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Abstract—Traffic management has traditionally focused on
toll-based road pricing. However, road pricing often raises con-
cerns about accessibility and public dissatisfaction, leading to its
prohibition in some regions, such as Finland. This study optimises
the dynamic allocation of incentives to drivers, encouraging them
to reroute onto alternative (potentially longer) paths to achieve
greater societal benefit, namely reduced total travel time (TTT)
and total emissions in the transportation network, contributing
to climate change mitigation. We employ a multi-agent rein-
forcement learning approach to dynamically assign incentives to
drivers to reduce both total travel time and emissions, with travel
times estimated using traffic simulation software. We demonstrate
that, with an unlimited budget and an objective of minimising
travel time, the incentive scheme reduces TTT by 16%, compared
to the dynamic UE. With a budget equivalent to about 11% of
the UE total time, a 16% reduction in TTT is achieved. When the
goal is to minimise emissions, a 9% reduction in CO2 emissions
is observed under an unlimited budget. We demonstrate a critical
trade-off: minimising TTT leads to an increase in emissions, while
prioritising emission reductions raises TTT. However, with the
right combination of weights in the multi-objective function, both
TTT and total emissions are improved beyond the baseline.

Index Terms—Traffic management, Incentives, Multi-agent
reinforcement learning, Q-learning, Traffic simulation.

I. INTRODUCTION

Traffic congestion in large cities is a major contributor to
air pollution, with road transport accounting for nearly 26% of
the UK’s total emissions in 2021 [1]. Stop-and-go traffic and
idling vehicles worsen fuel consumption, increasing pollutants
such as nitrogen oxides and particulate matter. Although the
Net Zero Emissions scenario projects that 60% of car sales
will be electric vehicles by 2030, four out of five cars on
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the road will still rely on internal combustion engines [2].
To tackle these environmental challenges, urban areas have
implemented various traffic management strategies, including
congestion pricing, as seen in London [3]. While such schemes
help reduce vehicle numbers in specific zones, they often face
opposition due to fairness concerns and regulatory barriers.
As an alternative, incentive-based approaches have gained
attention for their ability to promote voluntary changes in
travel behaviour [4], [5].

Incentive schemes have been proposed with the aim to
reduce emissions and congestion by influencing travellers’
mode, route, or departure time choices. In the case of route
decisions, for instance, if one route is faster but heavily con-
gested, while an alternative is longer but produces fewer emis-
sions, travellers may opt for the latter if compensated appro-
priately. However, financial constraints limit their widespread
implementation, making efficient allocation critical. While an
unlimited budget could theoretically optimise traffic flow and
emissions reduction, real-world applications require strategic
distribution of incentives to achieve the greatest environmental
benefits while maintaining smooth traffic movement.

To minimise emissions while achieving SO traffic flow,
some drivers must take routes that are (slightly) longer than
their shortest paths [6]. To facilitate this shift, incentive
schemes can be implemented to encourage drivers to opt for
routes that may be less desirable in terms of personal travel
time [7]–[9], but contribute to higher overall social benefits.
While numerous studies have analysed the effects of incentive
schemes on total travel time and emissions under static traffic
conditions [5], [10], the dynamic nature of traffic must be
considered to effectively reduce emissions. This highlights the
necessity of designing incentive mechanisms within a dynamic
framework [11].



While no studies have directly examined incentive schemes
for emissions reduction in urban transportation networks,
some research has employed optimisation-based approaches to
regulate tolls for traffic management with the goal of reducing
emissions. For example, [12] developed a bi-level optimisation
model where the lower level determines an equilibrium traffic
assignment, while the upper level applies different tolling
strategies specifically designed to minimise CO2 emissions.
However, their toll strategies are categorical and may yield
suboptimal solutions. On the other hand, [13] formulated a
route-based traffic assignment approach incorporating tolls
determined via Multi-agent Reinforcement Learning (MARL).
Their tolling mechanism utilises a reward function that bal-
ances route travel time and imposed tolls, allowing users to
prioritise these objectives.

The objective of this study is motivated by the incentive
schemes designed in [10], [11], where the authors investigated
the effectiveness of static link and path incentive schemes on
the total travel time (TTT) under a budget limit. Our work
extends their approach to a dynamic setting using simulation
and employing a multi-objective approach, introducing the
estimation of emissions and insights shown in a Pareto front
for different budgets.

Building on top of [11], this study introduces a multi-
objective reward function that simultaneously minimises con-
gestion and emissions. The latter are estimated using the data
given by the microscopic traffic simulator SUMO, namely the
acceleration and speed of the vehicle, and we examine the
trade-off between travel efficiency and environmental impact.
By generating a Pareto front under different budgets, we
provide insights into the balance between incentive allocation
and system-wide improvements. The proposed approach is
evaluated against a baseline obtained from SUMO that uses
the Gawron’s algorithm for dynamic equilibrium [14], using
the Helsinki city centre (Kamppi area) network as a case study,
and we derive the weights (or objective priorities) that yield
better performance in terms of travel time and emissions than
the baseline.

Our main contributions are:

1) Developing a multi-objective MARL-based incentive
scheme to minimise TTT and CO2 emissions simulta-
neously.

2) Estimating emissions through data from the SUMO simu-
lator and analysing the Pareto-optimal trade-off between
congestion and emissions under various incentive bud-
gets.

3) Comparing the proposed scheme to the SUMO baseline,
demonstrating its effectiveness in improving network
efficiency while reducing environmental impact in a real-
world urban setting.

The remainder of this paper presents the methodology
employed to benchmark and investigate the incentives scheme
in Section II; the case study, outputs of the algorithms and the
results’ interpretations in Section III; and finally, conclusions
are drawn in Section IV.

II. METHODOLOGY

In this section, we formulate a Markov Decision Process
(MDP) using the universal modelling framework from [15].
This approach extends our work [11], incorporating emissions
in a multi-objective reward function. Based on MARL and mi-
croscopic simulation techniques, our model aims to determine
the optimal incentive for each driver under a limited budget.
We solve this MDP employing Independent Q-learning algo-
rithm [16], an algorithm adapted for multi-agent environments
where each traveller, defined by their origin and destination,
acts as an agent with a corresponding Q-function. Additionally,
we detail our methodology for estimating CO2 emissions
and integrating these estimates into the multi-objective reward
function.

A. Markov Decision Process Formulation

State Variable. The state represents all the information
needed to decide what happens after an action is taken. The
goal is to find an optimal policy, i.e., a set of rules that tells
the agent the best action to take. In this case, the “state” of an
agent is simple: their origin and destination. Once an agent
selects a route (an action), it reaches its destination without
perturbations, and thus, it is not necessary to store the state.
This is called a one-step MDP because the agent’s decision
is made at the start, and there are no further transitions or
decisions along the way.

Decision Variable. The (reinforcement learning) agent
should decide whether a path should be incentivised or not,
with the restriction that at most one can be incentivised.
Note that the agent could have the decision that no paths
are incentivised. Let W be the set of agents and Pw the
set of available paths for agent w ∈ W . Also, for a given
agent w ∈ W , Xw is a vector in R|Pw| with binary entries
that represent the taken path p ∈ Pw. Moreover, the set that
encompasses the paths taken of all agents is X = {Xw}w∈W .

Then, our decision variable is a vector Yw ∈ R|Pw| with
binary entries where 1 means that the path will be incentivised
and 0 otherwise. Consider the action space, which represents
the set of all possible decisions for agent w ∈ W:

Yw ∈
{
yw ∈ {0, 1}|Pw| : yw1 ≤ 1

}
, ∀w ∈ W

for which Yw takes values in Yw.
Note the connection between Y and X , as the latter gives

the paths used by all agents. Even though the decision variable
is Yw, we still use Xw and X to calculate the reward. In case
one path is incentivised, it will be used, and thus Xw = Yw.
However, when Yw = 0 (no path is incentivised) the path taken
corresponds to the shortest.

Let the vector of path travel times of all paths of agent
w ∈ W be τw ∈ R|Pw|. Let the scalar δ be the amount we
reduce the time of the incentivised path. Thus, the travel times
are adjusted as follows.

τw ← τw − Ywδ.



The above update only modifies a single entry of τw, the one
that corresponds to the incentivised path. Since we want the
incentivised path to have the lowest travel time, we set the
time reduction δ to be the difference between the incentivised
path’s travel time and the minimum path’s travel time, plus an
extra scalar term ϕ > 0:

δ = τTwYw −min{τw}+ ϕ.

This will make the incentivised path’s travel time to be ϕ units
below the minimum travel time.

Finally, the path with minimum cost is selected,
which corresponds to the incentivised one, namely,
argminp∈Pw

{τw}. If there are no incentivised paths,
all entries of Yw will be 0, and no modification will be made.

Budget Limitation. Let B be the total budget available
for incentivising drivers and b the budget used so far. For
convenience, the budget is measured in time units. The
algorithm checks whether there is enough budget to complete
the action, i.e., δ + b ≤ B. If there is an insufficient budget,
it does not modify the travel times and selects the original
shortest path. The budget is continuously tracked throughout
the process, representing the state of the central authority
responsible for assigning incentives.

Reward Function. The reward function consists of two
main terms, RT

w(X) and RE
w(X), associated with time and

emissions, respectively. We first show the reward function for
travel time:

RT
w(X) = ω1Cw(X) + ω2TTT(X), ∀w ∈ W

where ω1 and ω2 are chosen to ensure that the two quantities
are of the same order of magnitude. Each vehicle is treated
as an autonomous agent, with specific characteristics, such as
velocity v and acceleration a. These rewards correspond to a
weighted combination of the agent’s travel time and the TTT,
which are known only after all agents have made their routing
decision and the behaviour of each individual driver on the
network has been implemented. We define Cw(X) to be the
travel time experienced by agent w ∈ W , given the choice of
the other agents stored in X . Also, TTT(X) is the estimated
total travel time of the network that also depends on the actions
of every agent.

The reward function for emissions is defined as:

RE
w(X) = λ1Emw(X) + λ2TE(X), ∀w ∈ W

where λ1 and λ2 are chosen to ensure that the two quantities
are of the same order of magnitude, as above. Similarly,
these rewards correspond to a weighted combination of the
agent’s individual emissions and the total emissions. We define
Emw(X) to be the generated emissions by agent w ∈ W ,
given the choice of the other agents stored in X . Also, TE(X)
are the estimated total emissions of the network that also
depend on the actions of every agent. The emissions are
calculated based on the dynamic model in [17], with the

TABLE I
NGM MODEL PARAMETERS.

Parameter Definition Value
Tidle CO2 emissions from gasoline 8887 gCO2/gal
M Vehicle mass 1334 kg
aw Vehicle acceleration From SUMO [m/s2]
vw Vehicle speed From SUMO [m/s]
g Gravitational acceleration 9.81 [m/s2]
crr Rolling resistance 0.015
cd Aerodynamic drag coefficient 0.3
η Fuel efficiency 0.7
A Frontal area 2.5 [m2]
ρ Air density 1.225 [kg/m3]

Egas Energy in gas 31.6× 106 [J/L]
r Regeneration efficiency ratio 0

necessary parameters, namely the acceleration and velocity of
each vehicle, obtained from SUMO.

We finally show the complete reward function Rw(X) as
follows:

Rw(X) = RT
w(X) +RE

w(X), ∀w ∈ W (1)

Recall that to compute the reward, we need to know X , as
it gives the paths used by all agents. In fact, even though
the decision variable is Yw, Xw and X are used to calculate
the reward: in case one path is incentivised, it will be used,
and thus Xw = Yw; however, when Yw = 0 (no path is
incentivised), then Xw will have entry 1 for the path given by
argminp∈Pw

{τw}, which is the shortest path, i.e., the used
one.

Emissions Estimation. We build on top of the Newton-
based greenhouse gas model (NGM) dynamic model [17] to
estimate emissions generated by each agent w ∈ W based on
their acceleration, aw, and velocity, vw. Table I depicts the
definitions and values of all the relevant parameters used in
this model. The emissions are calculated as

Emw =

{
r if γw ≤ 0

γw(vw + 0.5aw)/η otherwise
(2)

where

γw =
Tidle

Egas
ζw (3)

ζw = Mawvw +Mgcrrvw ∗ 0.5cdAρv3w. (4)

Finally, the total emissions are calculated as TE =∑
w∈W Emw, i.e., the sum of the emissions generated by all

the vehicles.
Objective Function. We consider the classical action-value

function (Q-function) which corresponds to the value of taking
a given action while being in a given state. But, as we do not
store the state (as the state remains unchanged), this reduces
to an action function that represents the value of taking an
action regardless of the state. We use a different Q-function
for each agent:

Q∗
w(Yw) = min

X′∈X
Rw(X

′). (5)



The above equation is solved iteratively for every episode
n using the following update rule.

Qw(Yw)← (1−αn)Qw(Yw)+αnRw(X), ∀w ∈ W (6)

where αn is the learning rate, that influences the learning
performance of the algorithm. One typically starts with a
big αn so that the algorithm gives more importance to new
information. At the end, we want a small αn so that it
converges.

B. Solution Algorithm.

We employ the following algorithm to solve our problem.

Initialise
1) Compute k shortest paths for every agent w ∈ W

and store them in Pw.
2) For each w ∈ W , set the entries of τw to be the free-

flow travel times of w’s chosen paths from SUMO.
3) Set Qw(Yw) ← 0 for all agents w ∈ W and set ϕ

as a small number.
For each episode n = 1, ..., N :

4) Set ϵn = 1− n
N , αn = a

(b+n) and b = 0.
For each agent w ∈ W:

5) Sample random number p ∼ U(0, 1).
6) Take action Yw as follows:

Yw =

{
Random action Yw ∈ Yw, if p ≤ ϵn

argminYw∈Yw Qw(Yw), otherwise
7) Calculate the amount of the incentive δ:

δ = τTwYw −min{τw}+ ϕ

8) If there is enough budget left, i.e., δ+ b ≤ B:
Modify travel times τw and update budget
b:

τw ← τw − Ywδ

b← b+ δ

Else:
Do not apply incentives.

9) Select the path to be taken:
p = argminp∈Pw

{τw}. Let Xw be the
decision vector of choosing path p.

10) Add Xw to X , the set of all paths taken by
agents.

11) After all agents have completed their trips, retrieve
TTT(X), travel time Cp(X) from SUMO, and up-
date the travel times τw for each agent.

For each agent w ∈ W:
12) Compute the reward using Eq. (1), and update

the Q-function with Eq.(6).

III. NUMERICAL EXPERIMENTS

A. Case study

We apply our proposed methodology to the Kamppi area,
Helsinki, Finland, on the network depicted in Fig. 1. This

Fig. 1. Kamppi, Helsinki Area network.
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Fig. 2. CO2 emissions and TTT results when minimising TTT under different
incentive budgets.

area is known for its congestion during peak hours and central
location.

The data for simulation in SUMO, including a set of
trips with departure times for each traveller and the network
definition is obtained from [18]. The network contains 235
edges and 152 nodes, and there are 1100 trips.

B. Numerical results

In this study, we demonstrate the trade-off between opti-
mising for travel time or for emissions generated over the
network. As a first example, Fig. 2 shows the behaviour of the
CO2 emissions and the TTT when the objective is to minimise
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Fig. 3. CO2 emissions and TTT results when minimising emissions under
different incentive budgets.

travel time, i.e., ω1, ω2 ≥ 0. The TTT outperforms the baseline
by SUMO, and as the budget decreases, the solution degrades.
Regarding the emissions, these are reduced for an unlimited
budget, and our methodology outperforms the baseline for any
budget.

On the other hand, Fig. 3 shows the results when the
objective is set to minimise emissions only, i.e., λ1, λ2 ≥ 0.
From the figures minimising emissions, the reader may appre-
ciate the clear difference between the budget allowance and
the dynamic UE baseline for emissions. It is clear how the
emissions generated are lowest with an unlimited budget, and
the solution degrades as the budget allowance decreases, while
always outperforming the dynamic UE baseline. Regarding the
TTT, there is a negative trend as it seems to increase (even
greater than the baseline) when the emissions are minimised.
This suggests that in order to minimise emissions and maintain
a reasonable TTT, both objectives should be taken in the
reward function, giving place to a multi-objective optimisation
problem.

Regarding the multi-objective reward function, we analyse
the results giving the same weight to both TTT and emis-
sions. When using this combination, the results in Fig. 4
were obtained, where we can notice how the emissions are
significantly lower than the dynamic UE baseline, but not as
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Fig. 4. CO2 emissions and TTT generated when mixing travel time and
emissions in the objective..
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Fig. 5. Pareto fronts for different budgets.

low as in Fig. 2, which intuitively reasons as the objective
now considers both travel time and emissions and these are
conflictive. Conversely, it is more difficult to appreciate the
time benefit, as the incorporation of emissions seems to
degrade the TTT. With an unlimited budget, the algorithm
ends up converging with a lower TTT, but for a budget of
50e3, it appears slightly worse at the end. This suggests that,
for a small budget, the weights corresponding to time should
be higher than the ones corresponding to emissions, so that
the algorithm prioritises time, resulting in a scenario where
both emissions and TTT are better than the baseline.



Finally, and most importantly, in relation to the multi-
objective reward function, we have identified the conflicting
nature of emissions and travel time. The Pareto front of non-
dominated solutions is shown in Fig. 5 for different budgets
and the dynamic UE baseline. The curves illustrate how the
solution deteriorates as the budget decreases. They also explain
why the TTT is not as low when the budget is set at 50e3 and
provide insights into how the weights of the objective function
can be adjusted to outperform the baseline in both emissions
and TTT. Notably, our approach consistently outperforms the
baseline in terms of emissions. However, when considering
TTT, a certain budget allowance is required to achieve superior
performance. The transition to net-zero carbon emissions is
more readily attainable, as emissions are minimised most
effectively. However, we aim to avoid a significant increase in
TTT. Therefore, the weights should be selected in a way that
heavily minimises emissions while maintaining an acceptable
TTT.

IV. CONCLUSIONS

We implement a dynamic incentives scheme aimed at reduc-
ing both emissions and overall congestion in the network. With
this, we demonstrate how encouragement can lead to social
benefits by minimising emissions, TTT and a mix of both
while offering a more publicly acceptable alternative to road
pricing, which often causes public dissatisfaction and uneven
welfare distribution.

To this end, we extend the work in [11] to appropriately
calculate and incorporate emissions into the algorithm and
consider a multi-objective reward function. The solution al-
gorithm is based on MARL, where SUMO is the environment
to estimate travel times dynamically for more realistic results,
and we use simulated data from the Kamppi area in Helsinki,
Finland. The results indicate that our algorithms are reliable
for an unlimited budget and show what objective should be
prioritised to outperform the dynamic UE baseline.

Some of the limitations of this work include not considering
the behaviour of the drivers, as in realistic situations, a driver
may follow or not the incentivised route. This can be taken
into account by assuming a participation/compliance rate.
Furthermore, as shown in [10], incentives on paths outperform
incentives on links. None of them were tried in this study, as
the incentives are along trips; however, it would be insightful
to compare results with path incentives.
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