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Abstract
It has been shown by Pronzato et al. (Bernoulli 23(4A):2617–2642, 2017; J Multivar Anal 168:276–289, 2018) that simplicial
volumes formed by independent copies of random variables can be used to extend the definition of generalised variances. It is
shown in this paper that exterior algebra is a natural environment in which to study these constructions. This is used to extend
the formulation to covariances and correlations. The theory leads naturally to dispersion ordering, that is partial orderings in
which one random variable is more disperse than another if one squared simplicial volume stochastically dominates the other.

Keywords Exterior algebra · Grassman algebra · Generalised covariance · Canonical correlation · Stochastic ordering ·
Dispersion ordering

1 Introduction

Despite its use, in areas such as information geometry, the
role of multilinear algebra in statistical theory has been
limited. However, as soon as determinants arise in some sta-
tistical context, particularly in multivariate analysis, one can
claim that we are using multilinear algebra or multilinear
geometry. This is true of previous work of the authors (Pron-
zato et al. 2017, 2018, 2019) which related the expected
volume of random simplices, represented by determinants,
to the determinants of covariance matrices and marginal
covariance matrices; see also Gillard et al. (2022) where the
technique of simplicial distances developed in Pronzato et al.
(2017, 2018) has been used for detection of outliers and clus-
ter analysis. The expected volumes of simplices have also
played a part in definitions of dispersion orderings in previous
work (Giovagnoli and Wynn 1995). The ideas can be traced
back to the seminal work of Hotelling (1992) in canonical
correlation analysis (CCA) andWilks (Wilks 1932, 1960) in
generalised variance. Results of Sect. 4 dealing with cross-
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covariances can be used in widening the interpretations of
the techniques of the standard CCA as well as various exten-
sions of CCA including the regularized CCA (Tenenhaus and
Tenenhaus 2011) and deep CCA (Andrew et al. 2013). Note
also an extensive use of cross-covariances in the methodol-
ogy of time series analysis and forecasting called singular
spectrum analysis, see Golyandina and Zhigljavsky (2013);
Golyandina et al. (2018). The main aim of this paper is to
promote the idea that exterior algebra is a natural environ-
ment in which to study and extend formulae and show that
the inner product in exterior algebra is the key formula for
our purposes.

We start with an elementary discussion. Thus, in statistics
and probability theory variances and covariances are closely
related to metrics. If X and Y are two jointly distributed
one-dimensional random variables and E denotes expecta-
tion with respect to their joint distribution then

E(|X − Y |2) = var(X) + var(Y ) − 2 cov(X ,Y )

+ [E(X) − E(Y )]2.

If X1, X2 are two independent copies of the random variable
X then

E(|X1 − X2|2) = 2 var (X).

If X is a random vector with covariance matrix

C(X , X) = E(XXT ) − E(X)E(X)T ,
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then for Euclidean distance and i.i.d. copies X1, X2

E||X1 − X2||2 = 2 trace(C(X , X)). (1)

The cross-covariance matrix between two random n-vectors,
X and Y , is

C(X ,Y ) = E(XY T ) − E(X)E(Y )T .

In this case,

trace(C(X ,Y )) =
n∑

i=1

cov(Xi ,Yi )

can be considered as an overall measure of covariance. The
present paper revisits the authors’ papers (Pronzato et al.
2017, 2018) with a straightforward use of the exterior prod-
uct.

In the first part of the paper, we will consider standard
vectors, that is, vectors extending from the origin so that
simplices are formed with one vertex at the origin. But in
the spirit of our previous work we return briefly in Sect. 5 to
what we term affine simplices. For example, in one dimen-
sion this is the length of the line from point X1 to point X2

and a triangle in three or more dimensions is described by
three points X1, X2, X3, away from the origin. Sections5 and
6 cover generalised covariances and cross-covariances and
Sect. 7 discusses a natural application to dispersion order-
ings.

2 Exterior algebra

Our calculations are based on n-dimensional base vector
space R

n over R with vectors x (1), x (2) . . . written as col-
umn vectors

x = (x1, . . . , xn)
T . (2)

Looking forward to the next section we will write a random
vector in R

n as X = (X1, . . . , Xn)
T and use independent

identically distributed random (vector) copies of a random
n-vector X ; similarly for Y .

We label the standard unit vectors in R
n as e1, . . . , en so

that we may express a vector x ∈ R
n as:

x = x1e1 + · · · + xnen .

Note that any independent basismay be used, but the standard
basis is easier conceptually. The book (Darling 1994) is an
excellent introduction.

The outer product of two vectors x, y ∈ R
n is written

x ∧ y. Starting with basis vectors we write formal expression

which lie in a formal vector space
∧2

R
n whose basis vectors

are all ordered pairs ei ∧ e j , ; i, j = 1, . . . , n; i < j . Then,
we have the decomposition

x ∧ y =
∑

i< j

(xi y j − x j yi ) ei ∧ e j .

The coefficients are the determinants of 2× 2 matrices from
the appropriate entries of x and y and are signed areas of
the triangles formed by the corresponding 2-vectors and the
origin.

Starting with the basis {e1, . . . , en} of R
n the following

rules uniquely define the wedge product. Given real scalars
a, b and vectors x, y, z

1. (ax + y) ∧ z = a(x ∧ y) + y ∧ z,
2. x ∧ (by + z) = b(x ∧ y) + x ∧ z,
3. x ∧ x = 0.

We interpret the terms ei ∧ e j as an abstract coding or place-
holder of the two dimensional space spanned by ei and e j , but
assigned an orientation expressed by a sign. From the above
axioms it follows that (x+ y)∧ (x+ y) = x∧ y+ y∧ x = 0,
so that

x ∧ y = −y ∧ x,

which shows the importance of signs.
The machinery extends to the space of high exterior pow-

ers
∧p

R
n and we define the pth wedge product for vectors

x (1), . . . , x (p) ∈ R
n by

x (i) ∧ · · · ∧ x (p) =
∑

i1<i2<<i p

Di1<···<i p ei1 ∧ · · · ∧ ei p ,

where Di1<···<i p is the determinant giving the p-dimensional
volumes for directions coordinated by the terms: ei1 ∧ · · · ∧
ei p :

Di1<···<i p = det [x (i1) : · · · : x (i p)].
A key construction for us is the inner product on

∧p
R
n .

When p = 2, for x ∧ y, u ∧ v in
∧2

R
n we define

〈x ∧ y, u ∧ v〉 = det

[
xT u xT v

yT u yT v

]
.

The inner product on
∧p

R
n is defined as

〈x (1) ∧ · · · ∧ x (p), y(1) ∧ · · · ∧ y(p)〉 = det{〈x (i), y( j)〉},

where the inner product on the right hand side is the standard
inner product. A matrix formulation is sometimes useful.
Thus, the matrix 〈x (i), y( j)〉 is UT V where U = [x (1) :
· · · x (p)], V = [y(1) : · · · : y(p)].
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In order to avoid too much notation we will refer to an
ordered subset of size p, i1 < · · · < i p, by Jp, being care-
ful to fix the context. Thus

∑
Jp is the summation over all(n

p

)
ordered subsets Jp. This notation is also used to index

marginal variables. Thus, xJp is the vector with entries, in
order, xi j : j = 1, . . . , p, and {X Jp } are the marginal ran-
dom vectors corresponding to Jp.

3 Expectations, generalised variances and
covariances

For the random version of x in (2) we write

X = X1e1 + · · · + Xnen .

If E denotes expectation with respect to the full joint distri-
bution, then

E(X) = E(X1)e1 + · · · + E(Xn)en .

We assume that all random vectors have zero mean to make
formulae a little easier to handle. Thus we define the covari-
ance matrix of a random X as

C(X , X) = E(XXT ),

the cross covariance between random vectors X and Y as

cov(X ,Y ) = E(XY T ),

and the full covariance matrix between X and Y as

C

[(
X
Y

)
,

(
X
Y

)]
=
[
C(X , X) C(X ,Y )

C(X ,Y )T C(Y ,Y )

]
.

Definition 3.1 For two random variables X ,Y with values
in R

n define the generalised variances and the gener-
alised covariance respectively by the following determinants:
det(C(X , X)), det(C(Y ,Y )) and det(C(X ,Y )).

These definitions will be used for marginal vectors
X Jp ,YJp in dimension p for all 1 ≤ p ≤ n, so that we
write, for example det(Cp(X ,Y )). The following is essen-
tially similar to the result in Pronzato (1998), but with an
alternative proof.

Lemma 3.2 Let X and Y be two random p-vectors and let
X(1), . . . X(p) and Y(1), . . . Y(p) be two sets of iid copies of X
and Y , respectively. Then

E

{
det

( p∑

i=1

X (i)Y (i)�
)}

= p! det(cov(X ,Y )).

Proof The Sylvester formula for an inverse of an invertible
p × p matrix A is

A−1 = adj(A) det(A),

where the (i, j) entry of the adjugate adj(A), is, with appro-
priate sign, the determinant of the (n− 1)× (n− 1) cofactor
formed by deleting rows i and j of A. If A is invertible and
a, b are n-vectors we have the well known formula

det(A + abT ) = det(A)(1 + bT A−1a).

We shall need the more general version which applies
whether or not A necessarily invertible:

det(A + abT ) = det(A) + bT adj(A) a.

The proof now proceeds by induction on p. The case p =
1 is immediate. Now,

det

( p∑

i=1

X (i)Y (i)�
)

= det

⎛

⎝
p−1∑

i=1

X (i)Y (i)�
⎞

⎠

+Y T
(p) adj

⎛

⎝
p−1∑

i=1

X (i)Y (i)�
⎞

⎠ X(p).

The first term on the right is zero because the matrix does not
have full rank. Then

E

{
det

( p∑

i=1

X (i)Y (i)�
)}

= E

⎧
⎨

⎩Y
T
(p) adj

⎛

⎝
p−1∑

i=1

X (i)Y (i)�
⎞

⎠ X(p)

⎫
⎬

⎭

= E

⎧
⎨

⎩trace

⎛

⎝Y T
(p) adj

⎛

⎝
p−1∑

i=1

X (i)Y (i)�
⎞

⎠ X(p)

⎞

⎠

⎫
⎬

⎭

= E

⎧
⎨

⎩trace

⎛

⎝ adj

⎛

⎝
p−1∑

i=1

X (i)Y (i)�
⎞

⎠ X(p)Y
T
(p)

⎞

⎠

⎫
⎬

⎭

= trace

⎛

⎝E adj

⎛

⎝
p−1∑

i=1

X (i)Y (i)�
⎞

⎠E(X(p)Y
T
(p))

⎞

⎠ (∗)

= trace

⎧
⎨

⎩E

⎛

⎝ adj

⎛

⎝
p−1∑

i=1

X (i)Y (i)�
⎞

⎠C(X ,Y )

⎞

⎠

⎫
⎬

⎭ .

where the transition (*) uses the independence between
copies. Then, whether or not C = C(X ,Y ) is invertible,
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the last formula reduces, by the property of adjugates, to:

(p − 1)! trace[adj(C)C] = (p − 1)! p det(C) = p! det(C),

as required. 	
.

Recall our notation for margins, namely that X (1)
Jp

, X (2)
Jp

,

. . . , X (p)
Jp

and Y (1)
Jp

, . . . ,Y (p)
Jp

are the Jp-margins of p inde-
pendent copies of the n-vectors X and Y , respectively. Then,
using the inner product in

∧p
R
n we have the key lemma of

the paper.

Lemma 3.3 Let (X (1),Y (1)), . . . , (X (p),Y (p)) be indepen-
dent copies of the extended base vector (X ,Y ). Then

E(〈X (1) ∧ · · · ∧ X (p),Y (1) ∧ · · · ∧ Y (p)〉)
= E

{
det
(
{〈X (i),Y ( j)〉}

)}

= p!
∑

Jp

det
(
Cp(X Jp ,YJp )

)
,

where the sum is over all (ordered) index sets Jp ⊂ N of size
p.

Proof The first equality is from the definition of the inner
product. The second follows by expanding det((C(X J ,YJ ))

by the Binet–Cauchy theorem and applying Lemma 3.2 to
every term. 	
.

Replacing Y by X in the two lemmas replaces all cross-
covariances matrices by covariance matrices: C(X , X), that
is

E(〈X (1) ∧ · · · ∧ X (p), X (1) ∧ · · · ∧ X (p)〉)
= E

{
det
(
{〈X (i), X ( j)〉}

)}

= p!
∑

Jp

det
(
C(X Jp , X Jp )

)
,

Note that before taking expectation the quantity

vp(X) = det({〈X (i), X ( j)〉})

is the volume of the p-dimensional simplex spanned by the
X (1)∧· · ·∧X (p), as studied in Pronzato et al. (2017).We thus
have a decomposition of the expectation of the square of this
volume and the covariances of the p-margins of the original
random variable X . In the case of X ,Y the wedge-product
formula gives a new type of covariance based on product of
the signed areas of two random simplices, one for X and one
for Y .

4 Generalised cross-covariances and
correlations

4.1 Definitions and a key property

As mentioned in the introduction, det(C(X ,Y )) consid-
ered as a generalised cross-covariance is not as well-known
as Wilks’s generalised variance det(C(X , X)). Despite this
we can proceed to the following definition derived from
Lemma 3.3.

Definition 4.1 The generalised p-cross covariance of two
random n-vectors X and Y is defined as

Cp(X ,Y ) =
∑

Jp

det(C(X Jp ,YJp )),

and the p-covariance for X (similarly, for Y ) as

Cp(X , X) =
∑

Jp

det(C(X Jp , X Jp )),

where the summation is over all ordered p-index sets Jp.

The only difference from the formula in Lemma 3.3 is the
removal of the multiplier p!. Given the definitions of the p-
generalised variances in Pronzato et al. (2017), we have the
following natural definition:

Definition 4.2 The generalised p-correlation between ran-
dom n-vectors X and Y is defined as

corrp(X ,Y )

=
∑

Jp det(C(X J ,YJ ))
√∑

Jp det(C(X Jp , X Jp )
√∑

Jp det(C(YJp ,YJp ))
,

where the summations are over all ordered p-index sets Jp.

It is easily established that

−1 ≤ corrp(X ,Y ) ≤ 1

for all 2 ≤ p ≤ n, by using the requirement that the joint
covariance matrix of X and Y must be non-negative definite.

An interesting analysis arises in the full n-dimensional
case when for random n-vectors X ,Y , C(X , X) = C(Y , Y )

= In , the n × n identity. We may arrive at this special case
en route to computing canonical correlation, and we shall
refer to this case as being canonical. Thus, using spectral
square roots, if we take two random n-vectors U , V and set

X = C(U ,U )− 1
2U and Y = C(V , V )− 1

2 V then C(X , Y )

is the canonical cross-correlation matrix and the covariance
matrix for (X ,Y ) is

[
In C(X ,Y )

C(X ,Y )T In

]
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This study of canonical correlation goes back to Hotelling
(1992).

The fine structure of the relationship between X and Y
can be studied via the cross-correlation matrix C(X ,Y ). We
have the following lemmas.

Lemma 4.3 (i) For a n-vectors X ,Y with C(X , X) =
C(Y ,Y ) = In, C = C(X ,Y ) is a valid cross-correlation
matrix if and only if:

CCT ≤ In,

where ≤ is the Loewner ordering, with equality if and only
if:

det(C) = 1,

which, in turn, holds if and only if

CCT = In .

Proof det(CCT ) = 1, so that all the eigenvalues ofCCT are
unity. This forces

(CCT )2 = CTC

and CTC must be the identity projector. The converse is
immediate. 	


The condition C(X ,Y )TC(X ,Y ) = In implies that
C(X ,Y ) is a rotation: formally a member of the orthogo-
nal group O(n). So we have the informal statement that all
extreme cross-correlations matrices, C , are related to rota-
tions.

4.2 Two examples

Example 1 Let n = 2 and consider the covariance matrix in
canonical form above. Then

C(X ,Y ) =
[
c11 c12
c21 c22

]

If det(C(X ,Y )) = 1 then the general solution can be written

C(X ,Y ) =
[

cos θ sin θ

− sin θ cos θ

]
,

for an angle 0 ≤ θ < π .
In this case the set of C(X ,Y ) is a representation of

the rotation group, O(2). For multiples of π
4 , we have the

subgroupwhich is the 16 dihedral order group, D2, of permu-
tation and sign changes with elements and representations:

±
[
1 0
0 1

]
, ±

[
1 0
0 −1

]
, ±

[
0 1
1 0

]
, ±

[
0 1

−1 1

]
,

± 1√
2

[
1 1
1 −1

]
, ± 1√

2

[
1 −1
1 1

]
,

± 1√
2

[−1 1
1 1

]
, ± 1√

2

[−1 1
1 1

]
.

Example 2 Take n = 4, again in canonical form, and

C(X ,Y ) =
[

cos θ sin θ

− sin θ cos θ

]⊗[
cosφ sin φ

− sin φ cosφ

]
,

so that C(X ,Y ) is a member of O(2)
⊗

O(2). We compute:

φ1 = cos(s) cos(t)
φ2 = 1 − 2

3 (sin(s)
2 + sin(t)2)

φ3 = cos(s) cos(t)
φ4 = 1 .

For example, if s = 0, t = π/2, then we have φ1 = 0, φ2 =
1
2 , φ3 = 0, φ4 = 1 and

C(X ,Y ) =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤

⎥⎥⎦ ,

which is a member of D2
⊗

D2, as expected.

4.3 The eigenvalues of C

The eigenvalues ofC may be complex, but conditionCCT ≤
In in Lemma (4.3) imposes restrictions.

Lemma 4.4 For n-vectors X ,Y with C(X , X) = C(Y , Y ) =
In every eigenvalue λ of the cross-correlation matrix C =
C(X ,Y )) satisfies |λ| ≤ 1.

Proof We carry out the proof for the complex case. Let z =
u + iv, with u and v real and v 
= 0, be the eigenvector
corresponding to a λ. Then λ∗, the complex conjugate of λ,
is the eigenvalue for the conjugate of z namely z∗ = u − iv.
Since CT z = λz and CT z∗ = λ∗z∗

|λ|2‖z‖2 = λ∗λz∗�z
= z∗�CCT z

= uTCCT u + vTCCT v (cross terms cancel)

≤ ||u||2 + ||v||2 = ‖z‖2,

and cancelling ‖z‖2 gives the result. 	

It is natural to ask whether in the canonical cross corre-

lation case the matrix C(X ,Y ) has a representation which
might be thought of as a kind of PCA for cross correlations.
This is indeed the case but since C(X ,Y ) is not necessarily
symmetric we need the Jordan form decomposition.
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In the case that the eigenvalues {λ1, . . . , λn} of C(X ,Y )

are real and distinct there exists a matrix Q such that

Q C(X ,Y ) Q−1 = diag({λ1, . . . , λn),

and if there are repeated roots then Q C(X ,Y ) Q−1 has the
usual Jordan block decomposition.

Complex eigenvalues occur in conjugate pairs: λ = λ j ±
μ j i . For distinct conjugate pairs QC(X ,Y )Q−1 there is a
version of the Jordan decomposition which gives 2 × 2 a
blocks of the form [

λ j −μ j

μ j λ j

]
,

with extended forms when complex roots are repeated.
When the roots ofC(X ,Y ) are real we have the equivalent

linear representation

Yi = λi Xi , i = 1, . . . , n.

But in the complex casewe have for pairs {X j,1,Y j,1}, {X j,2,

Y j,2}:
Y j,1 = λ j X j,1 − μ j X j,2 ,

Y j,2 = μ j X j,1 + λ j X j,2 .

Note, however, that the matrix C∗ = QC(X ,Y )Q−1 is,
in general, no longer the covariance between X and Y , but
between QX and Q−1Y . That is, by transforming C(X ,Y )

to the canonical formmay affect the canonical representation
C(X , X) = C(Y ,Y ) = In .

In several fields this analysis is used to indicate the pres-
ence of feedback. Examples are in control theory and the
closely related Granger causality in economics. We can, of
course have a mixture of both real and complex eigenvalues.

5 The affine case

In Pronzato et al. (2017) the authors consider what we call
here the affine case, motivated by (1). To aid explanation
consider the first interesting example, namely triangles in
three dimension.

Consider three i.i.d. copies X (1), X (2), X (3) in R3, labelled
as points A, B,C , respectively. They form a triangle ABC
whose squared area is

1

4
det([X (1) − X (3) : X (2) − X (3)]T

[X (1) − X (3) : X (2) − X (3)]).

In both cases we are considering the vectors from A to C and
B to C.We can then expand by the Binet–Cauchy lemma and

write the last expression as

1
4

{
det2([X (1) − X (3) : X (2) − X (3)]12)

+ det2([X (1) − X (3) : X (2) − X (3)]13)
+ det2([X (1) − X (3) : X (2) − X (3)]23)

}
.

This can be expressed using the wedge inner product as

1

4
〈(X (1)−X (3)∧(X (2)−X (3)), (X (1)−X (3)∧(X (2)−X (3))〉.

It is natural to consider the covariance case, namely:

〈(X (1)−X (3))∧(X (2)−X (3)), (Y (1)−Y (3))∧(Y (2)−Y (3))〉,

the expansion of which is

det([X (1) − X (3) : X (2) − X (3)]12)
× det([Y (1) − Y (3) : Y (2) − Y (3)]12)

+ det([X (1) − X (3) : X (2) − X (3)]13)
× det([Y (1) − Y (3) : Y (2) − Y (3)]13)

+ det([X (1) − X (3) : X (2) − X (3)]23)
× det([Y (1) − Y (3) : Y (2) − Y (3)]23) .

Taking expectations we see that our generalised 2-
covariance is the expectation of a sum of products of signed
areas from blades of dimension p = 2. We then adapt the
analysis of Sect. 3 to the affine case by extending with a vec-
tor of ones, z = (1, 1, 1)T . Thus we replace vectors X by
X̃ = (XT : zT )T and use the general version of the formulae

det([X (1)−X (3) : X (2)−X (3)]12)= det([˜X (1)
12 : ˜

X (2)
12 : ˜

X (3)
12 ]).

Generalising the above argument, Lemma 3.3 is replaced
by

Lemma 5.1 Let (X (1),Y (1)), . . . , (X (p+1),Y (p+1)) be inde-
pendent copies of the base vector (X ,Y ). Then

E(〈˜X (1) ∧ · · · ∧ ˜X (p+1),˜Y (1) ∧ · · · ∧ ˜Y (p+1)〉)
= E

{
det
{
〈˜X (i),˜Y ( j)〉

}}

= (p + 1)!
∑

Jp

det
(
C(X Jp ,YJp )

)
.

When Y is replaced by X we obtain the main result in Pron-
zato et al. (2017). The results also extend in natural way to
obtain an affine version of the development of the covariance
representation in Sect. 4, with the analogous explanation in
terms of the product of volumes of affine simplices.
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6 Hodge star operator and the
cross-covariance Pfaffian

The Hodge star construction, in the general case (p, n − p),
shows that for elements X (1) ∧ · · · ∧ X (p) in

∧p and Y (1) ∧
· · · ∧ Y (n−p) in

∧n−p there is a mapping, called the Hodge
star operator, which takes X (1) ∧ · · · ∧ X (p) into its Hodge
star dual,

(
X (1) ∧ · · · ∧ X (p)

)∗
in
∧n−p such that

X (1) ∧ · · · ∧ X (p) ∧ Y (1) ∧ · · · ∧ Y (n−p)

= 〈
(
X (1) ∧ · · · ∧ X (p)

)∗
,

Y (1) ∧ · · · ∧ Y (n−p)〉 e1 ∧ · · · en .

We study the case n = 2p so that X (1) ∧ · · · ∧ X (p) and(
X (1) ∧ · · · ∧ X (p)

)∗
both have dimension p. Taking expec-

tation and suppressing e1 ∧ · · · ∧ en we have the identity

E
{
det
(
X (1) : · · · : X (p) : Y (1) : · · · : Y (p)

}
(3)

= E
{
〈
(
X (1) ∧ · · · ∧ X (p)

)∗
,Y (1) ∧ · · · ∧ Y (p)〉

}
. (4)

Definition 6.1 Let
(
X1,Y 1), · · · , (X p,Y p)

)
be independent

i.i.d. copies of possibly correlated p-vectors with cross
covarianceC . Define φ(C), equivalently, by (3) or (4) above,
as the (generalised) dual cross-covariance of C .

Expand in determinant form, so that:

(X (1) ∧ · · · ∧ X (p)) =
∑

i1<···<i p

Di1<···<i p ei1 ∧ · · · ∧ ei p .

Then

(X (1) ∧ · · · ∧ X (p))∗=
∑

i1<···<i p

Di1<···<i p (ei1 ∧ · · · ∧ ei p )
∗.

(5)

From the Hodge star theory the values of (ei1 ∧· · ·∧ei p )
∗ are

all known. In summary, each (ei1 ∧ · · · ∧ ei p )
∗ is a particular

complementary base element of
∧p with an appropriate sign.

Then, rearranging (5) we transfer the star, again with
appropriate sign, to Di1<···<i p , and write

(X (1) ∧ · · · ∧ X (p))∗=
∑

i1<···<i p

D∗
i1<···<i p (ei1 ∧ · · · ∧ ei p ).

(6)

We are now able to match terms in the Binet–Cauchy
expansion in (6) and write

〈(
X (1) ∧ · · · ∧ X (p)

)∗
,Y (1) ∧ · · · ∧ Y p

〉

=
∑

i1<···<i p

Di1<···<i p D
∗
i1<···<i p . (7)

In particular, (7) gives a representation of φ(C) in terms of
determinants of p × p covariance matrices, but with com-
plementary index sets, rather than matched index sets as in
Lemma 3.3.

Example 3 For n = 2, p = 1 and

C =
[
c11 c12
c21 c22

]

we have

φ(C∗
2,2) = E

(
det

[
X1 Y1
X2 Y2

])

= E (X1Y2 − X2Y1)

= c12 − c21.

Example 4 For n = 4, p = 2 and

C =

⎡

⎢⎢⎣

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

⎤

⎥⎥⎦

we obtain

φ(C) = E

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
det

⎡

⎢⎢⎢⎣

X (1)
1 X (2)

1 Y (1)
1 Y (2)

1

X (1)
2 X (2)

2 Y (1)
2 Y (2)

2

X (1)
3 X (2)

3 Y (1)
3 Y (2)

3

X (1)
4 X (2)

4 Y (1)
4 Y (2)

4

⎤

⎥⎥⎥⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= −det

[
c13 c14
c23 c24

]
+det

[
c12 c14
c32 c34

]
+ det

[
c12 c13
c42 c43

]

−det

[
c21 c24
c31 c34

]
+det

[
c21 c23
c41 c43

]
− det

[
c31 c32
c41 c42

]

.

It turns out that φ(C) is a recognisable quantity which is
the subject of considerable research with many application
in diverse fields, namely the Pfaffian of C , see Dress and
Wenzel (1995).

The Pfaffian pf(A) of an antisymmetric square matrix
(A = −AT ), is a special polynomial function of the entries
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of A, with integer coefficients, and with the property

[pf(A)]2 = det(A).

In our case we set

A = C − CT .

The following is the main result of this section, the proof
of which can be developed using the arguments above, but
which will be included in a subsequent more technical ver-
sion.

Lemma 6.2 If n is even, then the dual cross-covariance,
φ(C), of the n × n cross-covariance matrix C is equal to
the Pfaffian of the antisymmetric matrix A = C − CT , and
is the square root, with appropriate sign, of det(A).

Proof The following is a sketch. For n even, we first define a
class of permutations � that maps {1, 2, . . . , n} into blocks
which consist of (disjoint) ordered pairs. For example, for
n = 4 we may have {1, 2, 3, 4} → {1, 4, 2, 3}, the pairs
being (1, 4) and (2, 3). Let for π ∈ � the ordered pairs
are (i1, j1), (i2, j2), . . . , (in, jn). Then for any antisymmet-
ric n × n matrix A = {ai j } with n = 2p we have

pf(A) =
∑

π∈�

p∏

k=1

a(ik , jk ). (8)

We then use the fact that the p pairs
(
(X1,Y 1), · · · , (X p,

Y p)) are independent i.i.dwithmean zero.Many of the terms
obtained by expanding the determinant in (7) are zero. Close
inspection shows that the remaining terms give (8).

This representation shows that φ(C) is a function of the
differences: ci j − c ji . In the case n = 4, p = 2 we have

φ(C) = (c12 − c21)(c34 − c43) − (c13 − c31)(c24 − c42)

+ (c23 − c32)(c14 − c41).

We can check this is equal to the determinant representation
above.

This points to φ(C) being a rather special measure of the
symmetry of C . The following is well known: for any real
n×n antisymmetricmatrix A there is an orthogonalmatrix Q
such that B = QAQT has has the formof 2×2 antisymmetric
blocks on the diagonal, but with zero diagonal:

⎡

⎢⎢⎢⎢⎢⎢⎣

0 λ1 0 0 . . . 0
−λ1 0 0 0 . . . 0

0 0 0 λ2 . . . 0
0 0 −λ2 0 . . . 0

. . .

0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎦

In our case A = C − CT and C = C(X ,Y ). In our earlier
notation, we can consider

QCQT = C(QX , QY ).

In addition,

QAQT = QCQT − QCT QT

= C(QX , QY ) − C(QX , QY )T ,

which is the antisymmmetrized version of the the covariance
C ′ = C(X ′,Y ′) of variables X ′ = QX , Y ′ = QY . Let C =
{c′

i j }. In this case φ(C) = φ(C ′) and since p f (B) = p f (A)

we have

φ(C) =
∏

i=1...,n−1

(
c′
i,i+1 − c′

i+1,i

)
.

In summary, we can, after transformation, express φ(C) as a
simple measure of symmetry.

It has been mentioned several times that the main concept
in this and the authors’ previous papers is to show that certain
types of generalised variances and cross-covariances can be
shown to be proportional to the expected volume, or squared
volume, of random simplices. It should be pointed out, then,
that the determinant in (7) is proportional to the (signed)
volume of a random simplex in Rn formed by p random
pairs (X ( j),Y ( j), j = 1, . . . , p. From the properties of the
Pfaffian this quantity is zero (for even n) if and only if the
cross-covariance matrix, C = C(X ,Y ) between X and Y is
zero.

7 Stochastic dominance

Recall that standard stochastic dominance: U ≺st V is
defined for univariate random variable U , V with cdf’s
FU (t), FV (t) respectively if FV (x) ≤ FU (x) for all x ∈
R. Now, starting with the squared volume vp of the p-
dimensional spanned by the columns of an n × p matrix
X there is a natural way to introduce a form of stochastic
dominance, usually referred to as dispersion ordering. This
is an extension of the version introduced in Giovagnoli and
Wynn (1995) and studied by others eg Ayala and Lóópez-
Díaz (2009).

Definition 7.1 For two random n-vectors X (1) and X (2) let
X1 and X2 be the matrices whose columns are given by
respectively p iid copies of X (1) and X (2). Then define
X (1) ≺p X (2) if and only if

vp(X
(1)) ≺st vp(X

(2))
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Here we study the linear case by finding the class of n×n
matrices A such that if

vp(AZ) ≤ vp(Z)),

for all Z which (with abuse of notation), would immediately
imply

AZ ≺p Z ,

for any random vector Z .
If X is the n × p matrix

X = [x (1) : . . . : x (p)],

Then,

vp(X) = det(XT X)

and

vp(AX) = det(XT AT AX).

So, we are required to find the class of n×n matrices A such
that

det(XT AT AX) ≤ det(XT X),

for all n × p matrices X .
Let the SVD of AT A be

AT A = PT�P,

where PT P = In , then×n identity and� = diag(λ1, . . . , λn)
is the vector of ordered eigen values λ1 ≥ · · · ≥ λn .

We replace X by Y = PX , so that

XT X = Y T Y

XT AT AX = Y T�Y

The required conditions on A then reduce to conditions on
the {λ j }. We single out the p× pmatrix holding the p largest
eigenvalues: �1 = diag(λ1, . . . , λp).

Theorem 7.2 For an n × n matrix A

vp(AX) ≤ vp(X)

if and only if and only if det(�1) ≤ 1.

Proof. Following the above working it is enough to show
that det(Y��Y ) ≤ det(Y�Y ) for all p×n matrices Y if and
only if det(�1) ≤ 1.

Split a p×nmatrix Y into p× pmatrix Y1 and p×(n− p)
matrix Y2: Y = (Y1 : Y2).

vp(Y ) = det(Y�Y ) = det(Y�
1 Y1 + Y�

2 Y2)

vp(AY ) = det(Y��Y ) = det(Y�
1 �1Y1 + Y�

2 �2Y2)

(i). Assume first that det(Y��Y ) ≤ det(Y�Y ) for all
p × n matrices Y . Choose Y1 as the identity p × p matrix
and Y2 as an p×(n− p)matrix of zeros. Then det(Y��Y ) =
det(�1) and det(Y�Y ) = 1.

(ii). Assume now that det(�1) ≤ 1 and that Y1 has full
rank p. Expanding dA(Y ) and d(Y ), we obtain

vp(Y ) = det(Y�
1 �1Y1)

det
[
I + �

1/2
2 Y�

2 (Y�
1 �1Y1)

−1Y2�
1/2
2

]
,

vp(AY ) = det(Y�
1 Y1) det

[
I + Y�

2 (Y�
1 Y1)

−1Y2
]

.

As Y1 and � are non-degenerate,

(Y�
1 �1Y1)

−1 = Y−1
1 �−1

1 (Y�
1 )−1

(Y�
1 Y1)

−1 = Y−1
1 (Y�

1 )−1

This gives Y�
2 (Y�

1 Y1)−1Y2 = Z�Z where Z = (Y�
1 )−1Y2

and

�
1/2
2 Y�

2 (Y�
1 �1Y1)

−1Y2�
1/2
2 = �

1/2
2 Y�

2 Y−1
1 �−1

1 (Y�
1 )−1Y2�

1/2
2

= �
1/2
2 Z��−1

1 Z�
1/2
2

As all diagonal elements of �2 = diag(λp+1, . . . , λn) are
smaller than or equal to λp, we obtain

det
[
I + Y2�

1/2
2 Z��−1

1 Z�
1/2
2

]
≤ det

[
I + λp Z

��−1
1 Z

]
.

(9)

Moreover, all diagonal elements of �−1
1 are smaller than or

equal to 1/λp,

�
1/2
2 Z��−1

1 Z�
1/2
2 ≤ λp Z

��−1
1 Z ≤ Z�Z

where these inequalities are valid in the Loewner sense.
Now since det(�1) ≤ 1 and the matrices Y1 and � are

non-degenerate,

det(Y�
1 �1Y1) ≤ det(Y�

1 Y1) .

and from (9), we obtain

det
[
I + �

1/2
2 Y�

2 (Y�
1 �1Y1)

−1Y2�
1/2
2

]

≤ det
[
I + Y�

2 (Y�
1 Y1)

−1Y2
]

The last two inequalities imply that det(�1) ≤ 1 imply the
result.
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Lemma 7.3 Assume that B = diag(b1, . . . , bn) with 0 ≤
bi < 1 for all i and C is positive definite. Then

det(I + BCB) ≤ det(I + C)

Proof. It is enough to calim that det(I + BCB) is monotonic
as a function of each bi . 	

Lemma 7.4 Assume A = diag(a1, . . . , am) with 1 > a1 ≥
· · · ≥ am > 0 and u is a vectorwith all non-zero components.
AuuT A ≤ uuT if and only if A = cI . This inequality is true
despite the fact that �

1/2
2 Z��−1

1 Z�
1/2
2 ≤ λp Z��−1

1 Z , is
not true in general.

Proof If A = cI then clearly Auu�A = c2uu� ≤ uu�.
Assume Auu�A ≤ uu�. Assume aq 
= aq+1 for some q.
Choose x so that all components of x are 0 except for xq and
xq+1. That is, we may assume m = 2 and 1 > a1 > a2 > 0.

Now, consider

det(Auu�A − uu�) = det

(
(1 − a21)u21 (1 − a1a2)u1u2

(1 − a1a2)u1u2 (1 − a22)u22

)

= −u21u
2
2(a1 − a2)

2

Then, det(Auu�A − uu�) < 0 unless a1 = a2 or either u1
or u2 is 0. 	


The development can be applied to the affine case, which
was the case introduced in Giovagnoli and Wynn (1995) by
replacing the vector X by X̃ . That is to say A operates on X̃
and the simplices are affine simplices. This is an extended
version of stochastic ordering defined in Giovagnoli and
Wynn (1995) which corresponds to the case p = 2.

8 Conclusion

The expectation of the squared volume of random simplices
formed by iid random vectors, is a natural generalisation
of the expectation of squared length. In the latter case we
obtain sums of variances (traces) and in the case of sim-
plices the sums of the determinants of marginal covariance
matrices. The expression in terms of determinants leads to
a natural generalisation of Wilks’s generalised variances.
Exterior algebra gives a framework in which marginal deter-
minants can be handled, in a sense simultaneously, via a
generalized inner product. There are two special develop-
ments: generalised covariances/correlations and application
to generalised dispersion orderings.
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