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Abstract
A/B testing has become the gold standard for pol-
icy evaluation in modern technological industries.
Motivated by the widespread use of switchback
experiments in A/B testing, this paper conducts
a comprehensive comparative analysis of various
switchback designs in Markovian environments.
Unlike many existing works which derive the opti-
mal design based on specific and relatively simple
estimators, our analysis covers a range of state-of-
the-art estimators developed in the reinforcement
learning (RL) literature. It reveals that the effec-
tiveness of different switchback designs depends
crucially on (i) the size of the carryover effect
and (ii) the auto-correlations among reward er-
rors over time. Meanwhile, these findings are
estimator-agnostic, i.e., they apply to most RL
estimators. Based on these insights, we provide a
workflow to offer guidelines for practitioners on
designing switchback experiments in A/B testing.

1. Introduction
Motivation. Policy evaluation has become increasingly im-
portant in applications such as economics (Athey & Imbens,
2017), medicine (Luedtke & Van Der Laan, 2016), envi-
ronmental science (Reich et al., 2021) and epidemiology
(Hudgens & Halloran, 2008). In the technology sector, com-
panies such as Google, Amazon, Netflix, and Microsoft
extensively use A/B testing to measure and improve the ef-
fectiveness of new products or strategies against established
ones (e.g., Johari et al., 2017; Waudby-Smith et al., 2022).
For instance, ridesharing platforms like Uber, Lyft and Didi
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continuously refine their policies for order dispatching and
subsidies to optimize key metrics such as supply-demand
balance, driver earnings, response rates, and order comple-
tion rates (Qin et al., 2025). A/B testing is a common tool
used by these companies for policy evaluation and is vital
for identifying the most effective strategies to enhance the
efficiency and convenience of the transportation system (Xu
et al., 2018; Tang et al., 2019; Zhou et al., 2021).

Challenges. In numerous applications, treatments are as-
signed sequentially over time (Robins, 1986; Bojinov &
Shephard, 2019), posing unique challenges for A/B testing:

1. A primary challenge is the carryover effect – the effect
of previous treatments on future outcomes. Such effects
are ubiquitous in many applications. For instance, in
ridesharing, the implementation of a specific order dis-
patch policy can change the spatial distribution of drivers
in a city, impacting subsequent outcomes (see Li et al.,
2024, Figure 2). These carryover effects substantially
challenge A/B testing. Standard solutions like the two-
sample t-test often fail to capture these effects, frequently
resulting in insignificant p-values (Shi et al., 2023b).

2. Another challenge is the limited sample size, coupled
with generally weak treatment effects, making it ex-
tremely difficult to determine the most effective policy.
This issue is particularly prevalent in online experiments
in ridesharing, which seldomly last more than two weeks
and typically exhibit effect sizes ranging from 0.5% to
2% (Xu et al., 2018; Tang et al., 2019).

Contributions. This paper conducts a quantitative analy-
sis to understand the effects of various switchback designs
on the precision of their resulting policy value estimators.
Switchback designs alternate between a baseline and a new
policy at fixed intervals. Each policy is implemented for a
specified duration before transitioning to the other. When
the duration of each policy extends to a full day, the design
becomes an “alternating-day” (AD) design, involving daily
policy switches. These designs are increasingly utilized in
large-scale ridesharing platforms (Xiong et al., 2024; Qin
et al., 2025). Luo et al. (2024) has empirically demon-
strated that more frequent policy alternations can reduce
mean squared error (MSE) in estimating the average treat-
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ment effect (ATE). However, the mechanisms driving the
improvement in estimation accuracy lack thorough explo-
ration. Our study fills this gap by offering a comprehensive
comparative analysis of switchback experiments within a
reinforcement learning (RL, Sutton & Barto, 2018) frame-
work, where the experimental data follows a Markov deci-
sion process (MDP, Puterman, 2014) model.

Importantly, our analysis unravels the interplay between car-
ryover effects and reward auto-correlations in determining
the optimal switchback experiment. In particular, when the
carryover effect is weak, we show that:

(i) In scenarios with positively correlated reward errors,
the precision of the ATE estimator tends to be improved
with more frequent alternations between policies. This
leads us to an interesting conclusion: the off-policy ATE
estimator under switchback designs outperforms its on-
policy counterpart under the AD design in terms of esti-
mation efficiency. This conclusion remains valid even in
the presence of some negatively correlated errors. The
superior efficiency of the switchback design is attributed
to the switchback design’s inherent capability to neu-
tralize the influence of autocorrelated errors over time,
leading to a more accurate estimator. This insight has
not been systematically documented in existing litera-
ture, to our knowledge. We also remark that positively
autocorrelated errors are commonly observed in practice,
as demonstrated in Figure 1.

(ii) When reward errors are uncorrelated, all designs be-
come asymptotically equivalent in theory. Our numerical
studies indicate that AD generally exhibits superior per-
formance in finite samples.

(iii) When the majority of errors are negatively correlated,
AD becomes the most efficient.

Additionally, with a large carryover effect, AD or switch-
back designs with less frequently switches work the best.

These findings apply to a range of policy value estimators
developed in the RL literature, such as model-based estima-
tors, least squares temporal difference (LSTD) estimators,
and double reinforcement learning (DRL) estimators (see
Uehara et al., 2022, for a review). While existing works
also studied switchback designs (refer to the next section),
they primarily focused on the use of simple importance sam-
pling (IS) estimators for policy evaluation. According to
our numerical studies, IS estimators suffer from much larger
MSEs than ours (see Figure 5 for details).

2. Related Works
Our paper intersects with three related lines of research:
A/B testing, off-policy evaluation and experimental designs.

Figure 1. The estimated correlation coefficients between pairs of
fitted reward residuals, based on two datasets provided by a
ridesharing company. Most residual pairs are non-negatively corre-
lated, with a large proportion exhibiting positive correlation. The
diagonal components have been omitted to enhance clarity.

A/B testing. A/B testing has been widely adopted across
tech companies (see Larsen et al., 2024; Quin et al., 2024,
for reviews of methodologies). It relies on causal infer-
ence to estimate treatment effects, typically assuming “no
interference” or the stable unit treatment value assumption
(SUTVA, see e.g., Imbens & Rubin, 2015). However, as
noted earlier, this assumption can be violated in temporally-
dependent experiments, rendering most A/B testing methods
unsuitable for switchback designs.

Recently, there is a growing interest in developing A/B
testing and/or causal inference solutions in the presence of
interference effects. Depending on the type of interference,
these papers can be grouped into four categories:

• The first category studies spatial or network interference
effects where the policy implemented in one location can
affect outcomes at other locations (see Pollmann, 2020;
Tchetgen Tchetgen et al., 2021; Leung & Loupos, 2022;
Bhattacharya & Sen, 2024; Dai et al., 2024; Jia et al.,
2024; Shirani & Bayati, 2024; Zhang et al., 2024, for
some recent proposals).

• The second category focuses on temporal carryover effects
and is the most relevant to our proposal (see e.g., Robins,
1986; Sobel & Lindquist, 2014; Boruvka et al., 2018;
Liang & Recht, 2025; Viviano & Bradic, 2023). Notably,
there is a line of papers that proposed to employ the RL
framework that models the observed data via MDPs to
capture the carryover effects (Farias et al., 2022; 2023;
Shi et al., 2023b).

• The third category handles both interference effects over
time and space (see e.g., Jia et al., 2023; Shi et al., 2023a).

• Finally, the last category focuses on interference effects
that appear in two-sided markets or recommender systems
(Munro et al., 2021; Johari et al., 2022; Zhan et al., 2024).

However, the effectiveness of different experimental designs
are less explored in these papers, which is our primary focus.
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Off-policy evaluation (OPE). OPE methods generally
fall into two categories: model-based and model-free ap-
proaches. Model-based methods estimate an MDP model
from offline data and compute policy value based on the es-
timated model (Gottesman et al., 2019; Yin & Wang, 2020;
Wang et al., 2024; Yu et al., 2024). On the other hand,
model-free methods can be further classified into three sub-
types: (i) Value-based approaches, such as LSTD, focus on
estimating the policy value via an estimated Q-function or
value function (Bradtke & Barto, 1996; Sutton et al., 2008;
Luckett et al., 2020; Hao et al., 2021; Liao et al., 2021;
Chen & Qi, 2022; Shi et al., 2022; Li et al., 2023a; Liu et al.,
2023; Cao & Zhou, 2024; Bian et al., 2025); (ii) IS-type
methods adjust rewards by the density ratio between target
and behavior policies (Thomas et al., 2015; Liu et al., 2018;
Nachum et al., 2019; Xie et al., 2019; Dai et al., 2020; Wang
et al., 2023; Hu & Wager, 2023; Thams et al., 2023; Zhou
et al., 2025); (iii) Doubly-robust methods such as DRL com-
bine value-based and IS methods for more robust policy
evaluation (Zhang et al., 2013; Jiang & Li, 2016; Thomas
& Brunskill, 2016; Bibaut et al., 2019; Uehara et al., 2020;
Kallus & Uehara, 2020; 2022; Liao et al., 2022; Xu et al.,
2023; Shi et al., 2024).

Despite the popularity of developing advanced OPE estima-
tors, the strategies for generating offline data to maximize
their estimation efficiency have not been thoroughly inves-
tigated. Existing works either focus on a contextual bandit
setting without carryover effects (Wan et al., 2022) or do not
study switchback designs (Hanna et al., 2017; Mukherjee
et al., 2022; Zhong et al., 2022; Li et al., 2023b). Our paper
fills this gap by investigating how switchback designs affect
the efficiency of various OPE estimators, including model-
based, value-based, and doubly-robust estimators, providing
a comprehensive analysis that enriches the OPE literature.

Experimental design. There is a rich literature on experi-
mental designs tailored for clinical trials, with a range of
proposed optimal designs (Begg & Iglewicz, 1980; Wong &
Zhu, 2008; Jones & Goos, 2009; Atkinson & Pedrosa, 2017;
Rosenblum et al., 2020) and sequential adaptive designs (Hu
et al., 2009; Baldi Antognini & Zagoraiou, 2011; Atkinson
& Biswas, 2013; Hu et al., 2015; Kato et al., 2024) to guide
treatment allocation strategies. However, these methods
are developed under settings where data are identically and
independently distributed and are thus not applicable to our
settings in the presence of carryover effects.

Recent developments have expanded the scope to accom-
modate spatial or network spillover effects (Ugander et al.,
2013; Li et al., 2019; Kong et al., 2021; Leung, 2022; Ni
et al., 2023; Viviano et al., 2023; Yang et al., 2024; Zhang &
Wang, 2024; Zhu et al., 2025) and to address the complex in-
teractions inherent in two-sided marketplaces (Bajari et al.,
2021; Li et al., 2022; Bajari et al., 2023). Despite these

advancements, a gap remains concerning designs that ade-
quately account for temporal carryover effects in sequential
decision making.

Glynn et al. (2020), Hu & Wager (2022), Bojinov et al.
(2023), Basse et al. (2023), Sun et al. (2024) and Xiong
et al. (2024) studied the design of temporally-dependent
experiments. In particular, Xiong et al. (2024) made an im-
portant step forward for understanding the trade-offs among
switchback designs by deriving a rigorous bias-variance
decomposition of the ATE estimator and summarizing four
key factors that determine the estimation error. However,
their analysis is confined to simple IS estimators derived
within a bandit framework, which can be severely biased
with large carryover effects. Our empirical studies in Ap-
pendix C also confirm that IS-type estimators are prone to
large MSEs. Moreover, Xiong et al. (2024)’s analysis did
not adopt our MDP framework, which is commonly uti-
lized for policy learning and evaluation in the motivating
ridesharing application (Xu et al., 2018; Shi et al., 2023b).

Finally, recent works in the machine learning literature have
developed deep learning or RL algorithms to numerically
compute optimal designs (Foster et al., 2021; Blau et al.,
2022; Lim et al., 2022).

3. Preliminaries
In this section, we describe the data, detail our model, intro-
duce switchback designs and formulate our objective.

Data. Suppose a technology company conducts an on-
line experiment over n days to evaluate the effectiveness
of a new policy compared to a baseline policy. Each day
is divided into T non-overlapping intervals. For each day
i = 1, . . . , n and for each time interval t, let Si,t ∈ Rd

denote certain market features (e.g., the number of available
drivers and pending ride requests in ridesharing) observed
at the beginning of the interval. The policy in effect dur-
ing each interval t is represented by Ai,t, which, in the
context of A/B testing, is a binary variable indicating one
of two policies. Finally, Ri,t ∈ R denotes the immediate
outcome or reward observed at the end of each interval t
(e.g., the total revenue at time t). We assume all trajectories
{(Si,t, Ai,t, Ri,t) : 1 ≤ t ≤ T}ni=1 are i.i.d. instances of
a stochastic process {(St, At, Rt) : 1 ≤ t ≤ T}. That
is, the data are independent across different days. This as-
sumption is likely to hold in applications such as marketing
auctions where each company’s budget resets at the end
of the day, eliminating any carryover effects across days
(Basse et al., 2016; Liu et al., 2020), and in ridesharing
where order volume typically wanes between 1 am and 5
am (Luo et al., 2024, Figure 1), making it plausible that
each day’s observations can be treated as independent re-
alizations. Additionally, in online advertising, impression
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Figure 2. Visualization of our MDP with autocorrelated reward
errors. The solid lines represent the causal relationships. The dash
lines imply that the reward errors are potentially correlated.

allocation often follows a daily schedule, reinforcing the
assumption of independent data across days.

Model. We model the experimental data by a finite MDP
with autocorrelated errors, based on three assumptions:

(i) First, we assume that the state satisfies a Markov assump-
tion. Specifically, we require

P(St+1 = s′|At, St, {Sj , Aj , Rj}j<t) = pt(s
′|At, St),

for any s′ and t. This assumption requires the future state
to be conditionally independent of the past data history
given the current state-action pair, and is consistent with
a wide body of work in RL (Sutton & Barto, 2018).

(ii) Second, we assume the reward satisfies a conditional
mean independence assumption: there exists a sequence
of reward functions {rt}t such that for any a and s,

E(Rt|At = a, St = s, {Sj , Aj}j<t) = rt(a, s).

Such an assumption is commonly imposed in the litera-
ture (Chernozhukov et al., 2022; Shi et al., 2022; Wang
et al., 2023).

(iii) Third, the residual errors et = Rt − rt(At, St) can ex-
hibit temporal correlation. If the residuals are uncorre-
lated, the resulting data-generating process simplifies to
a standard MDP.

A graphical visualization of our model is given in Figure 2.
Notably, while our methods rely on the MDP assumption,
we also consider cases where this assumption may not hold;
refer to Appendix B for details.

Finally, we remark that both the reward and transition func-
tions are explicitly indexed by t. This is essential to capture
the time-dependent dynamics that are often inherent in prac-
tical applications (Luo et al., 2024).

Designs. We introduce the switchback design frequently
utilized in practice. Under this design, the company alter-
nates between the two policies, each for a fixed duration per
day. Let m ≥ 1 represent the time span for each switch. A
smaller value of m corresponds to more frequent switch-
ing between policies. To illustrate this design, consider the
following examples:

• For m = 1, the policies alternate at every time step,
formally expressed as At = 1−At+1 for any t ≥ 1;

• For a general 2 ≤ m ≤ T/2, the policy remains constant
for m time steps and then switches, which can be math-
ematically represented as Amt−m+1 = Amt−m+2 =
. . . = Amt = 1−Amt+1 = . . . = 1−Amt+m;

• For m = T , the same policy is applied throughout each
day, i.e., A1 = A2 = . . . = AT .

Furthermore, the initial policy alternates across days, which
can be mathematically described as Ai,1 = 1−Ai+1,1 for
any i, and the initial policy on the first dayA1,1 is uniformly
generated. Consequently, when m = T , the design essen-
tially becomes an alternating-day scheme where the two
policies are switched on a daily basis.

Moreover, to improve clarity and facilitate a more intuitive
comparison between our SB design and the standard A/B
testing, we present a detailed discussion in Appendix B.

Objective. We aim to estimate the global average treatment
effect, defined as the difference between the average cumula-
tive rewards when implementing the new policy throughout
each day and that when using the baseline policy,

ATE =
1

T

T∑
t=1

E1(Rt)−
1

T

T∑
t=1

E0(Rt),

where E1 and E0 represent the expectation when the new
policy (coded as 1) and the baseline policy (coded as 0) are
applied at all times, respectively. This metric is particularly
relevant for A/B testing in RL (Tang et al., 2022).

In standard terms, an AD design operates under an on-policy
framework where within each day, the behavior policy gen-
erating the experimental data aligns with the target policy
under evaluation (which assigns a constant action, either 0
or 1, at each time). Conversely, when m ̸= T , the switch-
back (SB) design operates under an off-policy framework
where the behavior policy differs from the target policy.

In standard MDPs, off-policy estimators are considered less
efficient than on-policy ones due to the distributional shift
between the behavior and target policies (Li et al., 2023b).
However, in the next section, we will demonstrate a trade-off
between AD and SB. This distributional shift issue becomes
predominant when the carryover effect is large, thus favour-
ing AD in such settings. Conversely, when the carryover
effect is small, the effectiveness of different designs depends
crucially on the autocorrelations among reward errors. In
particular, when the majority of reward errors are positively
autocorrelated, SB can actually outperform an AD. These
findings provide valuable insights for technology companies
to optimize their A/B testing strategies.
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4. Optimality of Switchback Designs
This section investigates the effectiveness of switchback
designs when applied to various ATE estimators. We begin
with a toy example to offer insight into why off-policy esti-
mators under switchback designs can be more effective than
their on-policy counterparts under alternating-day designs.

Toy example. To facilitate understanding, we consider the
following simple model without carryover effects over time:
Rt = β1At + β0(1 − At) + et. By definition, the oracle
ATE equals β1 − β0. A natural plug-in estimator for the
ATE is given by:

∑
i,t Ri,tAi,t∑

i,t Ai,t
−

∑
i,t Ri,t(1−Ai,t)∑

i,t(1−Ai,t)
. Upon

calculation, it can be shown that its MSE under AD and a
particular SB design with m = 1 is proportional to

MSE(AD) ∝ Var(e1 + e2 + e3 + · · ·+ eT ),

MSE(SB(1)) ∝ Var(e1 − e2 + · · · − (−1)T eT ),

respectively. Based on these formulas, the ATE estima-
tor’s MSE depends solely on the correlation structure of the
residuals {et}t. In the AD design, the MSE is proportional
to the variance of the sum of all residuals, which inflates
when errors are positively correlated. In contrast, the SB
design’s MSE is determined by the variance of a weighted
sum of residuals with alternating signs, effectively canceling
positively correlated errors and improving ATE estimation
accuracy. We extend this analysis to incorporate carryover
effects and examine various policy value estimators, includ-
ing model-based estimators, LSTD, and DRL.

4.1. Methods

This section is organized as follows. We first study linear-
model-based estimators. We next analyze the LSTD estima-
tor, a popular value-based estimator. Finally, we consider the
DRL estimator, an advanced model-free estimator known
for its double robustness.

Model-based method. In model-based approach, we assume
a system dynamics model and utilize this model to construct
the ATE estimator. In particular, we apply linear models to
both the reward function and the expected value of the next
state, resulting in the following set of linearity assumptions:{

rt(At, St) = αt + S⊤
t βt + γtAt,

E(St+1|At, St) = ϕt +ΦtSt + ΓtAt,
(1)

where αt and γt are real-valued, βt, ϕt, and Γt are vectors
in Rd, and Φt ∈ Rd×d.

We make two remarks. First, the model presented in (1)
resembles the linear dynamic system model commonly
found in linear-quadratic-Gaussian control problems (Krish-
namurthy, 2016). It is also consistent with the linear MDP
assumption – a condition frequently employed in the RL
literature (Jin et al., 2020; Li et al., 2021; Xie et al., 2023).

Second, under Model (1), as outlined in Luo et al. (2024),
the ATE can be expressed as

1

T

T∑
t=1

γt +
1

T

T∑
t=2

β⊤
t

[ t−1∑
k=1

(Φt−1Φt−2 . . .Φk+1)Γk

]
, (2)

where the product Φt−1 . . .Φk+1 is treated as an identity
matrix if t − 1 < k + 1. The first term on the right-hand
side (RHS) of (2) represents the direct effect of actions on
immediate rewards, while the latter term accounts for the
delayed or carryover effects of previous actions.

Equation (2) motivates us to employ the ordinary least
square (OLS) regression to compute the estimators α̂t, β̂t,
γ̂t, ϕ̂t, Γ̂t and Φ̂t and plug them into (2) to compute the
final ATE estimator. Refer to Appendix A for details.

LSTD. LSTD is a popular model-free, value-based OPE es-
timator. To illustrate the LSTD estimator, we first introduce
the notion of value function. For any time t ≥ 1, action
a ∈ {0, 1}, and state s, the value function V a

t (s) represents
the expected cumulative return from time t in state s, as-
suming the agent follows a constant action a and can be
mathematically expressed as: V a

t (s) =
∑T

j=t Ea(Rj |St =
s). The ATE can then be equivalently represented by
T−1E[V 1

1 (S1) − V 0
1 (S1)]. LSTD computes an estimated

value function V̂ a,m
t and approximates the expectation us-

ing empirical averages under the m−switchback design,
leading to the following ATE estimator:

1

nT

n∑
i=1

[V̂ 1,m
1 (Si,1)− V̂ 0,m

1 (Si,1)]. (3)

We next outline the approach for estimating the value func-
tion using LSTD, which employs linear sieves (Grenan-
der, 1981) to approximate the value function V a

t (s) by
φ⊤
t (s)θ

∗
t,a, with a given basis function φt and the associated

regression coefficients θ∗t,a. A crucial aspect of this method-
ology is that these value functions follow the Bellman equa-
tion: E[Rt + V a

t+1(St+1) − V a
t (St)|At = a, St = s] = 0

for every state-action pair (s, a). This leads to the for-
mulation of the following estimating equation under the
m−switchback design:

1

n

n∑
i=1

φt(Si,t)I(Ai,t = a)
[
Ri,t

+ φ⊤
t+1(Si,t+1)θ̂t+1,a,m − φ⊤

t (Si,t)θ̂t,a,m

]
= 0.

(4)

The coefficients {θ̂t,a,m}t,a are computed in a backward
manner, as detailed in Algorithm 1. With these estimators
in hand, we construct the value function estimator and plug
them into (3) to derive the final ATE estimator.

DRL. The DRL estimator extends the double machine learn-
ing estimator, originally developed for contextual bandit
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Algorithm 1 Estimating ATE via LSTD.
Input: {(Sit, Rit, Ait) : 1 ≤ i ≤ n, 1 ≤ t ≤ T}.
Set θ̂T+1,a,m = 0, for a ∈ {0, 1}.
for t = T to 1 do

Solve (4) to obtain θ̂t,a,m.
end for
Output: The ATE estimator (3) with the estimator
θ̂1,a,m.

settings (Chernozhukov et al., 2018) to sequential decision
making. This approach combines the value-based estimator
with the marginal IS estimator (Liu et al., 2018) for more
robust and efficient policy evaluation. A key feature of the
DRL estimator is its double robustness: it remains consis-
tent as long as either the estimated value function or the
marginal IS ratio is consistent. Additionally, the DRL esti-
mator is semiparametrically efficient, achieving the lowest
MSE among the class of regular and asymptotically linear
estimators (Bickel et al., 1993; Tsiatis, 2007).

To present the DRL estimator, we define an estimating func-
tion ψ({St, At, Rt}t; {V a

t }t,a, {ω
a,m
t }t,a) as follows:

V 1
1 (S1)− V 0

1 (S1) +

T∑
t=1

1∑
a=0

(−1)a+1ωa,m
t (At, St)

×
[
Rt + V a

t+1(St+1)− V a
t (St)

]
.

Here, the first part corresponds to the value-based estima-
tor. The second part serves as an augmentation term, which
is mean-zero according to the Bellman equation when the
value function is correctly specified. This term enhances the
estimator’s robustness against potential model misspecifi-
cation of the value function. In particular, ωt corresponds
to the marginalized IS ratio, which is crucial for efficient
OPE in MDPs (Liu et al., 2018). For any action a ∈ {0, 1}
and time 1 ≤ t ≤ T , let pat denote the probability mass
function of (St, At) under consistent application of policy
a. Additionally, let pmt denote the probability mass function
of (St, At) under an AD or SB design. The marginalized
IS ratio ωa,m

t (s, a′) is defined as pat (s, a
′)/pmt (s, a′). It can

be shown that ψ is unbiased to the ATE if either {V a
t }t,a or

{ωa,m
t }t,a is correctly specified.

Notice that the value function and marginalized IS ratio
can be estimated using any advanced RL algorithms. We
plug their estimators into the estimating function ψ, and uti-
lize sample-splitting and cross-fitting (Chernozhukov et al.,
2018) to construct the final DRL estimator. The detailed
estimating procedure is summarized in Algorithm 2.

4.2. Theoretical analysis

We begin by introducing two key notations essential for
our analysis: (i) First, let σe(t1, t2) denote the covari-

Algorithm 2 Estimating ATE via DRL.
Input: {(Sit, Rit, Ait) : 1 ≤ i ≤ n, 1 ≤ t ≤ T}.
Step 1: Randomly divide the data trajectories into K
equally-sized folds {Dk}Kk=1.
Step 2: For k = 1, . . . ,K, construct estimators
{ω̂a,m

t,−k}t,a and {V̂ a,m
t,−k}t,a using all trajectories except

those in Dk.
Output: The ATE estimator

1

nT

K∑
k=1

∑
i∈Dk

ψ({Si,t, Ai,t, Ri,t}t; {V̂ a,m
t,−k}t,a, {ω̂

a,m
t,−k}t,a).

ance between reward residuals et1 and et2 ; (ii) Second,
we define δ as the measure of the impact of the new
policy on the state transition functions {pt}t, such that
δ = maxs,t

∑
s′ |pt(s′|1, s)− pt(s

′|0, s)|.

Notice that δ inherently quantifies the size of the carryover
effect since under the MDP model, the carryover effect is
modeled via state transitions; refer to Figure 2. In particular,
when δ = 0, past actions have the same effects on state
transitions, eliminating any carryover effect.

We next impose a common assumption required by all the
three estimators.

Assumption 1 (Bounded rewards). The rewards {Rt}t
are uniformly bounded, i.e., maxt |Rt| ≤ Rmax for some
Rmax <∞ almost surely.

Assumption 1 is frequently employed in the RL literature
(see e.g., Chen & Jiang, 2019; Fan et al., 2020).

In Appendix D.1, we introduce other estimator-specific as-
sumptions. Notably, each type of estimators only requires
a subset of these assumptions. These assumptions are mild
and can be easily satisfied, as discussed in Appendix D.1.

Theorem 1. Under the given conditions, the difference in
the MSE of the ATE estimator between the alternating-day
design and an m-switchback design (where each switch
duration equals m) is lower bounded by

16

nT 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1,l2=1

σe(l1 + k1m, l2 + k2m)

−cδR
2
max

n
− o

( 1

n

)
,

(5)

for some constant c > 0 and some reminder term of the
order o(1/n).

Based on Theorem 1, it is immediate to see that the lower
bound for the difference in the MSE depends on three terms:
(i) an autocorrelation term, quantifying the auto-correlations
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among reward errors; (ii) a carryover effect term which
is proportional to δ and quantifies the magnitude of the
carryover effect; (iii) a reminder term.

Here, the reminder term is a high-order, estimator-dependent
term. Specifically, for the model-based estimator, it is of
the order O(n−3/2) up to some logarithmic factors, which
depends on n through n−3/2 as opposed to the first two
terms, which depend on n−1. Consequently, the reminder
term decays to zero at a much faster rate. For LSTD and
DRL, the reminder term additionally relies on the estimation
errors of value function and/or MIS ratio. Its specific order
for these estimators is detailed in Appendix D.2.

As such, the first two terms are the primary drivers. They in-
dicate that the effectiveness of switchback designs depends
on two crucial factors: the autocorrelation structure and
the size of the carryover effect. With a large carryover
effect, different designs will induce substantially different
state distributions, and the off-policy estimator under the
switchback design will suffer from substantial distributional
shifts when estimating the ATE. Mathematically, this effect
is manifested by the second term in (5), making AD the
most efficient design. This observation has been empirically
verified in our numerical studies.

Conversely, with a weak carryover effect where δ is suffi-
ciently small, the first term becomes the leading term, and
the effectiveness of different designs is primarily determined
by the autocorrelation structure of reward errors. By the
definition of σe, it is evident that:

• When the majority of reward errors are positively corre-
lated (as demonstrated in our real-data applications de-
picted in Figure 1), the first term in (5) is strictly positive.
This implies that SB is more efficient than AD. Addi-
tionally, when the covariance function is stationary and
satisfies σe(t1, t2) = σ∗

e(|t1 − t2|) for some σ∗
e(•) being

a monotonically decreasing function, the second line be-
comes a monotonically decreasing function of m; see e.g.,
Corollary 1-3 below. This formally verifies that increasing
the frequency of policy switches (reducing the value of
m) can enhance the efficiency of the switchback design.

• With uncorrelated errors, the first term in (5) becomes
zero, and all designs become asymptotically equivalent.

• When the majority of errors are negatively correlated, AD
becomes the most efficient.

To the best of our knowledge, the aforementioned findings
have not been systematically established in the RL literature.
While existing works have studied switchback designs, they
often focus on simple and specific policy value estimators.

Next, we investigate three commonly used covariance struc-
tures – autoregressive, moving average and exchangeable to

further elaborate Theorem 1.

Corollary 1 (Autoregressive). Let σe(t1, t2) = σ2ρ|t1−t2|

for some −1 < ρ < 1 and σ2 > 0. For sufficiently large T ,
the first term in (5) becomes asymptotically equivalently to

16σ2ρ(1− ρm)

mT (1− ρ)2(1 + ρm)
,

which is a strictly decreasing function of m when ρ > 0

Corollary 2 (Moving average). Let et = K− 1
2

∑K
k=1 εt+k

for a white noise process {εt}t with Var(εt) = σ2 > 0. For
any m ≥ K that divides T , the first term in (5) becomes

8σ2(T/m− 1)(K2 − 1)

3T 2
,

which is a strictly decreasing function of m.

Corollary 3 (Exchangeable). Assume σe(t1, t2) =
σ2[ρI(t1 ̸= t2) + I(t1 = t2)] for some −1 < ρ < 1 and
σ2 > 0. Then the first term in (5) equals{

4σ2ρ, if T/m is even,
4σ2ρ(1−m2/T 2), if T/m is odd,

which is a constant function of m when T/m is even, and
varies strictly monotonically (increasing or decreasing) as
a function of m when T/m is odd, depending on whether
ρ > 0 or ρ < 0.

We remark that while these structures may appear simple,
they are widely adopted in practice (Williams, 1952; Beren-
blut & Webb, 1974; Zeger, 1988).

5. Numerical Experiments
In this section, we conduct numerical experiments to verify
our theory. Our code is available at https://github.
com/QianglinSIMON/SwitchMDP.

5.1. Synthetic Environments

DGP. We design two data generating processes (DGPs) with
a common time horizon T = 48 and state dimension d = 3:
one with a linear DGP and the other with a nonlinear DGP
(refer to Appendix C for the detailed setup), to evaluate the
performance of various switchback designs and different
ATE estimators. The reward errors follow an autoregres-
sive covariance function so that Cov(et1 , et2) = 1.5ρ|t1−t2|

whenever t1 ̸= t2, with the parameter ρ varied among the
set {0.3, 0.5, 0.7, 0.9}. We also vary the size of carryover
effects, characterized by a parameter δ. The number of days
n used in our simulations is selected from a range of 16 to
52 in increments of four.

Results. We implement various m-switchback designs with
m ∈ {1, 3, 6, 12, 24, 48} in these environments and report
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Figure 3. Simulation results with different combinations of
(n,m, ρ) alongside different estimation procedures. δ is fixed
to zero, resulting in a weak yet nonzero carryover effect.

Figure 4. RMSEs of OLS estimator with different combinations
of (n,m, ρ, δ). δ denotes the constant shift in generating Γt, i.e.

{Γ(j)
t }t,j

i.i.d.∼ N(δ, 0.32). A larger δ in absolute value leads to a
more pronounced carryover effect.

the root MSEs of the resulting OLS, LSTD, and DRL estima-
tors (refer to Appendix A for their implementation details)
aggregated over 200 simulations in Figures 3 and 4, consid-
ering different combinations of n, ρ, δ and the estimating
procedure. Notably, when m = 48, the resulting design
coincides with AD. Figure 3 report the results with weak
carryover effects. It can be seen from Figure 3 that the root
MSE (RMSE) decays with m in most cases. Additionally,
the difference in RMSE between the SB design and the AD
design grows with ρ, which corresponds to the autocorre-
lation coefficient of {et}t. This aligns with our analysis,
suggesting that a higher degree of positive correlation in
the residuals favors SB over AD. Meanwhile, it can be seen
from Figure 4 that as the carryover effects increase (i.e.,
as δ becomes larger), the AD becomes progressively more
efficient. These results empirically validate our theories.

Sensitivity of covariance structure. We further examine
four additional covariance structures: (i) moving average,
(ii) exchangeable (with a positive correlation), (iii) uncor-
related and (iv) autoregressive (with a negative autocorrela-

Figure 5. Boxplots depicting log root MSEs of all ATE estimators
for various combinations of m under the linear DGP (left) and
nonlinear DGP (right).

tion). We focus on OLS estimators and report their MSEs
under different designs in Figures S1 and S2 of Appendix
C. The efficiency of switchback designs varies with m, de-
pending on the presence of negative or positive correlation.
In cases of uncorrelated errors, most designs attain similar
performance and AD works the best in small samples.

Comparison. We further conduct simulations to compare
the RL-based estimator with three other baseline estimators:
(i) the sequential IS estimator (Bojinov et al., 2023) which
addresses carryover effects via multi-step importance sam-
pling; (ii) the difference-in-mean estimator of Hu & Wager
(2022) which uses burn-in to mitigate carryover effects dur-
ing policy transitions; (iii) the simple IS estimator of Xiong
et al. (2024) which does not account for carryover effects.
Results are reported in Figure 5, where RL-based estima-
tors consistently outperform (i) and (ii), and both DRL and
LSTD significantly outperform (iii) in most settings.

5.2. Real-data-based Simulation

We use two real datasets from a leading ridesharing com-
pany, each with 40 days of data (N = 40). The state variable
includes the number of order requests and the driver’s total
online time in each interval, measuring the demand and
supply dynamics that impact the platform’s outcomes (Shi
et al., 2023b). The reward is the total income earned by
the drivers within each time interval, whose residual shows
a noticeable positive correlation, as depicted in Figure 1.
Both datasets are collected from A/A experiments, in which
a single order dispatch policy was consistently applied over
time (At = 0 for all t). To utilize these datasets for evalu-
ating the performance of different designs, we create two
simulation environments using the wild bootstrap (Wu et al.,
1986), as detailed in Appendix C. To generate data under
different policies, we introduce an effect size parameter λ
and consider four choices, corresponding to 0 (i.e., no treat-
ment effect at all), 2%, 5%, 7.5%, 10%, 12% and 15%. By
adjusting λ, the data are generated so that both the direct
effect and carryover effect of the new policy (see Equation
(2)) are increase by λ

2 , leading to an overall ATE increase
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Figure 6. Results from real-data-based simulation.

of λ.

Figures 6 summarize the results, which strongly support our
theoretical findings. Specifically, with positive correlated
reward residuals, the benefits of employing switchback de-
signs with more frequent switches are evident when there
is no or only a minor effect enhancement (i.e., 0 or 2% in-
crease). However, as the size of the carryover increases to
15%, the AD becomes more efficient.

To better understand our estimators, we conducted addi-
tional simulations based on the City II dataset, employed a
non-parametric bootstrap method to construct confidence
intervals (CIs), and reported both the coverage probability
(CP) and the average CI width in the Figure S3 of Appendix.
Most CPs exceed 92%, which is close to the nominal level.
For small values of λ, more frequent policy switching re-
duces the average CI width. As λ increases to 10%, AD
yields the narrowest CI on average. These results support
our claim that a lower MSE corresponds to shorter CIs.

6. Discussion
This paper studies switchback designs under an RL frame-
work. To offer practical guidance, we outline a workflow in
this section (see also Figure 7):

(i) The first step is to discretize the data to define appropriate
time intervals, ensuring that both the state and reward
follow the Markov assumption (see Section 3). This
assumption can be tested via existing state-of-the-art
methods (see e.g., Chen & Hong, 2012; Shi et al., 2020;
Zhou et al., 2023). When the Markov assumption is
violated, it is necessary to increase the length of time
intervals accordingly to satisfy this condition.

Figure 7. The proposed workflow guideline.

(ii) The second step is to assess the magnitude of the car-
ryover effect. Should the effect be strong, AD is rec-
ommended. In our numerical studies, we observe that
with a large carryover effect, the ATE estimator under
SB suffers from much a larger bias than that under AD.

(iii) Finally, if the carryover effect is weak, we proceed to
analyze error correlations. When errors exhibit positive
correlations, we recommend to employ the switchback
design with m = 1. In cases where errors are uncorre-
lated or negatively correlated, AD would be preferred.

We also remark that in our motivating ridesharing example,
there are three different types of experiments: (i) tempo-
ral randomization (over time), (ii) spatial randomization
(across geographic areas), and (iii) user-level randomiza-
tion (across drivers/passengers). Our primary focus is (i),
which applies to the evaluation of order dispatch policies
that must be implemented city-wide, making (ii) and (iii)
unsuitable. Spatial randomization (ii) is typically used for
testing localized subsidy policies in different regions, while
user-level randomization (iii) applies when assigning per-
sonalized subsidies to individual users.

Under temporal randomization, the population spans the
entire time horizon, with each interval as a unit. If there
are no carryover effects and residuals are i.i.d., uniform
randomization over time is equivalent to both AD and SB,
as temporal order doesn’t matter. Likewise, daily-level
randomization yields standard A/B tests that align with AD
designs when carryover effects are ignored.

Confidence intervals (CIs) and p-values are key in A/B
testing, as it is a statistical inference problem. Our experi-
mental designs aim to minimize the MSE of ATE estimators.
Theorem 1 shows that the three RL-based estimators are
asymptotically normal, with MSE largely determined by
their asymptotic variances. Thus, minimizing variance not
only reduces CI length but also improves test power. We
confirm this through real-data simulations in Figure S3.
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A. Implementation Details
In this section, we first detail the parametric estimation of the model-based method using the OLS approach, as described in
Section 4.1. Next, we introduce a modified LSTD estimator which is designed to improve the efficiency of the original
LSTD estimator and is implemented in our numerical study. Finally, we detail our implementation of the DRL estimator,
focusing on the estimation of the IS ratio and the value function.

OLS Estimation. Given the observational data {(Si,t, Ai,t, Ri,t) : 1 ≤ t ≤ T}ni=1, for each 1 ≤ t ≤ T , we deploy the
OLS regression to the dataset {(Si,t, Ai,t, Ri,t) : 1 ≤ i ≤ n} with Ri,t as the response and (1, Si,t, Ai,t) as the predictor
to compute the estimators α̂t, β̂t and γ̂t. Similarly, we apply OLS to {(Si,t, Ai,t, S

(j)
i,t+1) : 1 ≤ i ≤ n} with the j−th

component of Si,t+1, S(j)
i,t+1 as the responses and (1, Si,t, Ai,t) as the predictor to estimate the jth element of ϕt, the jth

element of Γt, as well as the jth row of Φt. Concatenating all the estimators across j produces ϕ̂t, Γ̂t and Φ̂t. With these
estimators in hand, we plug them into (2) to compute the final estimators ATEAD and ATE(m)

SB .

Modified LSTD. In the original LSTD algorithm described in Section 4.1, the value function at a specific time t is estimated
using only the data subset corresponding to that particular time. This approach might be inefficient when the system
dynamics remain relatively consistent over time. To enhance estimation efficiency, we incorporate the time index into the
state, resulting in an augmented state, denoted as S̃t for each time t. We then approximate the value function using a linear
combination of sieves. It is important to note that the basis functions φ contains not only the bases for the original state but
also those for the time component, addressing potential nonstationarity.

To lay down the foundation, for any t, a and s̃, we first define a value function V a
t:t(s̃) = Ea(Rt|S̃t = s̃, At = a). Next,

we recursively define V a
t−j:t(s̃) = Ea[Rt−j + V a

t−j+1:t(S̃t−j+1)|S̃t = s̃, At = a] for j = 1, 2, . . . , t− 1. Essentially, for
any t1 ≤ t2, V a

t1:t2 represents the expected cumulative reward from time t1 to t2 starting from a given state at time t1.
Additionally, the final ATE estimator can be represented by E[V 1

1:T (S̃1)− V 0
1:T (S̃1)].

It remains to estimate these doubly indexed value functions. A key observation is that, with the time index included in the
state to account for nonstationarity, V a

t1:t2 shall equal V a
t3:t4 provided the time gaps t2 − t1 and t4 − t3 are equal. This allows

us to aggregate all data over time to simultaneously estimate all value functions.

Under the m−switchback design, our first step is to estimate {V a
t:t}t by solving the following estimating equation:∑

i,t

[Ri,t − φ⊤(S̃i,t)θ̂0,a,m]φ(S̃i,t)I(Ai,t = a) = 0. (6)

From this, we compute V̂ a,m
t:t (s̃) as φ⊤(s̃)θ̂0,a,m. Next, we sequentially compute {V a

t−1:t}t,{V a
t−2:t}t, and so forth.

Specifically, for each j = 1, . . . , T − 1, we recursively solve the following estimating equation,∑
i,t

[Ri,t−j + φ⊤(S̃i,t−j+1)θ̂j−1,a,m − φ⊤(S̃i,t−j)θ̂j,a,m]φ(S̃i,t)I(Ai,t = a) = 0. (7)

This leads to the derivation of θ̂j,a,m, based on which we set V̂ a,m
t−j:t(s̃) to φ⊤(s̃)θ̂j,a,m. Finally, we set the ATE estimator to

1

n

n∑
i=1

φ⊤(S̃i,1)(θ̂T−1,1,m − θ̂T−1,0,m). (8)

We provide a pseudocode in Algorithm 3 to summarize the aforementioned procedure.

Algorithm 3 Estimating ATE via the modified LSTD.
Input: {(Sit, Rit, Ait) : 1 ≤ i ≤ n, 1 ≤ t ≤ T}.
Output: The ATE estimator. Solve (6) to obtain θ̂T,a,m.
for t = 1 to T − 1 do

Solve (7) to obtain θ̂T−t,a,m.
end for
Return: The ATE estimator constructed according to (8).
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Algorithm 4 Model-based estimation of the IS ratio.
Input: {(Sit, Rit, Ait) : 1 ≤ i ≤ n, 1 ≤ t ≤ T}.
Output: The marginal IS ratio estimator.

Initialization: Calculate the least square estimators
{
ϕ̂t

}T−1

t=1
,
{
Φ̂t

}T−1

t=1
and

{
Γ̂t

}T−1

t=1
in (1). Impose models for S1

and {Ek}k, and estimate the associated model parameters.
for t = 1 to T − 1 do

1. Derive the probability density/mass function of St using the aforementioned estimators and (9).
2. Estimate the numerator pat by replacing {Ak}k in Equation (9) with the target policy a.
3. Estimating the denominator pma,t replacing {Ak}k in Equation (9) with the treatment sequence under the m-
switchback design given that At = a.
4. Calculate the ratio.

end for

Estimation of the IS ratios. We have devised a model-based approach to estimate the marginal IS ratio based on the linear
model assumption presented in Equation (1). It is worth noting that both the numerator and the denominator of the ratio
correspond to the marginal probability density/mass function of the state at a given time, given a sequence of past treatments
it has received. As a result, we can focus on estimating these marginal density/mass functions to construct the ratio estimator.

Within the framework of the linear model assumption, we can express the state at time t, denoted as St, as follows:

St =

t−1∑
k=1

(
Πt−1

l=k+1Φl

)
ϕk +

(
Πt−1

l=1Φl

)
S1 +

t−1∑
k=1

(
Πt−1

l=k+1Φl

)
ΓkAk +

t−1∑
k=1

(
Πt−1

l=k+1Φl

)
Ek. (9)

Where Πt−1
l=k+1Φl := Φk+1 · · ·Φt−1. Consequently, given a sequence of treatments, we can replace {Ak}k with this

treatment sequence to derive the distribution function of St. To estimate this distribution function, we follow these steps:

1. Estimate the model parameters in Equation (1).

2. Impose models for the initial state and the residuals {Ek}k. In our implementation, we utilize normal distributions, and
estimate the mean and covariance matrix parameters within these distributions using the available data. According to
(9), this ensures that each St follows a normal distribution as well.

3. Plug the estimated parameters obtained in the first two steps into (9) to construct the mean and covariance matrix
estimators for St.

4. Return the normal distribution function with the estimated mean and covariance matrix estimators obtained in Step 3.

A pseudocode summarizing our procedure is presented in Algorithm 4.

Estimation of the value function. We devise a model-based approach to estimate the value function. Given the linear
models outlined in (1), we can readily express the value function as follows:

V a
t (s) =

T∑
j=t

Ea(Rj |St = s) =

T∑
j=t

[αj + γja+ β⊤
j Ea(Sj |St = s)]

=

T∑
j=t

{
αj + γja+

T∑
j=t

β⊤
j

[ j−1∑
k=t

(Πj−1
l=k+1Φl)ϕk + (Πj−1

l=t Φl)s+

j−1∑
k=t

(Πj−1
l=k+1Φl)Γka

]}
.

(10)

This leads us to the approach of initially applying OLS to estimate the model parameters and subsequently incorporating
these estimates into (10) to formulate the value function estimators.

B. Additional Discussions
Our analysis is built upon the Markov assumption (MA), which is fundamental to most RL-based estimators. In collaboration
with our ride-sharing industry partner, we have observed that intervals of 30 minutes or 1 hour typically satisfy MA, showing
strong lag-1 correlations with rapidly decaying higher-order correlations. This justifies the use of RL in our application.
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When applied to more general applications, we recommend to properly select the interval length to meet MA as an initial
step in the design of experiments (see Fig. 7). If that’s challenging, we further propose three approaches below, tailored to
different degrees of violation of MA. Our current results directly extend to the first two cases, while the third case requires
further investigation:

• Mild violation: Future observations depend on the current observation-action pair and a few past observations. This
mild violation can be easily addressed by redefining the state to include recent past observations. With this modified
state, MA is satisfied. Our RL-based estimators and theoretical results remain valid.

• Moderate violation: Future observations depend on a few past observation-action pairs. Here, the RL-based estimators
remain applicable if the state includes these historical state-action pairs. However, our theoretical results on optimal
designs must be adjusted. Preliminary analyses show that, under weak carryover effects and positively correlated
residuals, the optimal switching interval extends to 1+k (where k is the number of included past actions) rather than
switching at every time step. This is because each observed reward is affected by a k+1 consecutive actions, not just the
most recent action. More frequent switching under these conditions causes considerable distributional shift, inflating
the variance of the ATE estimator.

• Severe violation: Data follows a POMDP. Although the existing literature provides doubly robust estimators and
AD-like optimal designs (Li et al., 2023b) to handle such non-Markov MDPs, these estimators suffer from the ”curse of
horizon” (Liu et al., 2018). Recent advances propose more efficient POMDP-based estimators (Liang & Recht, 2025)
and designs (Sun et al., 2024); however, these proposals are limited to linear models. Extending these methodologies to
accommodate more general estimation procedures (e.g., Uehara et al. (2023)) represents an important direction for
future research.

We also remark that in the first two cases, existing tests are available for testing the Markov assumption and for order
selection (Chen & Hong, 2012; Shi et al., 2020; Zhou et al., 2023).

C. Additional Experimental Results
In this section, we systematically present the details of our numerical experiments and provide all relevant figures and results
discussed in the preceding sections.

DGP (Continued). The initial state for each day is drawn from a 3-dimensional multivariate normal distribution
with zero mean and an identity covariance matrix. The coefficients in Linear DGP are specified as : {γt}t

i.i.d.∼
U [0.5, 0.8], {Γ(j)

t }t,j
i.i.d.∼ N(0, 0.32), {Φ(j1,j2)

t }t,j1,j2
i.i.d.∼ U [−0.3, 0.3] and

{αt}t
i.i.d.∼

{
U [−1,−0.5] with probability 0.5
U [0.5, 1] with probability 0.5

, {β(j)
t }t,j

i.i.d.∼

{
U [−0.3,−0.1] with probability 0.5
U [0.1, 0.3] with probability 0.5

,

{ϕ(j)t }t,j
i.i.d.∼

{
U [−1,−0.5] with probability 0.5
U [0.5, 1] with probability 0.5

.

Here, the superscript j denotes the jth component of each vector, while (j1, j2) indicates the element in the j1th row and j2th
column of each matrix. Both the reward error et and the residual in the state regression model Et = St+1 − E(St+1|At, St)
are set to mean zero Gaussian noises. The sequence {Et}t is set to an i.i.d. multivariate Gaussian error process, with a
covariance matrix 1.5 times the identity matrix, and it is independent of {et}t.

In Nonlinear DGP, we consider the nonlinear reward function: rt(a, s) = αt + 2β⊤
t [sin(sa) + cos(s)]2 + 3(β⊤

t s)γta +
[aγt + cos(aγt)]

2, where the sine, cosine, and square functions are applied element-wise to each component of the vector.
The state regression function remains linear and identical to the one presented in (1). All model parameters, including
{αt}t, {βt}t, {γt}t, {Γt}t, {ϕt}t, n and T , are the same as those in the above Linear DGP, with the exception of
Φ

(j1,j2)
t

i.i.d.∼ U [−0.6, 0.6] for j1, j2 = 1, 2, 3.

Comparison (Continued). We compare our ATE estimators with three non-RL alternatives under the regular Bernoulli
switchback design (see Definition 1). The first is proposed by Bojinov et al. (2023). While it similarly relies on a
hyperparameter m that determines the duration of each policy application, their design differs in that, after applying a
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Figure S1. Numerical results for the linear DGP: RMSEs of OLS estimator with different combinations of (n,m, ρ) and four covariance
structures: moving average (top left), exchangeable with positive correlation (top right), uncorrelated (bottom left), and autoregressive
with negative autocorrelation (bottom right).

treatment for m time steps, there is a 50% chance of continuing with the same treatment or switching to the alternative. They
employ multi-step importance sampling to construct their ATE estimator and show that the optimal choice of m depends on
the duration of the carryover effect, which is infinite in the MDP setting.

The second is the “burn-in” difference-in-mean estimator of Hu & Wager (2022), and the third is the simple importance
sampling (IS) estimator of Xiong et al. (2024).

We begin by introducing the regular Bernoulli switchback design (Hu & Wager, 2022).

Definition 1. Given a time horizon T and a block length m ≥ 1 such that K := T/m is a positive integer, the regular
switchback design assigns treatment sequentially as follows:

At | At−1 =

{
Bernoulli(0.5) if t = km+ 1 for some k = 0, 1, . . . ,K − 1,

At−1 otherwise.

We next present the three non-RL estimators under our notation. Under them-carryover assumption, the following multi-step
IS estimator is consistent for the ATE:

ÂTE
(m)

=
1

nT

n∑
i=1

{
T∑

t=m+1

[
Ri,tI(Ai,t−m:t = 1m+1)

P(Ai,t−m:t = 1m+1)
− Ri,tI(Ai,t−m:t = 0m+1)

P(Ai,t−m:t = 0m+1)

]

+

m∑
t=1

[
Ri,tI(Ai,1:t = 1t)

P(Ai,1:t = 1t)
− Ri,tI(Ai,1:t = 0t)

P(Ai,1:t = 0t)

]}
,

(11)

where At1:t2 = (At1 , At1+1, . . . , At2)
⊤ for 1 ≤ t1 < t2 ≤ T . As shown in Bojinov et al. (2023), the optimal block length

equals m under this design.

We also include the following two estimators: the “burn-in” difference-in-mean estimator (with burn-in length 0 ≤ b < m)
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Figure S2. Numerical results for the nonlinear DGP: RMSEs of OLS estimator with different combinations of (n,m, ρ) and four
covariance structures: moving average (top left), exchangeable with positive correlation (top right), uncorrelated (bottom left), and
autoregressive with negative autocorrelation (bottom right).

and the simple IS estimator:

ÂTE
m,b

=
1

n

n∑
i=1

 1

K1(m− b)

∑
k:Akm+1=1

m∑
s=b

Ri,km+s −
1

K0(m− b)

∑
k:Akm+1=0

m∑
s=b

Ri,km+s

 ,
ÂTE

m,IS
=

4

nT

n∑
i=1

T∑
t=1

(
Ait −

1

2

)
Rit,

where Ka = |{k ∈ {0, . . . ,K − 1} : Akm+1 = a}| for a ∈ {0, 1}.

We adopt the same experimental setup as in the linear/nonlinear DGP setting (see Subsection 5.1), using a burn-in length
b = 1, and report the log(MSE) values of various ATE estimators under different designs and choices of m in Figure 5. The
results clearly demonstrate the superior performance of our ATE estimators over those based on the alternative designs.

Real Data-based Simulation (Continued). The first dataset covers the period from Dec. 5th, 2018, to Jan. 13th, 2019, with
thirty minutes defined as one time unit, resulting in T = 48. The second dataset spans from May 17th, 2019, to June 25th,
2019, with one-hour time units, leading to T = 24. A summary of the bootstrap-assisted procedure is provided in Algorithm
5. Specifically, for each dataset, we first fit the data based on the linear models in (1). We apply ridge regression to estimate
the regression coefficients with the regularization parameter determined by minimizing the generalized cross-validation
criterion (Wahba, 1975). This yields the estimators {α̂t}t, {β̂t}t, {ϕ̂t}t and {Φ̂t}t. However, {γt}t and {Γt}t remain
unidentifiable, since At = 0 almost surely. We then calculate the residuals in the reward and state regression models based
on these estimators as follows:

êi,t = Ri,t − α̂t − S⊤
i,tβ̂t, Êi,t = Si,t+1 − ϕ̂t − Φ̂tSi,t. (12)

To generate simulation data with varying sizes of treatment effect, we introduce the treatment effect ratio parameter λ and
manually set the treatment effect parameters γ̂t = δ1 × (

∑
iRi,t/(100×N)) and Γ̂t = δ2 × (

∑
i Si,t/(100×N)). The

treatment effect ratio essentially corresponds to the ratio of the ATE and the baseline policy’s average return. A discussion
on the choice of the treatment effect ratio can be found in subsection 5.2.

Finally, to create a dataset spanning n days, actions are generated according to the chosen design as described in Section 3.
We then sample i.i.d. standard Gaussian noises {ξi}ni=1. For the i-th day, we uniformly sample an integer I ∈ {1, . . . , N},
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Algorithm 5 Bootstrap-based Simulation
1: Input: Real data {(Sit, Rit) : 1 ≤ i ≤ n; 1 ≤ t ≤ T}, the adjustment parameters for the ratios (δ1, δ2), m-switchback

design, the bootstraped sample size n, random seed, the bootstrapped size B.
2: Output: The RSMEs, Biases, and SDs of different ATE estimators.
3: Step 1: Calculate the least square estimates {α̂t},

{
β̂t

}
,
{
ϕ̂t

}
,
{
Φ̂t

}
in the model (1), treatment effect parameters

{γ̂t},
{
Γ̂t

}
, and the residuals of the reward model and state regression model by Equation (12).

4: for b = 1 to B do
5: Sample the number of days n from {1, . . . , N} with replacement and generate i.i.d. normal random variables

ξbi ∼ N(0, 1).

6: Generate pseudo rewards
{
R̂b

i,t

}
i,t

and states
{
Ŝb
i,t

}
i,t

using:

R̂b
i,t = [1, (Ŝb

i,t)
⊤, Ai,t]

α̂t

β̂t
γ̂t

+ ξbi êi,t, Ŝb
i,t+1 = [ϕ̂t, Φ̂t, Γ̂t]

 1

Ŝb
i,t

Ai,t

+ ξbi Êi,t.

7: Calculate the set of estimators
{

ATE(m),b
SB

}
b,m

by OLS, LSTD, and DRL.

8: end for

Figure S3. Confidence intervals in real-data-based simulation.

set the initial state to SI,1, and generate rewards and states according to (1) with the estimated {α̂t}t, {β̂t}t, {ϕ̂t}t, {Φ̂t}t,
the specified {γ̂t}t and {Γ̂t}t, and the error residuals given by {ξiêi,t : 1 ≤ t ≤ T} and {ξiÊi,t : 1 ≤ t ≤ T}, respectively.
This ensures that the error covariance structure of the simulated data closely resembles that of the real datasets. Based on
the simulated data, we similarly apply OLS, LSTD and DRL to estimate the ATE and compare their MSEs under various
switchback designs.

Confidence intervals. Since we adopt RL-based estimators for A/B testing, existing methods developed in the reinforcement
learning literature can be directly applied for CI construction (see e.g., Shi, 2025, Section 5). In real-data-based simulation,
we use nonparametric bootstrap to construct CIs for OLS-based ATE estimators, and report both the coverage probability
(CP) and the average CI width of these CIs in Figure S3. It can be seen that most CPs are over 92%, close to the nominal
level. Meanwhile,

• For small values of λ, more frequent policy switch reduces the average CI width.

• When λ is increased to 10%, AD produces the narrowest CI on average.

These results verify our claim that a reduction in MSE directly translates to a shorter CI.

Other results. We further visualize the biases and standard deviations of the ATE estimators in synthetic experiments in
Figure S4. It can be seen that under the nonlinear DGP, the OLS-based ATE estimators exhibit larger absolute bias than the
LSTD- and DRL-based estimators, primarily due to the misspecification of the linear model.

Similarly, Figure S5 displays the biases and standard deviations of the ATE estimators across two real datasets. The standard
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Figure S4. Boxplots depicting biases (left) and standard deviations (right) of different ATE estimators for varied combinations of m and
estimation procedures under the linear DGP (left sub-figure) and nonlinear DGP (right sub-figure).

deviations of all estimators increase, as expected, as the effect size λ or m increases. The biases of the OLS and DRL
estimators remain relativ ely stable with respect to m in the setting of weak carryover effects. However, the LSTD estimator
experiences a large bias with a larger effect size. Since these biases are caused by model misspecification, they remain
roughly constant across different designs.

D. Assumptions, Proofs of Theories and Corollaries
In this section, we first present Assumptions 2 – 8 that are needed to establish Theorem 1. Next, we discuss in detail the
order of magnitude of the reminder term in Theorem 1. Finally, we provide the proofs of our theorem and corollaries.
Throughout this section, we assume without loss of generality that the state space S is discrete – a typical assumption in RL
(see e.g., Sutton & Barto, 2018).

D.1. Assumptions

Assumption 2 (Bounded ATE). The absolute value of the OLS-based ATE estimator is bounded by Rmax.
Assumption 3 (Non-singular covariance matrix). For any 1 ≤ t ≤ T , the covariance matrix Cov(St) is non-singular, whose
minimum eigenvalue is larger than max(ϵ, c̄δ) for some fixed constant ϵ > 0 and some sufficiently large constant c̄ > 0.
Assumption 4 (Bounded regression coefficients). For any 1 ≤ t ≤ T , ∥Φt∥2 ≤ ρΦ for some constant 0 < ρΦ < 1.
Assumption 5 (Bounded states). The state dimension d is fixed, and the states are contained within a compact ball, i.e.,
there exists a constant C > 0 such that for all t, the states satisfy ∥St∥2 ≤ C.
Assumption 6 (Bounded transition functions). The transition functions {pt} are uniformly bounded away from zero and
infinity.
Assumption 7 (Bounded temporal difference errors). The absolute value of the temporal difference errorRt+Vt+1(St+1)−
Vt(St) is of the order O(Rmax) where the big-O term is uniform in t.
Assumption 8 (Sieve basis functions). (i) For any t ≤ T , there exists a constant c ≥ 1 such that c−1 ≤
λmin

[∑
s∈S φt(s)φ

⊤
t (s)

]
≤ λmax

[∑
s∈S φt(s)φ

⊤
t (s)

]
≤ c, where λmin[·] and λmax[·] denote the minimum and maxi-

mum eigenvalues of a matrix, respectively; (ii) sups∈S ∥φt(s)∥2 <∞.

Assumption 9 (Convergence rates). err2ω = maxt,a,m E|ω̂a,m
t,−k(s)− ωa,m

t (s)|2 and err2v = R−2
max maxt,a,m E|V̂ a,m

t,−k(s)−
V a
t (s)|2 are of the order o(n−1/4).

First, Assumptions 2 and 7 are mild. Given the boundedness of the rewards, it is reasonable to assume both the ATE and the
temporal difference error are bounded as well.

Second, Assumptions 3 and 4 are also mild. In particular, Assumption 4 is the classical no unit root assumption for the state
process. Both assumptions are crucial to ensure the consistency of the OLS estimators defined in Section 4.1.

Third, in many real-world applications, states are naturally bounded, making Assumption 5 reasonable.

Fourth, Assumption 6 is a standard condition often used to ensure the asymptotic distribution of the LSTD estimator (Shi
et al., 2022; 2023b). This assumption is intrinsically linked to the overlap condition, which is critical for maintaining the
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Figure S5. Boxplots depicting biases (top) and standard deviations (bottom) of different ATE estimators for varied combinations of m, λ
and estimation procedures based on two real datasets.

boundedness of the density ratio ωt. The overlap condition is commonly imposed in OPE (see e.g., Kallus & Uehara, 2020;
2022; Liao et al., 2022).

Fifth, Assumption 8 is quite reasonable and is automatically satisfied when tensor product B-splines or wavelet basis
functions are used for φt (Chen & Christensen, 2015).

Lastly, we denote the estimated value function by V̂ a,m
t,−k, where the superscript m highlight its dependence on the m-

switchback design – different values of m yield different value estimators. The supremum in Assumption 9 is taken with
respect to a, t and m, but not over k, since the trajectories are i.i.d., making the expectation invariant across different
k. Assumptions of this type are commonly imposed in the literature for valid statistical inference of the ATE (see e.g.,
Chernozhukov et al., 2018).

D.2. Theorem 1

In the following, we provide a detailed statement of Theorem 1. Its proof will be presented in the next subsection.

Theorem 1. Under the given conditions, the difference in the MSE of the ATE estimator between the alternating-day design
and an m-switchback design (where each switch duration equals m) is lower bounded by

16

nT 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1,l2=1

σe(l1 + k1m, l2 + k2m)− cδR2
max

n
− reminder term,

for some constant c > 0 and some reminder term whose order if estimator-dependent:
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• For the OLS estimator, under Assumptions 1– 5, its reminder term = O(n−3/2R2
max log(nT )).

• For the DRL estimator, under Assumptions 1, 2, 6, 7 and 9 its reminder term is of the order

O
[
max

(R2
maxerrω
n

,
R2

maxerrv
n

,
R2

maxerrωerrv√
n

)]
.

• For the LSTD estimator, under Assumptions 1, 2, 6 – 9, its reminder term is of the order

O
[
max

(R2
max

√
log(nT )errω
n

,
R2

max

√
log(nT )errv
n

,
R2

maxerrωerrv√
n

)]
.

D.3. Proof of Theorem 1-OLS and Corollaries 1–3

In this subsection, we first consider the OLS estimator and prove all the corollaries. The proofs for the LSTD and DRL
estimators are given in the next subsection. Our proof heavily relies on the strength of carryover effects δ, which implies
that ∥Γt∥ = O(δ) under the assumption of linear model (1). A key ingredient of the proof of Theorem 1 is the following
lemma, which demonstrates that, as δ → 0, each state becomes asymptotically uncorrelated with the current action. It
largely simplifies the calculation of the asymptotic variance of the OLS estimator.
Lemma 1. Suppose both Assumption 4 and the linear model assumption in (1) are satisfied. Then for each t, we have
∥Cov(St, At)∥2 = O(δ).

Proof. According to (9), we obtain that

Cov(St, At) =
(
Πt−1

k=1Φk

)
Cov(S1, At) +

t−1∑
k=1

(
Πt−1

l=k+1Φl

)
ΓkCov(Ak, At) +

t−1∑
k=1

(
Πt−1

l=k+1Φl

)
Cov(Ek, At),

where we recall that Et = St+1 − E(St+1|At, St).

For each design, At is uniquely determined by A1. More specifically, it can take one of two values: either A1 or 1−A1.
Since A1 is uncorrelated with S1 and {Ek}k, the same holds true for At. It follows that

Cov(St, At) =

t−1∑
k=1

(
Πt−1

l=k+1Φl

)
ΓkCov(Ak, At).

Since each ∥Γt∥ is O(δ), and Assumption 4 implies that maxt ∥Φt∥ ≤ ρΦ < 1, we have

∥
t−1∑
k=1

(
Πt−1

l=k+1Φl

)
ΓkCov(Ak, At))∥2 ≤

t−1∑
k=1

∥Πt−1
l=k+1Φl∥ · ∥Γk∥2 ≤

t−1∑
k=1

Πt−1
l=k+1∥Φl∥ ·O(δ) ≤

t−1∑
k=1

ρt−k−1
Φ ·O(δ),

we have ∥Cov(St, At)∥2 = O(
δ(1−ρt−1

Φ )

1−ρΦ
) = O(δ), for any t = 1, · · · , T . This completes the proof of Lemma 1.

The next lemma obtains a linear representation for the OLS-based ATE estimator.
Lemma 2. Suppose Assumptions 1, and 3 – 5 and the linear model assumption in (1) are satisfied. For sufficiently large n
and any large constant κ > 0, we have with probability at least 1−O((nT )−κ) that the difference between the OLS-based
ATE estimator and the ATE itself can be represented by

4

nT

n∑
i=1

T∑
t=1

(Ai,t −
1

2
)ei,t +

4

nT

n∑
i=1

T∑
t=2

β⊤
t

[ t−1∑
k=1

(Φt−1 · · ·Φk+1)(Ai,k − 1

2
)Ei,k

]
O
( δ
T

T∑
t=1

∥∥∥ 1
n

n∑
i=1

µi,t

∥∥∥
2

)
+O

(Rmax log(nT )

n

)
,

(13)

where µi,t denote the vector of residuals

µi,t = (ei,t, Ai,tei,t, S
⊤
i,tei,t, RmaxE

⊤
i,t, RmaxAi,tE

⊤
i,t, Rmaxvec(Si,tE

⊤
i,t))

⊤,

and vec(•) denotes the operator that vectorize a matrix into a row vector.
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Here, the first two terms in (13) are closely related to the autocorrelation term in (5). Indeed, (5) equals the difference in
their variance between AD and an m-switchback design. Meanwhile, the third term is closely related to the carryover effect
term in (5) and the last term is a high-order reminder term.

Proof. For any m-switchback design, since the initial action is uniformly generated from {0, 1}, we have EAt = 1/2,
t = 1, . . . , T . According to Lemma 1,

E

 1
St

At

 (1, S⊤
t , At) =

 1 ES⊤
t EAt

ESt EStS
⊤
t EAtSt

EAt EAtS
⊤
t EAt

 =

 1 ES⊤
t 0.5

ESt EStS
⊤
t 0.5ESt +O(δ)

0.5 0.5ES⊤
t +O(δ) 0.5


︸ ︷︷ ︸

Σt

. (14)

We first show that Σt is invertible under Assumptions 3 and 5. Define

Σ∗
t =

 1 ES⊤
t 0.5

ESt EStS
⊤
t 0.5ESt

0.5 0.5ES⊤
t 0.5

 .

With some calculations, we can represent Σ∗
t by 1

ESt 1
0.5 1


︸ ︷︷ ︸

L

 1
Cov(St)

0.25

 1 ES⊤
t 0.5

1
1


︸ ︷︷ ︸

L⊤

,

where L is a lower-triangular matrix and is hence invertible. Under Assumption 3, Σ∗
t is invertible and its inverse satisfies

∥(Σ∗
t )

−1∥2 = sup
a:∥a∥2=1

a⊤

 1 −ES⊤
t −0.5

1
1

 1
Cov−1(St)

4

 1
−ESt 1
−0.5 1


︸ ︷︷ ︸

Σ∗−1
t

a, (15)

which is of the order O(λ−1
min[Cov(St)]) under Assumption 3.

Consequently, the maximum eigenvalue of (Σ∗
t )

−1 is of the orderO(λ−1
min[Cov(St)]). Equivalently, the minimum eigenvalue

of Σ∗
t is lower bounded by cλmin[Cov(St)] for some constant c > 0. It follows that

λmin(Σt) = inf
a:∥a∥2=1

a⊤Σta ≥ inf
a:∥a∥2=1

a⊤Σ∗
ta− ∥Σt − Σ∗

t ∥2 = cλmin[Cov(St)]−O(δ), (16)

and the rightmost term satisfies

cλmin[Cov(St)]−O(δ) =
c

2
λmin[Cov(St)] +

c

2
λmin[Cov(St)]−O(δ) ≥ cϵ

2
+
cc̄δ

2
−O(δ) ≥ cϵ

2
, (17)

under Assumption 3, which requires that λmin[Cov(St)] ≥ max(ϵ, c̄δ) for some sufficiently large constant c̄ > 0. This
proves the invertibility of Σt.

We next analyze the ATE estimator. Recall from (2) that

ATE =
1

T

T∑
t=1

γt +
1

T

T∑
t=2

β⊤
t

[ t−1∑
k=1

(Φt−1Φt−2 . . .Φk+1)Γk

]
The OLS-based estimator is constructed by plugging the estimated {γt, βt,Φt,Γt}t into this expression. Applying Taylor’s
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expansion to the OLS-based estimator around the true parameter values yields that

ATE(m)
SB − ATE =

1

T

T∑
t=1

(γ̂t − γt)︸ ︷︷ ︸
I1

+
1

T

T∑
t=2

β⊤
t

[ t−1∑
k=1

(Φt−1 . . .Φk+1)(Γ̂k − Γk)
]

︸ ︷︷ ︸
I2

+
1

T

T∑
t=2

(β̂t − βt)
⊤
[ t−1∑
k=1

(Φt−1 . . .Φk+1)Γk

]
︸ ︷︷ ︸

I3

+

T−1∑
t=2

dIE
dΦt

(Φ̂t − Φt)︸ ︷︷ ︸
I4

+second-order term,

(18)

where IE is a shorthand for the indirect/delayed effect T−1
∑T

t=2 β
⊤
t [

∑t−1
k=1(Φt−1 . . .Φk+1)Γk].

Notice that the first four terms on the RHS of (18) (e.g., I1-I4) are the first-order terms, which we now analyze.

Analysis of I1. By definition, we have ϕ̂t − ϕt
β̂t − βt
γ̂t − γt

 = Σ̂−1
t

1

n

n∑
i=1

 ei,t
Si,tei,t
Ai,tei,t

 . (19)

Together with (14), one can show under Assumptions 1 and 3 that ϕ̂t − ϕt
β̂t − βt
γ̂t − γt

 = Σ∗−1
t

1

n

n∑
i=1

 ei,t
Si,tei,t
Ai,tei,t


︸ ︷︷ ︸

leading term

+ [Σ̂−1
t − Σ∗−1

t ]
1

n

n∑
i=1

 ei,t
Si,tei,t
Ai,tei,t


︸ ︷︷ ︸

reminder term

.

Consider the leading term first. Recall that (15) obtains a closed-form expression for Σ∗−1
t . With some calculations, it can

be shown that the last row of Σ∗−1
t equals (−2, 0, 4). This leads to

the last entry of the leading term =
4

n

n∑
i=1

(Ai,t −
1

2
)ei,t. (20)

Next, consider the reminder term. Note that (Σ̂−1
t − Σ∗−1

t ) = Σ̂−1
t (Σ∗

t − Σ̂t)Σ
∗−1
t . The matrix in the middle can be

decomposed into the sum of Σ∗
t − Σt and Σt − Σ̂t. The spectral norm of the first difference, Σ∗

t − Σt, is of the order O(δ).
Below, we aim to apply the matrix Bernstein’s inequality (Tropp, 2012) to upper bound the spectral norm of the second
difference.

Denote Zit = (1, S⊤
it , Ait)

⊤ ∈ Rd+2, and Xit = ZitZ
⊤
it ∈ R(d+2)×(d+2), X∗

it = Xit − EXit ∈ R(d+2)×(d+2).
Clearly, Σt = EXit, Σ̂t = n−1

∑n
i=1Xit. Under the Assumptions 3 and 5, we have maxt(∥Σ̂t∥2, ∥Σt∥2) ≤ cΣ

and maxi,t ∥X∗
it∥2 ≤ cΣ, for some finite constant 0 < cΣ < ∞. Similarly, let ν2 = maxt ∥|

∑n
i=1 E(X∗

it)
2∥. We have

ν2 = O(n). Applying the matrix Bernstein’s inequality allows us to obtain the following high probability tail bound for
maxt ∥n−1

∑n
i=1X

∗
it∥2,

P
(
max

t
∥ 1
n

n∑
i=1

X∗
it∥2 ≤ τ

)
≥ 1− 2T (d+ 2) exp

(
− n2τ2/2

ν2 + nτcΣ
3

)
, (21)

for every τ > 0. As the state dimension d is fixed, by setting τ to be proportional to n−1/2κ
√

log(nT ), the above inequality
holds with high probability, at least 1−O((nT )−κ), for any sufficient large κ > 0.

To summarize, on the event where (21) holds with τ proportional to n−1/2κ
√

log(nT ), we have ∥Σ̂t − Σ∗
t ∥2 = O(δ +

n−1/2κ
√
log(nT )). Given a sufficiently large n, using similar arguments to the proofs of (16) and (17), we can show that

λmin(Σ̂
−1
t ) ≥ cϵ

4
. (22)
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Since

Σ̂−1
t − Σ∗−1

t = Σ∗−1
t [Σ∗

t − Σt]Σ̂
−1
t +Σ∗−1

t [Σt − Σ̂t]Σ̂
−1
t ,

the reminder term can be similarly decomposed into

Σ∗−1
t [Σ∗

t − Σt]Σ̂
−1
t

1

n

n∑
i=1

 ei,t
Si,tei,t
Ai,tei,t

+Σ∗−1
t [Σt − Σ̂t]Σ̂

−1
t

1

n

n∑
i=1

 ei,t
Si,tei,t
Ai,tei,t

 .

According to (19), (22), the boundedness of ∥(Σ∗
t )

−1∥2 (see (15)) and that ∥Σ∗
t − Σt∥2 = O(δ), the first term is of the

order O(δ∥n−1
∑n

i=1 Zi,tei,t∥2).

Consider the second term. By definition,

(αt, β
⊤
t , γt)

⊤ = Σ−1
t E(1, St, At)

⊤r(St, At).

Combining (16) with (17) yields the boundedness of ∥Σ−1
t ∥2. This together with the bounded states and bounded rewards

assumptions leads to

sup
t

∥(αt, β
⊤
t , γt)∥2 = O(Rmax). (23)

This together with the bounded rewards and states assumptions yield that maxt |et| = O(Rmax). Using similar arguments to
those for establishing (21), it can be shown that ∥n−1

∑n
i=1 Ziteit∥2 is of the order n−1/2κRmax

√
log(nT ) with probability

at least 1−O((nT )−κ). This together with (21), (22) and the boundedness of ∥(Σ∗
t )

−1∥2 yields that the second term is of
the order O(n−1Rmax log(nT )), with probability at least 1−O((nT )−κ).

As such, we obtain

the reminder term = O
(
∥ δ
n

n∑
i=1

Zi,tei,t∥2
)
+O

(Rmax log(nT )

n

)
,

which together with (20) yields that

I1 =
4

nT

n∑
i=1

T∑
t=1

(Ai,t −
1

2
)ei,t +O

( δ
T

T∑
t=1

∥∥∥ 1
n

n∑
i=1

Zi,tei,t

∥∥∥
2

)
+O

(Rmax log(nT )

n

)
. (24)

Analysis of I2. The analysis of I2 is very similar to that of I1. Specifically, using similar arguments to the proof of (24), it
can be shown that

Γ̂t − Γt =
4

n

n∑
i=1

(Ai,t −
1

2
)Ei,t +O

( δ
T

T∑
t=1

∥∥∥ 1
n

n∑
i=1

vec(Zi,tE
⊤
i,t)

∥∥∥
2

)
+O

( log(nT )
n

)
. (25)

By (23), supt ∥βt∥2 = O(Rmax). Since maxt ∥Φt∥2 ≤ ρΦ, using similar arguments to the proof of Lemma 1, we obtain
that supt ∥β⊤

t

∑t−1
k=1(Φt−1 . . .Φk+1)∥2 = O(Rmax). This together with (25) yields that

I2 =
4

nT

n∑
i=1

T∑
t=2

β⊤
t

[ t−1∑
k=1

(Φt−1 · · ·Φk+1)(Ai,k − 1

2
)Ei,k

]
+O

(δRmax

T

T∑
t=1

∥∥∥ 1
n

n∑
i=1

vec(Zi,tE
⊤
i,t)

∥∥∥
2

)
+O

(Rmax log(nT )

n

)
.

(26)

Analysis of I3. Since ∥Γt∥2 = O(δ) and maxt ∥Φt∥2 ≤ ρΦ, using similar arguments to the proof of Lemma 1, it can be
shown that supt ∥

∑t−1
k=1(Φt−1 . . .Φk+1)Γk∥2 = O(δ). It follows that

I3 = O
( δ
T

T∑
t=2

∥β̂t − βt∥2
)
. (27)
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According to (22), ∥β̂t − βt∥2 is of the order of magnitude O(∥n−1
∑n

i=1 Zi,tei,t∥2). This together with (27) leads to

I3 = O
( δ
T

T∑
t=1

∥ 1
n

n∑
i=1

Zi,tei,t∥2
)
. (28)

Analysis of I4. Using similar arguments to the proof of the proof of Lemma 1, one can show that maxt ∥ dIE
dΦt

∥2 =

O(T−1δRmax). Meanwhile, similar to the analysis of I3, we can show that ∥Φ̂t − Φt∥2 is of the same order of magnitude
to ∥n−1

∑n
i=1 Zi,tEi,t∥2. As such, we obtain that

I4 = O
(δRmax

T

T∑
t=1

∥ 1
n

n∑
i=1

vec(Zi,tE
⊤
i,t)∥2

)
. (29)

Second-order terms. Using similar arguments to the proof of (21), it can be shown that these second-order terms are of the
order O(n−1 log(nT )Rmax), with probability at least 1 − O((nT )−κ). Together with (18), (24), (26), (28) and (29), we
conclude the proof of Lemma 2.

Proof of Theorem 1-OLS

Proof. To ease notation, let ct denote the d-dimensional vector [
∑T−1

k=t β
⊤
k+1(Φk · · ·Φt+1)]

⊤. According to the Lemma 2,
with a sufficiently large κ > 0, the asymptotic MSE of the ATE estimator is given by

MSE(ATE(m)
SB ) = E(ATE(m)

SB − ATE)2P(All the high probability bounds in Lemma 2 hold)

+ E(ATE(m)
SB − ATE)2 × P(One of the high probability bounds in Lemma 2 does not hold)

= E(ATE(m)
SB − ATE)2 ×

[
1−O((nT )−κ)

]
+ E(ATE(m)

SB − ATE)2 ×
[
O((nT )−κ)

]
.

(30)

When the high probability bounds do not holds, our ATE estimator can be bounded by |ATE(m)
SB | ≤ Rmax under Assumption

2. Since κ can be made arbitrarily large, the second term in the last line can be made arbitrarily small. Consequently, in the
rest of the proof, we focus on the case where all high probability bounds in Lemma 2 hold. All the expectations below are
calculated by explicitly assuming that these bounds hold.

Let I denote the third term in (13) that is of the order O(T−1δ
∑T

t=1 ∥n−1
∑n

i=1 µi,t∥2) and I∗ denote the second-order
term in (13) that is of the order O(n−1Rmax log(nT )). Since the residual process {et}t is independent of all state-action
pairs, it is also independent of {Et}t. Consequently, we obtain that

MSE(ATE(m)
SB ) =

16

nT 2
Var

[ T∑
t=1

(At −
1

2
)et

]
+

16

nT 2
Var

[ T−1∑
t=1

(At −
1

2
)c⊤t Et

]
+E(I + I∗)2 + 2E(I + I∗)

[ 4

nT

n∑
i=1

T∑
t=1

(Ai,t −
1

2
)ei,t

]
+ 2E(I + I∗)

[ 4

nT

n∑
i=1

T−1∑
t=1

(Ai,t −
1

2
)c⊤t Ei,t

]
.

(31)

Let us first focus on the second line of (31). According to Cauchy-Schwarz inequality, the first term on the second line can
be upper bounded by 2EI2 + 2E(I∗)2. Using Cauchy-Schwarz inequality again, we have

2EI2 = O
(
E
∣∣∣ δ
T

T∑
t=1

∥∥∥ 1
n

n∑
i=1

µi,t

∥∥∥
2

∣∣∣2) = O
(δ2
T

T∑
t=1

E
∥∥∥ 1
n

n∑
i=1

µi,t

∥∥∥2
2

)
.

We have shown that maxt |et| = O(Rmax) in the analysis of I1. Using similar arguments, it can be shown that maxt ∥Et∥2 =
O(1) under Assumption 5. With some calculations, we can obtain that EI2 = O(n−1δ2R2

max). Meanwhile, according to
Lemma 2, we have that E(I∗)2 = O(n−2R2

max log
2(nT )). Consequently, we have

E(I + I∗)2 = O
(δ2R2

max

n

)
+O

(R2
max log

2(nT )

n2

)
. (32)
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Similarly, using Cauchy-Schwarz inequality, the second and third terms in the second line of (31) can be upper bounded by√√√√E(I + I∗)2E
∣∣∣ 4

nT

n∑
i=1

T∑
t=1

(Ai,t −
1

2
)ei,t

∣∣∣2 and

√√√√E(I + I∗)2E
∣∣∣ 4

nT

n∑
i=1

T−1∑
t=1

(Ai,t −
1

2
)c⊤t Ei,t

∣∣∣2,
respectively. Using (32), one can similarly show that the above two expressions are of the order

O
(δR2

max

n

)
+O

(R2
max log(nT )

n3/2

)
. (33)

Since the state space is discrete, δ – which equals the difference in two probability mass functions – is bounded. Given a
sufficiently large n, E(I + I∗)2 is upper bounded by (33) as well. Consequently, the second line of (31) is also of the order
specified in (33).

We next consider the second term on the RHS of the first line of (31). The sequence {Et} forms a martingale difference
sequence with respect to the filtration ⟨σ(Ft) : t ≥ 1⟩ where Ft = {Sj , Aj}j≤t, and is uncorrelated with the sequence
{At}t under the switchback design. Additionally, under both the alternating-day design and the switchback design, each At

follows a Bernoulli(0.5) random variable. Its marginal variance is given by 0.25. As such, the second term in the first line of
(31) equals

T−1∑
t=1

4c⊤t Cov(Et)ct
nT 2

, (34)

and is design-independent.

Finally, we analyze the first term on the RHS of the first line of (31). Consider a givenm-switchback design. For any integers
1 ≤ t1 ≤ t2 ≤ T , we represent them as t1 = l1+ k1m and t2 = l2+ k2m such that 1 ≤ l1, l2 ≤ m and 0 ≤ k1, k2 < T/m.
By definition, Cov(At1 , At2) equals 0.25 if k2 − k1 is even and −0.25 otherwise. Then the first term on the RHS of (31)
can thus be represented as

4

nT 2

m∑
l1=1

m∑
l2=1

T/m−1∑
k1=0

T/m−1∑
k2=0

(−1)|k1−k2|σe(l1 + k1m, l2 + k2m).

When m = T , it equals

4

nT 2

m∑
l1=1

m∑
l2=1

T/m−1∑
k1=0

T/m−1∑
k2=0

σe(l1 + k1m, l2 + k2m).

Together with (33) and (34), we obtain that

MSE(ATE(m)
SB ) =

4

nT 2

m∑
l1=1

m∑
l2=1

T/m−1∑
k1=0

T/m−1∑
k2=0

(−1)|k1−k2|σe(l1 + k1m, l2 + k2m)

+
4

nT 2

T−1∑
t=1

c⊤t Cov(Et)ct +O
(δR2

max

n

)
+O

(R2
max log(nT )

n3/2

)
.

Notice that for AD, we haveΣt = Σ∗
t and the third term on the RHS of (18) equals zero. This leads to the following lower

bound for the difference in the MSE:

MSE(ATEAD)− MSE(ATE(m)
SB ) ≥ 16

nT 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1=1

m∑
l2=1

σe(l1 + k1m, l2 + k2m)− cδR2
max

n
−O

(R2
max log(nT )

n3/2

)
,

for some constant c > 0. The proof is hence completed.
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Proof of Corollary 1.

Proof. Recall that under the autoregressive covariance structure, σe(t1, t2) = σ2ρt2−t1 for some 0 < ρ < 1 and any t1 ≤ t2.
It follows that

16

T 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1=1

m∑
l2=1

σe(l1 + k1m, l2 + k2m)

=
16

nT 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1=1

m∑
l2=1

σ2ρ(k2−k1)m+(l2−l1)

=
16

nT 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

σ2ρ(k2−k1)m
m∑

l1=1

m∑
l2=1

ρl2−l1 .

With some calculations, it is immediate to see that

m∑
l1=1

m∑
l2=1

ρl2−l1 =

m∑
l1=1

ρ−l1

m∑
l2=1

ρl2 =
ρ−1(1− ρ−m)

1− ρ−1

ρ(1− ρm)

1− ρ
=
ρ1−m(1− ρm)2

(1− ρ)2
. (35)

Similarly, when K = T
m is odd,∑

k2−k1=1,3,5,...
0≤k1<k2<K

ρ(k2−k1)m =
∑

k2∈{1,...,K−2}

ρk2m +
∑

k2∈{2,...,K−1}

ρ(k2−1)m + . . .+ ρm + ρm

= 2
ρm − ρKm

1− ρ2m
+ 2

ρm − ρ(K−2)m

1− ρ2m
+ . . .+ 2

ρm − ρ3m

1− ρ2m
+ 2

ρm − ρm

1− ρ2m

=
ρm(K + 1)

1− ρ2m
− 2ρm(1− ρ(K+1)m)

(1− ρ2m)2
=
ρm[T/m− 1− (T/m+ 1)ρ2m + 2ρT+m]

(1− ρ2m)2
.

On the other hand, when K is even, we have∑
k2−k1=1,3,5,...
0≤k1<k2<K

ρ(k2−k1)m =
∑

k2∈{1,...,K−1}

ρk2m +
∑

k2∈{2,...,K−2}

ρ(k2−1)m + . . .+ ρm + ρm

=
ρm − ρ(K+1)m

1− ρ2m
+ 2

ρm − ρ(K−1)m

1− ρ2m
+ . . .+ 2

ρm − ρ3m

1− ρ2m
+ 2

ρm − ρm

1− ρ2m

=
ρm(K + 1)− ρ(K+1)m

1− ρ2m
− 2ρm(1− ρKm)

(1− ρ2m)2
=
ρm[T/m− 1− (T/m+ 1)ρ2m + ρT + ρT+2m]

(1− ρ2m)2
.

To summarize, we obtain that

∑
k2−k1=1,3,5,...
0≤k1<k2<K

ρ(k2−k1)m =


ρm[T/m− 1− (T/m+ 1)ρ2m + 2ρT+m]

(1− ρ2m)2
, K is odd

ρm[T/m− 1− (T/m+ 1)ρ2m + ρT + ρT+2m]

(1− ρ2m)2
, K is even.

In either case, as T → ∞, T−1
∑

k2−k1=1,3,5,...
0≤k1<k2<K

ρ(k2−k1)m becomes asymptotically equivalently to ρm/[m(1 − ρ2m)].

Combining this together with (35) yields the desired result. The proof is hence completed.

Proof of Corollary 2.
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Proof. Under the moving average covariance structure, we have for any t1 ≤ t2 that

Cov(et1 , et2) =
1

K
E(εt1+1 + εt1+2 + . . . εt1+K)(εt2+1 + εt2+2 + . . . εt2+K) = σ2 [K − t2 + t1]+

K
,

where [z]+ = max(z, 0) for any z ∈ R. Accordingly, we have

16

T 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1=1

m∑
l2=1

σe(l1 + k1m, l2 + k2m)

=
16σ2

T 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1=1

m∑
l2=1

1

K
[K − (k2 − k1)m− (l2 − l1)]+.

(36)

Sincem ≥ K, the expressionK−(k2−k1)m−(l2− l1) remains positive only when k2−k1 = 1 and that l1− l2 > m−K.
It follows that the RHS of (36) equals

16σ2

T 2

∑
k2−k1=1

0≤k1<k2<T/m

m∑
l1=1

m∑
l2=1

[K −m+ l1 − l2]+
K

=
16σ2(T/m− 1)

T 2

m∑
l1=1

m∑
l2=1

[K −m+ l1 − l2]+
K

=
16σ2(T/m− 1)

T 2

(1 + 2 + . . .+K − 1

K
+

1 + 2 + . . .+K − 2

K
+ . . .+

1

K

)
=

8σ2(T/m− 1)(K2 − 1)

3T 2
.

The proof is hence completed.

Proof of Corollary 3

Proof. Recall that under the exchangeable covariance structure, σe(t1, t2) = σ2[ρI(t1 ̸= t2) + I(t1 = t2)] for any t2 ≥ t1.
It follows that

16

T 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1=1

m∑
l2=1

σe(l1 + (k1 − 1)m, l2 + (k2 − 1)m)

=
16

nT 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1=1

m∑
l2=1

σ2ρ =
16m2

nT 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

σ2ρ.

When m < T and T/m is even, the number of elements in the set {(k1, k2) : k2 − k1 = 1, 3, 5, . . . ; 0 ≤ k1 < k2 < T/m}
is given by T/(2m) + 2[T/(2m)− 1] + . . .+ 2 = T 2/(4m2). Similarly, when m < T and T/m is odd, it can be shown
that the aforementioned set contains T 2/(4m2)− 1/4 elements. It follows that the reduction in MSE equals 4n−1σ2ρ when
T/m is even and 4n−1σ2ρ(1−m2/T 2) otherwise. The proof is hence completed.

D.4. Proofs of Theorem 1-DRL and LSTD

We first establish the proof for the DRL estimator, followed by the proof for LSTD. With a slight abuse of notation, we
use ωa,m

t (s) :=
pa
t (s)

pm
t (s|a) to represent the IS weight of the conditional probability mass function (pmf) of the state given

the action. In particular, the numerator denotes the pmf of St under the target policy a and the denominator denotes the
conditional pmf of St under the m-switchback design given At = a. Additionally, recall that ωa,m

t (s, a′) :=
pa
t (s,a

′)
pm
t (s,a′)

denotes the IS weight of the pmf for the state-action pair.

Proof of Theorem 1-DRL
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Proof. Recall that the cross-fitted version of the DRL estimator is given by

ATE(m)
DRL =

1

nT

K∑
k=1

∑
i∈Dk

ψ({Si,t, Ai,t, Ri,t}t; {V̂ a,m
t,−k}t,a, {ω̂

a,m
t,−k}t,a).

Similar to the proof of Theorem 6 in Kallus & Uehara (2022), we can show that the ATE estimator ATE(m)
DRL is asymptotically

equivalent to its “oracle” version ATE(m)∗
DRL which works as well as if the nuisance functions were known in advance. In

particular, we have

ATE(m)
DRL =

1

nT

n∑
i=1

ψ({Si,t, Ai,t, Ri,t}t; {V a
t }t,a, {ω

a,m
t }t,a)︸ ︷︷ ︸

ATE(m)∗
DRL

+reminder term.

Notice that the oracle estimator is unbiased. Hence, we only need to compute the asymptotic variances of the oracle
estimators under different switchback designs to compare their MSEs.

The rest of the proof is divided into two parts. In Part I, we calculate the asymptotic variance of the “oracle” version of DRL
estimator. In Part II, we focus on the calculation of the reminder term.

Part I: Consider the sequence of temporal difference (TD) errors {εat } where each εat = Rt + V a
t+1(St+1)− V a

t (St). We
decompose each TD error into the sum of et and ϵat = rt(At, St) + V a

t+1(St+1) − V a
t (St), which yields two residual

sequences. The first sequence, {et}t, is correlated over time. Under the Markov assumption and the conditional mean
independence assumption (CMIA), the second sequence can be shown to form a martingale difference sequence with respect
to the filtration ⟨σ(Ft) : t ≥ 1⟩ defined in the proof of Theorem 1-OLS; see e.g., the proof of Theorem 1 in Shi et al. (2022).
Additionally, the two error processes are mutually independent. This yields

nVar(ATE(m)∗
DRL ) =

1

T 2
Var

[
V 1
1 (S1)− V 0

1 (S1) +

T∑
t=1

ω1,m
t (At, St)ε

1
t −

T∑
t=1

ω0,m
t (At, St)ε

0
t

]
=

1

T 2
Var

[
V 1
1 (S1)− V 0

1 (S1)
]
+

1

T 2

T∑
t=1

Var
[ 1∑
a=0

(−1)a+1ωa,m
t (At, St)ϵ

a
t

]
+

1

T 2
Var

[ 1∑
a=0

T∑
t=1

(−1)a+1ωa,m
t (At, St)et

]
.

(37)

Notice that the first term on the second line is design-independent.

Since

ωa,m
t (At, St) =

pat (At, St)

pmt (At, St)
=
pat (St)I(At = a)

pmt (At, St)
=

pat (St)I(At = a)

pmt (St|At)pmt (At)
=
pat (St)I(At = a)

pmt (St|a)pmt (a)
,

where pmt (a) denotes the probability that At = a under the m-switchback design, which is equal to 1/2 by construction.
With some calculations, the second term on the second line can be shown to equal

1

T 2

1∑
a=0

T∑
t=1

Var
[
ωa,m
t (At, St)ϵ

a
t

]
=

4

T 2

1∑
a=0

T∑
t=1

E
[pat (St)]

2I(At = a)σ2
ϵ,t(a, St)

[pmt (St|a)]2

=
2

T 2

1∑
a=0

T∑
t=1

∑
s∈S

[pat (s)]
2σ2

ϵ,t(a, s)

pmt (s|a)
,

(38)

where σ2
ϵ,t(a, s) = Var(ϵat |At = a|St = s).

We note that
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• Similar to the proof of model-based methods, according to the definition of δ, it can be shown that pat (s) = pmt (s|a) +
O(δ) for any t ≥ 2 and pa1(s) = pm1 (s|a). Meanwhile, by Assumption 6, the transition function is bounded away from
zero. This implies that pmt is bounded away from zero as well, for any t ≥ 2, and hence pat (s)/p

m
t (s|a) = 1 +O(δ)

for any t ≥ 1.

• Similarly, one can also show that
∑

s∈S |σ2
ϵ,t(1, s) − σ2

ϵ,t(0, s)| = O(δR2
max), and max(σ2

ϵ,t(0, s), σ
2
ϵ,t(1, s)) =

O(R2
max) under Assumption 7.

As such, the second line of (38) is equivalent to

2

T 2

1∑
a=0

T∑
t=1

∑
s∈S

[pat (s)]
2σ2

ϵ,t(a, s)

pmt (s|a)
=

2

T 2

1∑
a=0

T∑
t=1

∑
s∈S

pat (s)σ
2
ϵ,t(a, s) +O(δR2

max)

=
2

T 2

1∑
a=0

T∑
t=1

∑
s∈S

pat (s)σ
2
ϵ,t(0, s) +O(δR2

max).

Consequently, the above expression is asymptotically design-independent, i.e.,

1

T 2

1∑
a=0

T∑
t=1

Var
[
ωa,m
t (At, St)ϵ

a
t

]
=

2

T 2

T∑
t=1

[E0σ2
ϵ,t(0, St) + E1σ2

ϵ,t(0, St)] +O(δR2
max). (39)

Based on the above discussion, it suffices to compare the third line of (37) to compare different switchback designs. Similar
to (39), we can show that the third line is asymptotically equivalent to

4

T 2

1∑
a=0

Var
[ T∑

t=1

I(At = a)et

]
+O(δR2

max).

Using similar arguments in the proof of Theorem 1-OLS, we obtain that the lower bound of difference in the variance
between the alternating-day design and the m-switchback design is given by

16

nT 2

∑
k2−k1=1,3,5,...
0≤k1<k2<T/m

m∑
l1=1

m∑
l2=1

σe(l1 + k1m, l2 + k2m)− cδR2
max

n
− reminder term,

for some constant c > 0.

Part II: It suffices to upper bound the absolute value of the reminder term, i.e., the difference between ATE(m)
DRL and ATE(m)∗

DRL .
With some calculations, the reminder term can be shown to equal the sum of the following three terms:

J1 :=
1

nT

K∑
k=1

∑
i∈Dk

[ψ({Si,t, Ai,t, Ri,t}; {V a
t }t,a; {ω̂

a,m
t,−k}t,a)− ψ({Si,t, Ai,t, Ri,t}; {V a

t }t,a; {ω
a,m
t }t,a)].

J2 :=
1

nT

K∑
k=1

∑
i∈Dk

[ψ({Si,t, Ai,t, Ri,t}; {V̂ a,m
t,−k}t,a; {ω

a,m
t }t,a)− ψ({Si,t, Ai,t, Ri,t}; {V a

t }t,a; {ω
a,m
t }t,a)].

J3 :=
2

nT

K∑
k=1

∑
i∈Dk

T∑
t=1

1∑
a=0

(−1)a+1I(Ai,t = a)[ω̂a,m
t,−k(Si,t)− ωa,m

t (Si,t)]

×[V̂ a,m
t+1,−k(Si,t+1)− V̂ a,m

t,−k(Si,t)− V a
t+1(Si,t+1) + V a

t (Si,t)].

We analyze each of these terms below.

Analysis of J1. With some calculations, we can represent J1 by

J1 =
2

nT

K∑
k=1

∑
i∈Dk

T∑
t=1

1∑
a=0

(−1)a+1I(Ai,t = a)
[
ω̂a,m
t,−k(Si,t)− ωa,m

t (Si,t)
] [
Ri,t + V a

t+1(Si,t+1)− V a
t (Si,t)

]
=

2

nT

K∑
k=1

∑
i∈Dk

T∑
t=1

1∑
a=0

(−1)a+1I(Ai,t = a)
[
ω̂a,m
t,−k(Si,t)− ωa,m

t (Si,t)
]
εai,t.
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It follows from the Cauchy-Schwarz inequality that

EJ2
1 = E

{
2

nT

K∑
k=1

∑
i∈Dk

T∑
t=1

1∑
a=0

(−1)a+1I(Ai,t = a)
[
ω̂a,m
t,−k(Si,t)− ωa,m

t (Si,t)
]
εai,t

}2

≤ 4K

n2T 2

K∑
k=1

E

{∑
i∈Dk

T∑
t=1

1∑
a=0

[
ω̂a,m
t,−k(Si,t)− ωa,m

t (Si,t)
]
εai,t

}2

=
4K

n2T 2

K∑
k=1

|Dk|Var

{
T∑

t=1

1∑
a=0

[
ω̂a,m
t,−k(St)− ωa,m

t (St)
]
εat

}

+
4K

n2T 2

K∑
k=1

{
E

[∑
i∈Dk

T∑
t=1

1∑
a=0

[
ω̂a,m
t,−k(Si,t)− ωa,m

t (Si,t)
]
εai,t

]}2

.

Observe that the conditional mean of the temporal difference error is zero, given any state-action pair. Using Cauchy-Schwarz
inequality again, we have

EJ2
1 ≤ 4K

n2T 2

K∑
k=1

|Dk|Var

{
T∑

t=1

1∑
a=0

[
ω̂a,m
t,−k(St)− ωa,m

t (St)
]
εat

}

≤ 4K

n2T

K∑
k=1

|Dk|
T∑

t=1

E

{
1∑

a=0

[
ω̂a,m
t,−k(St)− ωa,m

t (St)
]
εat

}2

≤ 8K

n2T

K∑
k=1

|Dk|
T∑

t=1

1∑
a=0

E
{[
ω̂a,m
t,−k(St)− ωa,m

t (St)
]
εat

}2

.

Under Assumption 7, one can show that supt,a |εat | = O(Rmax). It follows that E(J2
1 ) = O(n−1R2

maxerr2ω).

Analysis of J2. Similar to the analysis of J1, we can rewrite J2 as

1

nT

K∑
k=1

∑
i∈Dk

[
V̂ 1,m
1,−k(Si,1)− V 1

1 (Si,1) + V 0
1 (Si,1)− V̂ 0,m

1,−k(Si,1)
]

+
2

nT

K∑
k=1

∑
i∈Dk

T∑
t=1

1∑
a=0

(−1)a+1I(Ai,t = a)ωa,m
t (Si,t)

[
V̂ a,m
t+1,−k(Si,t+1)− V a

t+1(Si,t+1) + V a
t (Si,t)− V̂ a,m

t,−k(Si,t)
]
.

Using Cauchy-Schwarz inequality, its second moment can be similarly bounded by

K

n2T 2

K∑
k=1

Var

{∑
i∈Dk

[ [
V̂ 1,m
1,−k(Si,1)− V 1

1 (Si,1) + V 0
1 (Si,1)− V̂ 0,m

1,−k(Si,1)
]

+

T∑
t=1

1∑
a=0

2(−1)a+1I(Ai,t = a)ωa,m
t (Si,t)

[
V̂ a,m
t+1,−k(Si,t+1)− V a

t+1(Si,t+1) + V a
t (Si,t)− V̂ a,m

t,−k(Si,t)
] ]}

+
K

n2T 2

K∑
k=1

{
E
[ ∑
i∈Dk

[ [
V̂ 1,m
1,−k(Si,1)− V 1

1 (Si,1) + V 0
1 (Si,1)− V̂ 0,m

1,−k(Si,1)
]

+

T∑
t=1

1∑
a=0

2(−1)a+1I(Ai,t = a)ωa,m
t (Si,t)

[
V̂ a,m
t+1,−k(Si,t+1)− V a

t+1(Si,t+1) + V a
t (Si,t)− V̂ a,m

t,−k(Si,t)
] ]}2

.

(40)

By the double robustness property, under correct specification of wa,m
t , the squared bias term in (40) is equal to zero. Thus,
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it suffices to upper bound the variance term. With some calculations, we have

K

n2T 2

K∑
k=1

|Dk|Var

{[
V̂ 1,m
1,−k(S1)− V 1

1 (S1) + V 0
1 (S1)− V̂ 0,m

1,−k(S1)
]

+

T∑
t=1

1∑
a=0

2(−1)a+1I(At = a)ωa,m
t (St)

[
V̂ a,m
t+1,−k(St+1)− V a

t+1(St+1) + V a
t (St)− V̂ a,m

t,−k(St)
]}

≤ 2K

n2T 2

K∑
k=1

|Dk|E
{[
V̂ 1,m
1,−k(S1)− V 1

1 (S1) + V 0
1 (S1)− V̂ 0,m

1,−k(S1)
]}2

+
16K

n2T 2

K∑
k=1

|Dk|
1∑

a=0

E

{
T∑

t=1

ωa,m
t (St)

[
V̂ a,m
t+1,−k(St+1)− V a

t+1(St+1) + V a
t (St)− V̂ a,m

t,−k(St)
]}2

≤ 4K

n2T 2

K∑
k=1

|Dk|
1∑

a=0

E
[
V̂ a,m
a,−k(S1)− V a

1 (S1)
]2

+
32K

n2T

K∑
k=1

|Dk|
1∑

a=0

T∑
t=1

C2
ωE

[
V̂ a,m
t,−k(St)− V a

t (St)
]2
,

where the two inequalities follow from the Cauchy-Schwarz inequality and Cω denotes the upper bound of wa,m
t , which is

finite under Assumption 6.

As such, by the definition of errv , we have E(J2
2 ) = O(n−1R2

maxerr2v).

Analysis of J3. Similarly, using Cauchy-Schwarz inequality, E(J2
3 ) can be upper bounded by

4K

n2T 2

K∑
k=1

E

{∑
i∈Dk

T∑
t=1

1∑
a=0

[ω̂a,m
t,−k(Si,t)− ωa,m

t (Si,t)][V̂
a,m
t+1,−k(Si,t+1)− V̂ a,m

t,−k(Si,t)− V a
t+1(Si,t+1) + V a

t (Si,t)]

}2

=
4K

n2T 2

K∑
k=1

|Dk|Var

{
T∑

t=1

1∑
a=0

[ω̂a,m
t,−k(St)− ωa,m

t (St)][V̂
a,m
t+1,−k(St+1)− V̂ a,m

t,−k(St)− V a
t+1(St+1) + V a

t (St)]

}

+
4K

n2T 2

K∑
k=1

{
|Dk|2E

[
T∑

t=1

1∑
a=0

[ω̂a,m
t,−k(St)− ωa,m

t (St)][V̂
a,m
t+1,−k(St+1)− V̂ a,m

t,−k(St)− V a
t+1(St+1) + V a

t (St)]

]}2

.

(41)

Here, the squared bias term on the third line is the dominating factor. Applying Cauchy-Schwarz inequality again, it can
be upper bounded by O(R2

maxerr2ωerr2v). Meanwhile, using similar arguments to the analysis of J2, we can show that the
second line can be upper bounded by O(n−1R2

maxerr2v). Thus, E[J2
3 ] = O(R2

maxerr2ωerr2v + n−1R2
maxerr2v).

To summarize, we have show that EJ2
1 + EJ2

2 + EJ2
3 is of the order

O
[
max

(R2
maxerr2ω
n

,
R2

maxerr2v
n

,R2
maxerr2ωerr2v

)]
.

Using Cauchy-Schwarz inequality, we obtain that E(J1 + J2 + J3)
2 is of the same order of magnitude. Notice that

MSE(ATE(m)
DRL) = MSE(ATE(m)∗

DRL ) + E(J1 + J2 + J3)
2 + 2E(ATE(m)∗

DRL (J1 + J2 + J3)),

where the absolute value of the last term can be upper bounded by√
E(J1 + J2 + J3)2E(ATE(m)∗

DRL )2 = O
[
max

(R2
maxerrω
n

,
R2

maxerrv
n

,
R2

maxerrωerrv√
n

)]
As the error terms errv and errw are o(n−1/4) and hence bounded, combining these results together yields the desired
assertion.

Proof of Theorem 1-LSTD.
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Proof. The proof of Theorem 1-LSTD relies on demonstrating that the LSTD estimator can be expressed as a DRL estimator
(whose detailed form is given in Equation (45) below), allowing us to apply the proof techniques from Theorem 1-DRL to
establish Theorem 1-LSTD. We break the rest of the proof into two parts. In Part I, we establish the equivalence between
the two estimators. In Part II, our aim is to calculate the order of the difference between the RL estimator ATE(m)

DRL and its
“oracle” version ATE(m)∗

DRL , and then analyze its order of magnitude.

Part I. Recall that the value function estimator obtained via LSTD is given by φ⊤
t (s)θ̂t,a,m. The DRL estimator, whose

equivalence to LSTD we aim to establish, uses this estimated value along with a linearly parameterized ω̂a,m
t (s). Specifically,

for each t ≥ 1, we set ω̂a,m
t (s) = φ⊤

t (s)α̂t,a,m where the estimators {α̂t,a,m}t are computed in a forward manner. By
definition

ωa,m
1 (s) =

p1(s)

pm1 (s|a)
=
p1(s)P(A1 = a)

b1(a|s)p1(s)
=

1

2b1(a|s)
, (42)

where b1 denotes the propensity score whose oracle value is a constant function equal to 0.5 by design. To estimate α1,a,m,
notice that according to (42), E[ωa,m

1 (S1)I(A1 = a)h(S1)− h(S1)] = 0 for any function h. This motivates us to compute
α̂1,a,m by solving the following estimating equation,

1

n

n∑
i=1

[
φ⊤
1 (Si,1)α̂1,a,mI(Ai,1 = a)φ1(Si,1)− φ1(Si,1)

]
= 0,

which yields

α̂1,a,m =
[ 1

n

n∑
i=1

φ1(Si,1)φ
⊤
1 (Si,1)I(Ai,1 = a)︸ ︷︷ ︸
Σ̂a

1

]−1[ 1
n

n∑
i=1

φ1(Si,1)
]
. (43)

Next, consider a given t ≥ 2. Using the Bayes rule, it is straightforward to show that

ωa,m
t (s) =

pat (s)

pmt (s|a)
=
pat (s)P(At = a)

pmt (a, s)
=

pat (s)

2pmt (a, s)
,

where pmt (a, s) denote the join distribution function of (At, St). Consequently, using the Bayes rule again, we obtain that

E[ωa,m
t−1 (St−1)|At−1 = a, St] =

pat (St)

2pmt (a, St)
,

for any a and St. This motivates us to estimate αt,a,m by solving the following estimating equation,

1

n

n∑
i=1

[
φ⊤
t−1(Si,t−1)α̂t−1,a,mI(Ai,t−1 = a)φt(Si,t)

]
=

1

n

n∑
i=1

[
φ⊤
t (Si,t)α̂t,a,mI(Ai,t = a)φt(Si,t)

]
,

which yields that

α̂t,a,m =
[ 1

n

n∑
i=1

φt(Si,t)φ
⊤
t (Si,t)I(Ai,t = a)︸ ︷︷ ︸
Σ̂a

t

]−1[ 1

n

n∑
i=1

φt(Si,t)φ
⊤
t−1(Si,t−1)I(Ai,t−1 = a)︸ ︷︷ ︸

Σ̂a
t,t−1

]
α̂t−1,a,m,

(44)

and hence

α̂t,a,m = (Σ̂a
t )

−1Σ̂a
t,t−1(Σ̂

a
t−1)

−1Σ̂a
t−1,t−2 . . . (Σ̂

a
1)

−1
[ 1
n

n∑
i=1

φ1(Si,1)
]
.

This leads to the following DRL estimator

ATE(m)
DRL =

1

nT

n∑
i=1

ψ({Si,t, Ai,t, Ri,t}; {V̂ a,m
t }t,a; {ω̂a,m

t }t,a). (45)
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We aim to show that this DRL estimator equals the LSTD estimator based on {V̂ a,m
t }t,a. According to the definition of the

estimating function ψ, the DRL estimator can be naturally decomposed into two parts where the first part coincides the
LSTD estimator and the second part corresponds to the augmentation term,

2

nT

n∑
i=1

T∑
t=1

1∑
a=0

(−1)a+1I(Ai,t = a)ω̂a,m
t (Si,t)[Ri,t + V̂ a,m

t+1 (Si,t+1)− V̂ a,m
t (Si,t)].

As such, it suffices to show the augmentation term equals zero, or

1

n

n∑
i=1

I(Ai,t = a)ω̂a,m
t (Si,t)[Ri,t + V̂ a,m

t+1 (Si,t+1)− V̂ a,m
t (Si,t)] = 0, (46)

for each a and t. By (44), the left-hand-side (LHS) of (46) equals

(α̂t−1,a,m)⊤(Σ̂a
t,t−1)

⊤
{ 1

n

n∑
i=1

(Σ̂a
t )

−1I(Ai,t = a)φt(Si,t)[Ri,t + V̂ a,m
t+1 (Si,t+1)− V̂ a,m

t (Si,t)]
}
.

According to the LSTD algorithm, it is immediate to see that the statistic inside the curly brackets equals zero. This formally
verifies (46). The proof of Part I is hence completed.

Part II. In Part II, we aim to show (45) is asymptotically equivalent to its oracle estimator

ATE(m)∗
DRL =

1

nT

n∑
i=1

ψ({Si,t, Ai,t, Ri,t}; {V a
t }t,a; {ω

a,m
t }t,a).

The proof is very similar to that of Theorem 1-DRL; for brevity, we provide only a sketch. The main difference lies in the
absence of cross-splitting for this DRL estimator.

Similarly, the difference between ATE(m)
DRL and ATE(m)∗

DRL can be expressed as the sum of the following three terms:

J4 :=
1

nT

n∑
i=1

[ψ({Si,t, Ai,t, Ri,t}; {V a
t }t,a; {ω̂

a,m
t }t,a)− ψ({Si,t, Ai,t, Ri,t}; {V a

t }t,a; {ω
a,m
t }t,a)].

J5 :=
1

nT

n∑
i=1

[ψ({Si,t, Ai,t, Ri,t}; {V̂ a,m
t }t,a; {ωa,m

t }t,a)− ψ({Si,t, Ai,t, Ri,t}; {V a
t }t,a; {ω

a,m
t }t,a)].

J6 :=
2

nT

n∑
i=1

T∑
t=1

1∑
a=0

(−1)a+1I(Ai,t = a)[ω̂a,m
t (Si,t)− ωa,m

t (Si,t)]

×[V̂ a,m
t+1 (Si,t+1)− V̂ a,m

t (Si,t)− V a
t+1(Si,t+1) + V a

t (Si,t)].

Analysis of J4. We further decompose J4 into the sum of

1

nT

n∑
i=1

[ψ({Si,t, Ai,t, Ri,t}; {V a
t }t,a; {ω

a,m∗
t }t,a)− ψ({Si,t, Ai,t, Ri,t}; {V a

t }t,a; {ω
a,m
t }t,a)], (47)

and
1

nT

n∑
i=1

[ψ({Si,t, Ai,t, Ri,t}; {V a
t }t,a; {ω̂

a,m
t }t,a)− ψ({Si,t, Ai,t, Ri,t}; {V a

t }t,a; {ω
a,m∗
t }t,a)], (48)

where ωa,m∗
t (s) = φ⊤

t (s)α
∗
t,a,m, and α∗

t,a,m := minαt,a,m∈RL E(ωa,m
t (St)− φ⊤

t (St)αt,a,m)2 . Then (47) is equal to

J4a :=
2

nT

n∑
i=1

T∑
t=1

1∑
a=0

(−1)a+1I(Ai,t = a)
[
ωa,m∗
t (Si,t)− ωa,m

t (Si,t)
]
εai,t,
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whereas (48) is equal to

J4b :=
2

nT

n∑
i=1

T∑
t=1

1∑
a=0

(−1)a+1I(Ai,t = a)
[
ω̂a,m
t (Si,t)− ωa,m∗

t (Si,t)
]
εai,t.

Note that E(J4a) = 0 because the conditional mean of the temporal difference error is equal to zero, given any state-action
pair. Thus, we obtain

E(J4a)2 ≤ 4

nT 2
Var

{
T∑

t=1

1∑
a=0

[
ωa,m∗
t (St)− ωa,m

t (St)
]
εat

}
≤ O

(8R2
max

nT

) 1∑
a=0

T∑
t=1

E
[
ωa,m∗
t (St)− ωa,m

t (St)
]2
,

where the second inequality follows from the Cauchy-Schwarz inequality and that maxt,a |εat | = O(Rmax). This leads to
E(J2

4a) = O(n−1R2
maxapp err2ω), where we denote app err2ω by maxa,m,t E|ωa,m

t (St)− φ⊤
t (St)α

∗
t,a,m|2.

It remains to bound E(J2
4b). By definition, we can rewrite J4b as follows:

2

T

T∑
t=1

1∑
a=0

(−1)a+1(α̂t,a,m − α∗
t,a,m)⊤

{ 1

n

n∑
i=1

φt(Si,t)I(Ai,t = a)εai,t

}
.

Observe that the conditional mean of the temporal difference error is zero, given any state-action pair. Consequently,
the random vector enclosed within the curly brackets have a mean of zero. Additionally, under Assumption 7, each
summand within the curly brackets is bounded by O(n−1Rmax). Meanwhile, under Assumption 8-(i), we have
maxt ∥E[φt(St)φ

⊤
t (St)]∥2 = O(1). Consequently, the variance of each summand within the curly brackets is bounded

by O(n−2R2
max). It follows from Bernstein’s inequality (see e.g., Van & Wellner, 1996) that with probability at

least 1 − O(n−κT−κ) for some sufficiently large κ > 0, all elements in the curly brackets are upper bounded by
O(n−1/2Rmax

√
log(nT )). As such, we have

E(J2
4b) = O

(R2
max log(nT )est err2ω

n

)
,

where we denote est err2ω = maxa,t,m E∥α̂t,a,m − α∗
t,a,m∥22.

Finally, note that the definition of α∗
t,a,m yields that the approximation error ωa,m

t (St)− ωa,m∗
t (St) is uncorrelated with the

estimation error ωa,m∗
t (St)− ω̂a,m

t (St). Additionally, the non-singularity assumption in Assumption 8-(ii) yields that the
second moment of ωa,m∗

t (St)− ω̂a,m
t (St) is of the same order to that of α̂t,a,m − α∗

t,a,m. Consequently, we have

E(J2
4 ) ≤ 2EJ2

4a + 2EJ2
4b = O(

R2
max log(nT )[app err2ω + est err2ω]

n
) = O(

R2
max log(nT )err2ω

n
).

Analysis of J5. Similar to the analysis of J4, it can be shown that

E(J2
5 ) = O

(R2
max log(nT )err2v

n

)
.

Analysis of J6. Define J∗
6 as

2

T

T∑
t=1

1∑
a=0

(−1)a+1E
{
I(At = a)[ω̂a,m

t (St)− ωa,m
t (St)][V̂

a,m
t+1 (St+1)− V̂ a,m

t (St)− V a
t+1(St+1) + V a

t (St)]|ω̂a,m
t , V̂ a,m

t , V̂ a,m
t+1

}
.

Notice that J∗
6 can be viewed as the expected value of J6 when the estimated IS ratio and value function are fixed.

Using similar arguments in the analysis of J3, it can be shown that E(J∗
6 )

2 = O(R2
maxerr2werr2v).

It remains to consider J6−J∗
6 , which we denote by J̄6({ω̂a,m

t −ωa,m
t }t,a,m, {V̂ a,m

t −V a
t }t,a,m), to highlight its dependence

upon the estimated IS ratio and value function as well as their ground truths. This term can be decomposed into J̄6a + J̄6b +
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J̄6c + J̄6d where

J̄6a = J̄6({ωa,m∗
t − ωa,m

t }t,a,m, {V a,m∗
t − V a

t }t,a,m),

J̄6b = J̄6({ωa,m∗
t − ωa,m

t }t,a,m, {V̂ a,m
t − V a,m∗

t }t,a,m),

J̄6c = J̄6({ω̂a,m
t − ωa,m∗

t }t,a,m, {V a,m∗
t − V a

t }t,a,m),

J̄6d = J̄6({ω̂a,m
t − ωa,m∗

t }t,a,m, {V̂ a,m
t − V a,m∗

t }t,a,m).

We note that:

• J̄6a can be represented by an average of i.i.d. mean zero random variable. Using similar arguments to those for the
second line of (41), we can show that E(J̄2

6a) is of the order O(n−1R2
maxapp err2v).

• Similar to the analysis of J4b, we can represent J̄6b as an average T−1
∑T

t=1 J̄
(t)
6b where each J̄ (t)

6b can be represented
by the inner product of an average of i.i.d. mean zero random vector and (θ̂t,a,m − θ∗t,a,m). The bound E(J̄2

6b) =
O(n−1R2

max log(nT )est err2v) follows similarly to that of E(J2
4b).

• J̄6c can be analyzed very similarly to J̄6b, leading to EJ̄2
6c = O(n−1R2

max log(nT )app err2v).

• Finally, we can express J̄6d as an average T−1
∑T

t=1 J̄
(t)
6d where each J̄ (t)

6d is given by

(θ̂t,a,m − θ∗t,a,m)⊤
( 1

n

n∑
i=1

Mi

)
(α̂t,a,m − α∗

t,a,m),

where Mis are i.i.d. mean zero matrices. Based on this identity, one can show that E(J̄2
6d) is of the order

O(n−1R2
max log(nT )est err2v), using similar arguments to those for the analysis of J̄6b.

Combining these results, one can apply arguments similar to those for the analysis of J4 to show that E(J6 − J∗
6 )

2 =
O(n−1R2

max log(nT )err2v). Together with E(J∗
6 )

2 = O(R2
maxerr2werr2v) and the Cauchy-Schwarz inequality, we obtain that

E(J6)2 = O
(R2

max log(nT )err2v
n

)
+O(R2

maxerr2verr2ω).

The rest of the proof follows similarly to that of DRL.
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