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A B S T R A C T

This study explores the impacts of 11 diverse entrepreneurship indicators on green technology innovation (GTI) 
to determine the optimal environmental regulatory framework that fosters green entrepreneurship. Additionally, 
the study investigates the impacts of environmental regulations on GTI by utilizing nonlinear panel smooth 
threshold regression (PSTR) models on data collected from 18 countries from 2002 to 2020. By identifying a 
critical regulatory threshold of 1.89, the research reveals how varying levels of environmental regulations 
significantly influence GTI dynamics. The estimation results emphasize that GDP per capita and financial 
development are critical in fostering GTI. However, stringent environmental regulations can counteract these 
positive effects. Urbanization and trade openness also positively influence GTI, with environmental regulations 
complementing their impacts. The transition to a service-oriented industrial structure positively affects GTI. The 
results underscore the negative impact of entrepreneurship indicators, potentially diverting resources away from 
GTI. Nonetheless, environmental regulations with stringent enforcement mechanisms can counterbalance the 
negative impacts of specific entrepreneurship metrics. Among the entrepreneurship indicators analyzed, 
financing for entrepreneurs, governmental support and policies, and governmental programs exhibit an inverted 
U-shaped impact pattern, peaking at specific levels of environmental regulation.

Introduction

The contemporary challenge of the climate crisis looms large, 
necessitating immediate attention and collective action (Reckien et al., 
2018). A shift from unsustainable growth models toward sustainable 
development pathways is necessary to tackle this urgent issue. This shift 
requires reallocating capital and promptly adopting clean production 
technologies (Huang et al., 2021; G. Luo et al., 2023). At the core of this 
transition lies the concept of Green Technology Innovation (GTI). It 
plays a pivotal role in harmonizing environmental protection and eco
nomic development, fostering a future characterized by green-oriented, 
innovation-driven growth (J. L. Du et al., 2019; Fei et al., 2016; Guo 
et al., 2020; M. Wang et al., 2021; Xu et al., 2023). GTI serves as a driver 
for a shift toward a more sustainable future (Stucki & Woerter, 2017).

Entrepreneurs’ inclination to adopt environmentally friendly in
novations is significantly influenced by environmental concerns 
(Hobman & Frederiks, 2014; Polas et al., 2023; Xie & Zhao, 2018). It 
also shapes their preference for eco-friendly advancements (Kraus et al., 
2020). Nevertheless, the commitment of businesses to ecological sus
tainability remains the subject of ongoing debate. Many firms hesitate to 

invest in long-term initiatives that do not yield immediate returns, 
emphasizing the need for policy-driven interventions (Melander & 
Arvidsson, 2022; Zhang et al., 2020b). Green technology development 
involves prolonged research and development (R&D) cycles, substantial 
financial commitments, inherent risks, and complexity that demand 
increased corporate dedication to innovation (Shao et al., 2020; H. Yu 
et al., 2023). Policy interventions are pivotal in overcoming these 
challenges and driving green innovation forward (Nemet, 2012; Popp & 
Newell, 2012; Rogge & Schleich, 2018).

Environmental regulations can impact GTI differently due to the 
innovation compensation effect and the cost compliance effect. These 
regulations are constraints and incentives (Tian et al., 2021). While they 
may increase production costs (Zhang & Dong, 2022), enterprises must 
weigh the trade-offs between these effects. When the benefits of inno
vation compensation outweigh compliance costs, it provides a strong 
incentive for corporate GTI. The intensity of environmental regulation 
implementation directly influences the cost compliance effect in com
panies; however, its contribution to the innovation compensation effect 
remains subject to theoretical and empirical conflicts.

The Porter hypothesis suggests that firms are motivated to innovate 
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to enhance their long-term competitiveness in response to environ
mental regulations (Porter & Van Der Linde, 2017). Conversely, a 
cost-focused perspective argues that environmental regulations might 
escalate abatement costs, potentially discouraging investments in 
innovation (Jaffe et al., 2000). Numerous studies have delved into the 
relationship between environmental regulation and green innovation, 
revealing a complex picture. Some empirical studies report positive as
sociations (X. Cai et al., 2020; Chen et al., 2022; Yi et al., 2020), while 
others uncover negative or nonlinear relationships (Yi et al., 2019; 
Zhang et al., 2020a; Zhang et al., 2022). These divergent findings 
highlight the adaptability of the crowding-out theory and the Porter 
hypothesis across different contexts.

The effectiveness of the Porter hypothesis is closely linked with the 
local contexts in which it is applied, which can vary significantly in 
space and time. Prior research emphasizes the role of local contexts in 
the Porter hypothesis, focusing on temporal and spatial variations in the 
interplay between environmental regulation and productivity or inno
vation (G. L. Zhao et al., 2022; Zhu et al., 2019). Thus, a complex, 
nonlinear pattern emerges in how environmental regulations affect GTI 
over time and across various samples, an aspect often overlooked in 
empirical studies.

Entrepreneurship is intricately linked with knowledge, technological 
advancement, and innovation, holding the potential to stimulate eco
nomic growth (Bendig et al., 2022; W. M. Cohen & Levinthal, 1989). 
However, entrepreneurial activities rarely unfold in isolation; rather, 
they occur within entrepreneurial ecosystems consisting of inter
connected actors, institutions, and resources (Isenberg, 2010; Spigel, 
2017). Such ecosystems—which include investors, incubators, sup
portive policies, and technology transfer infrastructures—can shape 
entrepreneurs’ decisions to pursue green innovations by providing 
essential resources, mentoring, and collaborative platforms (Alvedalen 
& Boschma, 2017; Elia et al., 2020). Indeed, when the ecosystem is 
robust and well-coordinated, entrepreneurs encounter lower barriers to 
entering markets with eco-friendly products, making it more feasible to 
align business opportunities with sustainability goals (Stam & van de 
Ven, 2021). Consequently, green entrepreneurship emerges as a 
powerful avenue for sustainable development as entrepreneurs leverage 
ecosystem support to devise innovative production processes and 
products capable of mitigating environmental degradation (B. Cohen 
et al., 2008; Coulibaly et al., 2018; York & Venkataraman, 2010). The 
importance of the entrepreneurial ecosystem is further highlighted by 
recent studies showing that established firms are increasingly partnering 
with born green startups—through acquisitions, investments, and stra
tegic alliances—to access high-tech environmental knowledge (Demirel 
et al., 2019). This synergistic relationship illustrates how entrepre
neurial ecosystems not only foster collaboration but also catalyze the 
adoption of GTI, guiding both startups and established enterprises to
ward more sustainable trajectories.

Existing research presents conflicting views on whether environ
mental regulations spur or hinder innovation (Jaffe et al., 2000; Porter & 
Van Der Linde, 2017), suggesting a need to determine whether such 
policies exhibit threshold effects. Likewise, despite a growing body of 
evidence linking well-developed entrepreneurial ecosystems with 
stronger innovation capabilities (Iqbal et al., 2020; York & Venkatara
man, 2010), existing research provides limited insights into how specific 
ecosystem factors interact with environmental regulation regimes to 
foster GTI. Moreover, while scholars acknowledge that entrepreneurial 
ecosystems can supply the financial, social, and institutional support 
required to facilitate green startups and eco-friendly processes, there 
remains a dearth of studies examining threshold or nonlinear mecha
nisms through which these ecosystems might amplify—or diminish—the 
efficacy of environmental policies. Accordingly, this study addresses 
these gaps by investigating how entrepreneurship indicators integrate 
with different intensities of environmental regulation to shape GTI 
outcomes across countries. This study makes two primary contributions: 
(1) the panel smooth threshold regression (PSTR) model (Colletaz & 

Hurlin, 2006; Fok et al., 2005) is adopted to overcome the 
cross-sectional heterogeneity critique often posed against conventional 
panel data approaches (Hsiao, 2014), thus allowing for capturing the 
nonlinear and context-specific impacts of environmental regulation on 
GTI; and (2) the effects of 11 diverse entrepreneurship indica
tors—reflecting the multifaceted nature of the entrepreneurial ecosys
tem—on GTI are evaluated, demonstrating how these indicators 
intersect with varying levels of environmental regulation. In line with 
these contributions, three research questions are posed: (1) How does 
the intensity of environmental regulation, viewed through different 
regulatory regimes, shape the nonlinear relationship between regulation 
and GTI? (2) How do diverse entrepreneurship indicators influence GTI 
under varying intensities of environmental regulation? and (3) Is there 
an optimal alignment between regulation intensity and entrepreneur
ship development to maximize GTI? From these questions, it is hy
pothesized that: 

H1: Environmental regulation exerts threshold effects on GTI;
H2: Entrepreneurship indicators—key components of the entrepre
neurial ecosystem—positively influence GTI, albeit to different de
grees depending on the regulatory regime; and,
H3: Stricter regulations amplify these positive entrepreneurial 
ecosystem impacts on GTI, signaling a synergistic interaction be
tween policy enforcement and entrepreneurship.

These hypotheses are tested through the PSTR framework to offer 
fresh insights into how entrepreneurial ecosystems and environmental 
regulations jointly shape green innovation trajectories, thus enhancing 
the understanding of—and policy recommendations for—sustainable 
development.

The remainder of this paper is organized as follows: Section 2 pro
vides an in-depth exploration of the literature; Section 3 delves into the 
data sources and introduces the proposed econometric models; Section 4 
advances the discussion by addressing empirical findings and their in
terpretations; and, Section 5 concludes the paper and offers and po
tential policy implications.

Literature review

Green technology innovation (GTI)

Engaging with GTI is intricately linked with the principles of 
ecological modernization theory, which contribute to the curtailment of 
pollution and drive the transformation of diverse industrial sectors 
(Buttel, 2000; W. Cai & Li, 2018; Z. Li et al., 2023). In this respect, it 
safeguards valuable resources, enhances the environment, and advances 
economic progress, forging a harmonious synthesis between ecology and 
the economy (Barbieri et al., 2020; F. Dong et al., 2022; Miao et al., 
2017; Shan et al., 2022). This integration of green innovation encom
passes a wide spectrum of ecologically sustainable creative endeavors, 
spanning from eco-friendly technologies to environmentally-conscious 
products and services. This presents a comprehensive blueprint for a 
more sustainable future (Martínez-Ros & Kunapatarawong, 2019).

The significance of green innovation surpasses mere economic 
expansion; it is crucial in driving a broader ecological transformation 
and mitigating environmental damage by applying novel technologies 
(Flammer et al., 2019; Karimi Takalo et al., 2021). In this context, GTI 
extends tangible business advantages and paves the path to sustainable 
development (Deng et al., 2019; K. Du et al., 2021). Sustainable energy 
strategies pioneer this metamorphosis, encompassing aspects such as 
green energy adoption, energy efficiency enhancements, and protective 
measures targeting climate change mitigation and overall energy service 
improvement (Appiah et al., 2022; Islam et al., 2012). Nations world
wide are united in their commitment to champion green innovation as a 
conduit to realizing sustainable development, acknowledging its po
tential to tackle the pressing challenges of the current era (A. Wang 
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et al., 2023). This collective dedication underscores the immediacy of 
shared responsibility to harness the force of innovation to pursue a 
greener and more sustainable future.

Porter hypothesis

Conventional economic wisdom has held for a considerable time that 
environmental regulations place financial burdens on businesses, and 
this potentially hampers their profitability (Palmer et al., 2018). How
ever, Porter (1991) introduced a groundbreaking perspective, further 
expanded by Porter and van der Linde (1995), which challenges this 
conventional belief. Known as the Porter hypothesis, it states that 
environmental regulations can spark innovation within companies, 
which potentially leads to improved productivity and cost savings.

This hypothesis manifests in two distinct versions; the weaker 
version suggests that regulations can stimulate innovation, ultimately 
generating benefits that outweigh associated costs, while the stronger 
version proposes that innovation driven by regulatory demands can 
effectively offset compliance expenses. Nevertheless, investigations into 
these hypotheses have produced mixed outcomes (M. A. Cohen & Tubb, 
2018; Eli & Bui, 2001). The strong form of the Porter hypothesis has 
remained a topic of contention and examination, contributing to 
inconclusive findings attributed to various factors. However, recent 
research leans toward more positive outcomes than earlier studies 
(Ambec et al., 2013; M. A. Cohen & Tubb, 2018).

Cohen and Tubb (2018) conducted an extensive meta-analysis to 
evaluate the impacts of environmental regulations on productivity and 
competitiveness and found that these regulations often have a more 
favorable impact at broader geographic scales. These findings align with 
the core principles of the strong version of the Porter hypothesis. 
Empirical research has also started to consider regional disparities in the 
implications of the Porter hypothesis (Y. Luo et al., 2021). The effec
tiveness of environmental regulation in promoting sustainable trans
formations depends on a number of factors, including local industrial 
structures, types of policies, levels of economic development, and 
firm-specific distinctions (Costantini et al., 2017; J. L. Du et al., 2019; 
Franco & Marin, 2017; Liu et al., 2022)

Environmental regulation and GTI

The intricate interplay between environmental regulations and the 
advancement of GTI has been the subject of extensive scholarly inves
tigation. However, achieving a consensus regarding this complex rela
tionship remains a formidable challenge. Within this intricate web of 
research, several studies have shed light on a positive connection be
tween environmental regulations and the proliferation of green patents. 
For example, Cai et al. (2020) and Fang et al. (2021) independently 
presented empirical evidence supporting a positive correlation between 
GTI and environmental regulations, particularly in heavily polluting 
industries. Their findings underscore the nuanced nature of this 
connection.

From a temporal perspective, firms’ attitudes toward green innova
tion exhibit evolving dynamics over time. Aghion et al. (2016) and 
Stucki and Woerter (2017) demonstrated that environmental regula
tions exert a two-stage impact on innovation, transitioning from an 
initial wait-and-see approach to a proactive stance on green innovation 
over time. The stringency of environmental regulations significantly 
influences firms’ preferences for green innovation. As regulations 
become more stringent, the costs of abatement rise, potentially leading 
to a crowding-out effect. However, a growing awareness of the benefits 
associated with green innovation drives a heightened demand for such 
initiatives. It is anticipated that there will be a pivotal juncture at which 
the innovation offset supersedes the crowding-out effect 
(Dechezleprêtre & Sato, 2017).

From a spatial perspective, the duration of the crowding out or 
innovation offset stages varies considerably across different regions. 

Some cities may find themselves lingering in the initial stage due to 
limitations in their innovation capacities and high transformation costs, 
while others rapidly progress to the second stage. The magnitude of 
these effects also varies among cities, as demonstrated by Balland and 
Rigby (2017))) and Hidalgo et al. (2018). Zhang et al. (2022) found that 
carbon emission trading can potentially stifle green innovation, espe
cially in eastern China with low emission intensity. Furthermore, local 
and adjacent environmental regulations can affect green productivity 
through mechanisms related to green innovation and pollution transfer 
(Peng, 2020). The level of economic development within cities can 
significantly shape the dynamics of this relationship, as reported by Du 
et al. (2021). The openness of local markets can provide vital financial 
access and technological support for green innovations (Feng et al., 
2018).

Furthermore, Li and Du (2021) and Dong et al. (2020) unveiled a 
U-shaped curve relationship between these variables, emphasizing the 
presence of spatial spillover effects, which add another layer of intricacy 
to this multifaceted issue. Furthermore, competition among local gov
ernments is pivotal in shaping the dynamics of the GTI enterprise (Deng 
et al., 2019). This competitive landscape can give rise to a complex, 
inverted U-shaped relationship with GTI. As the financial structure 
within these local governments strengthens, it tends to promote GTI. 
However, the scale and efficiency of financial operations may hinder the 
very innovation intended to be fostered (Lv et al., 2021).

Crucial factors that influence the pursuit of green innovation under 
environmental regulation include local industrial attributes, economic 
structure, and innovation capacities. Cities with robust fiscal capacities 
and well-established research institutions have a notable advantage in 
promoting green innovation. While previous studies explored the im
pacts of environmental regulation in different contexts, the spatiotem
poral non-stationarity in the relationship calls for increased attention. 
Most existing studies rely on regional dummies or conventional econo
metric techniques, which furnish global average estimates yet often fail 
to capture the intricate spatiotemporal patterns that underlie the inter
action between environmental regulation and innovation.

Empirical model and data

This investigation delves into annual data from 2002 to 2020 to 
unveil the factors shaping GTI across 18 countries. A central constraint 
of this study lies in the scarcity of available data regarding entrepre
neurial metrics across different temporal and geographical contexts. 
Relying on insights gleaned from diverse scholarly investigations, it 
becomes apparent that a number of pivotal determinants significantly 
influence GTI. According to the literature (J. Li et al., 2022; B. Lin & Ma, 
2022; Yang et al., 2021; H. Yu et al., 2023), these factors encompass the 
logarithm of GDP per capita (lnGDPP), a marker for a nation’s economic 
development stage, the reservoir of human capital (lnHC), the extent of 
urbanization (lnURB), the degree of trade openness (lnOPE), and the 
composition of industrial structure (lnIS). Numerous investigations have 
studied the relationship between industrial structure and GTI, revealing 
that the composition of industries, specifically the ratio of the tertiary 
sector to the secondary sector, exerts a positive impact on GTI (Shen 
et al., 2021; Zhao et al., 2022b). These effects can be attributed to the 
alignment of tertiary industry development with the advancement of 
green technology (K. Du et al., 2021).

Furthermore, the financial system plays a key role in the concen
tration and allocation of funds (C. H. Yu et al., 2021). A less developed 
financial system can impede enterprises’ access to credit financing, 
resulting in inadequate investment in GTI (Andersen, 2017). In a 
broader context, financial development, as indicated by lnFD, signifi
cantly influences the propensity of enterprises to engage in technolog
ical innovation (Noailly & Smeets, 2022). As a result, these elements are 
integrated as control factors within the analytical framework of this 
study, which is elucidated in the following model, referred to as Model 
A: 
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lnGTIit = β0 + β1lnGDPPit + β2lnHCit + β3lnURBit + β4lnOPEit + β5lnISit

+ β6LnFD
(1) 

Table 1 and 2.
This analysis involves a logarithmic transformation of the variables, 

yielding coefficients that signify elasticities. Table 3 reports the findings 
resulting from the estimation of this model using a range of panel data 
techniques. Furthermore, in conjunction with the inclusion of control 
variables, this study places particular emphasis on two pivotal explan
atory elements: the natural logarithm of entrepreneurship indicators 
(lnENT) and environmental regulations (REG). Incorporating these 
variables into the model results in the formulation of Model B, as illus
trated below. The outcomes of estimating the model are presented in 
Table 4. 

lnGTIit = β0 + β1lnGDPPit + β2lnHCit + β3lnURBit + β4lnOPEit + β5lnISit

+ β6LnFD + β7lnENTit + β8REG
(2) 

Panel smooth threshold regression (PSTR)

A panel smooth threshold regression (PSTR) model is a practical 
approach to addressing nonlinearity within the model. PSTR has dual 
interpretations: first, as a regime-switching model with a few extreme 
regimes linked with the extreme values of a transition function, tran
sitioning smoothly; second, as a model allowing a continuum of regimes, 
each with distinct transition function values. PSTR proves helpful in this 
context by accounting for cross-country heterogeneity and time insta
bility of elasticities without requiring pre-defined classifications. Addi
tionally, the use of the PSTR model can enhance estimate reliability 
regarding non-stationarity. In contrast to time series, non-stationarity 
effects in linear panel models are different. Pooling cross-section and 

time series observations can mitigate residual impacts while retaining 
explanatory variable strength, yielding consistent long-run regression 
coefficient estimates (Phillips & Moon, 1999). Focusing on a basic sce
nario with two independent variables (x1it and x2it), two distinct re
gimes, and a solitary transition function, the resultant PSTR model is 
formulated as: 

yit = μi + α0x1it + β0x2it + [α1x1it + β1x2it]h(qit ; γ, c) + εit (3) 

where qit is the threshold variable. The error term εit is considered in
dependent and identically distributed with a mean of 0 and a variance of 
σ2. The function governing the transition, denoted as h(qit ; γ,c), remains 
limited and continuous concerning the threshold variable qit. Building 
upon earlier research by Granger and Teräsvirta (1993) on STAR models 
in time series, González et al. (2004) proposed a transition function as: 

h(qit ; γ, c) =

[

1 + exp

(

− γ
∏m

z=1
(qit − cz)

)]− 1

, γ > 0, c1 ≤ .. ≤ cm 

where c = (c1, .., cm)
ʹ 

represents a multi-dimensional vector denoting 
location parameters. Here, γ is responsible for determining the steepness 
of the transition function. Mathematically, this model can be reformu
lated into: 

yit = μi + Ψ
ʹ
0Wit + Ψ

ʹ
1With(qit ; γ, c) + εit 

where Ψj =
(

αj βj

)ʹ 
for j = (0, 1), and Wit = [ x1it x2it ]

ʹ
. Additionally, 

Wit is defined as [ x1it x2it ]
ʹ
, encapsulating the variables x1it and x2it for 

country i at time t. González et al. (2004) proposed an extension intro
ducing r + 1 extreme regimes. This extension, termed the general ad
ditive PSTR model, is defined as: 

yit = &μi + α0x1it + β0x2it +
∑r

j=1

[
αjx1it + βjx2it

]
hj

(
qit; γj, cj

)
+ εit (4) 

or equivalently, 

yit = μi + Ψ
ʹ
0Wit +

∑r

j=1
Ψ

ʹ
jWithj

(
qit; γj, cj

)
+ εit 

The transition function hj

(
qit; γj, cj

)
is influenced by both the slope 

parameters γj and a set of m location parameters cj. In this broader 
conceptualization, the total impact of x2it on yit, within the context of 
country i at time t, is articulated as the weighted mean of the r + 1 
coefficients βj acquired from the r + 1 distinct extreme regimes. 

∂yit

∂x2it
= β0 +

∑r

j=1
βjhj

(
qit; γj, cj

)
∀i, ∀t (5) 

Table 5 and 6.
To estimate the nonlinearity of Eq. (4) for the present research, 

model C is defined in Eq. (6). The estimation results of Eq. (6) are re
ported in Table 7. Here, environmental regulation (REG) is defined as 
threshold variables, and depending on their values in different countries 
and over time, they can influence the effects of independent variables in 
the form of varying entrepreneurship regimes. 

lnGTIit = β0 + β10lnGDPPit + β20lnHCit + β30lnURBit + β40lnOPEit

+ β50lnISit + β60LnFD + β70lnENTit +
∑r

j=1
[β11lnGDPPit

+ β21lnHCit + β31lnURBit + β41lnOPEit + β51lnISit + β61LnFD

+ β71lnENTit]hj

(
REGit ; γj, cj

)
+ εit

(6) 

Drawing upon the estimation results of Eq. (6), Eq. (5) can be 
calculated for all independent variables of the model. The effects of total 

Table 1 
Definitions of variables.

Variable Variable constructed Source

lnGTI = log(GTI); GTI = Inventions per capita in environment- 
related technologies

OECD

REG = Tax revenue ( % of GDP) on total environment OECD
lnGDPP = log(GDPP); GDPP= GDP per capita (constant 2015 US$) WDI
lnURB = log(URB); URB= Urban population ( % of the total 

population)
WDI

lnOPE = log(OPE); OPE= Trade Openness ( % of GDP( WDI
lnIS

= log
(

SE)
MA

)

; SE= Services, value added (constant 2015 US 

$));; MA=Manufacturing, value added (constant 2015 US$)

WDI

lnFD = log(FD); FD = Financial development index IMF
lnFE = log(GS); GS = Governmental support and policies GEM
lnGS = log(GS); GS = Governmental support and policies GEM
lnTB = log(TB); TB = Taxes and bureaucracy GEM
lnGP = log(GP); GP = Governmental programs GEM
lnBE = log(BE); BE = Basic school entrepreneurial education and 

training
GEM

lnPE = log(PE); PE = Post school entrepreneurial education and 
training

GEM

lnRD = log(RD); RD = R&D transfer GEM
lnCP = log(CP); CP = Commercial and professional infrastructure GEM
lnMD = log(MD); MD = Internal market dynamics GEM
lnMO = log(MO); MO = Internal market openness GEM
lnPS = log(PS); PS = Physical and services infrastructure GEM

WDI: World Development Indicator; https://datacatalog.worldbank.org/dataset 
/world-development-indicators.
GEM: Global Entrepreneurship Monitor; https://www.gemconsortium. 
org/data.
OECD: Organization for Economic Cooperation and Development; https://stats. 
oecd.org/.
IMF: International Monetary Fund; https://data.imf.org/?sk=f8032e80-b3 
6c-43b1-ac26-493c5b1cd33b.
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gross domestic product (GDP) per capita on GTI are written as: 

∂lnGTIit

∂lnGDPPit
= β10 +

∑r

j=1
β1jhj

(
REGit; γj, cj

)
∀i,∀t (7) 

The analysis of the impacts of various factors on GTI included esti
mating 21 distinct models. These models incorporated consistent control 
variables in all cases, including the logarithm of GDP per capita, human 
capital, urbanization, trade openness, and industrial structure. To 
ensure the independence of the assessment and to mitigate potential 
collinearity challenges among the 11 entrepreneurship indices, separate 
estimation models were used for each. To streamline the presentation of 
the findings in Table 5, the abbreviation "lnENT" was used to represent 
all entrepreneurship indicators. For example, in Models 3 and 7, lnENT 
denotes the logarithms of governmental programs and commercial and 
professional infrastructure, respectively. Table 1 shows which entre
preneurship indicator corresponds to a given estimation model.

Data

While earlier investigations have primarily drawn upon a range of 
metrics, including R&D investment, patents, or the expertise of tech
nology professionals, to evaluate a corporation’s capacity for innovation 
(Jiang et al., 2018; Zhan et al., 2023), there is a growing trend to use 
green patents as the preferred benchmark for quantifying a company’s 
innovative output. Indeed, Fang et al. (2021) asserted that green patents 
can effectively serve as a surrogate measure for GTI, underscoring their 
fundamental role in this particular context. The preference for green 
patent applications over green patent grants primarily arises from the 
temporal lag associated with the patent-granting process, which often 
extends from one to two years following the initial application (H. Lin & 
Long, 2021). Consequently, patent applications present a more suitable 
reflection of GTI activities.

Table 2 provides a comprehensive overview of the data from 2002 to 
2020. The analysis of the standard deviations concerning the mean 
across various variables suggests that the data set contained no outliers. 
Furthermore, the consistently lower standard deviations than the means 
indicate remarkable stability and limited volatility within the variables 
of the model over the extensive time frame under consideration. This 
study employed the PSTR model, which inherently allows for unbal
anced panel data. This enables the model to utilize all available obser
vations, even if some variables have fewer data points than others. By 
contrast, for conventional linear panel models—where a balanced data 
set is typically assumed—the sample was restricted to those observa
tions that were simultaneously available across all variables. This re
striction, while necessary for consistency within the linear framework, 
naturally led to a smaller number of observations than in the PSTR 
model.

Results

Conventional panel models

This study crafted estimations for the proposed equations by using a 
series of diagnostic assessments aimed at determining the most suitable 
panel data model. This study leveraged an extensive array of panel data 
models and formulated Eq. (1), as shown in Table 3, which exclusively 
incorporates control models. The process was initiated by meticulously 
examining the potential inclusion of both temporal and geographic fixed 
effects. It entailed a comprehensive comparison between models 
encompassing simultaneous time and spatial fixed effects and models 
featuring distinct time and spatial fixed effects. Two separate likelihood 
ratio (LR) tests were conducted to evaluate the estimated models, with 
the associated p values provided within parentheses. A low p value 

Table 2 
Statistics summary (2002–2020).

Mean Std. Dev. Maximum Minimum Median Observations

lnGTI 2.283 1.688 4.418 − 2.996 2.889 360
lnREG 2.121 0.802 4.010 0.650 2.170 360
lnGDPP 10.403 0.616 11.375 8.817 10.529 360
lnURB 4.388 0.100 4.528 4.084 4.397 360
lnOPE 4.124 0.532 5.530 2.973 4.142 360
lnIS 1.564 0.339 2.180 0.361 1.554 360
lnFD − 0.383 0.281 − 0.003 − 1.327 − 0.305 360
lnFE 1.479 0.175 1.920 0.742 1.497 299
lnGS 1.461 0.195 1.844 0.824 1.470 299
lnTB 1.369 0.260 1.820 0.708 1.430 299
lnGP 1.525 0.181 1.828 0.863 1.541 299
lnBE 1.217 0.192 1.766 0.802 1.209 299
lnPE 1.547 0.122 1.869 1.147 1.535 299
lnRD 1.452 0.146 1.828 1.040 1.459 299
lnCP 1.655 0.129 1.949 1.172 1.673 299
lnMD 1.551 0.150 1.950 1.115 1.554 299
lnMO 1.499 0.135 1.828 1.131 1.504 299
lnPS 1.854 0.126 2.083 1.526 1.875 299

Table 3 
Estimation of various panel models for control variables.

Pooled 
OLS

Spatial 
fixed 
effects

Time fixed 
effects

Spatial 
and time 
fixed 
effects

Panel 
EGLS 
(Cross- 
section 
random 
effects)

constant − 37.924 − 25.880 − 36.480 − 18.806 − 25.117
​ 0.000 (0.000) (0.000) (0.000) (0.000)
lnGDPP 1.678 1.712 1.687 1.438 1.731
​ (0.000) (0.000) (0.000) (0.000) (0.000)
lnURB 6.048 1.578 5.780 0.908 1.689
​ (0.000) (0.047) (0.000) (0.284) (0.023)
lnOPE − 0.401 0.545 − 0.479 0.245 0.227
​ (0.000) (0.000) (0.000) (0.050) (0.038)
lnIS − 1.422 0.962 − 1.503 0.747 0.649
​ (0.000) (0.000) (0.000) (0.000) (0.000)
lnFD 2.873 1.138 2.813 0.418 0.592
​ (0.000) (0.000) (0.000) (0.012) (0.001)
LnREG 0.563 0.054 0.595 0.061 0.120
​ (0.000) (0.319) (0.000) (0.185) (0.007)
Log − lik − 284.386 30.943 − 268.862 103.889 473.420
R2 0.900 0.983 0.908 0.988 0.913
LR − test ​ 145.892 745.502 ​ ​
​ ​ (0.000) (0.000) ​ ​
Hausman Test ​ ​ ​ ​ 39.55
​ ​ ​ ​ ​ (0.000)

M. Khezri                                                                                                                                                                                                                                         Journal of Innovation & Knowledge 10 (2025) 100738 

5 



indicates the rejection of the null hypothesis. As shown in Table 3, the 
results of these tests strongly support the rejection of the null hypothesis, 
advocating the incorporation of both time and geographic fixed effects 
into the model.

Additionally, the fixed effects (FE) model and random effects (RE) 
model were compared using the Hausman test. The Hausman test is a 
valuable tool for distinguishing between fixed effects and random effects 
models in panel analysis. The fixed effects model was selected under the 

alternative hypothesis, while the random effects model aligns with the 
null hypothesis. The findings of the Hausman test unequivocally dismiss 
the null hypothesis, solidifying the fixed effects model as the optimal 
choice for the analysis.

Based on the findings, a 1 % increase in GDP growth per capita 
significantly leads to a 1.731 % increase in GTI. These favorable impacts 
extend to other control variables, although it is worth noting that the 
coefficients for urbanization and environmental regulation variables do 

Table 4 
Tests for nonlinearity.

Wald Tests (LM) Fisher Tests (LMF) LRT Tests (LRT) r∗

Model B1 H 0 : r = 0 vs H1 : r = 1 13.077 (0.219) 1.251 (0.257) 13.321 (0.206) 1
​ H 0 : r = 1 vs H1 : r = 2 16.111 (0.097) 1.509 (0.135) 16.482 (0.087) ​
Model B2 H 0 : r = 0 vs H1 : r = 1 10.176 (0.601) 0.790 (0.661) 10.353 (0.585) 1
​ H 0 : r = 1 vs H1 : r = 2 20.227 (0.063) 1.554 (0.106) 20.944 (0.051) ​
Model B3 H 0 : r = 0 vs H1 : r = 1 10.082 (0.609) 0.782 (0.669) 10.255 (0.594) 1
​ H 0 : r = 1 vs H1 : r = 2 21.365 (0.045) 1.648 (0.079) 22.167 (0.036) ​
Model B4 H 0 : r = 0 vs H1 : r = 1 12.976 (0.371) 1.017 (0.433) 13.266 (0.350) 1
​ H 0 : r = 1 vs H1 : r = 2 17.368 (0.136) 1.321 (0.207) 17.892 (0.119) ​
Model B5 H 0 : r = 0 vs H1 : r = 1 9.353 (0.672) 0.724 (0.728) 9.503 (0.659) 1
​ H 0 : r = 1 vs H1 : r = 2 24.878 (0.015) 1.944 (0.030) 25.975 (0.011) ​
Model B6 H 0 : r = 0 vs H1 : r = 1 18.630 (0.098) 1.490 (0.128) 19.235 (0.083) 1
​ H 0 : r = 1 vs H1 : r = 2 16.908 (0.153) 1.284 (0.228) 17.405 (0.135) ​
Model B7 H 0 : r = 0 vs H1 : r = 1 13.038 (0.366) 1.018 (0.432) 13.347 (0.344) 1
​ H 0 : r = 1 vs H1 : r = 2 14.434 (0.274) 1.080 (0.378) 14.813 (0.252) ​
Model B8 H 0 : r = 0 vs H1 : r = 1 13.059 (0.365) 1.024 (0.427) 13.353 (0.344) 1
​ H 0 : r = 1 vs H1 : r = 2 5.838 (0.924) 0.426 (0.952) 5.895 (0.921) ​
Model B9 H 0 : r = 0 vs H1 : r = 1 13.382 (0.342) 1.050 (0.403) 13.690 (0.321) 1
​ H 0 : r = 1 vs H1 : r = 2 12.188 (0.431) 0.910 (0.537) 12.444 (0.411) ​
Model B10 H 0 : r = 0 vs H1 : r = 1 11.217 (0.510) 0.874 (0.574) 11.433 (0.492) 1
​ H 0 : r = 1 vs H1 : r = 2 16.458 (0.171) 1.248 (0.251) 16.928 (0.152) ​
Model B11 H 0 : r = 0 vs H1 : r = 1 12.711 (0.390) 0.995 (0.454) 12.989 (0.370) 1
​ H 0 : r = 1 vs H1 : r = 2 9.889 (0.626) 0.733 (0.719) 10.056 (0.611) ​
Model B12 H 0 : r = 0 vs H1 : r = 1 8.807 (0.719) 0.680 (0.770) 8.939 (0.708) 1
​ H 0 : r = 1 vs H1 : r = 2 14.359 (0.278) 1.080 (0.377) 14.715 (0.257) ​
Model B13 H 0 : r = 0 vs H1 : r = 1 12.650 (0.395) 0.990 (0.458) 12.926 (0.374) 1
​ H 0 : r = 1 vs H1 : r = 2 15.368 (0.222) 1.160 (0.312) 15.777 (0.202) ​

Table 5 
Parameter estimates for the PSTR models.

Model B1 Model B2 Model B3 Model B4 Model B5 Model B6

Parameter B10 1.109 1.062 2.320 1.203 2.293 1.091
​ (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Parameter B20 1.330 1.648 2.275 1.810 2.573 1.419
​ (0.078) (0.054) (0.068) (0.061) (0.042) (0.136)
Parameter B30 1.178 1.046 − 0.885 1.201 − 0.817 1.162
​ (0.000) (0.000) (0.002) (0.000) (0.025) (0.000)
Parameter B40 0.941 0.931 1.545 0.917 1.462 0.953
​ (0.000) (0.000) (0.031) (0.000) (0.045) (0.000)
Parameter B50 1.115 1.034 1.447 1.002 1.784 1.029
​ (0.000) (0.000) (0.141) (0.001) (0.100) (0.001)
Parameter B60 ​ − 0.310 1.260 − 0.213 0.571 0.041
​ ​ 0.002 (0.184) (0.183) (0.603) (0.805)
Parameter B11 0.808 0.814 − 0.972 0.851 − 0.855 0.791
​ (0.000) (0.001) (0.055) (0.001) (0.100) (0.002)
Parameter B21 − 1.008 − 1.285 1.550 − 0.931 1.061 − 0.881
​ (0.040) (0.024) (0.174) (0.095) (0.378) (0.115)
Parameter B31 − 0.890 − 0.785 1.514 − 0.933 1.422 − 0.818
​ (0.000) (0.001) (0.000) (0.000) (0.000) (0.001)
Parameter B41 0.032 0.138 − 0.997 0.013 − 0.886 0.021
​ (0.877) (0.536) (0.200) (0.955) (0.262) (0.927)
Parameter B51 0.361 0.524 − 0.023 0.681 − 0.454 0.423
​ (0.197) (0.113) (0.983) (0.057) (0.697) (0.194)
Parameter B61 ​ 0.397 − 1.507 − 0.350 − 0.747 − 0.593
​ ​ (0.077) (0.134) (0.119) (0.522) (0.011)
First Transition Function [3.77, 1.83] [1.83, 3.77] [1.55, 1.55] [3.77, 1.83] [1.57, 1.57] [1.83, 3.77]
Slope Parameter y1 1242.976 1273.997 20.990 2428.660 23.674 2315.730
location parameters (m) m = 2 m = 1 m = 2 m = 2 m = 2 m = 2
AIC for m = 1 − 2.995 − 3.116 − 3.085 − 3.134 − 3.084 − 3.083
Schwarz for m = 1 − 2.790 − 2.954 − 2.848 − 2.896 − 2.933 − 2.932
AIC for m = 2 − 3.001 − 3.123 − 3.115 − 3.123 − 3.104 − 3.116
Schwarz for m = 2 − 2.861 − 2.979 − 2.954 − 2.961 − 2.942 − 2.954
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not exhibit statistical significance. Notably, a 1 % increase in trade 
openness corresponds to a 0.245 % increase in GTI. At the same time, the 
increase in the industrial structure variable, with a coefficient of 0.747, 
represents a critical impact on GTI. Moreover, a 1 % increase in financial 
development underpins a 0.418 % rise in GTI. Of particular significance 
among these variables is the environmental regulations factor (REG).

Interestingly, its effects prove nonsignificant in the spatial fixed ef
fects model, yet the estimated coefficient carries significance within the 
time fixed effects model. Consequently, the general effects of the spatial 
and temporal fixed effects models appear inconclusive. While the spatial 
fixed effects model addresses cross-sectional heterogeneity, the time 
fixed effects model focuses on heterogeneities over time. Thus, the re
sults indicate that the variable of environmental regulations may not 
effectively explain changes in GTI over time, even though it plays a 
substantial role in delineating differences in GTI among distinct nations. 
As mentioned, the intricate interplay of positive and negative aspects 
within environmental regulations can be multifaceted. Thus, the lack of 
statistical significance of these effects could suggest a neutral balance 
between their diverse impacts. Nonetheless, this review necessitates a 
more in-depth analysis, which is provided later.

PSTR results

This study involved an in-depth examination of the results by 
applying a PSTR model. This analytical process encompasses a series of 
pivotal stages. Initially, it identifies the optimal number of location 
parameters represented by m within transition functions, utilizing both 
the Schwarz and Akaike criteria. The outcome of this determination, 
along with the ideal m values, is provided in Table 5.

Subsequently, the study contrasts the log-linear configuration of the 
GTI model with an alternative specification that incorporates threshold 
effects, taking into account the previously established m value. In cases 
where the log-linear assumption falls short of validity, the analysis 
proceeds to ascertain the number of transition functions required to 
encapsulate nonlinearity or heterogeneity in GTI model parameters. In 

Table 6 
Parameter estimates for the PSTR models.

Model B7 Model B8 Model B9 Model B10 Model B11 Model B12

Parameter B10 0.957 1.434 1.146 1.044 1.243 1.094
​ (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Parameter B20 1.091 1.867 1.774 1.469 1.770 1.438
​ (0.284) (0.033) (0.026) (0.072) (0.033) (0.098)
Parameter B30 1.184 1.059 1.111 1.199 1.135 1.165
​ (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Parameter B40 0.878 0.978 1.029 0.909 0.973 0.957
​ (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Parameter B50 1.138 1.190 0.988 1.020 0.927 1.052
​ (0.000) (0.000) (0.002) (0.002) (0.004) (0.000)
Parameter B60 0.203 − 0.020 − 0.082 0.208 − 0.314 0.212
​ (0.278) (0.912) (0.800) (0.103) (0.186) (0.424)
Parameter B11 0.865 0.722 0.489 0.935 0.597 0.766
​ (0.001) (0.000) (0.065) (0.000) (0.022) (0.003)
Parameter B21 − 0.838 − 0.955 0.211 − 1.000 − 0.337 − 0.656
​ (0.165) (0.007) (0.739) (0.071) (0.574) (0.304)
Parameter B31 − 0.882 − 0.648 − 0.838 − 0.954 − 0.826 − 0.887
​ (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)
Parameter B41 0.038 − 0.092 − 0.448 0.086 − 0.261 0.002
​ (0.870) (0.538) (0.075) (0.683) (0.285) (0.993)
Parameter B51 0.352 − 0.192 0.514 0.489 0.526 0.430
​ (0.308) (0.572) (0.130) (0.194) (0.133) (0.184)
Parameter B61 − 0.926 − 0.499 − 0.925 − 0.746 − 0.412 − 0.581
​ (0.002) (0.087) (0.031) (0.001) (0.226) (0.169)
First Transition Function [3.77, 1.85] [2.11, 3.77] [1.91, 3.77] [3.77, 1.86] [1.92, 3.77] [1.83, 3.78]
Slope Parameter y1 1090.519 22.650 1165.309 15.066 1237.513 1257.877
location parameters (m) m = 2 m = 2 m = 2 m = 2 m = 2 m = 2
AIC for m = 1 − 3.191 − 3.106 − 3.121 − 3.122 − 3.131 − 3.076
Schwarz for m = 1 − 2.953 − 2.869 − 2.884 − 2.884 − 2.894 − 2.925
AIC for m = 2 − 3.195 − 3.071 − 3.131 − 3.104 − 3.126 − 3.092
Schwarz for m = 2 − 3.033 − 2.909 − 2.969 − 2.942 − 2.964 − 2.930

Table 7 
Average estimated parameters of individual PSTR for Model B1.

lnGDPP lnURB lnOPE lnIS lnFD

Argentina 1.918 0.323 0.287 0.973 1.476
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Brazil 1.918 0.323 0.287 0.973 1.476
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Chile 1.918 0.323 0.287 0.973 1.476
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Finland 1.109 1.330 1.178 0.941 1.115
​ (0.000) (0.000) (0.000) (0.000) (0.000)
France 1.109 1.330 1.178 0.941 1.115
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Germany 1.271 1.129 1.000 0.948 1.187
​ (0.332) (0.414) (0.365) (0.013) (0.148)
Greece 1.299 1.094 0.969 0.949 1.200
​ (0.341) (0.425) (0.376) (0.013) (0.152)
Ireland 1.271 1.129 1.000 0.948 1.187
​ (0.332) (0.414) (0.365) (0.013) (0.148)
Israel 1.109 1.330 1.178 0.941 1.115
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Italy 1.109 1.330 1.178 0.941 1.115
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Japan 1.918 0.323 0.287 0.973 1.476
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Netherlands 1.109 1.330 1.178 0.941 1.115
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Norway 1.109 1.330 1.178 0.941 1.115
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Spain 1.466 0.886 0.785 0.956 1.274
​ (0.406) (0.506) (0.447) (0.016) (0.181)
Sweden 1.109 1.330 1.178 0.941 1.115
​ (0.000) (0.000) (0.000) (0.000) (0.000)
Switzerland 1.918 0.323 0.287 0.973 1.476
​ (0.000) (0.000) (0.000) (0.000) (0.000)
United Kingdom 1.109 1.330 1.178 0.941 1.115
​ (0.000) (0.000) (0.000) (0.000) (0.000)
United States 1.918 0.323 0.287 0.973 1.476
​ (0.000) (0.000) (0.000) (0.000) (0.000)
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this endeavor, the work of González et al., (2004) plays a pivotal role by 
offering a robust testing methodology for evaluating linearity and the 
number of transition functions (referred to as r∗). The testing process 
involves a continuous comparison between the null hypothesis (H 0 : r 
= r∗) and the alternative hypothesis (H 1 : r = r∗ + 1), incrementally 
increasing r∗ until the null hypothesis gains acceptance. The analysis is 
confined to the PSTR models with a maximum of four transition func
tions. The outcomes of these testing procedures are documented in 
Table 4, delivering a comprehensive evaluation of the model charac
teristics and results. Moreover, the study employed a variety of diag
nostic tests, including Wald tests, Fisher tests, and likelihood ratio tests, 
to offer a thorough assessment of the model attributes and outcomes. 
This ensures a comprehensive and nuanced evaluation of the PSTR 
model.

Within the framework of a PSTR model, nonlinear characteristics are 
effectively represented by a constrained set of exceptional patterns. 
These patterns correspond to variations in parameters of independent 
variables observed across different countries and over time. According 
to Table 4, the environmental regulations factor exhibits a considerable 
capacity to explain these variations. The assessment of the absence of 
persistent nonlinearity is reflected in specifications primarily incorpo
rating single transition functions for all models in Table 4. The param
eter estimates for the final PSTR models are reported in Tables 5 and 6. 
The outcomes of the estimation underscore the significance of the ma
jority of the estimated coefficients across various models. This suggests 
that the nonlinear analysis of GTI emphasizes the importance of all 
control variables employed in this research.

Drawing upon the parameter estimates obtained from the PSTR 
models, it becomes viable to measure the evolving impacts of indepen
dent variables across different time points for every country within the 
sample. These dynamic effects are encapsulated in Eq. (5). It is crucial to 
emphasize that the inferred parameters provide indirect interpretability 
primarily through their signs. The implications of these parameter signs, 
particularly within diverse contextual frameworks, provide partial in
sights. However, a comprehensive grasp of the intricate nonlinear effects 
of independent research variables on GTI necessitates the utilization of 
Eq. (5). It enables the derivation of weighted coefficients for each var
iable. The results of estimating Eq. (5) using the coefficients derived 
from Model B1 in Table 5 are as follows. Notably, these calculations 
should also be extended to the other models. This thorough exploration 
is vital for robustly comprehending the complex relationships between 
the specified variables and their impacts on GTI emissions under varying 
environmental regulations. 

∂GTIit

∂lnGDPPit
= 1.109 + 0.808 × hj(REGit; 1242.976, [3.77, 1.83]) (8) 

∂GTIit

∂lnURBit
= 1.330 − 1.008 × hj(REGit;1242.976, [3.77, 1.83]) (9) 

∂GTIit

∂lnOPEit
= 1.178 − 0.890 × hj(REGit;1242.976, [3.77, 1.83]) (10) 

∂GTIit

∂lnISit
= 0.941 + 0.032 × hj(REGit ;1242.976, [3.77, 1.83]) (11) 

∂GTIit

∂lnFDit
= 1.115 + 0.361 × hj(REGit ;1242.976, [3.77, 1.83]) (12) 

The findings allow for a more effective understanding of the direct 
impacts by examining β0 in Eqs. (4) and 5. Furthermore, Eq. (5) provides 

insight into the indirect effects, expressed as the sum of hj

(
qit; γj,cj

)
. For 

instance, in Eq. (8), the direct effects are quantified at 1.109, while the 
associated indirect effects are 0.808× hj(REGit; 1242.976, [3.77, 1.83]). 
The dynamic nature of the transition function hj(REGit; 1242.976,
[3.77, 1.83]) is noteworthy, which inherently introduces temporal and 
cross-national variations into these indirect effects.

Scrutinizing the statistical significance of the coefficients indicates 
that both direct and indirect effects in Model B1 are significant across all 
variables, except for the indirect effects of lnIS and lnFD. Given the 
complexity of detailing the projected effects encompassing Eqs. (8) to 12
for every individual model, it is necessary to provide a concise summary 
of the estimation results. These averaged outcomes, as indicated in Eqs. 
(8) to 12, are meticulously presented in Table 7. It is worth highlighting 
that these values represent the country average of individual effects for 
these variables. The values enclosed in parentheses signify the standard 
deviation characterizing the estimated coefficients within each nation. 
The consistently low standard deviations distinctly underscore the 
robustness and stability of the coefficients at the national level.

Despite offering valuable insights into how model variables impact 
GTI on a national level, Table 7 does not entirely enable a comprehen
sive understanding of the complex nonlinear effects of these variables on 
GTI, nor does it reveal the underlying explanations for the changes in the 
estimated parameters across countries and over time, particularly in 
response to various environmental regulation regimes. To explore these 
unique effects, it is crucial to visually represent the estimated co
efficients concerning different levels of the natural logarithm of envi
ronmental regulation (lnREG). Mean coefficients are calculated on 
multiple scales. At a national level, as shown in Fig. 1, these coefficients 
represent average parameters across various time frames within specific 
countries. Additionally, on a temporal scale, as visualized in Fig. 2, they 
reflect average parameters across different countries at particular points 
in time.

The vertical axis within the graphical representations illustrates the 
mean values of the estimated parameters for each model variable, while 
the horizontal axis represents the average lnREG levels across different 
countries. Notably, the variables demonstrate consistent positive or 
negative effects in both diagrams. Furthermore, Figs. 1 and 2 vividly 
show that the average estimated coefficients, both at the temporal and 
national levels, shift similarly as the lnREG levels increase. The only 
exception is the reduced dispersion seen in the temporal average. This 
difference in variance could be attributed to the relatively short study 
period, limiting significant temporal variation. Nonetheless, these dis
parities are less pronounced in comparison to the distinctions in the 
estimated coefficients of the linear spatial and time effects models, as 
shown in Table 5, particularly in terms of the signs of the coefficients. 
This suggests that the use of the nonlinear formulation effectively 
addressed such disparities.

As shown in Fig. 1, all control variables within the model exhibited 
positive impacts on GTI. However, an escalation in environmental reg
ulations appears to diminish the positive impact of both GDP per capita 
and industrial structure. Conversely, a higher degree of environmental 
regulation correlates with amplifying the impacts of urbanization and 
trade openness. These findings were derived from Model 1. The 
remaining figures pertain to the analysis of 11 entrepreneurship in
dicators, each corresponding to the estimated coefficients from Models 
2–12. The results reveal that the majority of these entrepreneurship 
indicators exert a negative impact on GTI. Interestingly, an increase in 
environmental regulations gradually mitigates the adverse impacts and 
even transforms several indicators into positive contributors. Notably, 
post-school entrepreneurial education and training, basic school entre
preneurial education and training, internal market dynamics, and 
physical and services infrastructure fall into this category.

Among the 11 indicators, financing for entrepreneurs, governmental 
programs, and governmental support and policies exhibit distinctive 
impact patterns. These three variables initially have negative impacts on 
GTI at very low levels of environmental regulation. However, as envi
ronmental regulations intensify, these negative impacts gradually 
become positive. At environmental regulation levels around 1.69 for 
governmental support and policies and governmental programs and 
1.49 for financing for entrepreneurs, positive impacts peak, while a 
further increase in environmental regulations diminishes the positive 
impacts, ultimately making them negative. The results underscore a 
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turning point at an environmental regulation level of 1.82 for the 
remaining variables, marking a significant shift in their impact 
dynamics.

Conclusions and policy implications

This research delved into annual data sets from 2002 to 2020 across 
18 countries to probe the factors influencing GTI. In line with prior 
research underscoring the intricate interplay between entrepreneurship, 
sustainability, and innovation (Bendig et al., 2022; B. Cohen et al., 2008; 
Coulibaly et al., 2018), this study goes beyond the assumption that all 
entrepreneurship indicators inherently promote GTI. By applying a 
PSTR model across varying degrees of environmental regulation, it ad
dresses calls for more nuanced analyses sensitive to cross-country het
erogeneity. The findings reveal that multiple entrepreneurship 
metrics—such as financing, governmental programs, and policy sup
port—exert positive or negative impacts on GTI, depending on 

regulatory intensity, thus filling a gap in the literature (i.e., examining 
these relationships in tandem). Consequently, this work not only refines 
current debates on how entrepreneurial ecosystems influence sustain
able innovation but also provides actionable insights for policymakers 
seeking to harmonize economic growth strategies with rigorous envi
ronmental objectives.

According to the findings, GDP expansion per individual and finan
cial development play a pivotal role in fostering GTI. As agents and 
nations amass wealth, their inclination to prioritize environmental 
considerations and invest in eco-friendly innovations becomes more 
pronounced. An elevated GDP per inhabitant gives governments and 
businesses the monetary instruments to back research and advancement 
in the green technology sector while stimulating market demand for 
sustainable products and services. Financial expansion is a comple
mentary factor, supplying funds, reducing funding expenditures for 
green tech enterprises, and streamlining the trade of environmental 
assets such as carbon allowances. Furthermore, financial organizations 

Fig. 1. Average estimated parameters of individual PSTR at the country level.
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and investors are progressively integrating environmental, social, and 
governance (ESG) standards into their decision-making protocols, 
encouraging businesses to align with green tenets and expedite the 
development of sustainable innovations.

However, the findings reveal that stringent ecological regulations 
can mitigate the positive impacts of GDP per capita and monetary 
development on GTI. Such mandates tend to impose compliance ex
penditures on businesses, diverting resources from research and 
advancement endeavors. Enterprises may opt for immediate compliance 
over long-term innovation, thereby impeding progress in green tech
nology. Consequently, conceptualizing and implementing ecological 
regulations must be scrupulously considered to prevent unintended 
negative ramifications, even though these negative impacts on financial 
development are less significant.

The observational evidence indicates that a transition in the indus
trial structure toward an augmented reliance on the tertiary domain, 
which encompasses services, positively influences GTI. The tertiary 
sector, recognized for its role in research, development, and data 

exchange, stimulates the demand for cutting-edge green technologies to 
raise efficiency and mitigate environmental ramifications. Service sec
tors play a crucial role in expediting the adoption of green technologies 
and the exchange of expertise, thus nurturing a supportive framework 
for GTI. While ecological regulations hold the capacity to mitigate the 
positive impacts of this transition, their impacts remain relatively 
modest. Moreover, the findings imply that environmental regulations 
can enhance the positive impact of urbanization on GTI. Urban areas 
often contend with intensified environmental challenges, which fosters a 
greater appetite for green technologies. The aggregation of enterprises, 
research institutions, and skilled human capital in cities catalyzes 
collaborative efforts and the sharing of knowledge, accelerating GTI. 
Ecological regulations serve as catalysts by establishing benchmarks and 
offering incentives, thus promoting collaboration and driving the 
development and adoption of sustainable technologies within urban 
landscapes.

Furthermore, the findings suggest that an environmental mandate 
can complement the impacts of trade openness, further amplifying the 

Fig. 1. (continued).
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positive impact on GTI. Trade liberalization broadens entry to interna
tional markets, expanding the market base for green technologies and 
cultivating ingenuity through economies of scale and competition. This 
liberalization also facilitates knowledge and technology transfer be
tween nations, encouraging transnational collaboration and dissemi
nating best practices in green innovation. Simultaneously, ecological 
regulations provide a supportive infrastructure, encouraging businesses 
to allocate to eco-friendly technologies, thereby consolidating their 
impact on GTI.

The empirical findings highlight that the majority of entrepreneur
ship metrics exert a detrimental impact on GTI. Several factors underpin 
this deleterious impact. First, venture indicators prioritizing immediate 
profitability and market-driven deliberations, such as return on invest
ment (ROI) and time to market (TTM), may dissuade allocations to GTI. 
Venture capitalists prioritize projects with short-term returns and 
established markets, a perspective incongruent with the longer horizons 
and uncertainties intrinsic to green technology development. 

Consequently, capitals that could have been designated to GTI are 
diverted toward more traditional ventures with immediate yields. Sec
ond, such venture indicators can unwittingly incentivize businesses to 
cut corners and engage in environmentally detrimental practices, 
particularly without stringent or rigorously enforced ecological regula
tions. Metrics emphasizing economic efficiency and competitiveness can 
encourage expenditure-reducing measures that compromise ecologi
cally responsible processes and materials. This ardent focus on venture 
indicators may lead to a race to the bottom regarding ecological re
sponsibility, undermining GTI efforts and contributing to ecological 
deterioration.

Among the 11 indicators under scrutiny, financing for innovators, 
governmental programs, and governmental assistance and policies 
exhibit a distinct impact pattern defined by an inverted U-shape. Their 
beneficial effects peak at specific tiers of environmental regulation; 
however, additional regulations attenuate positive impacts, eventually 
changing them into adverse impacts. Unlike other venture metrics, these 

Fig. 2. Average estimated parameters of individual PSTR at the time level.
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three factors strongly underscore providing direct monetary assistance 
to entrepreneurs, necessitating an analysis from a financial efficacy 
perspective. This inverted U-shaped pattern is attributed to the syner
gistic interplay between regulatory limitations and support mechanisms. 
As ecological regulations become more rigorous, entrepreneurs are 
initially incentivized to embrace environmentally sustainable practices 
and technologies, resulting in favorable fiscal and environmental out
comes. Nevertheless, overly burdensome or rigid regulations can intro
duce supplementary compliance costs and hamper innovation, 
diminishing the positive impacts of these support mechanisms. Striking 
the optimal regulatory equilibrium is pivotal to promoting sustainable 
economic and environmental development as excessively stringent 
regulations can discourage venture initiatives and hinder economic 
growth, leading to adverse impacts.

The findings—that certain entrepreneurship indicators negatively 
affect GTI—reflect broader debates in the entrepreneurship ecosystem 
literature, where short-term profitability metrics can overshadow long- 
term ecological objectives (Melander & Arvidsson, 2022; Zhang et al., 

2020b). As Iqbal et al. (2020) and York and Venkataraman (2010)
emphasized, green entrepreneurship requires not only market incentives 
but also explicit policy support to thrive. Accordingly, the divergence 
observed between cost-focused and sustainability-oriented approaches 
in entrepreneurial ventures underscores the need for targeted in
terventions that encourage environmental responsibility without stifling 
business dynamism (B. Cohen et al., 2008; Coulibaly et al., 2018).

These patterns resonate with the innovation compensation versus 
cost compliance tension described by the Porter hypothesis (Porter & 
Van Der Linde, 2017). It was found that modestly stringent environ
mental regulations can spur corporate creativity—especially in urban
ized settings—leading to greener technologies and processes (Hobman & 
Frederiks, 2014; Kraus et al., 2020). Conversely, when regulations 
become excessively rigid, compliance expenses may eclipse the potential 
gains from innovation, mirroring evidence that excessive regulatory 
burdens hamper R&D and entrepreneurial ambition (Jaffe et al., 2000; 
Zhang & Dong, 2022). The findings thus support the notion that the 
success of environmental regulations in driving GTI depends on careful 

Fig. 2. (continued).
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policy calibration, ensuring that the economic and ecological benefits of 
entrepreneurial activities are maximized.

Moreover, the heightened positive impacts of collabo
ration—especially when established corporations and born green start
ups join forces—underline the role of entrepreneurial ecosystems in 
scaling green innovation (Bendig et al., 2022; Demirel et al., 2019). By 
fostering an environment that shares knowledge, mitigates financial 
risk, and facilitates alliances, policymakers can help entrepreneurs pivot 
toward more sustainable products and services (W. M. Cohen & Levin
thal, 1989). This approach is particularly salient for urban centers, 
where dense networks of firms, universities, and innovators can accel
erate the diffusion of eco-friendly practices (Zhao et al., 2022a; Zhu 
et al., 2019). Therefore, the integration of balanced environmental 
regulations with supportive entrepreneurial frameworks can amplify the 
positive impacts of innovation on sustainability, aligning economic 
growth with environmentally responsible outcomes.

The policy recommendations derived from this analysis advocate for 
a comprehensive approach to promoting GTI. Most importantly, it is 
essential to balance nurturing entrepreneurship with ensuring environ
mental sustainability. Well-crafted, stringent environmental regulations 
can counter entrepreneurship indicators that might otherwise hinder 
GTI by emphasizing short-term gains and environmentally detrimental 
practices. Policymakers should contemplate establishing explicit sus
tainability goals and incentives for businesses to adopt green technolo
gies and sustainable practices. Additionally, policies supporting 
research, development, and knowledge sharing in urban areas can 
facilitate the transition toward a knowledge-based economy focused on 
the tertiary sector. Finally, recognizing the inverted U-shaped impact of 
specific entrepreneurship indicators in response to environmental reg
ulations, policymakers should prioritize maintaining an optimal trade- 
off between regulatory constraints and support mechanisms. 
Achieving such a trade-off is critical for motivating and supporting 
innovation while avoiding undue regulatory burdens that could 
dissuade entrepreneurship and economic growth.
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