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Abstract

We analyse the performance of Belief Propagation Guided Decimation, a physics-inspired message
passing algorithm, on the random k-XORSAT problem. Specifically, we derive an explicit threshold
up to which the algorithm succeeds with a strictly positive probability Ω(1) that we compute
explicitly, but beyond which the algorithm with high probability fails to find a satisfying assignment.
In addition, we analyse a thought experiment called the decimation process for which we identify a
(non-) reconstruction and a condensation phase transition. The main results of the present work
confirm physics predictions from [Ricci-Tersenghi and Semerjian: J. Stat. Mech. 2009] that link the
phase transitions of the decimation process with the performance of the algorithm, and improve
over partial results from a recent article [Yung: Proc. ICALP 2024].
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47:2 Belief Propagation Guided Decimation on Random k-XORSAT

1 Introduction and results

1.1 Background and motivation
The random k-XORSAT problem shares many characteristics of other intensely studied
random constraint satisfaction problems (“CSPs”) such as random k-SAT. For instance, as
the clause/variable density increases, random k-XORSAT possesses a sharp satisfiability
threshold preceded by a reconstruction or “shattering” phase transition that affects the
geometry of the set of solutions [2, 11, 16, 23]. As in random k-SAT, these transitions appear
to significantly impact the performance of certain classes of algorithms [6, 15]. At the same
time, random k-XORSAT is more amenable to mathematical analysis than, say, random
k-SAT. This is because the XOR operation is equivalent to addition modulo two, which is
why a k-XORSAT instance translates into a linear system over F2. In effect, k-XORSAT can
be solved in polynomial time by means of Gaussian elimination. In addition, the algebraic
nature of the problem induces strong symmetry properties that simplify its study [3].

Because of its similarities with other random CSPs combined with said relative amenability,
random k-XORSAT provides an instructive benchmark. This was noticed not only in
computer science, but also in the statistical physics community, which has been contributing
intriguing “predictions” on random CSPs since the early 2000s [18, 21]. Among other things,
physicists have proposed a message passing algorithm called Belief Propagation Guided
Decimation (“BPGD”) that, according to computer experiments, performs impressively on
various random CSPs [20]. Furthermore, Ricci-Tersenghi and Semerjian [24] put forward a
heuristic analysis of BPGD on random k-SAT and k-XORSAT. Their heuristic analysis proceeds
by way of a thought experiment based on an idealized version of the algorithm. We call this
thought experiment the decimation process. Based on physics methods Ricci-Tersenghi and
Semerjian surmise that the decimation process undergoes two phase transitions, specifically
a reconstruction and a condensation transition. A key prediction of Ricci-Tersenghi and
Semerjian is that these phase transitions are directly linked to the performance of the BPGD
algorithm. Due to the linear algebra-induced symmetry properties, in the case of random
k-XORSAT all of these conjectures come as elegant analytical expressions.

The aim of this paper is to verify the predictions from [24] on random k-XORSAT
mathematically. Specifically, our aim is to rigorously analyse the BPGD algorithm on random
k-XORSAT, and to establish the link between its performance and the phase transitions of the
decimation process. A first step towards a rigorous analysis of BPGD on random k-XORSAT
was undertaken in a recent contribution by Yung [25]. However, Yung’s analysis turns out to
be not tight. Specifically, apart from requiring spurious lower bounds on the clause length k,
Yung’s results do not quite establish the precise connection between the decimation process
and the performance of BPGD. One reason for this is that [25] relies on “annealed” techniques,
i.e., essentially moment computations. Here we instead harness “quenched” arguments that
were partly developed in prior work on the rank of random matrices over finite fields [3, 8].

Throughout we let k ≥ 3 and n ≥ k be integers and d > 0 a positive real. Let
m

dist= Po(dn/k) and let F = F (n, d, k) be a random k-XORSAT formula 2 with variables
x1, . . . , xn and m random clauses of length k. To be precise, every clause of F is an XOR of
precisely k distinct variables, each of which may or may not come with a negation sign. The
m clauses are drawn uniformly and independently out of the set of all 2k

(
n
k

)
possibilities.

2 Two random variables X, Y are equal in distribution X
dist= Y if they have the same distribution functions.

Here, m follows a Poisson distribution with mean dn/k.
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Thus, d equals the average number of clauses that a given variable xi appears in.

1.2 Belief Propagation Guided Decimation

The first result vindicates the predictions from [24] concerning the success probability of BPGD
algorithm. BPGD sets its ambitions higher than merely finding a solution to the k-XORSAT
instance F : the algorithm attempts to sample a solution uniformly at random. To this
end BPGD assigns values to the variables x1, . . . , xn of F one after the other. In order to
assign the next variable the algorithm attempts to compute the marginal probability that
the variable is set to “true” under a random solution to the k-XORSAT instance, given all
previous assignments. More precisely, suppose BPGD has assigned values to the variables
x1, . . . , xt already. Write σBP(x1), . . . , σBP(xt) ∈ {0, 1} for their values, with 1 representing
“true” and 0 “false”. Further, let F BP,t be the simplified formula obtained by substituting
σBP(x1), . . . , σBP(xt) for x1, . . . , xt. We drop any clauses from F BP,t that contain variables
from {x1, . . . , xt} only, deeming any such clauses satisfied. Thus, F BP,t is a XORSAT formula
with variables xt+1, . . . , xn. Its clauses contain at least one and at most k variables, as well
as possibly a constant (the XOR of the values substituted in for x1, . . . , xt).

Let σF BP,t
be a uniformly random solution of the XORSAT formula F BP,t, assum-

ing that F BP,t remains satisfiable. Then BPGD aims to compute the marginal probability
P

[
σF BP,t

(xt+1) = 1 | F BP,t

]
that a random satisfying assignment of F BP,t sets xt+1 to

true. This is where Belief Propagation (“BP”) comes in. An efficient message passing
heuristic for computing precisely such marginals, BP returns an “approximation” µF BP,t

of P
[
σF BP,t

(xt+1) = 1 | F BP,t

]
. We will recap the mechanics of BP in Section 2.2 (the

value µF BP,t
is defined precisely in (2.9)). Having computed the BP “approximation”, BPGD

proceeds to assign xt+1 the value “true” with probability µF BP,t
, otherwise sets xt+1 to

“false”, then moves on to the next variable. The pseudocode is displayed as Algorithm 1.

Algorithm 1 The BPGD algorithm.

Data: a random k-XORSAT formula F with variables x1, . . . , xn conditioned on
being satisfiable

1 for t = 0, . . . , n − 1 do
2 compute the BP approximation µF BP,t

;

3 set σBP(xt+1) =
{

1 with probability µF BP,t

0 with probability 1 − µF BP,t

;

4 return σBP;

Let us pause for a few remarks. First, if the BP approximations are exact, i.e., if F BP,t

is satisfiable and µF BP,t
= P

[
σF BP,t

(xt+1) = 1 | F BP,t

]
for all t, then Bayes’ formula shows

that BPGD outputs a uniformly random solution of F . However, there is no universal guarantee
that BP returns the correct marginals. Accordingly, the crux of analysing BPGD is precisely
to figure out whether this is the case. Indeed, the heuristic work of [24] ties the accuracy
of BP to a phase transition of the decimation process thought experiment, to be reviewed
momentarily.

Second, the strategy behind the BPGD algorithm, particularly the message passing heuristic
for “approximating” the marginals, generalizes well beyond k-XORSAT. For instance, the
approach applies to k-SAT verbatim. That said, due to the algebraic nature of the XOR
operation, BPGD is far easier to analyse on k-XORSAT. In fact, in XORSAT the marginal

ICALP 2025
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probabilities are guaranteed to be half-integral as seen in Fact 6, i.e.,

P
[
σF BP,t

(xt+1) = 1 | F BP,t

]
∈ {0, 1/2, 1}. (1.1)

As a consequence, on XORSAT the BPGD algorithm effectively reduces to a purely combinat-
orial algorithm called Unit Clause Propagation [18, 24] as per Proposition 14, a fact that we
will exploit extensively (see Section 2.7).

1.3 A tight analysis of BPGD

In order to state the main results we need to introduce a few threshold values. To this end,
given d, k and an additional real parameter λ ≥ 0 that depends on the time t, consider the
functions 3

ϕd,k,λ :[0, 1] → [0, 1], z 7→ 1 − exp
(
−λ − dzk−1)

, (1.2)

Φd,k,λ :[0, 1] → R, z 7→ exp
(
−λ − dzk−1)

− d(k − 1)
k

zk + dzk−1 − d

k
. (1.3)

Let α∗(λ) = α∗(d, k, λ) ∈ [0, 1] be the smallest and α∗(λ) = α∗(d, k, λ) ≥ α∗(d, k, λ) ∈ [0, 1]
the largest fixed point of ϕd,k,λ. Figure 1 visualizes Φ(z) for different values of θ ∼ t/n.
Further, define

dmin(k) =
(

k − 1
k − 2

)k−2
, dcore(k) = sup {d > 0 : α∗(0) = 0} , (1.4)

dsat(k) = sup {d > 0 : Φd,k,0(α∗(0)) ≤ Φd,k,0(0)} . (1.5)

The value dsat(k) is the random k-XORSAT satisfiability threshold [3, 11, 23]. Thus, for
d < dsat(k) the random k-XORSAT formula F possesses satisfying assignments w.h.p., while
F is unsatisfiable for d > dsat(k) w.h.p. Furthermore, dcore(k) equals the threshold for the
emergence of a giant 2-core within the k-uniform hypergraph induced by F [3, 22]. This
implies that for d < dcore(k) the set of solutions of F is connected in a certain well-defined
way, while for dcore(k) < d < dsat(k) the set of solutions shatters into an exponential number
of well-separated clusters [15, 18]. Moreover, a simple linear time algorithm is known to find
a solution w.h.p. for d < dcore(k) [15]. The relevance of dmin(k) will emerge in Theorem 1. A
bit of calculus reveals that

0 < dmin(k) < dcore(k) < dsat(k) < k. (1.6)

The following theorem determines the precise clause-to-variable densities where BPGD
succeeds/fails. To be precise, in the “successful” regime BPGD does not actually succeed with
high probability, but with an explicit probability strictly between zero and one, which is
displayed in Figure 2 for k = 3, 4, 5.

3 The function Φd,k,λ is known in physics parlance as the “Bethe free entropy” [8, 18]. The stationary
points of Φd,k,λ coincide with the fixed points of ϕd,k,λ, as we will verify in Section 2.1.
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0.2 0.4 0.6 0.8 1
z

-0.1
-0.05

0.05
0.1

0.15
0.2
Φd, k, λ

Figure 1 Φd,k,λ for k = 3 and d = 2.4, for λ

from 0 to 0.3 (maximum at z = 0) and from 0.4
to 0.9.
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1
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Figure 2 Success probability of BPGD for 0 <

d < dmin(k) and various k.

▶ Theorem 1. Let k ≥ 3.
(i) If d < dmin(k), then

lim
n→∞

P [BPGD(F ) succeeds] = exp
(

−d2(k − 1)2

4

∫ 1

0

z2k−4(1 − z)
1 − d(k − 1)zk−2(1 − z) dz

)
. (1.7)

(ii) If dmin(k) < d < dsat(k), then P [BPGD(F ) succeeds] = o(1).

Theorem 1 vindicates the predictions from Ricci-Tersenghi and Semerjian [24, Section 4]
as to the performance of BPGD, and improves over the results from Yung [25]. Specifically, The-
orem 1 (i) verifies the formula for the success probability from [24, Eq. (38)]. Combinatorially,
the formula (1.7) results from the possible presence of bounded length cycles (so called toxic
cycles) that may cause the algorithm to run into contradictions. This complements Yung’s
prior work, that has no positive result on the performance of BPGD. Moreover, Yung’s negative
results [25, Theorems 2–3] only apply to k ≥ 9 and to d > dcore(k), while Theorem 1 (ii)
covers all k ≥ 3 and kicks in at the correct threshold dmin(k) < dcore(k) predicted in [24].

1.4 The decimation process
In addition to the BPGD algorithm itself, the heuristic work [24] considers an idealised version
of the algorithm, the decimation process. This thought experiment highlights the conceptual
reasons behind the success/failure of BPGD. Just like BPGD, the decimation process assigns
values to variables one after the other for good. But instead of the BP “approximations”
the decimation process uses the actual marginals given its previous decisions. To be precise,
suppose that the input formula F is satisfiable and that variables x1, . . . , xt have already
been assigned values σDC(x1), . . . , σDC(xt) in the previous iterations. Obtain F DC,t by
substituting the values σDC(x1), . . . , σDC(xt) for x1, . . . , xt and dropping any clauses that
do not contain any of xt+1, . . . , xn. Thus, F DC,t is a XORSAT formula with variables
xt+1, . . . , xn. Let σF DC,t

be a random satisfying assignment of F DC,t. Then the decimation
process sets xt+1 according to the true marginal P

[
σF DC,t

(xt+1) = 1 | F DC,t

]
, thus ultimately

returning a uniformly random satisfying assignment of F .
Clearly, if indeed the BP “approximations” are correct, then the decimation process and

BPGD are identical. Thus, a key question is for what parameter regimes the two process
coincide or diverge, respectively. As it turns out, this question is best answered by parametrise
not only in terms of the average variable degree d, but also in terms of the “time” parameter
t of the decimation process.

ICALP 2025



47:6 Belief Propagation Guided Decimation on Random k-XORSAT

Algorithm 2 The decimation process.

Data: a random k-XORSAT formula F , conditioned on being satisfiable
1 for t = 0, . . . , n − 1 do
2 compute πF DC,t

= P
[
σF DC,t

(xt+1) = 1 | F DC,t

]
;

3 set σDC(xt) =
{

1 with probability πF DC,t

0 with probability 1 − πF DC,t

;

4 return σDC;

1.5 Phase transitions of the decimation process
Ricci-Tersenghi and Semerjian heuristically identify several phase transitions in terms of d and
t that the decimation process undergoes. We will confirm these predictions mathematically
and investigate how they relate to the performance of BPGD.

The first set of relevant phase transitions concerns the so-called non-reconstruction
property. Roughly speaking, non-reconstruction means that the marginal πF DC,t

=
P

[
σF DC,t

(xt+1) = 1 | F DC,t

]
is determined by short-range rather than long-range effects.

Since Belief Propagation is essentially a local algorithm, one might expect that the (non-
)reconstruction phase transition coincides with the threshold up to which BPGD succeeds; cf.
the discussions in [5, 16].

To define (non-)reconstruction precisely, we associate a bipartite graph G(F DC,t) with
the formula F DC,t. The vertices of this graph are the variables and clauses of F DC,t. Each
variable is adjacent to the clauses in which it appears. For a (variable or clause) vertex v

of G(F DC,t) let ∂v be the set of neighbours of v in G(F DC,t).More generally, for an integer
ℓ ≥ 1 let ∂ℓv be the set of vertices of G(F DC,t) at shortest path distance precisely ℓ from v.
Following [16], we say that F DC,t has the non-reconstruction property if

lim
ℓ→∞

lim sup
n→∞

E
[∣∣∣P [

σF DC,t
(xt+1) = 1

∣∣∣ F DC,t,
{

σF DC,t
(y)

}
y∈∂2ℓxt+1

]
(1.8)

−P
[
σF DC,t

(xt+1) = 1 | F DC,t

] ∣∣∣ ∣∣ F satisfiable
]

= 0.

Conversely, F DC,t has the reconstruction property if

lim inf
ℓ→∞

lim inf
n→∞

E
[∣∣∣P [

σF DC,t
(xt+1) = 1

∣∣∣ F DC,t,
{

σF DC,t
(y)

}
y∈∂2ℓxt+1

]
(1.9)

−P
[
σF DC,t

(xt+1) = 1 | F DC,t

] ∣∣∣ ∣∣ F sat.
]

> 0.

To parse (1.8), notice that in the left probability term we condition on both the outcome
F DC,t of the first t steps of the decimation process and on the values σF DC,t

(y) that the
random solution σF DC,t

assigns to the variables y at distance exactly 2ℓ from xt+1. By
contrast, in the right probability term we only condition on F DC,t. Thus, the second
probability term matches the probability πF DC,t

from the decimation process. Hence, (1.8)
compares the probability that a random solution sets xt+1 to one given the values σF DC,t

(y)
of all variables y at distance 2ℓ from xt+1 with plain marginal probability that xt+1 is set
to one. What (1.8) asks is that these two probabilities be asymptotically equal in the limit
of large ℓ, with high probability over the choice of F and the prior steps of the decimation
process.

Confirming the predictions from [24], the following theorem identifies the precise regimes
of d, t where (non-)reconstruction holds. To state the theorem, we need to know that for
dmin(k) < d < dsat(k) the polynomial d(k − 1)zk−2(1 − z) − 1 has precisely two roots



A. Chatterjee, A. Coja-Oghlan, M. Kang, L. Krieg, M. Rolvien, and G. B. Sorkin 47:7

0 < z∗ = z∗(d, k) < z∗ = z∗(d, k) < 1; we are going to prove this as part of Proposition 5
below. Let

λ∗ = λ∗(d, k) = − log(1 − z∗) − z∗

(k − 1)(1 − z∗) (1.10)

> λ∗ = λ∗(d, k) = max
{

0, − log(1 − z∗) − z∗

(k − 1)(1 − z∗)

}
≥ 0, (1.11)

θ∗ = θ∗(d, k) = 1 − exp(−λ∗) > θ∗ = θ∗(d, k) = 1 − exp(−λ∗). (1.12)

Additionally, let λcond(d, k) be the solution to the ODE

∂λcond(d, k)
∂d

= − α∗(λcond(d, k))k − α∗(λcond(d, k))k

k(α∗(λcond(d, k)) − α∗(λcond(d, k))) , λcond(dsat(k), k) = 0 (1.13)

on (dmin, dsat] and set θcond = θcond(d, k) = 1−exp(−λcond(d, k)). Note that θ∗ < θcond < θ∗.

▶ Theorem 2. Let k ≥ 3 and let 0 ≤ t = t(n) ≤ n be a sequence such that limn→∞ t/n =
θ ∈ (0, 1).

(i) If d < dmin(k), then F DC,t has the non-reconstruction property w.h.p.
(ii) If dmin(k) < d < dsat(k) and θ < θ∗ or θ > θcond, then F DC,t has the non-reconstruction

property w.h.p.
(iii) If dmin(k) < d < dsat(k) and θ∗ < θ < θcond, then F DC,t has the reconstruction property

w.h.p.

Theorem 2 shows that dmin(k) marks the precise threshold of d up to which the decimation
process F DC,t exhibits non-reconstruction for all 0 ≤ t ≤ n w.h.p. By contrast, for dmin(k) <

d < dsat(k) there is a regime of t where reconstruction occurs. In fact, as Proposition 5
shows, for d > dcore(k) we have θ∗ = 0 and thus reconstruction holds even at t = 0, i.e.,
for the original, undecimated random formula F . Prior to the contribution [24], it had
been suggested that this precise scenario (reconstruction on the original problem instance)
is the stone on which BPGD stumbles [5]. In fact, Yung’s negative result kicks in at this
precise threshold dcore(k). However, Theorems 1 and 2 show that matters are more subtle.
Specifically, for dmin(k) < d < dcore(k) reconstruction, even though absent in the initial
formula F , occurs at a later “time” t > 0 as decimation proceeds, which suffices to trip BPGD
up. Also, remarkably, Theorem 2 shows that non-reconstruction is not “monotone”. The
property holds for θ < θ∗ and then again for θ > θcond, but not on the interval (θ∗, θcond) as
visualised in Figure 3.

But there is one more surprise. Namely, Theorem 2 (ii) might suggest that for dmin(k) <

d < dsat(k) Belief Propagation manages to compute the correct marginals for t/n ∼ θ > θcond,
as non-reconstruction kicks back in. But remarkably, this is not quite true. Despite
the fact that non-reconstruction holds, BPGD goes astray because the algorithm starts its
message passing process from a mistaken, oblivious initialisation. As a consequence, for
t/n ∼ θ ∈ (θcond, θ∗) the BP “approximations” remain prone to error. To be precise, the
following result identifies the precise “times” where BP succeeds/fails. To state the result
let µF DC,t

denote the BP “approximation” of the true marginal πF DC,t
of variable xt+1 in

the formula F DC,t created by the decimation process (see Section 2.2 for a reminder of the
definition). Also recall that πF DC,t

denotes the correct marginal as used by the decimation
process.

▶ Theorem 3. Let k ≥ 3 and let 0 ≤ t = t(n) ≤ n be a sequence such that limn→∞ t/n =
θ ∈ (0, 1).

ICALP 2025
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(a) k = 3
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(b) k = 4
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dcoredmin dsat
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cond
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(c) k = 5

Figure 3 The phase diagrams for k = 3, 4, 5 with d ∈ (dmin, dsat) on the horizontal and θ on the
vertical axis. The hatched area displays the regime θ < θ∗ and θcond < θ where non reconstruction
holds. In the non hatched area, where θ∗ < θ < θcond, we have reconstruction. Similarly, the blue
area displays θ < θcond and θ > θ∗ where BP is correct whereas in the orange area, BP is inaccurate.

(i) If 0 < d < dmin(k) then µF DC,t
= πF DC,t

w.h.p.
(ii) If dmin(k) < d < dsat(k) and θ < θcond or θ > θ∗, then µF DC,t

= πF DC,t
w.h.p.

(iii) If dmin(k) < d < dsat(k) and θcond < θ < θ∗, then E
∣∣µF DC,t

− πF DC,t

∣∣ = Ω(1).

The upshot of Theorems 2–3 is that the relation between the accuracy of BP and
reconstruction is subtle. Everything goes well so long as d < dmin as non-reconstruction
holds throughout and the BP approximations are correct. But if dmin < d < dsat and
θ∗ < θ < θcond, then Theorem 2 (iii) shows that reconstruction occurs. Nonetheless,
Theorem 3 (ii) demonstrates that the BP approximations remain valid in this regime. By
contrast, for θcond < θ < θ∗ we have non-reconstruction by Theorem 2 (iii), but Theorem 3 (iii)
shows that BP misses its mark with a non-vanishing probability. Finally, for θ > θ∗ everything
is in order once again as BP regains its footing and non-reconstruction holds. Unfortunately
BPGD is unlikely to reach this happy state because the algorithm is bound to make numerous
mistakes at times t/n ∈ (θcond, θ∗).

Theorems 2 and 3 confirm the predictions from [24, Section 4]. To be precise, while θcond
matches the predictions of Ricci-Tersenghi and Semerjian, the ODE formula (1.13) for the
threshold, which is easy to evaluate numerically, does not appear in [24]. Instead of the ODE
formulation, Ricci-Tersenghi and Semerjian define λcond as the (unique) λ ≥ 0 such that
Φd,k,λ(α∗) = Φd,k,λ(α∗); Proposition 5 below shows that both are equivalent. Illustrating
Theorems 2–3, Figure 3 displays the phase diagram in terms of d and θ ∼ t/n for k = 3, 4, 5.

2 Overview

This section provides an overview of the proofs of Theorems 1–3. In the final paragraph
we conclude with a discussion of further related work. We assume throughout that k ≥ 3
is an integer and that 0 < d < dsat(k). Moreover, t = t(n) denotes an integer sequence
0 ≤ t(n) ≤ n such that limn→∞ t(n)/n = θ ∈ (0, 1).

2.1 Fixed points and thresholds
The first item on our agenda is to study the functions ϕd,k,λ, Φd,k,λ from (1.2)–(1.3). Spe-
cifically, we are concerned with the maxima of Φd,k,λ and the fixed points of ϕd,k,λ, the
combinatorial relevance of which will emerge as we analyse BPGD and the decimation process.
We begin by observing that the fixed points of ϕd,k,λ are precisely the stationary points of
Φd,k,λ.
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Figure 4 αmax and Φ(αmax) for d = 2.4 and k = 3 from θ∗ to θ∗.

▶ Fact 4. For any d > 0, λ ≥ 0 the stationary points z ∈ (0, 1) of Φd,k,λ coincide with the
fixed points of ϕd,k,λ in (0, 1). Furthermore, for a fixed point z ∈ (0, 1) of ϕd,k,λ we have

Φ′′
d,k,λ(z)


< 0 if ϕ′

d,k,λ(z) < 1,

= 0 if ϕ′
d,k,λ(z) = 1,

> 0 if ϕ′
d,k,λ(z) > 1.

(2.1)

We recall that 0 ≤ α∗ = α∗(d, k, λ) ≤ α∗ = α∗(d, k, λ) ≤ 1 are the smallest and the
largest fixed point of ϕd,k,λ in [0, 1], respectively. Fact 4 shows that Φd,k,λ attains its global
maximum in [0, 1] at α∗ or α∗. Let αmax = αmax(d, k, λ) ∈ {α∗, α∗} be the maximiser
of Φd,k,λ; if Φd,k,λ(α∗) = Φd,k,λ(α∗), set αmax = α∗. An example for α∗, α∗, αmax and
Φ(α∗), Φ(α∗), Φ(αmax) is visualised in Figure 4. The following proposition characterises the
fixed points of ϕd,k,λ and the maximiser αmax.

▶ Proposition 5.
(i) If d < dmin(k), then for all λ > 0 we have α∗ = α∗, the function λ ∈ (0, ∞) 7→ α∗ ∈ (0, 1)

is analytic, and α∗ is the unique stable fixed point of ϕd,k,λ.
(ii) If dmin(k) < d < dsat(k), then the polynomial d(k − 1)zk−2(1 − z) − 1 has precisely two

roots 0 < z∗ < z∗ < 1, the numbers λ∗, λ∗ from (1.10) satisfy 0 ≤ λ∗ < λ∗ and the
following is true.
(a) If λ < λ∗ or λ > λ∗, then α∗ = α∗ ∈ (0, 1) is the unique stable fixed point of ϕd,k,λ.
(b) If λ∗ < λ < λ∗, then 0 < α∗ < α∗ < 1 are the only stable fixed points of ϕd,k,λ.
(c) The functions λ ∈ (0, λ∗) 7→ α∗ and λ ∈ (λ∗, ∞) 7→ α∗ are analytic.
(d) If dmin(k) < d < dsat(k), then the solution λcond of (1.13) satisfies λ∗ < λcond =

λcond(d) < λ∗ and αmax = α∗ if λ < λcond while αmax = α∗ if λ > λcond.

2.2 Belief Propagation
Having done our analytic homework, we proceed to recall how Belief Propagation computes
the “approximations” µF BP,t

that the BPGD algorithm relies upon. We will see that due to
the inherent symmetries of XORSAT the Belief Propagation computations simplify and boil
down to a simpler message passing process called Warning Propagation. Subsequently we
will explain the connection between Warning Propagation and the fixed points α∗, α∗ of
ϕd,k,λ.
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It is probably easiest to explain BP on a general XORSAT instance F with a set V (F )
of variables and a set C(F ) of clauses of lengths between one and k. As in Section 1.5
we consider the graph G(F ) induced by F , with vertex set V (F ) ∪ C(F ) and an edge xa

between x ∈ V (F ) and a ∈ C(F ) iff a contains x. Let ∂v = ∂F v be the set of neighbours
of v ∈ V (F ) ∪ C(F ). Additionally, given an assignment τ ∈ {0, 1}∂a of the variables that
appear in a, we write τ |= a iff τ satisfies a.

With each clause/variable pair x, a such that x ∈ ∂a Belief Propagation associates two
sequences of “messages” (µF,x→a,ℓ)ℓ≥0, (µF,a→x,ℓ)ℓ≥0 directed from x to a and from a to x,
respectively. These messages are probability distributions on {0, 1}, i.e.,

µF,x→a,ℓ = (µF,x→a,ℓ(0), µF,x→a,ℓ(1)), µF,a→x,ℓ = (µF,a→x,ℓ(0), µF,a→x,ℓ(1)), (2.2)
µF,x→a,ℓ(0) + µF,x→a,ℓ(1) = µF,a→x,ℓ(0) + µF,a→x,ℓ(1) = 1. (2.3)

The initial messages are uniform, i.e.,

µF,x→a,0(s) = µF,a→x,0(s) = 1/2 (s ∈ {0, 1}). (2.4)

Further, the messages at step ℓ + 1 are obtained from the messages at step ℓ via the Belief
Propagation equations

µF,a→x,ℓ+1(s) ∝
∑

τ∈{0,1}∂a

1{τx = s, τ |= a}
∏

y∈∂a\{x}

µF,y→a,ℓ(τy), (2.5)

µF,x→a,ℓ+1(s) ∝
∏

b∈∂x\{a}

µF,b→x,ℓ(s). (2.6)

In (2.5)–(2.6) the ∝-symbol represents the normalisation required to ensure that the updated
messages satisfy (2.3). In the case of (2.6) such a normalization may be impossible because
the expressions on the r.h.s. could vanish for both s = 0 and s = 1. In this event we agree
that

µF,x→a,ℓ+1(s) =
{

µF,x→a,ℓ(s) if µF,x→a,ℓ(s) ̸= 1/2
1{s = 0} otherwise

(s ∈ {0, 1});

in other words, we retain the messages from the previous iteration unless its value was 1/2, in
which case we set µF,x→a,ℓ+1(0) = 1. The same convention applies to µF,a→x,ℓ+1(s). Further,
at any time t the BP messages render a heuristic “approximation” of the marginal probability
that a random solution to the formula F sets a variable x to s ∈ {0, 1}:

µF,x,ℓ(s) ∝
∏

b∈∂x

µF,b→x,ℓ(s). (2.7)

We set µF,x,ℓ(0) = 1 − µF,x,ℓ(1) = 1 if
∑

s∈{0,1}
∏

b∈∂x µF,b→x,ℓ(s) = 0.

▶ Fact 6. The BP messages and marginals are half-integral for all t, i.e., for all t ≥ 0 and
s ∈ {0, 1} we have

µF,x→a,ℓ(s), µF,a→x,ℓ(s), µF,x,ℓ(s) ∈ {0, 1/2, 1}. (2.8)

Furthermore, for all ℓ > 2
∑

a∈C(F ) |∂a| we have µF,x,ℓ(s) = µF,x,ℓ+1(s).

Finally, in light of Fact 6 it makes sense to define the approximations for BPGD by letting

µF BP,t
= lim

ℓ→∞
µF BP,t,xt+1,ℓ(1), µF DC,t

= lim
ℓ→∞

µF DC,t,xt+1,ℓ(1). (2.9)



A. Chatterjee, A. Coja-Oghlan, M. Kang, L. Krieg, M. Rolvien, and G. B. Sorkin 47:11

2.3 Warning Propagation
Thanks to the half-integrality (2.8) of the messages, Belief Propagation is equivalent to a
purely combinatorial message passing procedure called Warning Propagation (“WP”) [18].
Similar as BP, WP also associates two message sequences (ωF,x→a,ℓ, ωF,a→x,ℓ)ℓ≥0 with every
adjacent clause/variable pair. The messages take one of three possible discrete values {f, u, n}
(“frozen”, “uniform”, “null”). Essentially, n indicates that the value of a variable is determined
by unit clause propagation. Moreover, f indicates that a variable is forced to take the value
0 once all variables in the 2-core of the hypergraph representation of the formula are set
to 0. The remaining label u indicates that neither of the above applies. To trace the BP
messages from Section 2.2 actually only the two values {n, u} would be necessary. However,
the third value f will prove useful in order to compare the BP approximations with the
actual marginals. Perhaps unexpectedly given the all-uniform initialisation (2.4), we launch
WP from all-frozen start values:

ωF,x→a,0 = ωF,a→x,0 = f for all a, x. (2.10)

Subsequently the messages get updated according to the rules

ωF,a→x,ℓ+1 =


n if ωF,y→a,ℓ = n for all y ∈ ∂a \ {x},

f
if ωF,y→a,ℓ ̸= u for all y ∈ ∂a \ {x} and ωF,y→a,ℓ ̸= n
for at least one y ∈ ∂a \ {x},

u otherwise,

(2.11)

ωF,x→a,ℓ+1 =


n if ωF,b→x,ℓ = n for at least one b ∈ ∂x \ {a},

f
if ωF,b→x,ℓ ̸= n for all b ∈ ∂x \ {a} and ωF,b→x,ℓ = f
for at least one b ∈ ∂x \ {a} ,

u otherwise.

(2.12)

In addition to the messages we also define the mark ωF,x,ℓ of variable node x as in (2.11),
or be it without omitting clause a. The following statement summarises the relationship
between BP and WP.

▶ Fact 7. For all t ≥ 0 and all x, a we have

µx→a,ℓ(1) = 1/2 ⇔ ωF,x→a,ℓ ̸= n, (2.13)
µa→x,ℓ(1) = 1/2 ⇔ ωF,a→x,ℓ ̸= n, (2.14)

µx,ℓ(1) = 1/2 ⇔ ωF,x,ℓ ̸= n. (2.15)

Moreover, for all ℓ > 2|C(F )| we have ωF,x→a,ℓ = ωF,x→a,ℓ+1 and ωF,a→x,ℓ = ωF,a→x,ℓ+1.

Fact 7 implies that the WP messages and marks “converge” in the limit of large ℓ, in
the sense that eventually they do not change any more. Let ωF,x→a, ωF,a→x, ωF,x ∈ {f, u, n}
be these limits. Furthermore, let Vf,ℓ(F ), Vu,ℓ(F ), Vn,ℓ(F ) be the sets of variables with the
respective mark after ℓ ≥ 0 iterations. Also let Vf(F ), Vu(F ), Vn(F ) be the sets of variables
where the limit ωF,x takes the respective value. The following statement traces WP on the
random formula F DC,t produced by the decimation process.

▶ Proposition 8. Let ε > 0 and assume that d > 0, t = t(n) ∼ θn satisfy one of the following
conditions:

(i) d < dmin, or
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(ii) d > dmin and θ ̸∈ {θ∗, θ∗}.
Then there exists ℓ0 = ℓ0(d, θ, ε) > 0 such that for any fixed ℓ ≥ ℓ0 with λ = − log(1 − θ)
w.h.p. we have

|t + |Vn,ℓ(F DC,t)| − α∗n| < εn, |t + |Vf,ℓ(F DC,t)| − (α∗ − α∗)n| < εn, (2.16)
|Vn(F DC,t)△Vn,ℓ(F DC,t)| < εn. (2.17)

2.4 The check matrix

Since the XOR operation is equivalent to addition modulo two, a XORSAT formula F with
variables x1, . . . , xn and clauses a1, . . . , am translates into a linear system over F2, as follows.
Let AF be the m × n-matrix over F2 whose (i, j)-entry equals one iff variable xj appears in
clause ai. Adopting coding parlance, we refer to AF as the check matrix of F . Furthermore,
let yF ∈ Fm

2 be the vector whose ith entry is one plus the sum of any constant term and
the number of negation signs of clause ai mod two. Then the solutions σ ∈ Fn

n of the linear
system AF σ = yF are precisely the satisfying assignments of F .

The algebraic properties of AF therefore have a direct impact on the satisfiability of
F . For example, if AF has rank m, we may conclude immediately that F is satisfiable.
Furthermore, the set of solutions of F is an affine subspace of Fn

2 (if non-empty). In effect, if
F is satisfiable, then the number of satisfying assignments equals the size of the kernel of
AF . Hence the nullity nul AF = dim ker AF of the check matrix is a key quantity.

Indeed, the single most significant ingredient towards turning the heuristic arguments
from [24] into rigorous proofs is a formula for the nullity of the check matrix of the XORSAT
instance F DC,t from the decimation process. To unclutter the notation set At = AF DC,t

.
We derive the following proposition from a recent general result about the nullity of random
matrices over finite fields [8, Theorem 1.1]. The proposition clarifies the semantics of the
function Φd,k,λ and its maximiser αmax. In physics jargon Φd,k,λ is known as the Bethe free
entropy.

▶ Proposition 9. Let d > 0 and λ = − log(1 − θ). Then

lim
n→∞

nul At = Φd,k,λ(αmax) in probability.

2.5 Null variables

Proposition 9 enables us to derive crucial information about the set of satisfying assignments
of F DC,t. Specifically, for any XORSAT instance F with variables x1, . . . , xn let V0(F ) be
the set of variables xi such that σi = 0 for all σ ∈ ker AF . We call the variables xi ∈ V0(F )
null variables. Since the set of solutions of F , if non-empty, is a translation of ker AF , any
two solutions σ, σ′ of F set the variables in V0(F ) to exactly the same values. The following
proposition shows that WP identifies certain variables as null.

▶ Proposition 10. W.h.p. the following two statements are true for any fixed integer ℓ > 0.
(i) We have Vn,ℓ(F DC,t) ⊆ V0(F DC,t).
(ii) We have |Vu,ℓ(F DC,t) ∩ V0(F DC,t)| = o(n).

Propositions 9 and 10 enable us to calculate the number of null variables of F DC,t, so
long as we remain clear of the point θcond where αmax is discontinuous.

▶ Proposition 11. If θ ̸= θcond then |V0(F DC,t)| = αmaxn + o(n) w.h.p.
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Let us briefly summarise what we have learned thus far. First, because all Belief
Propagation messages are half-integral, BP reduces to WP. Second, Proposition 8 shows that
the fixed points α∗, α∗ of ϕd,k,λ determine the number of variables marked n or f by WP.
Third, the function Φd,k,λ and its maximiser αmax govern the nullity of the check matrix and
thereby the number of null variables of F DC,t. Clearly, the null variables xi are precisely the
ones whose actual marginals P

[
σF DC,t

(xi) = s | F DC,t

]
are not uniform. As a next step, we

investigate whether BP/WP identify these variables correctly.

In light of Proposition 8, in order to investigate the accuracy of BP it suffices to compare
the numbers of variables marked n by WP with the true marginals. The following corollary
summarises the result.

▶ Corollary 12. For any d, θ the following statements are true.

(i) If d < dmin, or d > dmin and θ < θcond, or d > dmin and θ > θ∗, then

|V0(F DC,t)△Vn(F DC,t)| = o(n) w.h.p.

(ii) If d > dmin and θcond < θ < θ∗, then |V0(F DC,t)△Vn(F DC,t)| = Ω(n) w.h.p.
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Thus, so long as d < dmin or d > dmin and θ < θcond or θ > θ∗, the BP/WP approximations
are mostly correct. By contrast, if d > dmin and θcond < θ < θ∗, the BP/WP approximations
are significantly at variance with the true marginals w.h.p. Specifically, w.h.p. BP deems
Ω(n) frozen variables unfrozen, thereby setting itself up for failure. Indeed, Corollary 12
easily implies Theorem 3, which in turn implies Theorem 1 (ii) without much ado.

In addition, to settle the (non-)reconstruction thresholds set out in Theorem 2 we need to
investigate the conditional marginals given the values of variables at a certain distances from
xt+1 as in (1.8). This is where the extra value f from the construction of WP enters. Indeed,
for a XORSAT instance F with variables x1, . . . , xn and an integer ℓ let V0,ℓ(F ) be the set
of variables xi such that σi = 0 for all σ ∈ ker AF and σh = 0 for all variables xh ∈ ∂ℓxi.
Hence, V0,ℓ(F ) ⊆ V0(F ) is the set of variables whose ℓ-neighbourhood is contained in V0(F ).

▶ Corollary 13. Assume that d > dmin and let ε > 0.
(i) If θ < θcond, then for any fixed ℓ we have |Vf,ℓ(F DC,t) ∩ V0,ℓ(F DC,t)| < εn w.h.p.
(ii) If θ > θcond, then there exists ℓ0 = ℓ0(d, θ, ε) such that for any fixed ℓ > ℓ0 we have

|(Vn,ℓ(F DC,t) ∪ Vf,ℓ(F DC,t))△V0,ℓ(F DC,t)| < εn w.h.p.

Comparing the number of actually frozen variables with the ones marked f by WP, we obtain
Theorem 2.

2.6 Proving BPGD successful
We are left to prove Theorem 1. First, we need to compute the (strictly positive) success
probability of BPGD for d < dmin. At this point, the fact that BPGD has a fair chance of
succeeding for d < dmin should not come as a surprise. Indeed, Corollary 12 implies that
the BP approximations of the marginals are mostly correct for d < dmin, at least on the
formula F DC,t created by the decimation process. Furthermore, so long as the marginals are
correct, the decimation process F DC,t and the execution of the BPGD algorithm F BP,t move
in lockstep. The sole difficulty in analysing BPGD lies in proving that the estimates of the
algorithm are not just mostly correct, but correct up to only a bounded expected number
of discrepancies over the entire execution of the algorithm. To prove this fact we combine
the method of differential equations with a subtle analysis of the sources of the remaining
bounded number of discrepancies. These discrepancies result from the presence of short
(i.e., bounded-length) cycles in the graph G(F ). Finally, the proof of the second (negative)
part of Theorem 1 follows by coupling the execution of BPGD with the decimation process,
and invoking Theorem 3. In the next subsection we introduce a simple combinatorial Unit
Clause Propagation algorithm to give a glimpse of the proof of the ’positive’ part for the
success probability of Theorem 1 for d < dmin. The proof of the second part of the theorem
concerning dmin < d < dsat as well as the details of both arguments can be found in the full
version.

2.7 Unit Clause Propagation
The simple-minded Unit Clause Propagation algorithm attempts to assign random values
to as yet unassigned variables one after the other. After each such random assignment the
algorithm pursues the “obvious” implications of its decisions. Specifically, the algorithm
substitutes its chosen truth values for all occurrences of the already assigned variables. If
this leaves a clause with only a single unassigned variable, a so-called “unit clause”, the
algorithm assigns that variable so as to satisfy the unit clause. If a conflict occurs because
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two unit clauses impose opposing values on a variable, the algorithm declares that a conflict
has occurred, sets the variable to false and continues; of course, in the event of a conflict the
algorithm will ultimately fail to produce a satisfying assignment. The pseudocode for the
algorithm is displayed in Algorithm 3.

Algorithm 3 The UCP algorithm.

1 Let U = ∅ and let σUC : U → {0, 1} be the empty assignment;
2 for t = 0, . . . , n − 1 do
3 if xt+1 ̸∈ U then
4 add xt+1 to U ;
5 choose σUC(xt+1) ∈ {0, 1} uniformly at random;
6 while F [σUC] contains a unit clause a do
7 let x be the variable in a;
8 let s ∈ {0, 1} be the truth value that x needs to take to satisfy a;
9 if another unit clause a′ exists that requires x be set to 1 − s then

10 output “conflict” and let σUC(x) = 0;
11 else
12 add x to U and let σUC(x) = s;
13 return σUC;

Let F UC,t denote the simplified formula obtained after the first t iterations (in which
the truth values chosen for x1, . . . , xt and any values implied by Unit Clauses have been
substituted). We notice that the values assigned during Steps 6–12 are deterministic
consequences of the choices in Step 5. In particular, the order in which unit clauses are
processed Steps 6–12 does not affect the output of the algorithm.

▶ Proposition 14. We have P [BPGD succeeds] = P [UCP succeeds] .

Proposition 14 allows us to analyse UCP to prove Theorem 1.

2.8 The success probability of UCP for d < dmin

We continue to denote by F UC,t the sub-formula obtained after the first t iterations of
UCP. Let Vn = {x1, . . . , xn} be the set of variables of the XORSAT instance F. Also, let
V (t) ⊆ {xt+1, . . . , xn} be the set of variables of F UC,t. Thus, V (t) contains those variables
among xt+1, . . . , xn whose values are not implied by the assignment of x1, . . . , xt via unit
clauses. Also let C(t) be the set of clauses of F UC,t; these clauses contain variables from
V (t) only, and each clause contains at least two variables. Let V̄ (t) = Vn \ V (t) be the set
of assigned variables. Thus, after its first t iterations UCP has constructed an assignment
σUC : V̄ (t) → {0, 1}. Moreover, let V ′(t + 1) = V (t) \ V (t + 1) be the set of variables that
receive values in the course of the iteration t + 1 for 0 ≤ t < n. Additionally, let C ′(t + 1) be
the set of clauses of F UC,t that consists of variables from V ′(t + 1) only. Finally, let F ′

UC,t+1
be the formula comprising the variables V ′(t + 1) and the clauses C ′(t + 1).

To characterise the distribution of F UC,t let n(t) = |V (t)| and let mℓ(t) be the number
of clauses of length ℓ, i.e., clauses that contain precisely ℓ variables from V (t). Observe that
m1(t) = 0 because unit clauses get eliminated. Let Ft be the σ-algebra generated by n(t)
and (mℓ(t))2≤ℓ≤k.
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▶ Fact 15. The XORSAT formula F UC,t is uniformly random given Ft. In other words,
the variables that appear in each clause are uniformly random and independent, as are their
signs.

Proof. This follows from the principle of deferred decisions. ◀

We proceed to estimate the random variables n(t), mℓ(t). Let α(t) = |V̄ (t)|/n so that
n(t) = n(1 − α(t)). Recall, that V̄ (t) = Vn \ V (t). Let λ = λ(θ) = − log(1 − θ) with θ ∼ t/n

and recall that α∗ = α∗(d, k, λ) denotes the smallest fixed point of ϕd,k,λ. The proof of the
following proposition proof can be found in the full version.

▶ Proposition 16. Suppose that d < dmin(k). There exists a function δ = δ(n) = o(1) such
that for all 0 ≤ t < n and all 2 ≤ ℓ ≤ k we have

P [|α(t) − α∗| > δ] = O(n−2), P
[∣∣∣∣mℓ(t) − dn

k

(
k

ℓ

)
(1 − α∗)ℓαk−ℓ

∗

∣∣∣∣ > δn

]
= O(n−2).

(2.18)

Proposition 16 paves the way for the actual computation of the success probability of
UCP. Let Rt be the event that a conflict occurs in iteration t. The following proposition
gives us the correct value of P [Rt | Ft] w.h.p. Since Ft is a random variable the value for
the probability P [Rt | Ft] is random as well.

▶ Proposition 17. Fix ε > 0, let 0 ≤ t < (1 − ε)n and define

fn(t) = d(k − 1)(1 − α∗)αk−2
∗ . (2.19)

Then with probability 1 − o(1/n) we have

P [Rt | Ft] = fn(t)2

4(n − t)(1 − fn(t))2 + o(1/n).

The proof of Proposition 17 can be found in Section 2.8.1. Moreover, in the full version
we prove the following.

▶ Proposition 18. Fix ε > 0 and ℓ ≥ 1. For any 0 ≤ t1 < · · · < tℓ < (1 − ε)n we have

P

[
ℓ⋂

i=1
Rti

]
∼

ℓ∏
i=1

fn(ti)2

4(n − ti)(1 − fn(ti))2 . (2.20)

Finally, the following statement, proven in the full version, deals with the εn final steps
of the algorithm.

▶ Proposition 19. For any δ > 0 there exists ε > 0 such that P
[⋃

(1−ε)n<t<n Rt

]
< δ.

Before we proceed we notice that Propositions 17–19 imply the first part of Theorem 1.

Proof of Theorem 1 (i). Pick δ > 0, fix a small enough ε = ε(δ) > 0 and let R =∑n−1
t=0 1{Rt} be the total number of times at which conflicts occur. Proposition 14 shows

that the probability that BPGD succeeds equals P [R = 0]. In order to calculate P [R = 0], let
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Rε =
∑

0≤t≤(1−ε)n 1{Rt} be the number of failures before time (1 − ε)n. Proposition 18
shows that for any fixed ℓ ≥ 1 we have

E

[
ℓ∏

i=1
(Rε − i + 1)

]
∼ ℓ!

∑
0≤t1<···<tℓ≤(1−ε)n

ℓ∏
i=1

fn(ti)2

4(n − ti)(1 − fn(ti))2

= (1 + o(1))
∑

0≤t1,...,tℓ≤(1−ε)n

ℓ∏
i=1

fn(ti)2

4(n − ti)(1 − fn(ti))2 ∼ E[Rε]ℓ.

(2.21)

Hence, the inclusion/exclusion principle (e.g., [4, Theorem 1.21]) implies that

P [Rε = 0] ∼ exp(−E[Rε]). (2.22)

Further, using Proposition 17 and the linearity of expectation, we obtain with λ(θ) =
− log(1 − θ)

E[Rε] ∼
∑

0≤t≤(1−ε)n

fn(t)2

4(n − t)(1 − fn(t))2 ∼ 1
4n

∫ 1−ε

0

fn(θn)2

(1 − θ)(1 − fn(θn))2 dθ

= 1
4n

∫ 1−ε

0

fn(θn)2

(1 − α∗)(1 − fn(θn))
∂α∗

∂λ

∂λ(θ)
∂θ

dθ

= d2(k − 1)2

4

∫ 1−ε

0

z2k−4(1 − z)
1 − d(k − 1)zk−2(1 − z) dz [by (2.19)]. (2.23)

Finally, Proposition 19 implies that

P [R > Rε] < δ. (2.24)

Thus, the assertion follows from (2.22)–(2.24) upon taking the limit δ → 0. ◀

2.8.1 Proof of Proposition 17
F ′

UC,t+1 is the XORSAT formula that contains the variables V ′(t + 1) that get assigned
during iteration t + 1 and the clauses C ′(t + 1) of F UC,t that contain variables from V ′(t + 1)
only. Also recall that G(F ′

UC,t+1) signifies the graph representation of this XORSAT formula.
Unless V ′(t + 1) = ∅, the graph G(F ′

UC,t+1) is connected.

▶ Lemma 20. Fix ε > 0 and let 0 ≤ t ≤ (1 − ε)n. With probability 1 − o(1/n) the graph
G(F ′

UC,t+1) satisfies

|E(G(F ′
UC,t+1))| ≤ |V (G(F ′

UC,t+1))|.

The proof of Lemma 20 can be found in the full version. Thus, with probability 1−o(1/n)
the graph G(F ′

UC,t+1) contains at most one cycle. While it is easy to check that no conflict
occurs in iteration t + 1 if G(F ′

UC,t+1) is acyclic, in the case that G(F ′
UC,t+1) contains a

single cycle there is a chance of a conflict. The following definition describes the type of
cycle that poses an obstacle.

▶ Definition 21. For a XORSAT formula F we call a sequence of variables and clauses
C = (v1, c1, . . . , vℓ, cℓ, vℓ + 1 = v1) a toxic cycle of length ℓ if
TOX1 ci contains the variables xi, xi+1 only, and
TOX2 the total number of negations in c1, . . . cℓ is odd iff ℓ is even.
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▶ Lemma 22.
(i) If F ′

UC,t+1 contains a toxic cycle, then a conflict occurs in iteration t + 1.
(ii) If F ′

UC,t+1 contains no toxic cycle and |E(G(F ′
UC,t+1))| ≤ |V (G(F ′

UC,t+1))|, then no
conflict occurs in iteration t + 1.

Proof. Towards (i) we show that F ′
UC,t+1 is not satisfiable if there is a toxic cycle C =

(v1, c1, . . . , cℓ, vℓ+1 = v1); then UCP will, of course, run into a contradiction. To see that
F ′

UC,t+1 is unsatisfiable, we transform each of the clauses c1, . . . , cℓ into a linear equation
ci ≡ (vi + vi+1 = yi) over F2. Here yi ∈ F2 equals 1 iff ci contains an even number of
negations. Adding these equations up yields

∑ℓ
i=1 yi = 0 in F2. This condition is violated if

C is toxic.
Let us move on to (ii). Assume for contradiction that there exists a formula F without

a toxic cycle such that |V (G(F ))| ≤ |E(G(F ))| and such that given F ′
UC,t+1 = F , UCP

may run into a conflict. Consider such a formula F that minimises |V (F )| + |C(F )|. Since
UCP succeeds on acyclic F , we have |V (G(F ))| = |E(G(F ))|. Thus, G(F ) contains a single
cycle C = (v1, c1, . . . , vℓ, cℓ, vℓ+1 = v1). Apart from the cycle, F contains (possibly empty)
acyclic formulas F ′

1, . . . , F ′
ℓ attached to v1, . . . , vℓ and F ′′

1 , . . . , F ′′
ℓ attached to c1, . . . , cℓ. The

formulas F ′
1, F ′′

1 , . . . , F ′
ℓ , F ′′

ℓ are mutually disjoint and do not contain unit clauses.
We claim that F ′

1, . . . , F ′
ℓ are empty because |V (F )|+ |C(F )| is minimum. This is because

given any truth assignment of v1, . . . , vℓ, UCP will find a satisfying assignment of the acyclic
formulas F ′

1, . . . , F ′
ℓ .

Further, assume that one of the formulas F ′′
1 , . . . , F ′′

ℓ is non-empty; say, F ′′
1 is non-empty.

If the start variable that UCP assigns were to belong to F ′′
1 , then c1, containing x1 and x2,

would not shrink to a unit clause, and thus UCP would not assign values to these variables.
Hence, UCP starts by assigning a truth value to one of the variables v1, . . . , vℓ; say, UCP starts
with v1. We claim that then UCP does not run into a conflict. Indeed, the clauses c2, . . . , cℓ

may force UCP to assign truth values to x2, . . . , xℓ, but no conflict can ensue because UCP will
ultimately satisfy c1 by assigning appropriate truth values to the variables of F ′′

1 .
Thus, we may finally assume that all of F ′

1, F ′′
1 , . . . , F ′

ℓ , F ′′
ℓ are empty. In other words,

F consists of the cycle C only. Since C is not toxic, TOX2 does not occur. Consequently,
UCP will construct an assignment that satisfies all clauses c1, . . . , cℓ. This final contradiction
implies (ii). ◀

▶ Corollary 23. Fix ε > 0 and let 0 ≤ t ≤ (1 − ε)n. Then

P [Rt+1] = P
[
F ′

UC,t+1 contains a toxic cycle
]

+ o(1/n).

Proof. This is an immediate consequence of Lemma 20 and Lemma 22. ◀

Thus, we are left to calculate the probability that F ′
UC,t+1 contains a toxic cycle. To this

end, we estimate the number of toxic cycles in the “big” formula F UC,t. Let T t,ℓ be the
number of toxic cycles of length ℓ in F UC,t.

▶ Lemma 24. Fix ε > 0 and let 1 ≤ t ≤ (1 − ε)n.
(i) For any fixed ℓ, with probability 1 − O(n−2) we have

E [T t (ℓ) | Ft] = βℓ + o(1), where βℓ = 1
4ℓ

(
d(k − 1)(1 − α∗)αk−2

∗
)ℓ = 1

4ℓ
(fn(t))ℓ

.

(ii) For any 1 ≤ ℓ ≤ n, with probability 1 − O(n−2) we have E [T t (ℓ) | Ft] ≤ βℓ exp(εℓ).
The proof of Lemma 24 is provided in the full version.
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Proof of Proposition 17. In light of Corollary 23 we just need to calculate the probability
that F ′

UC,t+1 contains a toxic cycle. Clearly, if during iteration t + 1 UCP encounters a
variable of F UC,t that lies on a toxic cycle, UCP will proceed to add the entire toxic cycle to
F ′

UC,t+1 (and run into a contradiction). Furthermore, Lemma 24 shows that with probability
1 − O(n−2) given Ft the probability that a random variable of F UC,t belongs to a toxic cycle
comes to

β̄ =
∑
ℓ≥2

ℓβℓ + o(1) =
∑
ℓ≥2

1
4 (fn(t))ℓ = fn(t)2

4(1 − fn(t)) + o(1) = O(1). (2.25)

We now use (2.25) to calculate the desired probability of encountering a toxic cycle. To
this end we notice that the (t + 1)-st iteration of UCP corresponds to a branching process
with expected offspring fn(t), unless the root variable xt+1 has already been assigned.
With probability 1 − O(n−2) the conditional probability of this latter event equals (nα∗ −
t)/(n − t) + o(1). Further, given that the root variable has not been assigned previously,
the expected progeny of the branching process, i.e., the expected number of variables in
F ′

UC,t+1, equals 1/(1−fn(t))+o(1). Since with probability 1−O(n−2) given Ft there remain
n(t) = (1 − α∗ + o(1))n unassigned variables in total, (2.25) implies that with probability
1 − o(1/n),

P [Rt+1 | Ft] ∼ β̄

(1 − α∗)n · 1 − α∗

1 − t/n
· 1

1 − fn(t) = fn(t)2

4(1 − fn(t))2(n − t) + o(1/n),

as claimed. ◀

3 Discussion

The thrust of the present work is to verify the predictions from [24] on the BPGD algorithm
and the decimation process rigorously. Concerning the decimation process, the main gap in
the deliberations of Ricci-Tersenghi and Semerjian [24] that we needed to plug is the proof of
Proposition 11 on the actual number of null variables in the decimation process. The proof
of Proposition 11, in turn, hinges on the formula for the nullity from Proposition 9, whereas
Ricci-Tersenghi and Semerjian state the (as it turns out, correct) formulas for the nullity
and the number of null variables based on purely heuristic arguments.

Regarding the analysis of the BPGD algorithm, Ricci-Tersenghi and Semerjian state that
they rely on the heuristic techniques from the insightful article [10] to predict the formula (1.7),
but do not provide any further details; the article [10] principally employs heuristic arguments
involving generating functions. By contrast, the method that we use to prove (1.7) is a
bit more similar to that of Frieze and Suen [12] for the analysis of a variant of the unit
clause algorithm on random k-SAT instances, for which they also obtain the asymptotic
success probability. Yet by comparison to the argument of Frieze and Suen, we pursue a
more combinatorially explicit approach that demonstrates that certain small sub-formulas
that we call “toxic cycles” are responsible for the failure of BPGD. Specifically, the proof
of (1.7) combines the method of differential equations with Poissonisation. Finally, the proof
of Theorem 1 (ii) is an easy afterthought of the analysis of the decimation process.

Yung’s work [25] on random k-XORSAT is motivated by the “overlap gap paradigm” [13],
the basic idea behind which is to show that a peculiar clustered geometry of the set of
solutions is an obstacle to certain types of algorithms. Specifically, Yung only considers the
Unit Clause Propagation algorithm and (a truncated version of) BPGD. Following the path
beaten in [19], Yung performs moment computations to establish the overlap gap property.
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However, moment computations (also called “annealed computations” in physics jargon)
only provide one-sided bounds. Yung’s results require spurious lower bounds on the clause
length k (k ≥ 9 for Unit Clause and k ≥ 13 for BPGD). By contrast, the present proof
strategy pivots on the number of null variables rather than overlaps, and Proposition 11
provides the precise “quenched” count of null variables. A further improvement over [25]
is that the present analysis pinpoints the precise threshold up to which BPGD (as well as
Unit Clause) succeeds for any k ≥ 3. Specifically, Yung proves that these algorithms fail for
d > dcore, while Theorem 1 shows that failure occurs already for d > dmin with dmin < dcore.
Conversely, Theorem 1 shows that the algorithms succeed with a non-vanishing probability
for d < dmin. Thus, Theorem 1 identifies the correct threshold for the success of BPGD, as
well as the correct combinatorial phenomenon that determines this threshold, namely the
onset of reconstruction in the decimation process (Theorems 2 and 3).

The BPGD algorithm as detailed in Section 2.2 applies to a wide variety of problems
beyond random k-XORSAT. Of course, the single most prominent example is random k-SAT.
Lacking the symmetries of XORSAT, random k-SAT does not allow for the simplification to
discrete messages; in particular, the BP messages are not generally half-integral. In effect,
BP and WP are no longer equivalent. In addition to random k-XORSAT, the article [24]
also provides a heuristic study of BPGD on random k-SAT. But once again due to the lack
of half-integrality, the formulas for the phase transitions no longer come as elegant finite-
dimensional expressions. Instead, they now come as infinite-dimensional variational problems.
Furthermore, the absence of half-integrality also entails that the present proof strategy does
not extend to k-SAT.

The lack of inherent symmetry in random k-SAT can partly be compensated by assuming
that the clause length k is sufficiently large (viz. larger than some usually unspecified constant
k0). Under this assumption the random k-SAT version of both the decimation process and the
BPGD algorithm have been analysed rigorously [7, 9]. The results are in qualitative agreement
with the predictions from [24]. In particular, the BPGD algorithm provably fails to find
satisfying assignments on random k-SAT instances even below the threshold where the set of
satisfying assignments shatters into well-separated clusters [1, 16]. Furthermore, on random
k-SAT a more sophisticated message passing algorithm called Survey Propagation Guided
Decimation has been suggested [20, 24]. While on random XORSAT Survey Propagation and
Belief Propagation are equivalent, the two algorithms are substantially different on random
k-SAT. One might therefore hope that Survey Propagation Guided Decimation outperforms
BPGD on random k-SAT and finds satisfying assignments up to the aforementioned shattering
transition. A negative result to the effect that Survey Propagation Guided Decimation fails
asymptotically beyond the shattering transition point for large enough k exists [14]. Yet
a complete analysis of Belief/Survey Propagation Guided Decimation on random k-SAT
for any k ≥ 3 in analogy to the results obtained here for random k-XORSAT remains an
outstanding challenge.

Finally, returning to random k-XORSAT, a question for future work may be to investigate
the performance of various types of algorithms such as greedy, message passing or local
search that aim to find an assignment that violates the least possible number of clauses. Of
course, this question is relevant even for d > dsat(k). A first step based on the heuristic
“dynamical cavity method” was recently undertaken by Maier, Behrens and Zdeborová [17].
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