PLOS ONE

Check for
updates

E OPEN ACCESS

Citation: Shi X, Wang X, Zhang Y, Zhang X,
Yu M, Zhang L. et al. (2025) Innovative novel
regularized memory graph attention capsule
network for financial fraud detection. PLoS One
20(5): e0317893. https://doi.org/10.1371/

journal.pone.0317893
Editor: Naga Ramesh Palakurti, Tata

Consultancy Services Ltd., UNITED STATES OF
AMERICA

Received: June 07, 2024
Accepted: December 01, 2024
Published: May 28, 2025

Copyright: © 2025 Shi et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.

Data availahility statement: All relevant data
are within the manuscript and its Supporting
Information files.

Funding: The author(s) received no specific
funding for this work.

Competing interests: The authors have
declared that no competing interests exist.

RESEARCH ARTICLE

Innovative novel regularized memory
graph attention capsule network for
financial fraud detection

Xiangting Shi®', Xiaochen Wang?, Yakang Zhang®", Xiaoyi Zhang?,
Manning Yu*, Lihao Zhang**

1 Industrial Engineering and Operations Research Department, Columbia University, New York, New
York, United States of America, 2 Department of Finance, The London School of Economics and Political
Science, London, United Kingdom, 3 College of Liberal Arts and Science, University of lllinois
Urbana-Champaign, lllinois, United States of America, 4 Department of Statistics, Columbia University,
New York, New York, United States of America, 5 Department of Information Engineering, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong

* lhzhangcuhk@ieee.org

Abstract

Financial fraud detection (FFD) is crucial for ensuring the safety and efficiency of finan-
cial transactions. This article presents the Regularised Memory Graph Attention Capsule
Network (RMGACNet), an original architecture aiming at improving fraud detection using
Bidirectional Long Short-Term Memory (BiLSTM) networks combined with advanced fea-
ture extraction and classification algorithms. The model is tested on two reliable datasets:
the European Cardholder (ECH) transactions dataset, which contains 284,807 transac-
tions and 492 fraud instances, and the IEEE-CIS dataset, which has more than 1 mil-

lion transactions. Our approach enhances comparison to existing methods of feature
selection and classification accuracy. On the ECH dataset, RMGACNet achieves an
accuracy of 0.9772, a precision of 0.9768, and an F1 score of 0.9770 measures; on the
IEEE-CIS dataset, it achieves an accuracy of 0.9882, a precision of 0.9876 and an F1
score of 0.9879. The findings indicate that RMGACNet routinely surpasses existing mod-
els’ efficiency and accuracy while ensuring strong execution time performance, especially
when handling large-scale datasets. The suggested model demonstrates scalability and
stability, making it suitable for real-time financial systems.

Introduction

Through illegal activities, financial fraud compromises banks, lending institutions, pay-

ment systems, and fintech platforms [1]. Credit card fraud is especially prominent among
financial crimes as it involves illegally acquiring significant quantities of money without

the cardholder’s permission. As such, financial institutions must spot and stop fraudsters
copying transaction methods. Big data analytics and artificial intelligence (AI) have dras-
tically changed mobile transactions in the last 10 years and monetary transfers via digital
wallets. Criminals have improved their strategies, learning to cash credit and counterfeit
cards to exploit flaws in technologically driven payment systems. Recent artificial intelligence
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discoveries like attention processes and graph neural networks (GNNs) have generated new
chances for fraud detection. Some approaches, like memory-augmented neural networks and
capsule networks (CapsNet), have shown promise in helping fraud detection systems deal
with class imbalance and malicious attacks [2]. These networks maintain hierarchical links
among items. According to Graph Attention Networks (GATs), the topological properties

of transaction data have been used to enhance fraud detection [3]. Recent advances in deep
learning have given banks powerful new weapons in the fight against fraud.

Complex market fraud affects consumers and economies worldwide. Professionals contin-
uously seek innovative ways to fight fraud, including credit card theft. The use of data mining
and machine learning has dramatically improved financial fraud prevention [4]. Machine
learning algorithms search big datasets for fraudulent transaction patterns, lowering suscep-
tibility. These algorithms struggle with credit card fraud datasets because illegal transactions
frequently lead to genuine ones. Since financial fraud is rising in the digital era, fraud detec-
tion systems must be flexible. Understanding the ever-changing credit card fraud landscape is
crucial for effective defences [5]. Illicit operations, money laundering, and identity theft make
the banking sector prone to fraud. Fraud like this may waste cash and damage business con-
fidence. Despite security improvements, scammers adapt their methods [6,7]. Thus, proac-
tive and flexible detection systems are essential nowadays. Despite their utility, rule-based
techniques cannot handle the ever-changing fraud scenario. AI and ML help prevent fraud
by detecting anomalous transactions and subtle patterns in massive data sets. In the future,
machine learning algorithms may discover new fraud and red flags that older approaches
miss. Despite its fraud detection potential, machine learning faces several challenges. A sig-
nificant distinction is between real and fake credit card transactions. As a result, algorithms
can benefit real-world transactions above fraud detection, reducing their overall efficiency [8].
Resampling, cost-sensitive learning, and anomaly detection handle these constraints. Aca-
demics and practitioners aspire to design fraud detection systems with fewer false positives
and higher accuracy utilizing these methods. Fraud detection systems must also tackle adver-
sarial attacks—criminals utilize Al algorithms to make untraceable transactions. The grow-
ing conflict between fraudsters and anti-fraud systems requires scientists and practitioners to
collaborate [9].

Regularized Memory Graph Attention Capsule Networks increase fraud detection. Using a
unique technique, memory systems, graph attention processes, and capsule networks identify
authentic data from fake financial transactions. The research uses half a million records and
350 characteristics. Therefore, plan properly to prevent embarrassing yourself. The Synthetic
Minority Oversampling Technique (SMOTE) corrects dataset class imbalances, a significant
fraud detection problem. After data balancing, feature engineering and selection preserve
the most essential qualities. This strategy improves model training and minimizes comput-
ing complexity. RMGACNet blends deep learning and graph-based representation learning
to detect fraud. This comprehensive technique enhances accuracy and reduces false positives
while adapting to new fraud tendencies. Key points of this article:

1. An enhanced deep learning approach named RMGACNet combines Regularized
Memory Graph Attention and CapsuleNet architecture, which improves detection by
utilizing temporal and contextual data.

2. An upgraded Memory Graph Attention Mechanism prioritizes critical transactional
data in RMGACNet. This helps the system identify complicated patterns and anomalies
that indicate fraud.
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3. The approach reduces overfitting with targeted regularisation to increase model gener-
alizability. This method makes RMGACNet efficient in many real-world circumstances
and datasets, making it suitable for fraud detection applications.

4. Real-world data has been utilized extensively to empirically validate the ECH and
IEEE-CIS datasets. RMGACNet outperforms state-of-the-art approaches and published
studies in detecting fraudulent transactions with a low false positive rate, making it
helpful for real-world fraud detection.

5. Scalability and Computing Efficiency: RMGACNet balances computational economy
and model fidelity to minimize execution times compared to older methods. This effi-
ciency allows real-time fraud detection systems to respond quickly and reduce financial
losses.

6. Examining space sensitivity, memory utilization, and computational complexity illus-
trates RMGACNet’s resource demands. This research assesses this approach’s usefulness
and scalability in financial fraud detection.

Furthermore, RMGACNet’s enhanced performance, efficiency, and flexibility made finan-
cial fraud detection a breakthrough. The following sequence is followed for the rest of the sub-
sequent sections: The Related Work section discusses the relevant research, followed by the
Proposed System Model section, which presents the proposed model. The Simulation and
Results Discussion section provides simulation findings, and finally, the Conclusion section
summarizes the paper.

Related work

Credit cards have attracted considerable attention since their introduction owing to their
incorporation of online banking and consumer electronics. Due to their significant rele-
vance, many experts have meticulously analyzed the topic of credit card theft in recent years.
Traditionally, credit card fraud detection was conducted using standard machine learning
approaches, such as Support Vector Machines (SVM) and Markov models, prior to the advent
of deep learning methodologies.

One study used a technique for detecting fraud using Support Vector Machines (SVMs)
and evolutionary algorithms, which was suggested in [10] for use with constrained sample
data that deviates from a normal distribution. The Hidden Markov Model (HMM) was used
in [11] to optimize the process and enhance the Identification of fraudulent transactions.

A bagging ensemble classifier based on a decision tree method was presented in [12]. This
strategy addresses real-time reasoning and the disparity in credit card transaction data cate-
gories by applying it to a genuine credit card transaction dataset. A comparative analysis of
Bayesian classifiers for credit card fraud detection was conducted in [13], revealing that all
classifiers within the PCA dataset exhibited enhanced detection accuracy. Given the com-
plexities of real-world debit card use, while machine learning may mitigate financial fraud,
further research is required to rapidly and accurately discern prevalent characteristics from
constrained transaction data.

Fraud detection using a convolutional neural network was proposed in [14]. Labelled
data helps this network discover fraud tendencies and determine transaction sample
fraud. In mobile communication network experiments, Deep Convolutional Neural Net-
works (DCNNGs) outperformed other machine learning algorithms [15]. Nonetheless,
the approaches encounter significant hurdles owing to data asymmetry in financial fraud
datasets.
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The [16] author recommended investigating fraud detection and analyzing credit card data
variability in the frequency domain for more accurate and consistent data representation.

To mitigate class imbalance in financial fraud transaction data and improve classifier effi-
cacy, the authors of [17] used Generative Adversarial Networks (GAN) to provide samples for
the minority class. In [18], the researcher examined Fourier and Wavelet transformations in
proactive fraud detection. Furthermore, researchers in [19] devised a credit card fraud detec-
tion system by amalgamating LSTM and AdaBoost algorithms, enhancing performance using
data resampling techniques inside the learning process.

To improve the precision, accuracy, and outcomes of machine learning processes for
unbalanced data, the authors of [20] used an under-sampling technique. They promoted inte-
grating datasets and using the fuzzy C-means method to discern standard drawings defined
by data integrity attributes and notable fraud. proposed three innovative additions [21],
including a Deep Stacking Autoencoder (DSA) that is data-balanced using a Harris Grey Wolf
(HGW) methodology. This study advocates for the training of the DSA using the HGW net-
work, which has shown superior efficacy in fraud detection according to fitness measures.
This fitness technique continuously attains optimal results by exercising with few mistakes.
The authors of [22] used many machine learning models, including decision trees, Naive
Bayes, logistic regression, XGBoost, and random forest, to identify credit card fraud. A fully
connected neural network system using class oversampling was developed to detect misbe-
haviour [23]. This research confirmed class distribution using biassed target data, highlight-
ing the need for sophisticated detection techniques in the changing realm of credit card fraud.
Table 1 describes the summarized view of the literature review.

Proposed system model

Our framework adheres to a sequence of systematically organized phases, beginning with
dataset preparation and culminating in model evaluation and training. The raw input data,
including 2023 European cardholder transactions, is preprocessed to guarantee cleanliness
and uniformity of attributes. This includes imputing missing values, removing outliers, nor-
malizing and standardizing data, encoding labels, and scaling features. The Synthetic Minority
Over-sampling Technique (SMOTE) equalizes fraudulent and non-fraudulent instances in
fraud detection datasets to correct class imbalance. SMOTE was chosen because it improved
model performance by providing synthetic minority class data points. Feature selection uses
correlation analysis and feature engineering to reduce noise and increase model performance
to find the most essential attributes. Using domain expertise and correlation analysis, feature
engineering developed significant features that increase model accuracy by better-describing
data. RMGACNet uses advanced methods such as BiLSTM, GraphSAGE, Capsule Networks,
Attention Mechanisms, Graph Attention Networks, and L2 Regularization. These layers were
selected for their various fraud detection benefits:

o The temporal associations in the transaction data were captured using BiLSTM.

o The graph-based learning techniques of GraphSAGE and Graph Attention Networks (GAT)
were used to uncover fraud patterns and clarify the nature of the relationships between
transactions.

o Capsule networks are useful for detecting complex fraud patterns because they allow for
modelling spatial hierarchies and maintaining spatial links.

« By enhancing the model’s focus on important components, attention approaches ensure
that critical fraudulent indications are not neglected.
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Table 1. Overview of current literature in FFD.

Ref Problem Identified Method Used Objective Achieved Limitations
[10] Detection of credit card fraud with SVM and evolutionary algorithms Simplifying fraud detection Limited applicability to sparse data
few-sample data that is not normally and Identification of fraudulent
distributed transactions
[11] Need for simplification in identifying  |Hidden Markov Model (HMM) Simplification and improved Limited scalability to complex fraud
fraudulent transactions identification of fraudulent patterns
transactions
[12] Real-time reasoning and addressing Decision Tree algorithm-based Real-time reasoning and addressing  |Dependency on specific algorithm and
category imbalance in credit card bagging ensemble classifier category imbalance dataset
transaction data
[13] Comparison of Bayesian classifiers’ Bayesian classifiers High detection accuracy for all Limited exploration of other ML
efficacy in detecting credit card fraud classifiers techniques
[14] Learning inherent patterns of Convolutional Neural Network Improved fraud detection based on  |Limited scalability to complex fraud
fraudulent behavior from labeled (CNN) learned patterns patterns
data
[15] Investigation of Deep CNN (DCNNs) |DCNNs Superior performance in fraud Limited exploration of other DL
in fraud detection detection, particularly in mobile techniques
communication networks
[16] Obtaining consistent data Examination of the variety of credit |Improved data representation for Limited applicability to specific data
representation for fraud detection card data in the frequency domain fraud detection representations
[17] Addressing class imbalance in financial |Generative Adversarial Networks Improved classifier performance Dependency on GAN performance
fraud transaction data (GANs) through minority class sample
generation
[18] Investigating proactive fraud detection |Fourier and Wavelet transforms Improved proactive fraud detection |Limited exploration of other proactive
using Fourier and Wavelet transforms detection techniques
[19] Efficient credit card fraud detection Long Short-Term Memory (LSTM)  |Robust fraud detection through Dependency on dataset quality and
with data resampling and integrated and AdaBoost integrated learning class distribution
learning methodologies.
[20] Processing imbalanced data for Under-sampling approach Improved accuracy, precision, and Limited exploration of other data
improved accuracy and precision outcomes balancing techniques
[21] Development of a data-balanced DDSA |Deep Stacking Autoencoder (DSA)  |Improved fraud detection through Dependency on network architecture
for fraud detection based on the Harris Grey Wolf enhanced feature extraction and training process
(HGW) network
[22] Identification of fraudulent charges on |XGBoost, Logistic Regression, Naive |Detection of fraudulent charges on Limited exploration of DL techniques
credit cards using various ML models  |Bayes, Random Forest, decision trees, |credit cards
[23] Fraud detection with class oversam- Fully linked neural network with class [Improved fraud detection through Dependency on dataset quality and

pling and a fully linked neural network

architecture

oversampling.

oversampling and deep learning

class distribution

https://doi.org/10.1371/journal.pone.0317893.t001

Grid search and cross-validation systematically optimized hyperparameters to enhance per-

formance, including the number of layers, learning rate, and regularization

parameters.

generalization.

L2 regularization mitigated overfitting, ensuring a balance between model complexity and

After training and testing on the balanced and preprocessed dataset, the model is evaluated
for its ability to discern fraud from honest financial transactions, demonstrating its effective-
ness in real-world applications. The whole architecture is shown in Fig 1, and the pseudocode
for the proposed model’s algorithm is outlined in Algorithm 1.
This approach strengthens the robustness of the proposed fraud detection system by justi-
tying the selection of methodologies and hyperparameters. It uses advanced machine learning
to improve detection accuracy and reduce financial fraud risks. Subsequent sections discuss
every module of the framework in detail.
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Fig 1. Proposed framework for FFD.
https://doi.org/10.1371/journal.pone.0317893.9001
Dataset description

European Card Holder (ECH) dataset 2023 Credit card transactions from European
cardholders in 2023 were utilized for this study [24]. More than 568,630 entries with V1-V28
transaction characteristics are included. These components describe time, location, and trans-
action type, among others. The dataset also has a binary label indicating if the transaction is
fraudulent and its value. By anonymizing the dataset, attackers cannot identify cardholders. It
is a valuable resource for creating algorithms and models to identify fraudulent transactions.
Academics can analyze credit card transactions, merchant types, and more using this infor-
mation. European cardholders’ 2023 credit card transactions form this dataset as shown in
Table 2. Sensitive material was removed for ethical and privacy reasons.

IEEE CIS dataset Table 3 presents a well-organized sample of financial transactional data
from the IEEE-CIS fraud detection dataset [25]. The collection contains unique Transaction-
IDs for each transaction. The dataset has 590540 records and 394 characteristics. Transaction
details include the fraud flag (isFraud), timestamp (TransactionDT), amount (Transaction-
Amt), product code (ProductCD), and card-related details like card type (card6), address
information (addrl and addr2), and distance measures (distl and dist2).

Also in the collection are numerical features designated C1 to C14, D1 to D15, M1 to M9,
and V1 to V339. These parameters may include transaction number, timing discrepancies,
matching status, and aggregated transaction data.

Data preprocessing

The suggested system includes critical preprocessing operations to enhance input data qual-
ity and consistency [26]. In circumstances of missing data, employ missing value imputation.
Mean imputation is often used for numerical characteristics x;, replacing missing values NaN
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Algorithm 1. Proposed FFD algorithm pesudocode.

: Input: Raw transaction data from European cardholders (ECH Dataset 2023) and IEEE-CIS

dataset
2: Output: Model for detecting fraudulent transactions
3: Step 1: Data Preprocessing
4: Load datasets: ECH and IEEE-CIS
5: for each dataset do
6: Fill missing values
7: Detect and eliminate outliers
8: Normalize features
9: Standardize features
10 Encode categorical labels
11: end for
12: Step 2: Data Balancing using SMOTE
13: Identify minority class samples
14: for each minority class sample do
15: Find k nearest neighbors
16: for each neighbor do
17: Generate synthetic sample along the line segment connecting to the neighbour
18: end for
19: end for
20: Add synthetic samples to the dataset to achieve a balanced class distribution
21: Step 3: Feature Engineering
22: Feature Selection:
23: Compute Pearson correlation coefficient
24: Select features with a strong correlation
25: Feature Creation:
26: for each domain-specific heuristic do
217 Generate new features
28: end for
29: Step 4: Build RMGACNet Model
30: BiLSTM Layer: Extract features from sequential data using BiLSTM
31: GraphSAGE Layer with L2 Regularization: Learn node embeddings and apply L2
regularization
32: Capsule Layer with L2 Regularization: Apply Capsule Layer and L2 regularization
33: Attention Mechanism with L2 Regularization: Apply Attention Mechanism and L2
regularization
34: Graph Attention Networks (GATs): Apply GATs to extract complex graph representations
35: Step 5: Model Training and Evaluation
36: Train RMGACNet model on the balanced and preprocessed dataset
37: Evaluate the model performance using metrics
Table 2. ECH Dataset 2023 (Header view).
id V1 V2 V3 V4 V26 V27 V28 Amount Class
0 -0.261 -0.470 2.496 -0.084 - - -0.435 -0.081 -0.151 17982.100 0
1 0.985 -0.356 0.558 -0.430 - - 0.297 —-0.248 -0.065 6531.370 0
2 -0.260 -0.949 1.729 -0.458 . - -0.313 -0.300 -0.245 2513.540 1
3 -0.152 -0.509 1.747 -1.090 . . -0.516 -0.165 0.048 5384.440 0
4 -0.207 -0.165 1.527 -0.448 . - 1.071 0.024 0.419 14278.970 1
5 0.025 -0.141 1.191 -0.708 . . 0.253 0.067 0.096 6901.490 0
6 1.016 -0.397 0.498 -0.144 - - -0.604 -0.198 —-0.088 18954.450 1

https://doi.org/10.1371/journal.pone.0317893.t002

with the average (u) of non-missing values. This equation describes this method:

N
_ Zj:l Xj

X = N

In categorical features, the mode, or most prevalent value, substitutes the absent value.

Outlier detection and elimination are used to exclude observations with extreme values.

(1)
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Table 3. IEEE-CIS dataset sample.

TransactionID |isFraud TransactionDT  |TransactionAmt |ProductCD cardl addrl C1 V339
2987000 0 86400 68.5 w 13926 315 1 0
2987001 0 86401 29 w 2755 325 1 0
2987002 0 86469 59 w 4663 330 1 0
2987003 1 86499 50 w 18132 476 2 0
2987004 1 86506 50 H 4497 420 1 0
2987005 1 86510 49 w 5937 272 1 0
2987006 0 86522 159 w 12308 126 1 0
2987007 0 86529 422.5 w 12695 325 1 0
2987008 1 86535 15 H 2803 337 1 0
2987009 1 86536 117 w 17399 204 2 0
2987010 1 86549 75.887 C 16496 325 1 0
2987011 1 86555 16.495 C 4461 0 30 0

https://doi.org/10.1371/journal.pone.0317893.t003

The formula for determining Z-scores (V) for quantitative attributes is as follows [26,27]:

yo&=¢ )
g

(c_i), the mean is ( barc ), and the standard deviation is ( sigma ). Observations having z-
scores beyond a specific threshold—such as v > 3 or v < -3—are noted as outliers and deleted
from the dataset. Numerical data are normalized and standardized after outlier reduction
to guarantee consistency. Min-max scaling standardizes features to 0-1 mean and standard
deviation using 0-1 normalizing range. One may find the normalizing and standardizing
equations in [26].

x; — min(x)
X, ized = ——F 3
normalized max(x) _ min(x) ( )
x~ —_
Xstandardized = K (4)

Label encoding is also used to convert numerical variables from category ones. A unique
integer value between 0 and K - 1 is assigned to each category, with K indicating the total
number of different categories. The input data is improved, standardized, and encoded appro-
priately before analysis and model training.

Data balancing using SMOTE algorithm

Using the Synthetic Minority Over-sampling Technique (SMOTE), class imbalances may be
corrected, and the model trained on a balanced representation of both classes [28]. SMOTE
uses existing features to create synthetic samples for underrepresented groups to attain class
parity. The algorithm’s steps are:

« First, we need to find the datasets that include samples from the minority class.

 Neighborhoods: In the feature space, the k closest neighborhoods are found for every
minority class sample.

« The line segments that link the samples of minority classes to their nearest neighbours are
randomly selected to create synthetic samples.

« Dataset with Equal Representation of Both Classes: A balanced dataset is created by supple-
menting the original dataset with these synthetic examples.
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To create synthetic samples, the following equation is used [28]:

Synthetic Sample = Sample + random X (Nearest Neighbor — Sample) (5)

When a formulated number between zero and one is used, the SMOTE method is used to
level the dataset, improving the model’s predictive power. This ensures that the dataset is rep-
resentative and objective, which is crucial for training the model. The SMOTE method may be
shown in Fig 2.

Feature engineering

Feature engineering enhances machine learning models’ prediction ability, notably in
FFD. This section covers two crucial aspects of feature engineering: selection and extrac-
tion/creation [29,30].

Feature selection identifies and eliminates the most predictive components of the model.
Feature selection is often conducted using feature correlation analysis, which examines the
direction and strength of the linear connection between characteristics and the target variable.
The conventional method uses the Pearson correlation coefficient (p).

pxy=——"-"" (6)

The covariance of feature X and target variable Y is indicated as cov(X, Y), while the stan-
dard deviations of X and Y are represented by ox and oy, respectively. To train the model,

‘ Original imbalaced dataset: A = (a1,b1)...(an, bn), |

Minority Class subset:
{ajlje[1..n] A bj=-1}

Minority Class subset:
{ailje[..n] A bj=-1}

A 4

[ Select an instance: a ]

l ,

[ k-Nearest Neighbor of a in subset ]

|

[ Select randomly an instance among the k-Nearest ]

(" Creating and adding the new minority example a”
u random uniform value in the range [0,1]
a‘=(a+ua-a),+1)
S=SUa”
(&

e
Transformed (reduced imbalance) dataset S \

Fig 2. Flowchart data balancing algorithm (SMOTE).
https://doi.org/10.1371/journal.pone.0317893.9002
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Fig 3. RMGACNet model architecture.

|
|
‘ =
) ‘ 252 8%
= | ZEZ= Q8
ZO < [ f,m-?ﬁ
<@ <! \ R e
DD
2 2 =
S 5¥| 5 (¥
5= = \
) 2 S~
5 ‘ £E5873
- } ESZE
ks
\ e-Za
|
x
El BE
=] 23} g
= < =
o = (=)
X
= .—
) g O =
S| =8
Qutput £ s 5
Cross-Entropy Loss| | &
+ Back Propagation

features are retained with high correlations to the target variable (absolute correlation coeffi-
cients close to 1 or —1) and exclude features with weak correlations.

Proposed Regularized Memory Graph Attention CapsuleNet (RMGACNet)
model

The RMGACNet model uses deep learning, graph representation learning, and capsule net-
works to identify financial fraud. The RMGACNet design uses memory mechanisms, graph
attention mechanisms, and capsule networks to record complicated financial transaction data
linkages and patterns. See the architecture in Fig 3.

Feature extraction using BILSTM The model employs BiLSTM networks to extract fea-
tures from sequential financial transaction data, enabling it to recognize patterns and cor-
relations across time [31]. BILSTM networks manage forward and backward transaction
sequences to let the model learn from the past and future. The following equations regulate all
BiLSTM networks:

Forward LSTM:

af =0 (O x + O, + 1))
Bl = G(G{cfxt + ®£fo1 + b;)
y{: tanh(@{cht + ®{1gh{_1 + bg)
8/ =0 (O3 + O, + 1))
c=-ploe,+alor

¢/ =6/ © tanh(e))

(7)
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Backward LSTM:
al=c(@lx + 0%, +bh)
Bi =0 (O + Ophi., +b7)
Y= tanh(@ﬁgxt + ®2ghf+1 + bg)
8; = 0 (O,x: + Op b,y + by)
& =B Oc+a/ Oy

¢ =8" @ tanh(e})

(8)

Xy, the hidden states of the ahead and backward LSTMs are denoted by ¢ b respectively,
and the cell states of the ahead and backwards LSTMs are denoted by 6{, €? respectively.
Notably, the symbols 0([, ,8{, y?, and 5{, respectively denote the input gate, forget gate, cell
gate, and output gate for the forward and reverse LSTMs. Component-wise multiplication is
symbolized by the ® symbol.

Due to its adeptness in identifying relationships and sequential patterns in financial trans-
action data, BiLSTM networks provide the RMGACNet model with valuable information for
further processing.

GraphSAGE regularized with L2 Node embeddings in graph-structured data are learnt
using GraphSAGE Layer [32]. GraphSAGE builds node embeddings using samples from sur-
rounding graph nodes. The GraphSAGE model is trained using L2 regularization to improve
generalization and reduce overfitting. To use GraphSAGE with L2 regularization, the follow-
ing equations must be met [32]:

h! = AGGREGATE ({h%!,Vu e N'(v)})
h} = ReLU (W* - CONCAT(h}™, b)) 9)
h* = L2_REGULARIZATION (h)

In this equation, h¥ denotes the embedding of node v at layer k, AV(v) signifies the
neighbouring nodes, W indicates the weight matrix, and AGGREGATE refers to a
neighbourhood aggregation function. The main methods include ReLU activation after
aggregation and implementing L2 regularisation to mitigate excessive weights and avert
overfitting.

GraphSAGE with L2 regularization improves the RMGACNet model’s ability to capture
structural information from financial transaction networks and reduces overfitting.

Capsule layer regularized with L2 The RMGACNet Capsule Layer holds hierarchi-
cal links and input data feature settings. Each capsule, which stands for a different object or
attribute, is defined by instantiation parameters. L2 regularising of instantiation parameters
lowers overfitting and improves Capsule Layer generalization. Operating with L2 regularisa-
tion, the Capsule Layer has to meet the following equations [33]:

Zmn = Rmn : Pm

t, = Z ;an * Zmn
m (10)
t, = ACTIVATE(t,)

t, = L2_REGULARIZATION(t,)
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Zun denotes the input of capsule n from capsule m, p,, signifies the output of capsule
m from the preceding layer, R,,, indicates the weight matrix linking capsule m to capsule
1, Bmn represents the coupling coeflicients, and ACTIVATE(+) pertains to the activation
function.

Imposing L2 regularisation on the instantiation parameters of the Capsule Layer reduces
overfitting by penalizing high parameter values, promoting the acquisition of more generaliz-
able features within the input data.

Attention mechanism regularized with L2 The RMGACNet model relies on the Atten-
tion Mechanism layer to concentrate on important data and discard irrelevant data. Input data
components are given attention weights to help the model concentrate on key traits. L2 reg-
ularization of attention weights improves the Attention Mechanism and reduces overfitting.
The following equations govern the Attention Mechanism with L2 regularization, as stated in
[33,34]:

zj = ATTENTION_WEIGHTS(p;, Q»)
b; = SOFTMAX(z;)

V:ij‘P]‘ (11)
j

v =L2_REGULARIZATION(v)

p; represents the input attributes for the j-th occurrence. Attention scores are calculated
using the attention weight matrix Q,. Attention ratings for each occurrence are indicated by
z;. Attention weights are indicated by b; after softmax normalization of attention scores. To
reduce overfitting, L2 regularization is used for the final attended output features (v).

Graph attention networks Graph Attention Networks (GATs) are robust neural networks
that handle graphs. They can record complex graph connections and relationships. GATs are
utilized in RMGACNet to extract complicated input data representations while preserving
graph structure. Since corporate transactions can be graphed, this helps identify financial
fraud. The equations governing Graph Attention Networks are as follows [35]:

0 O yO QD
h] —a( >, By VY- )

EN ()
exp(LeakyReLU (zVT[V® - h{ ™D [[v® . n (D7) (12)
Zikenr iy exp(LeakyReLU (z(DT[V) -h[<H>||V(1) ~h£l_1)]))

1
B -
h’ = 12_REGULARIZATION(h{")

The concealed representation of node i at layer / is represented as h,-(l). The vicinity of node
i is denoted as N (7). The attention coefficient between nodes i and j at layer [ is represented as
[3’,-(]-[) . The weight matrix at layer [ is denoted as V(. The variables of the attention mechanism
are represented as z("). The activation function is denoted as o(-). The RMGACNet model
uses Graph Attention Networks to effectively capture the relational information in the input
data, hence improving performance in FFD tasks.

Routing layer The Routing Layer of the RMGACNet model enhances capsule layer
predictions. Dynamic routing lets capsules expressing the same object or feature at many
abstraction levels interact and agree. This layer increases the model’s discriminative ability
to generate robust, instructive representations. Dynamic routing technology of Capsule Net-
works is used in the RMGACNet concept. As long as they agree, the technique will update
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coupling coeflicients between lower- and higher-level capsule predictions. For a general rout-
ing process, following equation is used [36].

Pr =My - uy
qx = softmax(py) (13)
r; = softmax(qx - uy)

In this instance, uy denotes the output of capsule k, My; signifies the transformation matrix
between capsule k and capsule [, py; represents the logarithmic prior probabilities, qx pertains
to the coupling coefficients, and r; indicates the output of capsule /.

Using recurring agreement adjustments, capsules may approach a consensus on their pre-
dictions and thereby enhance the stability and accuracy of their representations using the
dynamic routing technique. Thus, because it can understand the hierarchical linkages and
relationships in the input data, the RMGACNet model is more suited to detect financial fraud.

Aggregation layer The RMGACNet model’s aggregate layer finishes the analysis after
compiling data from abstraction and capsule layers. High-level feature representation, includ-
ing the prominent features of the input, results from the merging of capsule layer outputs
with routing process contextual information. Aggregation is the gathering and combining
of data from various sources. This layer needs forecasts from many network segments to
enable informed decision-making for activities farther down the pipeline. Aggregation may be
shown mathematically as follows:

¥x = combine(gy) (14)

8> represents the output of capsule k; yx combines the representations produced by aggre-
gating the outputs of the capsules. The aggregation function used by the RMGACNet model
may vary based on the task and the characteristics of the incoming data. Standard aggregating
functions include max pooling, mean pooling, and attention-based aggregation. The Aggrega-
tion Layer extracts valuable data from the capsule outputs via these actions, offering a succinct
but informative representation for further processing.

Output layer The output layer of the RMGACNet model makes predictions using aggre-
gated representations from the aggregagement layer. It forecasts, on aggregated features, the
target variable or variables using classification or regression techniques. FFD calls on the out-
put layer to use learnt representations to determine if a transaction or event is fraudulent. The
output forecast mathematically is:

7 =Output(g’) (15)

Where the projected output is indicated ¢’ and the aggregated representation produced
from the Aggregation Layer is marked j'. The Output Layer determines whether a transac-
tion is fraudulent using FFD-specific categorization methods. Further analysis and inter-
pretation of the anticipated results using performance criteria help identify suspected fraud
occurrences.

Hyperparameter tuning process

The Spotted Hyena Optimiser (SHO) efficiently navigates complicated search regions.
RMGACNet hyperparameters were changed. Model performance depends on learning rate,
layer count, batch size, and dropout rates. Based on spotted hyena hunting techniques, the
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SHO methodology explores the hyperparameter space and converges on appropriate config-
urations. Sequential hyperparameter optimization assessed model performance after tweaking
several hyperparameter values. The model is tuned for accuracy and F1 score, determining

its positive and negative classification capacity. Using k-fold cross-validation ensures hyper-
parameter selection values are generalized across data subsets, reducing overfitting. For ideal
hyperparameter settings, Table 4 after many SHO repeats. This table shows the chosen hyper-
parameters and their performance measurements, confirming our tuning method. The SHo
changes RMGACNet’s model architecture, making it more scalable and applicable to real-time
financial applications.

Simulation and results

The following requirements are applied to a system that undergoes a rigorous simulation pro-
cess: 32 GB of RAM, a GeForce RTX 2080Ti GPU, and a 2.4 GHz Dell Core i7 12th genera-
tion quad-core CPU. Several Python libraries, including NumPy, PyTorch, and Pandas, are
used in the simulations. The GPU is used for both the model’s training and evaluation pro-
cesses. The Adam Optimiser modifies the model’s parameters during the training process.
The ECH and IEEE-CIS datasets include an initial learning rate of 0.001. The batch size is

set at 512. The model is trained on both datasets until convergence, using a maximum of 120
epochs.

The dataset was thoroughly analysed for missing values, anomalies, data normalization,
and standardization. This preliminary study obtained a pristine dataset for analysis. Miss-
ing data is addressed to avert bias and mistakes in the study. Outliers were identified and
addressed to prevent prejudice. Data normalization and standardization standardized all
characteristics to improve the performance and convergence of machine learning models.
This comprehensive preprocessing was necessary to ensure the accuracy of analysis and model
development. The data is analysed by correlation.

Fig 4, left figure, shows the correlation matrix for the first 15 criteria, including the ‘Class’
column indicating fraudulent transactions. V12, V10, and V14 are essential fraud detectors
due to their substantial positive correlations with ‘Class’ (0.58, 0.60, and 0.49). V4 and V12
have a strong negative correlation of -0.72, whereas V3 and V10 have a 0.71 positive connec-
tion. V2 and V7 also correlate —0.69. These findings identify essential collection features and
probable duplication. The association matrix for the other 15 attributes is illustrated on the
right side of the figure. V16, V17, and V18 show the most negative correlations (-0.57, -0.47,
and -0.41) with ‘Class, suggesting a solid inverse link with fraud. Meaningful interactions
include a strong positive correlation (0.85) between V16 and V17 and (0.77) between V16 and
V18. The correlation value of -0.19 suggests a poor link between V24 and V27. Fraud detec-
tion models’ features and multicollinearity management depend on these interactions. It also

Table 4. Optimal hyper parameters for RMGACNet.

Hyperparameter Optimal Value
Activation Function ReLU
Learning Rate 0.001

Number of Layers 4

Epochs 100

Dropout Rate 0.3

Optimizer Adam

Batch Size 32

https://doi.org/10.1371/journal.pone.0317893.t004
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Fig 4. Data correlation of all features (ECH dataset).
https://doi.org/10.1371/journal.pone.0317893.9004

highlights essential traits highly associated with ‘Class’ and interactions between features. This
information helps create fraud detection tools.

A correlation heatmap of the top ten indicators used to identify financial fraud from the
IEEE-CIS dataset is shown in Fig 5. Correlation coefficients between pairs of attributes are
shown in this heatmap from -1 (totally negative correlation) to 1 (totally positive correla-
tion). Card5 is strongly positively correlated with TransactionDT (0.6719), D10 is moder-
ately positively correlated with it (0.3721), and card? is somewhat negatively correlated with it
(-0.1733). Correlations between the D1 trait and C2(0.5923) and card1(0.4455) are positive,
whereas V282 and V283 are negatively associated (-0.5529). The C2 characteristic is posi-
tively associated with D10 (0.4375) but negatively associated with D3 (~0.3807). The card5
feature correlates positively with D10 (0.2042) and card1 (0.3830) and negatively with V282
and V283 (-0.2774). V282 and V283 exhibit a perfect correlation (1.0000) and strong negative
correlations with D3 (-0.4549 each).

Fig 6 for dataset records before and after the SMOTE technique application. ‘Not fraud’
cases initially outnumber ‘fraud’ ones considerably. The dataset becomes balanced when
SMOTE is applied, with equal records in each class. A balance between training machine
learning models on ‘fraud’ and ‘non-fraud’ situations improves their accuracy and depend-
ability in recognizing fraudulent transactions.

Our framework uses BiLSTM for feature selection/extraction. Features V1, V3, V4, V7, V9,
V10, V11, V12, and V14 show fraud patterns. These features score high in the BiLSTM net-
work, indicating their importance in categorization. The BILSTM model correctly detects sub-
stantial negative correlations between the ‘Class’ variable and characteristics V16, V17, V18,
and V19, demonstrating their importance in identifying fraud. Because of their contribution,
the BiLSTM network can discover nuanced patterns and behaviours, improving the model’s
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Correlation Heatmap of Top 10 Features
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Fig 5. Data correlation of top 10 features (IEEECIS dataset).
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Fig 6. Data before and after applying SMOTE algorithm.
https://doi.org/10.1371/journal.pone.0317893.9006
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Feature

TransactionDT
D1

prediction capacity. Thus, the fraud detection model has characteristics V21-V27. The
BiLSTM model performs well in assessing the Amount’ feature, which assesses transaction
value and fraud risk. The model’s relevance in research is highlighted. Table 5 displays the
chosen features and their scores.

Fig 7 displays the top 40 features selected by a BILSTM model from the IEEECIS dataset.
These 40 features predicted the target variable the most out of 339 in the dataset. These
attributes’ significance scores were determined during model training, with higher scores
suggesting a more significant effect on target variable prediction. The importance ratings for
qualities are also shown. The length of each bar shows the BiLSTM model’s relevance score

Table 5. Selected features and their BILSTM scores on ECH dataset (Sfeat: selected feature).

Sfeat Score Sfeat Score Sfeat Score
V1 0.82 V12 0.91 V22 0.70
V3 0.88 V14 0.86 V23 0.68
V4 0.85 Vie 0.80 V24 0.74
V7 0.90 V17 0.78 V25 0.73
V9 0.87 V18 0.75 V27 0.76
V10 0.89 V19 0.77 Amount 0.81
\'28! 0.84 V21 0.72

https://doi.org/10.1371/journal.pone.0317893.t005

Top 40 Feature Importances
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Fig 7. Top 40 features selected by BILSTM from IEEECIS dataset.

https://doi.org/10.1371/journal.pone.0317893.9007
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for that feature. Features with longer bars predict the target variable better than those with
shorter bars.

The tables describe the performance of multiple models on two financial fraud identifica-
tion datasets: the European cardholder (ECH) transactions dataset and the IEEE-CIS dataset.
The results also demonstrate that the suggested RMGACNet model is more effective than the
most advanced, state-of-the-art FFD approaches, which bodes well for its practical use. The
proposed RMGACNet model’s performance metrics are compared to current state-of-the-
art models on the ECH dataset in Table 6. RMGACNet has good results in Precision(0.9772),
Accuracy(0.9768), and F1 Score (0.9770). With a Log Loss of just 0.2255, RMGACNet more
reliably estimates probabilities than any other network. The capacity of RMGACNet to main-
tain a balanced ratio of true positives to true negatives is shown by its highest Kappa statis-
tic (0.9769) and G-mean (0.9834) values. Table 7 displays the performance metrics of several
benchmark models on the IEEE-CIS dataset, including the proposed RMGACNet model.
RMGACNet performs well with Precision, Accuracy, and F1 Score values of 0.98821, 0.98821,

Table 6. Proposed framework performance values on the ECH dataset.

Metric RMGACNet |ResNeXt-GRU |LSTM [22] [GhostNet [6] |[DCNN [15] |SVM [10] |GANs[17]
(6]

Precision 0.9772 0.8683 0.8571 0.8782 0.8205 0.8302 0.9235
Log Loss 0.2259 0.3312 0.3423 0.3198 0.4025 0.3898 0.3012
Accuracy 0.9768 0.8623 0.8534 0.8671 0.8064 0.8181 0.9323
G-mean 0.9834 0.9113 0.8956 0.9157 0.8632 0.8734 0.9321
Kappa statistic [0.9769 0.8621 0.8505 0.8715 0.8153 0.8248 0.9172
Recall 0.9769 0.8656 0.8525 0.8715 0.8124 0.8221 0.9479
Specificity 0.9768 0.9156 0.9032 0.9224 0.8695 0.8811 0.8976
F1 Score 0.9770 0.8665 0.8548 0.8745 0.8167 0.8267 0.9362
MCC 0.9770 0.8612 0.8503 0.8721 0.8145 0.8242 0.8467
Average 0.9771 0.8715 0.8598 0.8802 0.8326 0.8421 0.9254
Precision

Balanced 0.9770 0.8925 0.8773 0.8950 0.8444 0.8508 0.9157
Accuracy

AUC-PR 0.9860 0.8740 0.8610 0.8830 0.8300 0.8400 0.9300

https://doi.org/10.1371/journal.pone.0317893.t006

Table 7. Proposed Framework Performance values on the IEEE-CIS dataset.

Metric RMGACNet |ResNeXt-GRU |LSTM [22] |GhostNet [6] |[DCNN [15] |SVM [10] |GANSs [17]
[6]

Precision 0.9882 0.8791 0.8653 0.8912 0.8347 0.8462 0.9331
Log Loss 0.2412 0.3487 0.3551 0.3318 0.4125 0.4052 0.3113
Accuracy 0.9876 0.8704 0.8605 0.8792 0.8223 0.8287 0.9421
G-mean 0.9943 0.9206 0.9109 0.9267 0.8793 0.8831 0.9402
Kappa statistic |0.9872 0.8709 0.8615 0.8726 0.8321 0.8319 0.9317
Recall 0.9887 0.8753 0.8668 0.8781 0.8269 0.8312 0.9568
Specificity 0.9862 0.9265 0.9178 0.9345 0.8887 0.8964 0.9142
F1 Score 0.9879 0.8798 0.8672 0.8893 0.8326 0.8401 0.9463
MCC 0.9876 0.8736 0.8642 0.8781 0.8296 0.8385 0.8602
Average 0.9881 0.8825 0.8703 0.8918 0.8413 0.8502 0.9364
Precision

Balanced 0.9865 0.9236 0.9124 0.9218 0.8837 0.8914 0.9264
Accuracy

AUC-PR 0.9900 0.8850 0.8730 0.8980 0.8440 0.8505 0.9470

https://doi.org/10.1371/journal.pone.0317893.t007
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and 0.98821, respectively. Its highest G-mean (0.99521) and Kappa statistic (0.98821) among
the evaluated models demonstrate its robust performance.

Table 8 compares the RMGACNet model to top FFD methods using statistical analysis on
IEEE-CIS and ECH datasets. Wilcoxon, Spearman’s, Chi-Squared, Paired Student, ANOVA,
and Student Tests produce F-statistics and P-values for each model. RMGACNet, the pro-
posed model, has Wilcoxon (F-stat: 7.632, P-val: 0.022), Spearman’s (F-stat: 0.822, P-val:
0.005), Chi-Squared (F-stat: 173, P-val: -0.010), Paired Student (F-stat: 0.04, P-val: 0.001),
ANOVA (F-stat: 49.305, P-val: 0.000), and Student values. RMGACNet’s excellent F-statistics,
significant P-values, and predictive abilities show it performs well in most tests. ResNeXt-
GRU, LSTM, GhostNet, DCNN, SVM, and GANs perform differently. On IEEE-CIS and ECH
datasets, RMGACNet regularly beats these models, making it the most reliable and effective
financial misbehaviour detection approach.

Fig 8 show the confusion matrices of the RMGACNet model on the IEEE-CIS and ECH
datasets. This shows the model can recognize fraudulent and non-fraudulent transactions. The
model accurately identifies a substantial number of true negatives (49,124) and true positives

Table 8. Statistical analysis tests on IEEE-CIS and ECH dataset.

Techniques Wilcoxon Spearman’s Chi-Squared Paired Student |ANOVA Studenta’s
RMGACNet (EF-stat) 7.632 0.822 173 0.04 49.305 0.00
RMGACNet (P-val) 0.022 0.005 -0.010 0.001 0.000 0.060
ResNeXt-GRU (F-stat) |6.710 0.664 214 -4.775 56.977 -1.914
ResNeXt-GRU (P-val) |0.031 0.019 -0.010 0.000 0.001 0.031
LSTM (F-stat) 7.209 0.735 191 -4.133 51.753 -1.642
LSTM (P-val) 0.019 0.012 -0.010 0.000 0.000 0.044
GhostNet (F-stat) 7.913 0.800 179 -3.905 47.914 -1.355
GhostNet (P-val) 0.027 0.008 -0.010 0.000 0.000 0.055
DCNN (F-stat) 5.973 0.522 285 -5.325 62.173 -2.488
DCNN (P-val) 0.039 0.033 -0.010 -0.010 0.000 0.026
SVM (F-stat) 6.375 0.602 239 -4.991 58.410 -2.099
SVM (P-val) 0.032 0.026 -0.010 0.000 0.001 0.039
GANS s (F-stat) 5.310 0.448 325 -6.249 68.915 -2.997
GANs (P-val) 0.045 0.044 -0.010 -0.010 0.000 0.017

https://doi.org/10.1371/journal.pone.0317893.t008

Confusion Matrix -IEEE-CIS Dataset Confusion Matrix -ECH Dataset

29
(0.03%)

True Negative
True Negative

True Label
True Label

37 24

True Positive
True Positive

(0.03%) (0.02%)
Predicted Negative  Predicted Positive Predicted Negative Predicted Positive
Predicted Label Predicted Label

Fig 8. Confusion matrices of RMGACNet on ECH and IEEE-CIS datasets.
https://doi.org/10.1371/journal.pone.0317893.9008
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ECH Dataset - ROC Curves

(69,028) with minimal false positives (32) and false negatives (24), indicating good detec-
tion capability (Left, IEEE-CIS). Similarly, on the right side of the figure (ECH), RMGACNet
achieves high true negative (51,772) and true positive (61,887) counts with low false positives
(29) and negatives (37). The model accurately and reliably detects financial fraud in both
datasets with low misclassification rates.

A comparison is made between the RMGACNet model and current approaches utiliz-
ing the ROC curve to assess its FFD on the ECH dataset in Fig 9. As a function of thresh-
old value, the ROC curve plots the ratio of true positives (Sensitivity) to false positives
(1-Specificity). A higher AUC indicates a more accurate separation of positive and negative
categories. RMGACNet’s ROC curve is better than others, showing it can consistently identify
fraudulent transactions. A practical FFD tool, RMGACNet makes more accurate predictions
with fewer false positives and negatives.

Fig 10 compares the performance duration of several models (ResNeXt-GRU, LSTM,
GhostNet, DCNN, SVM, GANs, and RMGACNet) on various dataset sizes. On the x-axis,
there are 10,000 to 568,630 data points. The y-axis shows seconds of execution. As dataset
quantities change and execution times rise, model performance is monitored. RMGACNet
always executes the quickest, from 15 seconds for the smallest dataset to 830 seconds for the
largest. Compared to other ways, it is effective and increasing. The upgraded RMGACNet
integrates feature extraction and classification to reduce computational complexity and speed
processing. ResNeXt-GRU and GhostNet execute quickly, but RMGACNet does better. SVM
and GANSs take the longest to perform on larger datasets, whereas LSTM and DCNN are
faster. The SVM takes 3000 seconds on the largest dataset, showing its inefficiency with large
data sets.

Several regularisation techniques are used to evaluate the risk of overfitting in the
RMGACNet model to improve generalization abilities. Notwithstanding the model’s intri-
cate construction, our findings demonstrate a robust correlation between training and testing
performance, as seen in Fig 11. The close alignment of training and testing accuracy and the

IEEE-CIS Dataset - ROC Curves
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Fig 9. ROC curves comparison of proposed and existing methods.

https://doi.org/10.1371/journal.pone.0317893.g009
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Execution Time vs Dataset Size for Different Models
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Fig 10. Execution time of classifiers.

https://doi.org/10.1371/journal.pone.0317893.g010
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Fig 11. RMGACNet model training accuracy loss analysis.

https://doi.org/10.1371/journal.pone.0317893.9011

steady decline in training and testing loss indicate successful mitigation of overfitting risk.
Different strategies like dropout layers and L2 regularisation are used to enhance the stabil-
ity of the learning process and mitigate excessive model complexity. This research affirms
our dedication to maintaining RMGACNet’s robustness in real-world contexts, validating its
dependability for practical applications in financial fraud detection.

Fig 12 shows the RMGACNet model’s hyperparameter sensitivity analysis and its effect
on accuracy. The graph has five hyperparameter subplots: Learning Rate, Batch Size,
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Fig 12. RMGACNet parameter sensitivty analysis.
https:/doi.org/10.1371/journal.pone.0317893.9012

Number of Layers, Dropout Rate, and Epochs. Learning Rate accuracy increases from 0.001
to 0.02 and peaks at 96.5%. This suggests that a greater learning rate improves the model

to a point beyond which it may not improve. As batch size increases, accuracy improves,
reaching 96.0% at 128. This shows that bigger batch sizes improve gradient estimations and
performance. The number of Layers research shows that accuracy increases from 2 to 5 layers,
reaching 95.0%. This shows the model can capture complicated patterns with deeper struc-
tures. Higher Dropout Rate numbers decrease accuracy, showing that a high dropout might
hamper performance. At 95% accuracy, 0.1 to 0.2 seems to be the best range. Epochs con-
sistently improve accuracy with training time, reaching 95.0% after 40. This suggests more
extended training improves model learning and generalization. This Figure shows how tun-
ing these hyperparameters affects RMGACNet model performance, helping academics and
practitioners optimize model settings.

Fig 13 shows the RMGACNet model’s performance across dataset sizes. The left y-axis
shows accuracy percentages and the correct execution time in seconds. From 150,000 to
300,000 samples, the RMGACNet model’s accuracy steadily improves, stabilizing at 98%. The
model uses more enormous datasets to improve its performance, resulting in excellent accu-
racy. However, execution time increases with increasing dataset sizes due to computing loads.
In particular, execution time increases from 1.2 seconds for 20,000 samples to 28 seconds
for 300,000 samples. The RMGACNet model, as seen in the image, allows for extending pro-
cessing speeds without sacrificing accuracy. An adequate amount of computing power allows
RMGACNEet to operate in real time. When processing vast amounts of data, RMGACNet is a
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Performance of RMGACNet on Different Dataset Sizes
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Fig 13. RMGACNet scalability and execution analysis with different dataset size.
https://doi.org/10.1371/journal.pone.0317893.9013

good option since it is more accurate and takes less time to calculate than earlier performance
tests.

The memory usage and model size of RMGACNet, ResNeXt-GRU, LSTM, GhostNet,
DCNN, SVM, and GANs are compared in Fig 14. The left figure illustrates the impact of
dataset size on each model’s computational performance and memory usage. Even with larger
datasets, RMGACNet consumes less memory than comparable models. The memory efficacy
of RMGACNet may facilitate the processing of large datasets. Due to their substantial mem-
ory requirements, GANs and SVMs are not recommended for real-time applications. The
model disk space is depicted in the right photo. RMGACNet consumes significantly less disk
capacity than lesser variants. Due to its minimal memory and storage requirements, RMGAC-
Net is an optimal choice for low-processing applications. GANs and SVM are effective but
space-intensive, which may pose a challenge in real-world applications with restricted storage.
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Fig 14. Memory usage and model size comparison across various models.
https://doi.org/10.1371/journal.pone.0317893.9014
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RMGACNEet is also demonstrated in Fig 14 to be an optimal choice for resource-intensive,
large-scale fraud detection applications due to its storage and computational efficiency.

Analysis of performance improvement

Compared to existing models, RMGACNet’s 2% to 7% performance improvement results
from multiple, carefully integrated components, each addressing critical challenges in finan-
cial fraud detection. RMGACNet optimizes model performance via sophisticated regular-
isation and hyperparameter tweaking to exploit transaction data’s temporal and relational
properties.

o Fraudulent activity usually features unusual timing or transaction frequency spikes.
Sequence-processing constraints hinder standard models from capturing these details.
RMGACNet solves this with BiLSTM layers that assess transactions both ways. Using this
bidirectional method, the model learns from past and future transaction sequence data.
RMGACNet’s BILSTM layer improves memory and accuracy by detecting slight but signifi-
cant time-based irregularities.

« Financial transactions sometimes include network structures like account links, which may
reveal fraud tendencies with several transactions. RMGACNet learns node embeddings
that represent transaction structural linkages and relational patterns using GraphSAGE.

L2 regularization reduces overfitting to tiny training data variations by penalizing high-
weight values. Financial data with class imbalance and high-dimensional noise need Graph-
SAGE embeddings to generalize across new data. This technique ensures this. Knowledge of
structural data improves RMGACNet’s accuracy and AUC-PR.

o Capsule Network Hierarchical Pattern Recognition: Fraud detection requires detecting
complex relationships like related accounts and repeating behavioural patterns. Standard
neural networks handle neurons independently, whereas capsule networks better cap-
ture spatial and structural hierarchy. It gathers group-related data to help the RMGACNet
model discover fraud trends, such as unusually high transaction sequences across associ-
ated accounts. This skill improves model specificity and reduces false positives by detecting
fraud in datasets with distinct feature spaces.

o Attention-based selective focus: Only a few high-dimensional financial dataset properties
assist in identifying fraud. RMGACNet’s attention method emphasizes fraud-related qual-
ities and downplays irrelevant data. The attention technique reduces noise and improves
categorization by focusing on transaction amount, frequency, and account connection
patterns. By removing unnecessary data, our targeted technique enhances RMGACNet’s
accuracy and F1 score.

o SHO hyperparameter tuning efficiency: Complex models like RMGACNet need hyperpa-
rameter modification for optimal performance. Traditional tuning methods are computa-
tionally demanding and may not discover the best configuration. Imitating hyena-hunting
groups, SHO discovers an ideal set faster by exploring several combinations. Due to this
adjustment, RMGACNet works effectively without overfitting by increasing its learning
rate, dropout rate, batch size, and other parameters. Model stability and dataset consistency
depend on this phase.

o SMOTE balances fraud detection datasets before training, helping RMGACNet perform
better. It uses synthetic minority class samples to educate the model from fraudulent and
non-fraudulent examples, improving generalizability and recall. By training RMGACNet
on a balanced dataset, SMOTE avoids bias toward non-fraudulent transactions. Fraud
detection requires better recall and specificity without overfitting to the majority class.
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These components are combined to improve RMGACNet’s ability to identify fraudulent
transactions. A model that surpasses current methods and adjusts to trends in financial fraud
is created by combining attention-based feature selection with structural learning, hierar-
chical feature recognition, and temporal analysis. This model is then enhanced by hyperpa-
rameter tuning. RMGACNet considers the relational structure, class imbalance, and time
dependence to improve performance metrics and optimizes the model. The revolutionary
algorithms of RMGACNet’s fraud detection show how useful it may be in the banking sector.

Limitations of RMGACNet

While RMGACNet’s recall and accuracy are crucial for fraud detection, the network has
flaws. The computer resources required to evaluate massive datasets impact the model’s per-
formance, which could hinder the scalability of real-time applications. In addition, as the
model is hyperparameter sensitive, extra care must be used during implementation for opti-
mal results. When RMGACNet is implemented, problems arise that require more study and
enhancement.

Conclusion

This research presents a new approach to identifying financial fraud using state-of-the-art
deep learning algorithms. RMGACNet improves the efficacy of fraud detection systems by
optimizing classification, feature extraction, and bidirectional long-short-term memory (BiL-
STM) networks. To determine its effectiveness, we have extensively tested RMGACNet on the
IEEE-CIS dataset and the European Cardholder (ECH) transactions dataset. The suggested
solution outperforms prior approaches to financial fraud detection by using state-of-the-art
deep-learning algorithms. RMGACNet deftly detects complex patterns and correlations in
transaction data to identify fraudulent activity reliably. This approach ensures that it pri-
oritizes the most critical aspects to improve the model’s prediction performance. Regard-

ing accuracy, F1 score, and area under the ROC curve, RMGACNet often outperforms top
approaches, demonstrating its capability to distinguish between legitimate and fraudulent
transactions. Notwithstanding RMGACNet’s scalability and efficiency, which are appropri-
ate for practical applications, it is vital to understand the ethical implications. The model must
be closely monitored before being used in real-world scenarios to reduce the impact of biases
caused by improperly selected analytical tools or biased training data.

Future studies should emphasize addressing ethical problems, ensuring openness, and
promoting justice in fraud detection. By providing a comprehensive solution for detecting
and mitigating fraud, RMGACNet has the potential to raise security standards in the finan-
cial industry. The model’s ability to analyze massive amounts of transaction data in real-time
makes it useful for businesses aiming to reduce fraud risk. Even though it demonstrates a
significant advancement in fraud detection technology, further study is needed to compre-
hend the ethical implications of RMGACNet and enhance its performance in various financial
contexts.
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