44) (7.28) (8.33) (8.36) (11.64) (6.16) (0.17)
∆CR× ETS (Yes) 98.85∗∗∗ 74.05∗∗∗ 57.41∗∗∗ 42.11∗∗∗ 33.24∗∗∗ 37.84∗∗∗ 51.79∗∗∗ 77.09∗∗∗ 102.43∗∗∗ 1.09∗∗∗

(7.07) (5.25) (4.66) (4.46) (4.12) (4.63) (4.68) (6.47) (11.79) (0.18)
30Y

∆CR× ETS (No response) 23.35∗∗∗ 25.64∗∗∗ 23.24∗∗∗ 18.48∗∗∗ 12.61∗∗∗ 12.95∗∗∗ 16.40∗∗∗ 20.62∗∗∗ 19.86 −0.14
(6.08) (5.55) (3.64) (3.15) (2.43) (3.10) (4.20) (5.55) (18.06) (0.16)

∆CR× ETS (Yes)× ETS Share 13.10 18.84∗ 26.86∗∗∗ 27.85∗∗ 29.89∗∗∗ 32.37∗∗∗ 30.55∗∗ 21.68∗ 11.28 0.66∗

(15.92) (7.45) (7.32) (8.60) (8.62) (8.37) (9.95) (10.30) (19.74) (0.34)
∆CR× ETS (No) 16.76∗∗∗ 23.51∗∗∗ 23.40∗∗∗ 17.20∗∗∗ 11.71∗∗∗ 12.19∗∗∗ 14.56∗∗∗ 19.76∗∗ 25.84∗∗ −0.27

(4.95) (4.38) (3.98) (2.58) (2.71) (2.98) (3.07) (6.31) (8.19) (0.18)
∆CR× ETS (No but anticipation) −14.95 −3.21 −2.99 −10.00 −7.10 −5.54 −8.87 −24.41 −38.17 −0.57

(9.34) (9.38) (13.26) (18.83) (10.12) (8.50) (14.77) (18.96) (38.26) (0.35)
∆CR× ETS (Yes) 82.83∗∗∗ 57.30∗∗∗ 40.10∗∗∗ 28.91∗∗∗ 22.21∗∗∗ 22.79∗∗∗ 34.61∗∗∗ 51.79∗∗∗ 72.60∗∗∗ 0.25

(6.03) (3.44) (2.83) (2.86) (2.85) (3.65) (4.69) (5.34) (11.09) (0.19)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 14: This table reports the coefficient estimates of the interaction terms (incl. ETS share) of the ETS panel quantile
and mean regression model for 1-year (top), 3-year (upper center), 10-year (lower center), and 30-year (bottom) CDS spread
returns in Europe. The sample comprises data from 119 European firms from 2013/01/01 to 2019/12/31 in daily frequency. All
variables in the model are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are
reported for all nine deciles. All estimates are scaled by factor 1000.
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1 2 3 4 5 6 7 8 9 OLS
1Y

∆CR× ETS (No response) 38.80 21.36∗ 11.49∗ 6.74∗∗ 1.56 4.07∗ 11.78∗ 47.85∗∗ 103.45∗ 0.24
(34.59) (10.17) (4.89) (2.29) (1.22) (2.04) (5.58) (15.77) (43.70) (0.76)

∆CR× ETS (Yes)× ETS Share −311.18 38.22 43.36 19.63 27.59 7.83 −60.86 −315.38 −1256.27∗∗ −6.99·

(274.84) (190.35) (84.61) (58.30) (23.41) (42.64) (105.66) (251.23) (434.19) (3.94)
∆CR× ETS (No) −66.35∗∗ −17.27· 2.32 1.31 0.03 −1.31 −0.82 6.95 29.08 0.32

(23.58) (9.97) (3.90) (2.01) (0.96) (1.72) (4.64) (12.51) (45.43) (0.62)
∆CR× ETS (No but anticipation) 30.02 58.26 33.67∗ 20.17∗∗∗ 5.42 12.56∗ 40.11∗ 114.44∗∗ 270.53∗∗ 2.03∗∗

(198.01) (60.42) (16.54) (6.07) (3.41) (5.77) (16.01) (42.89) (100.34) (0.76)
∆CR× ETS (Yes) 197.48∗∗∗ 57.09∗∗ 29.05∗∗ 13.73∗∗ 2.49 9.03∗ 33.05∗∗ 110.28∗∗∗ 328.36∗∗ 3.46∗∗∗

(36.45) (21.24) (10.69) (5.00) (1.94) (3.98) (11.12) (26.90) (102.86) (0.77)
3Y

∆CR× ETS (No response) 26.23∗∗ 25.45∗∗∗ 12.17∗∗∗ 4.65∗∗ 1.26 −0.03 2.60 11.73∗ 28.27∗ 0.46∗∗

(8.05) (5.97) (3.15) (1.44) (0.87) (1.18) (3.12) (4.82) (11.65) (0.16)
∆CR× ETS (Yes)× ETS Share −47.20 −13.93 −71.25 −38.89 −8.64 −37.56 −103.58· −213.69∗ −165.09 −0.94

(99.19) (77.38) (64.35) (24.91) (16.76) (26.94) (61.94) (83.22) (237.57) (1.33)
∆CR× ETS (No) 2.67 4.48 1.34 0.97 0.03 −1.54 −0.68 4.58 8.34 0.25·

(7.95) (4.56) (3.10) (1.23) (0.68) (1.12) (2.46) (5.73) (15.60) (0.15)
∆CR× ETS (No but anticipation) 64.40∗∗∗ 48.00∗ 17.61 5.87 2.41 −0.93 0.64 19.20 76.79∗∗∗ 0.44

(12.64) (20.19) (11.04) (3.62) (2.48) (2.94) (9.27) (14.53) (14.73) (0.43)
∆CR× ETS (Yes) 89.92∗∗∗ 37.32∗∗∗ 23.62∗∗∗ 10.01∗∗∗ 3.53∗ 6.49∗ 18.60∗∗ 43.51∗∗∗ 79.44∗∗ 0.99∗∗∗

(9.48) (8.77) (6.55) (2.58) (1.44) (2.53) (7.19) (12.17) (30.28) (0.23)
10Y

∆CR× ETS (No response) 15.78∗∗∗ 9.54∗∗∗ 5.87∗∗∗ 2.75∗∗∗ 0.78∗∗∗ 0.90∗ 1.81 4.93∗∗∗ 9.51∗ 0.19∗∗∗

(1.59) (0.98) (0.49) (0.43) (0.23) (0.42) (1.14) (1.25) (3.81) (0.04)
∆CR× ETS (Yes)× ETS Share 20.34 −9.06 1.32 6.19 4.18 0.56 1.85 −5.20 84.05 0.00

(40.35) (20.97) (7.55) (7.76) (4.88) (4.88) (11.60) (18.31) (145.03) (0.30)
∆CR× ETS (No) 4.14∗∗∗ 2.32∗ 1.58∗∗ 0.91∗∗ 0.44∗∗ 0.51· 0.46 1.26 5.21 0.09∗

(0.91) (0.99) (0.60) (0.30) (0.17) (0.26) (0.53) (1.95) (4.11) (0.04)
∆CR× ETS (No but anticipation) 18.10∗∗∗ 9.30∗∗∗ 5.53∗∗∗ 2.09∗ 1.34 1.54 3.39 9.90· 22.77 0.19∗∗∗

(1.00) (1.20) (1.26) (1.07) (0.97) (1.16) (4.96) (5.53) (15.16) (0.05)
∆CR× ETS (Yes) 18.00∗∗∗ 10.42∗∗∗ 5.99∗∗∗ 2.26∗∗ 0.78∗ 1.74∗ 4.18∗∗ 11.07∗∗ 16.30 0.30∗∗∗

(2.61) (1.04) (0.73) (0.74) (0.40) (0.79) (1.32) (4.04) (11.27) (0.07)
30Y

∆CR× ETS (No response) 9.14∗∗∗ 5.92∗∗∗ 4.00∗∗∗ 2.03∗∗∗ 0.70∗∗ 1.46∗∗∗ 2.80∗∗∗ 5.97∗∗∗ 13.32∗∗∗ 0.15∗∗

(1.44) (1.10) (0.83) (0.41) (0.25) (0.39) (0.70) (1.20) (2.24) (0.05)
∆CR× ETS (Yes)× ETS Share −0.49 −2.10 −0.26 −4.00 1.28 2.12 −3.63 8.83 −17.10 −0.17

(31.43) (9.87) (8.86) (6.30) (4.22) (3.83) (12.54) (20.18) (31.33) (0.42)
∆CR× ETS (No) 0.86 −0.31 0.32 0.00 0.08 −0.07 0.08 −0.16 −1.54 −0.02

(1.96) (0.98) (0.74) (0.37) (0.19) (0.29) (0.55) (1.27) (2.70) (0.06)
∆CR× ETS (No but anticipation) 19.36 8.50 3.36 1.30 0.42 0.32 0.59 2.53 14.76 0.22∗

(13.61) (8.83) (4.34) (1.38) (0.80) (1.04) (2.99) (2.98) (20.87) (0.11)
∆CR× ETS (Yes) 8.78∗ 4.57∗ 3.29∗∗ 1.73∗ 0.44 0.85· 2.40 4.77· 11.37∗ 0.23∗∗∗

(4.33) (2.23) (1.05) (0.69) (0.34) (0.49) (1.50) (2.86) (5.59) (0.07)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 15: This table reports the coefficient estimates of the interaction terms (incl. ETS share) of the ETS panel quantile
and mean regression model for 1-year (top), 3-year (upper center), 10-year (lower center), and 30-year (bottom) CDS spread
returns in North America. The sample comprises data from 164 North American firms from 2013/01/01 to 2019/12/31 in daily
frequency. All variables in the model are in first-differences due to present nonstationarity. Estimates and standard errors (in
brackets) are reported for all nine deciles. All estimates are scaled by factor 1000.
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1 2 3 4 5 6 7 8 9 OLS
5Y-1Y

∆Volatility −120.92∗∗∗ −41.67∗∗∗ −12.68∗∗ −2.80 1.95 15.46∗∗∗ 49.60∗∗∗ 128.34∗∗∗ 258.45∗∗∗ 190.10∗

(16.61) (11.48) (4.15) (1.80) (1.23) (1.61) (3.09) (3.82) (4.30) (80.03)
∆MRISlope 204.32∗∗∗ 162.88∗∗∗ 112.27∗∗∗ 60.07∗∗∗ 37.07∗∗∗ 41.74∗∗∗ 77.23∗∗∗ 138.84∗∗∗ 216.07∗∗∗ 248.10∗∗∗

(6.81) (6.18) (6.47) (4.62) (3.06) (3.18) (4.77) (6.29) (10.25) (25.04)
∆IR −3190.10∗∗∗ −1896.44∗∗∗ −989.93∗∗∗ −525.22∗∗∗ −354.31∗∗∗ −393.85∗∗∗ −724.52∗∗∗ −1706.95∗∗∗ −3104.45∗∗∗ −4418.71∗∗∗

(320.22) (136.14) (66.21) (29.46) (19.90) (22.89) (55.42) (139.79) (330.11) (601.83)
∆IR2 −36151.01∗∗∗ −16258.18∗∗∗ −5652.21∗∗∗ 123.80 1212.50∗∗∗ 2332.55∗∗∗ 10282.93∗∗∗ 39620.72∗∗∗ 91466.84∗∗∗ 24854.33∗∗

(3960.65) (1305.16) (589.48) (167.25) (125.11) (234.26) (877.71) (2797.45) (4770.73) (8686.94)
∆Term 1922.24∗∗∗ 1128.15∗∗∗ 564.99∗∗∗ 298.39∗∗∗ 164.94∗∗∗ 140.41∗∗∗ 89.46∗ −68.89 −586.25∗∗ 2356.29∗

(321.30) (131.92) (61.63) (26.66) (18.33) (19.64) (35.31) (72.27) (198.60) (1128.85)
∆CRSlope 37.08∗∗∗ 20.86∗∗∗ 11.13∗∗∗ 5.67∗∗∗ 3.71∗∗∗ 4.23∗∗∗ 8.43∗∗∗ 15.58∗∗∗ 25.34∗∗∗ 59.01∗∗∗

(2.43) (1.08) (0.79) (0.45) (0.28) (0.35) (0.75) (1.55) (2.93) (8.71)
10Y-5Y

∆Volatility −22.75∗∗∗ −12.68∗∗∗ −7.93∗∗∗ −4.75∗∗∗ −0.54 −0.37 1.94∗ 6.49∗∗∗ 15.58∗∗∗ −8.25
(1.92) (1.01) (0.87) (0.68) (0.39) (0.58) (0.79) (0.78) (1.08) (18.43)

∆MRISlope 6.08∗∗∗ 1.57∗∗∗ 0.46∗ 0.39∗ 0.08 0.39· 0.49∗ 1.42∗∗∗ 4.95∗∗∗ 31.91∗∗∗

(0.90) (0.33) (0.21) (0.20) (0.11) (0.20) (0.21) (0.34) (0.63) (4.19)
∆IR 212.86∗∗∗ 261.68∗∗∗ 193.45∗∗∗ 205.16∗∗∗ 35.95∗∗∗ 156.55∗∗∗ 148.81∗∗∗ 238.60∗∗∗ 329.53∗∗∗ 801.69∗∗

(61.90) (18.30) (13.01) (9.68) (6.36) (10.91) (13.29) (18.92) (60.08) (275.64)
∆IR2 −9435.17∗∗∗ −3701.05∗∗∗ −2041.74∗∗∗ −1155.50∗∗∗ −186.71∗∗∗ 261.71∗∗∗ 792.14∗∗∗ 1993.90∗∗∗ 7951.49∗∗∗ −1162.24

(1125.27) (230.61) (109.11) (83.47) (56.40) (55.23) (80.21) (178.90) (624.12) (1162.16)
∆Term −324.44∗∗∗ −233.83∗∗∗ −172.28∗∗∗ −205.68∗∗∗ −35.72∗∗∗ −158.59∗∗∗ −139.30∗∗∗ −221.02∗∗∗ −356.87∗∗∗ −876.57∗∗∗

(56.00) (18.87) (13.77) (10.33) (6.58) (11.15) (12.57) (16.88) (43.37) (264.47)
∆CRSlope −1.34∗∗∗ −0.75∗∗∗ −0.60∗∗∗ −0.59∗∗∗ −0.14∗∗∗ −0.45∗∗∗ −0.34∗∗∗ −0.42∗∗ −0.43 −6.91∗∗

(0.28) (0.13) (0.07) (0.06) (0.04) (0.07) (0.08) (0.14) (0.45) (2.23)
10Y-1Y

∆Volatility −138.44∗∗∗ −60.94∗∗∗ −20.22∗∗ −4.81∗ 3.77∗ 20.89∗∗∗ 63.96∗∗∗ 143.19∗∗∗ 299.63∗∗∗ 171.27·

(17.63) (13.54) (6.20) (2.12) (1.78) (2.48) (4.08) (5.47) (40.02) (89.09)
∆MRISlope 211.50∗∗∗ 170.76∗∗∗ 125.51∗∗∗ 81.70∗∗∗ 62.82∗∗∗ 67.38∗∗∗ 99.36∗∗∗ 156.06∗∗∗ 231.84∗∗∗ 214.74∗∗∗

(4.98) (6.14) (6.12) (5.19) (4.35) (4.60) (5.45) (6.88) (9.82) (25.80)
∆IR −2281.39∗∗∗ −1464.89∗∗∗ −897.70∗∗∗ −479.28∗∗∗ −273.87∗∗∗ −343.59∗∗∗ −673.25∗∗∗ −1538.15∗∗∗ −2696.23∗∗∗ −2673.07∗∗∗

(274.27) (156.07) (81.70) (45.82) (31.76) (38.77) (70.90) (156.87) (424.47) (639.64)
∆IR2 −44155.95∗∗∗ −22016.21∗∗∗ −8367.82∗∗∗ −412.38 1753.08∗∗∗ 4001.82∗∗∗ 14010.82∗∗∗ 40724.65∗∗∗ 92498.04∗∗∗ 24528.49∗

(3138.06) (1828.69) (928.89) (297.66) (196.74) (357.61) (1141.41) (2907.96) (7572.63) (9679.88)
∆Term 723.85∗∗ 512.78∗∗ 337.98∗∗∗ 155.76∗∗∗ 7.13 −29.10 −180.65∗∗∗ −384.19∗∗∗ −1005.07∗∗∗ 738.52

(275.22) (159.50) (80.99) (43.14) (30.05) (31.68) (53.42) (102.91) (276.47) (1207.35)
∆CRSlope 45.35∗∗∗ 28.04∗∗∗ 17.44∗∗∗ 10.18∗∗∗ 7.11∗∗∗ 7.69∗∗∗ 13.00∗∗∗ 21.53∗∗∗ 30.99∗∗∗ 77.13∗∗∗

(1.69) (1.22) (0.94) (0.64) (0.51) (0.65) (1.09) (1.53) (3.39) (9.66)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 16: This table reports the coefficient estimates of the term structure panel quantile and mean regression model for 5Y-1Y
(top), 10Y-5Y (center), and 10Y-1Y (bottom) CDS spread slope changes in Europe. The sample comprises data from 119
European firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences due to
present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled
by factor 1000.
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1 2 3 4 5 6 7 8 9 OLS
5Y-1Y

∆Volatility −229.70∗∗∗ −85.44∗∗∗ −16.74∗∗∗ −1.78 3.80∗∗∗ 27.71∗∗∗ 81.94∗∗∗ 230.33∗∗∗ 467.91∗∗∗ 223.83∗

(15.35) (9.26) (4.06) (1.26) (1.11) (2.31) (4.30) (2.76) (6.78) (91.75)
∆MRISlope 148.11∗∗∗ 109.77∗∗∗ 67.74∗∗∗ 35.94∗∗∗ 20.46∗∗∗ 27.73∗∗∗ 60.89∗∗∗ 121.86∗∗∗ 209.88∗∗∗ 228.89∗∗∗

(7.26) (5.44) (4.39) (2.43) (1.34) (1.75) (3.54) (6.29) (9.88) (23.98)
∆IR −3431.36∗∗∗ −2266.93∗∗∗ −1190.32∗∗∗ −598.17∗∗∗ −383.49∗∗∗ −577.40∗∗∗ −1394.54∗∗∗ −3022.07∗∗∗ −4812.75∗∗∗ −9049.97∗∗∗

(180.56) (96.38) (63.05) (29.64) (17.65) (23.83) (67.10) (143.32) (240.43) (911.52)
∆IR2 −37945.17∗∗∗ −16861.92∗∗∗ −4008.03∗∗∗ 912.22∗∗∗ 1115.50∗∗∗ 1560.99∗∗∗ 8359.40∗∗∗ 32860.72∗∗∗ 79186.38∗∗∗ 18314.84∗∗∗

(2320.35) (847.56) (338.09) (89.87) (57.60) (85.21) (647.01) (2025.26) (5123.16) (3296.11)
∆Term 1752.86∗∗∗ 1241.34∗∗∗ 728.15∗∗∗ 397.16∗∗∗ 240.89∗∗∗ 352.79∗∗∗ 692.95∗∗∗ 1132.72∗∗∗ 1576.24∗∗∗ 5096.48∗∗∗

(163.02) (95.03) (57.41) (27.63) (16.14) (19.49) (36.46) (77.52) (154.40) (810.24)
∆CRSlope 12.17∗∗∗ 7.84∗∗∗ 3.75∗∗∗ 1.67∗∗∗ 0.66∗∗∗ 0.96∗∗∗ 3.20∗∗∗ 10.58∗∗∗ 22.57∗∗∗ 70.23∗∗∗

(0.68) (0.71) (0.46) (0.22) (0.12) (0.17) (0.42) (1.09) (2.20) (8.12)
10Y-5Y

∆Volatility −70.70∗∗∗ −32.79∗∗∗ −11.51∗∗∗ −3.11∗∗∗ 0.02 5.41∗∗∗ 18.44∗∗∗ 58.95∗∗∗ 137.47∗∗∗ 155.69∗

(4.45) (5.01) (1.73) (0.83) (0.27) (0.99) (1.31) (4.66) (15.45) (71.02)
∆MRISlope 22.80∗∗∗ 10.91∗∗∗ 4.28∗∗∗ 2.17∗∗∗ 0.52∗∗∗ 1.88∗∗∗ 3.45∗∗∗ 9.56∗∗∗ 22.59∗∗∗ 44.60∗∗∗

(1.31) (0.77) (0.27) (0.16) (0.11) (0.17) (0.28) (0.96) (3.01) (10.59)
∆IR −233.16∗∗ −118.06∗∗ −17.95 −2.22 0.05 −3.17 −59.98∗∗∗ −350.32∗∗∗ −822.91∗∗∗ −1292.35∗∗

(86.40) (43.51) (15.14) (8.73) (4.08) (6.45) (12.43) (43.43) (143.83) (426.46)
∆IR2 −8531.71∗∗∗ −2332.12∗∗∗ −463.62∗∗∗ −232.73∗∗∗ 1.04 184.93∗∗∗ 572.73∗∗∗ 3881.06∗∗∗ 13238.57∗∗∗ −672.90

(1109.50) (354.31) (80.79) (36.81) (16.19) (37.40) (83.63) (615.12) (2790.68) (2208.02)
∆Term 246.96∗∗ 117.21∗ 31.77∗ 13.03 0.04 7.84 54.67∗∗∗ 193.14∗∗∗ 425.06∗∗∗ 1424.17∗∗

(82.69) (45.95) (15.03) (8.62) (4.17) (6.39) (11.85) (31.58) (96.78) (481.43)
∆CRSlope −1.13· −0.43· −0.07 −0.05 −0.00 −0.14∗∗∗ −0.38∗∗∗ −1.10∗∗∗ −2.25∗∗ 2.98

(0.65) (0.22) (0.09) (0.05) (0.02) (0.04) (0.10) (0.25) (0.87) (5.19)
10Y-1Y

∆Volatility −301.18∗∗∗ −105.34∗∗∗ −18.32∗∗∗ −1.63 6.73∗∗∗ 34.60∗∗∗ 110.30∗∗∗ 323.27∗∗∗ 643.91∗∗∗ 379.68∗∗∗

(33.64) (12.59) (3.46) (1.82) (1.85) (2.24) (5.31) (7.54) (28.11) (98.41)
∆MRISlope 148.74∗∗∗ 111.55∗∗∗ 59.98∗∗∗ 29.54∗∗∗ 18.92∗∗∗ 25.38∗∗∗ 52.15∗∗∗ 113.26∗∗∗ 187.12∗∗∗ 220.61∗∗∗

(7.39) (5.08) (3.61) (1.71) (1.12) (1.18) (2.61) (6.10) (11.42) (18.16)
∆IR −4275.02∗∗∗ −2553.68∗∗∗ −1221.46∗∗∗ −555.18∗∗∗ −354.13∗∗∗ −541.34∗∗∗ −1320.07∗∗∗ −3529.48∗∗∗ −5370.23∗∗∗ −9504.29∗∗∗

(233.47) (122.58) (72.39) (32.36) (22.43) (27.47) (71.64) (180.20) (310.15) (1058.84)
∆IR2 −48310.11∗∗∗ −21505.34∗∗∗ −5533.23∗∗∗ 340.50∗∗ 745.04∗∗∗ 1348.84∗∗∗ 7906.08∗∗∗ 40237.09∗∗∗ 83478.28∗∗∗ 14977.38∗∗∗

(2308.46) (1206.78) (441.27) (126.47) (65.70) (108.14) (648.44) (2453.49) (5046.16) (3464.79)
∆Term 2371.39∗∗∗ 1431.34∗∗∗ 776.09∗∗∗ 392.74∗∗∗ 247.09∗∗∗ 365.46∗∗∗ 714.46∗∗∗ 1297.53∗∗∗ 1851.56∗∗∗ 5474.72∗∗∗

(247.89) (121.79) (69.54) (31.85) (21.27) (24.41) (48.35) (109.97) (225.50) (924.08)
∆CRSlope 8.92∗∗∗ 4.99∗∗∗ 1.74∗∗∗ 0.53∗∗∗ 0.14∗∗ 0.18∗ 0.44∗ 1.87∗ 4.96∗∗∗ 39.16∗∗∗

(0.82) (0.49) (0.28) (0.11) (0.05) (0.08) (0.21) (0.83) (1.27) (6.69)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 17: This table reports the coefficient estimates of the term structure panel quantile and mean regression model for 5Y-1Y
(top), 10Y-5Y (center), and 10Y-1Y (bottom) CDS spread slope changes in North America. The sample comprises data from
164 North American firms from 2013/01/01 to 2019/12/31 in daily frequency. All variables in the model are in first-differences
due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are
scaled by factor 1000.
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