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Abstract

Understanding the distribution of carbon footprints across population groups is crucial for designing
fair and acceptable climate policies. Using granular consumption data from France, we quantify the
gender gap in carbon footprints related to food and transport and investigate its underlying drivers.
We show that women emit 26% less carbon than men in these two sectors, which together account
for half of the average individual carbon footprint. Socioeconomic factors, biological differences and
gender differences in distances traveled explain part of the gap, but up to 38% remains unexplained.
Red meat and car — high-emission goods often associated with male identity — account for most of
the residual, highlighting the role of gender differences in preferences in shaping disparities in carbon
footprints.
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1 Introduction

Mitigating climate change requires significant changes in consumption patterns (Creutzig et al., 2022),
particularly in high-emission sectors such as food and transportation (Intergovernmental Panel on Climate
Change (IPCC), 2023). Understanding the distribution of carbon footprints across population groups is
essential for identifying key drivers of consumption inequality and for designing equitable environmental
policies.1 While income disparities have been extensively studied in this context, gender remains an
underexplored factor despite its well-documented influence on consumption and travel choices.

In this paper, we quantify the gender gap in carbon footprints for food and transport and study
its drivers. We use granular and representative consumption data from France matched with detailed
environmental information. Food and transport are particularly relevant for at least three reasons. First,
taken together, these two sectors account for 50% of household carbon footprints.2 Second, they offer
a wide range of choices with significant variation in carbon intensity — for instance, between transport
modes and food products (Poore and Nemecek, 2018; Leroutier and Quirion, 2022). Third, granular
environmental impact data exist for both sectors, allowing us to study differences in carbon footprints at
an unprecedented fine-grained level: our final dataset includes emission intensity measures varying across
more than 2,000 food products and car models.

By using rich individual level data, we are able to assess the importance of different mechanisms
that could drive the gap, such as gender differences in employment status, calorie intake, type of food
consumed, and to investigate the role of household structure. In doing so, we address the main limitations
of the few existing studies that have looked at whether carbon footprints differ by gender. Understanding
the mechanisms underlying the gap is key to think about the distributional effects of climate policies.

We begin by quantifying the unconditional gender gap in carbon footprints after having matched
survey data recording the food consumption of 2,100 individuals and the transport patterns of 12,500
other individuals to environmental impact data. We find that women’s carbon footprints from food
and transport consumption are 26% lower than men’s on average, with gaps of similar magnitudes in
both sectors. As a point of comparison, this gap is of the same magnitude as the difference in food
and transport footprints for individuals with below-median household income compared to those with
above-median household income.

We then examine the drivers of this gap. First, we find that the gap is only partly driven by gender
1Throughout the paper, carbon footprint is defined as the total greenhouse gas emissions caused directly or indirectly by

individual consumption. It covers the GHG emissions associated with the consumption of a product throughout its life cycle.
For instance, the carbon footprint of food includes emissions from land use (e.g. deforestation) through to the product’s
distribution. The unit of carbon footprint is in kilogram or ton of CO2 equivalent emissions, abbreviated tCO2e.

2Sources: for France, cf. Sustainable Development Commission, French Government. Available
at: https://www.notre-environnement.gouv.fr/donnees-et-ressources/ressources/publications/article/
la-decomposition-de-l-empreinte-carbone-de-la-demande-finale-de-la-france-par, for the US: Song et al.,
2019.
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differences in socioeconomic characteristics such as education, age, employment status, and household
income. After controlling for these factors, the gap decreases to 18%. Second, the gap is not solely the
result of a scale effect, whereby men simply eat more (including due to biological differences) and travel
longer distances (e.g, due to longer commutes). An Oaxaca-Blinder decomposition reveals that 25% of
the food footprint gap and 38% of the transport footprint gap remain unexplained after accounting for
socioeconomic differences and differences in calories and distances traveled. Third, we highlight that the
residual gender gap is almost entirely explained by the consumption of two goods that are both carbon-
intensive and gender stereotypical: red meat and car. These two goods contribute disproportionately to
the gap. That is, their contributions to the residual difference in food and transport carbon footprints
between men and women — 70% for red meat and 100% for cars — are significantly higher than their
shares in the average individual food and transport carbon footprint — 13% for red meat and 84% for
cars.3

Finally, we compare individuals living in couples to those living alone. We find that the gender gap
in transportation is only observed among couples, suggesting a pattern of specialization. The gender
gap is particularly pronounced among couples with children. In contrast, the gender gap in food carbon
footprints is smaller within dual-adult households relative to single, suggesting convergence: shared meals
and joint decision-making may limit the expression of gendered dietary preferences. We highlight the
crucial role of household arrangements and intra-household dynamics in shaping the gendered distribution
of carbon footprints.

Although our analysis only considers food and transport, back-of-the-envelope calculations suggest
that the gender gap in carbon footprints would not disappear if we considered the entire consumption
basket instead. Given limited evidence of a significant gender gap in housing emissions, which makes up
another 23% of households’ emissions, emissions from other goods and services would need to be at least
80% lower for men to fully cancel out the gender gap in food and transport emissions.4

Overall, our results shed light on how men and women could be differently impacted by climate
policy and on these policies’ distributional impacts, particularly in terms of horizontal equity.5 That
women may face a lower mitigation cost could also explain why men are found to be less concerned
about climate change than women in high-income countries, including conditional on political ideology:
if reducing emissions is more costly for men than for women in these countries, loss aversion and motivated
reasoning may make them less concerned with the reality of climate change, in line with the theory set out

3While our data does not allow us to separate the influence of gender identity from other factors like environmental
concerns, which could also affect demand for red meat and cars, the lack of a gender gap in plane emissions—another high-
pollution good less closely associated with male identity—suggests that environmental concerns alone do not fully explain
the gender differences.

4For example, we may expect clothing to be gender-biased in the opposite direction, but it only makes
up 3.5% of household footprints: 270 kilos CO2e.person in Europe for clothing out of 8 tons CO2e.person for
total yearly consumption. Sources: European Environment Agency https://www.eea.europa.eu/publications/
textiles-and-the-environment-the/textiles-and-the-environment-the.

5Higher initial carbon footprints do not necessarily imply a higher mitigation cost as measured, for example, by a higher
carbon tax incidence; this will, of course, depend on whether mitigation costs differ across genders.
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in Bush and Clayton (2023). Moreover, our results have implications for the political economy of climate
policy-making, as citizens who are more affected by environmental policy costs and less concerned with
climate change are less likely to support mitigation measures. Finally, policies affecting societal norms
around gendered consumption patterns, such as associating eating meat with being masculine, could also
influence carbon footprints.

Our paper contributes to several strands of the literature. First, we add to the literature quantifying
the gender gap in carbon footprints (Osorio et al., 2024; Rippin et al., 2021; Carlsson Kanyama et al.,
2021; Masset et al., 2014). To the best of our knowledge, we are the first to investigate the mechanisms
underlying the gap. Moreover, most of these studies rely on samples of single individuals from household
budget surveys. We show that such estimates may be biased, given the large differences in carbon
footprints we observe across different household arrangements. An exception is Osorio et al. (2024),
which examines the relationship between the share of females in a household and carbon footprints in
Spain, although it does not explore the mechanisms driving this association.

Second, our study adds to the literature on gender differences in economic outcomes such as con-
sumption and earnings. One strand of this literature hasinvestigated the magnitude and determinants of
the gender wage gap (Mincer and Polachek, 1974). We apply some of the methods used in that litera-
ture, such as the Oaxaca-Blinder decomposition (Blinder, 1973; Oaxaca, 1973), to examine what part of
the gender gap in carbon footprints remains unexplained after accounting for socioeconomic differences.
Another strand of the social science literature documents gender differences in food consumption (e.g.
Rothgerber, 2013; Love and Sulikowski, 2018; Rosenfeld, 2020) and transport behavior (e.g. Scheiner
and Holz-Rau, 2012; Motte-Baumvol et al., 2017). These studies propose several explanations for such
differences, including men’s greater economic and bargaining power due to higher employment levels
and earnings, gender specialization in paid versus domestic work and associated trade-offs (Le Barban-
chon et al., 2021), and prevailing masculinity norms (Willer et al., 2013; Rothgerber, 2013; Love and
Sulikowski, 2018). We add to this literature by quantifying the environmental consequences of these
gendered consumption patterns and analyzing their determinants.

Third, we sontribute to the literature examining heterogeneity in carbon footprints along various
dimensions, such as income or location. Most of this literature is based on household budget surveys
(see, for example, Ivanova and Wood, 2020; Sager, 2019; Cronin et al., 2019; Lyubich, 2025), where most
households include both genders, so the gender dimension is typically not investigated. We show that
gender is a significant source of heterogeneity in carbon footprints using different data sources. Finally,
our study is connected to the literature on the political economy of environmental policies. While this
literature has established that women in high-income countries tend to be more concerned about climate
change than men (McCright, 2010; Bush and Clayton, 2023), and that the perceived individual cost of
climate mitigation is a key driver of environmental policy acceptance (Dechezleprêtre et al., 2025), there
is comparatively little evidence on how men and women might face different mitigation costs. While our
study does not directly answer this question, understanding gender differences in contributions to carbon
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footprints is a first step in understanding gender differences in climate policy costs.

The remainder of this paper is structured as follows. Section 2 describes the data and methodology.
Section 3 presents the results. Section 4 discusses the implication of our findings.

2 Data and methods

Our analysis relies on two distinct surveys, one on food and the other on transport. They each record
consumption quantities on food (respectively transport) for a representative sample of the French popu-
lation. The method for estimating carbon footprints is similar across surveys and consists in multiplying
quantities consumed by emission intensity at the product (respectively transport mode or car model)
level. We expect our estimation of carbon footprints based on quantity information to be more reliable
than those of studies relying on expenditure data. By focusing on quantities, we avoid conflating con-
sumption volume with price effects (André et al., 2024). Our emission intensity measures reflect the
life-cycle greenhouse gas emissions embedded in each final product consumed.

We use the food and transport surveys separately, as they are based on different samples. We sum
the gender gaps identified in each sector after harmonizing the data, as explained below. Combining
these unlinked datasets implicitly assumes that food and transport carbon footprints are uncorrelated at
the individual level. In practice, the correlation between these two domains is unknown, as they reflect
distinct consumption behaviors. If, in reality, they are positively correlated — for example, if individuals
who consume more meat also tend to drive more — our combined estimates are likely to be conservative.

2.1 Food Carbon Footprints

We use data from the INCA3 survey.6 It was conducted in 2014-2015 and includes individual food
consumption patterns for a representative sample of the French adult population (N=2,121).7 For each
individual we have detailed information on quantities consumed on three representative days for around
2,800 food products, based on a diary (including both food consumed at home and out of home).

This data is matched with food product-level emission intensities from the 2017 (3.0) version of
the Agribalyse database produced by the French Energy Agency (ADEME).8 This dataset includes the
environmental impact of 2,480 distinct products consumed in France, spanning raw ingredients to ultra-
processed foods. The computation of environmental impacts is based on the Life Cycle Analysis (LCA)
methodology and includes impacts from production to consumption: the carbon footprint estimation of

6This survey is produced by the French National Health Safety Agency (ANSES).
7The survey includes 3,157 adults, but only 2,121 of them have accepted a face-to-face interview and documented their

detailed food consumption for at least two days (out of three).
8The data is available at https://doc.agribalyse.fr/documentation/utiliser-agribalyse/acces-donnees.

4

https://doc.agribalyse.fr/documentation/utiliser-agribalyse/acces-donnees


each product takes into account GHG emissions embodied in farming practices, the transport of raw
inputs, their transformation and the supply chain.

To match the food consumption data from the INCA3 dataset with environmental data from the
Agribalyse dataset, we employed a mixed method involving string matching, Natural Language Process-
ing (NLP), and manual corrections. We first identified perfect matches using string matching and then
minimize errors for the most consumed and highest-emission products through manual verification. Sys-
tematic matching was performed using a key-terms approach alongside NLP, with a preference for key
terms.9 Ultimately, we successfully matched all the products, with additional hand-checks performed
on 14% of them. The full procedure is detailed in Appendix A. Figure B.1 shows the distribution of
emission intensities across individual food products. Each bar represents a unique value of greenhouse
gas emissions (in kgCO2e per kilogram of food), sorted in ascending order. Bars are colored by food
category, revealing distinct clusters and emphasizing the granularity of the underlying data. This figure
illustrates the full spread and variation within the dataset, highlighting that while some categories have
tightly grouped values (e.g., fruits and vegetables), others, like meats, span a broader range.

Figure B.2 complements this view by summarizing the average volume weighted emission intensity by
food category. Consistent with previous research (Poore and Nemecek, 2018; Clark et al., 2022), animal
meats have the highest emission intensities. Red meat, defined as ruminant meat (except for veal), is the
highest emitting product, emitting around three times more than the next category, other meat (defined
as cold cuts, mix of meats).

2.2 Transport

We use data from the 2019 wave of the French National Transport Survey (EMP), which documents the
travel patterns of 13,825 individuals (including 12,569 adults) representative of the French population.
Individuals report all the short-distance trips made on a representative day — accounting for their daily
mobility —, and all the long-distance trips above 80km made over the past six weeks — accounting for
long-distance mobility, including both leisure and business trips.

Trip-level GHG emissions have been estimated by the government department in charge of the data
collection, based on information on distances traveled, transport modes, occupancy rate, and the per
kilometer emission intensity of each mode in France taken from official sources. For individual vehicles
owned by the household — cars, light-duty vehicles and two-wheelers —, the exact emission intensity of
the vehicle is retrieved from the exhaustive vehicle registration data via a match at the vehicle license
plate level.

Adjustments are made to add upstream emissions from manufacturing, reflect real-world direct emis-
9The BERT-based model (CamemBERT) is not specifically trained on food-related vocabulary, which causes all the food

products to appear relatively close to each other in the vector space transformation.
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sions, and obtain per capita emissions for private modes with several passengers. Compared to the existing
literature, this gives much greater precision in trip-level and individual-level emissions. The method is
detailed in Appendix A.

Figure B.3 shows the distribution of CO2 emission intensities across individual car configurations,
expressed in grams of CO2 equivalent per kilometer. Each bar represents a unique value within the
total distribution, sorted from lowest to highest. Bars are colored according to the energy type of the
vehicle—electric, hybrid, gasoline, diesel, or other—highlighting clusters of low-emission (electric and
hybrid) and high-emission (internal combustion) vehicles. This figure emphasizes the granularity of the
data and the wide variation in car emission intensity, from less than 100 gCO2 equivalent per kilometer
for hybrid cars against 300 gCO2 equivalent per kilometer for the highest emitting gasoline cars.

Figure B.4 presents the emission intensity (in gram of CO2 equivalent (gCO2e per km per passenger)
for various transport modes, distinguishing between short-distance and long-distance travel. For short-
distance transport, cars dominate the distribution, emitting 168 gCO2e per km.passenger, 45% more than
the next highest-emitting mode, two-wheeler.10 Air travel has the highest emissions for long-distance
travel, at 174 gCO2e per km.passenger, making it the most carbon-intensive travel mode. The fact that
car and plane have a similar emission intensity before accounting for cars’ occupancy rate is consistent
with studies from other countries, e.g., Klein and Taconet (2024) on Germany.

This breakdown highlights how private vehicles and air travel contribute disproportionately to emis-
sions compared to public and active modes of transport.

2.3 Harmonizing the data

We harmonize individual-level food carbon footprints, carbon footprints from short-distance travel and
from long-distance travel to reflect annual carbon footprints per capita for the same population groups.11

Table B.1 presents the main sociodemographic characteristics, comparing the food and transport surveys.
In terms of gender distribution, 58% of the food survey participants and 55% of the transport survey
participants are female.12 Average household size and work status are similar across samples. The
transport survey has slightly older and less educated individuals than the food survey. In section 3.1, we
apply survey weights to calculate average carbon footprints by gender to obtain results representative at
the national level.

10The lower per passenger emission intensity for long-distance trips by car is due to the higher occupancy rate for long
vs short-distance car trips.

11In particular, we drop individuals aged 80 and more in the transport data since the food survey only interviews
individuals below 79. We convert the food and short-distance travel daily carbon footprints to annual carbon footprints by
multiplying by 365. Finally, we convert the long-distance travel carbon footprints expressed as 6-week-long carbon footprints
to annual carbon footprints by multiplying by 8.67 (52/6=8.67).

12In the survey, the question about sex, not gender; in the absence of data on gender, we assign to each survey respondent
the gender corresponding to the sex variable.
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Reassuringly, the average individual carbon footprints that we obtain for each category is consistent
with per capita carbon footprints estimated with a top-down approach combining data on sectoral GHG
emissions, trade and input-output tables. Our average individual has annual food carbon footprints of
1.9tCO2e and annual transport carbon footprints of 2.7tCO2e. In 2017, the top-down approach estimation
gives per capita food carbon footprints of 2.1tCO2e and per capita transport carbon footprints of 2.8tCO2e
(Baude, 2022). For food, our results are also consistent with Barbier et al. (2019)’s paper using individual-
level food consumption data, reporting 2tCO2e.

We also harmonize the control variables used to estimate conditional gender gaps across the two
datasets. In section 3.2, we run multivariate OLS regression of the form:

Yi = β0 + β1Femalei + β2Xi + µi (1)

Yi is the outcome of interest for individual i, such as her carbon footprint from transport, Femalei is a
dummy variable for individual i reporting a female gender, β1 is our coefficient of interest measuring the
effect of being female on the outcome, and Xi is a vector of socioeconomic, demographic and location
controls observed at the individual or household level. µi is the error term.

In several figures, we progressively add more control variables. In the most basic regression (“Controls:
survey wave”), we control for the time of year when the survey is conducted. The variables slightly differ
between the food and transport surveys: for the food survey, we use indicators for the four seasons, while
for the transport survey, we include the day of the week and two-month sampling periods (e.g., May-
June 2018 until March-April 2019).13 In the “+sociodemographics” regression, we additionally control
for age, education, and household size.14 In the “+location” regression, we add controls for urban unit
size with indicators for the size of the residence’s urban area.15 The “+household income” regression
further includes categories of household net income (after transfers but before income tax).16 Finally,
the “+employment status and professional category” (also referred to as “all controls”) regression adds
indicators for the socio-professional category, and a dummy for whether the person is in employment.17

For the subsample of individuals in employment, we can further include controls related to the type of
employment contract and characteristics, that are known to differ between men and women and likely
influence carbon footprints: a dummy variable for working part-time – which is more common among
women, and, for the transport survey only, a continuous measure of commuting distance – which is longer

13The food survey includes four seasonal indicators: Winter, Spring, Summer, and Fall, while the transport survey uses
seven day-of-week and six bi-monthly indicators.

14The age categories are 18-44, 45-64, and 65-79 years. Education levels include less than secondary or vocational degree,
end of high school diploma, higher education degree ≤ 2 years, and higher education degree > 2 years. Household size is
included as a linear control.

15The categories are: less than 2,000 inhabitants, 2,000-19,000 inhabitants, 20,000-99,000 inhabitants, more than 100,000
inhabitants outside the Paris area, and the Paris area.

16For the food survey, the net income categories range from <690€ to �4600€ per month, with 10 categories. The transport
survey uses categories of household income deciles per consumption unit based on the national income distribution.

17Socio-professional categories mix activity status and type of occupation for the active individuals, with the following
categories: student, pensioner, other inactive, blue-collar low-skilled, white-collar low-skilled, intermediate occupations,
white-collar high-skilled and craftspeople and shopkeepers.

7



for men – and a dummy variable for whether the individual works night shifts.

3 Results

3.1 The unconditional gap in carbon footprints

Figure 1 shows the average carbon footprints by gender and consumption category. The annual carbon
footprints associated with men’s food and transport consumption are 5.3 tCO2e on average, while that
associated with women’s food and transport consumption is 3.9 tCO2e, 26% lower. The gap is driven by
differences in both food and transport.

Figures B.5, B.6, B.7 present the distributions of annual food and transport carbon footprints by
gender. We separate short-distance and long-distance travel to study their distributions but group them
together for the rest of the analysis. For food, the distribution for women is slightly skewed to the right,
whereas for men, there are clear outliers, individuals in the top 1% of carbon footprints emit around 12
tons of CO2 annually—approximately four times the average. Nevertheless, the gender gap persists even
after excluding these outliers. When excluding the top and bottom 1% the gender gap in food carbon
footprints decreases marginally to 24%. It is 16% when the top and bottom 5% are excluded.

Distributions of short-distance transport carbon footprints have the same highly skewed shape across
genders, with values for men consistently higher. 20% of men and 23% of women have zero emissions from
transport, mostly because they use non-emitting modes of transport. For long-distance travel, around
60% of individuals record zero emissions because they haven’t done any long-distance trip, which is partly
due to the way data is collected: only the long-distance trips done in the six weeks before the interview
are recorded. The distributions are again highly skewed to the right, with men showing slightly higher
values.

Figures B.9 and B.8 present the decomposition of food consumption and travel into two categories:
food consumed at home versus out-of-home and work-related versus non-work-related travel, separately
for short-distance and long-distance travel. The gender gap in food carbon footprints is larger for food
away from home (50%) compared to food consumed at home (25%). For travel, the gap is driven mostly
by differences in work-related travel. The smaller gender gap in carbon footprints for food consumed
at home and leisure-related travel may be influenced by joint household decisions, which reduce the gap
in food consumption at home (convergence) but increase it for work activities (specialization). These
patterns are further explored in the following subsections.
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Figure 1: Individual Yearly Food and Transport Carbon Footprints by Gender.

Notes: Source: Food consumption: INCA3 (N=2,121); transport: EMP (N=12,077). Averages calculated with survey
weights. The dark vertical bars indicate 95% confidence intervals.

3.2 Does the gap persist conditional on socioeconomic characteristics?

A vast literature in social sciences documents gender differences in economic conditions, labor market in-
tegration, domestic labor, and leisure activities (see Blau and Kahn, 2017, for review on the gender wage
gap). We investigate what share of the gender gap in carbon footprints could be explained by these differ-
ences by restricting the sample to individuals in employment and controlling for various sociodemographic
characteristics.

One important difference between men and women is the lower labor force participation of women,
which can influence dietary requirements and demand for mobility.18 Work-related mobility is partly
constrained, and work trips outside of commuting could be considered production-based rather than
consumption-based emissions. Therefore, it is important to understand how much the gap is explained
by work-related mobility. On the one hand, work-related trips – which include both commuting and other
business-related trips – explain most of the gender gap in transport carbon footprints, as can be seen in
Figure B.8. On the other hand, the gap is not only driven by an extensive margin effect where women are
simply less likely to be employed and do not need to commute: restricting the sample to the employed
in Figure B.10, we find a gender gap in carbon footprints as large as for the general population, of 26%.
Differences in the scale and intensity of work-related trips must also contribute to the gap.

To understand the role of other characteristics, we run multivariate regressions and try to “kill the
gap” by adding more and more controls. Figure 2 shows the results. The overall gap decreases from 26%

18In 2016, 67.6% of women aged 15-64 in France participated in the labor market, compared to 75.4% of men. Source:
French National Statistical Institute (INSEE).
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to 18% when we control for household size, household income, city size, and individual’s age, education,
employment status and socio-professional categories. However, the 95% confidence intervals overlap, so
we cannot rule out that the conditional and unconditional gaps are equal.

The gender gap in the carbon footprints of food is barely affected by the addition of controls and
decreases from 28% to 22%. The gender gap in transport decreases from 25% to 15% after controlling for
city size of the place of residence, household income, individual employment status, and socio-professional
categories. Thus, the gap comes partly from a composition effect: women are more likely to live in large
cities and poorer households and are more often unemployed or outside the labor force, all characteristics
associated with lower carbon footprints. The transport survey includes additional useful control variables
that are not available in the food survey. Figure B.12 shows that the gap in transport emissions
decreases but does not close when we also control for more detailed characteristics that influence carbon
footprints and are correlated with gender, namely more detailed socio-professional categories,19 category
of household,20 ability to drive and being in a household that owns more than one car.

Since we do not observe individual wages, one might argue that the gender gap in carbon footprints
simply reflects the gender wage gap, as both have a similar magnitude (Palladino et al., 2025).21 However,
if income were the main driver, we would expect single men—who earn more on average—to still have
higher transport carbon footprints than single women. In section 3.5, we show that instead, the gender
gap in carbon footprints is not significant anymore in the subsample of singles once we condition on
socioeconomic characteristics – including when we only control for socioeconomic characteristics other
than income. This suggests that household structure and specialization in couples play a key role in
shaping transport carbon footprints rather than income alone.

To assess the extent to which sociodemographic differences explain the gender gap in carbon footprints,
we analyze how much of the mean difference between men and women can be attributed to observable
characteristics. We follow the Oaxaca-Blinder (O-B) decomposition method, commonly used in labor
economics, to distinguish between explained and unexplained components (Oaxaca, 1973; Blinder, 1973).
Unlike standard OLS regressions, which assume a single relationship between explanatory variables and
carbon footprints between gender groups, Oaxaca-Blinder allows for group-specific coefficients, accounting
for potential differences in consumption patterns or systematic behavioral differences between groups.
This approach decomposes the observed gap into two parts: one driven by differences in characteristics
(the endowment effect) and the other by differences in coefficients (the structural or unexplained effect),
which may reflect behavioral differences, social norms, or unobserved preferences. Table B.2 presents
results from a twofold Oaxaca-Blinder decomposition. In the food sector, we find that 92% of the
gender gap remains unexplained after controlling for sociodemographics, location, household income,

19Instead of five main occupation categories, we have 42 categories mixing activity status (e.g., student or inactive outside
the retired), detailed occupation category (30 categories) for the employed and unemployed, and broad occupation category
for the retired.

20With five categories: single, single parent, couple without children, couple with at least one child, and complex family.
21In 2018, the gap in gross hourly wage adjusted for differences between occupations and firms was 15% according to

Palladino et al. (2025).
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employment status, and socio-professional category (column 1). For transportation, the unexplained
share of the gender gap is 69% (column 4).

Could gender differences in employment and occupation characteristics, as documented in the labor
literature, explain part of the remaining gap, conditional on being employed ? For example, Le Bar-
banchon et al. (2021) and Frändberg and Vilhelmson (2011) find a significant gender gap in willingness
to commute longer distances and actual commuting distances, and link it with the gendered division of
labor and domestic work. Work-related emissions indeed play a key role in the transport gap in carbon
footprints: Figure B.13 shows that the gender gap only exists for work-related emissions – including both
commuting trips and other business-related trips – but not for leisure emissions. We take advantage of
detailed covariates on employment characteristics in the food, and even more the transport surveys, to
investigate the role of employment characteristics in each gap for the subsample of employed individuals.

In Figure B.11, we replicate the multivariate analysis from Figure 2, with one modification: instead
of controlling for employment status, we control for three employment characteristics—part-time work,
night shift work, and, for transport only, commuting distance. The gap decreases from 26% to 18%,
the same magnitude as for the full sample, primarily due to a reduction in the gender gap in transport
carbon footprints. This finding allows us to rule out employment characteristics—particularly differences
in commuting distances—as the sole explanation for the gap. The remaining gap could be attributed
to differences in the amount and carbon intensity of business-related trips outside commuting, as well
as variations in the carbon intensity of commuting itself. One potential concern with work-related trips
outside commuting is whether they should be considered part of men’s consumption-based carbon foot-
print, given their connection to the production process. However, Figure B.14 shows that the gender
gap in transport carbon footprints persists among the employed, even when emissions from work-related
trips outside commuting are excluded. This suggests that the gap is driven by differences in the carbon
intensity of men’s trips, including those related to commuting.

3.3 Biological differences: is it just that men eat more?

Men’s dietary guidelines differ significantly from those for women. For example, both the French Health
Agency (ANSES) and the USDA recommend that women consume, on average, around 21% fewer calories
than men.22 In our data, the difference in calorie intake is 10% greater than the biological recommendation
would suggest.. This excess gap in calorie intake is mainly driven by men having more calories from alcohol

22The USDA Dietary Guidelines for Americans (2020–2025) indicate the following calorie requirements: men aged
18–44, 2,400–3,000 calories, and for women, 2,000–2,400 calories; for men aged 45–64, 2,200–2,800 calories, and for women,
1,600–2,200 calories; and for men aged 65–79, 2,000–2,600 calories, and for women, 1,600–2,000 calories. For each group,
we take the midpoint of these ranges. The French guidelines are similar in terms of recommended daily calorie intake. For
example, France’s 2016 guidelines suggest 2,600 kcal per day for adult men aged 18–69 and 2,100 kcal for adult women aged
18–59, which aligns closely with the midpoints of the USDA’s more detailed ranges for similar age groups. We use the US
guidelines in this analysis because they provide more specific recommendations by age group, allowing for finer distinctions
in the data.
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Figure 2: Conditional Gender Gap in Food and Transport Carbon Footprint, Full Sample.

-1.00

-0.75

-0.50

-0.25

0.00

0.25
Ef

fe
ct

 o
f b

ei
ng

 a
 w

om
an

on
 a

nn
ua

l c
ar

bo
n 

em
is

si
on

s 
(tC

O
2e

)

 Food Transport  

Controls: survey wave + sociodemographics
+ location + household income
+ employment status and socio-professional category

Notes: The point estimates and 95% confidence intervals show the estimated coefficient for the gender dummy “female” from
separate OLS regressions, one for each consumption category, including an increasing number of control variables. “Controls:
survey wave” only controls for the time of year when the survey is conducted. “+ sociodemographics” additionally controls
for age, education and household size. “+location” additionally controls for size of the urban unit of residence. “+household
income” additionally controls for household income. “+employment status and professional category” additionally controls
for employment status and socio-professional category. Source: Food consumption: INCA3 (N=2,121); transport: EMP
(N=12,077)

consumption, which are not included in the dietary guidelines. This suggests that part of the gender gap
in carbon footprints is due to a difference in food volumes that is not explained by biological differences.

Since calorie requirements differ from actual calorie intake — particularly as they are general guidelines
and do not account for alcohol consumption — we also directly control for calorie intake in our regressions.
While calorie intake is partly driven by individual food choices and thus may be endogenous, it remains
an informative control to isolate the role of food volume in emissions. Ideally, one might control for
recommended caloric intake to capture biological needs. However, because recommended intake is entirely
determined by gender and age, it is perfectly collinear with our existing sociodemographic controls, making
it infeasible to include directly in the regression. We therefore rely on actual calorie intake—including
alcohol—to capture individual-level differences in energy consumption.

Figure 3 presents the results from the specification shown in Figure 2, now including controls for
BMI and individual calorie intake estimated based on the food diaries. Controlling for BMI results
does not change the estimated coefficient relative to the specification that includes all sociodemographic
controls.23 In contrast, controlling for calorie intake significantly alters the results: the gender gap in

23Controlling for BMI allows us to account for individual differences in body size, which may influence both food intake
and dietary composition. While men and women have similar average BMI in our sample, BMI still captures relevant
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Figure 3: Gender Gap in Food Carbon Footprints, the Role of Differences in Dietary Requirements
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BMI” additionally controls for BMI and “+ calories” additionally controls for the calories consumed, including alcohol.
Source: Food consumption: INCA3 (N=2,121).

food-related carbon footprints shifts from -0.48 tCO2e to -0.12 tCO2e. Although the 22% gender gap in
food emissions is numerically similar to the 21% difference in recommended calorie intake, this does not
imply that the gap is fully explained by biological needs. First, actual calorie intake in our data exceeds
recommended values, especially for men, due in part to alcohol. Second, after controlling for calorie
intake and sociodemographic factors (as shown in Table B.2 column 2), an unexplained difference of 6.5%
remains, which accounts for 25% of the original gender gap in food carbon footprints. This suggests
that the remaining disparity is likely driven by systematic differences in consumption habits, particularly
men’s higher consumption of high-emission-intensive goods.

3.4 Contributions of red meat and car to the gender gap

The social science literature emphasizes the connection between red meat consumption and male identity
(Rothgerber, 2013), and car and male identity (Scheiner and Holz-Rau, 2012). For instance, while car is

within-gender variation, which could otherwise confound the analysis.

13



not the focus of the paper, Cuevas et al. (2021) have many car-related items in its 500 Most Masculine
Interests retrieved with a singular value decomposition method based on interests reported on Facebook;
Willer et al. (2013) find that random feedback suggesting men are feminine makes them more interested
in buying an SUV, among others; Rothgerber (2013) find that men believe more than women that eating
meat is normal for humans. Building on this literature, we investigate the specific contribution of these
two products to the gender gap in carbon footprints. Red meat is by far the most carbon-intensive food
product (see Figure B.2), while both car and plane are the most carbon-intensive transport modes (see
Figure B.4).

Figure 4 shows the conditional gender gap in carbon footprints coming specifically from red meat
and car, using normalized carbon footprints to ease comparison. Both with basic and with the full set
of sociodemographic controls, women’s red meat emissions are 0.28 SD lower than men’s. Their car
emissions are 0.22 SD lower with basic controls and 0.16 SD lower with the full set of controls. Even
controlling for daily calorie intake for food, and for total distances traveled for transport, there remains
a substantial gap: higher red meat consumption and car emissions are not only driven by higher calorie
requirements and the need to travel longer distances due to constrained work trips and longer commutes,
as highlighted in Le Barbanchon et al. 2021; Frändberg and Vilhelmson 2011.

Another way to highlight the contribution of red meat and cars to the gender gap in carbon footprints
is to contrast their share in emissions for the average person in the data and their share in the emission
gap. Red meat GHG emissions make up only 13% of total food carbon footprints, while car emissions
make up 84% of total transport carbon footprints on average. We estimate the contribution of red meat
to the food gender gap by dividing the estimated coefficient on the gender dummy in the regression of
red meat emissions by the corresponding coefficient in the regression of total carbon footprints. We do
so for the three different regressions of Figure 4: the one with survey wave controls, the one with all
sociodemographic controls, and the one controlling for calories (for food) or distance (for transport).

Figure B.15 shows that while red meat contributes to 13% of emissions in the average person’s diet,
the gap in red meat emissions explains 25% of the emission food gap using basic controls, and 70%
when we control for all socio-demographics and calories. Thus, the gender gap in red meat consumption
disproportionately impacts the gender gap in carbon footprints for food. The same holds true for car
emissions for transport: Figure B.16 shows that car represent 84% of an average person’s transport
footprint, but the gender difference in car emissions explains 93% of the gender gap in transport emissions,
and 100% when all socioeconomic characteristics are controlled for. By contrast, there is no significant
gender gap in plane emissions, the other high-polluting transport mode, as shown in Figure B.17.

What explains this gap in car emissions? In contrast to red meat, which is a significantly larger
share of men’s food volume compared to women, we do not find that men use a car more often as a
proportion of distances traveled in Figure B.20, once socioeconomic factors are controlled for. Instead,
the contribution of car emissions to the gender transportation gap comes from the fact that men travel
longer distances than women overall (distance gap), and when they do use the car, their car trips have a
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Figure 4: Food: Gender Gap in Red Meat and Car emissions
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higher emission intensity: this is because men’s car trips have a lower occupancy rate and are done in a
more carbon-intensive car.

An Oaxaca-Blinder decomposition reveals that when accounting for the distance traveled by individual
and sociodemographic factors (Table B.2 column 4), an unexplained difference of 38% of the gender gap
in transport carbon footprints remains. Figure B.18 shows this gender gap in distance, in the inverse
of occupancy rate24, and in the emission factor of single individuals’ car — the only category where the
choice of the car owned by the household can be assigned to one gender. The inverse occupancy rate in
women’s car trips for short-distance travel is 0.20 SD lower on average than in men’s car trips, and single
women own cars that are, on average, 0.11-0.14 SD less carbon-intensive than the cars owned by men.

24One divided by the number of people in the car, which takes a maximum value of 1 if the person is solo-driving for all
their car trips
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3.5 Heterogeneity by household type: couples vs singles

Figure B.19 shows the unconditional gap by household type, separately for single individuals, couples
without children and couples with children.25 Both single men and single women have lower carbon
footprints on average than those living in dual-adult households and than the overall sample: single men
have an annual footprint of 4.7 tCO2e, and single women have an annual footprint of 3.6 tCO2e. The
gender gap in carbon footprints is slightly smaller for them than for the main sample of analysis, at 23%.

In Figure 5, we show the gap after adding all the sociodemographic controls. These results are sugges-
tive of specialization within the household in transportation patterns. The gender gap in transportation
carbon footprints is much larger for couples than for singles, where the gap is not significantly different
from zero. This gap is particularly pronounced for couples with children (-0.85tCO2e, compared to -0.47
tCO2e for couples without children), likely due to women with children working closer to their homes.
This result is consistent with research on family labor supply and time allocation, which suggests that
couples with children often make trade-offs between commuting time and childcare responsibilities (Blun-
dell et al., 2018), and that the gender gap in willingness to commute is strongest for married women with
children and lowest for single women without children (Le Barbanchon et al., 2021).

In contrast, the gender gap in food carbon footprints is smaller for dual adult households (-0.37
tCO2e for couples without children and -0.47 tCO2e for couples with children) than for singles (-0.62
tCO2e). This decreasing gap is suggestive of convergence in consumption patterns. This is consistent
with the food studies literature, which demonstrates that couples often adjust their food choices to
accommodate each other’s preferences (Bove et al., 2003). Adjusted predictions from regression models
provide additional insight: women’s average carbon footprints from food increase substantially when
moving from singlehood (1.53 tCO2e) to cohabiting relationships without kids (1.69 tCO2e), whereas
men’s carbon footprints remain relatively stable (2.16 tCO2e for singles, 2.14 tCO2e for couples without
kids). This suggests that convergence within couples is primarily driven by women increasing their carbon-
intensive food consumption, likely eating more meat, rather than men reducing theirs. This pattern is in
line with existing research, which finds that dietary adjustment within households is often asymmetrical,
with women more likely to align their eating habits to those of their male partners (Brown and Miller,
2002; Sobal, 2005; Gregson and Piazza, 2023).

These convergence and specialization patterns are also visible for red meat emissions and car emissions
specifically. Figure B.21 shows that the gender gap for red meat emissions is larger for singles than for the
overall sample (shown in Figure 4), while the gender gap in car emissions is smaller – yet still significant,
compared to the gap for total transport in carbon footprints.

While our findings support much of the existing literature on the existence and direction of the
gender gap in carbon footprint, we also highlight potential biases in studies that focus solely on single

25We exclude single-adult households with children from the analysis because the sample of single men with children is
very small (only 16 men in the total sample of 667 single in the food survey).
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Figure 5: Conditional Gender Gap in Carbon Footprints by Household Type, Full set of Controls.
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adult households. Our findings suggest that studies focusing solely on single individuals to estimate the
gender gap in carbon footprints probably overestimate the food carbon footprints gap and underestimate
the transport carbon footprints gap, as bargaining power within the household and gender norms likely
influence these outcomes in dual-adult households.

4 Implications of the gender gap in carbon footprints

4.1 Putting our results in perspective

To put the magnitude of our findings in perspective, we calculate the income gap in carbon footprints
for the same consumption categories, given that differences in carbon footprints by income level have
received a lot of attention in the literature (Chancel, 2022; Sager, 2019). We first partition the samples
into two equal-sized groups to mirror the partition by gender. We obtain an unconditional income carbon
footprints gap of the same magnitude as the gender carbon footprints gap, 27%, driven by the gap in
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transport carbon footprints. If we instead compare more extreme income categories, the top and bottom
income quintiles, excluding the middle 60% of the income distribution, we obtain an income carbon
footprints gap of 46%, only 1.8 times larger than the difference between men and women. Arguably, the
income gap could be larger for other consumption categories, including less essential goods than food
and transport. Still, the relatively high magnitude of the gender carbon footprints gap compared to
the income carbon footprints gap suggests that gender would warrant more consideration as a relevant
dimension of carbon inequality.

Another way to view this gap is by asking how much French carbon footprints would decrease if all men
adopted the average carbon intensity of women observed in our sample for food and transport, holding
quantities consumed constant (calorie requirements for food and observed distances for transport). We
find that if all adult men adopted the same carbon intensity of consumption as adult women, without
affecting women’s consumption, food carbon footprints would decrease by 1.9 MtCO2e and transport
carbon footprints by 11.5 MtCO2e in France. These amounts correspond to threefold the annual emission
reductions expected from the agriculture and transport sectors to comply with French climate targets
by 2030 (Haut Conseil pour le Climat, 2024).26 This scenario is, of course, not fully realistic given that
carbon intensity partly depends on quantities consumed, in particular for transport (distances traveled).
It still provides a useful benchmark that we can compare to emission reductions achieved by flagship
climate measures in these sectors.

One limit of our study is to only consider food and transport, out of all consumption categories.
Would the gender gap in total carbon footprints disappear or even reverse if we could observe individual
carbon footprints for other consumption categories? Evidence from the literature suggests that this
is unlikely to be the case. In France, transport and food contribute to 30% and 22% of per capita
footprint, respectively (Baude, 2022). The remaining 48% includes housing (23%), tangible goods (10%),
the reallocation of emissions from final government consumption (8%), and other services (8%). For
government consumption, the dominant approach in the literature is to allocate equal emissions to each
individual. So the gender gap in carbon footprints would only disappear if women emitted significantly
more than men in their housing, durable goods and service consumption. Housing emissions are hard
to assign within the household, so the only proxy we have on gender gaps is for singles: a study in four
European countries reports unconditional gender gaps in housing energy consumption between -4% and
+4% depending on the country (Räty and Carlsson-Kanyama, 2010). Assuming that the gap for France
lies in this interval, that men and women have a similar carbon intensity for housing energy, and that
singles are representative of the overall population, this gives a housing footprint gap of at most -4% with
lower carbon footprints for men. The gap for tangible goods and other services would then need to be at
least -80% to fully cancel out the gap in food and transport, which is unlikely.

26France’s emission reduction targets are for domestic emissions, whose scope differs from our consumption-based approach
of quantifying emissions which include imported emissions.
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4.2 Policy implications

Our findings have several implications for climate policy. First, they suggest that the burden of carbon
taxation in the food and transport sector could be greater for men than for women, assuming that both
genders have the same tax elasticity. Most evidence on the distributional effects of carbon taxation
focuses on income (vertical equity considerations), and the papers investigating horizontal equity rely
on household-level expenditure data and are not able to identify the effect of gender. Estimating the
incidence of a carbon tax across gender groups using individual-level consumption data is an interesting
avenue for future research, particularly given our findings on the gender differences in carbon footprints.
However, this would require access to price information, which the data used in this study does not
include.

Understanding the intersection of gendered consumption patterns and climate concerns is critical
because the perceived costs of climate policy—especially those impacting household budgets—strongly
influence policy support (Dechezleprêtre et al., 2025). Our findings suggest that women who have lower
carbon footprints may be more likely to support climate policies than men. To the extent that our findings
are partly explained by gendered preferences for some carbon-intensive goods, support for climate policy
affecting the cost of these goods could become polarized across gender lines.

The gender gap in carbon footprints can also be linked to previously documented gender gaps in
climate-related attitudes and behaviors, such as climate concerns, climate-friendly actions, and leadership
(McCright, 2010; Bush and Clayton, 2023; Elert and Lundin, 2022; Mavisakalyan and Tarverdi, 2019;
Bandyopadhyay et al., 2023). Women’s higher levels of concern about climate change (Bush and Clayton,
2023) and their greater likelihood of adopting climate-friendly behaviors in everyday life (Elert and
Lundin, 2022) could partly explain their lower carbon footprints, particularly in food and transport
consumption. However, as Bush and Clayton (2023) argue, causality may also flow in the opposite
direction: women might show greater climate concern because their consumption patterns are less carbon-
intensive for reasons unrelated to environmental preferences.

While our cross-sectional data do not allow us to determine the direction of causality, the evidence
suggests the gap is not solely driven by differences in climate concerns. The disparity in footprints between
single and non-single women, as well as between those with and without children, suggests that part of
the observed gender gap in carbon footprints could be driven by gendered social roles. Furthermore, the
differences observed in the consumption of high-emission goods tied to traditional masculinity, such as
red meat and cars, but not for gender-neutral polluting goods like plane trips, suggest that gendered
preferences pre-dating climate concerns may contribute to the gap.

Within households, the dynamics of decision-making may also play a role in shaping carbon footprints.
For instance, we observe higher red meat consumption among women in couples compared to single
women, and cars owned by single women are 0.13SD less carbon-intensive than those owned by single
men. Given evidence that infrequently adjusted consumption goods, such as cars, account for a large
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share of household carbon footprints (Kuhn and Schlattmann, 2024), involving women more actively
in these key decisions may help reduce overall carbon footprints. Looking across different household
arrangements, our findings suggest that more balanced bargaining power may not have uniform effects
across all consumption categories. In the case of food, single women emit less than women in couples,
indicating that greater equality in decision-making could encourage convergence towards lower-carbon
choices. By contrast, single women’s transport carbon footprints exceed those of women in multi-adult
households, hinting at a specialisation dynamic, where the partner with higher income may choose more
carbon-intensive travel options. While policies that directly enhance women’s bargaining power are
limited, these findings highlight the need for further research into how intra-household decision-making
dynamics influence carbon footprints.

Finally, our results suggest that information policies challenging traditional gender norms, particularly
those tied to ’dominance masculinity’ (De Haas et al., 2024), could indirectly reduce household carbon
footprints. Campaigns that deconstruct the association of red meat consumption and car ownership
with masculinity may lower male demand for these carbon-intensive goods. Similarly, addressing stereo-
types that portray green consumption and vegetarianism as feminine (Brough et al., 2016; MacInnis and
Hodson, 2015; Rosenfeld, 2020) could increase men’s willingness to adopt pro-environmental behaviors.
Conversely, recent cultural trends promoting raw meat consumption or ’all-meat diets,’ often accompa-
nied by rhetoric against plant-based diets, may inadvertently increase carbon footprints by reinforcing
traditional masculine norms.27 While these trends are rooted in conservative gender ideologies rather than
climate concerns, they underscore the importance of addressing gendered perceptions in climate-related
behavior.

27As described for instance in https://www.bps.org.uk/psychologist/meatheads-and-soy-boys.
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Appendix

A Methods to Estimate Carbon Footprints

Food Carbon Footprints

The computation of food carbon footprints relies on the matching of food consumption data from the
INCA3 dataset and environmental information from the Agribalyse dataset. The INCA3 and Agribalyse
datasets contain, respectively, 2,886 and 2,481 unique labels that refer to as many standardized products.
Given that these datasets have not been matched at the product level before, we rely on a mixed method
drawing from string matching, hand matching and natural language processing (NLP) for the matching.
Doing so, we aim to find for every INCA3 product the closest product in the Agribalyse dataset to
associate as precisely as possible food consumption with food environmental impacts. We proceed as
follows:

• First, we select perfect string matches defined by a cosine similarity of 1.0. (e.g. the product label
is ’Carot’ in both datasets). This is the case for 117 INCA3 products.

• Second, we minimize errors on the most consumed products (ie largest volumes per product in the
INCA3 dataset), which represent together 80% of the purchased volumes, and we minimize error
on the measurement of CO2 intensities for the top 100 emitting products (animal products). These
conditions are satisfied for 363 products. For these products, we hand-check the matching and
apply hand corrections for one-third (118) of the products.

• Third, we apply systematic matching based on a mixed method of NLP and key terms matching.
For each method, we compute similarity scores (cosine), and we choose the best match. In most
cases (94% of the products), we retain the key-terms approach against the NLP approach. The low
performance of the NLP algorithm can be explained by the BERT algorithm not being specifically
trained for the food vocabulary.

– NLP approach: we perform NLP matching at two stages. First, we use NLP to find corre-
spondence across subgroups between INCA3 and AGB. Then within each matched subgroup,
we perform a second NLP matching at the product level. The matching is performed using
CamemBERT, a deep-learning model trained for the French language.

– Key-terms approach: we define a set of key terms that reflect the most commonly consumed
food products in France.28 This reduces the error, given the type of ingredient is the key driver
of its carbon footprint. This way, we ensure that the type of ingredient is consistent across
datasets.

28We retain a list of 276 key terms which reflect the most common products in the following categories: cheese, dairy,
vegetable, fruit, meat, fish, snacks, starches, legumes, drinks, seasonings and culinary aids.
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• Finally, we perform additional hand-checks for 14% (343) of the products matched in the previous
step.

A.1 Transport Carbon Footprints

To reflect real-world lifecycle emissions per person, the following adjustments are made by the data
producer to obtain trip-level emissions from transport-specific and car model-specific emission intensities:

• upstream emissions related to the energy production used in the manufacturing and transport of
the vehicle are added for all modes

• for plane, non-CO2 warming effects are added

• for cars, emissions associated with cold starts are added. These cold start emissions reflect the fact
that the first minutes of a car trip emit more due to the higher fuel consumption of engines until
they reach their optimal temperature while driving

• for cars and two-wheelers, the occupancy rate of the trip as declared in the survey is taken into
account, and total trip emissions are divided by the number of people in the car/two-wheeler.
Dividing car emissions by the number of passengers means that we do not reallocate the emissions
from children’s mobility to the adults in the households: a 10km car trip driving two children to
a leisure activity will count as 1/3 the emissions of a 10km car trip alone. Given that women are
more likely to be the ones accompanying children to their leisure activities (?), this choice could
contribute to decreasing women’s emissions.

• the upstream emissions associated with the manufacturing of the vehicle and transport infrastruc-
ture are not included in the calculations.

The methodology is described in greater detail in Lezec et al. (2023). We amend these emissions in
two ways: first, absent information on distance per mode in multi-modal trips, the calculations assume
that the entire trip is done with the main transport mode declared in the survey. We improve the
measure by accounting for the distance walked in the trip.29 Second, we add an emission factor for
upstream emissions from vehicle manufacturing using data from the French Agency for the Environment
(Base carbone ADEME 2023) so that emissions reflect carbon footprints and are comparable in scope
to the food emissions. The only upstream emissions not included are those associated with building the
transport infrastructure (roads, rail tracks), due to lack of data.

29We use trip-level information on the time spent walking and assume a walking speed of 4 kilometers per hour to calculate
the distance walked. We proxy the distance traveled with the main transport mode with the difference between total trip
distance and walking distance. We re-calculate trip-level emissions by multiplying this distance by the trip-level emission
intensity implied by the trip-level emission measure provided in the survey.

2



B Additional Figures and Tables

B.1 Emission Intensities

Figure B.1: Food Emission Intensity by Product Type.

Notes: Distribution of greenhouse gas (GHG) emission intensities (in CO2e per kilogram of food) across all food products.
Each bar represents a unique value in the total distribution of emission intensities, sorted from lowest to highest. The
visualization highlights the granularity and variability in climate impacts among different food items. Food categories are
defined as follows: Starchy food: pasta, bread, semolina, cook-type cereals, potatoes; Fresh fruits and vegetables: fresh
fruits, fresh vegetables; Red meat: beef, mutton, lamb; White meat: chicken, turkey, veal, rabbit, pork, poultry; Other
meat: cold cuts, mix of meats, ham, game meat, frogs, kangaroo; Fish: fish and seafood; Eggs: hen and quail eggs; Dairy:
cheese, milk, yoghurts; Snacks: sugary biscuits, jam, honey, spreads, cereal/granola bars, chocolate, pastries, breakfast
drink preparation, breakfast cereals, ice cream, desserts, dry fruits and seeds, salty biscuits, olives, crisps; Ready meals:
prepared dishes, frozen dishes, canned dishes; Soft drinks: sodas, syrups, juices; Alcoholic drinks: cocktails, liquors, wine;
Other beverages: coffee, tea, infusions, water, chicory; Seasonings: spices, oil, vinegar, butter, croutons, breadcrumbs, raw
pastry, confectionery flavours, flour, prepared crust, coconut milk, cream, lemon juice, herbs, dry herbs, garlic, onion; Non-
fresh fruits and vegetables: canned fruits and vegetables, frozen fruits and vegetables, lyophilised vegetables, beans, dried
vegetables, packaged vegetables; Other : baby food, chewing gum, food supplements. Source: INCA3 food intake-by-day
data (N=256,301). Weighted averages across food intakes of the same food category and day, using food quantities as
weights. Source: Agribalyse (2017).
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Figure B.2: Emission Intensity by Food Category Aggregated in 15 categories.
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Notes: Volume weighted CO2e emissions in kilograms expressed in kilogram of the food consumed. Weighted averages across
food intakes of the same food category and day, using food quantities as weights. Food categories are defined as follows:
Starchy food: pasta, bread, semolina, cook-type cereals, potatoes; Fresh fruits and vegetables: fresh fruits, fresh vegetables;
Red meat: beef, mutton, lamb; White meat: chicken, turkey, veal, rabbit, pork, poultry; Other meat: cold cuts, mix of meats,
ham, game meat, frogs, kangaroo; Fish: fish and seafood; Eggs: hen and quail eggs; Dairy: cheese, milk, yoghurts; Snacks:
sugary biscuits, jam, honey, spreads, cereal/granola bars, chocolate, pastries, breakfast drink preparation, breakfast cereals,
ice cream, desserts, dry fruits and seeds, salty biscuits, olives, crisps; Ready meals: prepared dishes, frozen dishes, canned
dishes; Soft drinks: sodas, syrups, juices; Alcoholic drinks: cocktails, liquors, wine; Other beverages: coffee, tea, infusions,
water, chicory; Seasonings: spices, oil, vinegar, butter, croutons, breadcrumbs, raw pastry, confectionery flavours, flour,
prepared crust, coconut milk, cream, lemon juice, herbs, dry herbs, garlic, onion; Non-fresh fruits and vegetables: canned
fruits and vegetables, frozen fruits and vegetables, lyophilised vegetables, beans, dried vegetables, packaged vegetables;
Other : baby food, chewing gum, food supplements. Source: INCA3 food intake-by-day data (N=256,301).
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Figure B.3: Cars Emission Intensity by Fuel Type.

Notes: Distribution of CO2e emission intensities (in g CO2e/km) for cars. Each bar corresponds to a unique value in the
total distribution of cars emissions, sorted from lowest to highest, rather than to an individual vehicle. Bars are colored
according to the vehicle’s energy type associated with each intensity value. Other represents liquefied petroleum gas cars.
Source: EMP data.

Figure B.4: Emission Intensity by Transport Mode Category.
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B.2 Summary Statistics

Table B.1: Summary Statistics: Sociodemographics by Sample

Food Transport
Mean SD Mean SD

Household size 2.30 1.20 2.20 1.20
Gender = Female 0.58 0.49 0.54 0.50
Age

18-44 37.00 - 33.00 -
45-64 39.00 - 40.00 -
65-79 24.00 - 27.00 -

Work Status
Pupil/Student 3.68 - 3.71 -

Employed 53.84 - 50.38 -
Other inactive 6.84 - 6.51 -

Pensioner 5.04 - 5.59 -
Other status 30.60 - 32.98 -

Education
Less than secondary or vocational degree 39.00 - 50.00 -

End of high school diploma 19.00 - 19.00 -
Higher education degree below 2 years 21.00 - 13.00 -
Higher education degree above 2 years 20.00 - 18.00 -

Observations 2,121 11,325

Notes: Summary statistics by sample for the main comparable sociodemographic variables. Income is not included because
the definition differs widely across samples. In the Transport survey income is defined by decile, while it is interval-coded in
the Food survey.
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B.3 Distribution of Carbon Footprints by Gender

Figure B.5: Distribution of Yearly Food Carbon Footprints.

0.00

0.20

0.40

0.60

0.80

kd
en

si
ty

0 2 4 6 8 10
Individual annual emissions from food, tCO2eq

Women
Men

Notes: The blue dashed line indicates the average annual carbon footprints for women and the red dashed line the average
annual carbon footprints for men, calculated with survey weights. Source: INCA3 (N=2,121).
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Figure B.6: Distribution of Yearly Short-Distance Travel Carbon Footprints.
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Notes: The blue dashed line indicates the average annual carbon footprints for women, and the red dashed line indicates
the average annual carbon footprints for men, calculated with survey weights. Source: EMP (N=12,077).
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Figure B.7: Distribution of Yearly Long-Distance Travel Carbon Footprints.
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Notes: The blue dashed line indicates the average annual carbon footprints for women and the red dashed line the average
annual carbon footprints for men, calculated with survey weights. Source: EMP (N=12,077).
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B.4 Decomposition in Consumption Categories
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Figure B.8: Decomposition of Transport Carbon Footprints Between Work and Non-Work.
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Figure B.9: Decomposition of Food Carbon Footprints Between Food at Home and Out of Home.
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aways. Source: INCA3 (N=2,121). Averages calculated with survey weights.
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B.5 Subsample of Employed Individuals

Figure B.10: Individual CO2 Carbon Footprints Associated with Annual Food Consumption and Trans-
port Use by Gender, Employed Individuals.
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Figure B.11: Conditional Gender Gap in Carbon Footprints, Sample of Individuals in Employment.
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Notes: The point estimates and 95% confidence intervals show the estimated coefficient for the gender dummy “female”
from separate OLS regressions, one for each consumption category, including an increasing number of control variables.
“Controls: survey wave” only controls for the time of year when the survey is conducted. “+ sociodemographics” additionally
controls for age, education and household size. “+location” additionally controls for size of the urban unit of residence.
“+household income” additionally controls for household income. “+socio-professional category” additionally controls for
socio-professional category and employment status. “+employment charact.” additionally includes an indicator variable for
whether the individual works part-time and an indicator variable for whether the person has an atypical working time.
“+ commuting dist” additionally controls for commuting distance. Source: Food consumption: INCA3 (N=1,142 for all
employed); transport: EMP (N=5,663 for all employed).
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Figure B.12: Conditional Gender Gap in Transport Carbon Footprint, additional controls and robust-
ness checks.
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Notes: The point estimates and 95% confidence intervals show the estimated coefficient for the gender dummy “female” from
separate OLS regressions, one for each consumption category, including an increasing number of control variables. “Controls:
survey wave” only controls for the time of year when the survey is conducted. “all” additionally controls for age, education
and household size, size of the urban unit of residence, household income, employment status and broad socio-professional
category. “+ detailed occupational categories” replaces the five occupational categories with more detailed ones. Source:
transport: EMP (N=12,077)

B.6 Conditional Gender Gap in Transport Carbon Footprints with Additional Con-
trols, Full Sample.
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Figure B.13: Conditional Gender Gap in Transport Carbon Footprints, work-related vs non-work
emissions
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Notes: The point estimates and 95% confidence intervals show the estimated coefficient for the gender dummy “female” from
separate OLS regressions, one for each consumption category, including an increasing number of control variables. “Controls:
survey wave” only controls for the time of year when the survey is conducted. “all” additionally controls for age, education
and household size, size of the urban unit of residence, household income, employment status and broad socio-professional
category. “+ detailed occupational categories” replaces the five occupational categories with more detailed ones. Source:
transport: EMP (N=12,077)
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Figure B.14: Conditional Gender Gap in Transport Carbon Footprints, Excluding Work-related Emis-
sions outside Commuting.
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Notes: The point estimates and 95% confidence intervals show the estimated coefficient for the gender dummy “female”
from separate OLS regressions, one for each consumption category, including an increasing number of control variables.
“Controls: survey wave” only controls for the time of year when the survey is conducted. “+ all” additionally controls
for age, education and household size, size of the urban unit of residence, household income, employment status and
socio-professional category. “+employment characteristics incl.commuting distance” also controls, among the employed, for
part-time work status, working night shifts, and commuting distance. Source: EMP (N=12,077)
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B.7 The role of red meat and car emissions in the gender gap in carbon footprints.

Figure B.15: Contribution of red meat to the food gender gap

Notes: The first bar shows the relative share of red meat (red) compared to other food (gray) in total carbon equivalent
emissions for the average individual. The second to fourth bars shows the share of the conditional gender gap in food carbon
footprints that is explained by the gap in red meat emissions. This percentage is obtained by dividing the coefficient on the
gender dummy for the regression using red meat emissions as outcome by the coefficient on the gender dummy using total
food carbon footprints as outcome. Source: INCA3 (N=2,121).
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Figure B.16: The contribution of car to the transport emission gap

Notes: The first bar shows the relative share of car (red) compared to other transport (gray) in total carbon equivalent
emissions for the average individual. The second to fourth bars shows the share of the conditional gender gap in car
emissions that is explained by the gap in red meat emissions. This percentage is obtained by dividing the coefficient on the
gender dummy for the regression using car carbon footprints as outcome by the coefficient on the gender dummy using total
transport carbon footprints as outcome. Source: EMP (N=12,077).

Figure B.17: Gender Gap in Car vs Plane Emissions.
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Notes: of standardized emissions from car trips and plane trips. The point estimates and 95% confidence intervals in blue
show the estimated coefficient for the gender dummy ”female”. ”Controls: survey wave” only controls for the time of year
when the survey is conducted ”controls: all” additionally controls for age, education, household size, size of the urban unit of
residence, household income and employment status and socio-professional category. ”Controls: all + distance” additionally
controls for reported total distances traveled. Source: EMP (N=12,077).
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B.8 Components of car emission gap

Figure B.18: Gender Gap in Components of Car Emission Gap.
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Notes: The point estimates and 95% confidence intervals show the estimated coefficient for the gender dummy ”female”
from separate OLS regressions, one for each determinant of the gender car emissions gap, including an increasing number of
control variables. The first measure is the standardized total distance traveled; the second is the standardized inverse of the
occupancy rate for car trips, for the subsample of individuals with at least one car trip; the third one is the standardized
emission factor of the car owned by the individual, for the subsample of single individuals. Source: EMP (N=11,047 for
distance, N=8,017 for car occupancy rate, and N=7,036 for singles’ car emission intensity).

B.9 Unconditional Gender Gap in Food Carbon Footprints by household arrange-
ment.
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Figure B.19: Individual CO2 Emissions Associated with Annual Food Consumption and Transport Use
by Gender and Household Composition.
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with children: N=3,917).

B.10 Gender gap in the share of polluting good
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Figure B.20: Food: Gender Gap in the share of red meat in food volumes and the share of car in total
distances
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Notes: The point estimates and 95% confidence intervals show the estimated coefficient for the gender dummy ”female”
from separate OLS regressions of standardized share of red meat volume in total food volume, and share of kilometers by
car in total kilometers traveled. ”Controls: survey wave” only controls for the time of year when the survey is conducted
”controls: all” additionally controls for age, education, household size, size of the urban unit of residence, household income
and employment status and socio-professional category. Source: INCA3 (N=2,121); EMP (N=10,967)

B.11 Gender gap in red meat and car emissions, singles
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Figure B.21: Food: Gender Gap in Red Meat and Car emissions, singles
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Notes: The point estimates and 95% confidence intervals in red show the estimated coefficient for the gender dummy
”female” from separate OLS regressions of standardized emissions from red meat consumption and standardized emissions
from car trips. The point estimates and 95% confidence intervals in blue show the estimated coefficient for the gender dummy
”female”. ”Controls: survey wave” only controls for the time of year when the survey is conducted ”controls: all” additionally
controls for age, education, household size, size of the urban unit of residence, household income and employment status and
socio-professional category. ”Controls: all + calories or distance” additionally controls for reported daily calories intake for
the regression on food and for reported total distances traveled for the regression on transport. Source: INCA3 (N=545);
EMP (N=3,490)
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Table B.2: Oaxaca-Blinder Decomposition for Food and Transport

Food Transport
Overall Mean (in tCO2e)
Men 2.120 (0.0326) 3.062 (0.0635)
Women 1.591 (0.0178) 2.408 (0.0513)
Total Difference 0.528 (0.0371) 0.654 (0.0816)
Observations 1,957 11,016

(1) (2) (3) (4)
No Calories With Calories No Distance With Distance

Decomposition (in tCO2e)
Explained part 0.0443 (0.0139) 0.395 (0.0300) 0.203 (0.0353) 0.407 (0.0584)
Unexplained part 0.484 (0.0360) 0.133 (0.0335) 0.451 (0.0837) 0.247 (0.0658)
Decomposition (in %)
Explained share 8.39 74.81 31.04 62.23
Unexplained share 91.66 25.19 68.96 37.77

Notes: Columns 1 to 4 show results obtained from two-fold Oaxaca-Blinder decompositions. Robust standard errors are in
parentheses. Specifications (1) and (2) correspond to different control sets for food (without calorie intake and controlling
for calorie intake), and (3) and (4) correspond to different control sets for transport (with and without traveled distance).
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