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Variational inference (VI) is a computationally efficient
and scalable methodology for approximate Bayesian
inference. It strikes a balance between accuracy of
uncertainty quantification and practical tractability. It
excels at generative modelling and inversion tasks due
to its built‑in Bayesian regularization and flexibility,
essential qualities for physics‑related problems. For
such problems, the underlying physical model deter‑
mines the dependence between variables of interest,
which in turn will require a tailored derivation for the
central VI learning objective. Furthermore, in many
physical inference applications, this structure has rich
meaning and is essential for accurately capturing the
dynamics of interest. In this paper, we provide an
accessible and thorough technical introduction to VI
for forward and inverse problems, guiding the reader
through standard derivations of the VI framework and
how it can best be realized through deep learning. We
then review and unify recent literature exemplifying
the flexibility allowed by VI. This paper is designed for
a general scientific audience looking to solve physics‑
based problems with an emphasis on uncertainty
quantification.
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for inverse problems’.
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1. Introduction
This paper serves as a tutorial and review of methodologies for inference related to physical
problems using variational inference (VI). We introduce basic concepts and the mathematical
formulations pertaining to the most relevant and important tools in the field. We first consider
the modelling of physical systems with partial differential equations (PDEs). We then present
an overview of inverse problems through optimization and Bayesian perspectives and provide
a detailed derivation of VI. Equipped with this knowledge, we then review salient methods in
the literature for solving physical inference problems with forward model and weighted residual
method (WRM)‑based VI.

Forward problems in physical modelling refer to the computation, simulation or estimation
of the solution to a mathematical physics problem. These can come in a variety of forms such
as agent‑based models [1], data‑driven models [2], differential equations [3] and any number
of combinations thereof. In this work, we focus on models which describe mechanistic under‑
standing through differential equations. Broadly speaking, these models describe the change in
certain quantities of interest, such as heat, velocity and electric potential, with respect to time or
space. As such, these models are intrinsically linked to the setting in which they are considered,
that is to say, initial conditions, boundary conditions, geometry and other physical quantities. If
multiple forward problems must be solved for different sets of parameters, classical numerical
solvers can be computationally intractable. These multi‑query problems often arise in contexts of
uncertainty quantification (UQ) through methods such as Monte Carlo sampling, Taylor expan‑
sion and perturbation methods. Surrogate models may alleviate this computational burden [4]. A
classical example of surrogate models for forward problems is Gaussian processes (GPs), which
have inherent UQ capabilities [5]. Many learning models have been recently developed for surro‑
gate modelling of PDEs with functional inputs such as deep operator networks (DeepONet) and
Fourier Neural Operators (FNO) [6,7]; however, these models do not have built‑in UQ capabilities
like [8,9].

Inverse problems, on the other hand, aim to recover model parameters that gave rise to a set
of observations, i.e. inverting the forward problem. Classic application fields include computed
tomography [10], cosmology [11] and geophysics [12]. When observations are noisy or sparse, the
inverse problem is typically ill‑posed, meaning that many different model parameter values could
have provided the same observations. Then, inverse problems require a form of regularization on
the model parameters to provide unique solutions [13]. Point‑estimate‑based inversion generally
does not seek UQ [14], while Bayesian methods recover distributions over parameters [15].

VI is a statistical framework that strikes a practical balance between computational costs and
accuracy of UQ [16,17]. It relies on the optimization of a statistical objective to provide uncertainty
estimates in inference tasks [18]. There is a large variety of VI schemes with different advantages
and limitations [19]. One of the most discernible advantages of constructing VI‑based inference
schemes is to allow one to circumvent expensive Markov Chain Monte Carlo (MCMC) sampling
of intractable probability distributions, which often arise in the statistical treatment of uncertainty
relating to nonlinear models. As these nonlinear models are essential for capturing the physical
structure of many scientific problems, VI methods have great potential in making UQ for sciences
computationally feasible. Furthermore, VI allows practitioners to construct computationally ef‑
ficient frameworks with built‑in conditional dependence structures reflecting the nature of the
inferential task at hand [20–22]. This conditional dependence structure will often be represented
as a Bayesian graphical model [16,23]. The ability to strictly enforce intricate dependencies be‑
tween quantities of interest—such as in physics problems—is precisely what gives rise to the
wide variety of methods explored in this paper.

We structure the rest of the paper as follows: §2 introduces the relevant mathematical back‑
ground; forward problems are described in §2(a); optimization and Bayesian inference for inverse
problems are covered in §2(b); VI methods are presented in §2(c). Section 3 reviews applications of
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Figure 1. A depiction of the three spaces of inferential interest: the observation space 𝒴, the discretized solution space𝒰h
and the discretized parameter space𝒵h. More specifically, we have an observation y∈ 𝒴 ⊆ℝdy , a solution uh ∈𝒰h ⊂𝒰
and a parameter zh ∈𝒵h ⊂𝒵.

these methods to physics‑based generative modelling tasks found in the literature. Applications
are split into forward‑model‑based approaches in §3(a) and residual‑based learning in §3(b).

2. Physics and inference
In this section, we introduce and elaborate on the core concepts and tools required to build vari‑
ational inference schemes for the physical sciences. In figure 1, we show a depiction of the math‑
ematical spaces that describe the three main quantities of inferential interest: parameter, solution
and observation, which we denote as z∈𝒵,u∈𝒰, y∈ 𝒴, respectively. In the following sections, we
denote the finite‑dimensional representations of the parameter and solution as zh ∈𝒵h,uh ∈𝒰h, re‑
spectively, where the subscript h is a parameter describing the degree of discretization. This means
we only consider spaces of solutions and parameters that are finite‑dimensional; hence, they have
already been discretized. Rigorous mathematical treatment of inference schemes over functions,
which are infinite‑dimensional, is of great value but beyond the scope of this paper [15,24].

(a) Forward problems
We describe a generic forward model through a numerical scheme that relates the discretized
physical setup, zh ∈𝒵h to the realization of the physical process across time and space, which we
call the solution and is denoted as uh ∈𝒰h. The forward model is a mapping from a particular
setup to the solution associated with that setup described as F† ∶𝒵h →𝒰h. The use of “†” refers
to the near‑exact numerical realization of the differential equations of interest, and we will see
later how this might be approximated by a parametrized—less expensive to evaluate—surrogate
model.

To discuss PDEs in more detail, we choose a canonical example, the Poisson problem. It de‑
scribes a variety of steady‑state diffusive physical systems, such as heat, electric potential and
groundwater flow. A function is said to be a solution to this problem if it satisfies, for some
physical domain 𝛺,

∇ ⋅ (z(x)∇u(x)) = f(x), for x∈𝛺, (2.1a)

u(x) = 0, for x∈ 𝜕𝛺, (2.1b)

where 𝜕𝛺 denotes the boundary of 𝛺. The problem stated in this form is not amenable to numer‑
ical computation as u is currently an infinite‑dimensional object and it must be discretized. How
we represent this function u∈𝒰 and how it relates to (2.1) is given by the particular numerical
scheme in use.

We look at the discretization of solution fields and PDE operators through the lens of the
weighted residual method (WRM) [3], which encompasses most spatial discretization schemes
such as finite element (FE), spectral methods, finite difference and physics‑informed neural net‑
works (PINNs). The advantage of taking this perspective on numerical discretization for machine
learning (ML) is that inference schemes can be constructed independently of the particular WRM



4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A

383:
20240324

.........................................................................................................................

method in use; hence, these can be swapped out with ease. To write out the WRMs, we first specify
the residual function

R(u, z, f, x) = ∇ ⋅ (z(x)∇u(x)) − f(x). (2.2)

Choosing a set of weight functions {vi}
dr
i=1 with vi ∈𝒱 we can test the residual

ri =∫
𝛺

vi(x)R(u, z, f, x)dx=∫
𝛺

vi(x)
(
∇ ⋅ (z(x)∇u(x)) − f(x)

)
dx. (2.3)

Collecting r= {ri}
dr
i=1 discretizes the action of the differential operator on the solution u. One can

then use integration by parts on (2.3) if the test functions are differentiable to obtain the weak form
of the Poisson equation,

ri =∫
𝜕𝛺

vi(x)(z(x)∇u(x)) ⋅ n̂(x)dx −∫
𝛺

∇vi(x) ⋅ (z(x)∇u(x))dx −∫
𝛺

f(x)dx. (2.4)

Various other Galerkin‑type methods can be designed by varying the choice of test and trial func‑
tions. By choosing vi = 𝜙i (implying v∈𝒱h =𝒰h and𝒱h = span{𝜙i}

Nu
i=1 and for this problem choosing

𝜙i to be hat functions), we obtain a Bubnov–Galerkin method [25]. Working with such weak forms
has notable advantages, mainly it reduces the differentiability requirements on the trial function
as a derivative order is passed over to the test function. Linear approximants can be represented
with the following basis function expansion uh(x) =

∑Nu
i=1[u]i 𝜙i(x), where uh ∈𝒰h, u∈ U are the co‑

efficients, and 𝜙i are the basis functions. When constructing inference schemes, we can now use u
in lieu of uh. Similarly, we can replace z∈𝒵—which in this particular example is a function—with
a finite‑dimensional discretization zh ∈𝒵h which in turn can be expressed with an expansion as
zh(x) =

∑Nz
i=1[z]i 𝜓i(x) and summarized as z∈ Z. We denote the chosen mapping from coefficients

z,u to interpolants zh,uh as 𝜋z(z) = zh, 𝜋u(u) = uh, respectively. Residuals like these can be effi‑
ciently computed in a GPU‑efficient manner using array‑shifting [26] or convolutions [27]. We
note that a variety of variational formulations such as the Ritz method or energy functionals are
amenable to equivalent residual formulations as in (2.3) [28].

PINNs are neural network‑based methods for approximating the solution to differential equa‑
tions [29]. Many of these methods can be obtained by taking uh to be a nonlinear approximant as
a neural network. A typical form is uh(x) = TL◦… ◦T0(x)where Ti(x) =𝝈i(Wi x + bi)where 𝝈i,Wi, bi
are the layers’ activation function, weight matrix and bias vector, respectively, and choosing
vi(x) = 𝛿(xi − x) where 𝛿 is the Dirac delta function and xi are collocation points. For these PDE
solvers, the solution representation for inference is u= {uh(xi)}

Nu
i=1. It is to be noted that when using

this kind of approach, we no longer make use of the weak form. Neural network approximants
may still be used with the variational form [30]. For further reading on this topic, we refer readers
to [31–33].

The treatment of boundary conditions depends on the specific WRM method in use; FE‑based
methods typically use boundary‑respecting meshes and the weak form naturally includes other
boundary conditions; PINN‑style methods can either include an additive boundary loss term to
the residual or enforce certain types of boundary conditions through certain manipulations of uh

[34]. To numerically solve the PDE means to find uh such that the residual vector r≈ 0, within a
pre‑defined tolerance. In the case of the FE method for linear PDEs, a system of sparse linear equa‑
tions can be set up, which can be directly solved using linear solvers, but the residual formulation
may still be implemented as is often done in the case of PINNs.

(b) Inverse problems
Inversion methods map elements of 𝒴 to points or distributions in 𝒰 or 𝒵1. That is, we either
wish to recover the full solution from observations, or the parameters from observations. We find
it appropriate to separate the full mapping between parameter‑to‑observation, denoted G†, into
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the mapping from parameter‑to‑solution, F† (forward model), and the mapping from solution‑
to‑observation, H† ∶𝒰h → 𝒴 (observation model). Here, the “†” denotes the ‘true mapping’ to dis‑
tinguish from settings where we might try and learn this map. The full parameter‑to‑observation
map can be written as G†(zh) = (H†◦F†)(zh), the composition of the forward and observation maps.

(i) Point estimate inversion

If one is not interested in recovering uncertainty over model parameters given some data, point
estimate inversion may be used. Inversion schemes rely on the combination of a data‑fit term
and a regularization term. As most inverse problems of interest are ill‑posed, the quality of the
estimated quantities from applying inversion schemes is tied to the quality of the regularization
imposed. A classic approach to the regularization of inverse problems is the Tikhonov approach
[13–15]

z⋆ = argmin
z∈Z

1
2‖y − (H†◦F†◦𝜋z)(z)‖2 +

𝛽
2 ‖𝜋z(z)‖2, (2.5)

where F† is the forward model and 𝛽 controls the strength of the bias towards zh estimates that
are small in the chosen norm. We note other forms of regularization are possible, such as total
variation [35], sparsity promoting 𝓁1 regularization [36] and regularizing operators [12]. Alterna‑
tive perspectives on inverse problems for physical systems use the regularization term to impose
physical knowledge. These methods estimate the parameter of interest as

z⋆ = argmin
z∈Z

min
u∈U

‖y − (H†◦𝜋u)(u)‖2 + 𝛽‖r(𝜋u(u);𝜋z(z))‖2, (2.6)

where 𝛽 now controls the trade‑off between the data‑fit and the physics regularization. In practice,
the parameter 𝛽 is often manually tuned. Taking uh as the output of a PINNs and the WRM used
for computing r∈ℝdr to be a collocation method where the test functions are Diracs recovers a
PINN‑style parameter inversion method. We note one can choose uh to be an FE expansion with a
weak form result computation. An interesting development of these methods is to formulate the
combined objectives in terms of a bilevel optimization problem [37], which eliminates the need to
balance the physics residual with the data‑fit term.

(ii) Bayesian inverse problems

Recovering a point estimate of the solution may be insufficient for many applications. Bayesian
inverse problems (BIPs) provide an alternative approach through the probabilistic framework
of Bayes’ theorem that offers a unifying framework, UQ and some theoretical insights into the
posterior consistency of the recovered solution. Bayes’ theorem, given as

p(z|y) =
p(y|z)p(z)

p(y)
, where p(y) =∫ p(y|z)p(z)dz, (2.7)

allows one to derive the full posterior distribution over the model parameters z given the observed
data y. This approach combines the likelihood p(y|z), derived from the data‑generating model,
and the prior distribution p(z) as the regularizer, offering a direct parallel to the point‑estimate‑
based approach. The model evidence, p(y), also known as the marginal likelihood, which appears
in (2.7), is often intractable. Hence the need for methods that do not require normalized prob‑
ability densities such as MCMC or Bayesian VI. Note that the point estimate recovered using
the optimization approach is typically the maximum a posteriori (MAP) estimate (as in equation
(2.5)) where additive zero‑mean Gaussian noise on the observations leads to a Gaussian likeli‑
hood. For typical physical systems, the mapping from parameter to observation can be expressed
as G= (H†◦F†◦𝜋z). We consider a set of observations that arise as independent and identically
distributed (i.i.d.)

y=G(z) + 𝝐, 𝝐 ∼𝒩(0, 𝛤), (2.8)
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where 𝛤 is the symmetric positive‑definite noise covariance. The observation model (2.8) results
in a Gaussian likelihood p(y|z) =𝒩(y;G(z), 𝛤).

(c) Variational inference
At its core, VI poses statistical inference as an optimization problem by minimizing a data‑
informed regularized loss over a variational family of distributions. Abstractly, we seek

q⋆(z) ∈ argmin
q∈𝒬(Z)

J(q(z); y), (2.9)

where 𝒬(Z)⊆𝒫(Z) is the variational family—a subset of all possible probability measures on Z. To
realize this approach, we typically choose 𝒬(Z) to have a parametric form with parameters 𝜙. The
variational approximation q𝜙(z) (with 𝜙 being the mean and covariance for Gaussian approxima‑
tions, for example) is then parametrized by 𝜙 and loss is minimized with respect to 𝜙. In some
cases, closed forms of the updates on 𝜙 can be derived, but in many modern applications, one
resorts to gradient descent schemes. The choice of loss function J( ⋅ ;y) is crucial and determines
the object recovered by the method. We next discuss two pertinent concepts: Bayesian VI and
probabilistic generative models.

(i) Bayesian variational inference

Bayesian VI is the optimization formulation of the Bayes’ theorem. It performs inference with a
principled balance between data‑fit and prior knowledge and recovers a probability distribution
over model parameters. The loss function for Bayesian VI is based on the Kullback–Leibler (KL)
divergence

DKL(q(z)||p(z)) = 𝔼q(z) [log
q(z)
p(z)

] , (2.10)

given absolute continuity between q and p, meaning q assigns zero probability to sets for which p
also assigns zero probability. The KL divergence quantifies the difference between two probability
distributions. Bayesian VI aims to minimize the KL divergence between the true posterior p(z|y),
and the variational approximation q𝜙(z), parametrized by 𝜙. To derive the objective function, we
write out the KL divergence, before applying Bayes’ theorem and simplifying

DKL(q𝜙(z)||p(z|y))= 𝔼q𝜙 (z) [log
q𝜙(z)
p(z|y)

]= 𝔼q𝜙 (z) [log
p(y)q𝜙(z)
p(y|z)p(z)

] ,

= log p(y) − 𝔼q𝜙 (z)
[
log p(y|z)

]
+ 𝔼q𝜙 (z) [log

q𝜙(z)
p(z)

] . (2.11)

As p(y)does not depend on the variational approximation q𝜙(z) [38],minimizingDKL(q𝜙(z)||p(z|y))
is equivalent to minimizing

J(𝜙;y) ∶= 𝔼q𝜙 (z)
[
− log p(y|z)

]
+DKL(q𝜙(z)||p(z)). (2.12)

In this form J(𝜙;y) avoids the expensive computation of the model evidence p(y) and is directly
minimizing the KL divergence between the variational approximation and the Bayesian posterior.
Seeking 𝜙⋆ = argmin𝜙 J(𝜙;y), yields a Bayesian VI approximation to the posterior. In practice, the
expectations in (2.12) are approximated via Monte Carlo using samples z(s) ∼ q(z), s= 1,… ,S [39].

(ii) Probabilistic generative models

Probabilistic generative models are defined by a joint distribution p𝜃(z,y), parametrized by 𝜃
which are to be estimated from the observed data. In order to learn the generative model,
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these parameters are typically estimated via maximization of the Bayesian model evidence,
p𝜃(y) =∫ p𝜃(z,y)dz, which now depends on 𝜃. Methods in variational inference, such as Varia‑
tional Autoencoders (VAEs) [40], will often combine estimation of generative model parameters
with the variational approximation of the posterior q𝜙(z), where, in general, the exact posterior
p𝜃(z|y) = p𝜃(z,y)∕∫ p𝜃(z,y)dz cannot be evaluated due to the intractable normalization constant
arising from the complex generative model structure. In such cases, the joint estimation of param‑
eters {𝜙, 𝜃} is required. Taking the prior p(z) as fixed and the likelihood p𝜃(y|z) as the parametrized
model, we can rearrange (2.11) to obtain an expression for the log‑marginal likelihood,

log p𝜃(y) =DKL(q𝜙(z)||p𝜃(z|y)) + 𝔼q𝜙 (z)
[
log p𝜃(y|z)

]
−DKL(q𝜙(z)||p(z)), (2.13)

which is intractable due to the evaluation of the posterior in the first right‑hand term, but can be
bounded from below due to the non‑negativity of the KL

log p𝜃(y)≥ 𝔼q𝜙 (z)
[
log p𝜃(y|z)

]
−DKL(q𝜙(z)||p(z)) ∶=ℒ(𝜙, 𝜃;y). (2.14)

Here,ℒ is known as the evidence lower bound (ELBO), and in practice is maximized via gradient‑
based stochastic optimization schemes, using Monte Carlo to estimate expectations. For optimiza‑
tion, the objective is defined in terms of both 𝜙, 𝜃 as the negative ELBO, J(𝜙, 𝜃;y) ∶=−ℒ(𝜙, 𝜃;y),
where optimal parameters minimize this objective 𝜙⋆, 𝜃⋆ = argmin𝜙,𝜃 J(𝜙, 𝜃;y).

We note that the ELBO is often derived via Jensen’s inequality (see e.g. [41]), which applies to
concave transformations of expectations, and for the natural log reads log(𝔼[X])≥ 𝔼[log(X)] [20],
and is applied for (2.18) below

log p𝜃(y) = log (∫ p𝜃(z,y)dz)= log (∫
p𝜃(z,y)
q𝜙(z)

q𝜙(z)dz) (2.15)

= log (𝔼q𝜙 (z) [
p𝜃(z,y)
q𝜙(z)

])≥ 𝔼q𝜙 (z) [log
p𝜃(z,y)
q𝜙(z)

] (2.16)

= 𝔼q𝜙 (z)
[
log p𝜃(y|z)

]
−DKL(q𝜙(z)||p(z)) =ℒ(y;𝜙, 𝜃). (2.17)

It is important to note that since the KL term dropped from (2.13) depends on 𝜃,ℒ is a lower bound,
whereas in (2.11) the objective is directly minimizing the posterior KL without approximation (as
log p(y) does not depend on 𝜃).

The ELBO is used for unsupervised learning in VAEs, which are probabilistic generative mod‑
els defined by an encoder and decoder. The encoder is a conditional distribution q𝜙(z|y) which,
intuitively, encodes a data point y into the latent space Z by returning a probability distribution
over it (rather than a fixed embedding). Similarly, the probabilistic decoder p𝜃(y|z) is a probabil‑
ity measure for fixed z and 𝜃, meaning that the decoder returns a distribution over the data y
given the latent vector z. The latent space is typically low‑dimensional, forcing the model to learn
parsimonious representations of the data, and is regularized by a (often simple) prior distribu‑
tion, e.g. p(z) =𝒩(0, I). Both q𝜙 and p𝜃, in general, are parametrized with neural networks. For a
dataset 𝒟= {y(n)}Nn=1, and assuming i.i.d. observations such that the log likelihood decomposes as
log p𝜃(y(1∶N)) =

∑N
n=1 log p𝜃(y(n)), we can write the log marginal likelihood as

log p𝜃(y(1∶N))≥
N∑

n=1

𝔼q𝜙 (z|y(n))

[
log p𝜃(y(n)|z)

]

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
reconstruction error

−DKL(q𝜙(z|y(n))||p(z))
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

regularisation

=∶
N∑

n=1

ℒ(y(n); 𝜃, 𝜙). (2.18)

For large datasets, one often uses a mini‑batch, B⊆𝒟, of the dataset per gradient step, giving
an approximate minimization objective J(𝜃, 𝜙;y(1∶N)) ∶=− N

|B|

∑
n∈Bℒ(y

(n); 𝜃, 𝜙). As we approximate
this lower bound stochastically through Monte Carlo, our objective is a ‘doubly‑stochastic’ ap‑
proximation to the true ELBO, which is found to improve learning [40]. If we now choose
q𝜙(z|y(n)) =𝒩(z;m𝜙(y(n)),C𝜙(y(n))) and p𝜃(y(n)|z) =𝒩(y(n);G𝜃(z),C𝜂) with m𝜙(⋅), C𝜙(⋅), G𝜃(⋅), being
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neural networks, we obtain the classic VAE. The choice of prior distribution affects the latent
regularization and is typically chosen as a standard Gaussian, p(z) ∼𝒩(z; 0, I).

A practical consideration when training VAEs is the computation of the loss function’s gra‑
dient with respect to the VI parameters ∇𝜙J(𝜃, 𝜙;y(1∶N)), which requires gradient backpropagation
through the Monte Carlo sampled latent variables z(i) ∼ q𝜙(z|y(n)). In order to facilitate the gradient
backpropagation, practitioners employ the so‑called ‘reparameterization‑trick’ [40], which de‑
fines the latent random variable as a differentiable transformation of the variational parameters, and
a noise random variable, 𝜖 ∼ p(𝜖). For the Gaussian variational posterior above, this can be done
by first sampling 𝝐 ∼𝒩(𝝐; 0, I), then transforming these to samples from the variational posterior
as z(i) =m𝜙(y(n)) + L𝜙(y(n))⊙ 𝝐, where L𝜙(y(n)) is the Cholesky factor of C𝜙(y(n)) = L𝜙(y(n))L𝜙(y(n))⊤.

Constructing more expressive variational approximations can be achieved through normal‑
izing flows [42,43]. A complicated distribution is modelled as a series of invertible transfor‑
mations of a simple reference distribution, e.g. p(w) =𝒩(0, I). More explicitly, w(i) ∼ p(w), z(i) ∼
q𝜙(z), where z(i) = f𝜙(w(i)) . The density for q𝜙(z) is computed through the change of variable for‑
mula q𝜙(z) = p(f−1

𝜙 (z))det |𝜕zf−1
𝜙 (z)|. Conditional normalizing flows extended the normalizing flow

method to learn conditional densities, i.e. q𝜙(z|y) similar to the encoder for a VAE. Normalizing
flows have the benefit over VAEs of being invertible transformations, but as a result are constrained
to having the same latent dimension as that of the data, so do not benefit from dimensionality
reduction.

3. Physics-informed generative models
We now delve into salient works taken from the literature that best exemplify the flexibility and
versatility of VI for physics. In what follows, we cast the central VI objective of selected works
in a notation consistent with the previously presented material. This should be interpreted as a
paraphrasing of the methods in the referenced works to help the reader best understand their dif‑
ferences and similarities. Particular implementation details such as precise residual computations
or variational forms will vary.

(a) Forward-model-based learning
In this section, we describe inverse problem methodologies that embed the forward model into the
probabilistic generative model. It is assumed the forward model (while still potentially expensive)
can be evaluated for a given input z—outputting a corresponding y—and the dataset is a collec‑
tion of these physical model input–output pairs, 𝒟= {z(n),y(n)}Nn=1. For a probabilistic generative
model, this amounts to sampling from the joint distribution p(z,y) ∝ p(z)p(y|z). In this setting,
the likelihood describes a probabilistic forward map, as determined by the true forward model
G†(⋅) and an assumed noise model, e.g. (2.8). The central goal of these methodologies is to learn a
variational approximation q𝜙(z|y), that once trained, provides a calibrated posterior estimate over
parameters for a previously unseen data point.

(i) Supervised VAEs for calibrated posteriors

This class of models is for supervised learning problems—meaning we have access to input–output
pairs. This allows for the use of the forward KL, DKL(p(z|y)||q𝜙(z|y)) in the objective, as opposed to
the mode‑seeking reverse KL. The estimation of the mean‑seeking forward KL requires an expec‑
tation with respect to the true posterior, which is unavailable to us. However, the average over
the data distribution can be computed using samples from the joint distribution p(z,y) via

𝔼p(y)
[
DKL(p(z|y)||q𝜙(z|y))

]
= 𝔼p(z,y)

[
− log q𝜙(z|y)

]
. (3.1)

This approach is used in [44] to learn an amortized variational approximation with sampled
input–output pairs, computed via the true forward model by pushing prior samples z(n) ∼ p(z)
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through the forward model and sampling y(n) ∼𝒩(G†(z(n)), 𝜎2I). A conditional normalizing flow
provides the variational approximation q𝜙(z|y) =𝒩(f−1

𝜙 (z;y); 0, I)det |𝜕zf−1
𝜙 (z;y)|, mapping data to

the latent space and acting as a surrogate. The forward KL averaged over the data distribution,
and (3.1) is the objective to learn the conditional normalizing flow as

𝜙⋆ = argmin
𝜙

J(𝜙;y), J(𝜙;y) = 𝔼p(z,y) [
1
2‖f

−1
𝜙 (z;y)‖

2
2 − log det |𝜕zf−1

𝜙 (z;y)|] . (3.2)

The posterior given an unseen data point is then computed by sampling w∼𝒩(0, I) and pushing
through the trained conditional normalizing flow f𝜙⋆ (w;y) which approximately samples from
p(z|y).

In [45], the decoder of a VAE is replaced by the known physical forward model, which acts
to physically regularize the problem. Data is assumed to be observed under some known noise
model y∼𝒩(G†(z) +m𝜖,C𝜖) , which can include a bias through the mean m𝜖. Input–output pairs
are used to learn an amortized variational posterior with mean m𝜙(⋅), and covariance square root
C1∕2
𝜙 (⋅) parametrized by neural networks, yielding q𝜙(z|y) =𝒩(m𝜙(y),C𝜙(y)). The Jensen–Shannon

divergence, which is parametrized by 𝛼 ∈ [0, 1], interpolates between the forward (𝛼 = 0) and
reverse (𝛼 = 1) KL. The form of this divergence between q ∶= q(z) and p ∶= p(z) is

JS𝛼(q||p) = 𝛼DKL(q||(1 − 𝛼)q + 𝛼p) + (1 − 𝛼)DKL(p||(1 − 𝛼)q + 𝛼p). (3.3)

A weighted Jensen–Shannon divergence is incorporated into their variational objective alongside
the standard reverse KL as

𝜙⋆ = argmin
𝜙

J(𝜙;𝛼, y), J(𝜙;𝛼,y) = 1
𝛼 JS𝛼(q𝜙(z|y)||p(z|y)) +DKL(q𝜙(z|y)||p(z|y)), (3.4)

where the parameter 𝛼 allows for a trade‑off between data‑fit and regularization, said to help
regularize the problem, preventing either extremely low or high values of posterior variance.
For expensive forward models, the exact forward model can be replaced by a surrogate de‑
coder p𝜃(y|z) =𝒩(G𝜃(z), 𝜎2I), G𝜃H†◦F𝜃◦𝜋z and the encoder and decoder parameters are learned
simultaneously.

(ii) Dynamical latent spaces

Embedding dynamical structure into the latent space of a VAE has been considered to model
time‑indexed data y1∶N = {yn}

N
n=1. In [46], a probabilistic forward model drives the latent solution,

and an auxiliary variable, xn is introduced as the pseudo‑observable, representing the observations
of the latent Gaussian state‑space model. This yields the likelihoods p(xn|un) =𝒩(H̃(un), 𝜎2

xI) and
p(un|un−1) =𝒩(𝛹†(un−1; z), 𝜎2

uI), where H̃ is the known pseudo‑observation operator, and 𝛹† is the
one‑step evolution operator of the latent dynamical system, which depends on parameters z.
The generative model learns to reconstruct data from the pseudo‑observable with a probabilis‑
tic decoder, p𝜃(yn|xn) =𝒩(H𝜃(xn), 𝜎2I), where the true mapping is approximated H† ≈H𝜃◦H̃. The
variational posterior is factorized as

q(u1∶N, x1∶N, z|y1∶N) ∝ p(u1∶N|x1∶N)q𝜗(z)
∏

n

q𝜙(xn|yn), (3.5)

which uses an amortized encoder q𝜙(xn|yn), variational approximation q𝜗(z) and exact posterior
p(u1∶N|x1∶N). We obtain the desired parameters (𝜃⋆, 𝜙⋆, 𝜗⋆) by maximizing the ELBO

J(𝜃, 𝜙, 𝜗;y1∶N) =
∑

n

𝔼q𝜙 (xn|yn)
[log

p𝜃(yn|xn)
q𝜙(xn|yn)

]

+ 𝔼q𝜙 (xn|yn)q𝜗 (z)
[
log p(x1∶N|z)

]
−DKL(q𝜗(z)||p(z)). (3.6)

The term log p(x1∶N|z) is computed using Kalman filtering. Similarly, dynamical latent structure
is imposed in [47] by constraining the latent embeddings to non‑Euclidean manifolds, improving
the robustness to noise and improving interpretability of latent dynamics.
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(iii) Deep generative priors for regularization

When the parameter space is high‑dimensional, regularizing the inverse problem is essential. Fur‑
thermore, if direct observations of the parameters are available, a possible method of regulariza‑
tion is through the use of a deep generative prior (DGP) over the parameter space. By introducing
a lower‑dimensional auxiliary latent variable w, a generative model p𝜃(w, z) = p𝜃(z|w)p(w) can
be trained to approximately generate samples from the prior p(z), where the likelihood is con‑
structed as a probabilistic decoder, e.g. p(z|w) =𝒩(f𝜃(w), 𝜎2I), with learnable generator function
f𝜃. Including the DGP in the inverse problem acts as a form of regularization when optimization
is performed over the low‑dimensional w rather than the high‑dimensional z. Typically, VAEs
are suitable here [48] because of the in‑built dimensionality reduction, and once trained, the de‑
coder can produce samples from the DGP via z(i) = f𝜃⋆ (w(i)), with w(i) ∼ p(w) (here f𝜃 need not
be invertible). The auxiliary prior can be set arbitrarily, most simply as a standard multivariate
Gaussian.

For solving the inverse problem, in [49], a point‑estimate‑based inversion viewpoint is taken,
where the optimization is performed w.r.t. auxiliary variables, which are pushed through the
trained generator and then the forward model to obtain the data‑misfit loss

J(w;y, 𝜃⋆) = ‖G†◦f𝜃⋆ (w) − y‖2 + 𝛽(‖w‖ − 𝜇𝜒)2, (3.7)

where the constant 𝜇𝜒 in the regularization term preferences w lie on a ring centred at the ori‑
gin. The resulting parameter estimate is found by pushing the optimal w⋆ = argminw J(w;y, 𝜃

⋆)
through the generator, giving z⋆ = f𝜃⋆ (w⋆).

One might consider learning probabilistic priors for inversion through the use of normal‑
izing flows. In [50], the authors trained a normalizing flow to learn a prior in an embedded
space—where the embedding itself is learned with a VAE or generative adversarial network
(GAN).

In [51], a simple DGP is trained for sampling p(z), which is included in a Bayesian VI prob‑
lem where the auxiliary posterior p(w|y) is approximated by the VI approximation q𝜙(w). The
objective is

𝜙⋆ = argmin
𝜙

J(𝜙;y, 𝜃⋆), J(𝜙;y, 𝜃⋆) = 𝔼q𝜙 (w)
[
− log p(y|w)

]
+ KL(q𝜙(w)|p(w)), (3.8)

where the likelihood p(y|w) ∶= p(y|z= f𝜃⋆ (w)) is determined by the forward model, y=
G†◦f𝜃⋆ (w) + 𝝐. Posterior samples can then be readily obtained by sampling from this variational
posterior and pushing through the generator, z(i) = f𝜃⋆ (w(i)), with w(i) ∼ q𝜙⋆ (w).

(b) Residual-based learning
The objective of VI‑based deep surrogate modelling is to predict solutions of PDEs using deep
learning models that output uncertainty about their predictions. Such surrogates are of great
use for solving inverse problems as they can replace computationally expensive numerical for‑
ward models while quantifying the error of their approximations, which can be incorporated into
inversion schemes [52].

(i) Data-free inference

For the work in [27], the authors model the PDE solution u given a parameter z probabilistically
through a residual r(uh, zh) with

p𝛽(u|z) ∝ exp
(
− 𝛽 ‖r(𝜋u(u), 𝜋z(z))‖2

2

)
, (3.9)

where the exact formulation of the residual r(uh, zh) can vary, but its purpose remains the same;
r= 0 when uh satisfies the PDE system for parameters zh. We then seek the parameters

𝜙⋆ = argmin
𝜙

DKL(q𝜙(u|z)p(z)||p𝛽(u|z)p(z)), (3.10)
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where 𝛽 controls the intensity of the physics constraint and is selected such that the surro‑
gate model q𝜙(u|z) provides calibrated uncertainty estimates given a dataset 𝒟= {u(n), z(n)}Nn=1 of
solution–parameter pairs. In their work, the authors make use of a normalizing flow to model the
forward problem q𝜙(u|z). This variational construction learns a probabilistic forward model.

In [53,54], different variational frameworks are proposed which allow for the learning of
both forward and inverse probabilistic maps. The construction is posed through a parametrized
probabilistic model p𝜃(r̂,u, z) = p(r̂|u, z)p𝜃(z|u)p(u) and a variational approximation q𝜙(u, z) =
q𝜙(u|z)q(z). Here, r̂ represents a zero‑valued virtual observable [55] posed as

r̂= r(𝜋u(u), 𝜋z(z)) + 𝝐 r, 𝝐 r ∼𝒩(0, 𝜎2
r I). (3.11)

We note that other virtual noise models may be considered, leading to different residual likeli‑
hoods [56]. The factorization of the joint variational approximation q𝜙(u, z) and the model p𝜃(u, z|r̂)
is chosen such that

𝜙⋆, 𝜃⋆ = argmax
𝜙,𝜃

J(𝜙, 𝜃), J(𝜙, 𝜃) = 𝔼q𝜙 (u|z)p(z) log
p(r̂= 0|u, z)p𝜃(z|u)p(u)

q𝜙(u|z)p(z)
, (3.12)

learns mapping for forward UQ (q𝜙(u|z)) and inversion (p𝜃(z|u)). It is a lower bound on the log
marginal probability of r̂. In the same spirit as (3.9) (with 𝛽 = 1∕2𝜎2

r ), the distribution over the resid‑
ual is posed as p(r̂= 0|u, z) ∝ exp(− 1

2𝜎2
r
‖r(𝜋u(u), 𝜋z(z))‖2

2). These frameworks construct variational
uncertainty quantifying surrogates in the data‑free regime.

(ii) Small data regime

In some settings, one may have access to small datasets alongside knowledge of the form of the
underlying physics. Methods for constructing probabilistic forward surrogates may pose their
likelihood as a product measure between a virtually observed residual r̂ and data y as in [57].
Using this approach, one can combine (possibly high fidelity) data with fast to evaluate physics
residuals in the likelihood

p(r̂,y|u, z) = p(r̂= 0|u, z)p(y|u, z), (3.13)

where the balance between data and physics residual is given by the estimated variance of the
data noise and chosen virtual observational noise of the residual. A Bayesian VI objective can be
written using (2.12) to obtain an approximate posterior over the solution u and parameters z as

𝜙⋆ = argmin
𝜙

J(𝜙), J(𝜙) =DKL(q𝜙(u, z)||p(u, z|y, r̂)). (3.14)

Here q𝜙(u, z) is factorized independently as q𝜙(u)q𝜙(z)—called the mean field approximation
[58]—and the dependence between the parameter and solution to the PDE is captured in the
likelihood through the virtual observable r̂= 0. Similar in objective is [59], where a joint varia‑
tional approximation q𝜙(u, z) is used to approximate the Bayesian posterior p(u, z|y), factorizing
q𝜙(u, z) = q𝜙(u|z)q𝜙(z)where the likelihood q𝜙(u|z)=𝒩(u;F𝜙(z), 𝜖2C(z)) captures the forward map.
Furthermore, [59] uses the information from the physics problem through the stiffness matrix to
inform the covariance C(z). The parameter 𝜖 controls the strength of the physics constraint in the
likelihood, and in the limit 𝜖→ 0, the following problem is recovered

𝜃⋆, 𝜙⋆ = argmin
𝜃,𝜙

𝔼q𝜙 (z)
[
− log p(y|u= F𝜃(z))

]
+DKL(q𝜙(z)||p(z)), (3.15a)

s.t. ‖r(𝜋u(F𝜃(z)), 𝜋z(z))‖2
2 = 0. (3.15b)

Notice in this interpretation, the learning of F𝜃(z) is part of the probabilistic model not the variational
approximation, hence changing F𝜙 for F𝜃. This constrained optimization view is in effect similar
to having access to the forward model F†. In [60], a deterministic forward surrogate F𝜃 ≈ F† is
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learned by minimizing ‖(F𝜃 − F†)◦𝜋z(z)‖2
2 in conjunction with a normalizing flow that probabilisti‑

cally solves the inverse problem. We note that for many of these inversion methods, amortization
could be used to learn a mapping to the posteriors given data from varying physical systems.
Relevant to the aforementioned methods, the work in [61] uses VI to synthesize information for
coarse‑grained models in the small data regime. This model is also used to learn efficient la‑
tent representations of structured high‑dimensional feature spaces, arising in problems in porous
media [62]. Further methods propose VI surrogate models in the small data regime for related
applications [63].

Methods for handling stochastic PDEs have also been developed to solve forward and inverse
problems when the solution, parameters and source terms are described by random fields. These
fields may only be sparsely observed over a number of sensor locations. The variational autoen‑
coder approaches in [64,65] encode observations to auxiliary random variables, which capture
the stochastic behaviour of the PDEs, with physics‑informed losses constructed from PDE resid‑
ual terms. Aside from VAEs, other VI variants include physics‑informed generative adversarial
networks (PI‑GAN) [66], and normalizing field flows (NFF) [67] use physics‑informed flows and
are agnostic to sensor/observation location.

4. Discussion
This paper introduces the core concepts necessary for constructing VI schemes for solving physics‑
based forward and inverse problems. Furthermore, we review the literature that employs VI and
deep learning in the context of physics, presenting the contributions under a unified notation. Our
approach is intended to help readers better understand the similarities, differences and nuances
among the various methodologies proposed in the field. A few limitations are to be kept in mind
when applying and developing some of the mentioned works. As highlighted in [27], care must be
taken in assessing the accuracy of UQ with VI, which remains an open practical [68] and theoreti‑
cal challenge [69]. In applications, one should also assess the computational advantage of training
any surrogate model versus directly making use of classical numerical schemes [70]. Software
libraries are being developed to aid practitioners in the implementation of these schemes, e.g.
[71]. Furthermore, the use of the KL divergence may not always be well‑posed, particularly when
dealing with functional objects such as in physics applications [72]. As such, beyond the Bayesian
formulation of VI, promising areas of research consider other divergences [19] such as those based
on the Wasserstein [73,74] and Sliced Wasserstein metrics [26,75] or Maximum Mean Discrepancy
[65,76] as these do not have the same conditions on absolute continuity and are readily computable
from random samples. Finally, many promising developments in solving physics‑based inverse
problems through deep learning and possibly variational inference focus on learning better priors
[26,77–79] along with important earlier works in Earth sciences [48,80].
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