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Abstract

We consider a family of McKean–Vlasov equations arising as the large particle limit
of a system of interacting particles on the positive half-line with common noise and
feedback. Such systems are motivated by structural models for systemic risk with
contagion. This contagious interaction is such that when a particle hits zero, the
impact is to move all the others toward the origin through a kernel which smooths the
impact over time. We study a rescaling of the impact kernel under which it converges
to the Dirac delta function so that the interaction happens instantaneously and the
limiting singular McKean–Vlasov equation can exhibit jumps. Our approach provides
a novel method to construct solutions to such singular problems that allows for more
general drift and diffusion coefficients and we establish weak convergence to relaxed
solutions in this setting. With more restrictions on the coefficients we can establish an
almost sure version showing convergence to strong solutions. Under some regularity
conditions on the contagion, we also show a rate of convergence up to the time
the regularity of the contagion breaks down. Lastly, we perform some numerical
experiments to investigate the sharpness of our bounds for the rate of convergence.
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Contagious McKean–Vlasov problems with common noise

1 Introduction

In this paper, we study the limiting behaviour of the family of conditional McKean–
Vlasov equations

dXε
t = b(t,Xε

t ,ν
ε
t ) dt+ σ(t,Xε

t )
√

1− ρ(t,νε
t )

2 dWt + σ(t,Xε
t )ρ(t,ν

ε
t ) dW

0
t

−α(t) dLε
t ,

τε = inf{t > 0 : Xε
t ≤ 0},

Pε = P
[
Xε ∈ · |W 0

]
, νε

t = P
[
Xε

t ∈ ·, τ ε > t|W 0
]
,

Lε
t = P

[
τε ≤ t|W 0

]
, Lε

t =
∫ t

0
κε(t− s)Lε

s ds,

(1.1)

as ε tends to zero. Here,W andW 0 are independent standard Brownian motions, and κε

is a rescaled mollifier which converges to the Dirac delta as ε goes to 0. Such equations
arise as the limit of a large particle system, where W is usually referred to as the
idiosyncratic noise (of a representative particle) and W 0 as the common noise. Also for
the same reason, Lε is referred to as the loss process and quantifies the amount of mass
that has crossed the boundary at zero by time t. A solution to this system consists of the
random probability measure Pε and the loss process Lε, conditional on W 0.

In addition to the more classical measure dependence of the coefficients that char-
acterise McKean–Vlasov equations, there is a further feedback mechanism through the
loss process Lε: depending on the value of α(t) ≥ 0, Lε pushes Xε towards zero, causing
the value of Lε to increase, hence pushing Xε even closer to 0. The integral kernel κε,
which is parameterised by some ε > 0, is a key element of the model and captures a
latency in the transmission of Lε to Xε present in real-world systems. Precise conditions
on the coefficient functions will be given later.

One motivation for this model arises in systemic risk, where Xε represents the
distance-to-default of a prototypical institution in a financial network with infinitely many
entities, see for example [18]. In this setting, Lε

t denotes the proportion of institutions
that have defaulted by time t and is the cause of endogenous contagion through the
feedback mechanism. In this model, we use the kernel κε to capture feedback where,
when a financial institution defaults and their positions are unwound, the counterparties
experience a decrease in the value of their assets over time. A model for bank runs using
such a smooth transmission of boundary losses was analysed in [3] in the presence of
common noise. Moreover, [20] study a related mean-field model for neurons interacting
gradually through threshold hitting times, albeit without common noise.

If the support of κε is contained in the interval [0, γ] with γ � 1, then the integral∫ t

0
κε(t − s)Lε

s ds is approximately equal to Lε
t . In this article, we prove convergence

in the following sense: if we fix a kernel κ and rescale it with a variable ε > 0 by
κε(t) = ε−1κ(ε−1t), then we have convergence in theM1-topology of Xε to X, where X
is a (relaxed) solution to

dXt = b(t,Xt,νt) dt+ σ(t,Xt)
√

1− ρ(t,νt)2 dWt + σ(t,Xt)ρ(t,νt) dW
0
t

−α(t) dLt,

τ = inf{t > 0 : Xt ≤ 0},
P = P

[
X ∈ · |W 0, P

]
, νt = P

[
Xt ∈ ·, τ > t|W 0, P

]
,

Lt = P
[
τ ≤ t|W 0, P

]
.

(1.2)

Intuitively, (1.1) is a smoothed approximation to (1.2). Our motivation for taking the
limit as ε→ 0 is to investigate the convergence to the system where the feedback is felt
instantaneously, which captures the situation when the latency is small compared to the
timescale of interest. It is well known that equations of the form (1.2) may develop jump
discontinuities, as we will elaborate below.
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Contagious McKean–Vlasov problems with common noise

Variants and special cases of (1.2) have been the subject of extensive research in
the field. In the simplest scenario, where b and ρ are both zero, σ is equal to 1, and α is
a positive constant, we obtain the probabilistic formulation of the supercooled Stefan
problem. The Stefan problem, introduced in [32], describes the temperature and the
phase boundary of a material undergoing a phase transition, typically from a solid to a
liquid. The supercooled Stefan problem describes the freezing of a supercooled liquid
(i.e. a liquid which is below its freezing point). Many authors constructed classical
solutions [13, 14, 15, 24, 19] for time intervals where Lt is regular. In the PDE literature,
it was first established in [31] that Lt may explode in finite time.

In the probabilistic formulation where the initial condition has finite mass, Lt is
bounded but there can still exist a t∗ ∈ (0, ∞) such that lims↑t∗ L

′
s = ∞, referred to as

a blow-up. Moreover, given suitable assumptions, for α(t) sufficiently large, a jump of
t 7→ Lt must occur, as per [17, Theorem 1.1]. With added common noise, there is a set of
paths of positive probability where a jump must happen, [25, Theorem 2.1].

The probabilistic reformulation provides a natural way to restart the system following
a blow-up. From this perspective, for arbitrary initial conditions, see [17, Example 2.2],
there may be infinitely many solutions: it may be possible for two solutions to be equal up
to the first jump time t and then take jumps of different sizes. To address this ambiguity
that arises at a jump time, a condition is typically imposed that selects the smallest
possible jump sizes. This condition is known as the physical jump condition, defined as:

∆Lt = inf{x > 0 : νt−([0, αx]) < x}, (1.3)

where ∆Lt := Lt − Lt−. The intuitive interpretation of (1.3) is that if we take the density
of Xt−1τ≥t and displace it by an αx amount towards 0, then the mass of the system below
zero is exactly x. So it is the minimal amount by which we may displace our density
such that the displacement and the mass below zero correspond. From a modelling
perspective, the physical jump condition is the preferred choice of jump sizes due to its
economic and physical interpretations.

Extensive research has been conducted to investigate various properties of physical
solutions to the equation with b = ρ = 0, σ = 1, and α a positive constant [29, 28,
17, 26, 25, 27, 22, 9]. The paper [11] establishes that when X0− possesses a bounded
density that changes monotonicity finitely many times, then L is unique, and for any
t ≥ 0, L is continuously differentiable on (t, t+ h) for some h > 0. Additionally, in [17],
it is demonstrated that for an initial condition with a bounded density that is Hölder
continuous near the boundary, L is unique, continuous, and has a weak derivative until
some explosion time. The work in [26] extends these results by showing that if the initial
condition possesses an L2-density, then we have uniqueness for a short time after the
explosion time. Moreover, irrespective of the initial condition, there exists a minimal
loss process that will be dominated by any other loss process that solves the equation
[9]. It has been established that such minimal solutions are physical [9, Theorem 6.5].
However, it remains unclear whether physical solutions are necessarily minimal due to
the lack of uniqueness for general initial conditions.

Returning to (1.2), recent advances have been made in the study of general coeffi-
cients, specifically t 7→ b(t), t 7→ σ(t), and t 7→ ρ(t), in the presence of common noise.
In Remark 2.5 from [28], a generalized Schauder fixed-point argument is presented
to construct strong solutions in this setting. Strong solutions refer to the property
P = P(X ∈ · |W 0), indicating that the random probability measure P is adapted to the
σ-algebra generated by the common noise. In [25], an underlying finite particle system
was shown to converge to relaxed (or weak ) solutions (see Definition 2.1), satisfying
the aforementioned physical jump condition (with coefficients (t, x) 7→ b(t, x), t 7→ σ(t),
and t 7→ ρ(t)). Weak/relaxed solutions are characterised by having P = P(X ∈ · |W 0,P),
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Contagious McKean–Vlasov problems with common noise

instead of P = P(X ∈ · | W 0), see Definition 2.1. As the empirical distributions of the
finite particle systems converge weakly to P, there is no guarantee that P will be adapted
to the σ-algebra generated by the common noise. The existence of such strong solutions
in the sense just discussed, for the common noise problem satisfying the physical jump
condition (1.3), has not yet been addressed in the literature.

The main contributions and structure of this paper are as follows:

• Firstly, in Section 2, we prove Theorem 2.5 and Corollary 2.6 showing the weak
convergence of solutions of (1.1) to relaxed solutions of (1.2) as ε → 0, i.e., as
the smoothed feedback mechanism becomes instantaneous in the limit. As a by-
product, this gives a novel method for establishing the existence of solutions to
(1.2), avoiding time regularity assumptions on σρ as needed in [25]. Furthermore,
we derive an upper bound on the jump sizes, Theorem 2.5, and, under additional
assumptions on the coefficients, Corollary 2.6, show that the loss process L satisfies
the physical jump condition (1.3).

• Secondly, in Section 3, we show in Theorem 3.8 that, if the coefficients depend
solely on time and α is a constant, then we may upgrade our mode of convergence
from weak to almost sure. As a consequence of the method employed, we can
guarantee that the limiting loss process will be W 0-measurable and satisfy the
physical jump condition. In addition, we have the existence of strong solutions in
this setting.

• Lastly, in Section 4, for constant coefficients and without common noise, we provide
in Proposition 4.1 an explicit rate of convergence of the smoothed approximations
to the singular system prior to the first time the regularity of the loss function
breaks down. We also give numerical tests of the convergence order in scenarios
of different regularity, with and without common noise.

2 Weak convergence of smoothed feedback systems

Fix a finite time horizon T > 0, and let P(A) denote the set of probability measures on
a measurable space (A,A). When A is a metric space, B(A) denotes the Borel σ-algebra.
Let M≤1(A) denote the space of sub-probability measures, which we shall endow with
the topology of weak convergence. For any interval I and metric space X, let C(I,X)

denote the space of continuous functions from I to X. Similarly, D(I,X) denotes the
space of càdlàg functions from I to X. We shall employ the shorthand notation CX and
DX for C(I,X) and D(I,X), respectively, when the interval I is clear.

For every ε > 0, we fix a probability space (Ωε,Fε, Pε) that supports two independent
Brownian motions. To simplify the notation, we will denote these Brownian motions by
W and W 0; however, it is important to note that they may not be equal for different
values of ε. Similarly, we adopt the simplified notations P and E to refer to Pε and the
expectation under the measure Pε respectively. In this section, we characterise the weak
limit of the system given by the following equation as ε tends to zero:

dXε
t = b(t,Xε

t ,ν
ε
t ) dt+ σ(t,Xε

t )
√

1− ρ(t,νε
t )

2 dWt + σ(t,Xε
t )ρ(t,ν

ε
t ) dW

0
t

−α(t) dLε
t ,

τε = inf{t > 0 : Xε
t ≤ 0},

Pε = P
[
Xε ∈ · |W 0

]
, νε

t := P
[
Xε

t ∈ ·, τ ε > t|W 0
]
,

Lε
t = P

[
τε ≤ t|W 0

]
, Lε

t =
∫ t

0
κε(t− s)Lε

s ds,

(2.1)

where t ∈ [0, T ]. The coefficient b (σ, ρ, or α, respectively) is a measurable map from
[0, T ] × R × M≤1(R) ([0, T ] × R, [0, T ] × M≤1(R), or [0, T ], respectively) into R. The

EJP 30 (2025), paper 94.
Page 4/53

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1347
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Contagious McKean–Vlasov problems with common noise

initial condition, denoted by X0−, is assumed to be independent of the Brownian motions
and positive almost surely. Finally, we define κε(t) := ε−1κ(tε−1).

One way to view Xε is as the mean-field limit of an interacting particle system where
particles interact through their first hitting time of zero. The interactions among particles
are smoothed out over time by convolving with the kernel κε. As ε approaches zero, the
effect of interactions occurs over increasingly smaller time intervals. As κε is a mollifier,
it is natural to expect, as ε tends to zero, Lε

t to converge to the instantaneous loss at
time t. That is to say, along a suitable subsequence, the random tuple {(Pε, W 0, W )}ε>0

would have a limit point (P, W 0, W ) where P = P
[
X ∈ · |W 0

]
and X solves

dXt = b(t,Xt,νt) dt+ σ(t,Xt)
√

1− ρ(t,νt)2 dWt + σ(t,Xt)ρ(t,νt) dW
0
t

−α(t) dLt,

τ = inf{t > 0 : Xt ≤ 0},
P = P

[
X ∈ · |W 0

]
, νt := P

[
Xt ∈ ·, τ > t|W 0

]
,

Lt = P
[
τ ≤ t|W 0

]
,

(2.2)

with X0 = X0− + α(0)L0. In this system, the feedback is felt instantaneously and is
characterised by the common noise W 0. In what follows, for technical reasons, we
construct an extension X̃ of the process X. For an arbitrary stochastic process Z, we
define its extended version as follows,

Z̃t =


Z0− t ∈ [−1, 0),

Zt t ∈ [0, T ],

ZT +Wt −WT t ∈ (T, T + 1].

(2.3)

We artificially extend the processes to be constant on [−1, 0) and by a pure Brownian
noise term on (T, T + 1]. Therefore, the extension to Pε is P̃ε := P(X̃ε ∈ · | W 0).
Consequently, the random measure P̃ε remains W 0-measurable. We show that the
collection of measures {P̃ε}ε>0 is tight; hence there exists a subsequence (εn)n≥1 that
converges to zero such that P̃εn converges weakly to the random measure P. However,
as the mode of convergence is weak, we cannot expect that the limit point P is also
measurable with respect to W 0.

Hence, we relax our notion of solution to (2.2), which leads to the definition of
relaxed solutions employed in the literature when studying the mean-field limit of
particle systems with common noise [25] and also in the mean-field game literature with
common source of noise [4].

Definition 2.1 (Relaxed solutions). Let the coefficient functions b, σ, ρ, and α be given
along with the initial condition X0− at time t = 0−. We define a relaxed solution to (2.2)
as a family (X, W, W 0, P) on a filtered probability space (Ω, F , P) such that

dXt = b(t,Xt,νt) dt+ σ(t,Xt)
√

1− ρ(t,νt)2 dWt + σ(t,Xt)ρ(t,νt) dW
0
t

−α(t) dLt,

τ = inf{t > 0 : Xt ≤ 0},
P = P

[
X ∈ · |W 0, P

]
, νt := P

[
Xt ∈ ·, τ > t|W 0, P

]
,

Lt = P
[
τ ≤ t |W 0, P

]
,

(2.4)

with X0 = X0− +α(0)L0, L0− = 0, X0− ⊥ (W, W 0, P), and (W 0,P) ⊥W , where (W, W 0)

is a two-dimensional Brownian motion, X is a càdlàg process, and P is a random
probability measure on the space of càdlàg paths D([−1, T + 1],R).

As the drift and correlation function depend on a flow of measures, we still want them
to satisfy some notion of linear growth and Lipschitzness in the measure component. We

EJP 30 (2025), paper 94.
Page 5/53

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1347
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Contagious McKean–Vlasov problems with common noise

will also require some spatial and temporal regularity such that (2.1) is well-posed. We
will suppose that our coefficients b, σ, ρ, κ and α satisfy the following assumptions.

Assumption 2.2. (i) (Regularity of b) For all t ∈ [0, T ] and µ ∈ M≤1(R), the map
x 7→ b(t, x, µ) is C2(R). Moreover, there exists a constant Cb > 0 such that

|b(t, x, µ)| ≤ Cb (1 + |x|+ 〈µ, | · |〉) , |∂(n)x b(t, x, µ)| ≤ Cb, n = 1, 2,

|b(t, x, µ)− b(t, x, µ̃)| ≤ Cb (1 + |x|+ 〈µ, | · |〉) d0(µ, µ̃),

where
d0(µ, µ̃) = sup

{
|〈µ− µ̃, ψ〉| : ‖ψ‖ Lip ≤ 1, |ψ(0)| ≤ 1

}
for any µ, µ̃ ∈ M≤1(R).

(ii) (Space/time regularity of σ) The map (t, x) 7→ σ(t, x) is C1,2([0, T ]×R). Moreover,
there exists a constant Cσ > 0 such that

|σ(t, x)| ≤ Cσ, |∂tσ(t, x)| ≤ Cσ, and |∂(n)x σ(t, x)| ≤ Cσ for n = 1, 2.

(iii) (d1-Lipschitzness of ρ) For all t ∈ [0, T ], there exists a constant Cρ > 0 such that

|ρ(t, µ)− ρ(t, µ̃)| ≤ Cρ (1 + 〈µ, | · |〉) d1(µ, µ̃),

where
d1(µ, µ̃) = sup

{
|〈µ− µ̃, ψ〉| : ‖ψ‖Lip ≤ 1, ‖ψ‖∞ ≤ 1

}
for any µ, µ̃ ∈ M≤1(R).

(iv) (Non-degeneracy) For all t ∈ [0, T ], x ∈ R, and µ ∈ M≤1(R), the constants Cσ and
Cρ assumed above are such that 0 < C−1

σ ≤ σ(t, x) and 0 ≤ ρ(t, µ) ≤ 1− C−1
ρ .

(v) (Temporal regularity of α) The map t 7→ α(t) is C1([0, T ]) and increasing with
α(0) ≥ 0.

(vi) (Sub-Gaussian initial law) The initial law, ν0− is sub-Gaussian,

∃ γ > 0 s.t. ν0−(λ,∞) = O(e−γλ2

) as λ→ ∞,

and has a density V0− ∈ L2(0,∞) such that ‖xV0−‖2L2 =
∫∞
0

|xV0−(x)|2 dx <∞.

(vii) (Regularity of mollifier) The function κ ∈ W1,1
0 (R+), the Sobolev space with one

weak derivative in L1 and zero at 0, such that κ is non-negative, and ‖κ‖1 = 1.

Under Assumption 2.2, [18] showed existence and uniqueness of solutions to a
stochastic partial differential equation (SPDE) that any solution to (2.1) will satisfy.

Theorem 2.3 ([18, Theorem 2.6]). There is a unique strong solution to the SPDE

d〈µt, φ〉 =〈µt, b(t, ·, µt)∂xφ〉dt+
1

2
〈µt, σ(t, ·)2∂xxφ〉dt

+ 〈µt, σ(t, ·)ρ(t, µt)∂xφ〉dW 0
t − 〈µt, α(t)∂xφ〉dLε

t ,

Lε
t :=

∫ t

0

κε(t− s)Ls ds,

Lt :=1− µt(0,∞),

(2.5)

where the coefficients b, σ, ρ, κε, and α satisfy Assumption 2.2, and φ ∈ C0, the set of
Schwartz functions that are zero at 0.
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From [18, Theorem 2.6], we can deduce the existence of solutions to (2.1).

Theorem 2.4 ([18, Theorem 2.7]). Let (νε, W 0) be the unique strong solution to the
SPDE (2.5). Then, for any Brownian motion W ⊥ (X0−,W

0), we have

νε
t = P

[
Xε

t ∈ ·, τ ε > t |W 0
]
,

where Xε is the solution to the conditional McKean–Vlasov diffusion

dXε
t = b(t,Xε

t ,ν
ε
t ) dt+ σ(t,Xε

t )
√
1− ρ(t,νε

t )
2 dWt + σ(t,Xε

t )ρ(t,ν
ε
t ) dW

0
t

−α(t) dLε
t ,

Pε = P
[
Xε ∈ · |W 0

]
,

Lε
t = P

[
τε ≤ t |W 0

]
, Lε

t =
∫ t

0
κε(t− s)Lε

s ds,

τε = inf{t > 0 : Xε
t ≤ 0},

with initial condition X0− ∼ ν0−.

With [18, Theorem 2.6] and [18, Theorem 2.7], it can be inferred that solutions to
(2.1) are unique.

The existence of solutions to (2.1) allows us to introduce the main result of this
section, showing that solutions to (2.4) exist as limit points of the collection of smoothed
equations.

Theorem 2.5 (Existence and convergence generalised). Let X̃ε be the extended ver-
sion of Xε in (2.1) and set P̃ε = Law(X̃ε | W 0). Then, the family of random tuples
{(P̃ε, W 0, W )}ε>0 is tight. Any subsequence {(P̃εn , W 0, W )}n≥1, for a positive sequence
(εn)n≥1 which converges to zero, has a further subsequence which converges weakly
to some (P, W 0, W ). Here, W 0 and W are standard Brownian motions, P is a random
probability measure P : Ω → P(DR).

Given this limit point, there is a background space which carries a stochastic process
X such that (X, W 0, W, P) is a relaxed solution to (2.4) in the sense of Definition 2.1.
X0−, W and (W 0,P) are all mutually independent and

∆Lt = P

[
inf
s<t

Xs > 0, Xt ≤ 0

∣∣∣∣W 0, P

]
≤ inf {x ≥ 0 : νt−([0, α(t)x]) < x} a.s. (2.6)

for all t ≥ 0.

The notation Law(X̃ε | W 0) stands for the conditional law of X̃ε given W 0, which
indeed defines a randomW 0-measurable probability measure onD([−1, T +1],R). Under
stronger assumptions, namely b, σ, and ρ being of the form (t, x) 7→ b(t, x), t 7→ σ(t),
t 7→ ρ(t) and α is a positive constant, there are established results in the literature for a
lower bound on the jumps of the loss function. By Proposition 3.5 in [25], the jumps of
the loss satisfy

∆Lt ≥ inf {x ≥ 0 : νt−([0, αx]) < x} a.s.

Due to the generality of the coefficients, we were not able to establish if (2.6) holds with
equality. The primary reason is the lack of independence between the term driven by the
idiosyncratic noise and the remainder of the terms that X is composed of. Hence, the
technique employed in [25, Proposition 3.5] may not be readily applied or extended to
our setting. Regardless, given these two results, under stronger assumptions, we have
the following existence result.

Corollary 2.6 (Existence of physical solutions). Let the coefficients b, σ, and ρ be of
the form (t, x) 7→ b(t, x), t 7→ σ(t), t 7→ ρ(t) and satisfy Assumption 2.2. Then provided
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α(t) ≡ α > 0 and constant, there exists a relaxed solution to
dXt = b(t,Xt) dt+ σ(t)

√
1− ρ(t)2 dWt + σ(t)ρ(t) dW 0

t − α dLt,

τ = inf{t > 0 : Xt ≤ 0},
P = P

[
X ∈ · |W 0, P

]
, νt := P

[
Xt ∈ ·, τ > t|W 0, P

]
,

Lt = P
[
τ ≤ t |W 0, P

]
.

(2.7)

Moreover, we have the minimal jump constraint

∆Lt = inf {x ≥ 0 : νt−([0, αx]) < x} a.s.

for all t ≥ 0. This determines the jump sizes of L.

This presents a minor generalisation of the results in [25]. In their work, the authors
imposed the condition that t 7→ σ(t)ρ(t) must be Hölder continuous with an exponent
strictly greater than 1/2. This was necessary in [25, Lemma 3.16] to deduce the inde-
pendence between the idiosyncratic noise and the common noise in the limiting system
(2.7) due to their particle system approach to the problem. Here, such explicit assump-
tions on the regularity of ρ are not necessary, as we obtain the independence between
the idiosyncratic noise and the common noise from the approximating system without
additional conditions. Consequently, we can consider Corollary 2.6 to be an extension of
Theorem 3.2 in [25].

2.1 Limit points of the smoothed system

In order to show the existence of a limit point of Xε, we must first choose a suitable
topology to establish convergence. By Theorem 2.4 in [18], Lε is continuous for every
ε > 0, but the loss of the limiting process may in fact jump. Skorokhod’s M1-topology
is sufficiently rich to facilitate the convergence of continuous functions to those with
jumps.

Remark 2.7. The equation (1.1) has been posed in slightly more generality (with
α(t,Xε

t ,ν
ε
t )) in [18]. As the convergence is strictly in the M1-topology, not in the J1-

topology, we only consider α to be of the form α(t). If we considered it to also be a
function of Xt and/or νt, then we cannot expect to obtain an equation of the form (1.2)
in the limit as ε ↓ 0, due to X, ν, and L having jumps at the same time.

The theory in [33] requires our càdlàg processes to be uniformly right-continuous
at the initial time point and left-continuous at the terminal time point, when working
with functions on compact time domains. As we are starting from an arbitrary initial
condition X0− which is positive almost surely, the limiting process may exhibit a jump
immediately at time 0 given sufficient mass near the boundary. For this reason, we
shall embed the process from D([0, T ],R) into D([−1, T̄ ],R), where T̄ = T + 1, using the
extension defined in (2.3). Unless stated otherwise, for notational convenience we shall
denote the latter space, D([−1, T̄ ],R), by DR. Recall, P̃ε is defined to be the law of X̃ε

conditional on W 0. That is P̃ε := Law(X̃ε |W 0).
To show tightness and convergence of the collection of random measures {P̃ε}ε>0,

we shall follow the ideas in [10] and [25]. To begin, we first derive a Grönwall-type
estimate of the smoothed system uniformly in ε. These estimates are necessary to show
the tightness of {P̃ε}ε>0 and the existence of a limiting random measure. In the following
Proposition and its sequels, C will denote a constant that may change from line to line,
and we will denote the dependencies of the value of C in its subscript. To further simplify
notation, we use Y ε

t , Y
0,ε
t , and Yε

t to denote∫ t

0

σ(u,Xε
u)
√
1− ρ2(u,νε

u) dWu,

∫ t

0

σ(u,Xε
u)ρ(u,ν

ε
u) dW

0
u , and Y ε

t + Y 0,ε
t
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respectively. We shall use Ỹ ε
t , Ỹ

0,ε
t , and Ỹε

t to denote their corresponding extensions as
defined in (2.3).

Proposition 2.8 (Grönwall upper bound). For any p ≥ 1 and t ≤ T , there exists a constant
Cα,b,p,T,σ > 0 independent of ε > 0 such that

E

[
sup
s≤T

|Xε
s |

p

]
≤ Cα,b,p,T,σ. (2.8)

Proof. By the linear growth condition on b and the triangle inequality, we have

|Xε
t | ≤ |X0−|+ Cb

∫ t

0

1 + sup
u≤s

|Xε
u|+ E

[
|Xε

s∧τε ||W 0
]
ds+ sup

s≤T
|Yε

s |+ ‖α‖∞ .

By [18, Lemma A.3],
∫ T

0
E |Xε

s∧τε |p ds <∞ for any p ≥ 1. Therefore, a simple application
of Grönwall’s inequality shows that

sup
s≤t

|Xε
s | ≤ CT,b,α

(
|X0−|+

∫ t

0

E
[
|Xε

s∧τε ||W 0
]
ds+ sup

s≤T
|Yε

s |+ 1

)
.

By (vi) in Assumption 2.2, X0− has finite Lp-moments for every p > 0. Furthermore,
by employing the Burkholder-Davis-Gundy inequality to control E[sups≤T |Yε

s |], we may
deduce that E[sups≤t |Xε

s |
p
] < ∞ for all t ≥ 0 and p ≥ 1. Now, observing that |Xε

t∧τε | ≤
sups≤t |Xε

s |, we have by the monotonicity of expectation and Jensen’s inequality that

sup
s≤t

|Xε
s |

p ≤ Cp
T,b,α

(
|X0−|+

∫ t

0

E
[
|Xε

s∧τε ||W 0
]
ds+ sup

s≤T
|Yε

s |+ 1

)p

≤ CT,b,α,p

(
|X0−|p +

∫ t

0

E

[
sup
u≤s

|Xε
u|

p

∣∣∣∣W 0

]
ds+ sup

s≤T
|Yε

s |
p
+ 1

)
.

Taking expectations and applying Fubini’s theorem followed by Grönwall’s inequality, we
obtain

E

[
sup
s≤T

|Xε
s |

p

]
≤ CT,b,α,pE

[
|X0−|p + sup

s≤T
|Yε

s |
p
+ 1

]
. (2.9)

Lastly, by the Burkholder-Davis-Gundy inequality and (ii) from Assumption 2.2, we may
bound (2.9) independently of ε. This completes the proof.

The collection {P̃ε}ε>0 consists of P(DR)-valued random measures. To show that this
collection is tight, we need to find, for any γ > 0, a compact set Kγ in P(DR) so that
Law(P̃ε)(Kγ) = P(P̃ε ∈ Kγ) ≤ γ for all ε > 0. In other words, we need the probability
measures {Law(P̃ε)}ε>0 to be tight in P(P(DR)). Rather than tackling this directly, we
follow an indirect approach of first showing that the measures {Law(X̃ε)}ε>0 are tight
in P(DR) and then we construct Kγ from there. Due to how the processes are defined,
the latter follows easily from properties of theM1-topology and [1, Theorem 1].

Proposition 2.9 (Tightness of smoothed randommeasures). Let Twk
M1

denote the topology
of weak convergence on P(DR) induced by theM1-topology on DR. Then, the collection
{P̃ε}ε>0 = {Law(X̃ε |W 0)}ε>0 is tight on (P(DR),T

wk
M1

) under Assumption 2.2.

Proof. Define P̃ ε := Law(X̃ε). By [33, Theorem 12.12.3], we need to verify two conditions
to show the tightness of the measures on DR endowed with theM1-topology:

(i) limλ→∞ supε>0 P̃
ε ({x ∈ DR : ‖x‖∞ > λ}) = 0.

(ii) For any η > 0, we have limδ→0 supε>0 P̃
ε ({x ∈ DR : wM1

(x, δ) ≥ η}) = 0, where
wM1

is the oscillatory function of the M1-topology, defined as in [33, Section 12,
Equation 12.2].
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To show the first condition, we observe that by the definition of the extension of our
process, we have

sup
t≤T̄

|X̃ε
t | ≤ sup

t≤T
|Xε

t |+ sup
t≤1

|WT+t −WT |+ ‖α‖∞ .

Then, it is clear by Markov’s inequality and Proposition 2.8 that for any λ > 0,

P

[
sup
t≤T̄

|X̃ε
t | > λ

]
= O(λ−1)

uniformly in ε. Therefore, by taking the supremum over ε and then the lim sup over λ, the
first condition holds. We shall not show the second condition directly. By [1, Theorem 1],
the second condition is equivalent to showing:

(I) There exists some C > 0, uniformly in ε, such that P
[
HR(X̃

ε
t1 , X̃

ε
t2 , X̃

ε
t3) ≥ η

]
≤

Cη−4|t3 − t1|2 for all η > 0 and −1 ≤ t1 ≤ t2 ≤ t3 ≤ T̄ where HR(x1, x2, x3) =

infλ∈[0,1] |x2 − (1− λ)x1 − λx3|.

(II) limδ→0 supε>0P
[
supt∈(−1,−1+δ) |X̃ε

t − X̃−1|+ supt∈(T̄−δ,T̄ ) |X̃ε
t − X̃T̄ | ≥ η

]
= 0 for all

η > 0.

Note that by Assumption 2.2, we have α is non-decreasing and non-negative. Therefore,
by the properties of Lebesgue-Stielitjes integration, t 7→

∫ t

0
α(s) dLε

s is non-decreasing.
As monotone functions are immaterial to theM1 modulus of continuity, we have

HR(X̃
ε
t1 , X̃

ε
t2 , X̃

ε
t3) ≤ |Zt1 − Zt2 |+ |Zt2 − Zt3 |,

where Z is given by

Zt = X0− +

∫ t∧T

0

b(u,Xε
u,ν

ε
u) du+ Ỹt

for t ≥ 0 and Zt = X0− for t < 0. Hence, to show (I), it is sufficient to bound the
increments of Z. Note that when s < t < −1, Z is constant. Therefore, trivially we have

E
[
|Zt − Zs|4

]
≤ C(t− s)2 for any C > 0. When 0 ≤ s < t, by the formula above for Z we

have that

Zt − Zs =

∫ t∧T

s∧T

b(u,Xε
u,ν

ε
u) du+ Ỹt − Ỹs. (2.10)

Employing the linear growth condition on b and Proposition 2.8,

E

∣∣∣∣∣
∫ t∧T

s∧T

b(u,Xε
u,ν

ε
u) du

∣∣∣∣∣
4
 ≤ C(t− s)4

(
1 + E

[
sup
u≤T

|Xε
u|4
])

= O((t− s)2) (2.11)

uniformly in ε. By the Burkholder-Davis-Gundy inequality and the upper bound on σ, it is
clear that

E

[∣∣∣Ỹt − Ỹs

∣∣∣4] = O((t− s)2) (2.12)

uniformly in ε. Therefore, by Markov’s inequality,

P
[
HR(X̃

ε
t1 , X̃

ε
t2 , X̃

ε
t3) ≥ η

]
≤ η−4E

[
HR(X̃

ε
t1 , X̃

ε
t2 , X̃

ε
t3)

4
]

≤ Cη−4E
[
|Zt1 − Zt2 |

4
+ |Zt2 − Zt3 |4

]
≤ Cη−4

(
(t2 − t1)

2 + (t3 − t2)
2
)

≤ Cη−4(t3 − t1)
2,

EJP 30 (2025), paper 94.
Page 10/53

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1347
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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where all the constants hold uniformly in ε. To verify the second condition, we observe
that for any η > 0 and δ < 1,

P

[
sup

t∈(−1,−1+δ)

|X̃ε
t − X̃ε

−1| ≥
η

2

]
= P

[
sup

t∈(−1,−1+δ)

|X0− −X0−| ≥
η

2

]
= 0, and

P

[
sup

t∈(T̄−δ,T̄ )

|X̃ε
t − X̃T̄ | ≥

η

2

]
= P

[
sup

t∈(T̄−δ,T̄ )

|Wt −WT̄ | ≥
η

2

]
= O(δ2),

uniformly in ε. Hence, we have shown that

P

[
sup

t∈(−1,−1+δ)

|X̃ε
t − X̃ε

−1|+ sup
t∈(T̄−δ,T̄ )

|X̃ε
t − X̃ε

T̄ | ≥ η

]
= O(δ2) for all η > 0, δ < 1.

Therefore, together, conditions (I) and (II) show

sup
ε>0

P̃ ε ({x ∈ DR : wM1
(x, δ) ≥ η}) = O(δ2),

for all δ < 1 uniformly in ε. This shows condition (ii).
Based on the above, we can now employ Markov’s inequality and Prokhorov’s theorem

to deduce that {Law(P̃ε)}ε>0 is tight in P(P(DR)). To begin, fix a γ > 0. For any l, k ∈ N,
we may find a λl, δk,l > 0 such that

P̃ ε(A{
k,l) < γ2−(k+2l+1) ∀k ∈ N uniformly in ε,

where A0,l = {x ∈ DR : ‖x‖ ≤ λl},

Ak,l =

{
x ∈ DR : wM1

(x, δk,l) <
1

k + 2l

}
.

We define Al = ∩k≥0Ak,l. By [33, Theorem 12.12.2], Al has compact closure in the
M1-topology. The closure of Al is denoted by Āl. Furthermore, by construction P̃ ε(A{

l ) ≤∑
k≥0 P̃

ε(A{
k,l) ≤ γ4−l. By the subadditivity of measures and Markov’s inequality,

P

[∞⋃
l=1

{
P̃ε(A{

l ) > 2−l
}]

≤
∑
l≥1

P
[
P̃ε(A{

l ) > 2−l
]
≤
∑
l≥1

2lE
[
P̃ε(A{

l )
]
≤
∑
l≥1

γ2l

4l
= γ.

(2.13)
Finally, let K := {µ ∈ P(DR) : µ(Ā{

l ) ≤ 2−l ∀ l ∈ N}. As DR endowed with the M1-
topology is a Polish space, Prokhorov’s theorem may be applied, and it suffices to show
that the set of measures K is tight; hence, K will then have compact closure in P(DR)

by Prokhorov’s theorem. It is clear by construction that the set of measures K is tight
as the sets Āl are compact in DR endowed with the M1-topology. By (2.13), we have
Law(P̃ε)(K̄{) ≤ γ, uniformly in ε. As γ was arbitrary, this completes the proof.

2.2 Continuity of hitting times

Note that (DR,M1) is a Polish space by [33, Theorem 12.8.1] and its Borel σ-algebra
is generated by the marginal projections, [33, Theorem 11.5.2]. Hence, the topological
space (P(DR),T

wk
M1

) is also a Polish space. Therefore, by invoking Prokhorov’s Theorem,
[2, Theorem 5.1], tightness is equivalent to being sequentially pre-compact. So, we
may choose a weakly convergent subsequence {P̃εn}n≥1 for a positive sequence (εn)n≥1

which converges to zero. Let P∗ denote the limit point of this sequence. Using this
limit point, we will construct a probability space and a stochastic process that will be a
solution to (2.4).
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Before proceeding, we seek to show that for a co-countable set of times t, Lεn
t =

P̃εn(τ0(η) ≤ t) converges weakly to L∗
t := P∗(τ0(η) ≤ t), where τ0 is a function on DR

whose value is the first hitting time of 0. To be explicit, we define

T :=
{
t ∈ [−1, T̄ ] : E [P∗(ηt = ηt−)] = 1,E [P∗(τ0(η) = t)] = 0

}
,

and

τ0(η) := inf{t ≥ −1 : ηt ≤ 0} (2.14)

with the convention that inf{∅} = T̄ . Our first result is that for Law(P∗)-almost every
measure µ, µ-almost every path η ∈ DR is constant on the interval [−1, 0).

Lemma 2.10. For Law(P∗)-almost every measure µ, we have that sups<0 |ηs − η−1| = 0

for µ-almost every path η.

Proof. As (P(DR),T
wk
M1

) is a Polish space, we may apply Skorokhod’s Representation
Theorem [2, Theorem 6.7]. Hence, there exists a common probability space, and P(DR)-
valued random variables (Qn)n≥1 and Q∗ such that

Law(Qn) = Law(P̃εn), Law(Q∗) = Law(P∗), and Qn → Q∗ a.s.

It is straightforward to see-by [33, Theorem 13.4.1]-the following maps from DR into
itself

η 7→
(
t 7→ inf

s≤t
{ηs − η−1}

)
η 7→

(
t 7→ sup

s≤t
{ηs − η−1}

)
are continuous. Now, for a t ∈ T ∩ (−1, 0), the maps ct and c̃t from DR onto R such that

ct(η) = inf
s≤t

{ηs − η−1} c̃t(η) = sup
s≤t

{ηs − η−1}

are continuous. Therefore, by the Continuous Mapping Theorem, c#t Q
n → c#t Q

∗ and
c̃#t Q

n → c̃#t Q
∗ almost surely in (P(DR),T

wk
M1

).
Fix a γ > 0. Then by the Portmanteau Theorem and Fatou’s lemma, we have

E

[
P∗
(
inf
s≤t

{ηs − η−1} < −γ
)]

= E

[
Q∗
(
inf
s≤t

{ηs − η−1} < −γ
)]

≤ E

[
lim inf
n→∞

Qn

(
inf
s≤t

{ηs − η−1} < −γ
)]

≤ lim inf
n→∞

E

[
Qn

(
inf
s≤t

{ηs − η−1} < −γ
)]

= lim inf
n→∞

E

[
P̃εn

(
inf
s≤t

{ηs − η−1} < −γ
)]

= lim inf
n→∞

P̃ εn

(
inf
s≤t

{ηs − η−1} < −γ
)

= 0,

where the last equality follows from the embedding of Xεn from D([0, T ],R) into
D([−1, T̄ ],R). So, by continuity of measure and the Monotone Convergence Theorem, as
γ was arbitrary, we have

E

[
P∗
(
inf
s≤t

{ηs − η−1} < 0

)]
= 0.

Similarly, E
[
P∗ (sups≤t{ηs − η−1} > 0

)]
= 0.
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As X̃ε is fundamentally a time-changed Brownian motion with drift, it is not hard to
show that, with probability one, X̃ε will take a negative value on any open neighbourhood
of its first hitting time of zero. This property is preserved by weak convergence for almost
every realisation of P∗. Furthermore, as the Lebesgue-Stieltjes integral

∫ t

0
α(s) dLε

s takes
non-negative values, by weak convergence we expect that for Law(P∗)-almost every
measure µ, µ-almost every path η ∈ DR will have only downward jumps.

Lemma 2.11 (Strong crossing property). For any h > 0, we have

E

[
P∗
(

inf
s∈(τ0(η),(τ0(η)+h)∧T̄ )

{ηs − ητ0(η)} ≥ 0, τ0(η) < T̄

)]
= 0, (2.15)

E
[
P∗ (η : ∆ηt ≤ 0 ∀ t ≤ T̄

)]
= 1. (2.16)

Proof. As with the space of càdlàg functions, we shall employ the shorthand notation
CR for this proof to denote C([−1, T̄ ] , R). Now, as σ is non-degenerate and bounded
by assumption, by the Kolmogorov-Chentsov Tightness Criterion, [23] and [7], we have
that (Ỹε)ε>0 is tight. Additionally, we define the random variable Z̃ε := 〈P̃ε, supu≤T̄ |ηu|〉.
By definition of P̃ε, E[Z̃ε] = E[supu≤T̄ |X̃ε

u|]. Therefore, E[Z̃ε] is uniformly bounded by

Proposition 2.8 and hence {Z̃ε}ε>0 is tight on R.
As marginal tightness implies joint tightness, we have Pε

x,y,z := Law(X̃ε, Ỹε, Z̃ε) is
tight in P(DR × CR ×R) by Proposition 2.9. Given a suitable subsequence, also denoted
by (εn)n≥1 for simplicity, we have P̃εn =⇒ P∗ and Pεn

x,y,z =⇒ P∗
x,y,z. Here P

∗
x and P∗

y

are used to denote the first and second marginal respectively.
Intuitively, E[P∗(·)] and P∗

x should have the same law as we are averaging over the
stochasticity inherited by the common noise. By definition of Pε and Pε

x,y,z, for any
continuous bounded function f : DR → R, we have that

E [〈Pεn , f〉] = 〈Pεn
x,y,z, f〉.

As DR is a Polish space, by a Monotone Class Theorem argument and Dynkin’s Lemma,
we have

E [P∗(A)] = P∗
x(A) = P∗

x,y,z(A× CR ×R) ∀A ∈ B(DR). (2.17)

Define the canonical processes X∗, Y ∗ and Z∗ on (DR,M1) × (CR, ‖·‖∞) × (R, | · |),
where for (η, ω, z) ∈ DR × CR ×R, X∗(η, ω, z) = η, Y ∗(η, ω, z) = ω and Z∗(η, ω, z) = z. By
considering the parametric representations, the map η 7→ supu≤T̄ |ηu| isM1-continuous
for any η ∈ DR. Hence, by the linear growth condition on b, the Continuous Mapping
Theorem, and the Portmanteau Theorem, for any s, t ∈ T with s < t and γ > 0,

P∗
x,y,z

(
X∗

t −X∗
s ≤ Y ∗

t − Y ∗
s + Cb(t− s)(1 + sup

u≤T̄

|X∗
u|+ Z∗) + γ

)

≥ lim sup
n→∞

P

[
X̃εn

t − X̃εn
s ≤ Ỹεn

t − Ỹεn
s + Cb(t− s)(1 + sup

u≤T̄

|X̃εn
u |+ Z̃εn) + γ

]
= 1.

(2.18)

The last equality follows from the fact that for any εn

X̃εn
t − X̃εn

s = Ỹεn
t − Ỹεn

s +

∫ (t∨0)∧T

(s∨0)∧T

b(u,Xεn
u ,νεn

u )1[0,T ](u) du−
∫ (t∨0)∧T

(s∨0)∧T

α(u) dLεn
u

≤ Ỹεn
t − Ỹεn

s + Cb(t− s)

(
1 + sup

u≤T̄

|X̃εn
u |+ Z̃εn

)
.
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Sending γ → 0 countably and employing the right continuity of X∗ and Y ∗, we deduce

X∗
t −X∗

s ≤ Y ∗
t − Y ∗

s + Cb(t− s)(1 + sup
u≤T̄

|X∗
u|+ Z∗) ∀ s < t P∗

x,y,z-a.s.

Furthermore, ∆X∗
t ≤ 0 for all t P∗

x,y,z-almost surely. By Lemma A.1, Y ∗ is a continuous
local martingale with respect to the filtration generated by (X∗, Y ∗). It is clear that
τ0(X

∗) is a stopping time with respect to the filtration generated by (X∗, Y ∗). So the
claim follows from Lemma A.2 if τ0(X∗) ≥ 0 and E[supu≤T̄ |X∗

u|+Z∗] <∞. For the former
condition, it is sufficient to show

P∗
x

(
inf
s<0

ηs ≤ 0

)
= 0.

As Pεn
x =⇒ P∗

x, then by Skorokhod’s Representation Theorem, there exist (Zn) and Z
on a common probability space such that Law(Zn) = Pεn

x , Law(Z) = P∗
x, and Z

n → Z

almost surely in (DR,M1). By the Portmanteau Theorem, for any γ > 0

P [Z−1 < γ] ≤ lim inf
n→∞

P
[
Zn
−1 < γ

]
= P [X0− < γ] = O(γ1/2),

as X0− has an L2-density by Assumption 2.2 (vi). So P∗
x(η−1 ≤ 0) = P [Z−1 ≤ 0] = 0. By

Lemma 2.10 and (2.17), we have

1 = E

[
P∗
(
sup
s<0

|ηs − η−1| = 0

)]
= P∗

x

(
sup
s<0

|ηs − η−1| = 0

)
.

Therefore, X∗
s > 0 for every s ∈ [−1, 0) P∗

x,y,z-almost surely. Hence, τ0(X∗) ≥ 0 almost
surely. Furthermore, as η 7→ supu≤T̄ |ηu| is anM1-continuous map, E[supu≤T̄ |X∗

u|+Z∗] <
∞ follows from a simple application of the Continuous Mapping Theorem and Proposition
2.8. Therefore, we deduce,

E

[
P∗
(

inf
s∈(τ0(η),(τ0(η)+h)∧T̄ )

{ηs − ητ0(η)} ≥ 0, τ0(η) < T̄

)]
≤ P∗

x,y,z

(
inf

s∈(τ∗
0 ,(τ∗

0 +h)∧T̄ )

{
Y ∗
s − Y ∗

τ∗
0
+ Cb(s− τ∗

0 )(1 + sup
u≤T̄

|X∗
u|+ Z∗)

}
≥ 0, τ∗

0 < T̄

)
= 0,

where τ∗0 = τ0(X
∗) and the final equality is due to Lemma A.2.

Now we have all the ingredients to show that τ0 is anM1-continuous map.

Corollary 2.12 (Hitting time continuity). For Law(P∗)-almost every measure µ, we have
that the hitting time map τ0 : DR → R is continuous in the M1-topology for µ-almost
every η ∈ DR.

Proof. By Lemma 2.11, for Law(P∗)-almost every measure µ, µ-almost every path η ∈ DR
will have only downward jumps and one of the following conditions holds:

1. τ0(η) < T̄ and η takes a negative value on any neighbourhood of τ0(η),

2. τ0(η) = T̄ and infs≤T̄ ηs > 0,

3. τ0(η) = T̄ and ηT̄ = 0.

If 1 holds, then by Lemma A.3, τ0 is M1-continuous at η. If 2 holds–τ0(η) = T̄ and
infs≤T̄ ηs > 0–then for any approximating sequence (ηn)n≥1 ⊂ DR in theM1-topology, we
must have infs≤T̄ η

n
s > 0 eventually as the parametric representations get arbitrarily close

in the uniform topology. Therefore, as infs≤T̄ η
n
s > 0 eventually, by definition τ0(ηn) = T̄
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eventually. Therefore, τ0(η) isM1-continuous at η. If 3 holds, when τ0(η) = T̄ and ηT̄ = 0,
then for any γ > 0, with T̄ − γ being a continuity point, we must have infs≤T̄−γ ηs > 0

because η only jumps downwards. So for any approximating sequence (ηn)n≥1 ⊂ DR
in the M1-topology, eventually infs≤T̄−γ η

n
s > 0. Hence, eventually τ0(ηn) > T̄ − γ. As

γ > 0 can be made arbitrarily close to zero, by definition, limn→∞ τ0(η
n) = τ0(η) = T̄ .

Therefore, τ0 isM1-continuous at η.

With the result stating that the hitting time is anM1-continuous map, weak conver-
gence of the loss function follows immediately.

Lemma 2.13 (Continuity of conditional feedback). For Law(P∗)-almost every measure
µ ∈ P(DR), the map µ 7→ µ(τ0(η) ≤ t) is continuous with respect to Twk

M1
for all t ∈

Tµ ∩ [0, T̄ ). Tµ is the set of continuity points of t 7→ µ(τ0(η) ≤ t).

Proof. By Corollary 2.12, for Law(P∗)-almost every measure µ, τ0 isM1-continuous for
µ-almost every η. We fix such a µ and consider a sequence (µn)n≥1 converging to µ in
P(DR). By Skorokhod’s Representation Theorem,

µn(τ0(η) ≤ t) = E
[
1τ0(Zn)≤t

]
and µ(τ0(η) ≤ t) = E

[
1τ0(Z)≤t

]
,

where τ0 is continuous for almost all paths Z and Zn → Z almost surely in (DR,M1).
Now, for any t ∈ Tµ := {t ∈ [−1, T̄ ] : µ(τ0(η) = t) = 0}, by the Monotone Convergence
Theorem,

P [τ0(Z) = t] = µ(τ0(η) ≤ t)− lim
s↑t

µ(τ0(η) ≤ s) = 0. (2.19)

Therefore, employing the continuity of τ0 and (2.19), we have

E
[
1τ0(Zn)≤t

]
→ E

[
1τ0(Z)≤t

]
,

by the Dominated Convergence Theorem. So, we conclude that

µn(τ0(η) ≤ t) → µ(τ0(η) ≤ t) ∀ t ∈ Tµ.

Furthermore, we have weak convergence of the mollified loss to the singular loss.

Corollary 2.14 (Convergence of delayed loss). For Law(P∗)-almost every measure µ,∫ t

0
κεn(t− s)µn(τ0(η) ≤ s) ds converges to µ(τ0(η) ≤ t) for any t ∈ Tµ and any sequence

(µn)n≥1 that converges to µ in (P(DR),T
wk
M1

).

Proof. By Lemma 2.13, µn(τ0 ≤ t) converges to µ(τ0 ≤ t) for any t ∈ Tµ when τ0 is an
M1-continuous map µ-almost surely. Such measures µ have full Law(P∗)-measure by
Corollary 2.12. Furthermore, for every such µ,(

s 7→ µn(τ0(η) ≤ s)1[0, t](s)
) n→∞−−−−→

(
s 7→ µ(τ0(η) ≤ s)1[0, t](s)

)
(2.20)

in theM1-topology as functions from [−1, t] → R, as the functions are non-decreasing,
[33, Corollary 12.5.1]. Now, for any t ∈ Tµ ∩ (0, T̄ ],∣∣∣∣∫ t

0
κεn (s)µn(τ0(η) ≤ t− s) ds− µ(τ0(η) ≤ t)

∣∣∣∣ ≤ ∣∣∣∣∫ t

0
κεn (s)(µn(τ0(η) ≤ t− s)− µ(τ0(η) ≤ t− s)) ds

∣∣∣∣
+

∣∣∣∣∫ t

0
κεn (s)(µ(τ0(η) ≤ t− s)− µ(τ0(η) ≤ t)) ds

∣∣∣∣
+

∣∣∣∣∫ t

0
κεn (s) ds− 1

∣∣∣∣µ(τ0(η) ≤ t)

= I + II + III.
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For any δ > 0, we observe

I ≤ sup
t−δ≤s≤t

|µn(τ0(η) ≤ s)− µ(τ0(η) ≤ s)|
∫ δ

0

κεn(s) ds+

∫ ∞

δ

κεn(s) ds,

II ≤ sup
t−δ≤s≤t

|µ(τ0(η) ≤ s)− µ(τ0(η) ≤ t)|
∫ δ

0

κεn(s) ds+

∫ ∞

δ

κεn(s) ds,

III ≤
∫ ∞

t

κεn(s) ds.

AsM1-convergence implies local uniform convergence at continuity points, [33, Theo-
rem 12.5.1], and t is a continuity point, by setting δ = ε

1/2
n and sending n→ ∞, we have

that I, II, and III all go to zero.

2.3 Martingale arguments and convergence

As marginal tightness implies joint tightness, {(P̃ε, W 0, W )}ε>0 is tight in
(P(DR),T

wk
M1

) × (CR, ‖·‖∞) × (CR, ‖·‖∞) where (CR, ‖·‖∞) is shorthand notation for
(C([0, T ] , R), ‖·‖∞), the space of continuous functions from [0, T ] to R endowed with the
topology of uniform convergence. From now on, we fix a weak limit point (P∗, W 0, W )

along a subsequence (εn)n≥1 for which εn converges to zero. Although we have fixed a
limit point, all the following results will hold for any limit point.

Let Pn := Law(P̃εn , W 0, W ) and P∗
µ,ω0,ω

:= Law(P∗, W 0, W ). So Pn =⇒ P∗
µ,ω0,ω.

For completeness, we will define the probability space (Ω∗, F∗, P∗
µ,ω0,ω) where Ω∗ =

P(DR) × CR × CR and F∗ is the corresponding Borel σ-algebra. Define the random
variables P∗, W 0, and W on Ω∗ such that for any tuple (µ, ω0, ω),

P∗(µ, ω0, ω) = µ, W 0(µ, ω0, ω) = ω0, and W (µ, ω0, ω) = ω.

Hence, the joint law of (P∗,W 0,W ) is P∗
µ,ω0,ω and F∗ = σ(P∗, W 0, W ). We also define

the limiting loss function L∗ := P∗(τ0(η) ≤ ·) and the co-countable set of times

T :=
{
t ∈ [−1, T̄ ] : P∗

µ,ω0,ω(ηt = ηt−) = 1, P∗
µ,ω0,ω(L

∗
t = L∗

t−) = 1
}
. (2.21)

Looking at the approximating system, we know (P̃ε,W 0) ⊥ W for any ε > 0. Even
though P∗ is the weak limit ofW 0-measurable random variables, weak convergence does
not allow us to guarantee that limit points will be W 0-measurable. Regardless, we may
exploit the independence from the approximating system to deduce the independence of
(P∗, W 0) and W in the limit. To fix the notation, let P∗

µ,ω0 denote the projection of the
measure P∗

µ,ω0,ω onto its first two coordinates and P∗
ω denote the projection onto its final

coordinate. Then we intuitively expect P∗
µ,ω0,ω = P∗

µ,ω0 ⊗ P∗
ω.

Lemma 2.15 (Independence from idiosyncratic noise). Let P∗, W 0, and W be the canon-
ical random variables on the probability space (Ω∗, F∗, P∗

µ,ω0,ω) defined above. Then,

(P∗, W 0) is independent of W .

Proof. As (P(DR),T
wk
M1

) and (CR, ‖·‖∞) are Polish spaces, it is sufficient to show that for
any f ∈ Cb(P(DR)) and g, h ∈ Cb(CR),〈

P∗
µ,ω0,ω, f ⊗ g ⊗ h

〉
=
〈
P∗

µ,ω0 , f ⊗ g
〉
〈P∗

ω, h〉 . (2.22)

The result follows from the Dominated Convergence Theorem and Dynkin’s Lemma. Now,
(2.22) follows readily by weak convergence and the Portmanteau Theorem as〈

P∗
µ,ω0,ω, f ⊗ g ⊗ h

〉
= lim

n→∞
〈Pn, f ⊗ g ⊗ h〉

= lim
n→∞

〈Pn, f ⊗ g〉 〈Pn, h〉

=
〈
P∗

µ,ω0 , f ⊗ g
〉
〈P∗

ω, h〉 .
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The equality in the second line follows from the independence of (P̃ε, W 0) from W .

We shall use P∗
µ,ω0,ω to construct a probability space where we can define a process

that will solve (2.2) in the sense of Definition 2.1. Prior to that, we need to define the
map employed in the martingale arguments that follow. This allows us to deduce that the
process we construct will be of the correct form. For any ε > 0, we define the following
functionals M, Mε : P(DR)×DR → DR:

Mε(µ, η) = η − η−1 −
∫ ·

0

b(s, ηs, ν
µ
s ) ds+

∫ ·

0

α(s) dLµ,ε
s , (2.23)

M(µ, η) = η − η−1 −
∫ ·

0

b(s, ηs, ν
µ
s ) ds+

∫
[0,·]

α(s) dLµ
s , (2.24)

where for any µ ∈ P(DR),

νµt := µ(ηt ∈ ·, τ0(η) > t), Lµ
t := µ(τ0(η) ≤ t), Lµ,ε

t =

∫ t

0

κε(t− s)Lµ
s ds,

and b satisfies Assumption 2.2. For any s0, t0 ∈ Tµ ∩ [0, T ) with s0 < t0 and {si}ki=1 ⊂
[0, s0] ∩T, we define the function

F : DR → R, η 7→ (ηt0 − ηs0)

k∏
i=1

fi(ηsi), (2.25)

for arbitrary fi ∈ Cb(R). We define the functionals:
Ψε(µ) = 〈µ, η 7→ F (Mε(µ, η))〉 ,
Υε(µ) =

〈
µ, η 7→ F

(
(Mε(µ, η))2 −

∫ ·
0
σ(s, ηs)

2 ds
)〉
,

Θε(µ, ω) =
〈
µ, η 7→ F

(
Mε(µ, η)× ω −

∫ ·
0
σ(s, ηs)

√
1− ρ(s, νµs )2 ds

)〉
,

Θ0,ε(µ, ω0) =
〈
µ, η 7→ F

(
Mε(µ, η)× ω0 −

∫ ·
0
σ(s, ηs)ρ(s, ν

µ
s ) ds

)〉
.

(2.26)

Lastly, the corresponding functionals without the mollification, denoted by Ψ(µ), Υ(µ),

Θ(µ, ω) and Θ0(µ, ω0), are defined in exactly the same way as Ψε(µ), Υε(µ), Θε(µ, ω), and
Θ0,ε(µ, ω0) with Mε replaced by M.

Remark 2.16 (Measurability of measure flows). In (2.23) and (2.24), we are taking a
fixed measure, µ, and computing the integral with respect to the measure flow t 7→ νµt .
The measurability of the functions b and σ is sufficient for this integral to be well-defined.

Using Corollary 2.14, we have the following proposition.

Proposition 2.17 (Functional Continuity I Generalised). For P∗
µ,ω0,ω-almost every mea-

sure µ, we have that Ψεn(µn), Υεn(µn), Θεn(µn, ωn), and Θ0,εn(µn, ω0,n) converge to
Ψ(µ), Υ(µ), Θ(µ, ω), and Θ0(µ, ω0) respectively, whenever (µn, ω0,n, ωn) → (µ, ω0, ω) in
(P(DR),T

wk
M1

)×(CR, ‖·‖∞)×(CR, ‖·‖∞), along a sequence for which supn≥1〈µn, sups≤T̄ |η̃s|p〉
is bounded for some p > 2 and εn that converges to zero.

Proof. By Lemma 2.11 and the definition of T, we have a set of µ’s that have full P∗
µ,ω0,ω

measure, such that

µ

(
inf

s∈(τ0(η), (τ0(η)+h)∧T̄ )

{
ηs − ητ0(η)

}
≥ 0, τ0(η) < T̄

)
= 0

for any h > 0, µ(ηsi = ηsi−) = 1, µ(ηt0 = ηt0−) = 1, and µ(τ0(η) = t0) = 0. First, we shall
show that Ψεn(µn) converges to Ψ(µ). By Corollary 2.14, Lµn,εn

t converges to Lµ
t . It is
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well-known that for any Borel measurable functions f and g of finite variation, we have
for any t > 0

ftgt = f(0)g(0) +

∫
(0,t]

fs− dgs +

∫
(0,t]

gs− dfs +
∑
s≤t

∆fs∆gs.

This, together with the continuous differentiability of α implies∫ t

0

α(s) dLµ,εn
s = α(t)Lµ,εn

t −
∫ t

0

Lµ,εn
s α′(s) ds −→ α(t)Lµ

t −
∫ t

0

Lµ
sα

′(s) ds =

∫
[0,t]

α(s) dLµ
s .

As µn =⇒ µ, by Skorokhod’s Representation Theorem, there exists a (Zn)n≥1 and
Z defined on a common probability space such that Law(Zn) = µn, Law(Z) = µ and
Zn → Z almost surely in (DR,M1). Hence,

Ψεn(µn) = E [F (Mεn(µn, Zn))] and Ψ(µ) = E [F (M(µ,Z))] .

By Lemma A.6, ∫ t

0

b(s, Zn
s , ν

µn

s ) ds→
∫ t

0

b(s, Zs, ν
µ
s ) ds (2.27)

almost surely for any t ≥ 0. Since Tµ contains all the almost sure continuity points of Z,
by the properties ofM1-convergence and (2.27), we have

Zn
t − Zn

−1 −
∫ t

0

b(s, Zn
s , ν

µn

s ) ds→ Zt − Z−1 −
∫ t

0

b(s, Zs, ν
µ
s ) ds

almost surely for any t ∈ {t0, s0, . . . , sk}. Hence, we deduce that F (Mεn(µn, Zn)) con-
verges almost surely to F (M(µ,Z)) in R. Lastly, we observe

〈µn, |Mεn
t (µn, ·)|p〉 ≤ C

(〈
µn, sup

s≤T̄

|η̃s|p
〉

+ 1

)
, (2.28)

for some constant C that depends on p and b only but is uniform in n. Therefore,
F (Mεn(µn, Zn)) is uniformly Lp-bounded as

|F (Mεn(µn, Zn))|p ≤ C
(∣∣Mεn

t0 (µ
n, Zn)

∣∣p + ∣∣Mεn
s0 (µ

n, Zn)
∣∣p) ,

and E[|Mεn
t0 (µ

n, Zn)|p] = 〈µn, |Mεn
t0 (µ

n, ·)|p〉 where the latter is uniformly bounded in n
for some p > 2 by (2.28) and assumption. Therefore, by Vitali’s Convergence Theorem, it
follows that Ψεn(µn) converges to Ψ(µ).

The convergence of Υεn(µn), Θεn(µn, ωn), and Θ0,εn(µn, ω0,n), to Υ(µ), Θ(µ, ω) and
Θ0(µ, ω0) respectively follows from similar arguments. As σ and ρ are totally bounded by
Assumption 2.2 (ii) and (iv), Υεn(µn), Θεn(µn, ωn), and Θ0,εn(µn, ω0,n) are Lp-bounded
uniformly in n. The continuity of σ and the almost sure convergence of Zn to Z in the
M1-topology ensures that ∫ t

0

σ(s, Zn
s )

2 ds→
∫ t

0

σ(s, Zs)
2 ds

almost surely for all t ≥ 0. Lastly, by the boundedness of σ and ρ, a straightforward
computation shows that

|σ(t, x)ρ(t, µ)− σ(t, x)ρ(t, µ̃)| ≤ C (1 + 〈µ, | · |〉) d1(µ, µ̃) ≤ C (1 + 〈µ, | · |〉) d0(µ, µ̃),∣∣∣σ(t, x)√1− ρ(t, µ)2 − σ(t, x)
√

1− ρ(t, µ̃)2
∣∣∣ ≤ C (1 + 〈µ, | · |〉) d1(µ, µ̃) ≤ C (1 + 〈µ, | · |〉) d0(µ, µ̃).
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Therefore, the functions (t, x, µ) 7→ σ(t, x)ρ(t, µ) and (t, x, µ) 7→ σ(t, x)
√
1− ρ(t, µ)2

satisfy Assumption 2.2 (i). Now we may apply Lemma A.6 and conclude∫ t

0

σ(s, Zn
s )

√
1− ρ(s, νµ

n

s )2 ds −→
∫ t

0

σ(s, Zs)
√
1− ρ(s, νµs )2 ds,∫ t

0

σ(s, Zn
s )ρ(s, ν

µn

s ) ds −→
∫ t

0

σ(s, Zs)ρ(s, ν
µ
s ) ds,

almost surely for all t ≥ 0.

The remainder of this section aims to show that the conditional law of {X̃εn} con-
verges weakly to a random variable X which will have the dynamics defined in (2.7).
This is achieved in the following two steps:

1. First, we construct a probability space (Ω̄, F̄ , P̄) such that M·, M2
· −
∫ ·
0
σ(s, ηs)

2 ds,

M· ×W −
∫ ·
0
σ(s, ηs)

√
1− ρ(s, νµs )2 ds, and M· ×W 0 −

∫ ·
0
σ(s, ηs)ρ(s, ν

µ
s ) ds, defined

as in (2.24), are continuous martingales.

2. Secondly, we construct a stochastic process X on (Ω̄, F̄ , P̄) such that the tuple
(X,W,W 0,P∗) is a solution to (2.4) in the sense of Definition 2.1.

To this end, we now proceed to show the above two claims. We begin by defining the
probability space (Ω̄, F̄ , P̄) where Ω̄ = Ω∗ ×DR = P(DR)× CR × CR ×DR and F̄ is the
Borel σ-algebra B(Ω̄). We define the probability measure

P̄(A) :=

∫
P(DR)×CR×CR

µ
({
η : (µ, ω0, ω, η) ∈ A

})
dP∗

µ,ω0,ω(µ, ω
0, ω), (2.29)

for any A ∈ B(Ω̄). Observe by construction, for any A ∈ B(Ω̄),

P̄(A) = E∗ [〈P∗, 1A(P
∗, W 0, W, ·)

〉]
.

Furthermore, under P̄, W 0 and W are still Brownian motions, and (P∗, W 0) is indepen-
dent of W . This is immediate, as for any A ∈ B(P(DR)× CR) and B ∈ B(CR),

P̄
[
(P∗, W 0) ∈ A, W ∈ B

]
= P̄ (A×B ×DR) = P∗

µ,ω0,ω(A×B).

Given these ingredients, we may now show our first claim.

Proposition 2.18. Let M be given as in (2.24). Then M·, M2
· −

∫ ·
0
σ(s, πs(·))2 ds, M· ×

W−
∫ ·
0
σ(s, πs(·))

√
1− ρ(s, ν·s)

2 ds, andM·×W 0−
∫ ·
0
σ(s, πs(·))ρ(s, ν·s) ds are all continuous

martingales on (Ω̄, F̄ , P̄), where

πs : DR → R, πs(η) = ηs and ν·s : P(DR) → M≤1(R), ν
·
s(µ) = νµs .

Proof. If M is continuous, then the continuity of the other processes follows from the
continuity ofM and the continuity of integration. For simplicity, we shall useN to denote
any one ofM·,M·×W −

∫ ·
0
σ(s, πs(·))

√
1− ρ(s, ν·s)

2 ds, M·×W 0−
∫ ·
0
σ(s, πs(·))ρ(s, ν·s) ds

or M2
· −

∫ ·
0
σ(s, πs(·))2 ds. Hence to show that N is a martingale, it is sufficient by a

Monotone Class argument that

Ē [F (N )] = 0, (2.30)

To begin, recall that Pεn =⇒ P∗, where Pεn = Law(P̃εn ,W 0,W ) and P∗ =

Law(P∗,W 0,W ). By Skorokhod’s Representation Theorem, we may find {(Qn, Bn, B̃n)}n≥1

and (Q∗, B∗, B̃∗) defined on a common probability space such thatPεn = Law(Qn, Bn, B̃n),
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P∗ = Law(Q∗, B∗, B̃∗) and (Qn, Bn, B̃n) −→ (Q∗, B∗, B̃∗) almost surely in (P(DR),T
wk
M1

)×
(CR, ‖·‖∞)× (CR, ‖·‖∞). By the definition of P̃εn , for any p > 1, we have:

E

[〈
P̃εn , sup

s≤T̄

|ηs|p
〉]

= E

[
sup
s≤T̄

∣∣∣X̃εn
∣∣∣p] ≤ C, (2.31)

where the constant C is derived from Proposition 2.8. As the map η 7→ sups≤T̄ |ηs| is
M1-continuous, the Portmanteau Theorem yields:

E

[〈
P∗, sup

s≤T̄

|ηs|p
〉]

≤ C. (2.32)

Now, for any K > 0, we can write

E[|〈Qn, sup
s≤T̄

|ηs|p〉 − 〈Q∗, sup
s≤T̄

|ηs|p〉|] ≤E[|〈Qn, sup
s≤T̄

|ηs|p ∧K〉 − 〈Q∗, sup
s≤T̄

|ηs|p ∧K〉|]

+ E[|〈Qn, (sup
s≤T̄

|ηs|p −K)1sups≤T̄ |ηs|p>K〉|]

+ E[|〈Q∗, (sup
s≤T̄

|ηs|p −K)1sups≤T̄ |ηs|p>K〉|].

By equation (2.31), and a combination of Hölder’s and Markov’s inequalities, the second
term on the right-hand side above is o(1) as K → ∞ uniformly in n. Similarly, by (2.32),
the third term on the right-hand side above is o(1) as K → ∞. For the first term, we
recall that Qn → Q∗ almost surely in (P(DR),T

wk
M1

). Hence, as η 7→ sups≤T̄ |ηs|p ∧K is
anM1-continuous and bounded function, we have by the almost sure convergence and
the Portmanteau Theorem that 〈Qn, sups≤T̄ |ηs|p ∧K〉 converges almost surely towards
〈Q∗, sups≤T̄ |ηs|p ∧ K〉. Therefore, by the Dominated Convergence Theorem, the first
term on the right-hand side above is o(1) as n→ ∞. Therefore, we can make the right-
hand side arbitrarily small by first fixing K sufficiently large, then choosing n sufficiently
large. Hence, we have

E[|〈Qn, sup
s≤T̄

|ηs|p〉 − 〈Q∗, sup
s≤T̄

|ηs|p〉|] → 0.

Now, fixing a p > 2, as we have L1-convergence, we can find a subsequence (also
denoted by n for simplicity) such that 〈Qn, sups≤T̄ |ηs|p〉 converges almost surely to
〈Q∗, sups≤T̄ |ηs|p〉. By (2.32), 〈Q∗, sups≤T̄ |ηs|p〉 < +∞ almost surely. Therefore, restrict-
ing ourselves to this subsequence going forward, we have

sup
n≥1

〈
Qn, sup

s≤T̄

|ηs|p
〉
<∞

almost surely.
By definition of M, for the same p > 2 fixed above

E
[〈

P̃εn ,
∣∣∣Mt(P̃

εn , ·)
∣∣∣p〉] = E

[∣∣∣∣∫ t

0

σ(s)
√
1− ρ(s)2 dWs +

∫ t

0

σ(s)ρ(sdW 0
s

∣∣∣∣p
]
≤ Ctp,

(2.33)
where the constant C depends on the constant from applying Burkholder–Davis–Gundy, p,
and the bounds on σ but is independent of ε. Hence, E[〈Qn, |Mt(Q

n, ·)|p〉] <∞ uniformly
in n.

Employing Proposition 2.18 and Vitali’s Convergence Theorem, we have

Ē [F (N )] = E∗ [〈P∗, F (N (P∗, W 0, W, ·))
〉]

= lim
n→∞

E
[〈
Pεn , F (N εn(Pεn , W 0, W, ·))

〉]
,
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whereN εn represents one of (Mεn
· )

2−
∫ ·
0
σ(s, πs(·))2 ds,Mεn

· ×W 0−
∫ ·
0
σ(s, πs(·))ρ(s, ν·s) ds,

Mεn
· ×W −

∫ ·
0
σ(s, πs(·))

√
1− ρ(s, ν·s)

2 ds, or Mεn
· depending on N . Recall for arbitrary

fi ∈ Cb(R), F (η) = (ηt0 − ηs0)
∏k

i=1 fi(ηsi). So

E
[〈
Pεn , F (N εn(Pεn , W 0, W, ·))

〉]
= E

[(
Ñ εn

t0 − Ñ εn
s0

) k∏
i=1

fi(Ñ εn
si )

]
, (2.34)

where Ñ εn is one of Ỹεn , (Ỹεn)2−
∫ ·
0
σ(s, X̃εn)2 ds, Ỹεn×W−

∫ ·
0
σ(s, X̃εn)

√
1− ρ(s,νεn

s )2 ds,

or Ỹεn ×W 0 −
∫ ·
0
σ(s, X̃εn)ρ(s,νεn

s ) ds depending on the choice of N . By the boundness

assumption on σ, Assumption 2.2 (ii), Ñ εn is a martingale. As s1 ≤ . . . ≤ sk ≤ s0 < t0, we
have (2.34) equals zero by the tower property. Hence, we have shown (2.30).

Lastly, to see the continuity of M, define the function

F̃ : DR → R, η 7→ |ηt − ηs|4 ,

for s, t ∈ T ∩ [0, T ). As before, define the functionals

Ψ̃ε(µ) =
〈
µ, F̃ (Mε(µ, ·))

〉
, Ψ̃(µ) =

〈
µ, F̃ (M(µ, ·))

〉
.

Following the same proof as in Proposition 2.17, we have that for P∗
µ,ω0,ω-almost every

measure µ, Ψ̃εn(µn) converges to Ψ̃(µ) whenever µn → µ in (P(DR),T
wk
M1

) along a
sequence for which

sup
n≥1

〈µn, sup
s≤T̄

|ηs|p〉 <∞

for some p > 4. We have finite moments for any p > 1, by (2.31). Therefore, by functional
continuity and Vitali’s convergence theorem, for any s, t ∈ T ∩ [0, T ) we have

Ē |Mt −Ms|4 = E∗
[〈

P∗, |Mt(P
∗, ·)−Ms(P

∗, ·)|4
〉]

= lim
n→∞

E

[〈
P̃εn ,

∣∣∣Mεn
t (P̃εn , ·)−Mεn

s (P̃εn , ·)
∣∣∣4〉] .

By the definition of P̃εn and the Burkholder–Davis–Gundy inequality,

E
[〈

P̃εn , |Mεn
t (Pεn , ·)−Mεn

s (Pεn , ·)|4
〉]

= E

∣∣∣Ỹεn
t − Ỹεn

s

∣∣∣4 ≤ C |t− s|2 ,

where the constant C is uniform in n. As T is dense, by Kolmogorov’s Criterion, there
exists a continuous process that is a modification of M. Since M is right continuous
and T is dense, these two processes are indistinguishable. Hence, M has a continuous
version.

Now, we have all the ingredients to prove Theorem 2.5.

Proof of Theorem 2.5. By Proposition 2.9, {(P̃ε, W 0, W )}ε>0 is tight. By Prokhorov’s
Theorem, tightness on Polish spaces is equivalent to being sequentially precompact.
Therefore, for any subsequence {(Pεn , W 0, W )}n≥1, where (εn)n≥1 is a positive sequence
that converges to zero, we have a convergent sub-subsequence. Fix a limit point
(P∗, W 0, W ) of this subsequence. Having fixed (P∗, W 0, W ), we define the probability
space (Ω̄, F̄ , P̄) exactly as in (2.29). Now, define the càdlàg process X by

X : Ω̄ → DR, (µ, ω0, ω, η) 7→ η.
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Then, by the construction of P̄ and the fact that P∗
µ,ω0,ω = P∗

µ,ω0 × P∗
ω by Lemma 2.15,

for all A ∈ B(DR), S ∈ B(P(DR)× CR), we have

P̄
[
X ∈ A, (P∗, W 0) ∈ S

]
=

∫
S

µ(A) dP∗
µ,ω0 .

Here, P∗
µ,ω0,ω = Law(P∗, W 0, W ), P∗

µ,ω0 = Law(P∗, W 0), and P∗
ω = Law(W ). Conse-

quently,
P̄
[
X ∈ A|P∗, W 0

]
= P∗(A) ∀ A ∈ B(DR).

By Proposition 2.18,

Mt = Xt −X−1 −
∫ t

0

b(s, Xs, ν
∗
s ) ds−

∫
[0,t]

α(s) dP∗(τ0(X) ≤ s)

is a continuous local martingale with

〈M〉t =
∫ t

0

σ(s,Xs)
2 ds, 〈M, W 〉t =

∫ t

0

σ(s,Xs)
√

1− ρ(s,ν∗
s )

2 ds,

〈
M, W 0

〉
t
=

∫ t

0

σ(s,Xs)ρ(s,ν
∗
s ) ds,

where ν∗
s := P∗(Xs ∈ ·, τ0(X) > s). As W 0 and W are standard independent Brownian

motions, by Lévy’s Characterisation Theorem we have that

Mt =

∫ t

0

σ(s,Xs)
(√

1− ρ(s,ν∗
s )

2 dWs + ρ(s,ν∗
s ) dW

0
s

)
.

Now, as −1 ∈ T, the map η 7→ η−1 is µ-almost surely continuous for Pµ,ω0,ω-almost every
measure µ. A simple application of the Portmanteau Theorem shows that X−1 ∼ ν0−. By
Lemma 2.10, we deduce that X0− ∼ ν0−. The independence between (P∗, W 0) and W
follows from Lemma 2.15. A similar argument as employed in Lemma 2.15 shows that
X0− ⊥ (P∗, W 0, W ). Lastly, by Lemma A.9,

∆L∗
t ≤ inf{x ≥ 0 : ν∗

t−([0, α(t)x]) < x} a.s.

for all t ≥ 0.

3 Stronger mode of convergence

One of the limitations of the method in Section 2 is that it fails to yield a strong
solution. That is, P is not equal to Law(X |W 0). This is due to the mode of convergence
employed being weak. To the best of our knowledge, there are no results in the existing
literature relating to the existence of strong physical solutions in the setting with common
noise. By Remark 2.5 from [28], the existence of strong solutions in the setting when b,
σ and ρ are functions of time only is shown; however, it remains unclear whether these
solutions are physical or not.

The work introduced in [9] provided an alternative framework to construct solutions
to systems with simplified dynamics and without common noise. This is done by a
fixed-point approach. Notably, the constructed solutions possess a minimality property,
meaning that any alternative solution to the system will dominate the solution obtained in
[9]. By utilising the mean-field limit of a perturbed finite particle system approximation,
the authors deduce that minimal solutions are in fact physical.

This section extends this work to the case with common noise. Provided more
restrictive assumptions on the coefficients than those introduced in Assumption 2.2,
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we provide an algorithm to construct minimal W 0-measurable solutions to the singular
and smoothed system. Furthermore, we get almost sure convergence of the smoothed
minimal system towards the singular minimal system. As a consequence, we are able to
conclude that the minimal W 0-measurable solution is, in fact, physical. This provides an
alternative method to show minimal solutions are physical in the setting of [9].

We fix a filtered probability space (Ω, F , (Ft)t≥0, P) that satisfies the usual conditions
and supports two independent Brownian motions. This differs from Section 2 as the
filtered probability space may change as we change ε. The mode of convergence was
weak in Section 2, therefore the smoothed systems needed not be defined on the same
probability space. In this section, to be able to show a stronger mode of convergence,
we require that our probability space and our Brownian motions are fixed because our
methods employ a comparison principle approach.

We would like the loss process to be adapted and measurable with respect to the
common noise. Hence, for measurability reasons, we define FW 0

as the σ-algebra
generated by W 0 and augmented to contain all P-null sets. We define FW 0

t to be the
right continuous filtration generated byW 0 that contains all the information up to time t
and augmented to contain all P-null sets. To be precise, that is

FW 0

t =

(⋂
s>t

σ({W 0
u : u ≤ s})

)
∨ σ({N ∈ F : P(N) = 0}).

As Brownian motion is continuous and has independent increments,W 0 is still a standard
Brownian motion under the filtration (FW 0

t )t≥0.
We now propose our alternative method of solution construction. We will be consider-

ing the equation
dXt = b(t) dt+ σ(t)

√
1− ρ(t)2 dWt + σ(t)ρ(t) dW 0

t − α dLt,

τ = inf{t > 0 : Xt ≤ 0},
P = P

[
X ∈ · | FW 0

]
, νt := P

[
Xt ∈ ·, τ > t| FW 0

t

]
,

Lt = P
[
τ ≤ t| FW 0

t

]
,

(3.1)

where α > 0 is a constant. The coefficients b, σ, and ρ are a measurable maps from R

into R satisfying Assumption 2.2. The system starts at time 0− with initial condition
X0− which is almost surely positive. We require no further assumptions on the initial
condition.

Given any solution (X,L) to (3.1), we may view the paths of L living in the space

M :=
{
` : R̄→ [0, 1] : `0− = 0, `∞ = 1, ` increasing and càdlàg

}
.

M is the space of cumulative density functions on the extended real line. We endowM

with the topology induced by the Lévy-metric

dL(`
1, `2) := inf

{
ε > 0 : `1t+ε + ε ≥ `2t ≥ `1t−ε − ε, ∀t ≥ 0

}
.

The Lévy-metric metricizes weak convergence, hence we are endowing M with the
topology of weak convergence as we can associate each ` with a distribution µ` ∈
P([0,∞]). Hence as M is endowed with the topology of weak convergence, then we
observe that `n −→ ` in M if and only if `nt −→ `t for all t ∈ T := {t ≥ 0 : `t− = `t}.
With this topology,M is a compact Polish space. As in the previous section, we will let
DR denote the space of càdlàg functions from [−1,∞) to R and we endow DR with the
M1-topology. As elements inM are increasing, then convergence inM is equivalent to
convergence in DR.
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3.1 Properties of Γ and existence of strong solutions

For any W 0-measureable process ` with values inM , we define the operator Γ as
dX`

t = b(t) dt+ σ(t)
√
1− ρ(t)2 dWt + σ(t)ρ(t) dW 0

t − α d`t,

τ ` = inf{t > 0 : X`
t ≤ 0},

Γ[`]t = P
[
τ ` ≤ t

∣∣FW 0

t

]
.

By the independence of increments of Brownian motion, P[τ ` ≤ t | FW 0

t ] = P[τ ` ≤ t |
FW 0

]. Therefore, we may always choose a version of P[τ ` ≤ t | FW 0

t ] such that Γ[`] is
a W 0-measurable process with càdlàg paths. By artificially setting Γ[`]∞ = 1, Γ[`] has
paths inM . First, we observe that Γ is a continuous operator.

Proposition 3.1 (Continuity of Γ). Let `n and ` be a sequence of adaptedW 0-measurable
processes that take values inM such that `n −→ ` almost surely inM . Then Γ[`n] −→ Γ[`]

almost surely inM .

Proof. For simplicity, we shall denote X`n by Xn and X` by X. As done previously, we
may artificially extend Xn and X to be càdlàg processes on [−1, ∞) by

X̃n :=

{
X0− t ∈ [−1, 0),

Xn
t t ≥ 0,

X̃ :=

{
X0− t ∈ [−1, 0),

Xt t ≥ 0,

By the coupling, X̃n + α`n = X̃ + α` for every n. Hence trivially X̃n + α`n −→ X̃ + α`

in DR. As convergence in M is equivalent to convergence in the M1-topology, `n −→ `

almost surely in DR. Addition is aM1-continuous map for functions that have jumps of
common sign, [33, Theorem 12.7.3], therefore X̃n −→ X̃ almost surely in DR. It is clear
that ∆X̃t ≤ 0 for any t ≥ 0 and

P

[
inf

s∈(τ0(X̃), τ0(X̃)+h)

{
X̃s − X̃τ0(X̃)

}
≥ 0

]
= 0

for any h > 0 by Lemma A.2. Hence, τ0 is an M1-continuous map at almost every path
of X̃ by Lemma A.3. By the Conditional Dominated Convergence Theorem, for any
t ∈ TΓ[`] := {t ≥ 0 : P[Γ[`]t = Γ[`]t−] = 1} we have

Γ[`n]t = E
[
1{τ0(X̃n)≤t}

∣∣∣FW 0
]
−→ E

[
1{τ0(X̃)≤t}

∣∣∣FW 0
]
= Γ[`]t (3.2)

almost surely. Now, we fix a D ⊂ TΓ[`] such that D is countable and dense in R+. By
(3.2), we may find a Ω0 ∈ FW 0

of full measure such that if we fix ω ∈ Ω0 then (3.2) holds
at ω for all t ∈ D. Now we fix a γ > 0, ω ∈ Ω0 and t > 0 such that Γ[`]t(ω) = Γ[`]t−(ω). By
continuity, there is a s1, s2 ∈ D such that s1 < t < s2 and

|Γ[`]t(ω)− Γ[`]s1(ω)|+ |Γ[`]t(ω)− Γ[`]s2(ω)| < γ (3.3)

Therefore for by monotonicity of Γ[`n] and the above we have

|Γ[`]t(ω)− Γ[`n]t(ω)| ≤ |Γ[`]s2(ω)− Γ[`]t(ω)|+ |Γ[`]s2(ω)− Γ[`n]s2(ω)|
+ |Γ[`n]s1(ω)− Γ[`n]s2(ω)| = O(γ)

for all n large. In the case when t = 0 is a continuity point, we set s1 = −1. Hence we
have convergence of Γ[`n](ω) to Γ[`](ω) at the continuity points of Γ[`](ω). Therefore, by
definition, Γ[`n](ω) converges to Γ[`](ω) inM . As Ω0 is a set of full measure, the result
follows.
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We observe that the map Γ also preserves almost sure monotonicity of the input
processes.

Lemma 3.2 (Monotonicity of Γ). Let `1 and `2 be W 0-measurable processes with paths
inM such that `1 ≤ `2 almost surely, then Γ[`1] ≤ Γ[`2] almost surely.

Proof. As `1 ≤ `2 almost surely, then we have X`1 ≥ X`2 almost surely. It follows that
τ `

1 ≤ τ `
2

almost surely. By monotonicity of conditional expectation,

Γ[`1]t = P
[
τ `

1

≤ t
∣∣∣FW 0

t

]
≤ P

[
τ `

2

≤ t
∣∣∣FW 0

t

]
= Γ[`2]t

almost surely for any t ≥ 0. As Γ[`1] and Γ[`2] are càdlàg, we deduce Γ[`1]t ≤ Γ[`2]t for
any t ≥ 0 almost surely.

With these two results in hand, we have all the ingredients to constructW 0-measurable
solutions to (3.1).

Proposition 3.3. There exists a càdlàg W 0-measurable process
¯
L which solves (3.1)

and for any other càdlàgW 0- measurable process L which satisfies (3.1), we have
¯
L ≤ L

almost surely.

Proof. For any n ≥ 1, we define inductively
dXn

t = b(t) dt+ σ(t)
√

1− ρ(t)2 dWt + σ(t)ρ(t) dW 0
t − α dΓn−1[1{∞}],

τn = inf{t > 0 : Xn
t ≤ 0},

Γn[1{∞}]t = P
[
τn ≤ t| FW 0

t

]
,

with Γ0[1{∞}] = 1{∞} and Γn[1{∞}] is the application of Γ n-times to the function
1{∞} ∈M . By Lemma 3.2, Γn+1[1{∞}] ≥ Γn[1{∞}] almost surely for any n ∈ N. As these
processes are càdlàg, we deduce Γn+1[1{∞}] ≥ Γn[1{∞}] for any n ∈ N almost surely. Let

Ω0 ∈ FW 0

denote the set of full measure where the monotonicity holds for every n and
we fix a D ⊂ R+ that is countable and dense. As Γn[1{∞}] is increasing and bounded
above, let

`t := lim
n−→∞

Γn[1{∞}]t1Ω0
∀ t ∈ D.

It is clear for any t ∈ D, `t is FW 0

t -measurable. Therefore we define

¯
Lt := lim

s↓t, s∈D
`s ∀ t ≥ 0.

By construction,
¯
Lt is a càdlàg W 0-measurable process with paths inM . A similar proof

as that used in the end of Proposition 3.1, shows that Γn[1{∞}] −→
¯
L almost surely inM .

Hence by Proposition 3.1, Γn+1[1{∞}] −→ Γ[
¯
L]. As Γ[

¯
L] and

¯
L are càdlàg W 0-measurable

processes that are limits of Γn[1{∞}], we may conclude that Γ[
¯
L] =

¯
L almost surely.

Lastly, if L is any càdlàg W 0-measurable process that solves (3.1), then by Lemma 3.2
we have Γn[1{∞}] ≤ L for all n ∈ N almost surely. Taking limit, we deduce

¯
L ≤ L almost

surely.

We now turn our attention to the smoothed version of (3.1). We will work on the
same filtered probability space (Ω, F , (Ft)t≥0, P) as in (3.1) that satisfies the usual
conditions and supports two independent Brownian motions. For an ε > 0, we consider
the McKean–Vlasov problem

dXε
t = b(t) dt+ σ(t)

√
1− ρ(t)2 dWt + σ(t)ρ(t) dW 0

t − α dLε
t ,

τε = inf{t > 0 : Xε
t ≤ 0},

Pε = P
[
Xε ∈ · | FW 0

]
, νε

t := P
[
Xε

t ∈ ·, τ ε > t| FW 0

t

]
,

Lε
t = Pε

[
τε ≤ t| FW 0

t

]
, Lε

t =
∫ t

0
κε(t− s)Lε

s ds,

(3.4)
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where α > 0 is a constant. The coefficients b, σ, ρ and κ are a measurable maps from
R into R satisfying Assumption 2.2. The system starts at time 0− with the same initial
condition, X0−, as in (3.1). As the assumptions on X0− is more general than those
imposed in Section 2, we may not apply Theorem 2.4 to guarantee existence of solutions
to (3.1). So, we propose an alternative proof to show existence of solutions. The proof
follows in the same faith as Proposition 3.3. We define the operator

Γε[`] := Γ[(κε ∗ `)], where (κε ∗ `) :=
∫ ·

0

κε(· − s)`s ds.

Therefore, solutions to (3.4) are equivalent to finding almost sure fixed points of Γε. A
simple consequence of Proposition 3.1, is that Γε is also continuous.

Corollary 3.4 (Continuity of Γε). Let `n and ` be a sequence of adapted W 0-measurable
processes that take values inM such that `n −→ ` almost surely inM . Then Γε[`

n] −→ Γε[`]

almost surely inM .

Proof. By Proposition 3.1, it is sufficient to show that the map ˜̀ 7→ κε ∗ ˜̀ is continuous
on M . It is clear that if we implicitly define the value of κε ∗ ˜̀ to be 1 at ∞, then it is
an element of M . Let ˜̀n and ˜̀be deterministic functions in M such that ˜̀n −→ ˜̀ in M .
That is, we have pointwise convergence on the continuity points of ˜̀. As κ ∈ W1,1(R+),
it has a continuous representative. So without loss of generality, we take κ to be this
representative. Hence κ is bounded on compacts, so an easy application of the Dominated
Convergence Theorem gives

lim
n−→∞

(κε ∗ ˜̀n)t = lim
n−→∞

∫ t

0

κε(t− s)˜̀ns ds =

∫ t

0

κε(t− s)˜̀s ds = (κε ∗ ˜̀)t

As convolution with non-negative functions preserves monotonicity, we further deduce
that Γε is also monotonic by Lemma 3.2.

Corollary 3.5. Let `1 and `2 be W 0-measurable processes with paths in M such that
`1 ≤ `2 almost surely, then Γε[`

1] ≤ Γε[`
2] almost surely.

With monotonicity and continuity of the operator Γε in hand, we have all the necessary
results to deduce the existence of solutions to (3.4).

Proposition 3.6. There exists a càdlàg W 0-measurable process
¯
Lε which solves (3.4)

and for any other càdlàg W 0-measurable process Lε which satisfies (3.4), we have

¯
Lε ≤ Lε almost surely.

Proof. By employing Corollary 3.4 and Corollary 3.5, this proof is verbatim to that of
Proposition 3.3.

The purpose of κε in (3.4) is two-fold. Firstly, it smoothens the effect of the feedback
component on the system, hence preventing the system from jumping and making it
continuous. Secondly, it delays the effect of Lε

t of the system. Intuitively, one would
expect that the system with instantaneous feedback, i.e. (3.1), will be dominated by that
with delayed feedback. Furthermore, intuitively as we decrease ε, then the system with
the smaller value of ε should be dominated by one with a larger value. This is because
as ε decreases, the rate at which the feedback is felt by the system increases.

Lemma 3.7. For any ε, ε̃ > 0 such that ε̃ < ε, it holds that

¯
Lε ≤

¯
L. and

¯
Lε̃ ≥

¯
Lε

almost surely.
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Proof. For any deterministic functions ˜̀1, ˜̀2 ∈ M such that ˜̀1 ≤ ˜̀2, a straightforward
computation shows that (κε ∗ ˜̀1) ≤ ˜̀2. Furthermore, for any t > 0, we have:∫ t

0

κε(s)˜̀1t−s ds =

∫ t

0

ε−1κ(sε−1)˜̀1t−s ds

=

∫ tε̃
ε

0

ε̃κ(s̃ε̃−1)˜̀1
t− s̃ε̃

ε
ds̃

≤
∫ t

0

κε̃(s̃)˜̀1t−s̃ ds̃

≤
∫ t

0

κε̃(s̃)˜̀2t−s̃ ds̃.

The second equality follows from employing the substitution s̃ε̃−1 = sε−1, and the third
inequality follows from the fact that ε̃ε−1 < 1, hence tε̃

ε < t and ˜̀1
t− s̃ε̃

ε

≤ ˜̀1
t−s̃. The claim

now follows from the monotonicity from Proposition 3.1 and Lemma 3.2.

3.2 Convergence of minimal solutions

From now on, we will fix a sequence of positive real numbers (εn)n≥1 that converge
to zero. As we have established that

¯
Lε is a decreasing process in ε by Lemma 3.7, we

shall exploit this structure to construct a solution to (3.1). This will be a W 0-measurable
solution that will be dominated by every other W 0-measurable solution. Therefore, we
may conclude that this solution must coincide with

¯
L on a set of full measure.

Theorem 3.8 (Almost sure convergence). Let (εn)n≥1 be a sequence of positive real
numbers that converges to zero. Let (

¯
Xε,

¯
Lε) denote the W 0-measurable solution to

(3.4) constructed in Proposition 3.6, and (
¯
X,

¯
L) denote the W 0-measurable solution to

(3.1) constructed in Proposition 3.3. Then by considering the extended system

˜
¯
Xεn :=

{
X0− t ∈ [−1, 0),

¯
Xεn

t t ≥ 0,
˜
¯
X :=

{
X0− t ∈ [−1, 0),

¯
Xt t ≥ 0,

we have Law( ˜
¯
Xεn | FW 0

) −→ Law( ˜
¯
X | FW 0

) almost surely in (P(DR),T
wk
M1

). Furthermore,

¯
Lεn converges to

¯
L almost surely inM and

¯
L satisfies the physical jump condition.

Proof. As (εn)n≥1 is a bounded sequence of reals converging to zero, we may find a
decreasing subsequence (εnj

)j≥1 which converges to zero. We fix a D ⊂ R+ that is

countable and dense in R+ and by Lemma 3.7 we may find a Ω0 ∈ FW 0

such that
Lεn∨εm ≤ Lεn∧εm for any n, m ∈ N. By the boundness of Lε and Lemma 3.7,

`t := lim
j−→∞

L
εnj

t 1Ω0

is well defined for any t ∈ D. Furthermore by Lemma 3.7, we may deduce that

`t := lim
n−→∞

Lεn
t 1Ω0

for any t ∈ D. It is clear by construction that `t is FW 0

t -measurable. Lastly, we define

Lt = lim
s↓t, s∈D

`s.

It is immediate that L is a càdlàg W 0-measurable process. Following the similar proce-
dure as at the end of Proposition 3.1 with the obvious changes, we obtain that Lεn −→ L

almost surely inM . For simplicity, we will denote XL by simply X and let

X̃ :=

{
X0− t ∈ [−1, 0),

Xt t ≥ 0.
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Then X̃εn −→ X̃ almost surely in DR. As ∆X̃t ≤ 0 for every t almost surely and

P

[
inf

s∈(τ0(X̃), τ0(X̃)+h)

{
X̃s − X̃τ0(X̃)

}
≥ 0

]
= 0

for any h ≥ 0, we have that τ0 isM1-continuous at almost every path of X̃. Therefore we
deduce (X, L) is a W 0-measurable solution to (3.1). By Lemma 3.7, we have that L ≤

¯
L

almost surely. By Proposition 3.3, we must have L =
¯
L almost surely and hence Lεn −→

¯
L

almost surely inM . As ˜
¯
Xεn converges to ˜

¯
X almost surely in DR, then by the Conditional

Dominated Convergence Theorem Law(
¯
X̃εn | FW 0

) −→ Law(
¯
X̃ | FW 0

) in (P(DR),T
wk
M1

).
By Lemma A.9 and [25, Proposition 3.5], we have

∆
¯
Lt = inf {x ≥ 0 : νt−[0, αx] < x} a.s.

for all t ≥ 0.

Remark 3.9 (Propagation of minimality). This result is parallel to Theorem 6.6 in [9],
which states that minimal solutions to the finite particle system approximation will
converge in probability to the limiting equation provided a unique physical solution
exists. The above shows that the W 0-measurable minimal solutions to the smoothed
system will converge to the W 0-measurable minimal solution of the limiting system
without needing to assume the existence of a unique physical solution.

All of the results in this section only required non-negativity of the initial condition.
Moreover, we only established the existence of solutions to (3.1) and (3.4) but made
no comments and have no results regarding the number of solutions in such a general
setting. However, if we assume that the initial condition satisfies Assumption 2.2 (vi),
then there is a unique solution to (3.4). In other words, the

¯
Lε we constructed is the only

solution. Furthermore, if we further assume that the initial condition satisfies

inf{x > 0 : νt−[0, αx] < x} = 0,

then 0 is an almost sure continuity point of
¯
X. Therefore these observations along with

Theorem 3.8 allow us to deduce the following result.

Corollary 3.10. Let (εn)n≥1 be a sequence of positive real numbers that converges to
zero. We suppose that the initial condition, X0−, satisfies Assumption 2.2 (vi) and that
inf{x > 0 : νt−[0, αx] < x} = 0. Then Law(Xεn | FW 0

) −→ Law(
¯
X | FW 0

) almost surely in
(P(DR),T

wk
M1

). Furthermore, Lεn converges to
¯
L almost surely inM and

¯
L satisfies the

physical jump condition.

4 Rates of convergence

One of the limitations of the previous arguments is that they fail to yield a rate at
which the convergence will occur. For simple systems, that is in the case of no drift, no
common noise and a volatility parameter set to 1, we employ a coupling argument to
derive the speed of convergence, which depends on the regularity of L.

The regularity of the loss process, L, has been established in the literature, [11, 17],
for a suitable class of initial conditions. In this setting, we not only have almost-
sure convergence of the stochastic process along a subsequence, but we will have
uniform convergence on any time domain before the time that the regularity of L decays.
These results are in some sense parallel to those presented in [21], with the crucial
difference that we are looking at the rate of convergence of systems with smoothed
loss to the limiting system, as opposed to the convergence of timestepping schemes
that approximate the limiting system. Note also that [22, 8] provide convergence orders
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for timestepping schemes in the case of Hölder continuous L, but convergence without
order in the case jump case.

To be precise, we will be considering the following system of equations
Xε

t = X0− +Wt − αLε
t ,

τε = inf {t ≥ 0 : Xε
t ≤ 0},

Lε
t = P (τε ≤ t) ,

Lε
t =

∫ t

0
κε(t− s)Lε

s ds,


Xt = X0− +Wt − αLt,

τ = inf {t ≥ 0 : Xt ≤ 0},
Lt = P (τ ≤ t) ,

(4.1)

where t ≥ 0, W is a standard Brownian motion, κ is a function from R to R satisfying
Assumption 2.2 and supp(κ) ⊂ [0, 1].

4.1 Theoretical estimates on rates of convergence

The main result of this section is the following:

Proposition 4.1. Let (X, L)t≥0 be a physical solution to (4.1) with initial condition X0−.
Suppose further that X0− admits a bounded initial density V0− s.t.

V0−(x) ≤ Cxβ1{x≤x∗} +D1{x>x∗} ∀x > 0,

where C, D, x∗, β > 0 are constants with β < 1. Then, for any t0 ∈ (0, texplode) there
exists a constant K̃ = K̃(t0) s.t.

sup
s∈[0, t0]

|Ls − Lε
s| ≤ K̃εβ/2,

where

texplode := sup{t > 0 : ‖L‖H1(0, t) < +∞} ∈ (0, +∞]. (4.2)

Proof. By assumption, we are in the setting of [17, Theorem 1.8]. Hence, we have
a unique solution, L, to (4.1) up to the time texplode defined as in (4.2). Also, for all
t0 ∈ (0, texplode) there exists K = K(t0) s.t. L ∈ S( 1−β

2 , K, t0) where

S
(
1− β

2
, K, t0

)
:= {l ∈ H1(0, t0) : l′t ≤ Kt−

1−β
2 for almost all t ∈ [0, t0]}

Step 1: Regularity of L. Choose t0 ∈ (0, texplode). As L ∈ H1(0, t0), for Lebesgue a.e.
t, s ∈ (0, t0) we may write

Lt − Ls =

∫ t

s

L′
s ds ≤ K(1− γ)−1(t1−γ − s1−γ),

where the last inequality is from L ∈ S(γ, K, t0) with γ = (1− β)/2. This implies

|Lt − Ls|
|t− s|1−γ

≤ K(t1−γ − s1−γ)

(1− γ)|t− s|1−γ
≤ K

1− γ
.

The last inequality is due to the subadditivity of concave functions. Therefore, Lt is
almost everywhere β+1

2 - Hölder continuous.

Step 2: Decomposition of L into an integral form. We may write L as

Lt =

∫ t

0

κε(t− s)Ls ds+

[
1−

∫ t

0

κε(t− s) ds

]
Lt +

∫ t

0

κε(t− s)(Lt − Ls) ds.
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Observe[
1−

∫ t

0

κε(t− s) ds

]
Lt ≤

2Kε1−γ

1− γ
and

∫ t

0

κε(t− s)(Lt − Ls) ds ≤
Kε1−γ

1− γ
.

Therefore

Lt =

∫ t

0

κε(t− s)Ls ds+Ψε(t) where |Ψε(t)| ≤ 3Kε1−γ

1− γ
∀ t ∈ [0, t0]. (4.3)

Step 3: Comparison between the delayed loss and instantaneous loss. By Lemma 3.7, we
have that L ≥ Lε, in the same spirit as [17, Proposition 3.1],

0 ≤ Lt − Lε
t ≤ c1

∫ t

0

Lu − Lε
u√

t− u
L′

u du ≤ c1

∫ t

0

∫ u

0

κε(u− s)
Ls − Lε

s√
t− u

L′
u dsdu+ c1

∫ t

0

Ψε(s)L′
s√

t− s
ds,

where c1 = α
√
2/π and the second inequality follows by (4.3). As L ∈ S(γ, K, t0),

0 ≤ |Lt − Lε
t | ≤ Kc1

∫ t

0

∫ u

0

κε(u− s) |Ls − Lε
s|

uγ
√
t− u

dsdu+Kc1

∫ t

0

|Ψε(s)|
sγ
√
t− s

ds.

By (4.3), we may find a constant CK,t0,α such that the second term above is bounded by
CK,t0,αε

1−γ . Therefore,

0 ≤ |Lt − Lε
t | ≤ Kc1

∫ t

0

|Ls − Lε
s|ρε(t, s) ds+ CK,t0,αε

1−γ , (4.4)

where

ρε(t, s) =

∫ t

s

κε(u− s)

uγ
√
t− u

du.

Step 4: Bounds on ρε(t, s)

As ρε depends on t and s, we may not immediately apply Grönwall’s lemma or any of its
generalisations. To this end, we first construct upper bounds to relax the dependence of
ρε on t and s via the function κ. In the case when 0 ≤ t− s ≤ ε

ρε(t, s) =

∫ t

s

κε(u− s)

uγ
√
t− u

du =

∫ t−s
ε

0

κ(ũ)

(εũ+ s)γ
√
t− s− εũ

dũ ≤
‖κ‖L∞

sγε1/2

∫ t−s
ε

0

dũ√
t−s
ε − ũ

=
2 ‖κ‖L∞ (t− s)1/2

sγε
≤

2 ‖κ‖L∞

sγ(t− s)1/2
,

where we used the substitution ũ = (u− s)ε−1. In the case when t− s > ε, as the support
of κε is in [0, ε]

ρε(t, s) =

∫ t

s

κε(u− s)

uγ
√
t− u

du =

∫ s+ε

s

κε(u− s)

uγ
√
t− u

du

≤
‖κ‖L∞

sγε

∫ s+ε

s

du√
t− u

=
2 ‖κ‖L∞

sγ

[
(t− s)1/2 − (t− s− ε)1/2

ε

]
.

Step 5: Grönwall type argument

Now that we have sufficiently decoupled κ from ρε, we may put (4.4) into a form where
we may apply a generalised Grönwall Lemma. By step 4 case 1 and (4.4), for t ≤ ε,

|Lt − Lε
t | ≤ Kc1

∫ t

0

2 ‖κ‖L∞ s−γ(t− s)−1/2|Ls − Lε
s|ρε(t, s) ds+ CK,t0,αε

1−γ .
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By the second case of step 4 and (4.4), we have for t > ε

|Lt − Lε
t | ≤ Kc1

∫ t−ε

0

|Ls − Lε
s|ρε(t, s) ds+Kc1

∫ t

t−ε

|Ls − Lε
s|ρε(t, s) ds+ CK,t0,αε

1−γ

≤ 2Kc1 ‖κ‖L∞

∫ t−ε

0

[
(t− s)1/2 − (t− s− ε)1/2

ε

]
s−γ |Ls − Lε

s|ds

+ 2Kc1 ‖κ‖L∞

∫ t

t−ε

(t− s)−1/2s−γ |Ls − Lε
s|ds+ CK,t0,αε

1−γ

≤ 2Kc1 ‖κ‖L∞

∑
j≥2

C̃jε
j−1

∫ t−ε

0

(t− s)
−2j+1

2 s−γ |Ls − Lε
s|ds

+ 2Kc1 ‖κ‖L∞

∫ t

0

(t− s)−1/2s−γ |Ls − Lε
s|ds+ CK,t0,αε

1−γ ,

where the last line follows from applying Taylor’s Theorem and the Monotone Conver-
gence Theorem. We note C̃j := (2j − 2)!/[j!(j − 1)!22j−1] is summable. Now we turn our
attention onto the expression in the penultimate line. In the case when ε < t ≤ 2ε,

C̃jε
j−1

∫ t−ε

0

(t− s)
−2j+1

2 s−γ ds ≤ C̃jε
j−1ε

−2j+1
2

∫ t−ε

0

s−γ ds ≤ C̃jε
−1
2

∫ ε

0

s−γ ds ≤ C̃jε
1
2−γ

1− γ

where the first inequality follows from the fact that (−2j + 1)/2 < 0 as j ≥ 2 and
t− s ∈ [ε, t] for s ∈ [0, t− ε]. In the case when t > 2ε, we observe that

C̃jε
j−1

∫ ε

0

(t− s)
−2j+1

2 s−γ ds ≤ C̃jε
j−1ε

−2j+1
2

∫ ε

0

s−γ ds ≤ C̃jε
1
2−γ

1− γ
,

and

C̃jε
j−1

∫ t−ε

ε

(t− s)
−2j+1

2 s−γ ds ≤ C̃jε
j−1ε−γ

∫ t−ε

ε

(t− s)
−2j+1

2 ds

= C̃jε
j−1−γ 2

2j − 3
(t− s)

−2j+3
2

∣∣∣t−ε

s=ε

≤ 2C̃jε
j−1−γε

−2j+3
2

2j − 3
=

2C̃jε
1/2−γ

2j − 3
≤ 2C̃jε

1/2−γ

1− γ
.

Therefore, we have shown that

C̃jε
j−1

∫ t−ε

0

(t− s)
−2j+1

2 s−γ ds ≤ 3C̃jε
1/2−γ

1− γ

for all t > ε. As L and Lε are bounded by 1, we have independent of t being greater or
less than ε,

|Lt − Lε
t | ≤ 2Kc1 ‖κ‖L∞

∫ t

0

(t− s)−1/2s−γ |Ls − Lε
s|ds+

12Kc1 ‖κ‖L∞ ε1/2−γ∑
j≥2 C̃j

1− γ
+ CK,t0,αε

1−γ

= 2Kc1 ‖κ‖L∞

∫ t

0

(t− s)−1/2s−γ |Ls − Lε
s|ds+ CK,t0,α,γε

1/2−γ ,

for any t ∈ [0, t0]. Lastly, by Proposition A.10, using β̃ = 1/2 and α̃ = 1 − γ, then
α̃+ β̃ − 1 > 0 as γ < 1/2 and

|Lt − Lε
t | ≤ CK,t0,α,γε

1/2−γ
∑
n≥0

(2Kc1 ‖κ‖L∞)nCnt
n(1/2−γ)
0

= CK,t0,α,γε
β/2
∑
n≥0

(2Kc1t
β/2
0 ‖κ‖L∞)nCn,

where in the last equality we used γ = (1− β)/2. This completes the proof.
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The works of Fasano et al. [13, 14], Di Benedetto et al. [12], and Chayes et al. [6, 5]
extensively investigate the supercooled Stefan problem, focusing on the existence of a
unique solution without blow-ups for all time or until the entire liquid freezes. Recently,
Delarue et al. [11] established global uniqueness for the system described in (4.1), under
the condition that the density of the initial condition X0− undergoes only a finite number
of changes in monotonicity. Under this assumption, the loss is continuously differentiable
on (0, texplode) for texplode defined in (4.2). Moreover, if the initial density has sufficient
regularity, the loss will be continuously differentiable down to t = 0. Motivated by
these results, we next investigate the rate of convergence when the loss function is
differentiable.

Proposition 4.2. Suppose we have a unique physical solution (X,L) to (4.1) such that
L ∈ C1([0, texplode)) for texplode ∈ (0, ∞]. Then for any t0 ∈ (0, texplode), there exists a
constant K̃ = K̃(t0) such that

sup
s∈[0, t0]

|Ls − Lε
s| ≤ K̃ε1/2.

Proof. See appendix.

4.2 Numerical simulations

Lastly, we investigate the convergence rate of the smoothed loss function towards the
singular loss function through numerical simulations. The estimates from the previous
section, for the case without common noise, give upper bounds on the rate at which the
smoothed system will approach the singular system, prior to the decline in regularity of
the singular loss function. The proofs employed in the analysis utilised relatively crude
upper bounds, prompting the question of whether the obtained rates are optimal.

To the best of our knowledge, there is no existing literature on the regularity of the
loss process in the presence of common noise. Consequently, the theoretical methods
employed earlier may not be applicable in this scenario. Nevertheless, we can still
explore the convergence rate numerically in this context as well. We consider the
simplest setting with common noise,
Xε

t = X0− + (1− ρ2)1/2Wt + ρW 0
t − αLε

t ,

τε = inf {t ≥ 0 : Xε
t ≤ 0},

Lε
t = P

[
τε ≤ t | FW 0

t

]
,

Lε
t =

∫ t

0
κε(t− s)Lε

s ds,


Xt = X0− + (1− ρ2)1/2Wt + ρW 0

t − αLt,

τ = inf {t ≥ 0 : Xt ≤ 0},
Lt = P

[
τ ≤ t | FW 0

t

]
,

(4.5)
where ρ ∈ [0, 1) is a fixed constant. We propose a numerical scheme that employs a
particle system approximation to compute both the limiting and smoothed loss functions.
Instead of employing numerical integration to compute the mollified loss of Xε, the
system will feel the impulse from a particle hitting the boundary at a random time in
the future sampled from a random variable whose probability density function is the
mollification kernel. The scheme is given in Algorithm 1.

By setting ρ to zero, the algorithm approximates the loss in the setting without
common noise. To compute the limiting loss function we set ς to zero. In the case
when ρ = 0 and ς = 0, we recover the numerical scheme proposed in [21, 22]. In the
numerical experiments below, we used 106.5 particles and a uniform time mesh of width
∆t := mini{εi}/10, with {εi}i the set of delay values, so that ti = i×∆t in Algorithm 1.

Overall, given sufficient regularity of the loss function, a rate of convergence close
to 1 is observed. In the other cases studied with Hölder initial data, with the possibility
of there being a jump after the test interval, and with common noise, the rate of
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Algorithm 1: Discrete time Monte Carlo scheme for simulation of the smoothed
loss process with common noise

Require :N − number of interacting particles
Require :n− number of time steps: 0 < t1 < t2 < . . . < tn
Require :ε− the strength of the delay

1 Draw one sample of W 0

2 Draw N samples of X0−, W , and ς (r.v. with distribution κε(t) dt)
3 for i = 1 : n do

4 L̂ε
ti =

1
N

∑N
m=1 1(−∞,0](mintj<ti{X̂

(m)
tj })

5 for k = 1 : N do
6 Update

X̂
(k)
ti = X

(k)
0−+(1−ρ2)1/2W (k)

ti +ρW 0
ti−

α
N

∑N
m=1 1(−∞,0](mintj<ti−ς(m){X̂(m)

tj })

7 end

8 end

convergence appears to be between 1/2 and 1. See Appendix B for further analysis
regarding the rate of convergence and how ∆t affects the estimated rate.

4.3 Initial density vanishing at zero and no discontinuity or common noise

Two different initial conditions were examined in our experimental analysis, and
no discontinuity was observed in either case. In the first simulation, we set X0− to
follow a uniform distribution on [0.25, 0.35], with α = 0.5. In the second scenario,
X0− was generated from a gamma distribution with parameters

(
2.1, 12

)
, with α = 1.3.

Interestingly, the data from Fig. 1 indicate a convergence rate of 1 in both cases. This
exceeds the theoretically guaranteed convergence rate of 1/2.

4.4 Setting with discontinuity and without common noise

To simulate a setting where we would see a systemic event, we changed the parame-
ters of the Gamma distribution such that most of the mass will be near the boundary
and made α sufficiently large. In Fig. 2, we conducted simulations using two different
initial conditions. In the first case, we set X0− to follow a Gamma distribution with
parameters (1.2, 0.5) and set α = 0.9. In the second case, X0− was generated from a
Gamma distribution with parameters (1.4, 0.5), and α = 2. Within this particular setup,
we observe a convergence rate between 1/2 and 1 prior to the first jump, while the
theory only gives a rate below 0.5. The rate does not display a clear dependence on the
characteristics of the density of X0− near the boundary, in contrast to the theoretical
estimates; see Table 3 for more details on the data.

4.5 Simulations with common noise

In both experiments in this subsection, we assigned X0− a uniform distribution over
the interval [0.25, 0.35], the same as in subsection 4.3, and set α = 0.5 and ρ = 0.5, with
different common noise paths for each experiment. In the first simulation, the common
noise path increases to 1 over the time domain. This led to the loss process becoming
rougher than the loss in the previous setting. In the second simulation, the common
noise path decreases to −1. This induces a systemic event due to the rapid loss of
mass. Despite the differences between the scenarios, we observed a similar rate of
convergence between 1/2 and 1 as illustrated in Fig. 3.
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(a) X0− ∼d Uniform[0.25, 0.35], α = 0.5. (b) Rate of Convergence.

(c) X0− ∼d Γ(2.1, 1
2
), α = 1.3. (d) Rate of Convergence.

Figure 1: Initial density vanishing at zero with no discontinuity or common noise.

A Technical lemmas

Lemma A.1. Suppose that P̃ εn = Law(X̃εn , Ỹεn) converges weakly in P(DR×CR) to P̃ ∗,
where X̃εn and Ỹεn are the extensions of Xεn and Yεn , respectively. Let X∗ and Y ∗ be
the canonical processes on DR × CR such that for (η, ω) ∈ DR × CR, X∗(η, ω) = η and
Y ∗(η, ω) = ω. Then, under P̃ ∗, Y ∗ is a martingale with respect to the filtration generated
by (X∗, Y ∗) with quadratic variation

〈Y ∗〉t =



0 t ∈ [−1, 0),∫ t

0

σ(s, X∗
s )

2 ds t ∈ [0, T ],∫ T

0

σ(s, X∗
s )

2 ds+ (t− T ) t ∈ (T, T̄ ].

Proof. Set P̃ ∗ to be the limit point of (P̃ εn)n≥0 and

TP̃∗
:=
{
t ∈ [−1, T̄ ] : P̃ ∗(ηt = ηt−) = 1

}
.
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(a) X0− ∼d Γ(1.2, 0.5), α = 0.9. (b) tmax = 0.0001. (c) Rate of Convergence.

(d) X0− ∼d Γ(1.4, 0.5), α = 2. (e) tmax = 0.0001. (f) Rate of Convergence.

Figure 2: Initial density vanishing at zero with discontinuity and no common noise.

(a) Common Noise Path. (b) X0− ∼d Uniform[0.25, 0.35],

α = 0.5.
(c) Rate of Convergence.

(d) Common Noise Path. (e) X0− ∼d Uniform[0.25, 0.35],

α = 0.5.
(f) Rate of Convergence.

Figure 3: Initial density vanishing at zero with common noise.

Now for any s0, t0 ∈ TP̃∗
with s0 < t0 and {si}ki=1 ⊂ [−1, s0]∩TP̃∗

, we define the function

F : DR × CR → R, (η, ω) 7→ (ωt0 − ωs0)

k∏
i=1

fi(ηsi , ωsi),
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for arbitrary fi ∈ Cb(DR × CR). To show that Y ∗ is a martingale, it is sufficient to show

that EP̃∗
[F (X∗, Y ∗)] = 0.

As P̃ εn =⇒ P̃ ∗, then by Skorokhod’s Representation Theorem, see [2, Theorem 7.6],
there exist ((xn, yn))n≥1 and (x, y) defined on the same background space such that
(xn, yn) converges to (x, y) almost surely in (DR, M1)× (CR, ‖·‖∞) with Law(xn, yn) =

P̃ εn and Law(x, y) = P̃ ∗. Now for any p > 1,

E [|F (xn, yn)|p] ≤ CE

[
sup
s≤T̄

|Ỹεn
s |p

]
≤ C,

where C is a constant that changes from line to line and depends only on p, σ, T and
the fi’s but is independent of ε. Therefore, F (xn, yn) is Lp-bounded uniformly in n.
For t ∈ {t0, s0, s1, . . . , sk}, t is an almost sure continuity point of x. Therefore, by the
properties of M1-convergence, (xnt , y

n
t ) converges to (xt, yt) almost surely. Hence, we

have almost sure convergence of F (xn, yn) to F (x, y). Vitali’s Convergence Theorem
states that almost sure convergence and uniform integrability imply convergence of
means, hence

EP̃∗
[F (X∗, Y ∗)] = E[F (x, y)] = lim

n→∞
E[F (xn, yn)] = lim

n→∞
E[F (X̃εn , Ỹεn)] = 0,

where the last equality follows from the fact that E[F (X̃εn , Ỹεn)] = 0 for all n as Ỹεn is a
martingale. Therefore, by a monotone class theorem argument, Y ∗ is a continuous local
martingale.

Recall xn → x almost surely in (DR, M1), hence we have pointwise convergence at
the continuity points of x, see [33, Theorem 12.5.1]. As σ is in C1, 2 by Assumption 2.2,
there exists a set of full probability such that σ(s, xns ) → σ(s, xs) for a set of s’s that
have full Lebesgue measure in [0, T ]. Furthermore, as σ is bounded, by the Bounded
Convergence Theorem ∫ t

0

σ(s, xns )
2 ds→

∫ t

0

σ(s, xs)
2 ds (A.1)

almost surely for any t ∈ [0, T ]. Set

〈Y 〉t =



0 t ∈ [−1, 0),∫ t

0

σ(s, Xs)
2 ds t ∈ [0, T ],∫ T

0

σ(s, Xs)
2 ds+ (t− T ) t ∈ (T, T̄ ],

where Y is any one of Y ∗, yn or Ỹεn and X is the respective X∗, xn or X̃εn . Employing
(A.1),

F (xn, (yn)2 − 〈yn〉) → F (x, y2 − 〈y〉) almost surely.

Also, by the above and the boundedness of σ by Assumption 2.2, F (xn, (yn)2 − 〈yn〉) is
Lp-bounded uniformly in n. Hence, by Vitali’s Convergence Theorem,

EP̃∗ [
F (X∗, (Y ∗)2 − 〈Y ∗〉)

]
= E

[
F (x, y2 − 〈y〉)

]
= lim

n→∞
E
[
F (xn, (yn)2 − 〈yn〉)

]
= lim

n→∞
E
[
F (X̃εn , (Ỹεn)2 − 〈Ỹεn〉)

]
= 0,

where the last equality follows from the fact that (Ỹεn)2 − 〈Ỹεn〉 is a true martingale due
to the boundedness of σ. This completes the proof.
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Lemma A.2. Consider the process Zt =Mt+tX for t ∈ [−1, T̄ ], whereMt is a continuous
local martingale with cM (t − s) ≤ 〈M〉t − 〈M〉s ≤ CM (t − s) for any 0 ≤ s < t almost
surely, and X is a non-negative random variable such that E[X] < ∞. Then, for any
stopping time τ where τ ≥ 0 almost surely, then

P

[
inf

s∈(τ,(τ+h)∧T̄ )
{Zs − Zτ} ≥ 0, τ < T̄

]
= 0,

for any h > 0.

Proof. In the case whenM is simply a Brownian motion, the result readily follows from
the Strong Markov Property and the standard properties of Brownian motion. AsM is
a continuous local martingale, we may view it as a (random) time-changed Brownian
motion. We exploit this fact to show the claim. To begin, fix a ∆ ∈ (0, h), λ > 0 and set
τ̄ := τ ∧ (T̄ −∆). Then, conditioning on the event E := {τ ≤ T̄ −∆} ∩ {X ≤ λ} and its
complement, we have

P

[
inf

s∈(τ,(τ+h)∧T̄ )
{Zs − Zτ} > −∆, τ < T̄

]
≤ P

[
inf

s∈(τ̄,τ̄+∆)
{Ms −Mτ̄ + (s− τ̄)λ} > −∆

]
+ P

[
E{, τ < T̄

]
.

(A.2)

Focussing on the first term, we observe

P

[
inf

s∈(τ̄,τ̄+δ)
{Ms −Mτ̄ + (s− τ̄)λ} > −∆

]
≤ P

[
inf

s∈(τ̄,τ̄+δ)
{Ms −Mτ̄} > −∆(1 + λ)

]
By the Dubins-Schwarz Theorem, M is a time-changed Brownian motion. Therefore
there exists a Brownian Motion B such that

P

[
inf

s∈(τ̄,τ̄+δ)
{Ms −Mτ̄} > −∆(1 + λ)

]
= P

[
inf

s∈(τ̄,τ̄+δ)
{B〈M〉s−〈M〉τ̄ } > −∆(1 + λ)

]
Now as τ̄ = τ ∧ (T̄ −∆) > 0 almost surely, 〈M〉s − 〈M〉τ̄ ≥ cM (s− τ̄) for any s > τ̄ almost
surely. So

P

[
inf

s∈(τ̄,τ̄+δ)
{B〈M〉s−〈M〉τ̄ } > −∆(1 + λ)

]
≤ P

[
inf

s∈(0,∆)
{BcMs} > −∆(1 + λ)

]
By the reflection principle of Brownian motion, we have

P

[
inf
s≤∆

BcMs ≤ −∆(1 + λ)

]
= 2P [BγcM ≤ −∆(1 + λ)]

= 2(2π)−1/2

∫ −∆1/2c
−1/2
M

(1+λ)

−∞
e

−y2

2 dy ≥ 1− 2∆1/2(1 + λ)(2πcM )−1/2.

In conclusion, we have shown

P

[
inf

s∈(τ̄,τ̄+∆)
{Ms −Mτ̄ + (s− τ̄)λ} > −∆

]
≤ P

[
inf

s∈(0,∆)
{BcMs} > −∆(1 + λ)

]
≤ 2∆1/2(1 + λ)(2πcM )−1/2

Setting λ = ∆−1/4, then by continuity of measure and the above, the expression in (A.2)
converges to 0 as we send ∆ to zero. This completes the proof.
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Lemma A.3 (Convergence of Stopping Times). Consider a sequence of functions (zn)n≥1

in DR converging towards some z ∈ DR with respect to the M1-topology. We assume
that z has the following crossing property:

∀h > 0 τ0(z) < T̄ =⇒ inf
s∈(τ0(z),(τ0(z)+h)∧T̄ )

{
zs − zτ0(z)

}
< 0, (A.3)

where τ0 is defined as in (2.14) and ∆zt ≤ 0 for all t ∈ [−1, T̄ ]. Then we have

lim
n→∞

τ0(z
n) = τ0(z).

Proof. The proof is composed of two steps. We shall show that lim supn→∞ τ0(z
n) ≤

τ0(z) ≤ lim infn→∞ τ0(z
n). Hence, we will have equality and the claim follows.

Step 1: lim supn→∞ τ0(z
n) ≤ τ0(z)

We define the set of continuity points of z to be Tz := {t ∈ [−1, T̄ ] : zt = zt−}. We remark
that Tz is co-countable by [2, Section 13]. As τ0(z) < T̄ , by (A.3) for any fixed m ∈ N
there exists a t ∈ (τ0(z), (τ0(z)+ 1/m)∧ T̄ )∩Tz such that zt < 0. Now, as t is a continuity
point of z, by [33, Theorem 12.5.1], we have that znt → zt in R as n→ ∞. Therefore, for
large n, znt < 0 hence

lim sup
n→∞

τ0(z
n) ≤ t ≤ τ0(z) +

1

m
.

As m ∈ N was arbitrary, the claim follows.
Step 2: lim infn→∞ τ0(z

n) ≥ τ0(z)

As zn → z in the M1-topology, we may find a sequence of parametric representations
((un, rn))n≥1 of (zn)n≥1 which converges uniformly to a parametric representation (u, r)

of z, see [33, Theorem 12.5.1]. Therefore, we may find an sn ∈ [0, 1] such that (unsn , r
n
sn) =

(znτ0(zn), τ0(z
n)). By Step 1, since τ0(z) < T̄ , we have

lim inf
n→∞

τ0(z
n) ≤ lim sup

n→∞
τ0(z

n) ≤ τ0(z) < T̄.

Therefore, by the finiteness of lim infn→∞ τ0(z
n) and compactness of [0, 1], we may find

a subsequence nk such that τ0(znk) → lim infn→∞ τ0(z
n) and snk

→ s for some s ∈ [0, 1].
By the uniform convergence of the parametric representations

lim inf
k→∞

znk

τ0(z
nk ) = lim inf

k→∞
unk

snk = us,

lim inf
k→∞

τ0(z
nk) = lim inf

k→∞
rnk

snk = rs.

As rs = lim infn→∞ τ0(z
n), we may find γ ∈ [0, 1] such that us = γz(lim infn→∞ τ0(zn))−+(1−

γ)zlim infn→∞ τ0(zn). We also note us ≤ 0 as lim infk→∞ znk

τ0(z
nk ) ≤ 0. Lastly, as ∆zt ≤ 0 for

all t, we have zlim infn→∞ τ0(zn) ≤ 0. Therefore, τ0(z) ≤ lim infn→∞ τ0(z
n). This completes

the proof.

Lemma A.4 (Functional Continuity II). Let µ ∈ P(DR) be any measure such that

µ

(
inf

s∈(τ0(η), (τ0(η)+h)∧T̄ )
{ηs − ητ0(η)} ≥ 0, τ0(η) < T̄

)
= 0, (A.4)

for any h > 0. Then, for any sequence of measures (µn)n≥1 such that µn =⇒ µ in
(P(DR),T

wk
M1

), we have

νµ
n

t := µn(ηt ∈ ·, τ0(η) > t) =⇒ νµt := µ(ηt ∈ ·, τ0(η) > t),

in M≤1(R), the space of sub-probability measures on R endowed with the topology of
weak convergence, for and t ≥ 0 such that µ(ηt = ηt−) = 1 and µ(τ0(η) = t) = 0.
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Proof. The proof is an application of the Continuous Mapping Theorem, [2, Theorem 2.7].
We only need to construct µ-almost sure continuous maps.
Step 1: Projection of measures from DR to R× {0, 1}

Consider the map

(Xt, 1{τ0(·)}) : DR → R× {0, 1}, η 7→ (ηt, 1{τ0(η)>t}) (A.5)

(A.5) is a µ-almost sure continuous map. Choose a η ∈ DR such that ηt = ηt−, τ0(η) 6= t

and is in the complement of the event in (A.4). Such η’shave full measure under µ. M1-
convergence implies pointwise convergence at continuity points, [33, Theorem 12.5.1],
therefore Xt isM1-continuous for every such η. Also by Lemma 2.13, since (A.4) holds,
τ0 is an M1-continuous map at η. As τ0(η) 6= t, 1{τ0(·)} is M1-continuous at η. Hence,
(Xt, 1{τ0(·)}) is a µ-almost sure continuous map. By the Continuous Mapping Theorem,

(Xt, 1{τ0(·)})
#µn =⇒ (Xt, 1{τ0(·)})

#µ in P(DR × {0, 1}).

Step 2: Weak convergence of sub-probability measures

For any f ∈ Cb(R), define the map

f̂ : R× {0, 1} → R, (x, y) 7→ f(x)1{1}(y).

It is clear f̂ ∈ Cb(R× {0, 1}). By step 1,

〈(Xt, 1{τ0(·)})
#µn, f̂〉 −→ 〈(Xt, 1{τ0(·)})

#µ, f̂〉.

But by definition, 〈(Xt, 1{τ0(·)})
#µn, f̂〉 = νµ

n

t (f) and 〈(Xt, 1{τ0(·)})
#µ, f̂〉 = νµt (f). So

νµ
n

t (f) −→ νµt (f). The conclusion now follows by Portmanteau’s Theorem.

Lemma A.5 (Weak convergence of sub-probability measures). Suppose that P̃εn =⇒ P̃∗

on (P(DR),T
wk
M1

) for a positive sequence (εn)n≥1 which converges to zero. Set

T :=
{
t ∈ [−1, T̄ ] : E

[
P̃∗(ηt = ηt−)

]
= 1, E

[
P̃∗(τ0(η) = t)

]
= 0
}
.

Then for any t ∈ T,

νεn
t =⇒ ν∗

t := P̃∗(ηt ∈ ·, τ0(η) > t) in M≤1(R).

Proof. By definition of T and Lemma 2.11. for any t ∈ T there is a set of µ’s of full
Law(P∗)-measure such that

µ(ηt 6= ηt−) = µ(τ0(η) = t) = 0, µ

(
inf

s∈(τ0(η), (τ0(η)+h)∧T̄ )
{ηs − ητ0(η)} ≥ 0, τ0(η) < T̄

)
= 0.

(A.6)
As P̃εn =⇒ P̃∗, by Skorokhod’s Representation Theorem there exists a (Qn)n≥1, Q

∗

such that Qn −→ Q∗ almost surely, Law(Qn) = Law(P̃εn), Law(Q∗) = Law(P̃∗) and Q∗

satisfies (A.6) almost surely. Set

νQ
n

t = Qn(ηt ∈ ·, τ0(η) > t), and νQ
∗

t = Q∗(ηt ∈ ·, τ0(η) > t)

By Lemma A.4, νQ
n

t −→ νQ
∗

t almost surely in M≤1(R). Now, for any F ∈ Cb(M≤1(R)), by
the Dominated Convergence Theorem

lim
n−→∞

E [F (νεn
t )] = lim

n−→∞
E
[
F (νQ

n

t )
]
= E

[
F (νQ

∗

t )
]
= E [F (ν∗

t )] .

The result now follows by Portmanteau’s Theorem.
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Lemma A.6 (Functional Continuity III). Let µ ∈ P(DR) be any measure such that

µ

(
inf

s∈(τ0(η), (τ0(η)+h)∧T̄ )
{ηs − ητ0(η)} ≥ 0, τ0(η) < T̄

)
= 0, (A.7)

for any h > 0 and let g(t, x, ν) be any function satisfying Assumption 2.2 i. Then∫ t

0
g(s, ηns , ν

µn

s ) ds converges to
∫ t

0
g(s, ηs, ν

µ
s ) ds for any t ≥ 0 whenever (ηn, µn) −→ (η, µ)

in (P(DR),T
wk
M1

) × (DR,M1) along a sequence for which supn≥1〈µn, sups≤T̄ |η̃s|p〉 < ∞
for some p > 1 and any t ≥ 0. For any measure m ∈ P(DR), ν

m
s := m(η̃s ∈ ·, τ0(η̃) > s).

Proof. By Assumption 2.2,∣∣∣g(s, ηns , νµn

s )
∣∣∣ ≤ C(1 + sup

m≥1
sup
u≤T̄

|ηmu |+ sup
m≥1

〈µm, sup
u≤T̄

|η̃u|〉) (A.8)

The right-hand side of (A.8) is finite because ηn → η in (DR,M1) and by our assumption.
Thus, it is sufficient to show that g(s, ηns , ν

µn

s ) converges to g(s, ηs, νµs ) on a set of full
Lebesgue measure. The conclusion then follows from the Dominated Convergence
Theorem.

By Assumption 2.2,∣∣∣g(s, ηns , νµn

s )− g(s, ηs, ν
µ
s )
∣∣∣ ≤ C |ηns − ηs|+ C(1 + |ηs|+ 〈νµ

n

s , |·|〉)d0(νµ
n

s , νµs ). (A.9)

For any s ∈ Tµ :=
{
t ∈ [−1, T̄ ] : µ(ηt = ηt−) = 1, µ(τ0 = t) = 0

}
, the first term converges

to zero as ηn → η in (DR,M1). For the second term in (A.9), it suffices to show
d0(ν

µn

s , νµs ) → 0, since (1 + |ηs|+ 〈νµn

s , |·|〉) is bounded uniformly in n by our assumption.
Recall that

d0(ν
µn

s , νµs ) = sup
{∣∣∣〈νµn

s − νµs , ψ〉
∣∣∣ : ψ ∈ Cd0

}
, (A.10)

where Cd0
:= {ψ ∈ C(R) : ‖ψ‖Lip ≤ 1, |ψ(0)| ≤ 1}. Fix a δ > 0, then for any λ > 1, by

the Arzerlà-Ascoli Theorem, there exists a finite family of functions ψ1, . . . , ψm ∈ Cd0

supported on [−λ− 1, λ+ 1], for m = m(λ) ∈ N such that for any ψ ∈ Cd0 ,

sup
x∈[−λ,λ]

|ψ(x)− ψi(x)| < δ/2 (A.11)

for some i ∈ {1, . . . ,m}. Fixing any ψ ∈ Cd0
and choosing a ψi such that (A.11) holds, we

have ∣∣∣〈νµn

s − νµs , ψ〉
∣∣∣ ≤ ∣∣∣∣∣

∫ λ

0

(ψ − ψi) d(ν
µn

s − νµs )

∣∣∣∣∣+
∣∣∣∣∫ ∞

λ

(ψ − ψi) d(ν
µn

s − νµs )

∣∣∣∣
+
∣∣∣〈νµn

s − νµs , ψi〉
∣∣∣ .

By our choice of ψi, the first term is bounded by δ uniformly in n. By the linear growth
condition for functions in Cd0 ,∣∣∣∣∫ ∞

λ

(ψ − ψi) d(ν
µn

s − νµs )

∣∣∣∣ ≤ C〈νµ
n

s + νµs , |·|1[λ,∞)〉

for a constant C independent of n. Consequently, by the definition of νµ
n

s ,

〈νµ
n

s , |·|1[λ,∞)〉 ≤
∫
DR

|η̃s|1{η̃s>λ} dµ
n(η̃) ≤ 〈µn, sup

u≤T̄

|η̃u|p〉
1
pµn

(
sup
u≤T̄

|η̃u| > λ

) p−1
p

≤ 1

λp−1
〈µn, sup

u≤T̄

|η̃u|p〉.

EJP 30 (2025), paper 94.
Page 40/53

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1347
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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The second inequality follows from Hölder’s inequality, while the last inequality follows
from Markov’s inequality. We may also employ the same argument to upper bound the
〈νµs , |·|1[λ,∞)〉 term in the above. Hence, by these upper bounds and as µn =⇒ µ, we
deduce that ∣∣∣∣∫ ∞

λ

(ψ − ψi) d(ν
µn

s − νµs )

∣∣∣∣ ≤ C

λp−1
sup
m≥1

〈µm, sup
u≤T̄

|η̃u|p〉,

where C is independent of n. Returning to (A.10), we have shown that

d0(ν
µn

s , νµs ) ≤ δ +
C

λp−1
sup
m≥1

〈µm, sup
u≤T̄

|η̃u|p〉+
m∑
i=1

|〈νµ
n

s − νµs , ψi〉|.

The middle term will vanish uniformly in n as λ→ ∞. Thus, we fix a λ sufficiently large
such that the middle term is bounded by δ uniformly in n. As λ is now fixed, so is m.
By Lemma A.4, νµ

n

s =⇒ νµs in M≤1(R); hence, as the ψi’s have compact support, they
are continuous and bounded. Therefore, the final term will be smaller than δ for all n
sufficiently large. Consequently, for all n sufficiently large, d0(νµ

n

s , νµs ) ≤ Cδ for some
constant C independent of n. Hence, d0(νµ

n

s , νµs ) → 0 as n → ∞. This completes the
proof.

Lemma A.7. Fix any t < T . There is a constant C > 0 independent of ε and t such that
for any γ < 1 ∧ (T − t) we have

P
[
νε
t [0, αtz + Cγ1/3 + αt(L

ε
t − Lε

t ) + (αt+γ − αt)] ≥ z, ∀ z ≤ Lε
t+γ − Lε

t − Cγ1/3
]
≥ 1− Cγ1/3

Proof. To begin, fix a γ > 0 such that γ < 1 ∧ (T − t) and fix a z ∈ R. Then we denote by
Ez

1 the event{
Xε

t −γC(1+ sup
u≤t+γ

|Xε
u|+E[ sup

u≤t+γ
|Xε

u||W 0])−sup
u≤γ

∣∣Yε
t+u − Yε

t

∣∣−αtz−αt(L
ε
t−Lε

t )−(αt+γ−αt) ≤ 0, τε > t
}

where C is the constant from the linear growth condition on b. Now fix x ≤ Lε
t+γ − Lε

t .
By the continuity of the loss process, [18, Theorem 2.4], there exists a s ≤ γ such
that x = Lε

t+s − Lε
t . Employing the integration by parts formula, we observe for any

u ∈ [t, t+ s] ∫ u

t

αv dL
ε
v = αuL

ε
u − αtL

ε
t −

∫ u

t

α′(v)Lε
v dv ≤ αuL

ε
u − αtL

ε
t

≤ αt+sL
ε
t+s − αtL

ε
t ≤ αtL

ε
t+s + (αt+s − αt)− αtL

ε
t ,

where to establish upper bounds we use the fact that α is non-negative and non-
decreasing, and Lε

v ≤ Lε
v ≤ 1 for any v ≥ 0. Therefore for any u ∈ [t, t+ s]

Xε
u = Xε

t + (Xε
u −Xε

t ) = Xε
t +

∫ u

t

b(v,Xε
v ,ν

ε
v) dv + Yu − Yt −

∫ u

t

αv dL
ε
v

≥ Xε
t − γC(1 + sup

u≤t+γ
|Xε

u|+ E[ sup
u≤t+γ

|Xε
u||W 0])− sup

u≤γ

∣∣Yε
t+u − Yε

t

∣∣
− {αtL

ε
t+s + (αt+s − αt)− αtL

ε
t ± αtL

ε
t}

≥ Xε
t − γC(1 + sup

u≤t+γ
|Xε

u|+ E[ sup
u≤t+γ

|Xε
u||W 0])− sup

u≤γ

∣∣Yε
t+u − Yε

t

∣∣
− αtx− (αt+s − αt)− αt(L

ε
t − Lε

t )

Therefore as Lε is W 0 measurable and conditioning on W 0 fixes Lε, we have

P
[
Ex

1 |W 0
]
≥ P

[
inf

t≤u≤t+s
Xε

u ≤ 0, τ ε > t

∣∣∣∣W 0

]
= Lε

t+s − Lε
t = x.
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Now, for any fixed z ≤ Lε
t+γ − Lε

t − 2γ1/3, set z0 = z + 2γ1/3. We define the event

E2 :=
{
γC(1 + sup

u≤t+γ
|Xε

u|+ E[ sup
u≤t+γ

|Xε
u||W 0]) + sup

u≤γ

∣∣Yε
t+u − Yε

t

∣∣ ≥ γ1/3
}

Then on the event Ez0
1 ∩ E{

2

Xε
t − αtz0 ≤ γC(1 + sup

u≤t+γ
|Xε

u|+ E[ sup
u≤t+γ

|Xε
u||W 0]) + sup

u≤γ

∣∣Yε
t+u − Yε

t

∣∣
+ αt(L

ε
t − Lε

t ) + (αt+γ − αt)

≤ γ1/3 + αt(L
ε
t − Lε

t ) + (αt+γ − αt).

Therefore on the same event

Xε
t − αtz = Xε

t − αtz0 + 2αtγ
1/3 ≤ (1 + 2αt)γ

1/3 + αt(L
ε
t − Lε

t ) + (αt+γ − αt)

Consequently, we deduce

νε
t [0, αtz + (1 + 2αt)γ

1/3 + αt(L
ε
t − Lε

t ) + (αt+γ − αt)] ≥ P
[
Ez0

1 ∩ E{
2

∣∣∣W 0
]

≥ P
[
Ez0

1 |W 0
]
− P

[
E2|W 0

]
≥ z0 − P

[
E2|W 0

]
.

Therefore if we have control over the mass P
[
E2|W 0

]
, we may estimate the mass

with respect to νt that is near the boundary. Therefore, defining the event E3 :=

{P
[
E2|W 0

]
≤ γ1/3} we deduce on E3

νε
t [0, αtz + (1 + 2αt)γ

1/3 + αt(L
ε
t − Lε

t ) + (αt+γ − αt)] ≥ z0 − γ1/3 ≥ z.

The last inequality follows from the fact that z0 = z+2γ1/3. Now we only need to find a C
independent of ε, γ and t such that P[E{

3 ] ≤ Cγ1/3. By application of Markov’s inequality
twice

P
[
E{

3

]
≤ γ−1/3P [E2]

≤ γ−1/3P

[
γC(1 + sup

u≤t+γ
|Xε

u|+ E[ sup
u≤t+γ

|Xε
u||W 0]) ≥ 2−1γ1/3/2

]
+ γ−1/3P

[
sup
u≤γ

∣∣Yε
t+u − Yε

t

∣∣ ≥ 2−1γ1/3/2

]
≤ 2Cγ1/3E

[
1 + sup

u≤t+γ
|Xε

u|+ E[ sup
u≤t+γ

|Xε
u||W 0]

]
+ 28γ−3E

[
sup
u≤γ

∣∣Yε
t+u − Yε

t

∣∣8]
≤ c1(γ

1/3 + γ) ≤ 2c1γ
1/3,

where c1 depends on the constant from Proposition 2.8, the constant from Burkholder-
Davis-Gundy to bound the second term and the uniform bounds on σ, but is notably
independent of ε. Therefore, setting C = max{1 + 2α(T ), c1} completes the proof.

Lemma A.8. Suppose that P̃εn =⇒ P̃∗ on (P(DR),T
wk
M1

) for a positive sequence (εn)n≥1

which converges to zero. Set

T :=
{
t ∈ [−1, T̄ ] : E

[
P̃∗(ηt = ηt−)

]
= 1, E

[
P̃∗(τ0(η) = t)

]
= 0
}
.

Then for any t ∈ T ∩ [0, T ) and γ > 0 such that t+ γ ∈ T ∩ [0, T ) we have

P
[
νt[0, α(t)z + Cγ1/3 + α(t+ γ)− α(t)] ≥ z, ∀ z ≤ Lt+γ − Lt − Cγ1/3

]
≥ 1− Cγ1/3
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Proof. As P̃εn =⇒ P̃∗, by employing Skorokhod’s Representation Theorem, there exists
a (µn)n≥1 and µ such that Law(µn) = Law(P̃εn), Law(µ) = Law(P̃∗) and µn −→ µ almost
surely in (P(DR),T

wk
M1

). As Law(P∗)-almost every measure µ satisfy (A.4) by Lemma

2.11, then by Lemma A.4 νµ
n

t −→ νµt almost surely for any t ∈ T. Furthermore for any
t ∈ T ∩ [0, T ), by Lemma 2.13 and Corollary 2.14, we have

µn(τ0(η) ≤ t) −→ µ(τ0(η) ≤ t) and

∫ t

0

κεn(t−s)µn(τ0(η) ≤ s) ds −→
∫ t

0

κεn(t−s)µ(τ0(η) ≤ s) ds

almost surely. Therefore for simplicity and notational convenience for the remainder of
this proof, we may suppose

νεn
t −→ ν∗

t a.s. in M≤1(R),

Lεn
t −→ L∗

t a.s. in R,

Lεn
t −→ L∗

t a.s. in R.

Recall by Lemma A.7,

P
[
νε
t [0, αtz + Cγ1/3 + αt(L

ε
t − Lε

t ) + (αt+γ − αt)] ≥ z, ∀ z ≤ Lε
t+γ − Lε

t − Cγ1/3
]
≥ 1− Cγ1/3,

for any ε > 0. It is well known that the Levy-Prokhorov metric, dL, metricizes weak
convergence, [30, Theorem 1.11]. Fixing δ1, δ2, δ3, δ4 > 0, we define the event

An :=
{
|Lεn

t − L∗
t | < δ1,

∣∣Lεn
t+γ − L∗

t+γ

∣∣ < δ2, |Lεn
t − Lεn

t | < δ3, dL(ν
εn
t ,ν∗

t ) < δ4
}

Therefore

1− Cγ1/3 ≤ P
[
νεn
t [0, αtz + Cγ1/3 + αt(L

εn
t − Lεn

t ) + (αt+γ − αt)] ≥ z, ∀ z ≤ Lεn
t+γ − Lεn

t − Cγ1/3
]

+ P[A{
n]

≤ P
[
δ4 + ν∗

t (−δ4, αtz + Cγ1/3 + αtγ3 + (αt+γ − αt) + δ4) ≥ z, ∀ z ≤ L∗
t+γ − L∗

t − Cγ1/3 − δ1 − δ2
]

+ P[A{
n]

Sending εn −→ 0, then P[A{
n] −→ 0 by the Dominated Convergence Theorem as we have

almost sure convergence. Lasts by sending δ1 −→ 0, δ2 −→ 0, δ3 −→ 0, δ4 −→ 0 one at a time
and in order, then by employing continuity of measure we may conclude

P
[
ν∗
t [0, αtz + Cγ1/3 + (αt+γ − αt)] ≥ z, ∀ z ≤ L∗

t+γ − L∗
t − Cγ1/3

]
≥ 1− Cγ1/3

Lemma A.9. Suppose that P̃εn =⇒ P̃∗ on (P(DR),T
wk
M1

) for a positive sequence (εn)n≥1

which converges to zero. Then we have

L∗
t ≤ inf

{
x ≥ 0 ; ν∗

t−([0, α(t)x]) < x
}

(A.12)

almost surely for any t ∈ [0, T ).

Proof. It is clear that Lemma A.9 holds for any t ∈ T. Hence we must only show the upper
bound for t 6∈ T. We first consider the case when t ∈ (0, T )∩T{. The case when t = 0 will
be treated separately. Now as T is dense in [0, T ], we may find a (tn)n≥1, (tn+γn)n≥1 ⊂ T

such that tn ↑ t, tn + γn ↓ t and γn < 2−3n. Now by the Borel-Cantelli Lemma, we have a
set of full measure such that

ν∗
tn [0, αtnz + Cγ1/3n + (αtn+γn − αtn)] ≥ z, ∀ z ≤ Ltn+γn − Ltn − Cγ1/3n , (A.13)

for all (possibly stochastic) n large. Furthermore, by the dominated convergence theorem,
we have

ν∗
tn −→ ν∗

t−, (A.14)
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Law(P̃∗)-almost surely in M≤1(R) as for any φ ∈ Cb(R)

lim
n−→∞

ν∗
tn(φ) = lim

n−→∞

∫
DR

φ(ηtn)1{τ0(η)>tn} dP̃
∗(η) =

∫
DR

φ(ηt−)1{τ0(η)≥t} dP̃
∗(η).

So on an event of full Law(P∗) measure where (A.13) and (A.14) holds, by Portmanteau
Theorem for any γ > 0, z < ∆Lt

ν∗
t−[0, α(t)z+γ] ≥ lim sup

n−→∞
ν∗
tn [0, α(t)z+γ] ≥ lim sup

n−→∞
ν∗
tn [0, αtnz+Cγ

1/3
n +(αtn+γn

−αtn)] ≥ z.

This holds as z < ∆L∗
t and L

∗
tn+γn

− L∗
tn − Cγ

1/3
n −→ ∆Lt. Sending γ to zero shows the

claim for every t > 0.
In the case when t = 0, we have by Lemma A.7

P
[
νε
0−[0, α0z + Cγ1/3 + (αγ − α0)] ≥ z, ∀ z ≤ Lε

γ − Cγ1/3
]
≥ 1− Cγ1/3.

As νε
0− = ν0−, where ν0− is a deterministic measure, and ν∗

0− is almost surely distributed
as ν0− almost surely, then we have by Lemma A.8

P
[
ν∗
0−[0, α(0)z + Cγ1/3 + α(γ)− α(0)] ≥ z, ∀ z ≤ L∗

γ − Cγ1/3
]
≥ 1− Cγ1/3.

for γ ∈ T. Now the rest of the proof follows similar arguments as above by choosing
γn ∈ T such that γn ↓ 0.

Proposition A.10 (Grönwall Type Inequality I). Suppose a, α̃, β̃ ∈ R+ such that a ≥
0, 0 < β̃ < 1, α̃ > 0. Suppose g(t) is a nonnegative, nondecreasing continuous function
defined on 0 ≤ t < T , g(t) ≤M (constant), and suppose u(t) is nonnegative and bounded
on 0 ≤ t < T with

u(t) ≤ a+ g(t)

∫ t

0

(t− s)β̃−1sα̃−1u(s) ds

on this interval. Then

u(t) ≤ a

1 +∑
n≥1

gnt Cnt
n(α̃+β̃−1)

 , 0 ≤ t < T,

where C0 := 1, Cn+1 := B
(
(n+ 1)α̃+ nβ̃ − n, β̃

)
Cn, with B(α̃, β̃) :=

∫ 1

0
(1− s̃)β̃−1s̃α̃−1 ds̃.

Proof. Let Bφt = gt
∫ t

0
(t − s)β̃−1sα̃−1φs ds, t ≥ 0, for localling integrable functions φ.

Then ut ≤ a(t) +But implies

ut ≤
n−1∑
k=0

Bka+Bnut.

Let us prove that
Bn(1)t ≤n t

n(α̃+β̃−1)gnt (A.15)

and Bnut → 0 as n→ +∞ for each t in 0 ≤ t < T .

Step 1: Bn(1)t ≤ Cnt
n(α̃+β̃−1)gnt . For n = 1,

B(1)t = gt

∫ t

0

(t− s)β̃−1sα̃−1 ds, set s̃ = s/t

= gt

∫ 1

0

tβ̃−1(1− s̃)β̃−1tα̃−1s̃α̃−1tds̃

= gtt
α̃+β̃−1B(α̃, β̃).
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Now, suppose the claim is true for n = k, then for n = k + 1

Bk+1(1)t = gt

∫ t

0

(t− s)β̃−1sα̃−1Bk(1)s ds,

≤ gt

∫ t

0

(t− s)β̃−1sα̃−1sk(α̃+β̃−1)gksCk ds, by above

≤ Ckg
k+1
t

∫ t

0

(t− s)β̃−1sα̃−1sk(α̃+β̃−1) ds, set s̃ = s/t

= Ckg
k+1
t

∫ 1

0

tβ̃−1(1− s̃)β̃−1tα̃−1s̃α̃−1tk(α̃+β̃−1)s̃k(α̃+β̃−1)tds̃,

= Ck+1g
k+1
t t(k+1)(α̃+β̃−1).

Hence the claim is true by the principle of induction.

Step 2: We observe that B is monotone, that is if φ1 ≤ φ2 ∀t ∈ [0, T ], then by the
nonnegativity of g we have B(φ1) ≤ B(φ2). Also by the linearity of integration, we see
also that B is a linear operator. Therefore,

B(u)t = g(t)

∫ t

0

(t− s)β̃−1sα̃−1u(s) ds ≤ ‖u‖L∞ g(t)

∫ t

0

(t− s)β̃−1sα̃−1 ds = ‖u‖L∞ B(1)t

Therefore, by linearity, monotonicity and step 1

Bn(u)t ≤ ‖u‖L∞ Bn(1)t ≤ ‖u‖L∞ Cng
n
t t

n(α̃+β̃−1)

Step 3: Summability of Cn. By Gautschi’s inequality, [16], we have that for all x > 0 and
s ∈ (0, 1)

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s

Therefore,

Cn+1

Cn
= B

(
(n+ 1)α̃+ nβ̃ − n, β̃

)
,

=
Γ
(
(n+ 1)α̃+ nβ̃ − n

)
Γ(β̃)

Γ
(
(n+ 1)α̃+ (n+ 1)β̃ − n

) ,
= Γ(β̃)

Γ
(
(n+ 1)α̃+ (n+ 1)β̃ − (n+ 1) + 1− β̃

)
Γ
(
(n+ 1)α̃+ (n+ 1)β̃ − (n+ 1) + 1

)
 ,

≤ Γ(β̃)(n+ 1)−β̃(α̃+ β̃ − 1)−β̃ by Gautschi’s Inequality.

Hence Cn+1/Cn → 0 and n→ +∞. Hence by the ratio test, we have that Cn is summable.

Step 4: Summability of Bn(u)t. By step 3, we have that

Cn+1 ‖u‖L∞ t(n+1)(α̃+β̃−1)gn+1
t

Cn ‖u‖L∞ tn(α̃+β̃−1)gnt
= ‖u‖L∞ tα̃+β̃−1gt

Cn+1

Cn

n→+∞−−−−−→ 0

Therefore by the ratio test then the comparison test, we have that Bn(u)t is summable.
Hence Bn(u)t → 0 as n→ +∞.

Step 5: As ut ≤ a + B(u)t, then it is clear by the Principle of Induction, by using the
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monotonicity and linearity of B, we have ut ≤
∑N−1

j=1 aBj(1)t + BN (u)t. Hence taking

limiting as N −→ ∞, by step 1 and step 4, we conclude ut ≤
∑

j≥0 aCjt
j(α̃+β̃−1)gjt . The

proof is now complete.

Proof of Proposition 4.2. This proof is analogous to that of Proposition 4.1. Most of the
details have been skipped for brevity. Choose t0 ∈ (0, texplode).
Step 1: Regularity of L and decomposition into integral form. As L ∈ C1([0, texplode)), by
the Fundamental Theorem of Calculus we have Lt−Ls ≤ K(t−s) for any t, s ∈ [0, texplode)

with t > s and K = supu≤t0 |L
′
u|. Now we may write L as

Lt =

∫ t

0

κε(t− s)Ls ds+

[
1−

∫ t

0

κε(t− s) ds

]
Lt +

∫ t

0

κε(t− s)(Lt − Ls) ds.

Observe[
1−

∫ t

0

κε(t− s) ds

]
Lt ≤ 2Kε and

∫ t

0

κε(t− s)(Lt − Ls) ds ≤ Kε.

Therefore

Lt =

∫ t

0

κε(t− s)Ls ds+Ψε(t) where |Ψε(t)| ≤ 3Kε ∀ t ∈ [0, t0].

Step 2: Comparison between the delayed loss and the instantaneous loss. As in Proposi-
tion 4.1, we have

0 ≤ |Lt − Lε
t | ≤ Kc1

∫ t

0

∫ u

0

κε(u− s) |Ls − Lε
s|√

t− u
dsdu−+Kc1

∫ t

0

|Ψε(s)|√
t− s

.

Note as |Ψε(t)| ≤ 3Kε for all t ∈ [0, t0], we see that the second term above is bounded
above by CK,t0ε. Therefore,

0 ≤ |Lt − Lε
t | ≤ Kc1

∫ t

0

∫ t

s

κε(u− s) |Ls − Lε
s|√

t− u
duds+ CK,t0ε

= Kc1

∫ t

0

|Ls − Lε
s|ρε(t, s) ds+ CK,t0ε, (A.16)

where

ρε(t, s) =

∫ t

s

κε(u− s)√
t− u

du.

Step 3: Bounds on ρε(t, s). As in Proposition 4.1, the presence of κ in ρε makes the
function too general to do any analysis, hence we shall construct polynomial bounds on
ρε. Then we can apply generalised versions of Grönwall’s Lemma. Recall t ≥ s,
Case 1: t− s ≤ ε

ρε(t, s) =

∫ t

s

κε(u− s)√
t− u

du let ũ =
u− s

ε

=

∫ t−s
ε

0

κ(ũ)√
t− s− εũ

dũ ≤
‖κ‖L∞

ε1/2

∫ t−s
ε

0

dũ√
t−s
ε − ũ

=
2 ‖κ‖L∞ (t− s)1/2

ε
≤

2 ‖κ‖L∞

(t− s)1/2

Case 2: t− s > ε
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As the support of κε is in [0, ε]

ρε(t, s) =

∫ t

s

κε(u− s)√
t− u

du =

∫ s+ε

s

κε(u− s)√
t− u

du

≤
‖κ‖L∞

ε

∫ s+ε

s

du√
t− u

= 2 ‖κ‖L∞

[
(t− s)1/2 − (t− s− ε)1/2

ε

]
.

Step 4: Grönwall type argument. Now that we have sufficiently simplified ρε, we may
put (A.16) into a form where we may apply Grönwall’s inequality. By step 4 case 1 and
(A.16), we have for t ≤ ε

|Lt − Lε
t | ≤ Kc1

∫ t

0

2 ‖κ‖L∞ (t− s)−1/2|Ls − Lε
s|ρε(t, s) ds+ CK,t0ε.

By step 4 case 2 and (A.16), we have for t > ε

|Lt − Lε
t | ≤ Kc1

∫ t−ε

0

|Ls − Lε
s|ρε(t, s) ds+Kc1

∫ t

t−ε

|Ls − Lε
s|ρε(t, s) ds+ CK,t0ε

≤ 2Kc1 ‖κ‖L∞

∫ t−ε

0

[
(t− s)1/2 − (t− s− ε)1/2

ε

]
|Ls − Lε

s|ds

+ 2Kc1 ‖κ‖L∞

∫ t

t−ε

(t− s)−1/2|Ls − Lε
s|ds+ CK,t0ε

≤ 2Kc1 ‖κ‖L∞

∑
j≥2

C̃jε
j−1

∫ t−ε

0

(t− s)
−2j+1

2 |Ls − Lε
s|ds

+ 2Kc1 ‖κ‖L∞

∫ t

0

(t− s)−1/2|Ls − Lε
s|ds+ CK,t0ε,

where the second term in the last line captures the higher order terms from Taylor’s
Theorem. The Monotone Convergence Theorem allows us to swap integrals and sums.
We now consider

C̃jε
j−1

∫ t−ε

0

(t− s)
−2j+1

2 ds.

We shall proceed in two cases.

Case 1: ε < t ≤ 2ε

C̃jε
j−1

∫ t−ε

0

(t− s)
−2j+1

2 ds ≤ C̃jε
j−1ε

−2j+1
2

∫ t−ε

0

ds = C̃jε
1
2

where the first inequality follows from the fact that (−2j + 1)/2 < 0 as j ≥ 2 and
t− s ∈ [ε, t] for s ∈ [0, t− ε].

Case 2: t > 2ε

We observe that

C̃jε
j−1

∫ ε

0

(t− s)
−2j+1

2 ds ≤ C̃jε
j−1ε

−2j+1
2

∫ ε

0

ds = C̃jε
1
2
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and

C̃jε
j−1

∫ t−ε

ε

(t− s)
−2j+1

2 ds = C̃jε
j−1 2

2j − 3
(t− s)

−2j+3
2

∣∣∣t−ε

s=ε

=
2C̃jε

j−1

2j − 3

[
ε

−2j+3
2 − (t− ε)

−2j+3
2

]
≤ 2C̃jε

j−1ε
−2j+3

2

2j − 3

=
2C̃jε

1/2

2j − 3
≤ 2C̃jε

1/2,

where the last inequality follows from the fact that j ≥ 2. Therefore, we have

C̃jε
j−1

∫ t−ε

0

(t− s)
−2j+1

2 ds = C̃jε
j−1

∫ ε

0

(t− s)
−2j+1

2 ds+ C̃jε
j−1

∫ t−ε

ε

(t− s)
−2j+1

2 ds

≤ 3C̃jε
1/2,

for all t > ε. As L and Lε are bounded by 1, so independent of t being greater or less
than ε we have

|Lt − Lε
t | ≤ 2Kc1 ‖κ‖L∞

∫ t

0

(t− s)−1/2|Ls − Lε
s|ds+ 12Kc1 ‖κ‖L∞ ε1/2

∑
j≥2

C̃j + CK,t0ε

= 2Kc1 ‖κ‖L∞

∫ t

0

(t− s)−1/2s−γ |Ls − Lε
s|ds+ CK,t0ε

1/2,

for any t ∈ [0, t0]. Lastly by Proposition A.10 using β̃ = 1/2 and α̃ = 1, then α̃+ β̃ − 1 > 0

as γ < 1/2 and

|Lt − Lε
t | = CK,t0ε

1/2
∑
n≥0

(2Kc1t
1/2
0 ‖κ‖L∞)nCn.

This completes the proof.

B Further numerical analysis

In Section 4.2, we considered six examples to compare the theoretical rate of con-
vergence with that obtained numerically. The parameters used for each simulation are
given in Table 1.

Table 1: Parameters of numerical simulations in Section 4.2.

Simulation CC11 CC22 DC13 DC24 CNC15 CNC26

Initial Condition Unif[0.25, 0.35] Γ(2.1, 0.5) Γ(1.2, 0.5) Γ(1.4, 0.5) Unif[0.25, 0.35] Unif[0.25, 0.35]

α 0.5 1.3 0.9 2 0.5 0.5

∆t 10−6 10−6 10−9 10−9 10−6 10−6

tmax 0.1 0.1 10−4 10−4 0.1 2 × 10−2

With the chosen parameters, we generated the convergence graphs in Fig. 1, Fig. 2
and Fig. 3 from Error(εn), where εn := ε×∆n, with ε and ∆ as positive constants, and

1Continuous case 1
2Continuous case 2
3Discontinuous case 1
4Discontinuous case 2
5Common noise case 1: with increasing path
6Common noise case 2: with decreasing path
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Error is the corresponding difference between the smoothed and limiting loss functions.
Assuming a power law relationship between the error and the parameter ε,

Error(ε) ≈ Aεβ ,

where A and β are constants, we performed a linear regression on LogError(ε) versus
Log ε, which determined the line of best fit shown in the plots. The slope, shown in
Table 2, represents our best estimate for the rate of convergence for each setting.

Table 2: Gradient of the regression line.

Setting CC1 CC2 DC1 DC2 CNC1 CNC2

Rate 1.0202 0.9635 0.9295 0.8126 0.7621 0.8144

To assess if the estimated slope corresponds to an asymptotic value, we also con-
ducted an alternative analysis of the rate of convergence. By computing the ratio
between two consecutive errors, we observe

Error(εn+1)

Error(εn)
≈ A∆nβ+βεβ

A∆nβεβ
≈ ∆β ,

and taking logarithms with base ∆, we may deduce

Log∆

(
Error(εn+1)

Error(εn)

)
≈ β.

By using the relationship that Loga b = Logc b/Logc a for any a, b, c > 0, we obtain
approximate expressions for β as follows:

βn := Log∆

(
Error(εn+1)

Error(εn)

)
=

Log(Error(εn+1))− Log(Error(εn))

Log(∆)
=

Log(Error(εn+1))− Log(Error(εn))

Log(εn+1)− Log(εn)
. (B.1)

where Log represents the logarithm with respect to any base. From Table 3, it is evident
that in the cases of CC1 and CC2, the rate of convergence approaches 1 asymptoti-
cally. However, for all other scenarios, there appears to be no distinct pattern or clear
convergence of the gradients, which generally lie between 1/2 and 1.

Table 3: Gradient between adjacent points in the Log-Log plots in Fig. 1, Fig. 2 and
Fig. 3.

εn
Simulation n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

CC1 0.9395 0.9596 1.0348 0.9428 0.9649 1.0884 1.0954 1.1309 0.9805

CC2 0.9315 1.0231 0.9101 0.8885 0.9012 0.5896 1.3951 1.1744 1.0025

DC1 0.9195 1.0594 0.8032 1.0674 1.2587 0.9238 0.3265 1.5408 0.0566

DC2 0.5304 0.7907 0.5235 1.1918 0.7092 0.6909 0.8841 1.2225 0.5127

CNC1 0.7646 0.7054 0.8223 0.8060 0.9489 0.4754 0.8792 0.6219 0.8243

CNC2 0.7258 0.7915 0.8005 0.8219 0.8305 0.7787 0.7749 0.8241 1.0809

Furthermore, we investigated the sensitivity of the convergence rate analysis to the
choice of ∆t. It is clear that for meaningful approximations to the smoothed system
it is needed that ∆t is sufficiently small compared to ε, which necessitates extremely
small time steps and makes the simulation of the particle systems computationally costly.
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To assess whether ∆t is sufficiently small, we generated in Fig. 4 and Table 4 rate
of convergence plots with different values of ∆t. For each ∆t, we selected several
values of ε that were uniformly spaced (after taking logarithms) within the interval
[∆t × 10−2.5, ∆t × 10−1]. The findings indicate that the estimated rate of convergence
remains consistent with respect to variations in ∆t.

Table 4: Gradient of the line of best fit in Fig. 4 (if plotted).

∆t

Simulation 10−4.5 10−5 10−5.5 10−6 10−7.5 10−8 10−8.5 10−9

CC1 0.836 0.944 0.987 0.967 − − − −
CC2 0.988 1.014 1.039 0.970 − − − −
DC1 − − − − 0.821 0.940 0.968 0.909

DC2 − − − − 0.539 0.829 0.728 0.850

CNC1 0.775 0.750 0.875 0.751 − − − −
CNC2 0.685 0.793 0.806 0.830 − − − −

(a) CC1. (b) DC1. (c) CNC1.

(d) CC2. (e) DC2. (f) CNC2.

Figure 4: Sensitivity of rate of convergence with respect to changes in ∆t.

Finally, in Fig. 5 and Table 5, we investigated a scenario where the initial condition
is Hölder continuous near the boundary without any observed jump discontinuity in
the simulations, specifically, X0− ∼d Γ(1.5, 2) with α = 1.3. By [11, Theorem 1.1], the
limiting loss function is 1/2-Hölder continuous at 0. The rate of convergence appears to
be between 1/2 and 1 in this setting.

Table 5: Gradient of the line of best fit in Fig. 5.

∆t 10−4.5 10−5 10−5.5 10−6

Gradient 0.913 0.863 0.798 0.66
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(a) X0− ∼d Γ(1.5, 2), α = 1.3. (b) Rate of Convergence.

Figure 5: Sensitivity of the rate of convergence with respect to changes in ∆t.
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