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Abstract

Exposure to ambient air pollution has been shown to be detrimental to human health
and productivity, and has motivated many policies to reduce such pollution. How-
ever, given that humans spend 90% of their time indoors, it is important to under-
stand the degree of exposure to Indoor Air Pollution (IAP), and, if high, ways to re-
duce it. We design and implement a field experiment in London that monitors house-
holds’ IAP and then randomly reveals their IAP in real-time. At baseline, we find
that IAP is worse than ambient air pollution when residents are at home and that for
38% of the time, IAP is above World Health Organization standards. Additionally, we
observe a large household income-IAP gradient, larger than the income-ambient pol-
lution gradient, highlighting large income disparities in IAP exposure. During our
field experiment, we find that the randomized revelation reduces IAP by 17% (1.9
µg/m3) overall and 34% (5 µg/m3) during occupancy time. We show that the mech-
anism is households using more natural ventilation as a result of the feedback (i.e.,
opening up doors and windows). Finally, in terms of welfare, we find that: (i) house-
holds have a willingness to pay of £4.8 ($6) for every 1 µg/m3 reduction in indoor
PM2.5; (ii) households have a higher willingness to pay for mitigation than for full
information; (iii) households have a price elasticity of IAP monitor demand around
-0.75; and (iv) a £1 subsidy for an IAP monitor or an air purifier infinite marginal
value of public funds, i.e., a Pareto improvement.
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1 Introduction

The adverse impacts of ambient air pollution and its associated costs have received sub-

stantial policy and academic attention (Chay and Greenstone, 2003, 2005; Luechinger,

2009; Currie and Walker, 2011; Graff Zivin and Neidell, 2012; Currie et al., 2015;

Chang et al., 2016; Schlenker and Walker, 2016; Ebenstein et al., 2016; Deschenes et al.,

2017; Zhang et al., 2018; Deryugina et al., 2019; Clay et al., 2021; Bishop et al., 2023;

Borgschulte et al., 2024; Miller et al., 2024). However, the issue of Indoor Air Pollution

(IAP) is often overlooked in these discussions. This oversight is particularly concern-

ing given that individuals in the developed world spend approximately 80 (90) percent

of their time in their home (indoors) (Klepeis et al., 2001; Sundell, 2004; Spalt et al.,

2016), a figure which has been increasing since 2020 with the trend to work-from-home

(Barrero et al., 2023; Morris et al., 2023, 2024; Zarate et al., 2024). Furthermore, the U.S.

government predicts that IAP concentrations are often two to five times higher than those

outdoors (EPA, 1987), exacerbating the risks of exposure. Therefore, as most air pollu-

tion exposure for humans occurs indoors, the full welfare impact of air pollution may be

vastly underestimated (Jeuland et al., 2015).

The relatively limited academic research on this subject has shown that IAP is corre-

lated with or linked to a range of health outcomes, including respiratory diseases, heart

disease, cancer, and milder effects such as headaches, dizziness, and fatigue (Monn, 2001;

Pope III et al., 2011; Zheng et al., 2015; Li et al., 2017), as well as reduced cognitive per-

formance (Stafford, 2015; Künn et al., 2023; Xu et al., 2024).1 It has also been argued

that IAP is likely to be as dangerous for human health as ambient air pollution (WHO

et al., 2010), and studies have shown that IAP contains a variety of inflammatory and

carcinogenic metals (Bandowe et al., 2021). Despite these potentially substantial impacts

on mortality, morbidity, productivity, and well-being, the true scale of IAP and whether

it can be mitigated remains uncertain due to insufficient monitoring, reporting, and ex-

perimentation. Recent advancements in residential IAP measuring technology have led

to high levels of validity and reliability of pollution monitors (Wang et al., 2020),2 so

1There is also a large literature suggesting that ambient air pollution is detrimental to cognitive ability, human
capital formation, and productivity (Currie et al., 2009; Graff Zivin and Neidell, 2012; Davis et al., 2013; Ebenstein
et al., 2016; Bharadwaj et al., 2017; Chang et al., 2019; Huang et al., 2020; Bedi et al., 2021; Carneiro et al., 2021; Persico
and Venator, 2021; Duque and Gilraine, 2022; Krebs and Luechinger, 2024; Chen, 2025; La Nauze and Severnini, 2025)

2The cost of IAP monitors have also declined over time (U.S. Environmental Protection Agency, 2025). This cost
reduction can be attributed to multiple factors including learning-by-doing in the production process, the development
of low-cost sensors, and the overall increasing market size for IAP monitors, which causes more innovation (Acemoglu
and Linn, 2004), as there is growing awareness about poor air quality arising from many sources, such as wildfires.
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estimating the true scale of the issue and assessing potential solutions is now possible.3

IAP is a largely unobserved good. One where both awareness and information are

limited, yet technological advancements have the potential to drive significant improve-

ments. In many contexts, the introduction of new information through technology has

shifted market equilibria (Jensen, 2007; Jessoe and Rapson, 2014). Similarly, information

providing insights into others’ beliefs (Cantoni et al., 2019; Bursztyn et al., 2020) and

information from the new advancement in modeling (Fairweather et al., 2024) have been

shown to influence market behavior. A key feature of the IAP context is that information

is becoming increasingly known and observable due to the declining cost of air quality

monitoring. This cost reduction, coupled with growing demand for air quality improve-

ments, has likely driven innovation (Acemoglu and Linn, 2004), enabling households to

monitor their IAP affordably. However, because this information remains only observ-

able to private individuals, governments are unable to monitor or regulate it directly.

While individuals can now have access to better indoor air pollution data, broader soci-

etal benefits may arise from policies that increase the adoption of monitors and motivate

reductions in IAP.

In this study, we conduct a field experiment in London to achieve three primary ob-

jectives. First, to document essential descriptive facts about IAP, including its scale, its

relationship with ambient pollution, and the key predictors of IAP based on household

and dwelling characteristics. Second, to investigate how the provision of real-time indoor

air pollution information can motivate behavioral changes that improve indoor air qual-

ity, and thereby enhance overall health and well-being. Third, to understand households’

willingness to pay for IAP monitoring and mitigation.

Achieving these objectives is empirically challenging for several reasons. One major

challenge is data availability. Since monitors are not mandatory in people’s homes, IAP

levels often remain invisible. Moreover, even if we were to obtain data from individu-

als who have purchased monitors, such as crowd-sourced data, this introduces selection

bias, as middle- to low-income areas and households are typically under-represented in

such data sets (Graff Zivin et al., 2024). Furthermore, the existing data does not allow

us to assess the magnitude of the issue across heterogeneous households and to estimate

the causal effects of possible interventions to reduce IAP. The diverse sources and phys-

ical complexities of IAP also make it extremely difficult, if not impossible, to accurately

3The World Health Organization (WHO) estimates that IAP accounts for around three percent of the burden of
disease and causes over three million premature deaths annually across a sample of developing countries (WHO, 2021).
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model indoor air pollution in residential settings without data from indoors.4 Addition-

ally, the interaction between indoor and outdoor pollutants combined with unobserved

and potentially unpredictable human behaviors (such as opening windows) adds further

layers of complexity. Together, these factors create a highly dynamic and variable en-

vironment, making precise prediction and effective management of IAP exceptionally

difficult without the indoor exposure data.

We overcome these empirical challenges by partnering with the local government of

the London Borough of Camden, which distributed recruitment letters to a randomly se-

lected sample of Camden’s residents. Individuals who were interested in the topic com-

pleted an online survey on demographics, dwelling specifics, and health and were then

randomly assigned to either a control or treatment group. Control group households re-

ceived air pollution monitors that recorded real-time IAP levels but had their displays

blinded. Treatment group households received the same monitors to collect baseline in-

formation, but after two weeks, the real-time IAP information became visible on their

monitors. Additionally, households in this group received a two-page information sheet

on interpreting the data and possible ways to reduce indoor pollution.

The treatment is a full knowledge treatment of IAP. This consists of many channels,

such as real-time information on IAP (which has both knowledge and salience compo-

nents), hawthorne effects from monitoring, and information on how bad IAP is for human

health. While we do not have experimental variation to separate these channels apart, we

will provide evidence that the real-time feedback is what is driving any treatment ef-

fects we find. Moreover, both the control and treatment group understand that their IAP

is being measured, so there is no difference in the intensity or incidence of monitoring

between the groups,5 and they placed the monitors in the same location in their homes.

Our treatment can be seen as “making the invisible visible,” as the air pollution that

we measure is undetectable to households without specialized monitoring equipment. By

providing real-time feedback in the treatment group, our intervention can be framed as

full knowledge of the risks from indoor pollution, which can enter into the utility max-

imizing health production model (Pattanayak and Pfaff, 2009; Graff Zivin and Neidell,

2013). Individuals will choose the optimal risk-averting behaviors, which will be a func-

tion of time, resources, and knowledge of the averting behaviors. We posit that many

4Indoor pollution arises from numerous sources, such as cooking, heating (e.g., fireplaces), smoking, and the burn-
ing of candles and incense.

5Previous research has shown that monitoring can itself have important consequences on behavior, especially in
environmental markets (Gosnell et al., 2020; Zou, 2021).
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individuals do not even have knowledge about how to measure IAP, less the averting be-

haviors that reduce IAP. So our treatment is a direct test of the the knowledge function

in these health models, since if people are fully aware and knowledgeable, the treatment

will have no impact on behavior and indoor pollution levels.

Our field experiment allows us to monitor indoor Fine Particulate Matter (PM2.5),

the US Air Quality Index (US AQI), temperature and relative humidity, for a duration

of four weeks among 258 households. We also elicit a whole range of beliefs about the

incidence of IAP, people’s subjective health status, household and building composition,

a range of behaviors and residents’ willingness to pay for information on and mitigation

of indoor air pollution. To-date, this is one of the largest IAP experiments ever completed

in the developed world and to the best of our knowledge, the first paper to successfully

provide real-time information feedback on indoor air quality, estimate the willingness to

pay (WTP) for reduction in indoor PM2.5, and show the welfare effects of subsidies for

technology that monitors and reduces indoor PM2.5.

1.1 Our Findings

We begin our empirical analysis by documenting four novel descriptive facts from the IAP

data. First, for our random sample in London, we find that average indoor PM2.5 con-

centrations (10.5 µg/m3) are very similar to ambient PM2.5 concentrations (10.8 µg/m3),

with both exceeding The WHO and US EPA annual standards of 5 and 9 µg/m3 respec-

tively.6 Second, we find that during occupancy hours (16:00-23:00), when residents are

actually exposed to the air quality in their dwellings, indoor pollution levels are signif-

icantly higher than outdoor pollution (14.6 vs. 12.2 µg/m3), likely due to household ac-

tivities such as cooking, cleaning, heating, smoking, using candles, etc. Since the health

and productivity effects are driven by exposure rather than average concentrations, we

demonstrate that during time spent at home when exposure is very high, IAP is signifi-

cantly higher than ambient air pollution.7

Third, our analysis reveals that ambient air pollution is not a main predictor of IAP.

While we find a positive correlation between hourly indoor and hourly outdoor PM2.5

levels, outdoor levels do not explain indoor variations very well (R2 < 0.1) and do not ex-

6The Environmental Targets Regulations (2023) for PM2.5 in England require that the annual average of 10 µg/m3

for PM2.5 will not exceeded at any monitoring station by the end of 2040.
7These results are in contrast to the work by Krebs et al. (2021), who document that outdoor concentrations of PM

are higher than indoor concentrations using crowd-sourced data from California.

4



plain overall averages, emphasizing the important role of indoor PM2.5 sources. Fourth,

there are several important predictors of indoor PM2.5, such as smoking, household in-

come, and property ownership. This suggest a socioeconomic dimension to IAP, where

lower-income households face higher exposure to indoor PM2.5, which has also been doc-

umented in previous studies (Ferguson et al., 2020; Burke et al., 2022). This relationship

can be explained by numerous factors, such as poor housing quality, and thus can ex-

acerbate existing inequalities in health, education, and productivity. To put this into

perspective, households with below-median income levels have indoor PM2.5 concentra-

tions that are 20 µg/m3 higher than those of above-median income households. Expressed

differently, for every £1,000 decrease in income, PM2.5 concentrations rise by 0.1 µg/m3

(a 1% increase in income is associated with a 0.034% reduction in PM2.5).8

Turning to the results from the field experiment itself, we have five main findings.

First, we find that randomized real-time feedback leads to a significant reduction in over-

all PM2.5 concentrations by 1.9 µg/m3, translating to an 17% decrease from baseline

levels. We also find that the treatment effect is much larger during occupancy hours,

when people are typically at home and exposed to PM2.5, with a significant reduction

of 5.0 µg/m3, or 33.9% reduction from baseline. These reductions are very meaningful,

especially considering the WHO annual mean standard for PM2.5 is 5 µg/m3 and that our

observed reductions exceed the effect of many large-scale interventions aimed at reduc-

ing air pollution.9 When we re-weight our estimates to match our experimental sample

to the population sample in terms of income, we find an even larger reduction in PM2.5

concentrations during occupancy time.10

Second, we show that the mechanism for these large reductions in PM2.5 came pri-

marily through improved home ventilation. We show this in three different ways. First,

we surveyed the treatment group about their actions to reduce PM2.5 levels. An over-

whelming majority (72%) stated that they increased ventilation as their primary strategy

8In addition, we find that cooking technologies and ventilation opportunities are also important predictors of IAP.
These findings highlight the complexity of IAP and reveal that, while behavioral factors are significant predictors of
IAP, ambient air pollution is not a primary determinant. This is in contrast to some of the older in-situ measurements
of IAP from small selected samples (Hanley et al., 1994; Riley et al., 2002; Chen and Zhao, 2011).

9For example, the 2005 US Clean Air Act amendment for PM2.5 and the congestion pricing in Stockholm resulted
in reductions of 3% and 15%, respectively, in particulate matter pollution (Sager and Singer, 2022; Simeonova et al.,
2021). Specifically, Sager and Singer (2022) found a 0.4 µg/m3 reduction in PM2.5, while Simeonova et al. (2021)
observed a 4.56 µg/m3 decline in PM10.

10This increase in the treatment effect with re-weighting suggests that our experimental sample estimates might be
lower than the estimate if everyone in the country adopted the IAP monitor. However, there will be selection into
adoption (with and without subsidies) so our experimental sample might be more externally-valid than extrapolating
the average consumer.
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to reduce pollution mainly through the opening of windows. Second, we utilize our data

on indoor and outdoor air temperature before and after the treatment and show that

the treatment group’s indoor air temperature is more correlated with outdoor air tem-

perature during the treatment period compared to the control group. This suggests that

people are indeed opening windows to ventilate and dilute PM2.5 concentrations in their

homes. Lastly, we examine the characteristics of peak indoor pollution events to de-

termine whether the intervention led participants to modify their pollution-generating

activities or implement strategies to curb high pollution levels. We do not find that the

number of peak PM2.5 events is different between the treatment and control. However,

their intensity, which we defined as the maximum PM2.5 level of an event, was reduced.

These results suggest that most people do not stop conducting their daily activities, such

as cooking and heating behaviors that emit high levels of PM2.5 in the home (these activ-

ities are integral to their utility). Instead, households are changing how they respond to

the high levels or taking preventive action to avoid a high level of pollution(e.g., opening

windows during or after cooking). This result is a novel test of the averting behaviors

entering the utility function directly–i.e., people still want to cook as it provides utility.

Given the universality of this ventilation mechanism across all households, our results

provide some external validity and possibility of scaling to other samples in the devel-

oped world (List, 2020, 2024).

The above result on ventilation at peak times also allows us to say something about

the channels of the treatment effect. Treatment does not reduce baseline level of IAP

or change the number of peak events–which would be consistent with an overall health

knowledge channel from our treatment. But treatment changes the response to a peak

PM2.5 event and that this response is only possible with real-time feedback. Therefore,

we believe the main channel is the salient real-time feedback.

Third, we find that residents in the treatment group updated their beliefs about their

home’s IAP, realizing it is significantly worse than they originally believed. Interestingly,

the effectiveness of our treatment in not only altering participants’ perceptions of air

quality but also affecting the confidence level of these perceptions, offering valuable in-

sights into the psychological impact of air quality awareness interventions. For outdoor

air quality, we find no significant effects, which is reassuring since we only provided in-

formation about indoor pollution.

Fourth, we conduct a comprehensive welfare analysis by examining the intervention’s

impact on human health, estimating households’ WTP for clean air, and evaluating the
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welfare implications of subsidies for adopting an IAP monitor or an air purifier. Using

our average treatment effect estimates, we show that the mortality savings from imple-

menting the intervention across all UK households could reach £39.73 billion (£582 per

capita). In terms of WTP, we find that for the control group, the average WTP for the IAP

monitor and for an air purifier (that reduces IAP to zero) is £36.65 and £44.65 respec-

tively. For the treatment group, the average WTP for the IAP monitor and the purifier is

£38.84 and £50.39 respectively. These findings indicate that households value mitigation

measures (air purifiers) more than simply acquiring information on their indoor air qual-

ity. Translating these into a WTP for 1 µg/m3 reduction, we find values of £4.06 for the

control group and £5.54 for the treatment group (with perfect information), suggesting

that real-time information enhances the perceived value of air quality improvements.

Finally, we assess the welfare impacts of subsidies for adopting an IAP monitor or

an air purifier. We incorporate the price elasticities of demand derived from our WTP

estimates, combined with our health and productivity impact estimates, reductions in

healthcare spending by the National Health Service (NHS), and increased tax revenue

from higher earnings to estimate a marginal value of public funds (MVPF) of a £1 subsidy

for an IAP monitor or purifier (Hendren and Sprung-Keyser, 2020; Hahn et al., 2024).

Under a range of different scenarios and assumptions, a £1 change in a subsidy for an

IAP monitor or air purifier leads to an outcome where the productivity increases that

flow back to the Government more than offsets the upfront subsidy cost. That is, a £1

subsidy pays for itself just through the benefits to the government from reductions in

IAP. This indicates that these subsidies would constitute a Pareto improvement by fully

paying for themselves and this result occurs because the fiscal externalities from reducing

PM2.5 are larger than the cost of the subsidy. There are two things to note here with our

estimates. First, even if our treatment effect decreased by 90% (which is outside of our

95% confidence intervals), we would still estimate an MVPF of infinity for the $1 govern-

ment subsidy for the IAP monitor. Second, even if people meaningfully underestimate

the health benefits from reducing PM2.5 concentrations, the MVPF remains infinite.

1.2 Relationship to Existing Literature

Our study connects and contributes to several strands of research. In the context of IAP,

we think that the closest study to ours is by Greenstone et al. (2021), who conducted a

field experiment in Delhi, India. They randomly assigned indoor air quality monitors to
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households and offered the opportunity to rent subsidized air purifiers. Their findings

indicated that access to indoor air pollution monitors did not affect the take-up of subsi-

dized air purifier rentals. However, their study faced significant survey non-response and

attrition issues, and the authors themselves noted that the results should be interpreted

with caution and considered suggestive. It is also worth highlighting that their study was

conducted in India, which is very different to London in terms of many characteristics

including the housing stock, population, income and pollution levels.11

Our work also contributes to the small but growing literature on air pollution and ed-

ucation outcomes and the housing market (Gilraine, 2023; Pinchbeck et al., 2023). There

have been many studies in the developing world on the role of cooking technologies (Du-

flo et al., 2008). In particular, several field experimental studies have explored the causal

impacts of cleaner cooking technologies in developing countries on greenhouse gas emis-

sions and household well-being, though the results have been mixed (Smith et al., 2011;

Mobarak et al., 2012; Bensch and Peters, 2015; Hanna et al., 2016; Barron and Torero,

2017; Pattanayak et al., 2019; Berkouwer and Dean, 2022; Beltramo et al., 2023). How-

ever, none of these studies measure IAP directly and assess its exposure to humans. A

novel and notable exception is Berkouwer and Dean (2023), who place mobile PM2.5

monitors on human backpacks for 48 hours to assess exposure and show how cookstove

technologies affect that exposure.

Furthermore, our study supports the previous work that show that air pollution mon-

itoring can have an impact on air pollution levels in the U.S. (Mu et al., 2021; Zou, 2021).

Similar research has shown that access to outdoor air pollution information in China can

reduce air pollution through avoidance behaviors (Greenstone et al., 2022; Jha and Nauze,

2022; Barwick et al., 2024) and political pressure (Axbard and Deng, 2024; Li et al., 2024;

Yang et al., 2024).12 We also relate to the work of Burke et al. (2022) and Lunderberg et al.

11There are two other related studies. First, Sater et al. (2021) installed IAP monitors in French homes with wood-
burning fireplaces, providing static feedback on PM2.5. They found that personalized information reduced indoor
pollution by over 20%. Our study differs in key ways: (1) we analyze a general population sample, while they focused
on fireplace users; (2) our recruitment was via randomized government letters, whereas they used targeted outreach;
(3) we provide real-time feedback, while they used weekly delayed reports; (4) we examine the mechanisms behind
pollution reduction, which they do not; and (5) we assess the economic welfare effects of IAP changes. Second, Baquie
et al. (2024) conducted an RCT in Tbilisi testing how different air pollution information affects awareness, avoidance
behaviors, and self-reported health. While their findings highlight the role of awareness in behavioral change, they did
not study the impact on actual indoor pollution concentrations.

12There is also research from Mexico (Hanna et al., 2021) and Uganda (Bassi et al., 2022) showing that there is
generally a lack of information or knowledge about PM2.5 concentrations, meaning that people are not adequately
compensated for the damage. However, information provided by Government sources on PM2.5 concentrations to
citizens is not always trusted, as Imtiaz et al. (2025) show for Pakistan. This is a potential benefit of private indoor IAP
monitors (which is beyond the scope of our study)–the inability of Government or external sources to manipulate the
data.
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(2023), who show that wildfire smoke can infiltrate homes and raise PM2.5 levels to 3-4

times the health-based guidelines. Notably, our findings in London demonstrates that in-

door PM2.5 levels can reach 10 times the health-based guidelines for extended periods in

many households. However, we find that ambient air pollution is not the primary source

of this indoor pollution in London, rather it is generated by the behaviors of the residents

themselves.

We also contribute to the literature on the valuation of clean air. To the best of our

knowledge, we are the first to estimate the WTP for reductions in indoor PM2.5. The

only other study estimating WTP for indoor air pollution more broadly is Ito and Zhang

(2020) which examined the willingness to pay for indoor air quality improvements in

China by leveraging data on air purifiers’ effectiveness in reducing indoor PM10 and the

price elasticity of demand. Ito and Zhang (2020) estimated an annual WTP of $1.34 to

remove 1 µg/m3 of PM10.13

We also relate to the literature on environmental justice. There are existing papers

showing the income-pollution relationship for ambient air pollution (Banzhaf et al., 2019;

Hsiang et al., 2019; Colmer et al., 2020; Jbaily et al., 2022; Currie et al., 2023; Colmer

et al., 2024). We show that lower-income households have significantly higher IAP levels

than above median-income levels (whilst controlling for ambient air pollution), suggest-

ing that environmental justice is not just an ambient phenomena, it is an indoor phenom-

ena as well. Furthermore, the size of the gradient of the income-IAP relationship is much

larger than the size of the income-ambient pollution relationship. As such, our paper

leaves open the possibility that the observed differences in health impacts across income

levels from ambient PM2.5 could, at least in part, be attributable to disparities in IAP

exposure.

Finally, our paper also relates to the work on how knowledge is a costly input to the

utility-maximizing health production models, and that there seems to be real costs of

monitoring IAP and acquiring knowledge of the averting behaviors for IAP. This sup-

ports the previous work suggesting that this knowledge/awareness mechanism is im-

portant for the improvement in health of many populations (Smith et al., 1990; Jalan and

Somanathan, 2008; Pattanayak and Pfaff, 2009; Ashraf et al., 2013; Brown et al., 2017; Ke-

skin et al., 2017; Bennett et al., 2018; Goeb et al., 2020; Ito and Zhang, 2020; Weitz et al.,

13There have been a range of hedonic estimates of the valuation of ambient air pollution (Smith and Huang, 1995;
Bayer et al., 2009; Freeman et al., 2019). However, IAP is one of the environmental amenities that cannot be estimated
from hedonic markets because most IAP exposure is generated from indoor sources and not location-specific sources
(unless pollution comes from the ground, such as Radon (Pinchbeck et al., 2023)).
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2020). From our field experiment, these costs seems real and potentially large. Whether

policymakers nudge people to adopt technologies that provide real-time feedback be-

cause of this information asymmetry (Loewenstein et al., 2007), or provide subsidies or

standards for reducing the cost of real-time monitoring and feedback, there is a real need

for policymakers around the world to help make the invisible visible. These policies will

likely end up paying for themselves.

2 Background, Experimental Design, and Data

In this section, we provide some background on indoor PM pollution (section 2.1), the

design of the field experiment (section 2.2), and details on sampling, data, randomization,

and estimation (section 2.3).

2.1 Background on Indoor Particulate Matter Pollution

Particulate matter, especially fine particles (PM2.5), is a key air pollutant due to its preva-

lence and substantial impact on public health. PM2.5 consists of a complex mixture of

tiny particles and liquid droplets suspended in the air with a diameter of 2.5 micrometers

or less (about three percent of the diameter of a human hair). The size of the particles is

important for three main reasons: First, these tiny particles are able to bypass the body’s

natural defenses and penetrate deep into the lungs and even the bloodstream, posing se-

rious health risks. There is overwhelming evidence that PM2.5 is incredibly harmful for

human health and well-being (Pope III and Dockery, 2006; Currie et al., 2014; Aguilar-

Gomez et al., 2022). Second, PM2.5 is not visible to the naked eye, which means that

individuals are often unaware of its presence and concentration levels in their immediate

environment, leaving them unable to take measures to mitigate and adapt to exposure.

Third, the small size of these particles allows them to better travel through small cracks

and openings, enabling some outdoor-generated PM2.5 to infiltrate the indoor environ-

ment.

There are many sources of indoor PM2.5, including ambient (outdoor) pollution

which stems from both natural and anthropogenic sources including transportation, in-

dustrial processes, wildfires, and dust storms. However, indoor PM2.5 is not simply a

byproduct of ambient pollution as there are many indoor sources of PM2.5, originating

from everyday activities such as cooking, heating, smoking, and even the burning of can-
10



dles. Particulates can also be continually resuspended through the daily physical activity

taking place within indoor settings (Tran et al., 2020). The overwhelming proportion of

indoor PM emissions is thought to originate from smoking, heating, and cooking practices

(Tran et al., 2020).14 Cooking appliances themselves, including electric cookers, induc-

tion hobs and toasters, comprise a dimension of this, though the heating of utensils and

pans themselves when cooking has also been tied to the release of PM, as has the heating

of food products; particularly meats and oils (Wallace et al., 2004; Rohr and McDonald,

2016; Cheung et al., 2019). The cooking method is also important, with oil-based cooking

(such as deep-frying, pan-frying and sautéing), especially when using low smoke-point

oils, being a particularly significant contributor to PM emissions when cooking. These

activities contribute to indoor PM2.5 concentrations, which are often significantly higher

than outdoor levels due to contained environments and inadequate ventilation-especially

during colder months (O’Leary et al., 2019).

Interestingly, while some might think that indoor PM2.5 is "less dangerous" than its

ambient counterpart due to its potentially different composition, there is no scientific

backing for this claim. In fact, the steering group aiding the WHO in formulating in-

door air quality guidelines determined that there is no convincing evidence that particu-

late matter from indoor sources is less hazardous than that from outdoor sources (WHO

et al., 2010).15 While we have a good knowledge of ambient PM pollution, we do not

have a good understanding of the indoor environment because we do not have consistent

indoor PM measures. Nevertheless, we do know that some of the ambient PM2.5 pen-

etrates inside and we also have some limited knowledge that everyday indoor activities

that produce fine particulate matter generate some very harmful components of PM2.5.

For example, PM produced by cooking is thought to be comprised of Organic Carbon

(OC) (Klimont et al., 2017; Zhao et al., 2019; Alves et al., 2021) and various inflammatory

and carcinogenic heavy metals, elements, and Polycyclic aromatic hydrocarbons (PAHs)

are also present (See and Balasubramanian, 2008; Zhang et al., 2017; Cheung et al., 2019;

Bandowe et al., 2021). Furthermore, the effect of exposure to indoor PM2.5 might have a

much bigger effect on our health and well-being than ambient fine particulates because

14In the UK, domestic combustion is also a major source of ambient particulate matter as well. According to the UK
Department for Environment Food and Rural Affairs, emissions from this source (mainly from burning wood in closed
stoves and open fires) account for 29 percent of ambient PM2.5 emissions (DEFRA, 2024).

15Epidemiological and public health studies have shown a positive association between elevated levels of indoor
PM2.5 and an array of health problems, including asthma symptoms and medication use in children in Baltimore
(McCormack et al., 2009, 2011), wheezing in children in New York (Jung et al., 2012), and exacerbated respiratory
symptoms and Chronic Obstructive Pulmonary Disease (COPD) in the United Kingdom (Osman et al., 2007). See also
Rohr and McDonald (2016) for a review of the association between PM emissions from cooking and an increased risk
of lung cancer and low birth weight babies.
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individuals tend to spend the majority of their time indoors, leading to prolonged expo-

sure to potentially high levels of PM2.5.

2.2 Experimental Design

We conducted a field experiment in the London Borough of Camden, England, which is

one of the 32 local authorities that make up the administrative area of Greater London.

Camden presents an ideal setting for our study, due to its geography, diverse population,

and wide range of dwelling types and characteristics. These factors provide a unique op-

portunity to examine how indoor air quality and our intervention vary across different

households and dwelling types in a relatively large urban area. From 2021, we part-

nered with The Local Government of Camden (The Council) to recruit participants for

our study, using the Council’s mailing system for random distribution of recruitment

letters to households across the whole borough. Interested individuals were prompted

to complete an online survey gathering baseline data on demographic characteristics,

dwelling specifics, and health and well-being assessments as seen in Appendix Figure A1.

We followed up with a reminder letter for households that did not respond to the first in-

vitation. This two-step communication strategy significantly improved our recruitment

efforts, culminating in a response rate of about 20% (i.e., almost 20% of a representative

population were interested in taking part in the research). Additionally, we also offered

a payment of £20 for taking part, which may also have led to this good response rate (see

Appendix A2 for the initial letter).

Following the collection of baseline data from the survey, participants were stratified

and randomly assigned to either the control or treatment group, ensuring demographic

and health balance in addition to balance across all beliefs about ambient and indoor air

pollution.16

Control Group: Households in the control group were equipped with a Kaiterra air pol-

lution monitor (and accompanying equipment) that recorded real-time indoor air pol-

lution levels for four weeks and transmitted this information to us (the researchers).

However, the screen display on the monitor was covered with a security sticker which

16We blocked on the following variables: large household, children, income, education, tenure, happiness, anxiety,
health, pain, calm, energy, health, sleep, health condition, open plan kitchen, hob type, fireplace, indoor and outdoor
air pollution belief and confidence, comparative indoor air quality belief. We then balanced on the same variables.
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prevented participants from viewing this data in real-time (see Appendix Figure A3).17

These households were informed of their indoor air pollution levels at the very end of the

experiment and after they completed the end-line survey.

Treatment Group: Households in the treatment group received the same onboarding

procedure with the exact same technology and sticker.18 However, after two weeks of

baseline data collection, participants were given access to their real-time pollution read-

ings through an identical pollution monitor which did not have the screen-obstructing

security sticker and with an information sheet detailing some basic information about

the interpretation of their monitor readings, the health effects of pollution exposure, and

potential measures that can be adopted to reduce air pollution within the home (see Ap-

pendix Figure A4). This information sheet was based on data that is publicly available on

the Camden’s and the Kaiterra websites but we make this information more salient.

In terms of the indoor air pollution monitor, households received a Kaiterra Laser Egg

Air Pollution Monitor that measures and presents information on Fine Particulate Matter

concentrations (PM2.5), temperature, and relative humidity but also measures PM10.

Importantly, the monitor converts the pollution metrics into the United States (US) Air

Quality Index (AQI), with the display altering its color based on AQI levels and explicitly

indicating the AQI category, such as 0-50 AQI for ’Good’, through to ’Hazardous’ for

higher values of above 300 AQI. See Figure A5 below which demonstrates the screen on

good and bad levels of AQI.

The IAP monitor collects real-time information on the above air quality measures ev-

ery second and feeds it into an online database which we use in our analysis. We used

the Kaiterra Laser Egg series for several reasons. First, we verified that it is a very reli-

able monitor of PM via testing against other (more expensive) monitors and also through

consultations with experts in the field.19 Second, the monitor was relatively affordable,

with a price tag of around $150 (2021 prices). Finally, the monitor has a very consumer

friendly and clear display that transmits the air quality data in real-time to the consumer.

This design was ideal for our research question of making the invisible visible, and we

could remotely track all of the data from the monitors during the study period.

17The use of the security sticker also enabled us to check if participants tried to remove it and reassuringly, we found
no evidence of tempering

18The use of the same sticker in both the control and treatment groups nullified any differences in Hawthorne effects
or attention placed on monitoring.

19Following our decision to use this monitor we also found out that Greenstone et al. (2021) also used the same
monitor in their experiment in India. This is very reassuring as we both choose the same monitor independently.
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We conducted the experiment in five waves due to the limited number of monitors

available to deploy. Additionally, all households were provided with Wi-Fi routers and

SIM cards, a crucial step as we determined we could not rely on household Wi-Fi access

and quality. To address logistical challenges, we also supplied USB plugs and adapters,

enabling the connection of both the router and the monitor to a single electrical socket.

This consideration stemmed from feedback received during our pilot study.20 To further

streamline the process and ensure the secure delivery and setup of the equipment, we

utilized a professional courier service for delivering the initial kits. Our own research

team personally conduct the swap of monitors for the treatment group. By managing

these exchanges ourselves, we were able to maintain the integrity of the study conditions

and minimize any potential disruptions for participants, ensuring that the experiment

ran as smoothly and effectively as possible.

At the end of the field experiment, all participants completed a final endline survey

focusing on their experience, behavioral changes, and a re-assessment of their beliefs and

subjective health and well-being. This survey also included questions on their willingness

to pay for air pollution mitigation technologies, allowing us to understand the welfare

effects of such technologies. Following the completion of the endline survey and once we

received the equipment back, participants in the control and treatment groups received

debriefing information on their pollution levels in their home during the study period as

well as a £20 voucher to compensate them for participating in the experiment.

2.3 Further Experimental Details

2.3.1 Sample and Data

Our study was initiated by dispatching recruitment letters to 3,000 random households

in the London Borough of Camden. Overall, we received a response from 566 house-

holds, which translates to a response rate of 19%. This figure aligns with the expected

response for studies of this nature, where participants are required to commit to a data

collection process in their own homes. Importantly, this response rate also offers insights

into policy implications, particularly regarding household willingness to engage with air

20Prior to the main field experiment, we conducted a pilot study involving 40 households, recruited via the Cam-
den’s website and social media channels. This initial phase aimed to test the air pollution monitors, refine the survey
questions, and address any potential procedural issues, ensuring the main experiment’s smooth execution.
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quality monitoring initiatives.21 In our approach, we offered air monitoring equipment

for free for four weeks, which sheds light on the potential uptake of such devices if the

government would subsidize a similar initiative. This aspect of our findings could inform

policymakers about the feasibility and public interest in subsidized air quality monitor-

ing programs within residential settings.

From the pool of respondents, we selected 262 households that were available dur-

ing the study period (i.e., not on holiday) and contributed to optimizing the balancing

process (see below for more details). The study experienced minimal attrition, with only

three households failing to complete the study in accordance with our research protocol.

Additionally, we excluded one participant who was identified as an extreme outlier in

terms of PM2.5 levels. As a result, our final sample consists of 127 households in the

control group and 131 households in the treatment group.

Table A1 provides a comparison of various characteristics between our study sample

and the broader population of Camden, thereby facilitating an evaluation of our study’s

external validity (Camden Council, 2023). The table reveals notable differences that il-

lustrate the composition of our sample relative to the general demographic and socioeco-

nomic fabric of Camden. Specifically, our sample is characterized by a higher proportion

of individuals with advanced educational attainment and higher earners, compared to

the general Camden population. Furthermore, there is a reduced presence of social hous-

ing occupants and single households within our sample, alongside a higher prevalence

of homeownership. In terms of heating, our sample exhibits more gas heating and less

electric heating in comparison to the broader Camden population.

While these discrepancies do not undermine the validity of our findings within the

sample context (the internal validity), they do suggest caution when generalizing our

main results to the entire Camden population and indicate that our study’s insights may

be most applicable to similar demographic segments. Despite this limitation in repre-

sentativeness, it is important to acknowledge that our study represents a significant ad-

vancement over previous research efforts in the field of indoor air quality monitoring.

Prior studies have often relied on samples comprising households that independently

decided to purchase air monitors or recruited participants exclusively via social media

channels. These methods are likely to introduce a much larger selection bias into the

study, limiting the diversity and generalizability of the research findings. In contrast, our

21There is selection into the research based on their preferences and constraints, which means that we have a framed
field experiment (Harrison and List, 2004). We will understand the importance of this selection when we re-weight our
estimates to match the population sample.
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approach, while not perfectly mirroring the Camden population, offers a more system-

atic and controlled method of participant selection, thereby reducing the likelihood of

such biases. Moreover, the characteristics of our sample provide valuable insights into

the types of households that are willing to engage with air quality monitoring initiatives.

This understanding can inform future outreach and engagement strategies for air quality

monitoring projects, ensuring they effectively reach and resonate with a broader segment

of the population. Finally, in the robustness section, we address this external validity

threat directly by reweighting our estimate based on observable demographic character-

istics, ensuring it is more representative of the entire Camden population.

We complemented our indoor air quality data which we collected ourselves with in-

formation on ambient pollution and weather from government-regulated measuring sta-

tions. These stations are managed by the UK Environment Agency on behalf of the De-

partment for Environment Food and Rural Affairs (Defra) and the Devolved Adminis-

trations. Given the extensive network of monitors in London, we utilised four different

measuring sites for this information which are situated within relatively close proximity

to the households in our study (median distance of 2km). Overall, our comprehensive

dataset encompassing 150,079 hours of air pollution and weather data across 258 house-

holds.

2.3.2 Randomization

In each wave of our study, the procedure for randomizing households was as follows. Ini-

tially, four seeds were chosen through a random selection process. Subsequently, house-

holds were categorized (blocked on) based on a variety of characteristics to ensure a bal-

anced distribution across treatment and control groups. These characteristics included

household size (specifically identifying households with more than three members), the

presence of children, levels of education and income, the gender composition and num-

ber of occupants, housing tenure, responses to surveys on beliefs and welfare, kitchen

layout (notably the presence of an open-plan design), the type of heating system and

main cooking appliance (the kind of fireplace used and cooking hob), whether an extrac-

tor hood was installed, the total number of rooms and windows, existing air purifiers,

and whether smokers resided within the household.

To achieve an optimal randomization balance concerning these factors, we employed

a block randomization technique, executing 5,000 iterations for each of the four seeds.
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In each iteration, we replaced the previous assignment if it showed an improved balance

across our specified blocking variables. Upon completing the randomization for a wave,

we checked for balance with the previous waves that had already been completed and

selected the treatment assignment among the four options that best maintained balance

across waves.

Table A2 presents the number of observations and means of a range of characteris-

tics across the treatment and control groups. The final column reports the p-values from

statistical tests assessing whether the mean differences between the two groups are statis-

tically significant. The results show that there are no significant differences between the

treatment and control groups, confirming that the randomization process was successful.

This balance across key characteristics underscores the robustness of our randomization

process and reinforces the internal validity of our intervention’s effects analysis.

2.3.3 Estimation

Our main empirical strategy employs a differences-in-differences (DiD) methodology to

estimate the causal effect of air quality information on household behavior and subse-

quent indoor air pollution levels. Formally, we estimate the following model:

PM2.5,it = β0 + β1Treatmenti + β2Postt + β3(Post×Treatment)it

+ β4AmbientPMit + δt + εit
(1)

where PM2.5,it represents indoor PM2.5 for household i at time (hour) t, Treatmenti is

a dummy indicating that the household is in the treatment group, Postt is a dummy

indicating the post treatment period, (Post × Treatment)it is the DiD interaction term,

AmbientPMit is ambient PM2.5 concentrations for household i at time t, δt is time (day

of week and month) fixed effects, and εit is an idiosyncratic error term. Standard errors

are heteroskedastic-consistent and (two way) clustered by household and date.

The inclusion of ambient PM2.5 allows us to control for external air quality condi-

tions, ensuring that our estimates are not confounded by outdoor pollution levels that

may independently affect indoor PM2.5 levels. The day of week fixed effect captures any

systematic variation in air quality that could be attributed to different days of the week,

thereby controlling for weekly patterns in household activities that could affect pollution

levels. Additionally, the inclusion of month fixed effects helps address seasonality, which
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can influence pollution through factors such as ventilation practices for example.

We employ the differences-in-differences (DiD) methodology for several important

reasons that align with the specific constraints and objectives of our study. First, the DiD

approach inherently controls for the Hawthorne Effect, the phenomenon where individ-

uals alter their behavior simply because they are aware they are being observed, which is

a concern in any experimental study. By comparing changes over time between the treat-

ment and control groups, any behavioral modifications among participants due to their

awareness of being studied will be differenced out in the estimation process. Second,

the reliance on differential changes over time as the basis for estimation helps to circum-

vent potential measurement errors that could distort the analysis. Since DiD estimates

are derived from changes in the dependent variable, rather than its levels, any constant

measurement error is differenced out, thereby purifying our estimates from such noise.

This attribute of the DiD methodology is particularly important given the complexities

associated with accurately measuring indoor air pollution levels. Third, our sample is suf-

ficiently large but perhaps not large enough to completely eradicate all concerns about

randomization and the potential for the imbalance between treated and control groups.

Our balancing test reported in Table A2 suggests that our treatment and control groups

are balanced on observables but the DiD methodology allows us also to control for unob-

servable factors that are constant over time, thereby mitigating potential biases.

3 Descriptive Statistics and Baseline Analysis

In this section, we conduct a descriptive analysis focusing first on the comparison and

interactions between ambient and indoor air pollution (Section 3.1). We then estimate

the determinants of IAP, focusing on household and dwelling characteristics as predictors

(Section 3.2).

3.1 The Relationship Between Indoor and Ambient Air Pollution

We start by examining the relationship between indoor and outdoor air pollution. Table

A3 provides a summary of 150,079 hours of air pollution and weather data collected from

258 households. The left side of the table presents information for the full sample, cov-

ering the entire four-week duration of the field experiment, while the right side focuses

exclusively on the pre-treatment period (the first two weeks). This distinction is critical,
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as the treatment is designed to reduce indoor pollution, making the pre-treatment data

vital for establishing baseline conditions. Column 4 aggregates data across all hours of

the day and indicates that indoor and ambient PM2.5 concentrations are relatively similar

during the pre-treatment period, averaging 10.85 µg/m³ and 11.61 µg/m³, respectively.

These two numbers are important because they highlight that, despite London being a

modern developed city with ambitious and effective policies to reduce pollution (mainly

traffic related policies such as the Low Emission Zone, expanded cycling infrastructure,

and strict emission standards for taxis) pollution levels remain above recommended in-

ternational health guidelines. To put it in perspective, the annual US EPA and WHO

guidelines are currently set at 9 and 5 g/m³, respectively. In England, the Environmental

Targets Regulations 2023 mandate reducing PM2.5 concentrations to 10 g/m³ or lower

by 2040, but this higher target must be achieved across all Automatic Urban and Rural

Network (AURN) monitoring sites in England, not just on average.

In columns 5 and 6 of Table A3 we further analyze the pre-treatment pollution data

by stratifying it into two distinct time frames: occupancy time (16:00-24:00) and non-

occupancy time (all other hours). This temporal distinction is essential because we are

particularly interested in periods when people are at home, active, and near the pollution

monitor. The results reveal an important pattern: indoor pollution levels are significantly

higher during occupancy hours compared to non-occupancy hours (14.6 vs. 8.9 µg/m3).22

This 65 percent increase in pollution during occupancy hours is critical for several rea-

sons. First, elevated pollution levels during occupancy time are particularly concerning,

as this is when individuals are most likely to be at home (back from school and/or work)

and actively using their home. Because participants were instructed to place their moni-

tors in the room where they spend most of their awake time, the data also closely approx-

imate their real-world exposure to indoor air pollution, providing meaningful insights

into potential health and well-being impacts. 23

Second, the notable increase in pollution during active household hours suggests that

human behavior significantly contributes to the observed air quality degradation (note

that ambient pollution levels do not exhibit the same sizable increase in concentrations

and are not very well correlated with IAP as we document more formally below). As

mentioned before, activities, such as cooking and heating, can release pollutants, inten-

22We also plot the average PM2.5 levels by hour in Figure A6 to illustrate how PM2.5 fluctuates throughout the day.
The figure clearly shows a sharp peak in indoor PM2.5 during the evening hours. Ambient PM2.5 also rises during this
time, possibly due to vehicle emissions, though to a much lesser extent.

23We also present histograms of indoor PM2.5 concentrations for the entire day and specifically during occupancy in
Figures A7 and A8, respectively.
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sifying indoor air pollution during these hours. Moreover, ventilation may also play a

crucial role in the evolution of indoor air quality, with its effectiveness potentially be-

ing dependent on human behavior as well, such as the opening and closing of windows.

This behavior-driven pattern of pollution highlights the influence of daily activities on

indoor air quality, suggesting a clear link between human behavior and environmental

health impacts. These findings emphasize the need for targeted strategies to mitigate ex-

posure to indoor air pollutants, especially during peak times when people are at home

and engaged in activities that contribute to their indoor air quality.

Our temporal analysis also reveals that during occupancy hours (16:00-23:00), when

residents are actually exposed to the air quality in their dwellings, indoor pollution levels

are in fact higher than the pollution outside (14.6 vs. 12.2 g/m3), with indoor concentra-

tions exceeding outdoor levels for a significant proportion of the time. This is evident

in Table A3 as described above and also in Figure A9 where we show a histogram of the

hourly difference between indoor and ambient pollution during occupancy hours. The

figure reveals that for 22% of the time, indoor PM2.5 is higher than ambient PM2.5 dur-

ing this time.24 This result suggests that pollution spikes during these episodes are not

only sharp enough to meaningfully elevate the overall average but also frequent enough

to be a major concern. While there are not many studies that can accurately compare

the two measures, our finding is consistent with the work of Greenstone et al. (2021) for

India. However, our result is in contrast to the work by Krebs et al. (2021), who doc-

ument that outdoor concentrations of PM are higher than indoor concentrations using

crowd-sourced data from the PurpleAir Real-Time Air Quality Monitoring Network in

California. There could be many reasons as to why the Krebs et al. (2021) study differs

from ours and the Greenstone et al. (2021) study.25 Overall, our indoor finding demon-

strates the severity of indoor air pollution levels in a developed city and their potential

health impacts. This highlights the urgent need for interventions to reduce exposure to

particulate matter in indoor environments, which may be an even more pressing issue

than addressing ambient pollution.

Following our analysis of temporal pollution patterns and the discussion around the

potential role of human behavior in shaping indoor air quality, we further delve into the

24Figure 1, which presents the histogram of the hourly difference between indoor and ambient pollution for the
entire day (not just during occupancy hours), reveals that indoor pollution exceeds outdoor pollution 16% of the time.

25The divergence between the our findings and Krebs et al. (2021) could be because: (1) theirs is based in a different
location with different climatic conditions, housing stock, and human activity indoors; (2) their sample is based on a
very selected (but important) group of people who decided to purchase an air pollution monitor whilst our sample is
based on a more represented pool of households; and (3) some combination of both.
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relationship between indoor and outdoor pollution levels. This examination is visualised

in Figure 2, where we plot hourly outdoor PM2.5 concentrations on the x-axis against

hourly indoor PM2.5 concentrations on the y-axis. To illustrate the correlation between

these two variables, we have fitted a linear regression line, depicted in green, against

a 45-degree black dashed line, which would indicate a direct one-to-one relationship.

This analysis reveals a positive relationship between indoor and outdoor PM2.5 levels,

suggesting that outdoor pollution does contribute to indoor pollution levels to some ex-

tent. However, the relatively low coefficient of determination associated with the fitted

line (R2=0.098) indicates that outdoor PM2.5 levels explain very little of the variations

in indoor PM2.5 concentrations. This finding implies that while there is a correlation as

suggested by prior studies (Krebs et al., 2021; Burke et al., 2022), a significant portion of

indoor air pollution can be attributed to sources within the indoor environment itself.26

Figure 2 further supports the statement that indoor air pollution is not that related

to ambient air pollution conclusion in two notable ways. First, the scale of the axes is

markedly different, with indoor pollution levels reaching up to 999 µg/m³, whereas out-

door levels remain well below 100 µg/m³. This disparity underscores the potential for

indoor activities and sources to significantly elevate pollution levels beyond what is ob-

served outdoors. Second, on the left-hand side of the figure, we observe many cases where

very high levels of indoor pollution occur while ambient pollution remains relatively low.

This also suggests that the source of the pollution in these cases is likely to be indoors.

Together, these insights highlights the complexity of indoor air pollution dynamics and

the critical role that indoor sources and activities play in determining the healthiness of

indoor environments.

We continue by econometrically estimating the extent to which ambient air pollution

infiltrates homes, contributing to IAP, and the duration of its impact on indoor pollution

levels. To do so, we replicate Krebs et al. (2021), which investigates the penetration rates

of ambient PM2.5 into the indoor environment. Using their methodology, we regress

indoor PM2.5 levels on lagged outdoor PM2.5 values (up to 12 hours) while controlling

for outdoor temperature, dew point temperature, wet-bulb temperature, and including

26Given that ambient air monitors provide pollution concentration measurements for specific locations, which may
not accurately reflect individual exposure due to the distance between the monitor and the individual’s actual envi-
ronment (Fowlie et al., 2019), we investigate the outdoor-indoor pollution relationship in Appendix Figure A10 but
separately for households located below and above the median distance to the nearest ambient pollution monitor. This
allows us to test whether proximity to the monitor explains the low explanatory power of this relationship, despite the
relatively close location of the monitors to the households in our study. The results indicate that even for households
in closer proximity to the ambient monitors, the R2 value remain very low, suggesting that proximity alone does not
account for the weak relationship observed.
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fixed effects for hour, day, and month.27 This is displayed in figure A11, where we plot the

coefficients of the lagged outdoor PM2.5 values. We get very similar results to Krebs et al.

(2021), with bigger point estimates. Consistent with their findings, the primary influence

of the outdoor environment lasts for approximately 5 hours and dissipates entirely within

9 hours. We also look at this over the first two weeks of our data - the pre-treatment

period, to avoid the effect of the experiment, and we get an identical looking graph as seen

in Figure A12. Furthermore, we investigate the effect of the treatment of this experiment

in the post-treatment period on penetration rates. This can be seen in Figure A13a and

A13b, where the penetration rates are higher in the control group and the effects last

longer. This indicates that some households in the treatment group have altered their

behavior and ensured that outdoor pollution affects them less.

We also look at this effect on different time periods to show how outside air temper-

ature affects penetration rates. Similar to Krebs et al. (2021), we show that penetration

rates are much higher in warmer weather. We can see this when comparing Winter and

Summer in Figure A14b and Figure A14a. In these graphs, it is clear that penetration

rates are higher in summer, and that indoor PM2.5 stays higher for longer. This could be

due people keeping their windows open for longer hours.

3.2 Predictors of Indoor Air Pollution

We next turn our attention to identifying the principal predictors of indoor PM2.5 levels,

as detailed in Tables A4 and A5. These tables, which focus solely on the pre-treatment oc-

cupancy period, examine the influence of various household and dwelling characteristics

on indoor air pollution concentrations. We begin by examining household characteristics

in Table A4. Our descriptive analysis reveals that smoking is the most significant predic-

tor of elevated indoor PM2.5 levels. This finding highlights the substantial impact that

indoor smoking can have on air quality and is aligned with existing research in this area

which tends to be based on a much smaller sample size.28

27The regression equation we use is PM2.5it =
∑

j βjAmbientPM2.5it−j + γXit + δt + θi + εit . Standard errors are
clustered at the household and day levels.

28For example, a study by Semple et al. (2015) in Scotland analyzed PM2.5 concentrations in homes with smokers
compared to those without and revealed that the average PM2.5 levels in the 93 smoking homes were about ten times
higher than in the 17 non-smoking homes. Importantly, the findings reported by the study in Scotland and our findings
presented here not only highlight the substantial role of cigarette smoking in elevating indoor PM2.5 concentrations
but also the severe exposure risks for non-smokers residing in these environments. According to Semple et al. (2015),
non-smokers living in smoking households typically experienced average PM2.5 exposure levels more than three times
higher than the World Health Organization’s (WHO) guidance for annual PM2.5 exposure.
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Following smoking, the household’s income level (measured as above and below

median for the area) is the next biggest predictor of higher IAP. We further explore

the income dimension in Figure A15, which shows PM2.5 concentrations across differ-

ent income groups during our pre-treatment period. The figure reveals a pronounced

downward-sloping relationship between income and PM2.5 concentrations, highlight-

ing how pollution exposure decreases significantly as income levels rise. In particular,

we find that for every £1000 increase in income, indoor PM2.5 falls by 0.1µg/m3 (a 1%

increase in income is associated with a 0.034% reduction in PM2.5). To put this in per-

spective, below median income households have a PM2.5 level 20 µg/m3 units higher

than above median income households. Although similar patterns have been observed in

ambient pollution (Jbaily et al., 2022; Colmer et al., 2020), the relationship between in-

come and pollution is much larger for indoor than ambient. It is important to document

that this disparity exists for indoor pollution in the developed world but also potentially

larger than ambient.29

Our analysis in Table A4 also shows that renters experience higher levels of indoor

PM2.5 compared to homeowners. This disparity could reflect differences in the quality of

living conditions, including the age and maintenance of rented versus owned properties,

as well as potential restrictions on modifications that could improve indoor air quality,

or it could be personal behaviors associated with renters. Overall, these results suggest

a socioeconomic dimension to indoor air quality, where lower-income households renters

and smokers (who are more prevalent among disadvantaged groups (Auld, 2005; Hiscock

et al., 2012; DeCicca et al., 2022) may face higher exposure to indoor PM2.5.

Next, we examine how dwelling characteristics are linked with indoor PM2.5 levels

in Table A5. Notably, certain household appliances emerge as significant predictors of

indoor air pollution levels. In particular, we find that having an electric or gas stove is

positively correlated with higher indoor air pollution levels. These appliances, commonly

used for cooking and food preparation, contribute to the indoor emission of particulates,

thereby elevating PM2.5 concentrations. Interestingly, induction hobs appear to have a

relatively lower impact on indoor PM2.5 levels. This finding aligns with their design, as

induction hobs heat cookware directly through electromagnetic fields, reducing heat loss

and cooking time. This efficiency minimizes overheating, which in turn produces lower

emissions of PM2.5 compared to electric hobs. Furthermore, induction hobs lack exposed

29When we look at ambient PM2.5 we find no evidence for statistically and economically significant relationship
between income and ambient pollution over the course of the data collection period. The ambient PM2.5 gradient is
-7.312873e-06 which means that for every £1000 increase in income, outdoor PM2.5 falls by 0.0073.
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heating elements, preventing particulate emissions from surface oxidation. Their efficient

heating also reduces ambient heat buildup, a factor supported by our observation of a

positive correlation between higher indoor temperatures and elevated PM2.5 levels.

In contrast to the impact of cooking appliances, the presence of more windows in

a dwelling is associated with lower baseline pollution levels. This can be attributed to

improved air circulation and the dispersion of indoor-generated pollutants, effectively

mitigating indoor air pollution. Interestingly, we do not find a statistically significant

association between the presence of an air purifier and indoor PM2.5 levels. While air

purifiers are known to reduce indoor pollution when properly used and maintained, this

result may reflect factors such as human behavior (as ownership does not guarantee reg-

ular use) and selection bias.

Overall, our results highlight the complexity of factors affecting indoor air quality

and underscore the significance of household and dwelling characteristics in influencing

indoor air quality. As such, interventions to improve indoor air quality might require a

tailored approach through architectural design, lifestyle modifications, informed appli-

ance choices, and personalized information about indoor pollution.

4 Main Results

4.1 Impact of Real-time Feedback on Indoor Air Quality

In this section, we investigate the impact of our intervention designed to provide res-

idents with real-time, personalized feedback on indoor PM2.5 pollution levels within

their homes. Our primary aim is to assess whether such feedback can effectively reduce

indoor PM2.5 concentrations. Figure 3 shows our main point estimates and confidence

intervals for three regression equations.30 The left estimate shows the average treatment

effect of our intervention on total PM2.5 concentrations. As evident from the figure,

we find that providing real-time indoor pollution information reduces overall pollution

concentration by 1.9 µg/m3 (microgram per cubic meter), representing an effect size of

17.3% of mean PM2.5 of the control group post treatment or 17.6% of baseline pollution

(i.e. pre-treatment).

30Appendix Table A6 presents these results in a table format, including versions with and without bootstrapped
standard errors for robustness.
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In the next two estimates presented in Figure 3, we differentiate (as in the previous

section) between occupancy time (16:00-23:00) and non-occupancy time (all other hours)

respectively. This differentiation is crucial, given that our occupancy hours typically rep-

resent time when individuals are at home, active and near their pollution monitor which

gives us a very good indication to their actual pollution exposure during this time. Our

results demonstrate a much more pronounced effect during occupancy hours, compared

to our overall estimate reported for the all day. This estimate is also statistically signifi-

cant at the 1 percent level and very large. In particular, we find that our intervention re-

duces indoor PM2.5 concentrations by 5 µg/m3, equivalent to a 34% or 0.11 of a standard

deviation reduction from baseline during the same hours or 32.5% reduction compared

to mean PM2.5 in the control group post treatment. This is a sizable reduction, espe-

cially when compared to other prominent interventions. For example, the 2005 US Clean

Air Act amendment for PM2.5 achieved a reduction of only 3% (or 0.4 µg/m3) over five

years, congestion pricing in Stockholm reduced PM10 pollution by 10-15%, and the in-

troduction of Low Emission Zones (LEZ) in Germany reduced PM10 levels by 9%. (Sager

and Singer, 2022; Simeonova et al., 2021; Wolff, 2014). Conversely, the effect observed

during non-occupancy hours is much smaller and not statistically significantly different

from zero, suggesting the intervention’s effectiveness is only heightened when residents

are likely to be home and awake.

We further delve into the temporal dynamics of the intervention’s efficacy through

Figure 4, which shows the average treatment effects segmented by hour of the day. This

graphical representation corroborates the findings outlined in Table A6, particularly

highlighting the concentration of negative effects during occupancy hours. These tem-

poral insights enrich our understanding of the intervention’s impact, emphasizing the

significance of daily household routines on indoor air quality. We also explore the effect

over time in Figures 5 and 6. These graphs indicate that (1) our parallel trends assump-

tion holds reasonably well and (2) the effect size remains consistently high throughout

the post-treatment period, with a more pronounced and concentrated impact observed

during occupancy hours. In Figure 7 we further analyze this temporal dimension and

find that the intervention’s impact during the first and second weeks is nearly identi-

cal, highlighting once more the consistency of the treatment effect over time. Finally, in

Figure 8, we examine the impact of our intervention by season and find that our results

are entirely driven by the intervention during the winter months. During this period,

dwellings typically have lower levels of ventilation (due to closed windows) and higher

usage of heating sources, both of which contribute to elevated indoor pollution levels.
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Next, we explore the potential non-linear effects of our intervention through a probit

model analysis, focusing on the time households spend within various Air Quality Index

(AQI) categories. The US AQI, a scale that quantifies air quality, spans from 0 to 500,

categorizing air quality into six levels: Good (0-50), Moderate (51-100), Unhealthy for

Sensitive Groups (101-150), Unhealthy (151-200), Very Unhealthy (201-300), and Haz-

ardous (301-500), with lower scores indicating healthier air quality. A unique feature of

our intervention is the air quality monitor’s ability to visually display AQI categories, al-

tering its color and displaying category names (e.g., "Good" in green for PM2.5 levels at 8

µg/m3). We hypothesize that this visual and categorical representation of air quality may

nudge households to improve their indoor air to the safest AQI category achievable.

Our analysis, detailed in Figure 9 and Appendix Table A7, specifically investigates

these effects during occupancy hours, a period of heightened indoor activity and poten-

tial pollutant exposure as we documented before. The findings suggest that the inter-

vention effectively encourages households to maintain air quality within the "Good" and

"Moderate" PM2.5 ranges (below 100 AQI which is equivalent to 35.4 µg/m3), increasing

the likelihood of air quality falling within these safer ranges. Conversely, there is a sig-

nificant decrease in the time spent in all higher AQI categories, such as "Unhealthy" and

"Hazardous." In particular, we find that the intervention reduced the likelihood of time

spent in the Unhealthy, Very Unhealthy, or Hazardous ranges by 0.06, 0.05, and 0.04 stan-

dard deviations, respectively, compared to pre treatment baseline. Overall, these results

highlight the intervention’s efficacy in nudging household behavior towards maintaining

healthier indoor air quality levels and more generally the efficacy of providing real-time

pollution feedback in significantly lowering indoor PM2.5 concentrations, especially dur-

ing critical periods when individuals are present and active in their homes.

In order to understand the variation in household responses to our treatment, we

also perform a heterogeneity analysis to investigate the Average Treatment Effect (ATE)

across different household characteristics. The results, presented in Figure 10, reveal that

households with below-median income experience the largest reductions in indoor pollu-

tion exposure. Specifically, the ATE for these households is 19.6 µg/m3 during occupancy

time, compared to 5 µg/m3 for the full sample. This substantial impact is likely because

these households started with significantly higher levels of indoor pollution in the pre-

treatment period, as highlighted in Section 3.2 above, requiring more drastic actions to

address their pollution problem.

We further explore this dimension in Table A8, where we stratify results based on
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whether households had above- or below-median PM2.5 levels at baseline (the first two

weeks). The findings for households with above-median PM2.5 levels are consistent

to those for below-median-income households, strongly supporting the argument that

households with higher pre-treatment pollution levels require more significant reduc-

tions. Interestingly, households with below-median PM2.5 levels at baseline showed an

increase in pollution exposure post-treatment. We hypothesize that this increase may

be due to households learning through the intervention that their pollution levels were

lower than they had initially perceived and consequently adjusting their behaviors. In

other words, these households might have been operating below their efficient pollution

level and used the information provided by the treatment to re-optimize. Later in the

paper (in Section 4.3), we present empirical evidence from our survey data on beliefs,

which supports this hypothesis. Beyond the income-related findings, we also observe

significantly higher reductions in indoor pollution (exceeding 5 µg/m3) among specific

demographic groups, including households without a college education, renters, single-

occupant households, households without children, and those with pre-existing health

conditions.

4.2 Mechanisms

Following our main results showing how the treatment reduced indoor pollution, we

move to empirically explore the mechanisms driving our main results by examining

participant-stated answers and revealed actions in detail. We begin with the former as

we elicited direct insights from the participants themselves. In particular, individuals

in the treatment group were surveyed about the specific steps, if any, they undertook to

mitigate indoor pollution levels. This inquiry is pivotal, as it provides first-hand accounts

of the behavioral changes or preventive measures adopted by residents when faced with

immediate feedback on their indoor air quality. Figure A16, which summarizes the an-

swers we received from participants, shows that a significant majority, 72.1%, reported

increasing ventilation as their primary strategy to reduce pollution. This mainly involved

opening windows to allow fresh air to circulate and dilute indoor pollution, which high-

lights the intuitive and accessible nature of enhancing ventilation as a potential first-line

response to air quality concerns. Conversely, a small segment of the sample, 9.3%, re-

ported decreasing ventilation as their main strategy to reduce pollution. This might seem

a contradictory response at first glance but as mentioned above, indoor pollution could

be influenced by external factors such as outdoor air quality (e.g. a window opening
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into a major road) or weather conditions, suggesting a complex decision-making process

regarding air quality management and the importance of real-time monitoring.

We also find that 11.6% of respondents indicated they had reduced activities known

to contribute to indoor pollution, such as cooking, dusting, and the use of candles and

aerosols. This reduction reflects a conscious effort to decrease the generation of pollutants

at the source. Interestingly, only 2.3% of participants turned to air purifiers as a solution,

leveraging technology to filter out pollutants from indoor air. Finally, 4.7% of the respon-

dents adopted multiple strategies, combining various measures to tackle indoor pollution

effectively. These findings highlight the range of actions individuals are willing to take to

improve their living environments, demonstrating the critical role of real-time air qual-

ity feedback in empowering residents to make informed decisions about their indoor air

quality.

Whilst the analysis above provides great insight into the behavior responses, it is im-

portant to note that the response rate for this specific survey question was 32%. As such,

we proceed with two additional methods to examine the behavioral response, both of

which utilize data collected from all participants in our study and focus on revealed

rather than stated behaviors. First, we analyze our collected data on indoor and outdoor

temperatures as an indirect measure of ventilation habits. By evaluating the absolute dif-

ference between these two measures of temperatures before and after the intervention,

we aim to deduce changes in household ventilation strategies. A narrowing of this tem-

perature gap suggests an increase in activities like opening windows, a straightforward

method for reducing indoor pollutant concentrations by allowing in cleaner outdoor air.

Table 1 shows the results of such analysis, utilizing our main empirical approach (DiD)

but with absolute temperature difference (between indoor and outdoor) as the outcome

variable instead of Indoor PM2.5. The results, which are in Table 1, clearly show a nar-

rowing of this temperature gap, echoing the results found in Figure A16.

Finally, we investigate the characteristics of peak indoor pollution events, focusing on

their magnitude and frequency. We define pollution events by observing rolling 5 hour

windows of the monitor files to find the local maximum within that window. This is

saved in the data as a potential peak. If the PM2.5 measurement is greater than 35µg/m3

(meaning the monitor is no longer reporting a "good" rating), we define the entire event

by the entire period the monitor reported a non-good range around this peak. This anal-

ysis helps us to assess whether the intervention led participants to modify pollution-

generating activities or implement strategies to curb high pollution levels (e.g. by in-
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creasing ventilation). A decline in the intensity and frequency of these events would

imply that households took effective steps in response to or anticipation of high pollution

levels. We start with intensity and check if the height of peaks (defined as the maximum

PM2.5 level of an event) changes following our intervention. The results are presented

in column 1 of Table 2 and show that the peak is on average 36.9 µg/m3 lower following

our intervention suggesting that households might have taken preventive action (such as

opening windows in advance) to avoid high pollution levels or acted very fast in response

to high readings. In column 2 of Table 2, we test for the frequency of these peak events

to explore if residents changed the way they perform their indoor activities (e.g. change

their cooking and/or heating practices). We find no evidence to support this channel as

the results are not statistically significant. Together, these results further support our

earlier conclusion that the ventilation channel is the key margin of behavioral change

and provide a comprehensive view of how real-time feedback on air pollution levels in-

fluences household behaviors and practices related to indoor air quality management.

Understanding these mechanisms is crucial for assessing the broader applicability and

efficacy of such interventions in promoting public health through improved air quality.

4.3 Impact on Beliefs

We also study the impact of our treatment on participants’ perceptions and confidence

regarding indoor and outdoor air quality, as measured through the difference in air qual-

ity beliefs between the baseline and end-line surveys. In particular, our "Air Quality

Belief" variable captures the participants’ perceived level of air quality using a spectrum

from "Good" with no health risk, to "Hazardous", both indoors and outdoors, while our

"Confidence" variable assesses the certainty with which participants hold these beliefs.

Table 3 shows the estimated coefficients of the treatment effect, quantifying how the

intervention influenced participants’ beliefs about air quality in their home environments

and their confidence. The results show that residents updated their beliefs, realizing that

their indoor air is in fact worse than they originally thought. This estimate is statisti-

cally significant at the 5% level and is fairly large - this translates to 33% of the standard

deviation of the variable (mean is 0.17, sd is 0.79). Importantly, the effectiveness of our

treatment in not only altering participants’ perceptions of air quality but also affecting

the confidence level of these perceptions, offering valuable insights into the psychologi-

cal impact of air quality awareness interventions. For ambient (outdoor) air quality, the
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results differ. The estimates do not show statistically significant effects, implying that the

intervention did not alter beliefs or confidence regarding outdoor air quality. This dis-

tinction in findings between indoor and outdoor air quality perceptions makes sense as

we only provided information about indoor pollution and not ambient pollution. In fact,

given that most of the indoor pollution we observed in our study is generated indoors in

conjunction with the fact that we only provided information on indoor pollution, one can

describe this analysis as a placebo test and the results of this exercise are very reassuring.

Finally, we revisit our earlier findings from Section 4.1, which show that households

with initially low levels of pollution actually slightly increased their pollution exposure

following the treatment. We hypothesized that this occurred because they learned their

pollution levels were better than they had previously believed and, as a result, adjusted

their air quality at home (via behavioral change) to align with their efficient level of

pollution. Since we have data on their initial beliefs, we can now empirically test this

explanation. In Figure A17, we present the correlation between pre-treatment beliefs

about indoor air quality and the actual pre-treatment indoor air quality for households

below- and above-median PM2.5 levels separately. The results reveal that households

with below-median PM2.5 levels tend to believe their pollution levels are worse than

they actually are, while those with above-median PM2.5 levels perceive their pollution to

be better than it truly is. This finding strongly supports (though does not causally prove)

our hypothesis that households with low baseline PM2.5 levels adjust their behavior to

increase pollution exposure in an effort to reach their optimal level of pollution.

4.4 Robustness

We conduct a series of robustness checks to validate the reliability of our primary find-

ings. These checks are designed to ensure that our results are not driven by specific model

specifications or sample selections. We employ four key strategies: adding household

fixed effects to our preferred DiD estimator, omitting ambient pollution controls, using

two-way clustering technique without bootstrapped standard errors and re-evaluating

our analysis using a reduced sample size as outlined in our pre-regitration plan. Given

that the majority of the effects observed in our study occur during occupancy evening

hours when residents are typically at home, we will focus on this time period in the sub-

sequent analysis and we will also examine our estimates when we modify this definition.

We begin by re-estimating our model using household fixed effects to account for
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unobservable household-specific characteristics that could potentially bias our estimates.

While our original DiD strategy remains our preferred approach due to its suitability for

our data, the fixed effects specification offers a valuable robustness check. This approach

controls for all time-invariant heterogeneity across households, which may not have been

fully addressed by our randomization procedure for some unclear reason. As a robustness

test, we aim to determine whether this alternative specification yields results consistent

with our original findings. Figure A18 and Table A10 show that the household fixed

effects model produces an estimate of 3.45 µg/m3 during occupancy time, which is similar

to our main estimate reported in Table A6.

We also re-run our main analysis using a reduced sample of households, as speci-

fied in our pre-registration plan (N=150).31 Aside from necessary adjustments to the

specified date ranges due to logistical constraints, this is the only deviation from the

original plan.32 The primary reasons for increasing the sample size were to enable het-

erogeneity analysis and to ensure sufficient statistical power for our willingness-to-pay

analysis. Additionally, the original choice of 150 households was based on preliminary

results from our pilot study, as we did not have prior literature to guide our power cal-

culations. Notably, the pilot study employed a different recruitment process-advertising

on social media rather than randomly distributing letters-which resulted in significantly

higher estimates, possibly due to selection bias. By adhering to this predefined sample

and comparing it with the full dataset, we rigorously evaluate the stability of our findings

across different sample configurations and ensure transparency. The results, presented

in Column 2 of Table 4, closely mirror those obtained from the full sample, which is very

reassuring.

The final three columns of Table 4 present an analysis of our estimates across alterna-

tive time windows of the day. This analysis produces very similar results, with the effect

being primarily concentrated during the PM hours. Finally, Panel B of Table A6 reports

the main results without bootstrapped standard errors. While the estimates are less pre-

cisely estimated in this specification, the ATE during occupancy hours remains highly

statistically significant at the 5 percent level.

31The results presented here are actually based on the first three waves of our experiment (N=175). However, we
also conducted the same analysis after randomly dropping 25 households from the third wave to exactly match the
pre-specified sample size of 150 households. The results remained virtually identical. We present the findings using
the slightly larger sample size for reproducibility purposes.

32Our pre-registration mistakenly stated that we would run the experiment for four weeks post-treatment. However,
this was never our actual intention for this study. As evident from our recruitment letters to residents, we consistently
communicated that the study duration was one month overall (including the pre-treatment period).
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The outcomes from all the above robustness checks - the household fixed effects

model, the omission of ambient pollution controls, and the analysis with a reduced sam-

ple size and our different clustering - consistently align with our main results, reaffirm-

ing the strong effect of our intervention. The persistence of the treatment effect across

these varied specifications and sample criteria underscores the robustness of our primary

findings. Notably, the treatment effect for the occupancy hours remains statistically sig-

nificant and economically meaningful in all scenarios tested, bolstering the credibility of

our original conclusions and the internal validity of our study.

Finally, as we mentioned earlier in the paper, our study sample does not fully align

with the demographic composition of the broader Camden population. Table A1 high-

lights these differences (see section 2.3 for a full discussion). While these discrepancies

do not compromise the internal validity of our findings, they do raise concerns about

the external validity of our results. To address this threat head-on, we re-weight our es-

timates using detailed knowledge of our sample’s demographics and the demographic

characteristics of Camden as a whole, ensuring that our results are more representative

of the broader population. If we re-weight on income, assuming the other characteristics

of households are relatively similar across the UK, we can see that the whole day ATE

increases to -4.43 and the occupancy time rises to -9.91 (compared to -1.9 and -5.0 in

the unweighted sample).33 This requires the assumption that the population of Camden

is similar to the rest of England and air pollution levels would be similar since we do

not have data on people who did not participate in our study. When re-weighting by the

other variables in Table A1 we find that the whole day ATE estimates range from -1.67 to

-1.95 and the occupancy time ATEs range from -3.02 to -4.86.

5 Welfare Analysis

In this section, we examine the impact of the intervention on human health, residents’

willingness to pay for improvements in indoor air and information about it, and the over-

all marginal value of public funds (MVPFs) for a government subsidy of indoor air pol-

lution monitors.
33This is calculated by re-weighting the sample to ensure 50% of households have income below the median level,

rather than 24% as in our sample.
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5.1 Impact on Health

We first focus on the intervention’s impact on health. To analyze this dimension, we

follow Carozzi and Roth (2023) and begin by applying the point estimates derived in our

study to Concentration-Response (C-R) functions extracted from the existing literature.

This synthesis of empirical data from our intervention with established C-R functions

allows for a robust estimation of the health impacts due to changes in indoor air pollution.

Next, we use the UK Government Value of a Prevented Fatality (VPF) and combining this

with the C-R functions to quantify the potential mortality benefit of our intervention.34

We draw from the literature to estimate the upper and lower bound mortality C-R

functions as in Fowlie et al. (2019). Lepeule et al. (2012) provided a pivotal extension

of the Harvard Six Cities study and estimate that an annual increment of 10µg/m3 in

PM2.5 concentrations correlates with a 14% increase in the risk of mortality from all

causes compared to baseline (this is our upper bound C-R function).35 Complementing

this, Krewski et al. (2009) conducted an extensive cohort analysis,36 and estimated that

an annual increment of 10µg/m3 PM2.5 concentrations correlates with a 6% increase in

the risk of mortality from all causes (this is our lower bound C-R function). While these

studies focus on ambient PM2.5, there is currently no evidence to suggest that particulate

matter originating indoors is less harmful than outdoor sources. As mentioned in the

background section, the WHO advisory group on indoor air quality guidelines similarly

concluded that there is no compelling evidence to indicate that indoor particulate matter

poses a lower health risk than its outdoor counterpart (WHO et al., 2010). As such, we

reasonably assume that these C-R functions are also applicable to indoor PM2.5.

More formally, we can outline the calculation as follows. We begin by defining the

relationship between air pollution and mortality risk:

ln(y) = α + β · PM2.5

where ln(·) is the natural logarithm and β is the coefficient of interest which measures

34For more details on VPF and its relationship with the Value of a Life Year (VOLY) for the UK Gov-
ernment, please see:https://www.gov.uk/government/publications/valuation-of-risks-to-life-and-health-monetary-
value-of-a-life-year-voly/annexe-5. This overall approach also aligns with the US EPA in their Regulatory Impact
Analysis.

35Utilizing a Cox proportional hazards model, Lepeule et al. (2012) reported a Relative Risk (RR) of 1.14, with a 95%
confidence interval of [1.07,1.22].

36They employed a random-effects Cox model to articulate the concentration-response relationship. They identified
a lower mortality RR of 1.06, with a 95% confidence interval of [1.04,1.08], which is our lower bound C-R function.
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the estimated average effect of PM2.5 on mortality. Defining y0 as the baseline mortality

incidence rate, we can now express the relationship between changes in PM2.5 (∆PM) and

the mortality incidence rate (∆y) as:

∆y = y0 ·
(
1− 1

exp(β ·∆PM2.5)

)

By multiplying the change in the mortality incidence rate by the relevant population, we

calculate the total change in mortality. Multiplying this change by the VPF then provides

a monetary estimate of the mortality benefit.

Using this approach, we estimate the monetary health benefits of our intervention and

generalize them to the UK population. Utilizing the two C-R functions discussed earlier,

our main estimates from Figure 3, and assuming that this effect remains constant (as sug-

gested by our analysis in Figure 7), we evaluate the impact of providing all households

in the UK with the same treatment implemented in our study.37 Our analysis considers

two key reductions in PM2.5 concentrations: a 5 µg/m3 reduction observed during occu-

pancy hours and a 1.9 µg/m3 reduction calculated as the all-day average. These reflect

the treatment effects measured during periods of maximum exposure (occupancy time)

and across the full day, respectively.

Using these reductions, our results suggest that the annual mortality benefit of such

an intervention, based on the high and low C-R functions from Lepeule et al. (2012) and

Krewski et al. (2009), in conjunction with the UK VPF recommended estimate of £2.4

million (2023 GBP), would be £102.4 billion and £46.4 billion (or £1,501 and £680 per

capita), respectively, for the 5 µg/m3 reduction. For the smaller 1.9 µg/m3 reduction, the

annual mortality benefits are estimated at £39.73 billion and £17.79 billion (or £582.05

and £260.63 per capita), respectively.

Given the substantial uncertainty surrounding the C-R functions, we adopt a mid-

point C-R function of 1.10. Furthermore, there is also uncertainty surrounding the cor-

rect estimated pollution reduction that we should use for our calculation, as we do not ob-

serve individuals’ exposure throughout the entire day. For instance, individuals might be

at school or work during certain hours, where indoor air quality may differ significantly

from that observed in their homes. To address this, we adjust our ATE by weighting the

observed reduction during occupancy hours (16:00–23:00), which represents one-third of

37We also assume that the treatment effect observed in our London-based study applies to the United Kingdom as a
whole.
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the day. In other words, we divide the 5 µg/m3 reduction we observed during occupancy

time by 3, resulting in an adjusted ATE of 1.67 µg/m3. Using this adjusted ATE and the

midpoint C-R function, the estimated annual mortality benefit is £25.52 billion.

5.2 Impact on Economic Welfare

In this last section of the paper, we estimate the willingness to pay (WTP) of both the IAP

monitor and an air purifier, and the welfare impacts of a subsidy for both technologies.

This setting is particularly attractive for estimating such values and impacts, because

those households in the treatment group will have the correct and full information about

the air quality in their home, without any misinformation or biased beliefs.

To ensure the accuracy of our estimates and overcome common valuation issues such

as hypothetical bias, we employed the following incentive-compatible Becker et al. (1964)

elicitation procedure. Participants were informed that we would randomly select one per-

son to receive a £100 Amazon voucher. They were then asked how much of the voucher

they would be willing to sacrifice to: (1) acquire the Kaiterra Laser Egg air monitor, which

displays real-time air pollution readings for their home; and (2) own a Philips 800 Series

Air Purifier, which is claimed to purify the air in a single room within 16 minutes, filter-

ing out 99% of pollutants. We also provided a link for participants to learn more about

the air purifier if they wished. Furthermore, we explained that if this question were se-

lected to be enacted upon them, the computer would choose a random number from a

specified list provided to them. If their chosen monetary value is above that random

number, they would receive the air purifier/monitor, along with the difference between

the computer-generated number and their chosen amount (equivalent to a second-price

sealed bid auction). This method ensures that responses are financially consequential for

participants, and provides more truthful and considerate responses regarding their true

valuation.

We present the demand curves for the Kaiterra Laser Egg monitor and the Philips

air purifier in Figure A19. The figure clearly illustrates that people are willing to pay

more for a technology that directly reduces pollution exposure compared to one that

solely provides information about it.38,39 In Figures A20a and A20b, we delve deeper

38It is worth noting that the Philips air purifier also provides information about PM2.5 levels through an air quality
light, which indicates different PM2.5 air quality levels.

39We find that there is no bunching of WTP at zero (where we only had a one-sided BDM), meaning that people did
not feel an overriding value of shame in having or potentially experiencing very high IAP levels (Butera et al., 2022).
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into the demand for these technologies by plotting the demand functions separately for

the treatment and control groups for both the monitor and the air purifier. While the

demand curves are relatively similar between the groups, the treatment group exhibits a

higher average WTP for both technologies. Specifically, for the control group, the average

WTP for the IAP monitor and the air purifier is £36.65 and £44.65, respectively. In the

treatment group, the average WTP increases to £38.84 and £50.39, respectively. We also

calculate the WTP for a 1 µg/m3 reduction in indoor PM2.5 by dividing the mean WTP

for the air purifier in the control and treatment groups by their respective mean PM2.5

concentrations (11 µg/m3 and 9.1 µg/m3). The results show that the WTP for a 1 µg/m3

reduction in PM2.5 is £4.06 for the control group and £5.54 for the treatment group (£4.8

on average).40

If we re-weight the WTP numbers to match the proportion of people with the charac-

teristics from Table A1, we find that average WTP for the air purifier ranges from £38.94-

44.14 for the control group and £48.91-52.01 for the treatment group. These numbers

range from £34.25-39.28 and £36.06-39.30 respectively for the IAP monitor, all of which

are very similar to our sample estimates since we do not find much heterogeneity in WTP

by income, education or other characteristics.

To the best of our knowledge, this is the first study to estimate the WTP for reductions

in indoor PM2.5. Only one other study, by Ito and Zhang (2020), has estimated the WTP

for indoor air pollution more broadly.41 Their study uses revealed preference approach

(complementing our experimental approach) to estimates the willingness to pay for re-

ductions in PM10 by analyzing air purifier sales data (defensive investments) in China.

Leveraging the fact that air purifier filters provide both consumers and researchers with

information about their effectiveness in reducing indoor PM10, and using instrumen-

tal variable (IV) approaches to address endogeneity concerns regarding pollution and

price, they find that households in China are willing to pay $6.3 (around £5.1) to reduce

40Please note that this calculation is based on the assumption that the WTP is linear.
41Another related paper by (Pinchbeck et al., 2023) uses the housing market in England to estimate the cost of radon,

an indoor air pollutant formed by the natural decay of uranium from soil and rocks. Radon is the second leading cause
of lung cancer after smoking. To overcome the empirical challenges in estimating this relationship, the authors exploit
a natural experiment stemming from updates to the radon risk map, which induce exogenous variation in published
radon risk levels. They find that reclassification of a property from being in a radon-risk-free category to being in a
radon-affected category reduces property prices by about 0.8%. However, because this paper examines a very different
type of pollutant and lacks home-specific measures of indoor air pollution, it is impossible to compare their estimates
with ours. There are also a few papers that estimate the WTP for reduction in outdoor (as opposed to indoor) pollution
including Chay and Greenstone (2005); Deschenes et al. (2017); Freeman et al. (2019).
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1 µg/m3 of PM10.42 While the nominal value of this estimate is slightly larger than our

average estimate (£5.1 vs £4.8), the comparison is not entirely straightforward due to sub-

stantial differences in price levels between the UK and China. Using Purchasing Power

Parity (PPP) for a more like-for-like comparison, we find that our WTP estimate in the

UK is equivalent to approximately £1.91 in China. This comparison suggests that Chi-

nese households value reductions in indoor air pollution more highly than households in

the UK. This difference may be attributed to several factors. First, there may be greater

awareness of air pollution issues in China compared to the UK. Second, the severity of

air pollution is higher in China, making the benefits of indoor air quality improvements

more tangible and urgent. We posit that these contextual differences likely play a role

in shaping the observed disparities in WTP between the two populations. However, we

cannot completely rule out the possibility that the difference between the two estimates

arises because Ito and Zhang (2020) estimate the WTP for PM10 rather than PM2.5. We

consider this unlikely, given that the two pollutants are very closely related (PM2.5 is a

subset of PM10) and that most purifiers filter both.43

Next, we estimate the Marginal Value of Public Funds (MVPF) of providing a £1 sub-

sidy for the IAQ monitor using the above WTP in conjunction with the health estimates

from section 5.1. The MVPF is the ratio of the societal WTP for the subsidy to the net

cost incurred by the government in providing that subsidy. This metric allows us to ana-

lyze what are the most welfare enhancing policies for reducing air pollution, and how do

those policies compare to other non-environmental policies.

Mathematically, the MVPF is calculated as follows (following Hahn et al. (2024)):

MVPF =
xds+V dx+ Idx+Cdx
xds+Hdx+ T dx+ P dx

(2)

=
1 + V+I+C

p (−ϵ)

1 + H+T+P
p (−ϵ)

(3)

where x is the quantity of monitors used and s is the subsidy. The MVPF formula

in equation 2 is composed of six key components: the individual benefit from the sub-

sidy transfer for the inframarginal consumer (xds),44 the individual health benefit for

42According to Ito and Zhang (2020), air purifiers typically have a lifespan of five years. This implies that their
estimate can also be expressed as an annual WTP of $1.2.

43Specifically, PM10 includes particulate matter with a diameter of 10 micrometers or smaller, encompassing finer
particles with a diameter of 2.5 micrometers or smaller, which are classified as PM2.5.

44This represents the benefit received by individuals who would have purchased a monitor even without the subsidy.
Since the subsidy is standardized to £1, an inframarginal consumer is effectively £1 better off.
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marginal consumers who purchase the monitor due to the subsidy (V dx), the individual

income benefit for marginal consumers who work more after an improvement in their

health (Idx), the government cost of providing the subsidy (xds), the government savings

from reduced healthcare spending (Hdx), and the government benefit from increased in-

come tax revenue resulting from improved health and higher earnings (T dx). Using p as

the price of the monitor and ϵ as the price elasticity of demand, we re-write the MVPF

expression in equation 3.

We should note that we are uncertain as to whether the price elasticity of demand

incorporates the health and productivity benefits of the air monitor to individuals. It

might be reasonable to assumes that consumers are not aware of the full extent of the

long-term health benefits which will ensue once they buy a monitor or purifier. However,

if we assume that individuals do possess this perfect information, those benefits would be

baked into their price elasticity for demand that we calculate. Therefore, the numerator

of the equation 2 would just be 1 + Cϵ
p . However, we show below that this assumption

does not matter for the calculation of the MVPF due to the presence of very large fiscal

externalities.45 We also assume that the £1 subsidy would get fully passed through to the

consumers.

We now proceed to calculate the MVPF. The demand function for the IAP monitor

provides us the price elasticity of demand (ϵ), which ranges between -0.22 at the 25th

percentile to -1.31 at the 75th percentile (Figure A20a). For our analysis, we use -0.75

which is the mean elasticity. For V , which is the WTP for one monitor in terms of the

health benefits, we use the analysis in Section 5.1 and quantify per capita WTP as fol-

lows. We use our low and high mortality C-R function which yield cost estimates of

£260.63 - £582.05 for our whole day ATE of -1.9. This range increases to between £679.73

- £1501.72 for the occupancy time ATE of 5.0. We then multiply this by the UK mean

number of people per household (2.41) to find our average household WTP. We also need

to calculate the price of the monitor (p) discounted over a 10 year period.46 To do so,

we make the conservative assumptions that a monitor lasts 2 years and costs £135 to

45Further note that we do not calculate the morbidity and other well-being costs associated with air pollution (such
as the effect on education and crime).

46We calculate the MVPF over a decade with a discount rate of 2%. This comes from using the discount rate 3.5%
used by the His Majesty’s Treasury (2022) Green Book and accounting for the 1.5% inflation rate. We calculate the
MVPF by household, since each household would receive the subsidy. From ONS (2024), there were 28.4 million
households in the UK and 68.4 million people, this gives a mean of 2.41 people per household, which aligns with our
sample average of 2.33.
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purchase, which translates to a discounted cost of £624.57 over 10 years.47

For the Philips air purifier, we conduct a similar analysis. Since the Air Purifier cleans

99.5% of air (and we made sure that households understood this efficacy), we assume that

the purifier decreases PM2.5 down to 0. Since the baseline indoor PM2.5 throughout the

day is 11.0, this translate to ATE of 11.0. Using this ATE and the average price elasticity of

demand which is equal to -0.81 (Figure A20b), we recalculate the mortality cost estimates

and find a per capita WTP ranging between £1469.61 - £3177.42. when we focus on the

occupancy period only, the ATE is even higher at 15.4, bringing the per capita WTP at

£2031.69 - 4325.57. Finally, we calculate the price of the purifier over a 10-year period.

The Philips Air Purifier costs approximately £135, with an additional £25 annual cost for

replacing the filter, as recommended.48 We also assume the air purifier has a lifespan of

5 years (as per Ito and Zhang (2020)), after which it needs to be replaced. Adding these

costs results in a total discounted price of £438.69 over the 10-year period.

We also estimate the change in income for marginal consumers, accounting for the

portion of income not subject to taxation (I). We draw on estimates from Borgschulte

et al. (2024), who find that a 1 µg/m3 increase in PM2.5 decreases earnings by 1.81%.49

Using the UK average income of £35,393, as reported by ONS (2023), and the average

marginal income tax rate in the UK of 23.4%, we estimate the additional annual tax rev-

enue collected by the government per unit decrease in PM2.5.50 Specifically, consumers

retain 76.6% of the income change, which is incorporated into the consumer WTP, under

the assumption that these consumers were not previously aware of the associated health

benefits. This income change remains constant over the time horizon we are using, since

the median age of the primary resident in our study is in the range 31-45, therefore it is

reasonable to assume they will work for 20 years after acquiring a monitor.

We now also consider the impact of reductions in PM2.5 on crime using Bondy et al.

(2020) where they demonstrate that a 10 unit rise in AQI leads to a 2.6% fall in crime

47Air pollution monitors can often last much longer than 2 years; however, their accuracy may diminish over time.
The assumption of a 2-year lifespan is based on manufacturer recommendations to replace (or recalibrate where pos-
sible) sensors every 18–24 months. Since the Kaiterra Laser Egg is discontinued, we cannot provide updated pricing,
but the £135 estimate reflects the most recent price available to us.

48The frequency of filter replacement depends on usage, but it is reasonable to assume yearly replacements for
households that use the purifier regularly.

49Borgschulte et al. (2024) demonstrate that the implied elasticity of 0.18 identified in their study aligns with the
average elasticity reported across nine related causal studies that examine the impact of air pollution on labor market
outcomes.

50The 23.4% marginal tax rate is derived by calculating a weighted average of the proportion of UK workers paying
each tax rate in 2023. Specifically, 1.6% paid 0%, 80.4% paid 20%, 15.6% paid 40%, and 2.4% paid 45%. A weighted
average of these rates gives an overall marginal tax rate of 23.4%.
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in the UK. Translating this to PM2.5, a 1µg/m3 reduction in PM2.5 leads to a 1.04% fall

in the crime rate. We find the individual social cost of crime from Heeks et al. (2018)

to be £58.8 billion across all types of crime. This includes costs of prevention, insurance

costs, property damage costs, psychological costs, cost of lost output and police/prison

costs. Since we have already included the impact of PM2.5 on labor income, we exclude

the cost of lost output. In the numerator of our MVPF we include all the other costs apart

from police costs, since those are fiscal externalities. This totals to £36.0 billion for the

whole country in £2016, and therefore £1268 per household, which is £1665 in 2023. This

expenditure falls by 1.04% for a 1µg/m3 reduction in PM2.5 (£13.18), and we scale this by

the ATE, discounting it over the years that these costs are saved. Then we work out how

much this will change for a £1 subsidy for an IAP monitor/purifier using the demand

elasticities and prices above (C∗ϵp ).

Next we focus on the denominator of the MVPF equation to understand and estimate

the fiscal externalities. We calculate two types of fiscal externalities: (1) the benefits from

reduced healthcare spending by the National Health Service (NHS) and (2) the increased

tax revenue from higher earnings. To estimate healthcare savings, we use our upper and

lower bound average treatment effects in conjunction with cost estimates based on data

from Public Health England (PHE). Specifically, PHE (2018) estimates that, over a 10-

year horizon (2015–2025), a 1 µg/m3 reduction in PM2.5 saves the NHS £0.72 million

per 100,000 people in 2015£ (£0.952 million in 2023).51 With an average of 2.4 residents

per household in the UK, the NHS benefit of reducing PM2.5 by 1.9 µg/m3 per house-

hold (our whole day ATE) is estimated at £43.41 over a 10-year period. Reductions of

5.0 µg/m3 (our occupancy ATE), 11.0 µg/m3 (whole day pollution at baseline), and 15.4

µg/m3 (occupancy time pollution at baseline) yield savings of £114, £251, and £352 per

household, respectively. We also conduct the same analysis for a 20 year time horizon.

For the second fiscal externality, the increased tax revenue resulting from higher earn-

ings, we use the method above using Borgschulte et al. (2024) estimation that a 1 µg/m3

increase in PM2.5 decreases earnings by 1.81%. we estimate the additional annual tax

revenue collected by the government per unit decrease in PM2 using the UK average

income of £35,393 ONS (2023) and the average marginal income tax rate in the UK of

23.4%. This amounts to £149.90 per capita (or £361.27 per household). We also calculate

the cumulative tax revenue increase over 10 and 20 years, estimating it to rise by £3,310

and £6,025 per household, respectively.

51PHE (2018) provides this estimate specifically for England; however, we assume the same cost per household
applies to the rest of the UK.
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The final fiscal externality we calculate is the cost savings associated with crime re-

duction Bondy et al. (2020), which comes from police costs, healthcare costs and victim

service costs. Heeks et al. (2018) show this is equal to £8.01 billion, which is £281.69 per

household. This is equivalent to £369.95 in 2023. Since crime falls by 1.04% using Bondy

et al. (2020), each household will save £3.85 annually per µg/m3 reduction in PM2.5. We

discount this over the time frame using a 2% discount rate and multiply by the ATE and

then use the demand elasticity and price to show the crime fiscal externality which occurs

due to a £1 subsidy (P ∗ϵp ).

Using all of above estimated components, we calculate the MVPFs for the different

scenarios and display them in Table 5. We will focus on the third row in Table 5 as

our baseline (see also Fig 11). This scenario is the lower bound 20 years MVPF estimate

using the low C-R function combined with an ATE of -1.9 (the daily ATE from our field

experiment). The transfer consumers receive is £1, and they get health benefits of £0.75

from this if they choose to buy a monitor as well as income benefits equal to £44.83.

Additionally, consumers save £0.50 in crime externalities due to the decrease in criminal

activity. Therefore the total benefit is £47.08. Then we calculate costs to the government:

the cost of the subsidy is £1, and over a 20 year horizon, this will compound to save the

NHS £0.18 per £1 of subsidy based on the elasticity of demand for the monitor. Finally,

once we incorporate labor force participation and calculate the change in income tax over

a 20 year horizon, we find that the government increases revenue by £13.69 per £1 of

subsidy. Also, the police and government save £0.15 due to crime costs.

Therefore the overall effect from a £1 subsidy on ther IAP monitor on government

revenue is £13.02. Figure 11, which presents all these costs for our lower bound MVPF

estimate, shows that government costs are negative due to the significant reduction in

Government healthcare costs and increased tax revenue from increased productivity. The

figure shows the bars for the individual health benefits and income changes as lighter

blue to reflect how these components may be included within the MVPF implicitly due to

the WTP demand elasticities. As evident from Table 5, the MVPF is∞ across all scenarios,

meaning that these subsidies would be a Pareto improvement (they pay for themselves).

This holds true even if we assume that consumers have full information and so the health

benefits they get are incorporated into their price elasticity of demand.52 Moreover, the

MVPF remains infinite with different assumptions on the fiscal externality (the FE would

have to decrease by 86% to stop being infinite).

52In this case the numerator decreases, but the tax revenue increases such that the policy pays for itself.
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We also show how sensitive the MVPF is to the ATE and the price elasticity of demand.

In Figure 12, we plot the MVPF for the IAP monitor against different levels of treatment

effects and show that even small reductions in PM2.5 will be beneficial over a 20 year

horizon. The three lines represent the quartiles of price elasticity of demand: -0.22 (25th

percentile), -0.75 (median) and -1.31 (75th percentile). These estimates show that an ATE

as small as -0.14 can still have an infinite MVPF for a $1 subsidy for the IAP monitor, and

the most inelastic price elasticity of demand still leads to an MVPF of ∞ at ATE = -0.46

µg/m3. This shows that our result is very robust to different levels of treatment effects

and demand elasticities. At the whole day ATE of -1.9 µg/m3 as shown in Figure 3, we

can see that a $1 subsidy on an IAP monitor will always pay for itself, mainly due to the

increase in income taxes over the time horizon.

It is quite unusual to find MVPFs that are infinite. Many of the health, labor, and

education policies have an MVPF around 1, although some have infinite MVPFs, such

as child health insurance and early years education (Hendren and Sprung-Keyser, 2020).

For environmental policies, Hahn et al. (2024) do not find any polices having an infinite

MVPFs, so to the best of our knowledge this is the first environmental policy that could

pay for itself.

6 Conclusion

There is a large literature on the contributors to ambient air pollution and on the health

and welfare consequences of such pollution. This literature has been important in shap-

ing air pollution policy around the World. However, we have limited knowledge on in-

door air pollution (IAP), in terms of the levels, its predictors, but also what can causally

change it and whether such interventions/policies are welfare enhancing. Using a field

experiment in London, UK, we are able to demonstrate IAP levels, its predictors, and

what can causally change it. On levels, we find that for 38% of the time, IAP is above

World Health Organization standards. We find that there are many predictors of high

IAP, such as smoking, income, several households appliances and dwelling characteris-

tics. in our field experiment, we show that real-time feedback reduces IAP by 34% (5

µg/m3) during occupancy time where people are at home and exposed to this pollution.

Our data and results also point to a very important mechanism: ventilation. We find

numerous pieces of evidence that ventilation is important for regulating high levels of

IAP. We explore the mechanisms for our findings and show that people are using more
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natural ventilation as a result of the feedback (i.e., opening up doors and windows to the

outside world). Furthermore, we find that the treatment leads to change in beliefs about

exposure to IAP and that the willingness to pay for every 1 µg/m3 of PM2.5 is of £4.80.

Finally, we show that subsidies to adopt an IAP monitor or an indoor air purifier have

an infinite MVPF. This infinite MVPF means that subsidies for such technologies pay for

themselves.

While further research on this issue is urgently needed given the extremely limited

empirical evidence, our analysis already provides critical insights into both the scale and

sources of indoor air pollution, as well as the economic evaluation of potential policy

interventions to address this issue. These findings are particularly important for poli-

cymakers, as they highlight the urgent need to tackle this significant public health and

economic challenge and provide possible solutions.

In the context of policy, it is also important to highlight the role of ventilation in

mitigating indoor pollution. Policymakers should carefully evaluate proposed housing

policies aimed at improving energy efficiency, such as increased insulation and weath-

erization measures to reduce drafts. While these measures may help reduce energy use

and greenhouse gas emissions, they could inadvertently increase indoor air pollution ex-

posure by reducing ventilation. We strongly recommend that this potential trade-off be

empirically assessed and integrated into future housing and environmental policies. Ad-

ditionally, potential technological solutions that could minimize or even eliminate such

trade-offs should be explored to ensure a balanced approach that advances both climate

goals and public health priorities.
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Figure 1: Indoor PM2.5 minus Ambient PM2.5 per hour

Note: This figure displays the distribution of the difference between indoor and ambient air
pollution during the pre-treatment period.

Figure 2: The Relationship Between Indoor and Ambient Air Pollution

Note: This figure displays the relationship between indoor and ambient air pollution during
the pre-treatment period.
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Figure 3: Average Treatment Effects of The Treatment (IAP Monitor)

Note: This figure displays estimates of the coefficients of the average treatment effect by day
respective to treatment time bootstrapped 1000 times. Ambient pollution levels as well as
day and month fixed effects have been controlled for. 95% confidence intervals are presented
clustered at a household and date level. Occupancy time here refers to 16:00-23:00. Base PM2.5
refers to the post-treatment time control group average PM2.5 levels.

Figure 4: Average Treatment Effects by Hour of The Day

Note: This figure shows the coefficient on Treatment x Post, and uses our main specification,
separated by hour of the day. 95% confidence intervals are presented, clustered at the house-
hold and date level. The light blue ribbon shows the bootstrapped standard errors.

56



Figure 5: Average Treatment Effect by Day

Note: This figure displays estimates of the coefficients of the average treatment effect by day
respective to treatment time, controlling for ambient PM2.5 and day and month fixed effects.
95% confidence intervals are presented, clustered at the household and date level.

Figure 6: Average Treatment Effects by Day (occupancy hours only)

Note: This figure displays estimates of the coefficients of the average treatment effect by day
respective to treatment time from 4pm-11pm. 95% confidence intervals are presented.
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Figure 7: Average Treatment Effect by Week of the Experiment

Note: This figure displays the average treatment effect by week after treatment and time of day
bootstrapped 1000 times, controlling for ambient PM2.5 and day and month fixed effects. 95%
confidence intervals are presented, clustered at the household and date level.

Figure 8: Average Treatment Effect by Season

Note: This figure displays the average treatment effect by season and time of day bootstrapped
1000 times, controlling for ambient PM2.5 and day and month fixed effects. 95% confidence
intervals are presented, clustered at the household and date level.
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Figure 9: Average Treatment Effect by Air Quality Index (AQI) Bracket

Note: This figure displays estimates of the coefficients of Treatment x Post on AQI brackets.
This is a linear probability model, where each coefficient shows the probability that a house-
hold’s AQI level will be within a certain bracket. Day and month fixed effects are controlled for,
as well as ambient levels of PM2.5. The observations restricted to occupancy time (16:00-23:00)
to reflect times when the average person is at home and near the monitor. Standard errors boot-
strapped 1000 times and clustered two way at the household level and by date. 95% confidence
intervals are presented.
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Figure 10: Average Treatment Effect by Household Characteristics

Note: This figure displays estimates of the coefficients of the average treatment effect for each
characteristic in the occupancy period bootstrapped 1000 times, controlling for ambient PM2.5,
all the other household characteristics (below median income dummy, number of smokers,
asthma, children, number of residents, health conditions, if the house is owned by the resident
and education). Day of week and month fixed effects are also included, with standard errors
clustered at the household level and by date. 95% confidence intervals are presented.
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Figure 11: Marginal Value of Public Funds for an Air Pollution Monitor Subsidy

Note: This figure displays the MVPF waterfall chart for the lower bound estimate of the MVPF of the whole day average treatment effect for
the Kaiterra Monitor over a 20 year horizon. The health (V) and Income benefits (I) are depicted as a different shade of blue because there is
uncertainty as to whether consumers fully value these in the purchase of the air monitor. Even if individuals have perfect information on these
benefits (so zero H and I), the MVPF would remain being infinite.
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Figure 12: MVPF by the ATE and price elasticity of IAP monitor demand

Note: This figure displays how the MVPF varies with the ATE for the IAP monitor across the interquartile ranges
of elasiticies with the darkest shade referring to a PED of -0.22 and the lightest shade corresponding to a PED of
-1.31. This is specifically relating to the third row of Table 5, as described in the text and shown in Figure 11.
With our median elasticity of 0.75, we show that MVPF =∞ for ATE = -1.9 over a 20 year horizon. These results
are robust to a 10 year horizon too. This shows that an ATE as small as -0.14 can still have an infinite MVPF for
the IAP monitor.
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Table 1: Impact of treatment on indoor and outdoor temperature difference

Total Occupancy Non-Occupancy

Treatment x Post -0.714*** -0.570** -0.767***
(0.24) (0.24) (0.25)

Treatment 0.121 0.117 0.132
(0.29) (0.27) (0.30)

Post 0.765*** 0.580** 0.913***
(0.26) (0.28) (0.28)

Ambient PM2.5 0.050*** 0.026* 0.079***
(0.01) (0.01) (0.01)

Constant 7.587*** 6.299*** 8.023***
(0.31) (0.32) (0.32)

Observations 149,044 49,776 99,268
Note: This table displays estimates of the coefficients of binary variables treatment and post as well as an interaction
between the treatment and post on hourly levels of indoor PM2.5. Day and month fixed effects are controlled for, as
well as ambient levels of PM2.5. The observations that are restricted to occupancy time (16:00-23:00) are to reflect
times when the average person is at home. Standard errors clustered two way at the household level and by date are
reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Table 2: IAP peak analysis

Peak Height Peak Frequency

Treatment x Post -37.907* 1.179
(20.97) (1.24)

Treatment 2.196 -0.821
(17.97) (0.89)

Post 12.994 -0.568
(11.69) (0.88)

Ambient PM2.5 -0.256 -0.037
(0.39) (0.05)

Constant 154.646*** 6.531***
(10.59) (0.94)

Observations 10,697 377
Note: This table displays estimates of the coefficients of binary variables treatment and post as well as an interaction
between the treatment and post on hourly levels of indoor PM2.5. Day and month fixed effects are controlled for, as
well as ambient levels of PM2.5. Standard errors clustered two way at the household level and by date are reported in
parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. Peaks are defined as local
maximum levels of AQI levels being above 100 over at least a 5 hour period.
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Table 3: Belief Outcomes

Indoor Ambient

Air Quality Belief Confidence Air Quality Belief Confidence

Treatment 0.259** 0.302** 0.155 0.115
(0.10) (0.13) (0.12) (0.14)

Constant 0.051 0.026 -0.000 0.076
(0.07) (0.09) (0.08) (0.10)

Observations 234 233 234 233
Note: This table displays estimates of the coefficients of treatment on the difference in air quality beliefs in the baseline
and endline survey. Air quality belief represents a participants perception of indoor and outdoor air quality. Confi-
dence represents how certain a participant is about this level of air quality. Standard errors are reported in parentheses.
***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

Table 4: Robustness regressions

Occupancy Non-Occupancy 12am-11am 12pm-11pm

No Ambient First Waves All

Treatment x Post -4.495* -6.528** -4.964** -0.426 -0.133 -3.798*
(2.34) (2.84) (2.33) (1.06) (1.03) (1.96)

Treatment 1.007 0.439 1.261 -0.980 -1.292 0.852
(2.67) (2.52) (2.65) (1.35) (1.37) (2.18)

Post 1.215 4.871** 2.525* -0.129 -0.390 2.035
(1.55) (2.03) (1.51) (0.83) (0.85) (1.36)

Ambient PM2.5 0.560*** 0.549*** 0.519*** 0.547*** 0.554***
(0.07) (0.08) (0.03) (0.03) (0.07)

Constant 14.423*** 5.370*** 7.385*** 3.969*** 3.293*** 6.411***
(1.51) (1.38) (1.55) (0.97) (1.11) (1.28)

Observations 50,085 32,491 50,085 99,994 75,002 75,077
Note: This table displays estimates of the coefficients of binary variables treatment and post as well as an interaction
between the treatment and post on hourly levels of indoor PM2.5. Day and month fixed effects are controlled for, as
well as ambient levels of PM2.5. The first column doesn’t control for outdoor PM2.5, the second column only includes
the participants from the first 3 waves to match our pre-analysis plan. The third column is our normal specification
as shown in 1 and the fourth column does this for non-occupancy time. The last two columns focus on time periods
12pm-11pm and 12am-11am respectively. Standard errors clustered two way at the household level and by date are
reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table 5: MVPF estimates for a $1 subsidy for either an IAP monitor or purifer

Transfer Health Benefits (V) Income Change (I) Crime (C) Total WTP Subsidy Cost Govt. Health Cost Savings (H) Tax Revenue (T) Gov Crime Costs (P) Net Government Cost MVPF

IAP monitor: Whole Day ATE (-1.9)
Lower Bound 10 Year 1 0.75 24.63 0.27 26.65 1 0.05 7.52 0.08 -6.65 ∞

Upper Bound 10 Year 1 1.68 24.63 0.27 27.58 1 0.05 7.52 0.08 -6.65 ∞

Lower Bound 20 Year 1 0.75 44.83 0.50 47.08 1 0.18 13.69 0.15 -13.02 ∞

Upper Bound 20 Year 1 1.68 44.83 0.50 48.01 1 0.18 13.69 0.15 -13.02 ∞

IAP monitor: Occupancy Time ATE (-5.0)

Lower Bound 10 Year 1 1.96 64.81 0.72 68.49 1 0.14 64.81 0.21 -64.16 ∞

Upper Bound 10 Year 1 4.33 64.81 0.72 70.86 1 0.14 64.81 0.21 -64.16 ∞

Lower Bound 20 Year 1 1.96 117.97 1.31 122.24 1 0.46 36.04 0.38 -35.88 ∞

Upper Bound 20 Year 1 4.33 117.97 1.31 124.61 1 0.46 36.04 0.38 -35.88 ∞

IAP purifier: Whole Day ATE (-11.0)
Lower Bound 10 Year 1 6.56 220.75 2.46 230.77 1 0.47 67.44 0.72 -67.63 ∞

Upper Bound 10 Year 1 14.18 220.75 2.46 238.39 1 0.47 67.44 0.72 -67.63 ∞

Lower Bound 20 Year 1 6.56 401.85 4.48 413.89 1 1.57 122.76 1.31 -124.64 ∞

Upper Bound 20 Year 1 14.18 401.85 4.48 421.51 1 1.57 122.76 1.31 -124.64 ∞

IAP purifier: Occupancy Time ATE (-15.4)

Lower Bound 10 Year 1 9.07 309.05 3.44 322.56 1 0.65 94.41 1.01 -95.07 ∞

Upper Bound 10 Year 1 19.31 309.05 3.44 332.80 1 0.65 94.41 1.01 -95.07 ∞

Lower Bound 20 Year 1 9.07 562.58 6.27 578.92 1 2.20 171.86 1.83 -173.49 ∞

Upper Bound 20 Year 1 19.31 562.58 6.27 589.16 1 2.20 171.86 1.83 -173.49 ∞

Note: This table displays estimates of MVPFs from equation 2. All the numbers are inflation adjusted to 2023£. We consider the
10 and 20 year horizons for the government health cost savings for the NHS and for the change in income tax revenue due to labor
force participation. The upper and lower bound estimates are derived from the C-R mortality function, which tell us the WTP for a
reduction in mortality. The varying degrees of ATE’s is derived from the effectiveness we calculate of the Kaiterra Monitor through
our experiment and is assumed for the Philips Air Purifier.
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Preliminary Survey  
 
Thank you for participating in the Camden Household Air Monitoring Project (CHAMP), 
we're really excited to have you on board. Before we get started with the project, we just need 
a little more information from you, so please feel in as much as you can of this survey. It 
shouldn't take more than 10 minutes to complete.  
  
Dr Sefi Roth  
Department of Geography and Environment   
London School of Economics and Political Science  
geog.iaq@lse.ac.uk  
 
1. What is the research about?    

  
• This study will observe the scale of indoor air pollution in homes throughout 
Camden for a four-week period.  You will be given a small air pollution monitor for 
the main room in your home, and a 3G router to send the air pollution data from the 
device to our database.  
  
• You will also complete two short surveys. This first survey will determine your 
eligibility for the project, and the second will ask your experience with the monitors 
and the project. At the end of the project when you complete the second survey and 
give back the monitor, as a thank you, you will be rewarded with a £20 Amazon 
voucher.   
 
• We will also notify you of your indoor air pollution levels, how they compare to the 
average Camden resident in the study, and how to reduce the pollution levels.  
  

2. What will my information be used for?  
  

We will use the collected information to write scientific papers on the topic of indoor 
air pollution and to guide future research in the area. The records from this study will 
be kept confidential. Only the researchers conducting the project will have access to 
the information you have provided. Your data will be anonymised – your name will 
not be used in any reports or publications resulting from this study.  

  
3. What if I have a question or complaint?  
  

If you have any questions regarding this project, please contact the team on 
geog.iaq@lse.ac.uk. This study has undergone ethics review in accordance with the 
LSE Research Ethics Policy and Procedure. If you have any concerns or complaints 
regarding the conduct of this research, please contact the LSE Research Governance 
Manager via research.ethics@lse.ac.uk.  

  
You can withdraw from the study at any point.  
  
The air pollution monitors are the ownership of the London School of Economics, and 
we will be retrieving the monitors from all participants at the end of the four-week 
period.  
  
  
If you are happy to take part in this study, please tick the consent question below. 

Figure A1: Preliminary Survey Questions



  
Thank so much!  
  
Dr Sefi Roth  
Department of Geography and Environment 
London School of Economics and Political Science  
geog.iaq@lse.ac.uk  
  
Please tick the box: I have read and understood the study information and consent 
voluntarily to be a participant in this study. As part of this consent, I allow researchers 
at the London School of Economics to analyse the data for scientific purposes only.    

 
I have read and understood the study information and consent voluntarily to be a 
participant in this study. As part of this consent, I allow researchers at the London 
School of Economics and University of Southern California (US), to analyse the data 
for scientific purposes only. 
 

1. How many people usually live in your household? 
1 
2 
3 
4 
5 
6 
7+ 
Prefer not to say 
 
 

2. How old are the residents living in your household? (Resident 1) 
 

3. How old are the residents living in your household? (Resident 2) 
 

4. How old are the residents living in your household? (Resident 3) 
 

5. How old are the residents living in your household? (Resident 4) 
 

6. How old are the residents living in your household? (Resident 5) 
 

7. How old are the residents living in your household? (Resident 6) 
 

8. How old are the residents living in your household? (Residents 7 and above) 
 

9. Of the adults in your household, how many are… 
Female 
Male  
Other  

 

10. What is your highest level of education held? 
GCSE/O Levels or equivalent 
A-Levels or equivalent 



Undergraduate degree 
Postgraduate degree 
Other 
None 
 

11. What is your gross (pre-tax) household income level?  
£0-£15,000  
£15,001-£35,000 
£35,001-£50,000 
£50,001-£65,000 
£65,001-£80,000 
£80,001-£95,000 
Over £95,000 
 

12. What is your housing tenure?  
Owner-occupied 
Privately rented 
Socially rented 
Other 

 

13. Overall, how happy did you feel yesterday? 
0-10 not at all happy – extremely happy) 
 

14. Overall, how anxious did you feel yesterday? 
0-10 (not at all anxious – extremely anxious) 
 

15. In general, what is the quality of your health? 
Very good 
Good  
Fair  
Bad  
Very bad  
 

16. During the past 2 weeks, how much did pain interfere with your normal work 
including both work outside the home and housework? Did it interfere... 

Not at all  
A little bit 
Moderately 
Quite a bit 
Extremely  
 

17. How much of the time during the past 2 weeks have you felt calm and peaceful? 
All of the time 
Most of the time 
Some of the time 
A little of the time 
None of the time 
 

18. How much of the time during the past 2 weeks did you have a lot of energy? 
All of the time 



Most of the time 
Some of the time 
A little of the time 
None of the time 

 

19. During the past 2 weeks, how much of the time has your physical health or emotional 
problems interfered with your social activities like visiting friends or relatives? 

All of the time 
Most of the time 
Some of the time 
A little of the time 
None of the time 

 

20. During the past 2 weeks, how would you rate your sleep quality overall? 
Very good 
Fairly good 
Fairly bad 
Very bad 

 

21. Do you or any of the people in your household have any underlying health 
conditions? 

Yes 
No 
Unsure 
Prefer not to say 

 

22. What are therse conditions? 
 

23. How many smokers are there in your household? 
None 
1 
2 
3 
4 
5+ 

 

24. In total, how many rooms are in your home? 
 

25. Do you have an open plan kitchen (that is, where the kitchen and living room are not 
separated by a wall)? 

Yes 
No 

 

26. How many windows can be opened in your home? 
 

27. What is the primary appliance used for cooking in your home? (multiple answers 
allowed) 

Stovetop 
Oven  
Microwave 



Toaster 
Grill 
Other 
 

28. Do you have a hob in your kitchen? 
Yes  
No  
 

29. What kind of hob do you have? 
Induction 
Gas 
Electric 
Other 
Unsure 
 

30. Do you have an extractor hood in your kitchen? 
Yes  
No  
 

31. Do you have a fireplace in your home?  
Yes  
No  
 

32. What type of fireplace do you have?  
Open fireplace 
Wood burning stove 
Electric fireplace 
Gas fireplace 
Other 
 

33. Do you have any working air purifiers in your home? 
Yes 
No  
 

34. How many?  
 

35. On average, do you think the air quality in your home is: 
Good (no health risk) 
Moderate (acceptable but some health concern) 
Unhealthy for sensitive people (such as children, asthmatics, and those with 
breathing difficulties) 
Unhealthy for all people (harmful for all people) 
Very unhealthy (emergency levels for all people) 
Hazardous 
 

36. How confident are you about your answer to the question above? 
Very confident 
Somewhat confident 
Neither confident nor unconfident 
Somewhat unconfident 



Very unconfident 
 

37. On average, do you think the air quality outside your home is: 
Good (no health risk) 
Moderate (acceptable but some health concern) 
Unhealthy for sensitive people (such as children, asthmatics, and those with 
breathing difficulties) 
Unhealthy for all people (harmful for all people) 
Very unhealthy (emergency levels for all people) 
Hazardous 
 

38. How confident are you about your answer to the question above? 
Very confident 
Somewhat confident 
Neither confident nor unconfident 
Somewhat unconfident 
Very unconfident 
 

39. In comparison to the average Camden home, do you think the air quality in your home 
is: 

A lot better 
Somewhat better 
About the same 
Worse 
A lot worse 
Unsure 
 

40. In order to deliver your indoor air monitor, we need your contact details. Please 
provide below: 

Full name 
Full address 
Mobile number 
Preferred contact email  

 
 
 

All done! Thank you very much for completing this survey. We'll be in touch shortly with 
more information on the next steps. 

 



 

 
Date:  
 

Our reference: [ID] 
 

Your reference: [ID} 
 
 

OCCUPIER 
[Add1] 
[Add2] 
[Add3] 
[Add4] 
[PostCode] 

 
An invitation to participate in an indoor air pollution study 
 
Dear Camden Resident, 
 
You have been randomly selected to take part in an indoor air pollution research study taking 
place in Camden in a collaboration between the London School of Economics and Camden 
Council. The study will expand our scientific knowledge around indoor air pollution and help to 
improve your knowledge about the health and wellbeing effects of indoor air pollution. 
 

We are looking for Camden residents like yourself to take part in this exciting project. You will 
be given a small device to monitor the air pollution in your home over a four week period. 
Installing the monitor is very straightforward, and we will provide technical support if needed. 
The information collected in this study will only be used for research purposes by approved 
researchers at the London School of Economics.  Identifiable information will never be shared 
with any other party. 
 
At the end of the study, you will receive a personalised report of the pollution levels within your 
home and some information around what this means for your health and 
wellbeing. Involvement in this study will put you at the forefront of scientific knowledge 
production and will be valuable in driving policy changes addressing the pollution problem and 
supporting public health. As a thank you for your time, you will also receive a voucher payment 
of £20. 
If you are willing to participate in this study, please visit our website to register and to learn 
more. Scan the QR code below or visit the URL https://www.lse.ac.uk/geography-and-
environment/news/indoor-air-pollution-in-camden. You can also email geog.iaq@lse.ac.uk or 
call 07472 740612 if you have any questions. 
 
We look forward to hearing from you. 
 
Kind regards,  
 
The Camden Household Air Monitoring Project (CHAMP) team 
 

 

Air Quality 
London Borough of Camden 
5 Pancras Square 
LONDON 
N1C 4AG 

Phone: 020 7974  

camden.gov.uk 

email: AirQuality@camden.gov.uk 

Figure A2: Initial Recruitment Letter



HOW TO SET UP
YOUR MONITOR

Press and hold the power button at
the top of the monitor for three
seconds to turn it on. It wont look like
anything has changed, but it should be
working. 

IF YOU NEED ANY HELP OR HAVE ANY QUESTIONS PLEASE CALL 07472 740612 OR EMAIL GEOG.IAQ@LSE.AC.UK 

Set up your monitor in the room
where you spend the most amount of
time.
 
Open the WiFi router box. Insert the
black cable at the back of the router
and plug the cable into a socket. After
a few minutes, you should see the
second symbol at the front turn blue. 

Take the pollution monitor out of the
box. Insert the white cable into the
back of the monitor and plug it into a
nearby socket. 

Figure A3: Monitor Instructions



Harm lung
development in
children

Information sheet: The consequences of exposure to pollution
in your home, your monitor, and ways to improve your indoor air
quality. 

 
 

Worsen the symptoms
of existing health
conditions; such as
wheezing and asthma
attacks for asthmatics.

Increase the likelihood
of developing
cardiovascular 
disease, lung cancer
and diabetes. 

Increase the risk of
developing
respiratory health
conditions such as
asthma and COPD. 

Increase the risk
of high blood
pressure and
heart attacks. 

Be associated
with babies born
with a low birth
weight.

Contribute to
mental health
disorders and
conditions such as
dementia.

Cause
temporary
problems such
as eye irritation
or headaches

Frequent or
continuous air
pollution exposure
can...

AQI is a measurement
along a scale of 0 to 500
indicating how healthy or
unhealthy surrounding air
is.

It can consider a range of
different pollutants, but
this study is measuring
PM2.5 (very fine
particulates such as
vapours, metals and
dusts) to calculate AQI.  

0-50

51-100

101-150

151-200

201-300

301-500

Good
little or no risk

Moderate
acceptable, but
moderate concern for
those unusually sensitive
to pollution  

Unhealthy for sensitive
groups
such as children,
asthmatics, and those
suffering from lung disease 

Unhealthy
potential health effects
for all exposed 

Very unhealthy
emergency conditions
for the whole population 

Hazardous 
health alert; potentially
serious health effects for
everyone 

Your pollution monitor tells you your Air Quality Index (AQI)... but what does
that mean?

Interested in learning more about air pollution and its impacts? scan the QR code or
follow this link for more information from Public Health England  

https://www.gov.uk/government/publications/health-matters-air-pollution/health-
matters-air-pollution.  

Avoid burning
candles or
incense. 

Consider using an
air purifier if air
pollution levels in
your home are at
dangerous levels. 

Wait for paint or
cleaning smells
to subside
before using the
room again.

Ventilate rooms when
cleaning or decorating.

Cover pots and
pans when
cooking

Ventilate your
kitchen when
cooking using
an extractor fan
and opening
windows. 
This is especially
important when using gas
stoves and deep-frying. 

Avoid opening
windows during
rush hour traffic
if your home is
close to a busy
road.

Avoid Smoking
inside and close
to your home. 

These simple steps can help you
reduce indoor air pollution in
your home to keep yourself and
your family healthy.

What can you do to
improve air quality
in your home?

Interested in learning more about how to improve air quality in your home? scan
the QR code or follow this link for more information:
https://tinyurl.com/yfhas5x4

Figure A4: Information Sheet



Figure A5: Monitor Picture

Note: This figure displays a picture of the Kaiterra Laser Egg Air Pollution Monitor.
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Figure A6: Average PM2.5 by Hour of the Day

Note: This figure displays average indoor and ambient PM2.5 by hour of the day during the
pre-treatment period.

Figure A7: Histogram of Indoor PM2.5 Whole Day

Note: This figure displays the distibution of the difference between IAP and AAP. Indoor PM2.5
is higher than ambient PM2.5 16% of the time.
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Figure A8: Histogram of Indoor PM2.5 Occupancy Time

Note: These figure displays the distribution of the difference between IAP and AAP. Indoor
PM2.5 is higher than ambient PM2.5 22% of the occupancy time.

Figure A9: Occupancy Time Indoor PM2.5 minus Ambient PM2.5

Note: These figure displays the distribution of indoor PM2.5 from 4pm-11pm.

78



Figure A10: Scatter Plots of Ambient and Indoor PM2.5 by Distance to Air Pollution
Monitor

(a) Below Median Distance (1.79km) (b) Above Median Distance (1.79km)

Note: These figures display scatter plots of ambient and indoor PM2.5. The first figure shows this relation-
ship for households which live within 1.79km of their nearest air pollution monitor, and the second figure
shows this for households who live further away.
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Figure A11: How Ambient PM2.5 Affects Indoor PM2.5 Over Time

Note: This figure displays estimates of the coefficients of the effect of Ambient PM2.5 at dif-
ferent times on indoor PM2.5, controlling for outside temperature, dew point temperature,
wet-bulb temperature, hour, day, month and household fixed effects. Standard errors clustered
at the household level and by date. 95% confidence intervals are presented.

Figure A12: How Ambient PM2.5 Affects Indoor PM2.5 Over Time Pre-Treatment

Note: This figure displays estimates of the coefficients of the effect of Ambient PM2.5 at dif-
ferent times on indoor PM2.5 for the first two weeks of the experiment, controlling for outside
temperature, dew point temperature, wet-bulb temperature, hour, day, month and household
fixed effects. Standard errors clustered at the household level and by date. 95% confidence
intervals are presented.
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Figure A13: Post-Treatment Time Analysis

(a) Post-Treatment Time: Treatment (b) Post-Treatment Time: Control

Note: These figures display the penetration rate of ambient PM2.5 to indoor PM2.5 categorized by treat-
ment and control.

Figure A14: Seasonal Analysis of PM2.5 Penetration Rates

(a) Summer (b) Winter

Note: These figures display the penetration rate of ambient PM2.5 to indoor PM2.5 categorized by different
seasons.
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Figure A15: Average PM2.5 by Income

Note: This figure displays average indoor and ambient PM2.5 by income category.

Figure A16: Changes Implemented by Treatment Group

Note: This figure displays any changes implemented by the treatment group. This is analysed
by the endline survey.
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Figure A17: Mean PM2.5 vs Belief

Note: This figure displays lines of best fit between the mean of PM2.5 for each household in the
pre-treatment period and how the household answered in the survey about their PM2.5. The
higher this belief is, the worse they believe their atmosphere is for their health. The options
ranged from 1-5, with 5 being the worst. Here, we have split the graph into two sections:
the first half shows households who had lower average pollution levels pre-treatment and the
second half shows households who had higher average pollution levels pre-treatment. We can
see from this graph that people who had better pollution in their environment actually believed
it was worse.

83



Figure A18: Main Results with Household Fixed Effects

Note: This figure displays estimates of the coefficients of the average treatment effect by day
respective to treatment time bootstrapped 1000 times with household fixed effects. Ambient
pollution levels as well as day and month fixed effects have been controlled for. 95% confidence
intervals are presented clustered at a household and date level. Occupancy time here refers to
16:00-23:00. Base PM2.5 refers to the post-treatment time control group average PM2.5 levels.
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Figure A19: WTP

Note: This figure displays the WTP demand curves. The quantity demanded signifies the num-
ber of households who answered how much they were willing to pay. There were 237 house-
holds who answered this question, with answers ranging between £0-100.

Figure A20: Histograms of Households by Monitor Type

(a) WTP Kaiterra (b) WTP Philips

Note: This figure displays the WTP demand curves for the Kaiterra Air Pollution Monitor and the Philips
Air Purifier.

B Tables

85



Table A1: External Validity

Characteristic Camden England Our Sample

Single Household 34% 30% 24%
Socially Rented 34% 17% 13%
Homeowners 30% 63% 51%
Gas Heated 66% 73% 81%
Electric Heated 13% 8% 10%
Percent Below Median Income 45% 50% 24%
NVQ Level 4 or Above 72% 43% 86%

Note: This table displays the Camden and England averages of various household charac-
teristics relative to the sample studied.

Table A2: Balance Test by Treatment

Control Treatment Comparison

Mean N Mean N Difference Standard Error P-Value

Female 1.24 106 1.33 107 -0.09 (0.10) 0.36
Male 1.31 105 1.28 95 0.03 (0.10) 0.76
Number of Rooms 4.63 120 4.92 118 -0.28 (0.32) 0.37
Number of Windows 7.21 117 7.06 112 0.14 (0.53) 0.79
Number of Smokers 0.12 120 0.11 119 0.02 (0.05) 0.74
Open Plan Kitchen 0.53 120 0.48 119 0.05 (0.06) 0.48
College Educated 0.88 121 0.85 121 0.02 (0.04) 0.58

Note: This table shows the difference between the demographics between the treatment and control groups. Standard
errors are reported in parentheses.

Table A3: Summary Statistics

All Pre-Treatment

All Occupancy Non-Occupancy All Occupancy Non-Occupancy

Indoor PM2.5 10.539 14.281 8.664 10.815 14.649 8.899
(36.60) (45.92) (30.72) (34.92) (46.26) (27.36)

Indoor AQI 28.328 35.409 24.781 29.787 36.602 26.382
(47.01) (55.72) (41.53) (46.74) (56.28) (40.72)

Indoor Temperature 21.280 21.672 21.084 21.702 22.113 21.497
(3.67) (3.70) (3.64) (3.77) (3.82) (3.74)

Outdoor PM2.5 10.774 11.578 10.371 11.661 12.188 11.398
(7.17) (6.68) (7.36) (7.95) (6.95) (8.39)

Outdoor Temperature 12.992 15.115 11.928 13.825 16.054 12.709
(6.11) (6.56) (5.58) (6.20) (6.66) (5.63)

Note: This table displays the descriptive statistics from both the overall and pre-treatment periods. Standard deviations
are reported in parentheses.
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Table A4: Household Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Below Median Income 10.410** 9.894*
(4.59) (5.64)

College Educated -0.983 5.382
(3.47) (4.95)

Owner Occupied -5.884** -3.692
(2.55) (2.91)

Single Household 0.000 -3.078
(2.81) (4.33)

Children Dummy -2.301 -0.918
(2.59) (3.14)

Asthma Dummy 5.541 6.938
(5.81) (5.06)

Health Condition 0.857 -0.316
(1.55) (2.07)

Number of Residents -0.885 -0.483
(0.96) (1.57)

Number of Smokers 19.894*** 17.885***
(6.92) (6.78)

Observations 22,701 22,701 24,093 24,093 24,093 22,701 24,093 22,591 22,488 22,378

Note: This table displays estimates of the coefficients of binary variables treatment and post as well as an interaction
between the treatment and post on hourly levels of indoor PM2.5. Day and month fixed effects and ambient PM2.5
levels are controlled for. The observations are restricted to occupancy time (16:00-23:00) to reflect times when the
average person is at home. Standard errors clustered two way at the household level and by date are reported in
parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

87



Table A5: Dwelling Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Fireplace -3.682** -2.238
(1.83) (2.72)

Purifiers 0.502 1.311
(3.38) (3.35)

Gas Hob -3.560 13.291***
(2.67) (4.49)

Electric Hob 8.920** 19.238***
(4.16) (6.01)

Induction Hob -4.167 9.811*
(2.78) (5.60)

Indoor Temperature 0.358 0.550*
(0.34) (0.31)

Number of Windows -0.781** -0.780***
(0.31) (0.29)

Open Plan Kitchen 0.639 3.158
(2.77) (2.72)

Stovetop -3.768 0.801
(4.80) (4.43)

Oven 1.320 0.576
(2.85) (3.07)

Microwave 2.216 1.511
(2.85) (3.09)

Toaster 0.769 1.557
(2.97) (3.29)

Observations 24,093 22,376 20,913 20,913 20,913 24,093 21,506 22,488 22,701 22,701 22,701 22,701 20,041

Note: This table displays estimates of the coefficients of binary variables treatment and post as well as an interaction
between the treatment and post on hourly levels of indoor PM2.5. Day and month fixed effects and ambient PM2.5
levels are controlled for. The observations are restricted to occupancy time (16:00-23:00) to reflect times when the
average person is at home. Standard errors clustered two way at the household level and by date are reported in
parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table A6: Main Results

Total Indoor PM2.5 Occupancy Indoor PM2.5 Non-Occupancy Indoor PM2.5

Panel A: Bootstrapped Estimates

Treatment x Post -1.903*** -4.964*** -0.426
(0.39) (0.87) (0.39)

Treatment -0.233 1.261** -0.980***
(0.27) (0.62) (0.24)

Post 0.827*** 2.525*** -0.129
(0.31) (0.64) (0.30)

Ambient PM2.5 0.557*** 0.549*** 0.519***
(0.02) (0.04) (0.01)

Constant -0.885* -1.460 -0.060
(0.53) (1.23) (0.52)

Panel B: Non-Bootstrapped Estimates

Treatment x Post -1.903 -4.964** -0.426
(1.34) (2.33) (1.06)

Treatment -0.233 1.261 -0.980
(1.67) (2.65) (1.35)

Post 0.827 2.525* -0.129
(0.95) (1.51) (0.83)

Ambient PM2.5 0.557*** 0.549*** 0.519***
(0.04) (0.08) (0.03)

Constant 4.772*** 7.385*** 3.969***
(1.03) (1.55) (0.97)

Base PM2.5 10.95 15.36 8.80
Observations 150,079 50,085 99,994

Note: This table displays estimates of the coefficients of binary variables treatment and post as well as an interaction
between the treatment and post on hourly levels of indoor PM2.5. Day and month fixed effects are controlled for, as
well as ambient levels of PM2.5. The observations that are restricted to occupancy time (16:00-23:00) are to reflect
times when the average person is at home. Base presents the mean level of PM2.5 in the control group in the post-
treatment period. Standard errors clustered two way at the household level and by date are reported in parentheses.
***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

89



Table A7: AQI Brackets

0-50 51-100 101-150 151-200 201-300 301-500

Panel A: Bootstrapped Estimates

Treatment x Post -0.000 0.029*** -0.007** -0.013*** -0.004*** -0.005***
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

Treatment 0.019*** -0.014*** -0.009*** 0.006** -0.001 -0.001
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Post 0.006 -0.023*** 0.002 0.010*** 0.003** 0.002*
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Ambient PM2.5 -0.015*** 0.012*** 0.001*** 0.001*** 0.000* 0.000***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Constant 1.129*** -0.125*** 0.002 -0.006 0.000 -0.000
(0.02) (0.01) (0.01) (0.01) (0.00) (0.00)

Panel B: Non-Bootstrapped Estimates

Treatment x Post -0.000 0.029** -0.007 -0.013** -0.004 -0.005
(0.02) (0.01) (0.00) (0.01) (0.00) (0.00)

Treatment 0.019 -0.014 -0.009 0.006 -0.001 -0.001
(0.03) (0.01) (0.01) (0.01) (0.00) (0.00)

Post 0.006 -0.023** 0.002 0.010** 0.003* 0.002
(0.02) (0.01) (0.00) (0.00) (0.00) (0.00)

Ambient PM2.5 -0.015*** 0.012*** 0.001*** 0.001*** 0.000** 0.000**
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Constant 0.951*** -0.006 0.023** 0.018*** 0.007*** 0.007***
(0.02) (0.01) (0.01) (0.01) (0.00) (0.00)
(1.03) (1.55) (0.97)

Observations 50,085 50,085 50,085 50,085 50,085 50,085

Note: This table displays estimates of the coefficients of binary variables treatment and post as well as an interaction
between the treatment and post on hourly levels of AQI. This is a linear probability model, where each coefficient
shows the probability that a household’s AQI level will be within a certain bracket. Day and month fixed effects are
controlled for, as well as ambient levels of PM2.5. The observations that restricted to occupancy time (16:00-23:00) to
reflect times when the average person is at home. Standard errors clustered two way at the household level and by date
are reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table A8: Below vs Above Median Base PM2.5

Above Below

Whole Day PM.5 Occupancy PM2.5 Whole Day PM.5 Occupancy PM2.5

Treatment x Post -4.342*** -10.567*** 0.819*** 0.816***
(0.75) (1.57) (0.16) (0.31)

Treatment -0.302 3.185*** -0.050 -0.277
(0.50) (1.16) (0.09) (0.20)

Post 1.687*** 4.813*** -0.029 0.334
(0.57) (1.18) (0.14) (0.26)

Ambient PM2.5 0.629*** 0.641*** 0.425*** 0.384***
(0.02) (0.06) (0.01) (0.01)

Constant 2.287*** 0.099 -1.753*** -0.526
(0.74) (1.52) (0.53) (1.16)

Observations 77,644 25,933 72,435 24,152
Note: This table displays estimates of the coefficients of binary variables treatment and post as well as an interaction
between the treatment and post on hourly levels of indoor PM2.5. Day and month fixed effects are controlled for, as
well as ambient levels of PM2.5. The observations that are restricted to occupancy time (16:00-23:00) are to reflect
times when the average person is at home. Standard errors bootstrapped 1000 times and clustered two way at the
household level and by date are reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels, respectively.

Table A9: Belief Outcomes Above vs Below

Above Median Base PM2.5 Below Median Base PM2.5

Indoor Outdoor Indoor Outdoor

Belief Confidence Belief Confidence Belief Confidence Belief Confidence

Treatment 0.040 0.207 0.081 -0.154 0.494*** 0.409** 0.242 0.411**
(0.14) (0.18) (0.18) (0.20) (0.14) (0.19) (0.15) (0.19)

Constant 0.169 0.034 -0.017 0.186 -0.068 0.017 0.017 -0.034
(0.10) (0.13) (0.13) (0.14) (0.10) (0.13) (0.10) (0.13)

Observations 121 120 121 121 113 113 113 112

Note: This table displays estimates of the coefficients of treatment on the difference in air quality beliefs in the baseline
and endline survey. Air quality belief represents a participants perception of indoor and outdoor air quality. Confi-
dence represents how certain a participant is about this level of air quality. Standard errors are reported in parentheses.
***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table A10: Household Fixed Effects

Total Indoor PM2.5 Occupancy Indoor PM2.5 Non-Occupancy Indoor PM2.5

Treatment x Post -1.432*** -3.450*** -0.505
(0.37) (0.81) (0.38)

Post 1.016*** 2.844*** -0.023
(0.30) (0.65) (0.29)

Ambient PM2.5 0.587*** 0.612*** 0.537***
(0.02) (0.04) (0.01)

Constant -2.031*** -2.128 -1.844**
(0.72) (1.49) (0.78)

Observations 150,079 50,085 99,994
Note: This table displays bootstrapped estimates of the coefficients of binary variable post as well as an interaction
between the treatment and post on hourly levels of indoor PM2.5. The treatment variable is not included due to the
inclusion of household fixed effects. Day, month and household fixed effects are controlled for, as well as ambient levels
of PM2.5. The observations that are restricted to occupancy time (16:00-23:00) are to reflect times when the average
person is at home. Standard errors (bootstrapped 1000 times) clustered two way at the household level and by date are
reported in parentheses. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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