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In this paper, I survey a recent literature that uses information in derivative and other

asset prices to forecast movements in financial markets. This literature aims to provide

answers to questions such as:

1. What is the expected return on the market over the next six months?

2. What is the expected return on Apple stock over the next year?

3. By how much is the euro expected to appreciate or depreciate against the dollar

over the next two years?

4. What is the probability that Apple stock drops by 30% over the next quarter?

5. How do long-run expectations currently compare with short-run expectations?

6. What is the expected future path of interest rates?

7. What is the expected inflation rate?

8. What is the expected growth rate of aggregate dividends?

9. How autocorrelated are market returns expected to be?

10. . . . and so on.

There is, of course, no single answer to any of these questions. Almost any survey,

formal or informal, will elicit a range of responses to each one; different econometri-

cians will come up with different “objective” measures of conditional expectations. Some

people—even perhaps some economists—will give answers that seem obviously false to

other people. At best, we might hope to come up with answers to these questions that

could be broadly accepted as reasonable.

I will emphasize various distinctive, and interrelated, features of the literature I survey.

First, minimal assumptions are made about the underlying price processes. It is com-

mon in the asset pricing literature to assume that asset prices and returns are lognormally

distributed, or that they follow diffusion processes. These assumptions lead to tractable

models, but they are not plausible in reality.

Second, measures of volatility come in at least three different flavors: true, risk-neutral,

and historical. In lognormal models all three are essentially the same. In general, they are

all different. I will emphasize measures of implied volatility based on option prices. In a

lognormal world, option prices are uninteresting, determined passively from the underlying

asset (as in the groundbreaking paper of Black and Scholes (1973)). In general, however,

the dynamic replication of options or other derivatives is impossible, so that they must be
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viewed as genuinely distinct assets priced in equilibrium rather than by the pure theory

of no arbitrage—and their prices convey genuinely distinct information.

Third, the theory is set up with measurement in mind. The classical theory of financial

economics relates risk premia to conditional covariances (with the return on the market

in the capital asset pricing model (CAPM) or with risk factors in the arbitrage pricing

theory). These quantities are not observable in practice, so it is conventional to proxy

for them with historical measures of realized covariance. But, as Martin and Wagner

(2019) put it,“when markets are turbulent, historical betas may not accurately reflect

the idealized forward-looking betas called for by the CAPM, or by factor models more

generally; and if the goal is to forecast returns over, say, a one-year horizon, one cannot

respond to this critique by taking refuge in the last five minutes of high-frequency data.”

The papers surveyed here relate risk premia to risk-neutral variances, covariances and

other risk-neutral quantities that are directly observable from forward-looking asset prices.

Section 1 introduces the formula of Merton (1980) that connects the market’s risk

premium to its variance, and discusses some extensions. In Section 2, I show how the

beliefs of a representative investor with log utility can be inferred from asset prices. I

derive connections between the market’s risk premium and its risk-neutral variance, and

between arbitrary assets’ risk premia and their risk-neutral covariances with the market,

and show how these quantities can be calculated from appropriate derivative prices. In

Section 3, I derive an identity which holds without any assumptions on the form of the

SDF, and use it to generalize the approach beyond the log investor. Section 4 concludes.

1 Merton’s formula

Merton (1969, 1971) considered the problem of how an individual with power utility

should invest in an iid world with a fixed riskless rate rf and a risky asset whose price,

St, follows a geometric Brownian motion,

dSt
St

= µ dt+ σ dZ. (1)

The optimal share of wealth allocated to the risky asset, α, is

α =
µ− rf
γσ2

, (2)

where µ − rf is the expected excess return1 on the risky asset and γ is the coefficient of

relative risk aversion.

1The analog of µ − rf in a discrete time model is logEt
Rt+1

Rf,t+1
, where Rt+1 is the one-period gross

risky return and Rf,t+1 is the one-period gross riskless rate.
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If all individuals have the same level of risk aversion, and if the risky asset is interpreted

as the market portfolio, equilibrium requires that α = 1, so that equation 2 provides a

relationship between the expected excess return on the market and the volatility of the

market:

µ− rf = γσ2. (3)

The appeal of this relationship, which was derived and analyzed by Merton (1980), is

that the expected return on the market is hard to estimate directly from time series data,

whereas market volatility is easy to calculate in the geometric Brownian motion setting.

More generally, if individuals with different levels of risk aversion γi face the price pro-

cess described by equation 1, they will choose different risky shares αi = (µ− rf )/(γiσ2).

In this case, the equilibrium requirement is that the wealth-weighted-average risky port-

folio allocation should equal one: writing wi for individual i’s wealth share, we must have∑
iwiαi = 1. This implies that

µ− rf = γσ2, (4)

where γ =
(∑

i
wi

γi

)−1
is wealth-weighted harmonic mean risk aversion.

Two aspects of this aggregate risk aversion measure deserve emphasis. First, wealthy

individuals receive more weight in the calculation of γ. Observers wishing to understand

the behavior of financial markets should devote particular attention to the risk preferences

of the rich.

Second, the harmonic mean is particularly sensitive to the presence of individuals with

low risk aversion. If there are two equally wealthy individuals with risk aversion 1 and

1,000,000, respectively, then arithmetic mean risk aversion is slightly more than 500,000

and geometric mean risk aversion is 1,000; and yet harmonic mean risk aversion, γ, is

slightly less than two! People with low risk aversion have a disproportionate influence on

financial markets because they trade aggressively. Carried to the extreme, the presence

of even one unconstrained and truly risk-neutral agent (γi = 0) drives aggregate risk

aversion to zero. Conversely, someone with infinite risk aversion will not participate in

risky financial markets, and so will have almost no impact on the pricing of risky assets.

In this GBM setting, volatility, σ, can be calculated either by computing realized

quadratic variation directly from the price process using high-frequency data over any

finite time interval or by observing option prices. Indeed we could use the price of an

option with any strike and any time to maturity: as the Black and Scholes (1973) model

would hold, all options would have the same implied volatility which—like the expected

return on the market under the model assumed in equation 1—would be constant over

time.

In practice, the empirical literature has tended to use rolling measures of realized
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volatility to proxy for forward-looking conditional volatility, with results that are typically

only weakly supportive of the basic equation 3.2

1.1 Jumps and lumpy information

Casual observation quickly reveals, however, that asset prices do not follow geometric

Brownian motions. Volatility moves around over time; and prices jump discontinuously,

sometimes at unexpected times (a terrorist attack occurs, a major bank fails, a war breaks

out) and sometimes at predictable times (an economic number is released, an election

takes place).3 Consequently, implied volatility, inferred from option prices on some fixed

underlying asset, varies with strike and time to maturity, and over time, and is itself

subject to jumps.4

The idea that information can arrive in lumps is a fundamental challenge to the Brow-

nian motion view of the world. As Karatzas and Shreve (1998) write, at the start of their

textbook on financial markets driven by Brownian motions: “Our assumption that asset

prices have no jumps is a significant one. It is tantamount to the assertion that there are

no ‘surprises’ in the market”.

But manifestly there are ‘surprises’ in the market. Several recent papers formally

document the impact of major macroeconomic announcements on asset prices, consistent

with the lumpy information view of the world.5

The analysis above can be adapted to accommodate the case of a jump that takes place

at a known point in time, if we imagine that, at time t, the market will be multiplied by

a lognormal random variable J = e(µ−
1
2
σ2)+σZ , where Z is standard Normal. To induce

a representative investor with power utility to continue to invest fully in the market over

a short interval around time t, we must have µ − rf = γσ2 as before. (This follows

from a direct calculation, or simply by noting that the units of time in equations 1–3

are indeterminate so that we can choose them as we wish, provided that µ, σ and rf are

2See, for example, Merton (1980), French et al. (1987), Baillie and DeGennaro (1990), Campbell and

Hentschel (1992), and Harvey (2001). In the other direction, Guo and Whitelaw (2006), Ludvigson and

Ng (2007) and Pastor et al. (2008) argue for a positive relationship between risk and return. In a different

style, Bekaert et al. (2009) present evidence supportive of a positive relationship between risk and return

in the context of a consumption-based asset pricing model.
3See, for example, Aı̈t-Sahalia (2002), Chernov et al. (2003), Barndorff-Nielsen and Shephard (2004),

Todorov (2009), and Aı̈t-Sahalia and Jacod (2012).
4See, for example, Bates (1991), Carr and Wu (2003), and Broadie et al. (2007).
5See, for example, Savor and Wilson (2013), Savor and Wilson (2014), Lucca and Moench (2015),

Ai and Bansal (2018), Cieslak et al. (2019), and Hillenbrand (2024). Backus et al. (2011) argue that

the jumps whose influence is evident in option prices should be thought of as frequently occurring small

jumps rather than large rare disasters of the type emphasized by Barro (2006).
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interpreted appropriately.) Suppose, for example, that at the time of an announcement

known to be occurring in the next ten seconds, the market price will experience (i.e., be

multiplied by) a lognormal jump with standard deviation σ = 2%. In this case, the

equilibrium expected excess return would be γ × (2%)2 = 4γ basis points over the next

ten seconds.6 This order of magnitude is consistent with results reported by Savor and

Wilson (2013), who find that the average excess return on major macroeconomic news

announcement days from 1958 to 2009 is 11.4 basis points.

To illustrate what happens when news arrives unexpectedly, suppose that the asset

price experiences jumps at times determined by a Poisson process with arrival rate ω:

dSt
St

= µ dt− L (dN − ω dt) . (5)

To keep things simple, suppose that when news arrives, the jump is of fixed size L, where

L > 0, so that a jump represents bad news, and L < 1, so that the asset’s price always

remains positive. This is a highly stylized example, but it is an important counterpoint

to the GBM specification of equation 1.

The pure jump model has two free parameters, ω and L, to compare with the single

parameter σ in the Brownian case. To put them on the same footing, we choose ω and L

so that volatility is the same in each case, i.e., we set ω = σ2/L2. We can imagine fixing

volatility, σ, and then choosing the parameter L freely. Large values of L correspond

to rare extreme disasters, whereas values of L close to zero correspond to frequent small

jumps. We can think of information arriving occasionally in large lumps if L is large; or

arriving frequently in small pieces when L is close to zero. The optimal share of wealth

invested in the risky asset is then7

αjump =
1

L

[
1−

(
σ2

(µ− rf )L+ σ2

)1/γ
]
. (6)

Imposing the requirement that αjump = 1 in equilibrium, equation 6 implies that

µ− rf =
(1− L)−γ − 1

L
σ2. (7)

This is the analog of the Merton formula given in equation 3. Expanded as a power series

in L, equation 7 becomes

µ− rf = γσ2 +
γ(γ + 1)L

2!
σ2 +

γ(γ + 1)(γ + 2)L2

3!
σ2 +

γ(γ + 1)(γ + 2)(γ + 3)L3

4!
σ2 + · · · .

(8)

6Moreover, as the 10-second riskless return is approximately zero, the 4γ bp expected excess return

in the example is almost exactly equal to the expected return.
7See the NBER working paper by Campbell and Martin (2021) for a derivation.
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In the limit as L tends to zero—with small pieces of information arriving very frequently—

this simplifies to the Merton formula shown in equation 3. More generally, though, the

equity premium depends not only on risk aversion and variance but also on higher mo-

ments of the asset return (determined here by the jump size and arrival rate, as captured

by L). At first sight this is discouraging, as estimating the stochastic properties of jumps

that may only occur infrequently is econometrically challenging.

2 The log investor

Given a traded payoff Xt+1, the time t risk-neutral expectation of Xt+1 is defined to be

E∗t Xt+1 = Rf,t+1 Et (Mt+1Xt+1) . (9)

Although risk-neutral expectations are often8 used as a rough guide to true expecta-

tions, equation 9 shows that the two types of expectations are only identical in the special,

and counterfactual, case in which pricing is genuinely risk-neutral—that is, only if

Mt+1 = 1/Rf,t+1. (10)

This is, undeniably, a crude assumption. And yet the appeal of risk-neutral quantities

reflects the fact that—as they can be inferred from asset prices alone, without the need for

infrequently updated macroeconomic or accounting data—they are observable in real time.

A second advantage is that there are no free parameters to be estimated or calibrated: to

give one example, breakeven (that is, risk-neutral) inflation is an unambiguous quantity on

which market participants can agree whatever their personal views on the macroeconomy.

In this section, I discuss an approach that has echoes of the Merton formula, but which

(like the risk-neutral approach) makes no assumptions about the stochastic processes

8Notably, practitioners do not use risk-neutral expected returns as approximations to true expected

returns. The reason is that the risk-neutral expected return on any asset equals the riskless rate. As

risk premia are large relative to riskless rates for most asset classes of interest, risk-neutral expected

returns have not been useful measures of “market-implied expected returns.” (If we lived in a world

with high and widely fluctuating interest rates, risk-neutral expected returns might come to seem a more

sensible measure.) Nor can they differentiate cross-sectionally, with one exception: if exchange rates are

involved then there are multiple different riskless rates in play, one for each currency. And, indeed, in this

context, the risk-neutral approach does have an interesting role: the risk-neutral expected appreciation

of one currency relative to another is determined by the two currencies’ interest rates. That is, the

risk-neutral forecast equals the uncovered interest parity (UIP) forecast, a quantity which is often viewed

as a benchmark in the international finance literature.
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followed by asset prices, other than that they are arbitrage-free.9 Specifically, I adopt the

perspective of an unconstrained, rational, marginal investor with log utility over next-

period wealth. This individual may coexist with other (rational or irrational) individuals

with different preferences and/or different beliefs, but we assume that he or she chooses

to hold the market.10 As we will see, it is possible to use derivative prices to infer the

perceptions such an investor must have about (for example) expected returns on the

market, on currencies, and on other assets.11

I study this simple case throughout this section for several reasons. First, it represents

a useful benchmark with no free parameters that exhibits the main ideas in a particularly

simple way. Second, it has the pedagogical advantage that the resulting expressions have

echoes of familiar relationships that arise in traditional models: for instance an asset’s

risk premium is proportional to its (risk-neutral) covariance with the market. Third, the

discussion around equation 4 motivates the choice of a utility function with relatively low

risk aversion. Fourth, it helps to emphasize that a single model makes coherent predictions

across a range of asset classes: we will have a comprehensive view of “the world according

to the log investor.” Fifth, utility should properly be defined over real quantities: thus we

should think of the log investor as maximizing expected log real return. But expected log

real returns decompose nicely—Et log Rt+1

πt+1
= Et logRt+1 − Et log πt+1—so we can simply

think of the investor as maximizing expected log nominal returns, Et logRt+1, and work

in nominal terms throughout.

The resulting theory can be generalized in several ways: for example, via an identity

that generalizes the key equation 13 below, or by deriving bounds that relax the exact

equalities of this section. We can also make different assumptions on the rational investor

whose perspective is taken. For example, for some applications it is easy to allow the

investor to have an arbitrary utility function; alternatively, we might continue to think

from the perspective of a log investor, but allow for the possibility that he or she chooses

to hold an asset other than the market. I discuss these and other issues in Section 3.

Today is time t, and we suppose that there is an investor operating in the market who

9Santa-Clara and Yan (2010) take an approach that is similar in spirit, but impose considerably more

structure, estimating an equilibrium model featuring stochastic volatility and stochastic jump intensity.

The model yields a forecasting relationship that expresses the equity premium in terms of the model’s

diffusive volatility and jump intensity, each of which is inferred from option prices.
10Martin and Papadimitriou (2022) present an equilibrium model with heterogeneous beliefs in which,

at every point in time, there is a representative log investor who holds the market; but the degree of

optimism of the representative investor shifts depending on market conditions.
11For a related approach, see Bliss and Panigirtzoglou (2004), who use option prices from a somewhat

different angle, using option prices to make inferences about the representative agent’s relative risk

aversion.
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has log utility over next-period wealth. If this investor is rational, he or she solves the

problem

max
w1,...,wN

Et

[
log

N∑
i=1

wiRi,t+1

]
s.t.

N∑
i=1

wi = 1. (11)

The associated first-order conditions are that

Et

[
Rj,t+1∑N

i=1wiRi,t+1

]
= 1 for all j ∈ {1, . . . , N}. (12)

We assume that the investor is marginal in all assets, so that the first-order conditions

have an interior solution. The collection of equations 12 then shows that the reciprocal

of the investor’s chosen portfolio return is an SDF.

Suppose that in equilibrium the investor holds the S&P 500, which we think of as a

proxy for the idealized “market portfolio” that comes out of theory, i.e. the market-cap-

weighted portfolio of all assets in positive supply.12 Writing Rt+1 for the gross return on

the S&P 500, we then have
∑N

i=1wiRi,t+1 = Rt+1, so that Mt+1 = 1/Rt+1. I neglect the

effect of dividends, writing Rt+1 = St+1/St. In some of the cases considered below this

could be replaced by an assumption that dividends are known one period ahead so that

for example var∗t Rt+1 = var∗t
St+1+Dt+1

St
= var∗t

St+1

St
.

Suppose now that we want to infer the log investor’s expectations about some variable

Xt+1. As

EtXt+1 = Et
(
Xt+1Rt+1

Rt+1

)
=

1

Rf,t+1

E∗t (Xt+1Rt+1)︸ ︷︷ ︸
price of a claim to Xt+1Rt+1

(13)

this converts the belief inference problem to a derivative pricing problem: if we can

observe, or can calculate, the price of a claim to Xt+1Rt+1, then we can infer the log

investor’s expectations about Xt+1.

2.1 The market

2.1.1 The expected return on the market

Setting Xt+1 = Rt+1 in equation 13,

EtRt+1 =
1

Rf,t+1

E∗t
(
R2
t+1

)
. (14)

12By market-clearing, the wealth-weighted average investor must hold the market portfolio. By making

the assumption that the investor holds the S&P 500 index explicit, we are acknowledging the force of the

Roll (1977) critique.
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As the risk-neutral expectation of any asset’s return equals the riskless rate, we find a

relationship between the log investor’s expected excess return and the risk-neutral variance

of the market:

EtRt+1 −Rf,t+1 =
1

Rf,t+1

var∗t Rt+1. (15)

This equation, which was first derived in Martin (2011), is reminiscent of Merton’s

formula (3) specialized to the case γ = 1; but, unlike Merton’s formula, it does not require

assumptions on the underlying price process. It also applies if, say, the market experiences

stochastic volatility, or jumps as in the example of Section 1.1. In the presence of jumps,

risk-neutral variance can be very different from true variance, as equation 7 implicitly

shows.

Risk-neutral variance has the great advantage that it is directly observable from option

prices. More generally, Breeden and Litzenberger (1978) showed that it is possible to

calculate risk-neutral expectations of the form E∗t g(St+1) for any random variable St+1—

usually an asset price—on which European-style options are traded. For, assuming g(·)
is a suitably well-behaved function, we have the relationship

g(St+1) = g(F ) + g′(F )(St+1 − F ) +

+

∫ F

0

g′′(K) max {0, K − St+1} dK +

∫ ∞
F

g′′(K) max {0, St+1 −K} dK.

(16)

There is no economics here: this is simply an equation reminiscent of a Taylor expansion,

but the second-order terms are weighted integrals over option-like payoffs.

We can allow F to be an arbitrary constant, but it will now be convenient to set it

equal to the time t + 1 forward price of the asset, Ft, which is chosen to make the value

of the forward trade equal to zero at initiation: thus E∗t (St+1 − Ft) = 0. Using this fact,

taking conditional risk-neutral expectations and discounting by the riskless rate, the price

of a claim to g(St+1) is

1

Rf,t+1

E∗t g(St+1) =
g(Ft)

Rf,t+1

+

∫ Ft

0

g′′(K) putt(K) dK +

∫ ∞
Ft

g′′(K) callt(K) dK, (17)

where I write callt(K) for the time t price of a European call on St+1 that expires at time

t+ 1 with strike K and putt(K) for the corresponding put option. This form of the result

is due to Carr and Madan (1998).

To find an expression for risk-neutral variance, we consider the case g(K) = K2 (and

recall that Ft = E∗t St+1 = StRf,t+1 and the return on the asset is Rt+1 = St+1/St). We

then have

var∗t Rt+1 =
2Rf,t+1

S2
t

{∫ Ft

0

putt(K) dK +

∫ ∞
Ft

callt(K) dK

}
. (18)
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Table 1: Forecasting the market. Daily data.

Rt+1

Rf,t+1
− 1 = α+ β SVIX2

t +εt+1

1996.01–2022.12 2012.02–2022.12

horizon α β R2 (%) α β R2 (%)

1mo
0.014 1.569 1.302 −0.015 4.280 7.809

[0.041] [1.024] [0.035] [0.822]

3mo
0.015 1.439 2.201 −0.008 3.620 12.334

[0.051] [1.269] [0.041] [0.997]

6mo
−0.025 2.418 6.840 0.011 3.007 11.454

[0.037] [0.806] [0.053] [1.633]

12mo
0.003 1.858 4.727 0.008 3.188 11.316

[0.043] [0.824] [0.070] [2.368]

SVIX is constructed using S&P 500 index option price data from OptionMetrics. Total

returns are calculated from CRSP daily returns. Observations are daily. Newey–West

standard errors (with 21, 65, 130, and 260 lags at horizons of 1, 3, 6 and 12 months,

respectively) are reported in square brackets.

Martin (2017) defined the SVIX index via the formula

SVIX2
t = var∗t

Rt+1

Rf,t+1

=
2

Rf,t+1S2
t

{∫ Ft

0

putt(K) dK +

∫ ∞
Ft

callt(K) dK

}
, (19)

so that the equity premium perceived by the log investor satisfies

EtRt+1 −Rf,t+1 = Rf,t+1 SVIX2
t . (20)

Equation 20 makes it possible to measure the log investor’s perceived risk premium in

real time via option prices. Knox and Vissing-Jorgensen (2024) and Knox et al. (2024)

exploit this feature to interpret market responses to news events.

Table 1 reports results of regressions of realized returns onto SVIX2
t , with Newey–West

standard errors reported in square brackets. The left panel shows results over a sample

period running from January 1996 to December 2022, extending the sample period studied

in Martin (2017). Equation 20 predicts that we should find α = 0 and β = 1. These

predictions are not rejected by the data; and at the 6- and 12-month horizons (though

not the 1- and 3-month horizons) we can reject the hypothesis that β = 0 at the 5% level.

As the data of Martin (2017) ended in January 2012, the right panel of Table 1

conducts an out-of-sample test by reporting coefficients estimated over the later part of
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the sample period, from February 2012 to December 2022. Over this shorter period,

SVIX2
t is highly significant at the shorter forecasting horizons, marginally significant at

the 6-month horizon (with a p-value of 0.066) and not significant at conventional levels

at the 12-month horizon (with a p-value of 0.18).13

The point estimates of β in Table 1 are larger than one at all horizons, and for both

sample periods; and they are statistically significantly larger than one at the shorter

horizons over the recent sample period. This raises the possibility that equation 20 un-

derstates the true equity premium. Back et al. (2022) argue that this is indeed the case;

I return to this issue in Section 3.2.

2.1.2 The market’s expected log return

Equation 13 straightforwardly supplies the log investor’s expectations about other func-

tions of the market return. For example, the expected log return represents a useful mea-

sure of risk-adjusted returns. Indeed, from the log investor’s point of view, the expected

log return is precisely the right measure of investment opportunities, as it represents his

or her expected utility if current wealth is normalized to one.

Expected log returns are also the natural quantity of interest when working with

loglinear approximate identities as in Campbell and Shiller (1988). For this reason Gao

and Martin (2021) use equation 13 to infer the log investor’s expected log return:

Et logRt+1 = logRf,t+1 +
1

St

{∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

}
. (21)

Another illustration of the convenience of log returns is provided by Gandhi et al.

(2023), who seek to measure “forward return expectations”. For example, Et logRt+1→t+2 =

Et logRt→t+2−Et logRt→t+1, so that forward expectations from t+1 to t+2 can be inferred

from one- and two-period expected log returns; and, under the log investor assumption,

these can be evaluated using options maturing in, respectively, one and two periods in

the formula given in equation 21.

2.1.3 The autocorrelation of the market

The corresponding relationship for simple returns does not decompose in this convenient

way: as EtRt+1→t+2 = Et Rt→t+2

Rt→t+1
6= EtRt→t+2

EtRt→t+1
, the relationship between spot and forward

13The short-horizon results differ sharply when the earlier data is included because of the period from

October 2008 to March 2009. SVIX exploded in October and November 2008—predicting very high

returns according to the theory of this section—but in the event the market continued to decline until

March 2009 before rebounding.
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simple returns is sensitive to the autocorrelation in returns. As it happens, Martin (2021)

shows that it is possible to infer the log investor’s perceived autocorrelation of the stock

market if forward-start index option prices are observed; but unfortunately these are

rather exotic derivatives and the market for them is not very liquid.

2.1.4 The probability of a market crash

By setting Xt+1 = 1Rt+1<x in equation 13, we find that

Pt (Rt+1 < x) =
1

Rf,t+1

E∗t
(
Rt+11Rt+1<x

)
. (22)

Martin (2017) shows that the quantity on the right-hand side of equation 22 can be

inferred from index option prices:

Pt (Rt+1 < x) = x

[
put′t(xSt)−

putt(xSt)

xSt

]
. (23)

Here put′t(xSt) is the slope of the put price curve, plotted as a function of strike, K, at

the point K = xSt.

Goetzmann et al. (2024) use the formula (23) as a measure of the market-implied

probability of a crash, and compare it to survey expectations of crashes.

2.1.5 The variance risk premium

We can calculate the log investor’s perceived forward looking true market variance, vartRt+1,

by setting Xt+1 = R2
t+1 in equation 13. The variance risk premium as perceived by the log

investor is determined by the relationship between risk-neutral variance and risk-neutral

skewness, via the formula

var∗t
Rt+1

Rf,t+1

− vart
Rt+1

Rf,t+1

=

(
var∗t

Rt+1

Rf,t+1

)2

− E∗t

[(
Rt+1

Rf,t+1

− 1

)3
]
. (24)

Once again, the risk-neutral quantities can be calculated from option prices using equa-

tion 17. Essentially this formula is derived by Hsieh et al. (2024) and proposed as an

index of the variance risk premium.

Martin (2017, Online Appendix) carries out this exercise—though without explicitly

stating the above equation—and reports time series of true and risk-neutral volatility

over the period 1996–2012. Over this period, risk-neutral volatility typically exceeds true

volatility by on the order of 1 to 2 percentage points (annualised) at the 1-month and

1-year horizons; but at the height of the subprime crisis, the gap between the two spikes
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to around 6 percentage points at the 1-month horizon and 4 percentage points at the

1-year horizon.

Empirically, the variance risk premium (as calculated in equation 24) is always positive.

In contrast, the approach of Bollerslev et al. (2009), which uses recent realized variance

to proxy for forward-looking variance, delivers the puzzling finding that the variance risk

premium sometimes spikes downwards and below zero at times of market stress.

2.2 Other assets

The same logic that led to equation 15 implies, under the log investor assumption, that

the expected return on an arbitrary asset i must satisfy

EtRi,t+1 −Rf,t+1 =
1

Rf,t+1

cov∗t (Ri,t+1, Rt+1) . (25)

At first sight, equation 25 takes a familiar form: it says that the asset’s expected

excess return should be proportional to its covariance with the market return, as in the

CAPM. Here, though, the relevant quantity is the conditional risk-neutral covariance.

In principle, this has the advantage exploited in the previous subsection: one can hope

to measure risk-neutral covariance directly from asset prices without further assumptions.

But whereas it is easy to use option prices to pin down risk-neutral expectations of

functions of a single variable, as in equation 17, one cannot in general hope to determine

risk-neutral expectations of arbitrary functions of two or more variables given the assets

that are traded in practice (Martin, 2018). Vanilla options provide information about the

univariate risk-neutral distributions of the assets on which they are written, but they do

not identify the joint risk-neutral distribution.

2.2.1 Currencies

In the case of currencies, however, a minor miracle occurs: a contract that reveals the

risk-neutral covariance between (say) the yen and the S&P 500 index happens to be

traded.

To apply equation 25 to currencies, we need to interpret Ri,t+1 as the return on a

currency trade. If the time t price of a unit of foreign currency is $ei,t, then at time t we

can take $1 and convert it to 1/ei,t units of foreign currency. Having done so, we invest it

until time t+1 at the foreign-currency interest rate, Ri
f,t+1, then convert back to dollars at

time t+ 1. The dollar return on the currency trade is therefore
ei,t+1

ei,t
Ri
f,t+1. Substituting
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Table 2: Forecasting currency movements. Monthly data, 2009.12–2017.10

Pooled panel regression:
ei,t+1

ei,t
− 1 = α+ βQRPi,t + γIRDi,t + εi,t+1

horizon α β γ R2 (%)

24mo
−0.048 3.394 1.769 16.01

[0.020] [1.726] [1.045]

24mo
−0.030 0.168 0.16

[0.014] [0.651]

Panel regression with fixed effects:
ei,t+1

ei,t
− 1 = αi + βQRPi,t + γIRDi,t + εi,t+1

horizon β γ R2 (%)

24mo
5.456 1.717 20.56

[2.047] [1.414]

24mo
−0.363 0.20

[1.007]

Bootstrapped standard errors are reported in square brackets. Results are from Table 5

of Kremens and Martin (2019).

this quantity for Ri,t+1 in equation 25 and rearranging, we have

Et
ei,t+1

ei,t
− 1 =

Rf,t+1

Ri
f,t+1

− 1︸ ︷︷ ︸
IRDi,t

+
1

Rf,t+1

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
︸ ︷︷ ︸

QRPi,t

. (26)

Equation 26 expresses expected currency movement as the sum of two terms. The

first is the interest-rate differential, IRDi,t. This is the expected currency appreciation

according to the theory of uncovered interest parity (UIP), in which exchange rates are

expected to appreciate or depreciate in such a way that all currency trades earn identical

expected returns. This simplistic prediction neglects the impact of risk, which is captured

above in the second term. From the log investor’s point of view, a currency’s risk premium

is revealed by its risk-neutral covariance with the market. Kremens and Martin (2019)

derive equation 26 and show that the risk-neutral covariance term is revealed by comparing

the forward price of the market to the quanto forward price of the market.

Table 2 reports the results of regressions of realized currency appreciation onto QRP

and IRD, or onto IRD alone, taken from Kremens and Martin (2019). The forecasting

horizon is two years, to match the horizon of observable quanto contracts. According to

equation 26 we should expect to find a zero intercept, and estimated coefficients β = 1

on QRP and γ = 1 on IRD. In a pooled panel regression, the results do not reject this

15



hypothesis, and the coefficient on QRP is significantly different from zero. The inclusion

of QRP in the panel regressions increases R2 by two orders of magnitude relative to what

IRD achieves on its own; and the estimated coefficient on IRD moves in the right direction

(i.e., towards 1) when QRP is included, though it is not significantly different from zero

in either specification.

The bottom panel of the table reports broadly consistent results when currency fixed

effects are included, but the coefficient on QRP, which remains statistically significant, is

now also significantly greater than one, suggesting that the log investor’s view understates

the magnitude of currency risk premia. (I discuss this fact further, and explain the

motivation for including currency fixed effects, in Section 3.) Once again, including QRP

increases R2 by two orders of magnitude.

Kremens et al. (2024) connect this theory to the data in a different way, showing,

for six high-income currencies, that expected two-year currency movements drawn from

surveys of professional forecasters successfully forecast outcomes and correlate strongly

with QRP and a small number of other macro-finance variables (notably the real exchange

rate and current account-GDP ratio).

2.2.2 Individual stocks

To apply equation 25 to individual stocks, we would like to be able to observe the

risk-neutral covariance between stock i and the S&P 500 index. This would be feasi-

ble if, say, there were a liquid market in “outperformance options” (that is, options on

Ri,t+1 − Rt+1): as cov∗t (Ri,t+1, Rt+1) = 1
2

[var∗t Ri,t+1 + var∗t Rt+1 − var∗t (Ri,t+1 −Rt+1)],

we could infer risk-neutral covariance by observing stock i options, index options, and

outperformance options. But there is no such market at present.

Martin and Wagner (2019) therefore take another tack, exploiting the fact that typical

stocks have betas close to one. Note first that equation 25 can be rewritten

Et
Ri,t+1

Rf,t+1

− 1 = β∗i,t var∗t
Rt+1

Rf,t+1

. (27)

Here β∗i,t is the risk-neutral beta of stock i with respect to the market, associated with

the decomposition
Ri,t+1

Rf,t+1

= α∗i,t + β∗i,t
Rt+1

Rf,t+1

+ ε∗i,t+1 (28)
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where

β∗i,t =
cov∗t (Ri,t+1, Rt+1)

var∗t Rt+1

(29)

E∗t ε∗i,t+1 = 0 (30)

cov∗t
(
ε∗i,t+1, Rt+1

)
= 0. (31)

Equations 28–31 can be viewed as characterizing a “risk-neutral regression” of stock i’s

return onto the market return. They imply that

var∗t
Ri,t+1

Rf,t+1

= β∗2i,t var∗t
Rt+1

Rf,t+1

+ var∗t ε
∗
i,t+1. (32)

As already noted, the quantity on the right-hand side of equation 27 cannot be directly

observed from vanilla option prices. But it is related to the quantity on the right-hand

side of equation 32, and hence to var∗t Ri,t+1—and this is observable given option prices

on stock i. To make this relationship precise, we use the linearization β∗2i,t ≈ 2β∗i,t − 1 in

equation 32 to find, after some rearrangement,

β∗i,t var∗t
Rt+1

Rf,t+1

=
1

2
var∗t

Rt+1

Rf,t+1

+
1

2
var∗t

Ri,t+1

Rf,t+1

− 1

2
var∗t ε

∗
i,t+1. (33)

It follows from equation 27 that

Et
Ri,t+1

Rf,t+1

− 1 =
1

2
var∗t

Rt+1

Rf,t+1

+
1

2
var∗t

Ri,t+1

Rf,t+1

− 1

2
var∗t ε

∗
i,t+1. (34)

Multiplying by value weights, wi,t, and summing over i,

Et
Rt+1

Rf,t+1

− 1 =
1

2
var∗t

Rt+1

Rf,t+1

+
1

2

∑
i

wi,t var∗t
Ri,t+1

Rf,t+1

− 1

2

∑
i

wi,t var∗t ε
∗
i,t+1. (35)

Subtracting equation 35 from equation 34 and using the fact that Et Rt+1

Rf,t+1
−1 = var∗t

Rt+1

Rf,t+1
,

we have

Et
Ri,t+1

Rf,t+1

− 1 = var∗t
Rt+1

Rf,t+1

+
1

2

{
var∗t

Ri,t+1

Rf,t+1

−
∑
j

wj,t var∗t
Rj,t+1

Rf,t+1

}

− 1

2

{
var∗t ε

∗
i,t+1 −

∑
j

wj,t var∗t ε
∗
j,t+1

}
. (36)

The third term on the right-hand side of equation 36 is zero on value-weighted average.

Martin and Wagner (2019) make the econometrically convenient assumption that it is

constant over time so that it can be replaced by a fixed effect αi. By analogy with the
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Table 3: Forecasting individual stock returns. S&P 500 firms. Monthly, 1996.01–2014.10

Pooled panel regressions:
Ri,t+1

Rf,t+1
− 1 = α+ β SVIX2

t +γ
(

SVIX2
i,t−SVIX

2

t

)
+ εi,t+1

horizon α β γ R2 (%)

1mo
0.057 0.743 0.214 0.096

[0.074] [2.311] [0.296]

6mo
−0.038 3.483 0.463 3.218

[0.059] [1.569] [0.320]

12mo
−0.021 3.032 0.512 4.423

[0.071] [1.608] [0.318]

24mo
−0.054 3.933 0.324 5.989

[0.076] [1.792] [0.200]

Panel regressions with fixed effects:
Ri,t+1

Rf,t+1
− 1 = αi + β SVIX2

t +γ
(

SVIX2
i,t−SVIX

2

t

)
+ εi,t+1

horizon
∑
wiαi β γ R2 (%)

1mo
0.080 0.603 0.491 0.650

[0.072] [2.298] [0.325]

6mo
−0.008 3.161 0.892 10.356

[0.055] [1.475] [0.336]

12mo
0.012 2.612 0.938 17.129

[0.070] [1.493] [0.308]

24mo
−0.026 3.478 0.665 24.266

[0.079] [1.681] [0.205]

Bootstrapped standard errors are reported in square brackets. Results are from Tables

IV and V of Martin and Wagner (2019).

definition of SVIX given in equation 19, they define SVIX2
i,t = var∗t

Ri,t+1

Rf,t+1
and SVIX

2

t =∑
j wj,t var∗t

Rj,t+1

Rf,t+1
: these quantities can be inferred using options on individual stocks in

the formula given in equation 19. The end result is the formula

Et
Ri,t+1

Rf,t+1

− 1 = αi + SVIX2
t +

1

2

(
SVIX2

i,t− SVIX
2

t

)
. (37)

The fixed effects αi are zero on weighted average, so if they are constant across i then

they must all equal zero. In this case

Et
Ri,t+1

Rf,t+1

− 1 = SVIX2
t +

1

2

(
SVIX2

i,t− SVIX
2

t

)
. (38)

Table 3 reports results from Martin and Wagner (2019), who test these equations by

regressing realizations onto predictions. The top panel shows pooled results, testing the
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more aggressive prediction in equation 38 (according to which α = 0, β = 1, and γ = 1/2);

the bottom panel shows results with fixed effects, testing the prediction of equation 37

(according to which the time series average of the value-weighted sum of fixed effects,∑
iwiαi, equals zero, β = 1, and γ = 1/2). Fixed effects appear to matter: when they

are included, the predictions of equation 37 are not rejected at any horizon, and the null

that the coefficients are zero is strongly rejected at horizons of 6, 12, and 24 months.

2.2.3 Dividends

Throughout the paper, I have neglected the distinction between total returns and capital

gains, effectively treating the contribution of dividends to returns as negligible. This

assumption is forced because at present options on US stocks and indices are typically

written on ex-dividend prices, rather than on total returns.14 The assumption is tolerable

over shorter horizons (or for non-divided-paying assets such as currencies) but would

become problematic once the forecasting horizon rises substantially above a year or two,

as I will discuss further in Section 2.2.4.

There is, however, a growing market in claims on the dividends of the aggregate market

paid over a given year. Gormsen et al. (2021) use them to understand expectations about

aggregate dividends, building on earlier work of Gormsen and Koijen (2020). I will write

P d
t for the price of a claim to dividends over the period from t to t+1, and Rd

t+1 = Dt+1/P
d
t

for the return on this claim. From the perspective of the log investor, we then have

EtRd
t+1 −Rf,t+1 =

1

Rf,t+1

cov∗t
(
Rd
t+1, Rt+1

)
. (39)

If we separately observed options on the total return, on the market capital gain, and

on dividends, we could determine var∗t (St+1 +Dt+1), var∗t St+1, and var∗t Dt+1. Together

these would pin down cov∗t (Dt+1, St+1), and it would then be possible to calculate the

covariance term in equation 39 without further assumptions.

In the absence of such data, Gormsen et al. (2021) make an observation that may be

useful in other contexts. They note that if two gross returns—in this case, Rd
t+1 and Rt+1—

are jointly lognormal, then their risk-neutral correlation equals their true correlation. In

this case, we can decompose the risk-neutral covariance as the product of true correlation

and two risk-neutral volatility terms:

cov∗t
(
Rd
t+1, Rt+1

)
= ρtσ

∗
t

(
Rd
t+1

)
σ∗t (Rt+1) . (40)

14There is no obvious reason for this to be the case other than market convention—and options on a

total return would be easier for market-maker to hedge than options on a capital gain—so things may

change in future.
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The two risk-neutral volatility terms are observable from traded option prices, so this

equation could be implemented either by assuming that ρt takes a particular value, or lies

in some range, or by using realized correlation over a recent time period to proxy for ρt.

2.2.4 Interest rates

To illustrate how the log investor perspective can suggest directions that future research

might take, we can ask which asset prices would, in principle, reveal the log investor’s

expectations of future interest rates.

Consider two alternative ways of investing money in bond markets. One is a rolling

investment at a floating short rate of interest. This strategy is riskless when considered

one period at a time, but is exposed to variation in interest rates over the long run. I write

Rc,u→v to denote the gross return, from time u to time v, on a “cash” strategy that repeat-

edly invests at the short (i.e., one-period) interest rate: thusRc,t→T = Rf,t+1Rf,t+2 · · ·Rf,T .

The other strategy is to invest at a fixed long rate of interest. I write Rb,u→v to denote the

gross fixed riskless rate that can be locked in between time u and time v: this is the gross

return, between time u and time v, on a zero-coupon bond, which can be determined from

the (v − u)-period yield at time u. (Note that Rb,t→t+1 = Rf,t+1.)

The difference between EtRc,t→T and Rb,t→T (the latter being a known constant at

time t) is a measure of the expected future path of interest rates. To determine the equi-

librium value of this quantity in the mind of the log investor, we exploit a relationship

between futures and forward prices derived by Cox et al. (1981).

Consider an index futures contract with settlement date T . On date t, the futures

price is Gt. By definition of the contract, at date T the futures price settles at the

then prevailing index price: GT = ST . (As noted above, we assume that the index is

quoted as a total return, so Rt→T = ST/St.) No money changes hands at initiation of

a trade, on (say) day t. The next day—day t + 1—the long side of the trade receives

Gt+1 − Gt from the short side. As it was costless to enter the trade, it must be the case

that Et [Mt+1 (Gt+1 −Gt)] = 0. As this relationship holds for all t < T , we can work

backwards to conclude that

Gt = Et [Mt+1 · · ·MTRc,t→TST ] . (41)

We suppose now that the log investor is maximizing expected utility of wealth at some

future date T ; as before, today is date t.15 I write Rt→T for the gross return on the market

15This is consistent with what we did before: as long-horizon log returns decompose separably into a

sum of per-period log returns, this log investor will continue to ensure that he or she is at an optimum

for the problem depicted in equation 11.
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from time t to time T . From the log investor’s perspective, EtRc,t→T equals the price of a

claim to Rc,t→TRt→T , by equation 13: so, from equation 41, our measure of the expected

future path of interest rates is

EtRc,t→T −Rb,t→T =
Gt

St
−Rb,t→T =

Gt − Ft
St

(42)

where Ft and Gt are, respectively, the forward and futures prices of the index to time T ,

calculated at time t, and St is the spot price.16 If the futures price exceeds the forward

price, this signals that there is a positive risk-neutral correlation between short rates and

the market, so that the cash trade underperforms when the market underperforms; as a

result, the cash trade must earn a risk premium.

As noted above, this subsection is illustrative of a direction that future research might

take. For this approach to deliver interesting predictions, we would need to look at

reasonably long horizons, with T on the order of five years or more. At present, however,

there are no liquid long-dated index futures contracts on US stock markets.17

3 A general framework

The results of the last section all followed from equation 13, which relies on the log investor

assumption. That equation can be generalized to the following identity, which requires

no assumptions on the form of the SDF:

EtXt+1 = E∗t Xt+1 +
1

Rf,t+1

cov∗t (Xt+1, Rt+1)− covt (Mt+1Rt+1, Xt+1) . (43)

Essentially this identity (specialized to the case in which Xt+1 = Ri
f,t+1ei,t+1/ei,t is the

return on a currency trade) was derived by Kremens and Martin (2019). It holds for

arbitrary Xt+1 and an arbitrary gross return Rt+1.

If Rt+1 is chosen to equal the return on the market, the second of the two covariance

terms drops out entirely in the log investor case as Mt+1Rt+1 = 1. Alternatively, if Rt+1

is chosen to equal the riskless rate, the identity 43 reduces to the more familiar identity

EtXt+1 = E∗t Xt+1 − covt (Mt+1Rf,t+1, Xt+1) (44)

16I continue to assume that the index is quoted on a total return basis. If not, the forward and futures

prices are each adjusted to account for dividends not received. As equation 42 exploits the gap between

the two, however, we can expect some cancellation so that the importance of neglecting dividends may

be relatively minor even at longer horizons.
17The CME has introduced an Adjusted Interest Rate (AIR) Total Return futures contract, but the

contract is explicitly designed not to have the exposure to future short interest rates that a conventional

index futures contract has, and which the above analysis exploits, as in equation 41.
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which, when applied to a return, Xt+1 = Ri,t+1, shows that an asset’s risk premium is

determined by the covariance between its return and the SDF. (Recall that E∗t Ri,t+1 =

Rf,t+1 for any return.)

The identities 43 and 44 each relate the expectation of interest, EtXt+1, to its risk-

neutral counterpart—which is, in principle, observable directly from asset prices—and to

covariance terms.

Identity 44 tells us that for the risk-neutral expectation E∗t Xt+1 to be a useful measure

of EtXt+1, Xt+1 must be approximately conditionally uncorrelated with the SDF. This is

the (explicit or implicit) assumption when CDS rates are used as surrogates for expected

default rates, breakeven inflation for expected inflation, forward rates for expected future

interest rates, and so on. Unfortunately, the assumption is implausible in these cases, and

in most other cases of interest to observers of financial markets.

In contrast, the identity 43 includes a further risk-neutral quantity, cov∗t (Xt+1, Rt+1).

If the identity is applied with Rt+1 equal to the return on the market, this quantity is

proportional to a “risk-neutral market beta”: it is a risk adjustment that is potentially

directly observable from asset prices, as in Subsection 2.2.1. Moreover, as the SDF and

market return typically move in opposite directions, it is then reasonable to hope that

the remaining “nuisance” covariance term, covt (Mt+1Rt+1, Xt+1), is smaller than the cor-

responding term, covt (Mt+1Rf,t+1, Xt+1), in identity 44.

The remainder of this section discusses various approaches proposed in the literature

to handle the term covt (Mt+1Rt+1, Xt+1). Under the log investor assumption, it is literally

zero, as already noted; and this continues to be true with Epstein and Zin (1989) and

Weil (1990) preferences with unit risk aversion and arbitrary coefficient of intertemporal

substitution; or, more generally, if Mt+1Rt+1 is uncorrelated with Xt+1.

3.1 A reduced-form approach

A pragmatic reaction is that we should include other explanatory variables, in addition

to 1
Rf,t+1

cov∗t (Xt+1, Rt+1), to proxy for − covt(Mt+1Rt+1, Xt+1). As equation 43 is an

identity, this approach is free of assumptions. Analogously, one can think of the predictor

variables in the conventional reduced-form approach to return forecasting as capturing

the term − covt(Mt+1Rf,t+1, Xt+1) in identity 44.

When identity 43 is applied with Rt+1 equal to the return on a broad market index

such as the S&P 500, it is highly plausible that Rt+1 offsets some of the movement in Mt+1,

so that Mt+1Rt+1 comoves less with Xt+1 than Mt+1Rf,t+1 does. Identity 43 therefore has

the advantage, relative to identity 44, that these other explanatory variables have less to

explain than they do in the conventional approach.
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As an illustration of this approach, the fixed effects included in Tables 2 and 3 can be

thought of as capturing the cross-sectional, time-invariant component of the covariance

term in applications to currencies and to stocks. Moreover, Kremens and Martin (2019)

find that while QRP is a highly significant predictor of currency movements in the time

series and cross-section, as shown in Table 2, other variables, notably the real exchange

rate (Dahlquist and Pénasse, 2022) and a dollar factor (the average forward discount

of Lustig et al. (2014)) also enter significantly into currency forecasting regressions and

substantially increase R2 above what QRP achieves on its own.

3.2 Lower bounds

In some circumstances, it is possible to sign the second of the covariance terms in iden-

tity 43. Working in the case Xt+1 = Rt+1, Martin (2017) shows that the negative cor-

relation condition (NCC) covt (Mt+1Rt+1, Rt+1) ≤ 0 holds from the perspective of an

investor who holds the market if risk aversion is at least one, or alternatively under vari-

ous conditions that cover leading macro-finance models such as Campbell and Cochrane

(1999), Bansal and Yaron (2004), Wachter (2013), Bansal et al. (2014), and Campbell

et al. (2018). Under the NCC, we then have the lower bound

EtRt+1 −Rf,t+1 ≥
1

Rf,t+1

var∗t Rt+1, (45)

and this bound is valid under considerably weaker assumptions than were required for

equality to hold, as in equation 15.

The lower bound (45) is extremely volatile, right-skewed, and fat-tailed, exhibiting

sharp peaks that die away fairly rapidly. As the peaks are far larger than reasonable

measures of the unconditional equity premium, Martin (2017) emphasizes that these facts

point to a spiky, volatile equity premium, and hence to a qualitatively different view than

comes out of the literature that uses valuation ratios to forecast returns.18

Similarly, Gao and Martin (2021) exploit a lower bound on the expected log return

based on the modified negative correlation condition (mNCC) covt (Mt+1Rt+1, logRt+1) ≤
0. This holds under very similar conditions to the NCC, and in particular it holds in

the macro-finance models mentioned above. When it holds, we have a lower bound

Et logRt+1 ≥ 1
Rf,t+1

E∗t (Rt+1 logRt+1), and the right-hand side of this equation can be

calculated from put and call prices using the formula 17.

Kadan and Tang (2020) determine conditions under which the lower bound (45) can

be applied at the level of an individual stock. As the lower bound is given by the indi-

18Early papers in this literature include Keim and Stambaugh (1986), Fama and French (1988), and

Campbell and Shiller (1988).
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vidual stock’s risk-neutral variance—that is, by stock-level SVIX—it avoids the problem

of measuring (or approximating, as in Section 2.2.2) the stock’s risk-neutral covariance of

the market. The cost of doing so is that the bound only applies for a stock i if the ratio

vartRi,t+1/ covt(Ri,t+1, Rt+1) exceeds the level of risk aversion.

3.3 Sharpening the lower bound

If we write Bt+1 = Rt+1−Rf,t+1− 1
Rf,t+1

var∗t Rt+1, then the lower bound (45) asserts that

EtBt+1 ≥ 0. Back et al. (2022) test the validity of this claim, exploiting the fact that

it implies an unconditional bound E (ztBt+1) ≥ 0 for any vector of positive conditioning

variables zt.

Using a range of variables drawn from Goyal and Welch (2008) in the conditioning

vector zt, they do not reject the hypothesis that the bound is valid—that is, that risk-

neutral variance supplies a lower bound for the equity premium. But they also test the

hypothesis that the bound is tight (i.e., holds with equality, as in the log investor case

of Section 2.1.1), and this they can reject with moderate confidence (with finite-sample

p-values of 3.6% and 8.3% at the one-month and one-year horizons over the period 1990–

2020).

Taken at face value, this finding suggests at least two potential refinements of the log

investor approach.

3.3.1 Allowing the log investor to trade more aggressively

Rather than assuming that the log investor holds the market, we can estimate the portfolio

that a log investor would hold. The return on this portfolio, Rg,t+1, is referred to as the

growth-optimal return (Kelly, 1956, Long, 1990), and its reciprocal is a stochastic discount

factor if the first-order conditions in equation 12 have an interior solution. Then we have

EtRi,t+1 −Rf,t+1 =
1

Rf,t+1

cov∗t (Ri,t+1, Rg,t+1) . (46)

This equation, which is the starting point of Martin and Wagner (2019), replaces the

market return that appears in equation 25 with the growth-optimal return, whatever that

may be.

Tetlock (2023) pursues this idea by estimating the growth-optimal return attainable

by an investor who can trade the market and derivatives whose payoffs are the first,

second, third, and fourth powers of the market’s excess return. (As always, such contracts

are observable from index option prices, by equation 17.) The key challenge is in the

estimation of the portfolio weights (on the market and on the various power contracts)
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that determine the growth-optimal portfolio: Tetlock determines them by requiring the

model to accurately match a measure of the variance risk premium. The estimated growth-

optimal portfolio takes a levered position in the market that is largely funded by shorting

the second and third power contracts. In other words, Tetlock argues that it would

be optimal for a log investor to short volatility in order to lever up his or her market

position, and finds that this estimated growth-optimal return forecasts market returns

more accurately than does the lower bound (45), consistent with the results of Back et al.

(2022).

The growth-optimal approach has the advantage that no assumptions need to be made

about the identity of an investor who holds the market; but it has the disadvantage that

the growth-optimal portfolio weights must be estimated. They are in general time-varying,

and in principle may change suddenly at times of market turmoil.

3.3.2 Allowing the representative investor to be more risk-averse

As an alternative to thinking about the portfolio choices of the log investor, we can also

take the perspective of an investor who has power utility with risk aversion γ over next

period wealth, and who chooses to hold the market. The case γ > 1 allows for the

possibility that a log investor would wish to trade more aggressively, as described in the

previous subsection; but it has the advantage that there are no time-varying portfolio

weights or other parameters to be estimated.

The logic that led to equation 12 implies that Mt+1 = λtR
−γ
t+1, where λt is known at

time t, and Martin (2017) shows that equation 13 is then replaced by

EtXt+1 =
E∗t
(
Rγ
t+1Xt+1

)
E∗t
(
Rγ
t+1

) or EtXt+1 − E∗t Xt+1 =
cov∗t

(
Rγ
t+1, Xt+1

)
E∗t R

γ
t+1

. (47)

If Xt+1 is a function of the return on the market itself, then the right-hand side is a

ratio of risk-neutral expectations of functions of Rt+1 that is easily evaluated using index

options and the Breeden–Litzenberger approach, as in equation 17. For example, we can

use equation 47 to write the market risk premium in a form comparable with the GBM

case (equation 3). We have

logEt
Rt+1

Rf,t+1

= log
E∗t R

1+γ
t+1

E∗t Rt+1 E∗t R
γ
t+1

. (48)

If, say, the investor who holds the market has risk aversion γ = 2, then the risk premium

is determined by the first, second, and third risk-neutral moments of the market return

(or, equivalently, by the risk-neutral skewness, variance, and mean of the market return).
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Figure 1: Left panel: Annualized 1-month equity premium calculated using equations 48

and 49, for γ equal to 1 (black), 2 (red), and 3 (blue). Right panel: The ratio of the

implied equity premium to the log investor’s equity premium, for γ equal to 2 (red) and

3 (blue).
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Figure 2: Left panel: 1-year equity premium calculated using equations 48 and 49, for γ

equal to 1 (black), 2 (red), and 3 (blue). Right panel: The ratio of the implied equity

premium to the log investor’s equity premium, for γ equal to 2 (red) and 3 (blue).

The right-hand side of equation 48 can be calculated using the following formula, which

applies for arbitrary θ ∈ R as yet another consequence of equation 17:

E∗t Rθ
t+1 = Rθ

f,t+1+
Rf,t+1θ(θ − 1)

Sθt

{∫ StRf,t+1

0

Kθ−2 putt(K) dK +

∫ ∞
StRf,t+1

Kθ−2 callt(K) dK

}
.

(49)

The left panel of Figure 1 reports the 1-month equity premium, calculated as in equa-

tion 48 and annualized by multiplying by 12, for γ equal to 1, 2, and 3. The right panel

shows the ratio of the implied equity premium to the log investor’s equity premium for γ

equal to 2 and 3. The implied equity premium grows more slowly with γ than would be

predicted by a lognormal model. (If Rt+1 were lognormal under the risk-neutral measure,

with volatility σ, then the risk premium (48) would simplify to γσ2 so that the lines in

the right panel would be constant at 2 and 3, respectively.)

Figure 2 repeats this exercise at the 1-year horizon. The non-linear scaling with γ is
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even more visible: the risk premium associated with γ = 3 is considerably less than three

times as large as the log investor’s perceived risk premium, and the ratio of the two tends

to shrink in periods of high volatility.

More generally, once a functional form Mt+1 = f(Rt+1) is specified,19 one can calculate

Et g(Rt+1) = Et
[
Mt+1

g(Rt+1)

f(Rt+1)

]
=

1

Rf,t+1

E∗t
[
g(Rt+1)

f(Rt+1)

]
(50)

and the quantity on the right-hand side can be determined from observable option prices

using equation 17. Chabi-Yo and Loudis (2020) use this approach with g(Rt+1) = Rt+1

to estimate the equity premium.

3.4 The correlation structure

If the variable we wish to forecast, Xt+1, is a function of quantities other than the market

return, then the inference problem is challenging even with log utility, as discussed in

Section 2.2. Quanto contracts reveal risk-neutral covariances of the market with currency

movements, so we can infer the log investor’s expectations about currency movements.

But we do not at present observe contracts that reveal, say, the risk-neutral covariance of

the market with inflation, so we cannot infer inflation expectations.

The problem in this example is pervasive—and fundamental, because of the impor-

tance of covariances throughout financial economics. Option prices are observable on a

wide range of underlying payoffs—equity indices, individual stocks, currencies, interest

rates, bond prices, inflation, and so on—and they reveal the associated univariate (or

marginal) risk-neutral distributions. But vanilla options do not reveal the joint risk-

neutral distributions we need to observe to implement equation 25 or 47 (Martin, 2018).

As noted in Section 2.2.2, this fact provides a motivation for the introduction of new

markets. If, say, we observed options on the outperformance of the market relative to a

10-year bond, Rt+1−R10yr,t+1, then this would reveal var∗t (Rt+1−R10yr,t+1), and hence (in

conjunction with index options and bond options) the covariance cov∗t (Rt+1, R10yr,t+1).

But such markets do not currently exist, and in the meantime there is no easy solution

to this problem. One pragmatic response is to assume that the relevant returns are jointly

lognormal. In this case, risk-neutral and true correlation are equal to each other, as noted

by Gormsen et al. (2021) (see Section 2.2.3), so if, for example, Ri,t+1 and Rt+1 are jointly

lognormal then the risk-neutral covariance that arises on implementing equation 47 with

Xt+1 = Ri,t+1 can be written as

cov∗t
(
Rγ
t+1, Ri,t+1

)
= ρtσ

∗
t (R

γ
t+1)σ

∗
t (Ri,t+1). (51)

19In fact, as Et [Mt+1h(Rt+1)] = Et [Et (Mt+1 | Rt+1)h(Rt+1)], all we need is that Et (Mt+1 | Rt+1), is

a known function f(Rt+1) of the market return.
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This expresses risk-neutral covariance as the product of true correlation, which might be

proxied by a backward-looking historical estimate, and two risk-neutral volatilities that

are each observable (using options on the index and on asset i, respectively).

Della Corte et al. (2024) take this approach to forecast currency movements from the

perspective of an investor with power utility and risk aversion γ > 1. (This exercise can

be motivated by the coefficient estimates in Table 2, which are significantly larger than

one in the presence of fixed effects.) As the approach is broadly applicable, requiring only

that options on the appropriate asset are traded, it could for example be used to estimate

inflation risk premia, bond risk premia, commodity risk premia and so on.

The lognormality assumption is a strong one, however, and one has to estimate corre-

lations whose sizes may shift quickly, notably at times of market turmoil. Even the signs

of correlations may switch: Campbell et al. (2017) show that the realized correlation be-

tween bond and stock returns was positive from around 1980 to the late 1990s, switched

sign several times between 1995 and 2008, and was generally negative from 2008 to 2015.

Martin and Shi (2024) propose a different way to deal with—or rather to avoid dealing

with—the correlation structure. They consider the problem of forecasting crashes in

individual stocks and allow the representative agent who holds the market to have power

utility. Applying equation 47 with Xt+1 = 1Ri,t+1<x, where the size of x indexes the

severity of the crash, we have

Pt (Ri,t+1 < x) =
E∗t
(
Rγ
t+11Ri,t+1<x

)
E∗t
(
Rγ
t+1

) . (52)

This generalizes the earlier equation 22 to allow for γ 6= 1 and for arbitrary returns Ri,t+1.

Applied to the market itself (that is, with Ri,t+1 = Rt+1), the risk-neutral expectations

on the right-hand side of equation 52 are easily calculated from index option prices.

More generally, however, the risk-neutral expectation in the numerator is not pinned

down by observable asset prices. Martin and Shi get around this problem by using the

Fréchet–Hoeffding bounds to derive upper and lower bounds on the crash probability that

are expressed in terms of the univariate (hence observable) risk-neutral distributions of

the stock in question and the market. They argue on a priori grounds that the lower

bound is likely to be closer to the truth than the upper bound, and find empirically that

it is a highly statistically and economically significant forecaster of crashes.

4 Conclusion

Practitioners have long been interested in predictor variables based on asset prices. These

risk-neutral quantities have the great advantage of being almost continuously observable,
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and they embody the collective views of market participants. They are used as indices

of market expectations in several different settings. Forward rates (risk-neutral expected

future interest rates) are used as indicators of future interest rates. Breakeven inflation

(risk-neutral expected future inflation) is used as a measure of market-expected inflation.

CDS rates (risk-neutral default probabilities) are used as measures of true default proba-

bilities. Implied volatility (risk-neutral volatility) is used as a measure of true volatility.

It is important for financial economists to confront the fact that such variables—

perhaps accompanied by an approximate mental adjustment to “allow for risk”—are far

more widely used as a rough guide to expectations than are the predictions of the leading

equilibrium models of the macro-finance literature. The appeal of risk-neutral quantities

reflects the fact that they can be inferred from asset prices alone, without the need

for infrequently updated macroeconomic or accounting data, or for the calibration of

unobserved parameters.

The literature surveyed in this paper exploits asset prices in a similar way. But by

taking the perspective of a risk-averse investor it injects a small amount of economics into

the standard risk-neutral calculation. The resulting indicators account for market risk,

and because they exploit risk-neutral measures of variance or covariance, we avoid the need

to use realized variances or covariances as proxies for true forward-looking covariances,

as in the conventional approach. The indicators point to risk premia that are volatile,

skewed, and fat-tailed, spiking in times of crisis. As they are observable in real time, they

provide useful information when information is most needed—during periods of market

turmoil, or in the aftermath of major pieces of market-relevant news—and make risk

premia more “visible” for policymakers, for academics, and for investors.
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