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Abstract16

We analyse the performance of Belief Propagation Guided Decimation, a physics-inspired message17

passing algorithm, on the random k-XORSAT problem. Specifically, we derive an explicit threshold18

up to which the algorithm succeeds with a strictly positive probability Ω(1) that we compute19

explicitly, but beyond which the algorithm with high probability fails to find a satisfying assignment.20

In addition, we analyse a thought experiment called the decimation process for which we identify a21

(non-) reconstruction and a condensation phase transition. The main results of the present work22

confirm physics predictions from [Ricci-Tersenghi and Semerjian: J. Stat. Mech. 2009] that link the23

phase transitions of the decimation process with the performance of the algorithm, and improve24

over partial results from a recent article [Yung: Proc. ICALP 2024].25
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1 Introduction and results35

1.1 Background and motivation36

The random k-XORSAT problem shares many characteristics of other intensely studied37

random constraint satisfaction problems (‘CSPs’) such as random k-SAT. For instance, as38

the clause/variable density increases, random k-XORSAT possesses a sharp satisfiability39
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threshold preceded by a reconstruction or ‘shattering’ phase transition that affects the40

geometry of the set of solutions [2, 11, 16, 23]. As in random k-SAT, these transitions appear41

to significantly impact the performance of certain classes of algorithms [6, 15]. At the same42

time, random k-XORSAT is more amenable to mathematical analysis than, say, random43

k-SAT. This is because the XOR operation is equivalent to addition modulo two, which is44

why a k-XORSAT instance translates into a linear system over F2. In effect, k-XORSAT can45

be solved in polynomial time by means of Gaussian elimination. In addition, the algebraic46

nature of the problem induces strong symmetry properties that simplify its study [3].47

Because of its similarities with other random CSPs combined with said relative amenability,48

random k-XORSAT provides an instructive benchmark. This was noticed not only in computer49

science, but also in the statistical physics community, which has been contributing intriguing50

‘predictions’ on random CSPs since the early 2000s [18, 21]. Among other things, physicists51

have proposed a message passing algorithm called Belief Propagation Guided Decimation52

(‘BPGD’) that, according to computer experiments, performs impressively on various random53

CSPs [20]. Furthermore, Ricci-Tersenghi and Semerjian [24] put forward a heuristic analysis of54

BPGD on random k-SAT and k-XORSAT. Their heuristic analysis proceeds by way of a thought55

experiment based on an idealized version of the algorithm. We call this thought experiment56

the decimation process. Based on physics methods Ricci-Tersenghi and Semerjian surmise57

that the decimation process undergoes two phase transitions, specifically a reconstruction58

and a condensation transition. A key prediction of Ricci-Tersenghi and Semerjian is that59

these phase transitions are directly linked to the performance of the BPGD algorithm. Due60

to the linear algebra-induced symmetry properties, in the case of random k-XORSAT all of61

these conjectures come as elegant analytical expressions.62

The aim of this paper is to verify the predictions from [24] on random k-XORSAT63

mathematically. Specifically, our aim is to rigorously analyse the BPGD algorithm on random64

k-XORSAT, and to establish the link between its performance and the phase transitions of the65

decimation process. A first step towards a rigorous analysis of BPGD on random k-XORSAT66

was undertaken in a recent contribution by Yung [25]. However, Yung’s analysis turns out to67

be not tight. Specifically, apart from requiring spurious lower bounds on the clause length k,68

Yung’s results do not quite establish the precise connection between the decimation process69

and the performance of BPGD. One reason for this is that [25] relies on ‘annealed’ techniques,70

i.e., essentially moment computations. Here we instead harness ‘quenched’ arguments that71

were partly developed in prior work on the rank of random matrices over finite fields [3, 8].72

Throughout we let k ≥ 3 and n ≥ k be integers and d > 0 a positive real. Let73

m
dist= Po(dn/k) and let F = F (n, d, k) be a random k-XORSAT formula 2 with variables74

x1, . . . , xn and m random clauses of length k. To be precise, every clause of F is an XOR of75

precisely k distinct variables, each of which may or may not come with a negation sign. The76

m clauses are drawn uniformly and independently out of the set of all 2k
(

n
k

)
possibilities.77

Thus, d equals the average number of clauses that a given variable xi appears in.78

1.2 Belief Propagation Guided Decimation79

The first result vindicates the predictions from [24] concerning the success probability of BPGD80

algorithm. BPGD sets its ambitions higher than merely finding a solution to the k-XORSAT81

instance F : the algorithm attempts to sample a solution uniformly at random. To this82

2 Two random variables X, Y are equal in distribution X
dist= Y if they have the same distribution functions.

Here, m follows a Poisson distribution with mean dn/k.
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end BPGD assigns values to the variables x1, . . . , xn of F one after the other. In order to83

assign the next variable the algorithm attempts to compute the marginal probability that84

the variable is set to ‘true’ under a random solution to the k-XORSAT instance, given all85

previous assignments. More precisely, suppose BPGD has assigned values to the variables86

x1, . . . , xt already. Write σBP(x1), . . . , σBP(xt) ∈ {0, 1} for their values, with 1 representing87

‘true’ and 0 ‘false’. Further, let F BP,t be the simplified formula obtained by substituting88

σBP(x1), . . . , σBP(xt) for x1, . . . , xt. We drop any clauses from F BP,t that contain variables89

from {x1, . . . , xt} only, deeming any such clauses satisfied. Thus, F BP,t is a XORSAT formula90

with variables xt+1, . . . , xn. Its clauses contain at least one and at most k variables, as well91

as possibly a constant (the XOR of the values substituted in for x1, . . . , xt).92

Let σF BP,t
be a uniformly random solution of the XORSAT formula F BP,t, assum-93

ing that F BP,t remains satisfiable. Then BPGD aims to compute the marginal probability94

P
[
σF BP,t

(xt+1) = 1 | F BP,t

]
that a random satisfying assignment of F BP,t sets xt+1 to95

true. This is where Belief Propagation (‘BP’) comes in. An efficient message passing96

heuristic for computing precisely such marginals, BP returns an ‘approximation’ µF BP,t
of97

P
[
σF BP,t

(xt+1) = 1 | F BP,t

]
. We will recap the mechanics of BP in Section 2.2 (the value98

µF BP,t
is defined precisely in (2.9)). Having computed the BP ‘approximation’, BPGD proceeds99

to assign xt+1 the value ‘true’ with probability µF BP,t
, otherwise sets xt+1 to ‘false’, then100

moves on to the next variable. The pseudocode is displayed as Algorithm 1.101

Algorithm 1 The BPGD algorithm.
Data: a random k-XORSAT formula F with variables x1, . . . , xn conditioned on

being satisfiable
1 for t = 0, . . . , n − 1 do
2 compute the BP approximation µF BP,t

;

3 set σBP(xt+1) =
{

1 with probability µF BP,t

0 with probability 1 − µF BP,t

;

4 return σBP;

Let us pause for a few remarks. First, if the BP approximations are exact, i.e., if F BP,t102

is satisfiable and µF BP,t
= P

[
σF BP,t

(xt+1) = 1 | F BP,t

]
for all t, then Bayes’ formula shows103

that BPGD outputs a uniformly random solution of F . However, there is no universal guarantee104

that BP returns the correct marginals. Accordingly, the crux of analysing BPGD is precisely105

to figure out whether this is the case. Indeed, the heuristic work of [24] ties the accuracy106

of BP to a phase transition of the decimation process thought experiment, to be reviewed107

momentarily.108

Second, the strategy behind the BPGD algorithm, particularly the message passing heuristic109

for ‘approximating’ the marginals, generalizes well beyond k-XORSAT. For instance, the110

approach applies to k-SAT verbatim. That said, due to the algebraic nature of the XOR111

operation, BPGD is far easier to analyse on k-XORSAT. In fact, in XORSAT the marginal112

probabilities are guaranteed to be half-integral as seen in Fact 6, i.e.,113

P
[
σF BP,t

(xt+1) = 1 | F BP,t

]
∈ {0, 1/2, 1}. (1.1)114

As a consequence, on XORSAT the BPGD algorithm effectively reduces to a purely combinat-115

orial algorithm called Unit Clause Propagation [18, 24] as per Proposition 14, a fact that we116

will exploit extensively (see Section 2.7).117

ICALP 2025
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1.3 A tight analysis of BPGD118

In order to state the main results we need to introduce a few threshold values. To this end,119

given d, k and an additional real parameter λ ≥ 0 that depends on the time t, consider the120

functions 3
121

ϕd,k,λ :[0, 1] → [0, 1], z 7→ 1 − exp
(
−λ − dzk−1)

, (1.2)122

Φd,k,λ :[0, 1] → R, z 7→ exp
(
−λ − dzk−1)

− d(k − 1)
k

zk + dzk−1 − d

k
. (1.3)123

Let α∗(λ) = α∗(d, k, λ) ∈ [0, 1] be the smallest and α∗(λ) = α∗(d, k, λ) ≥ α∗(d, k, λ) ∈ [0, 1]124

the largest fixed point of ϕd,k,λ. Figure 1 visualizes Φ(z) for different values of θ ∼ t/n.125

Further, define126

dmin(k) =
(

k − 1
k − 2

)k−2
, dcore(k) = sup {d > 0 : α∗(0) = 0} , (1.4)127

dsat(k) = sup {d > 0 : Φd,k,0(α∗(0)) ≤ Φd,k,0(0)} . (1.5)128

The value dsat(k) is the random k-XORSAT satisfiability threshold [3, 11, 23]. Thus, for129

d < dsat(k) the random k-XORSAT formula F possesses satisfying assignments w.h.p., while130

F is unsatisfiable for d > dsat(k) w.h.p. Furthermore, dcore(k) equals the threshold for the131

emergence of a giant 2-core within the k-uniform hypergraph induced by F [3, 22]. This132

implies that for d < dcore(k) the set of solutions of F is connected in a certain well-defined133

way, while for dcore(k) < d < dsat(k) the set of solutions shatters into an exponential number134

of well-separated clusters [15, 18]. Moreover, a simple linear time algorithm is known to find135

a solution w.h.p. for d < dcore(k) [15]. The relevance of dmin(k) will emerge in Theorem 1. A136

bit of calculus reveals that137

0 < dmin(k) < dcore(k) < dsat(k) < k. (1.6)138

The following theorem determines the precise clause-to-variable densities where BPGD139

succeeds/fails. To be precise, in the ‘successful’ regime BPGD does not actually succeed with140

high probability, but with an explicit probability strictly between zero and one, which is141

displayed in Figure 2 for k = 3, 4, 5.142

0.2 0.4 0.6 0.8 1
z

-0.1
-0.05

0.05
0.1

0.15
0.2
Φd, k, λ

Figure 1 Φd,k,λ for k = 3 and d = 2.4, for λ

from 0 to 0.3 (maximum at z = 0) and from 0.4
to 0.9

0.5 1 1.5 2 2.5
d

0.2

0.4

0.6

0.8

1

k= 3
k= 4
k= 5

Figure 2 Success probability of BPGD for 0 <

d < dmin(k) and various k.

143

3 The function Φd,k,λ is known in physics parlance as the “Bethe free entropy” [8, 18]. The stationary
points of Φd,k,λ coincide with the fixed points of ϕd,k,λ, as we will verify in Section 2.1.
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▶ Theorem 1. Let k ≥ 3.144

(i) If d < dmin(k), then145

lim
n→∞

P [BPGD(F ) succeeds] = exp
(

−d2(k − 1)2

4

∫ 1

0

z2k−4(1 − z)
1 − d(k − 1)zk−2(1 − z) dz

)
. (1.7)146

(ii) If dmin(k) < d < dsat(k), then P [BPGD(F ) succeeds] = o(1).147

Theorem 1 vindicates the predictions from Ricci-Tersenghi and Semerjian [24, Section 4]148

as to the performance of BPGD, and improves over the results from Yung [25]. Specifically, The-149

orem 1 (i) verifies the formula for the success probability from [24, Eq. (38)]. Combinatorially,150

the formula (1.7) results from the possible presence of bounded length cycles (so called toxic151

cycles) that may cause the algorithm to run into contradictions. This complements Yung’s152

prior work, that has no positive result on the performance of BPGD. Moreover, Yung’s negative153

results [25, Theorems 2–3] only apply to k ≥ 9 and to d > dcore(k), while Theorem 1 (ii)154

covers all k ≥ 3 and kicks in at the correct threshold dmin(k) < dcore(k) predicted in [24].155

1.4 The decimation process156

In addition to the BPGD algorithm itself, the heuristic work [24] considers an idealised version157

of the algorithm, the decimation process. This thought experiment highlights the conceptual158

reasons behind the success/failure of BPGD. Just like BPGD, the decimation process assigns159

values to variables one after the other for good. But instead of the BP ‘approximations’ the160

decimation process uses the actual marginals given its previous decisions. To be precise,161

suppose that the input formula F is satisfiable and that variables x1, . . . , xt have already162

been assigned values σDC(x1), . . . , σDC(xt) in the previous iterations. Obtain F DC,t by163

substituting the values σDC(x1), . . . , σDC(xt) for x1, . . . , xt and dropping any clauses that164

do not contain any of xt+1, . . . , xn. Thus, F DC,t is a XORSAT formula with variables165

xt+1, . . . , xn. Let σF DC,t
be a random satisfying assignment of F DC,t. Then the decimation166

process sets xt+1 according to the true marginal P
[
σF DC,t

(xt+1) = 1 | F DC,t

]
, thus ultimately167

returning a uniformly random satisfying assignment of F .168

Algorithm 2 The decimation process.
Data: a random k-XORSAT formula F , conditioned on being satisfiable

1 for t = 0, . . . , n − 1 do
2 compute πF DC,t

= P
[
σF DC,t

(xt+1) = 1 | F DC,t

]
;

3 set σDC(xt) =
{

1 with probability πF DC,t

0 with probability 1 − πF DC,t

;

4 return σDC;

Clearly, if indeed the BP ‘approximations’ are correct, then the decimation process and169

BPGD are identical. Thus, a key question is for what parameter regimes the two process170

coincide or diverge, respectively. As it turns out, this question is best answered by parametrise171

not only in terms of the average variable degree d, but also in terms of the ‘time’ parameter172

t of the decimation process.173

1.5 Phase transitions of the decimation process174

Ricci-Tersenghi and Semerjian heuristically identify several phase transitions in terms of d and175

t that the decimation process undergoes. We will confirm these predictions mathematically176

ICALP 2025



20:6 Belief Propagation guided decimation on random k-XORSAT

and investigate how they relate to the performance of BPGD.177

The first set of relevant phase transitions concerns the so-called non-reconstruction prop-178

erty. Roughly speaking, non-reconstruction means that the marginal πF DC,t
= P

[
σF DC,t

(xt+1) = 1 | F DC,t

]
179

is determined by short-range rather than long-range effects. Since Belief Propagation is180

essentially a local algorithm, one might expect that the (non-)reconstruction phase transition181

coincides with the threshold up to which BPGD succeeds; cf. the discussions in [5, 16].182

To define (non-)reconstruction precisely, we associate a bipartite graph G(F DC,t) with183

the formula F DC,t. The vertices of this graph are the variables and clauses of F DC,t. Each184

variable is adjacent to the clauses in which it appears. For a (variable or clause) vertex v185

of G(F DC,t) let ∂v be the set of neighbours of v in G(F DC,t).More generally, for an integer186

ℓ ≥ 1 let ∂ℓv be the set of vertices of G(F DC,t) at shortest path distance precisely ℓ from v.187

Following [16], we say that F DC,t has the non-reconstruction property if188

lim
ℓ→∞

lim sup
n→∞

E
[∣∣∣P [

σF DC,t
(xt+1) = 1

∣∣∣ F DC,t,
{

σF DC,t
(y)

}
y∈∂2ℓxt+1

]
(1.8)189

−P
[
σF DC,t

(xt+1) = 1 | F DC,t

] ∣∣∣ ∣∣ F satisfiable
]

= 0.190

Conversely, F DC,t has the reconstruction property if191

lim inf
ℓ→∞

lim inf
n→∞

E
[∣∣∣P [

σF DC,t
(xt+1) = 1

∣∣∣ F DC,t,
{

σF DC,t
(y)

}
y∈∂2ℓxt+1

]
(1.9)192

−P
[
σF DC,t

(xt+1) = 1 | F DC,t

] ∣∣∣ ∣∣ F sat.
]

> 0.193

To parse (1.8), notice that in the left probability term we condition on both the outcome194

F DC,t of the first t steps of the decimation process and on the values σF DC,t
(y) that the195

random solution σF DC,t
assigns to the variables y at distance exactly 2ℓ from xt+1. By196

contrast, in the right probability term we only condition on F DC,t. Thus, the second197

probability term matches the probability πF DC,t
from the decimation process. Hence, (1.8)198

compares the probability that a random solution sets xt+1 to one given the values σF DC,t
(y)199

of all variables y at distance 2ℓ from xt+1 with plain marginal probability that xt+1 is set200

to one. What (1.8) asks is that these two probabilities be asymptotically equal in the limit201

of large ℓ, with high probability over the choice of F and the prior steps of the decimation202

process.203

Confirming the predictions from [24], the following theorem identifies the precise regimes204

of d, t where (non-)reconstruction holds. To state the theorem, we need to know that for205

dmin(k) < d < dsat(k) the polynomial d(k − 1)zk−2(1 − z) − 1 has precisely two roots206

0 < z∗ = z∗(d, k) < z∗ = z∗(d, k) < 1; we are going to prove this as part of Proposition 5207

below. Let208

λ∗ = λ∗(d, k) = − log(1 − z∗) − z∗

(k − 1)(1 − z∗) (1.10)209

> λ∗ = λ∗(d, k) = max
{

0, − log(1 − z∗) − z∗

(k − 1)(1 − z∗)

}
≥ 0, (1.11)210

θ∗ = θ∗(d, k) = 1 − exp(−λ∗) > θ∗ = θ∗(d, k) = 1 − exp(−λ∗). (1.12)211

Additionally, let λcond(d, k) be the solution to the ODE212

∂λcond(d, k)
∂d

= − α∗(λcond(d, k))k − α∗(λcond(d, k))k

k(α∗(λcond(d, k)) − α∗(λcond(d, k))) , λcond(dsat(k), k) = 0 (1.13)213

on (dmin, dsat] and set θcond = θcond(d, k) = 1−exp(−λcond(d, k)). Note that θ∗ < θcond < θ∗.214
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▶ Theorem 2. Let k ≥ 3 and let 0 ≤ t = t(n) ≤ n be a sequence such that limn→∞ t/n =215

θ ∈ (0, 1).216

(i) If d < dmin(k), then F DC,t has the non-reconstruction property w.h.p.217

(ii) If dmin(k) < d < dsat(k) and θ < θ∗ or θ > θcond, then F DC,t has the non-reconstruction218

property w.h.p.219

(iii) If dmin(k) < d < dsat(k) and θ∗ < θ < θcond, then F DC,t has the reconstruction property220

w.h.p.221

Theorem 2 shows that dmin(k) marks the precise threshold of d up to which the decimation222

process F DC,t exhibits non-reconstruction for all 0 ≤ t ≤ n w.h.p. By contrast, for dmin(k) <223

d < dsat(k) there is a regime of t where reconstruction occurs. In fact, as Proposition 5224

shows, for d > dcore(k) we have θ∗ = 0 and thus reconstruction holds even at t = 0, i.e.,225

for the original, undecimated random formula F . Prior to the contribution [24], it had226

been suggested that this precise scenario (reconstruction on the original problem instance)227

is the stone on which BPGD stumbles [5]. In fact, Yung’s negative result kicks in at this228

precise threshold dcore(k). However, Theorems 1 and 2 show that matters are more subtle.229

Specifically, for dmin(k) < d < dcore(k) reconstruction, even though absent in the initial230

formula F , occurs at a later ‘time’ t > 0 as decimation proceeds, which suffices to trip BPGD231

up. Also, remarkably, Theorem 2 shows that non-reconstruction is not ‘monotone’. The232

property holds for θ < θ∗ and then again for θ > θcond, but not on the interval (θ∗, θcond) as233

visualised in Figure 3.234

But there is one more surprise. Namely, Theorem 2 (ii) might suggest that for dmin(k) <235

d < dsat(k) Belief Propagation manages to compute the correct marginals for t/n ∼ θ > θcond,236

as non-reconstruction kicks back in. But remarkably, this is not quite true. Despite237

the fact that non-reconstruction holds, BPGD goes astray because the algorithm starts its238

message passing process from a mistaken, oblivious initialisation. As a consequence, for239

t/n ∼ θ ∈ (θcond, θ∗) the BP ‘approximations’ remain prone to error. To be precise, the240

following result identifies the precise ‘times’ where BP succeeds/fails. To state the result241

let µF DC,t
denote the BP ‘approximation’ of the true marginal πF DC,t

of variable xt+1 in242

the formula F DC,t created by the decimation process (see Section 2.2 for a reminder of the243

definition). Also recall that πF DC,t
denotes the correct marginal as used by the decimation244

process.245

▶ Theorem 3. Let k ≥ 3 and let 0 ≤ t = t(n) ≤ n be a sequence such that limn→∞ t/n =246

θ ∈ (0, 1).247

(i) If 0 < d < dmin(k) then µF DC,t
= πF DC,t

w.h.p.248

(ii) If dmin(k) < d < dsat(k) and θ < θcond or θ > θ∗, then µF DC,t
= πF DC,t

w.h.p.249

(iii) If dmin(k) < d < dsat(k) and θcond < θ < θ∗, then E
∣∣µF DC,t

− πF DC,t

∣∣ = Ω(1).250

The upshot of Theorems 2–3 is that the relation between the accuracy of BP and251

reconstruction is subtle. Everything goes well so long as d < dmin as non-reconstruction252

holds throughout and the BP approximations are correct. But if dmin < d < dsat and253

θ∗ < θ < θcond, then Theorem 2 (iii) shows that reconstruction occurs. Nonetheless,254

Theorem 3 (ii) demonstrates that the BP approximations remain valid in this regime. By255

contrast, for θcond < θ < θ∗ we have non-reconstruction by Theorem 2 (iii), but Theorem 3 (iii)256

shows that BP misses its mark with a non-vanishing probability. Finally, for θ > θ∗ everything257

is in order once again as BP regains its footing and non-reconstruction holds. Unfortunately258

BPGD is unlikely to reach this happy state because the algorithm is bound to make numerous259

mistakes at times t/n ∈ (θcond, θ∗).260
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Figure 3 The phase diagrams for k = 3, 4, 5 with d ∈ (dmin, dsat) on the horizontal and θ on the
vertical axis. The hatched area displays the regime θ < θ∗ and θcond < θ where non reconstruction
holds. In the non hatched area, where θ∗ < θ < θcond, we have reconstruction. Similarly, the blue
area displays θ < θcond and θ > θ∗ where BP is correct whereas in the orange area, BP is inaccurate.

Theorems 2 and 3 confirm the predictions from [24, Section 4]. To be precise, while θcond261

matches the predictions of Ricci-Tersenghi and Semerjian, the ODE formula (1.13) for the262

threshold, which is easy to evaluate numerically, does not appear in [24]. Instead of the ODE263

formulation, Ricci-Tersenghi and Semerjian define λcond as the (unique) λ ≥ 0 such that264

Φd,k,λ(α∗) = Φd,k,λ(α∗); Proposition 5 below shows that both are equivalent. Illustrating265

Theorems 2–3, Figure 3 displays the phase diagram in terms of d and θ ∼ t/n for k = 3, 4, 5.266

2 Overview267

This section provides an overview of the proofs of Theorems 1–3. In the final paragraph268

we conclude with a discussion of further related work. We assume throughout that k ≥ 3269

is an integer and that 0 < d < dsat(k). Moreover, t = t(n) denotes an integer sequence270

0 ≤ t(n) ≤ n such that limn→∞ t(n)/n = θ ∈ (0, 1).271

2.1 Fixed points and thresholds272

The first item on our agenda is to study the functions ϕd,k,λ, Φd,k,λ from (1.2)–(1.3). Spe-273

cifically, we are concerned with the maxima of Φd,k,λ and the fixed points of ϕd,k,λ, the274

combinatorial relevance of which will emerge as we analyse BPGD and the decimation process.275

We begin by observing that the fixed points of ϕd,k,λ are precisely the stationary points of276

Φd,k,λ.277

▶ Fact 4. For any d > 0, λ ≥ 0 the stationary points z ∈ (0, 1) of Φd,k,λ coincide with the278

fixed points of ϕd,k,λ in (0, 1). Furthermore, for a fixed point z ∈ (0, 1) of ϕd,k,λ we have279

Φ′′
d,k,λ(z)


< 0 if ϕ′

d,k,λ(z) < 1,

= 0 if ϕ′
d,k,λ(z) = 1,

> 0 if ϕ′
d,k,λ(z) > 1.

(2.1)280

We recall that 0 ≤ α∗ = α∗(d, k, λ) ≤ α∗ = α∗(d, k, λ) ≤ 1 are the smallest and the281

largest fixed point of ϕd,k,λ in [0, 1], respectively. Fact 4 shows that Φd,k,λ attains its global282

maximum in [0, 1] at α∗ or α∗. Let αmax = αmax(d, k, λ) ∈ {α∗, α∗} be the maximiser283

of Φd,k,λ; if Φd,k,λ(α∗) = Φd,k,λ(α∗), set αmax = α∗. An example for α∗, α∗, αmax and284

Φ(α∗), Φ(α∗), Φ(αmax) is visualised in Figure 4. The following proposition characterises the285

fixed points of ϕd,k,λ and the maximiser αmax.286
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Figure 4 αmax and Φ(αmax) for d = 2.4 and k = 3 from θ∗ to θ∗.

▶ Proposition 5.287

(i) If d < dmin(k), then for all λ > 0 we have α∗ = α∗, the function λ ∈ (0, ∞) 7→ α∗ ∈ (0, 1)288

is analytic, and α∗ is the unique stable fixed point of ϕd,k,λ.289

(ii) If dmin(k) < d < dsat(k), then the polynomial d(k − 1)zk−2(1 − z) − 1 has precisely two290

roots 0 < z∗ < z∗ < 1, the numbers λ∗, λ∗ from (1.10) satisfy 0 ≤ λ∗ < λ∗ and the291

following is true.292

(a) If λ < λ∗ or λ > λ∗, then α∗ = α∗ ∈ (0, 1) is the unique stable fixed point of ϕd,k,λ.293

(b) If λ∗ < λ < λ∗, then 0 < α∗ < α∗ < 1 are the only stable fixed points of ϕd,k,λ.294

(c) The functions λ ∈ (0, λ∗) 7→ α∗ and λ ∈ (λ∗, ∞) 7→ α∗ are analytic.295

(d) If dmin(k) < d < dsat(k), then the solution λcond of (1.13) satisfies λ∗ < λcond =296

λcond(d) < λ∗ and αmax = α∗ if λ < λcond while αmax = α∗ if λ > λcond.297

2.2 Belief Propagation298

Having done our analytic homework, we proceed to recall how Belief Propagation computes299

the ‘approximations’ µF BP,t
that the BPGD algorithm relies upon. We will see that due to300

the inherent symmetries of XORSAT the Belief Propagation computations simplify and boil301

down to a simpler message passing process called Warning Propagation. Subsequently we302

will explain the connection between Warning Propagation and the fixed points α∗, α∗ of303

ϕd,k,λ.304

It is probably easiest to explain BP on a general XORSAT instance F with a set V (F )305

of variables and a set C(F ) of clauses of lengths between one and k. As in Section 1.5306

we consider the graph G(F ) induced by F , with vertex set V (F ) ∪ C(F ) and an edge xa307

between x ∈ V (F ) and a ∈ C(F ) iff a contains x. Let ∂v = ∂F v be the set of neighbours308

of v ∈ V (F ) ∪ C(F ). Additionally, given an assignment τ ∈ {0, 1}∂a of the variables that309

appear in a, we write τ |= a iff τ satisfies a.310

With each clause/variable pair x, a such that x ∈ ∂a Belief Propagation associates two311

sequences of ‘messages’ (µF,x→a,ℓ)ℓ≥0, (µF,a→x,ℓ)ℓ≥0 directed from x to a and from a to x,312

respectively. These messages are probability distributions on {0, 1}, i.e.,313

µF,x→a,ℓ = (µF,x→a,ℓ(0), µF,x→a,ℓ(1)), µF,a→x,ℓ = (µF,a→x,ℓ(0), µF,a→x,ℓ(1)), (2.2)314

µF,x→a,ℓ(0) + µF,x→a,ℓ(1) = µF,a→x,ℓ(0) + µF,a→x,ℓ(1) = 1. (2.3)315
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The initial messages are uniform, i.e.,316

µF,x→a,0(s) = µF,a→x,0(s) = 1/2 (s ∈ {0, 1}). (2.4)317

Further, the messages at step ℓ + 1 are obtained from the messages at step ℓ via the Belief318

Propagation equations319

µF,a→x,ℓ+1(s) ∝
∑

τ∈{0,1}∂a

1{τx = s, τ |= a}
∏

y∈∂a\{x}

µF,y→a,ℓ(τy), (2.5)320

µF,x→a,ℓ+1(s) ∝
∏

b∈∂x\{a}

µF,b→x,ℓ(s). (2.6)321

In (2.5)–(2.6) the ∝-symbol represents the normalisation required to ensure that the updated322

messages satisfy (2.3). In the case of (2.6) such a normalization may be impossible because323

the expressions on the r.h.s. could vanish for both s = 0 and s = 1. In this event we agree324

that325

µF,x→a,ℓ+1(s) =
{

µF,x→a,ℓ(s) if µF,x→a,ℓ(s) ̸= 1/2
1{s = 0} otherwise

(s ∈ {0, 1});326

in other words, we retain the messages from the previous iteration unless its value was 1/2, in327

which case we set µF,x→a,ℓ+1(0) = 1. The same convention applies to µF,a→x,ℓ+1(s). Further,328

at any time t the BP messages render a heuristic ‘approximation’ of the marginal probability329

that a random solution to the formula F sets a variable x to s ∈ {0, 1}:330

µF,x,ℓ(s) ∝
∏

b∈∂x

µF,b→x,ℓ(s). (2.7)331

We set µF,x,ℓ(0) = 1 − µF,x,ℓ(1) = 1 if
∑

s∈{0,1}
∏

b∈∂x µF,b→x,ℓ(s) = 0.332

▶ Fact 6. The BP messages and marginals are half-integral for all t, i.e., for all t ≥ 0 and333

s ∈ {0, 1} we have334

µF,x→a,ℓ(s), µF,a→x,ℓ(s), µF,x,ℓ(s) ∈ {0, 1/2, 1}. (2.8)335

Furthermore, for all ℓ > 2
∑

a∈C(F ) |∂a| we have µF,x,ℓ(s) = µF,x,ℓ+1(s).336

Finally, in light of Fact 6 it makes sense to define the approximations for BPGD by letting337

µF BP,t
= lim

ℓ→∞
µF BP,t,xt+1,ℓ(1), µF DC,t

= lim
ℓ→∞

µF DC,t,xt+1,ℓ(1). (2.9)338

2.3 Warning Propagation339

Thanks to the half-integrality (2.8) of the messages, Belief Propagation is equivalent to a340

purely combinatorial message passing procedure called Warning Propagation (‘WP’) [18].341

Similar as BP, WP also associates two message sequences (ωF,x→a,ℓ, ωF,a→x,ℓ)ℓ≥0 with every342

adjacent clause/variable pair. The messages take one of three possible discrete values {f, u, n}343

(‘frozen’, ‘uniform’, ‘null’). Essentially, n indicates that the value of a variable is determined344

by unit clause propagation. Moreover, f indicates that a variable is forced to take the value345

0 once all variables in the 2-core of the hypergraph representation of the formula are set346

to 0. The remaining label u indicates that neither of the above applies. To trace the BP347

messages from Section 2.2 actually only the two values {n, u} would be necessary. However,348

the third value f will prove useful in order to compare the BP approximations with the349
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actual marginals. Perhaps unexpectedly given the all-uniform initialisation (2.4), we launch350

WP from all-frozen start values:351

ωF,x→a,0 = ωF,a→x,0 = f for all a, x. (2.10)352

Subsequently the messages get updated according to the rules353

ωF,a→x,ℓ+1 =


n if ωF,y→a,ℓ = n for all y ∈ ∂a \ {x},

f
if ωF,y→a,ℓ ̸= u for all y ∈ ∂a \ {x} and ωF,y→a,ℓ ̸= n
for at least one y ∈ ∂a \ {x},

u otherwise,

(2.11)354

ωF,x→a,ℓ+1 =


n if ωF,b→x,ℓ = n for at least one b ∈ ∂x \ {a},

f
if ωF,b→x,ℓ ̸= n for all b ∈ ∂x \ {a} and ωF,b→x,ℓ = f
for at least one b ∈ ∂x \ {a} ,

u otherwise.

(2.12)355

In addition to the messages we also define the mark ωF,x,ℓ of variable node x as in (2.11),356

or be it without omitting clause a. The following statement summarises the relationship357

between BP and WP.358

▶ Fact 7. For all t ≥ 0 and all x, a we have359

µx→a,ℓ(1) = 1/2 ⇔ ωF,x→a,ℓ ̸= n, (2.13)360

µa→x,ℓ(1) = 1/2 ⇔ ωF,a→x,ℓ ̸= n, (2.14)361

µx,ℓ(1) = 1/2 ⇔ ωF,x,ℓ ̸= n. (2.15)362

Moreover, for all ℓ > 2|C(F )| we have ωF,x→a,ℓ = ωF,x→a,ℓ+1 and ωF,a→x,ℓ = ωF,a→x,ℓ+1.363

Fact 7 implies that the WP messages and marks ‘converge’ in the limit of large ℓ, in364

the sense that eventually they do not change any more. Let ωF,x→a, ωF,a→x, ωF,x ∈ {f, u, n}365

be these limits. Furthermore, let Vf,ℓ(F ), Vu,ℓ(F ), Vn,ℓ(F ) be the sets of variables with the366

respective mark after ℓ ≥ 0 iterations. Also let Vf(F ), Vu(F ), Vn(F ) be the sets of variables367

where the limit ωF,x takes the respective value. The following statement traces WP on the368

random formula F DC,t produced by the decimation process.369

▶ Proposition 8. Let ε > 0 and assume that d > 0, t = t(n) ∼ θn satisfy one of the following370

conditions:371

(i) d < dmin, or372

(ii) d > dmin and θ ̸∈ {θ∗, θ∗}.373

Then there exists ℓ0 = ℓ0(d, θ, ε) > 0 such that for any fixed ℓ ≥ ℓ0 with λ = − log(1 − θ)374

w.h.p. we have375

|t + |Vn,ℓ(F DC,t)| − α∗n| < εn, |t + |Vf,ℓ(F DC,t)| − (α∗ − α∗)n| < εn, (2.16)376

|Vn(F DC,t)△Vn,ℓ(F DC,t)| < εn. (2.17)377

2.4 The check matrix378

Since the XOR operation is equivalent to addition modulo two, a XORSAT formula F with379

variables x1, . . . , xn and clauses a1, . . . , am translates into a linear system over F2, as follows.380

Let AF be the m × n-matrix over F2 whose (i, j)-entry equals one iff variable xj appears in381

clause ai. Adopting coding parlance, we refer to AF as the check matrix of F . Furthermore,382
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let yF ∈ Fm
2 be the vector whose ith entry is one plus the sum of any constant term and383

the number of negation signs of clause ai mod two. Then the solutions σ ∈ Fn
n of the linear384

system AF σ = yF are precisely the satisfying assignments of F .385

The algebraic properties of AF therefore have a direct impact on the satisfiability of386

F . For example, if AF has rank m, we may conclude immediately that F is satisfiable.387

Furthermore, the set of solutions of F is an affine subspace of Fn
2 (if non-empty). In effect, if388

F is satisfiable, then the number of satisfying assignments equals the size of the kernel of389

AF . Hence the nullity nul AF = dim ker AF of the check matrix is a key quantity.390

Indeed, the single most significant ingredient towards turning the heuristic arguments391

from [24] into rigorous proofs is a formula for the nullity of the check matrix of the XORSAT392

instance F DC,t from the decimation process. To unclutter the notation set At = AF DC,t
.393

We derive the following proposition from a recent general result about the nullity of random394

matrices over finite fields [8, Theorem 1.1]. The proposition clarifies the semantics of the395

function Φd,k,λ and its maximiser αmax. In physics jargon Φd,k,λ is known as the Bethe free396

entropy.397

▶ Proposition 9. Let d > 0 and λ = − log(1 − θ). Then398

lim
n→∞

nul At = Φd,k,λ(αmax) in probability.399

2.5 Null variables400

Proposition 9 enables us to derive crucial information about the set of satisfying assignments401

of F DC,t. Specifically, for any XORSAT instance F with variables x1, . . . , xn let V0(F ) be402

the set of variables xi such that σi = 0 for all σ ∈ ker AF . We call the variables xi ∈ V0(F )403

null variables. Since the set of solutions of F , if non-empty, is a translation of ker AF , any404

two solutions σ, σ′ of F set the variables in V0(F ) to exactly the same values. The following405

proposition shows that WP identifies certain variables as null.406

▶ Proposition 10. W.h.p. the following two statements are true for any fixed integer ℓ > 0.407

(i) We have Vn,ℓ(F DC,t) ⊆ V0(F DC,t).408

(ii) We have |Vu,ℓ(F DC,t) ∩ V0(F DC,t)| = o(n).409

Propositions 9 and 10 enable us to calculate the number of null variables of F DC,t, so410

long as we remain clear of the point θcond where αmax is discontinuous.411

▶ Proposition 11. If θ ̸= θcond then |V0(F DC,t)| = αmaxn + o(n) w.h.p.412

Let us briefly summarise what we have learned thus far. First, because all Belief413

Propagation messages are half-integral, BP reduces to WP. Second, Proposition 8 shows that414

the fixed points α∗, α∗ of ϕd,k,λ determine the number of variables marked n or f by WP.415

Third, the function Φd,k,λ and its maximiser αmax govern the nullity of the check matrix and416

thereby the number of null variables of F DC,t. Clearly, the null variables xi are precisely the417

ones whose actual marginals P
[
σF DC,t

(xi) = s | F DC,t

]
are not uniform. As a next step, we418

investigate whether BP/WP identify these variables correctly.419

In light of Proposition 8, in order to investigate the accuracy of BP it suffices to compare420

the numbers of variables marked n by WP with the true marginals. The following corollary421

summarises the result.422

▶ Corollary 12. For any d, θ the following statements are true.423

(i) If d < dmin, or d > dmin and θ < θcond, or d > dmin and θ > θ∗, then424

|V0(F DC,t)△Vn(F DC,t)| = o(n) w.h.p.425
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(ii) If d > dmin and θcond < θ < θ∗, then |V0(F DC,t)△Vn(F DC,t)| = Ω(n) w.h.p.426

Thus, so long as d < dmin or d > dmin and θ < θcond or θ > θ∗, the BP/WP approximations427

are mostly correct. By contrast, if d > dmin and θcond < θ < θ∗, the BP/WP approximations428

are significantly at variance with the true marginals w.h.p. Specifically, w.h.p. BP deems429

Ω(n) frozen variables unfrozen, thereby setting itself up for failure. Indeed, Corollary 12430

easily implies Theorem 3, which in turn implies Theorem 1 (ii) without much ado.431

In addition, to settle the (non-)reconstruction thresholds set out in Theorem 2 we need to432

investigate the conditional marginals given the values of variables at a certain distances from433

xt+1 as in (1.8). This is where the extra value f from the construction of WP enters. Indeed,434

for a XORSAT instance F with variables x1, . . . , xn and an integer ℓ let V0,ℓ(F ) be the set435

of variables xi such that σi = 0 for all σ ∈ ker AF and σh = 0 for all variables xh ∈ ∂ℓxi.436

Hence, V0,ℓ(F ) ⊆ V0(F ) is the set of variables whose ℓ-neighbourhood is contained in V0(F ).437

▶ Corollary 13. Assume that d > dmin and let ε > 0.438

(i) If θ < θcond, then for any fixed ℓ we have |Vf,ℓ(F DC,t) ∩ V0,ℓ(F DC,t)| < εn w.h.p.439

(ii) If θ > θcond, then there exists ℓ0 = ℓ0(d, θ, ε) such that for any fixed ℓ > ℓ0 we have440

|(Vn,ℓ(F DC,t) ∪ Vf,ℓ(F DC,t))△V0,ℓ(F DC,t)| < εn w.h.p.441

Comparing the number of actually frozen variables with the ones marked f by WP, we obtain442

Theorem 2.443

2.6 Proving BPGD successful444

We are left to prove Theorem 1. First, we need to compute the (strictly positive) success445

probability of BPGD for d < dmin. At this point, the fact that BPGD has a fair chance of446

succeeding for d < dmin should not come as a surprise. Indeed, Corollary 12 implies that447

the BP approximations of the marginals are mostly correct for d < dmin, at least on the448

formula F DC,t created by the decimation process. Furthermore, so long as the marginals are449

correct, the decimation process F DC,t and the execution of the BPGD algorithm F BP,t move450

in lockstep. The sole difficulty in analysing BPGD lies in proving that the estimates of the451

algorithm are not just mostly correct, but correct up to only a bounded expected number452

of discrepancies over the entire execution of the algorithm. To prove this fact we combine453

the method of differential equations with a subtle analysis of the sources of the remaining454

bounded number of discrepancies. These discrepancies result from the presence of short455

(i.e., bounded-length) cycles in the graph G(F ). Finally, the proof of the second (negative)456

part of Theorem 1 follows by coupling the execution of BPGD with the decimation process,457

and invoking Theorem 3. In the next subsection we introduce a simple combinatorial Unit458

Clause Propagation algorithm to give a glimpse of the proof of the ’positive’ part for the459

success probability of Theorem 1 for d < dmin. The proof of the second part of the theorem460

concerning dmin < d < dsat as well as the details of both arguments can be found in the full461

version.462

2.7 Unit Clause Propagation463

The simple-minded Unit Clause Propagation algorithm attempts to assign random values464

to as yet unassigned variables one after the other. After each such random assignment the465

algorithm pursues the ‘obvious’ implications of its decisions. Specifically, the algorithm466

substitutes its chosen truth values for all occurrences of the already assigned variables. If this467

leaves a clause with only a single unassigned variable, a so-called ‘unit clause’, the algorithm468
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assigns that variable so as to satisfy the unit clause. If a conflict occurs because two unit469

clauses impose opposing values on a variable, the algorithm declares that a conflict has470

occurred, sets the variable to false and continues; of course, in the event of a conflict the471

algorithm will ultimately fail to produce a satisfying assignment. The pseudocode for the472

algorithm is displayed in Algorithm 3.473

Algorithm 3 The UCP algorithm.
1 Let U = ∅ and let σUC : U → {0, 1} be the empty assignment;
2 for t = 0, . . . , n − 1 do
3 if xt+1 ̸∈ U then
4 add xt+1 to U ;
5 choose σUC(xt+1) ∈ {0, 1} uniformly at random;
6 while F [σUC] contains a unit clause a do
7 let x be the variable in a;
8 let s ∈ {0, 1} be the truth value that x needs to take to satisfy a;
9 if another unit clause a′ exists that requires x be set to 1 − s then

10 output ‘conflict’ and let σUC(x) = 0;
11 else
12 add x to U and let σUC(x) = s;
13 return σUC;

Let F UC,t denote the simplified formula obtained after the first t iterations (in which474

the truth values chosen for x1, . . . , xt and any values implied by Unit Clauses have been475

substituted). We notice that the values assigned during Steps 6–12 are deterministic476

consequences of the choices in Step 5. In particular, the order in which unit clauses are477

processed Steps 6–12 does not affect the output of the algorithm.478

▶ Proposition 14. We have P [BPGD succeeds] = P [UCP succeeds] .479

Proposition 14 allows us to analyse UCP to prove Theorem 1.480

2.8 The success probability of UCP for d < dmin481

We continue to denote by F UC,t the sub-formula obtained after the first t iterations of482

UCP. Let Vn = {x1, . . . , xn} be the set of variables of the XORSAT instance F. Also, let483

V (t) ⊆ {xt+1, . . . , xn} be the set of variables of F UC,t. Thus, V (t) contains those variables484

among xt+1, . . . , xn whose values are not implied by the assignment of x1, . . . , xt via unit485

clauses. Also let C(t) be the set of clauses of F UC,t; these clauses contain variables from486

V (t) only, and each clause contains at least two variables. Let V̄ (t) = Vn \ V (t) be the set487

of assigned variables. Thus, after its first t iterations UCP has constructed an assignment488

σUC : V̄ (t) → {0, 1}. Moreover, let V ′(t + 1) = V (t) \ V (t + 1) be the set of variables that489

receive values in the course of the iteration t + 1 for 0 ≤ t < n. Additionally, let C ′(t + 1) be490

the set of clauses of F UC,t that consists of variables from V ′(t + 1) only. Finally, let F ′
UC,t+1491

be the formula comprising the variables V ′(t + 1) and the clauses C ′(t + 1).492

To characterise the distribution of F UC,t let n(t) = |V (t)| and let mℓ(t) be the number493

of clauses of length ℓ, i.e., clauses that contain precisely ℓ variables from V (t). Observe that494

m1(t) = 0 because unit clauses get eliminated. Let Ft be the σ-algebra generated by n(t)495

and (mℓ(t))2≤ℓ≤k.496
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▶ Fact 15. The XORSAT formula F UC,t is uniformly random given Ft. In other words,497

the variables that appear in each clause are uniformly random and independent, as are their498

signs.499

Proof. This follows from the principle of deferred decisions. ◀500

We proceed to estimate the random variables n(t), mℓ(t). Let α(t) = |V̄ (t)|/n so that501

n(t) = n(1 − α(t)). Recall, that V̄ (t) = Vn \ V (t). Let λ = λ(θ) = − log(1 − θ) with θ ∼ t/n502

and recall that α∗ = α∗(d, k, λ) denotes the smallest fixed point of ϕd,k,λ. The proof of the503

following proposition proof can be found in the full version.504

▶ Proposition 16. Suppose that d < dmin(k). There exists a function δ = δ(n) = o(1) such505

that for all 0 ≤ t < n and all 2 ≤ ℓ ≤ k we have506

P [|α(t) − α∗| > δ] = O(n−2), P
[∣∣∣∣mℓ(t) − dn

k

(
k

ℓ

)
(1 − α∗)ℓαk−ℓ

∗

∣∣∣∣ > δn

]
= O(n−2).

(2.18)

507

Proposition 16 paves the way for the actual computation of the success probability of508

UCP. Let Rt be the event that a conflict occurs in iteration t. The following proposition509

gives us the correct value of P [Rt | Ft] w.h.p. Since Ft is a random variable the value for510

the probability P [Rt | Ft] is random as well.511

▶ Proposition 17. Fix ε > 0, let 0 ≤ t < (1 − ε)n and define512

fn(t) = d(k − 1)(1 − α∗)αk−2
∗ . (2.19)513

Then with probability 1 − o(1/n) we have514

P [Rt | Ft] = fn(t)2

4(n − t)(1 − fn(t))2 + o(1/n).515

The proof of Proposition 17 can be found in Section 2.8.1. Moreover, in the full version516

we prove the following.517

▶ Proposition 18. Fix ε > 0 and ℓ ≥ 1. For any 0 ≤ t1 < · · · < tℓ < (1 − ε)n we have518

P

[
ℓ⋂

i=1
Rti

]
∼

ℓ∏
i=1

fn(ti)2

4(n − ti)(1 − fn(ti))2 . (2.20)519

Finally, the following statement, proven in the full version, deals with the εn final steps520

of the algorithm.521

▶ Proposition 19. For any δ > 0 there exists ε > 0 such that P
[⋃

(1−ε)n<t<n Rt

]
< δ.522

Before we proceed we notice that Propositions 17–19 imply the first part of Theorem 1.523

Proof of Theorem 1 (i). Pick δ > 0, fix a small enough ε = ε(δ) > 0 and let R =524 ∑n−1
t=0 1{Rt} be the total number of times at which conflicts occur. Proposition 14 shows525

that the probability that BPGD succeeds equals P [R = 0]. In order to calculate P [R = 0], let526
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Rε =
∑

0≤t≤(1−ε)n 1{Rt} be the number of failures before time (1 − ε)n. Proposition 18527

shows that for any fixed ℓ ≥ 1 we have528

E

[
ℓ∏

i=1
(Rε − i + 1)

]
∼ ℓ!

∑
0≤t1<···<tℓ≤(1−ε)n

ℓ∏
i=1

fn(ti)2

4(n − ti)(1 − fn(ti))2529

= (1 + o(1))
∑

0≤t1,...,tℓ≤(1−ε)n

ℓ∏
i=1

fn(ti)2

4(n − ti)(1 − fn(ti))2 ∼ E[Rε]ℓ.

(2.21)

530

Hence, the inclusion/exclusion principle (e.g., [4, Theorem 1.21]) implies that531

P [Rε = 0] ∼ exp(−E[Rε]). (2.22)532

Further, using Proposition 17 and the linearity of expectation, we obtain with λ(θ) =533

− log(1 − θ)534

E[Rε] ∼
∑

0≤t≤(1−ε)n

fn(t)2

4(n − t)(1 − fn(t))2 ∼ 1
4n

∫ 1−ε

0

fn(θn)2

(1 − θ)(1 − fn(θn))2 dθ535

= 1
4n

∫ 1−ε

0

fn(θn)2

(1 − α∗)(1 − fn(θn))
∂α∗

∂λ

∂λ(θ)
∂θ

dθ536

= d2(k − 1)2

4

∫ 1−ε

0

z2k−4(1 − z)
1 − d(k − 1)zk−2(1 − z) dz [by (2.19)]. (2.23)537

Finally, Proposition 19 implies that538

P [R > Rε] < δ. (2.24)539

Thus, the assertion follows from (2.22)–(2.24) upon taking the limit δ → 0. ◀540

2.8.1 Proof of Proposition 17541

F ′
UC,t+1 is the XORSAT formula that contains the variables V ′(t + 1) that get assigned542

during iteration t + 1 and the clauses C ′(t + 1) of F UC,t that contain variables from V ′(t + 1)543

only. Also recall that G(F ′
UC,t+1) signifies the graph representation of this XORSAT formula.544

Unless V ′(t + 1) = ∅, the graph G(F ′
UC,t+1) is connected.545

▶ Lemma 20. Fix ε > 0 and let 0 ≤ t ≤ (1 − ε)n. With probability 1 − o(1/n) the graph546

G(F ′
UC,t+1) satisfies547

|E(G(F ′
UC,t+1))| ≤ |V (G(F ′

UC,t+1))|.548

The proof of Lemma 20 can be found in the full version. Thus, with probability 1−o(1/n)549

the graph G(F ′
UC,t+1) contains at most one cycle. While it is easy to check that no conflict550

occurs in iteration t + 1 if G(F ′
UC,t+1) is acyclic, in the case that G(F ′

UC,t+1) contains a551

single cycle there is a chance of a conflict. The following definition describes the type of552

cycle that poses an obstacle.553

▶ Definition 21. For a XORSAT formula F we call a sequence of variables and clauses554

C = (v1, c1, . . . , vℓ, cℓ, vℓ + 1 = v1) a toxic cycle of length ℓ if555

TOX1 ci contains the variables xi, xi+1 only, and556
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TOX2 the total number of negations in c1, . . . cℓ is odd iff ℓ is even.557

▶ Lemma 22. (i) If F ′
UC,t+1 contains a toxic cycle, then a conflict occurs in iteration558

t + 1.559

(ii) If F ′
UC,t+1 contains no toxic cycle and |E(G(F ′

UC,t+1))| ≤ |V (G(F ′
UC,t+1))|, then no560

conflict occurs in iteration t + 1.561

Proof. Towards (i) we show that F ′
UC,t+1 is not satisfiable if there is a toxic cycle C =562

(v1, c1, . . . , cℓ, vℓ+1 = v1); then UCP will, of course, run into a contradiction. To see that563

F ′
UC,t+1 is unsatisfiable, we transform each of the clauses c1, . . . , cℓ into a linear equation564

ci ≡ (vi + vi+1 = yi) over F2. Here yi ∈ F2 equals 1 iff ci contains an even number of565

negations. Adding these equations up yields
∑ℓ

i=1 yi = 0 in F2. This condition is violated if566

C is toxic.567

Let us move on to (ii). Assume for contradiction that there exists a formula F without568

a toxic cycle such that |V (G(F ))| ≤ |E(G(F ))| and such that given F ′
UC,t+1 = F , UCP569

may run into a conflict. Consider such a formula F that minimises |V (F )| + |C(F )|. Since570

UCP succeeds on acyclic F , we have |V (G(F ))| = |E(G(F ))|. Thus, G(F ) contains a single571

cycle C = (v1, c1, . . . , vℓ, cℓ, vℓ+1 = v1). Apart from the cycle, F contains (possibly empty)572

acyclic formulas F ′
1, . . . , F ′

ℓ attached to v1, . . . , vℓ and F ′′
1 , . . . , F ′′

ℓ attached to c1, . . . , cℓ. The573

formulas F ′
1, F ′′

1 , . . . , F ′
ℓ , F ′′

ℓ are mutually disjoint and do not contain unit clauses.574

We claim that F ′
1, . . . , F ′

ℓ are empty because |V (F )|+ |C(F )| is minimum. This is because575

given any truth assignment of v1, . . . , vℓ, UCP will find a satisfying assignment of the acyclic576

formulas F ′
1, . . . , F ′

ℓ .577

Further, assume that one of the formulas F ′′
1 , . . . , F ′′

ℓ is non-empty; say, F ′′
1 is non-empty.578

If the start variable that UCP assigns were to belong to F ′′
1 , then c1, containing x1 and x2,579

would not shrink to a unit clause, and thus UCP would not assign values to these variables.580

Hence, UCP starts by assigning a truth value to one of the variables v1, . . . , vℓ; say, UCP starts581

with v1. We claim that then UCP does not run into a conflict. Indeed, the clauses c2, . . . , cℓ582

may force UCP to assign truth values to x2, . . . , xℓ, but no conflict can ensue because UCP will583

ultimately satisfy c1 by assigning appropriate truth values to the variables of F ′′
1 .584

Thus, we may finally assume that all of F ′
1, F ′′

1 , . . . , F ′
ℓ , F ′′

ℓ are empty. In other words,585

F consists of the cycle C only. Since C is not toxic, TOX2 does not occur. Consequently,586

UCP will construct an assignment that satisfies all clauses c1, . . . , cℓ. This final contradiction587

implies (ii). ◀588

▶ Corollary 23. Fix ε > 0 and let 0 ≤ t ≤ (1 − ε)n. Then589

P [Rt+1] = P
[
F ′

UC,t+1 contains a toxic cycle
]

+ o(1/n).590

Proof. This is an immediate consequence of Lemma 20 and Lemma 22. ◀591

Thus, we are left to calculate the probability that F ′
UC,t+1 contains a toxic cycle. To592

this end, we estimate the number of toxic cycles in the ‘big’ formula F UC,t. Let T t,ℓ be the593

number of toxic cycles of length ℓ in F UC,t.594

▶ Lemma 24. Fix ε > 0 and let 1 ≤ t ≤ (1 − ε)n.595

(i) For any fixed ℓ, with probability 1 − O(n−2) we have596

E [T t (ℓ) | Ft] = βℓ + o(1), where βℓ = 1
4ℓ

(
d(k − 1)(1 − α∗)αk−2

∗
)ℓ = 1

4ℓ
(fn(t))ℓ

.597

(ii) For any 1 ≤ ℓ ≤ n, with probability 1 − O(n−2) we have E [T t (ℓ) | Ft] ≤ βℓ exp(εℓ).598
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The proof of Lemma 24 is provided in the full version.599

Proof of Proposition 17. In light of Corollary 23 we just need to calculate the probability600

that F ′
UC,t+1 contains a toxic cycle. Clearly, if during iteration t + 1 UCP encounters a601

variable of F UC,t that lies on a toxic cycle, UCP will proceed to add the entire toxic cycle to602

F ′
UC,t+1 (and run into a contradiction). Furthermore, Lemma 24 shows that with probability603

1 − O(n−2) given Ft the probability that a random variable of F UC,t belongs to a toxic cycle604

comes to605

β̄ =
∑
ℓ≥2

ℓβℓ + o(1) =
∑
ℓ≥2

1
4 (fn(t))ℓ = fn(t)2

4(1 − fn(t)) + o(1) = O(1). (2.25)606

We now use (2.25) to calculate the desired probability of encountering a toxic cycle. To607

this end we notice that the (t + 1)-st iteration of UCP corresponds to a branching process608

with expected offspring fn(t), unless the root variable xt+1 has already been assigned.609

With probability 1 − O(n−2) the conditional probability of this latter event equals (nα∗ −610

t)/(n − t) + o(1). Further, given that the root variable has not been assigned previously,611

the expected progeny of the branching process, i.e., the expected number of variables in612

F ′
UC,t+1, equals 1/(1−fn(t))+o(1). Since with probability 1−O(n−2) given Ft there remain613

n(t) = (1 − α∗ + o(1))n unassigned variables in total, (2.25) implies that with probability614

1 − o(1/n),615

P [Rt+1 | Ft] ∼ β̄

(1 − α∗)n · 1 − α∗

1 − t/n
· 1

1 − fn(t) = fn(t)2

4(1 − fn(t))2(n − t) + o(1/n),616

as claimed. ◀617

3 Discussion618

The thrust of the present work is to verify the predictions from [24] on the BPGD algorithm619

and the decimation process rigorously. Concerning the decimation process, the main gap in620

the deliberations of Ricci-Tersenghi and Semerjian [24] that we needed to plug is the proof of621

Proposition 11 on the actual number of null variables in the decimation process. The proof622

of Proposition 11, in turn, hinges on the formula for the nullity from Proposition 9, whereas623

Ricci-Tersenghi and Semerjian state the (as it turns out, correct) formulas for the nullity624

and the number of null variables based on purely heuristic arguments.625

Regarding the analysis of the BPGD algorithm, Ricci-Tersenghi and Semerjian state that626

they rely on the heuristic techniques from the insightful article [10] to predict the formula (1.7),627

but do not provide any further details; the article [10] principally employs heuristic arguments628

involving generating functions. By contrast, the method that we use to prove (1.7) is a bit629

more similar to that of Frieze and Suen [12] for the analysis of a variant of the unit clause630

algorithm on random k-SAT instances, for which they also obtain the asymptotic success631

probability. Yet by comparison to the argument of Frieze and Suen, we pursue a more632

combinatorially explicit approach that demonstrates that certain small sub-formulas that633

we call ‘toxic cycles’ are responsible for the failure of BPGD. Specifically, the proof of (1.7)634

combines the method of differential equations with Poissonisation. Finally, the proof of635

Theorem 1 (ii) is an easy afterthought of the analysis of the decimation process.636

Yung’s work [25] on random k-XORSAT is motivated by the ‘overlap gap paradigm’ [13],637

the basic idea behind which is to show that a peculiar clustered geometry of the set of638

solutions is an obstacle to certain types of algorithms. Specifically, Yung only considers the639
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Unit Clause Propagation algorithm and (a truncated version of) BPGD. Following the path640

beaten in [19], Yung performs moment computations to establish the overlap gap property.641

However, moment computations (also called ‘annealed computations’ in physics jargon) only642

provide one-sided bounds. Yung’s results require spurious lower bounds on the clause length643

k (k ≥ 9 for Unit Clause and k ≥ 13 for BPGD). By contrast, the present proof strategy644

pivots on the number of null variables rather than overlaps, and Proposition 11 provides645

the precise ‘quenched’ count of null variables. A further improvement over [25] is that the646

present analysis pinpoints the precise threshold up to which BPGD (as well as Unit Clause)647

succeeds for any k ≥ 3. Specifically, Yung proves that these algorithms fail for d > dcore,648

while Theorem 1 shows that failure occurs already for d > dmin with dmin < dcore. Conversely,649

Theorem 1 shows that the algorithms succeed with a non-vanishing probability for d < dmin.650

Thus, Theorem 1 identifies the correct threshold for the success of BPGD, as well as the correct651

combinatorial phenomenon that determines this threshold, namely the onset of reconstruction652

in the decimation process (Theorems 2 and 3).653

The BPGD algorithm as detailed in Section 2.2 applies to a wide variety of problems654

beyond random k-XORSAT. Of course, the single most prominent example is random k-SAT.655

Lacking the symmetries of XORSAT, random k-SAT does not allow for the simplification to656

discrete messages; in particular, the BP messages are not generally half-integral. In effect,657

BP and WP are no longer equivalent. In addition to random k-XORSAT, the article [24]658

also provides a heuristic study of BPGD on random k-SAT. But once again due to the lack659

of half-integrality, the formulas for the phase transitions no longer come as elegant finite-660

dimensional expressions. Instead, they now come as infinite-dimensional variational problems.661

Furthermore, the absence of half-integrality also entails that the present proof strategy does662

not extend to k-SAT.663

The lack of inherent symmetry in random k-SAT can partly be compensated by assuming664

that the clause length k is sufficiently large (viz. larger than some usually unspecified constant665

k0). Under this assumption the random k-SAT version of both the decimation process and the666

BPGD algorithm have been analysed rigorously [7, 9]. The results are in qualitative agreement667

with the predictions from [24]. In particular, the BPGD algorithm provably fails to find668

satisfying assignments on random k-SAT instances even below the threshold where the set of669

satisfying assignments shatters into well-separated clusters [1, 16]. Furthermore, on random670

k-SAT a more sophisticated message passing algorithm called Survey Propagation Guided671

Decimation has been suggested [20, 24]. While on random XORSAT Survey Propagation and672

Belief Propagation are equivalent, the two algorithms are substantially different on random673

k-SAT. One might therefore hope that Survey Propagation Guided Decimation outperforms674

BPGD on random k-SAT and finds satisfying assignments up to the aforementioned shattering675

transition. A negative result to the effect that Survey Propagation Guided Decimation fails676

asymptotically beyond the shattering transition point for large enough k exists [14]. Yet677

a complete analysis of Belief/Survey Propagation Guided Decimation on random k-SAT678

for any k ≥ 3 in analogy to the results obtained here for random k-XORSAT remains an679

outstanding challenge.680

Finally, returning to random k-XORSAT, a question for future work may be to investigate681

the performance of various types of algorithms such as greedy, message passing or local682

search that aim to find an assignment that violates the least possible number of clauses. Of683

course, this question is relevant even for d > dsat(k). A first step based on the heuristic684

‘dynamical cavity method’ was recently undertaken by Maier, Behrens and Zdeborová [17].685
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