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Abstract
In 1967, Gerencsér and Gyárfás [16] proved a result which is considered the starting point of graph-Ramsey theory:
In every 2-coloring of 𝐾𝑛, there is a monochromatic path on �(2𝑛 + 1)/3� vertices, and this is best possible.
There have since been hundreds of papers on graph-Ramsey theory with some of the most important results being
motivated by a series of conjectures of Burr and Erdős [2, 3] regarding the Ramsey numbers of trees (settled in
[31]), graphs with bounded maximum degree (settled in [5]), and graphs with bounded degeneracy (settled in [23]).
In 1993, Erdős and Galvin [13] began the investigation of a countably infinite analogue of the Gerencsér and
Gyárfás result: What is the largest d such that in every 2-coloring of 𝐾N there is a monochromatic infinite path with
upper density at least d? Erdős and Galvin showed that 2/3 ≤ 𝑑 ≤ 8/9, and after a series of recent improvements,
this problem was finally solved in [7] where it was shown that 𝑑 = (12 +

√
8)/17.

This paper begins a systematic study of quantitative countably infinite graph-Ramsey theory, focusing on infinite
analogues of the Burr-Erdős conjectures. We obtain some results which are analogous to what is known in finite
case, and other (unexpected) results which have no analogue in the finite case.
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1. Introduction

It was proven by Ramsey [28] that for every graph G and every positive integer r, there exists a positive
integer N such that in every r-coloring1 of 𝐾𝑁 , there is a monochromatic copy of G. The smallest
possible choice for N is called the r-color Ramsey number and is denoted by 𝑅𝑟 (𝐺). Determining
Ramsey numbers of different (families of) graphs is one of the central topics in combinatorics. In
this paper, we are interested in similar problems for countably infinite graphs. (We will not consider
uncountably infinite graphs and thus always mean ‘countably infinite’ when we write ‘infinite’ from
now on.)

Let 𝐾N be the graph on vertex setNwith edge set edge set
(
N

2
)

(typicallyN denotes the set of positive
integers, and we typically begin counting at 1; however, there are certain situations where it is convenient
to let N denote the non-negative integers or to start counting at 0, but this distinction will never have an
impact on the results). Ramsey [28] also proved that in every r-coloring of 𝐾N, there is a monochromatic
copy of 𝐾N. Thus, in order to make the problem quantitative, we will thus consider the density of the
monochromatic graphs we are looking for. The upper density of a graph G with 𝑉 (𝐺) ⊆ N is defined as

d(𝐺) = lim sup
𝑡→∞

|𝑉 (𝐺) ∩ {0, 1, 2, . . . , 𝑡}|
𝑡

.

The lower density, denoted d(𝐺), is defined analogously in terms of the lim inf, and we speak of the
density whenever lower and upper densities coincide.

Erdős and Galvin [13] described a 2-coloring of𝐾N in which every graph having finitely many isolated
vertices and bounded maximum degree has lower density 0; thus, we typically restrict our attention to
upper densities. However, this does raise the question of whether there is any graph G (with finitely
many isolated vertices) having the property that in every 2-coloring of 𝐾N, there is a monochromatic
copy of G with positive lower density. We will return to this question later and prove that, surprisingly,
such graphs exist in a strong sense.

Given a graph G and an r-coloring of 𝜙 of 𝐾N, the Ramsey upper density of G with respect to 𝜑,
denoted Rd𝜑 (𝐺), is the supremum of d(𝐺) over all monochromatic copies of G in the coloring 𝜑 of 𝐾N.

1Throughout the paper, an r-coloring of a graph K will always mean an r-coloring of the edges of K
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The r-color Ramsey upper density of G, denoted Rd𝑟 (𝐺), is the infimum of Rd𝜑 (𝐺) over all r-colorings
𝜑 of 𝐾N. If 𝑟 = 2, we drop the subscript.

Possibly the first such (implicitly) quantitative result is due to Rado [27] who proved that every
r-coloring of 𝐾N contains r vertex-disjoint monochromatic infinite paths which together cover all of N.
In particular, one of the paths must have upper density at least 1/𝑟 and hence Rd𝑟 (𝑃∞) ≥ 1/𝑟 , where
𝑃∞ is the (one-way) infinite path. For two colors, this was improved by Erdős and Galvin [13] who
proved that 2/3 ≤ Rd(𝑃∞) ≤ 8/9. More recently, DeBiasio and McKenney [10] improved the lower
bound to 3/4 and conjectured the correct value to be 8/9. Progress towards this conjecture was made
by Lo, Sanhueza-Matamala and Wang [25], who raised the lower bound to (9 +

√
17)/16 ≈ 0.82019.

Corsten, DeBiasio, Lamaison and Lang [7] finally proved that Rd(𝑃∞) = (12 +
√

8)/17 ≈ 0.87226,
thereby settling the problem for two colors. In this paper, we initiate a systematic study of Ramsey
densities for other infinite graphs. An independent systematic study was undertaken by Lamaison [21],
who fortunately focused on a different aspect of the general problem (locally-finite graphs), and thus,
the two papers have very little overlap.

1.1. Graphs with positive Ramsey upper density

The problem of estimating the Ramsey numbers of sparse finite graphs has received a lot of attention.
The problem was motivated by a series of conjectures proposed by Burr and Erdős [2, 3], starting with
graphs of bounded maximum degree.

Conjecture 1.1 (Burr–Erdős [2]). For all Δ ∈ N, there exists some 𝑐 = 𝑐(Δ) > 0 such that every
2-colored 𝐾𝑛 contains a monochromatic copy of every graph G with at most 𝑐𝑛 vertices and Δ (𝐺) ≤ Δ .

Theorem 1.1 was solved by Chvatál, Rödl, Szemerédi, Trotter [5] in an early application of the
regularity lemma. Since then, there has been many improvements to the constant 𝑐(Δ) (see [6] for a
more detailed history). Allen, Brightwell and Skokan [1] proved that this constant can be significantly
improved to 𝑐 = 1/(2𝜒(𝐺) + 4) ≥ 1/(2Δ + 6) for graphs of small bandwith (see [1] for the precise
statement of their result), where 𝜒(𝐺) denotes the chromatic number of G.

Our first theorem proves an analogue of this for infinite graphs. It turns out that much weaker
conditions on the degrees suffice. Given 𝑘 ≥ 2, we say that a graph G is one-way k-locally finite if
there exists a partition of 𝑉 (𝐺) into k independent sets 𝑉1, . . . , 𝑉𝑘 with |𝑉1 | ≥ . . . ≥ |𝑉𝑘 | such that for
all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and all 𝑣 ∈ 𝑉 𝑗 , 𝑑 (𝑣,𝑉𝑖) < ∞. Note that every vertex in 𝑉𝑘 has finite degree, but
it is possible for any vertex in 𝑉1 ∪ · · · ∪ 𝑉𝑘−1 to have infinite degree. A good example of a one-way
2-locally finite graph exhibiting this property is the infinite bipartite half graph, which is the graph on
N = 𝐴∪ 𝐵, where A is the set of positive odd integers and B is the set of positive even integers and 𝑢𝑣 is
an edge if and only if 𝑢 < 𝑣 and u is odd and v is even. Further note that one-way k-locally finite graphs
have chromatic number at most k and, if G is locally finite (that is every vertex has finite degree) with
𝜒(𝐺) < ∞, then G is one-way 𝜒(𝐺)-locally finite.

Theorem 1.2. Let 𝑘, 𝑟 ∈ N and let G be an infinite, one-way k-locally finite graph.

(i) If 𝑘 = 2, then Rd𝑟 (𝐺) ≥ 1/𝑟 .
(ii) If 𝑘 ≥ 2, then Rd(𝐺) ≥ 1

2(𝑘−1) .
(iii) If 𝑟, 𝑘 ≥ 3, then Rd𝑟 (𝐺) ≥ 1∑(𝑘−2)𝑟+1

𝑖=0 (𝑟−1)𝑖
≥ 1

𝑟 (𝑘−2)𝑟+1 .

Since graphs withΔ (𝐺) = Δ < ∞ have 𝜒(𝐺) ≤ Δ+1, we get that Rd(𝐺) ≥ 1
2Δ and Rd𝑟 (𝐺) ≥ 1/𝑟Δ𝑟

for every 𝑟 ≥ 3 (which answers a question from [10]). However, we are able to prove a slightly stronger
result for 2 colors.

Corollary 1.3. If G is an infinite graph with Δ (𝐺) = Δ < ∞, then Rd(𝐺) ≥ 1
2(Δ−1) .

A graph G is d-degenerate if there is an ordering of the vertices 𝑣1, 𝑣2, . . . , 𝑣𝑛 such that for all 𝑖 ≥ 1,
|𝑁 (𝑣𝑖) ∩ {𝑣1, . . . , 𝑣𝑖−1}| ≤ 𝑑. The degeneracy of G, denoted degen(𝐺), is the smallest non-negative
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integer d such that G is d-degenerate; if no such integer exists, say degen(𝐺) = ∞. Note that if G is
d-degenerate, then 𝜒(𝐺) ≤ 𝑑 + 1 ≤ Δ (𝐺) + 1. Also note that a graph can have finite degeneracy, but
infinite maximum degree.
Conjecture 1.4 (Burr–Erdős [2]). For all 𝑑 ∈ N, there exists some 𝑐 = 𝑐(𝑑) > 0 such that every
2-colored 𝐾𝑛 contains a copy of every d-degenerate graph on at most 𝑐𝑛 vertices.

Theorem 1.4 was recently confirmed by Lee [23]. It would be very interesting to prove an analogue
of this for infinite graphs.
Problem 1.5. For all 𝑑 ∈ N, does there exist some 𝑐 = 𝑐(𝑑) > 0 such that Rd(𝐺) ≥ 𝑐 for every infinite
graph G with degeneracy at most d? A weaker version of this question is for all infinite graphs G with
finite degeneracy, does there exist some 𝑐 = 𝑐(𝐺) > 0 such that Rd(𝐺) ≥ 𝑐?

As we will discuss in the next section, we obtain a positive answer to a weaker version of this question.

1.2. Ramsey-dense graphs

We say that an infinite graph G is r-Ramsey-dense if in every r-coloring of 𝐾N, there is a monochromatic
copy of G with positive upper density. If 𝑟 = 2, we drop the prefix and just say G is Ramsey-dense.
Note that if G is Ramsey-dense, this does not necessarily imply that Rd(𝐺) > 0 as there are infinitely
many colorings, so the infimum of the upper densities over all colorings can be 0. Indeed, we shall see
below that the so-called Rado graph R is an example of an infinite graph which is Ramsey-dense yet
Rd(R) = 0. However, every infinite graph G with Rd(𝐺) > 0 is Ramsey-dense.

Ramsey-dense graphs are another natural analogue of graphs with linear Ramsey number. We will
describe a simple property guaranteeing that a graph is Ramsey-dense and then show that every Ramsey-
dense graph is not far from having this property.

A set 𝑋 ⊆ 𝑉 (𝐺) is called dominating if every vertex 𝑣 ∈ 𝑉 (𝐺) \ 𝑋 has a neighbor in X. We call
a set 𝑋 ⊆ 𝑉 (𝐺) ruling if X is finite and all but finitely many vertices 𝑣 ∈ 𝑉 (𝐺) \ 𝑋 have a neighbor
in X. We say that an infinite graph G is t-ruled if there are at most t disjoint minimal ruling sets. The
ruling number of a graph G, denoted by rul(𝐺), is the smallest 𝑡 ∈ N such that G is t-ruled; if no such t
exists, we say G is infinitely ruled, or rul(𝐺) = ∞. Equivalently, rul(𝐺) is the matching number of the
hypergraph whose edges are all minimal ruling sets. Note that a graph G is 0-ruled if and only if there
is no finite dominating set and finitely-ruled (i.e., t-ruled for some 𝑡 ∈ N) if and only if there is a finite
set 𝑆 ⊆ 𝑉 (𝐺) such that 𝐺 [𝑆𝑐] has no finite dominating sets.
Theorem 1.6. If G is an infinite graph with rul(𝐺) < ∞, then G is r-Ramsey-dense for all 𝑟 ∈ N.

This has a few interesting corollaries. Since locally finite graphs have ruling number 0, we immediately
get the following.
Corollary 1.7. If G is a locally finite, infinite graph, then G is r-Ramsey-dense for all 𝑟 ∈ N.

The Rado graph is the graph R with vertex-set N defined by placing an edge between 𝑚 < 𝑛 if and
only if the mth digit in the binary expansion of n is 1. The Rado graph has many interesting properties;
for example, it is isomorphic to the infinite random graph (that is, the graph on N in which every edge is
present independently with probability 1/2) with probability 1. It is easy to verify that the Rado graph
does not have any finite dominating sets and hence rul(R) = 0.
Corollary 1.8. The Rado graph R is r-Ramsey-dense for all 𝑟 ∈ N.

However, we will show that Rd(R) = 0 (see Theorem 2.5). Another corollary asserts that graphs
with bounded degeneracy are Ramsey-dense.
Corollary 1.9. If G is an infinite graph with bounded degeneracy, then G is r-Ramsey-dense for all
𝑟 ∈ N.

By Theorem 1.6, it suffices to show that every d-degenerate infinite graph G is d-ruled.
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Fact 1.10. Let 𝑑 ∈ N. If G is d-degenerate, then rul(𝐺) ≤ 𝑑.

Proof. Suppose for contradiction, there is a d-degenerate infinite graph G with rul(𝐺) > 𝑑 for some
𝑑 ∈ N. Let 𝑆1, . . . , 𝑆𝑑+1 be disjoint minimal ruling sets and let 𝑆0 ⊆ 𝑉 (𝐺) \ (𝑆1 ∪ . . . ∪ 𝑆𝑑+1) be the
set of vertices which do not have a neighbor in some 𝑆𝑖 . Note that 𝑆 := 𝑆0 ∪ 𝑆1 ∪ . . . ∪ 𝑆𝑑+1 is finite.
Therefore, there is a vertex 𝑢 ∈ N \ 𝑆 which comes after all vertices in S in a d-degenerate ordering of
𝑉 (𝐺) and hence deg(𝑢, 𝑆) ≤ 𝑑. However, by construction, u has a neighbor in each of 𝑆1, . . . , 𝑆𝑑+1, a
contradiction. �

Problem 1.11. Is there a Ramsey-dense graph G with rul(𝐺) = ∞?

If the answer is no, then together with Theorem 1.6, this would give a complete characterization of
Ramsey-dense graphs. We will give a partial answer to the question by showing that if rul(𝐺) = ∞ and
additionally the sizes of the minimal ruling sets do not grow too fast, then G is not Ramsey-dense (see
Theorem 2.15).

1.3. Trees

Another famous conjecture of Burr and Erdős [3] concerns the Ramsey number of trees. A graph is
acyclic if it contains no finite cycles, a forest is an acyclic graph, and a tree is a connected acyclic graph.

Conjecture 1.12 (Burr–Erdős [3]). Let 𝑛 ∈ N and let T be a tree on at most 𝑛
2 + 1 vertices. Every

2-colored 𝐾𝑛 contains a monochromatic copy of T.

Theorem 1.12 was solved for large n by Zhao [31]. The following result provides an analogue of
this in infinite graphs and can be seen to be best possible. Note that Theorem 1.2 already implies that
Rd(𝑇) ≥ 1/2 for every infinite locally finite forest T.

Theorem 1.13. Rd(𝑇) ≥ 1/2 for every infinite forest T.

We further show that Rd(𝑇∞) = 1/2, where 𝑇∞ is the infinite tree in which every vertex has infinite
degree and there are also infinite locally finite trees T with Rd(𝑇) = 1/2 (see Theorem 2.2).

Erdős, Faudree, Rousseau and Schelp [14] showed that if T is a tree on more than �3𝑛/4� vertices,
then there exists a 2-coloring of 𝐾𝑛 which contains no monochromatic copy of T. Furthermore, they
showed that this bound can be acheived by certain trees such as the tree obtained by joining the center
of 𝐾1,𝑛/4 with a path on 𝑛/2 − 1 vertices (see also [30]). In other words, 3/4 is the largest proportion of
vertices that a single connected graph can cover in an arbitrary 2-coloring of 𝐾𝑛. We now consider an
analogous question for infinite graphs.

Say that a graph G is Ramsey-cofinite if in every 2-coloring of 𝐾N there exists a monochromatic
copy of G such that 𝑉 (𝐺) is cofinite. It is clear that any graph G with infinitely many isolated vertices
is Ramsey-cofinite. Say that a graph G is Ramsey-lower-dense if in every 2-coloring of 𝐾N there is a
monochromatic copy of G with positive lower density. As mentioned earlier, Erdős and Galvin proved
that for any graph G with finitely many isolated vertices and bounded maximum degree, then G is not
Ramsey-lower-dense, and thus, G is not Ramsey-cofinite.

Surprisingly, we show that there exist connected graphs which are Ramsey-cofinite. In fact, we are
able to completely characterize all acyclic graphs which are Ramsey-cofinite. Say that a graph G is
weakly expanding if for all 𝑘 ∈ N, there exists ℓ ∈ N such that for all independent sets A in G with
|𝐴| ≥ ℓ, we have |𝑁 (𝐴) | > 𝑘 . Say that a graph G is strongly contracting if there exists 𝑘 ∈ N such
that for all ℓ ∈ N, there exists an independent set A in G with |𝐴| ≥ ℓ such that |𝑁 (𝐴) | ≤ 𝑘 . Note that
every infinite graph is either strongly contracting or weakly expanding. Finally, let T ∗ be the family of
forests T having one vertex t of infinite degree, every other vertex has degree at most d for some 𝑑 ∈ N,
t is adjacent to infinitely many leaves and infinitely many non-leaves, and cofinitely many vertices of T
have distance at most 2 to t (in particular, if T is not connected, then T has one infinite component and
finitely many finite components).

https://doi.org/10.1017/fms.2025.42 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.42


6 J. Corsten, L. DeBiasio and P. McKenney

Theorem 1.14. Let T be a forest.

(i) If T is strongly contracting, has no finite dominating set, and 𝑇 ∉ T ∗, then T is Ramsey-cofinite.
(ii) If T is weakly expanding, has a finite dominating set, or 𝑇 ∈ T ∗, then T is not Ramsey-lower-dense

(and thus, T is not Ramsey-cofinite).

To get a better sense of what Theorem 1.14 says in terms of trees, say that a graph G has unbounded
leaf degree if for every ℓ ∈ N, there exists 𝑣 ∈ 𝑉 (𝐺) such that v is adjacent to at least ℓ leaves; otherwise,
say that G has bounded leaf degree. A tree is strongly contracting if and only if it has unbounded leaf
degree, and a tree is weakly expanding if and only if it has bounded leaf degree.

In light of Theorem 1.14, it would be natural to ask if there is any connected graph T such that there
is a spanning monochromatic copy of T in every 2-coloring of 𝐾N; however, this is not possible. Clearly,
if T is an infinite star, it does not have this property, so suppose T is not an infinite star and 2-color the
edges of 𝐾N by fixing a vertex v, coloring all edges incident with v red, and coloring all other edges
blue. Every monochromatic copy of T must be blue and therefore not be spanning.

Completely characterizing all graphs which are Ramsey-cofinite is still an open question and is
discussed in Section 8.4.

1.4. Bipartite Ramsey densities

Gyárfás and Lehel [17] and independently Faudree and Schelp [15] proved that every 2-colored 𝐾𝑛,𝑛

contains a monochromatic path with at least 2�𝑛/2� vertices (that is, roughly half the vertices of the
graph). They further proved that this is best possible. We will prove an analogue of this for infinite
graphs. Here, 𝐾N,N is the infinite complete bipartite graph with one part being all even positive integers
and the other part being all odd positive integers.

Theorem 1.15. Every 2-colored 𝐾N,N contains a monochromatic path of upper density at least 1/2.

Pokrovskiy [26] proved that the vertices of every 2-colored complete bipartite graph 𝐾𝑛,𝑛 can be
partitioned into three monochromatic paths. Soukup [29] proved an analogue of this for infinite graphs
which holds for multiple colors: The vertices of every r-colored 𝐾N,N can be partitioned into 2𝑟 − 1
monochromatic paths. He also presents an example where this is best possible. However, in his example,
all but finitely many vertices can be covered by r monochromatic paths. Our next result shows that this
is always possible for two colors.

Theorem 1.16. The vertices of every 2-colored 𝐾N,N can be partitioned into a finite set and at most two
monochromatic paths.

Theorem 1.15 is an immediate consequence of Theorem 1.16. We will provide an example which
demonstrates that Theorems 1.15 and 1.16 are best possible (see Theorem 2.6). We believe that a similar
statement is true for multiple colors.

Conjecture 1.17. Let 𝑟 ∈ N with 𝑟 ≥ 2. The vertices of every (𝑟 − 1)-colored 𝐾N,N can be partitioned
into a finite set and at most 𝑟 − 1 monochromatic paths.

Theorem 2.6 also shows that Theorem 1.17 is best possible, if true.
The main motivation for the above question had to do with a potential relationship to the problem

of determining the value of Rd𝑟 (𝑃∞) for 𝑟 ≥ 3. Very recently, Day and Lo [8] proved a result which
implies that if the above conjecture is true (in fact, if a weaker conjecture is true), then for all 𝑟 ≥ 3,
Rd𝑟 (𝑃∞) ≥ 1

𝑟−1 . In particular, Theorem 1.15 combined with their result implies that Rd3 (𝑃∞) = 1
2 .

They also showed that their weaker conjecture is true for 𝑟 = 3 and 𝑟 = 4, which additionally gives
Rd4 (𝑃∞) = 1

3 .
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1.5. Overview

We begin by summarizing our main results, and then describe where in the paper these results may be
found.

(i) Let G be a countably infinite, (one-way) locally finite graph with chromatic number 𝜒 < ∞ (in
particular, the infinite bipartite half-graph has this property). Every 2-coloring of 𝐾N contains a
monochromatic copy of G with upper density at least 1

2(𝜒−1) .
(ii) Let G be a countably infinite graph having the property that there exists a finite set 𝑋 ⊆ 𝑉 (𝐺) such

that 𝐺 − 𝑋 has no finite dominating set (in particular, graphs with bounded degeneracy have this
property, as does the infinite random graph). Every finite coloring of 𝐾N contains a monochromatic
copy of G with positive upper density.

(iii) For every countably infinite tree T, every 2-coloring of 𝐾N contains a monochromatic copy of T of
upper density at least 1/2, and this is best possible. This is a perfect analogue of the corresponding
result in the finite case which says that every 2-colored 𝐾𝑛 contains a monochromatic copy of every
tree on at most 𝑛

2 + 1 vertices.
(iv) There exists connected graphs G such that every 2-coloring of 𝐾N contains a monochromatic

copy of G which covers all but finitely many vertices of N. In fact, we classify all trees with this
property. This result is particularly surprising in part because it has no analogue in the finite case
(since for every connected graph G on more than � 3𝑛

4 � vertices, there is a 2-coloring of 𝐾𝑛 with
no monochromatic copy of G). In the process, we prove two results which may have independent
interest: we give a characterization of graphs which are a spanning subgraph of every infinitely
connected graph, and a characterization of graphs which can be cofinitely embedded into every
graph with infinitely many vertices of cofinite degree.

In Section 2, we collect a variety of examples which are used to for instance obtain upper bounds on
the upper Ramsey density of certain graphs. In Section 3, we discuss ultrafilters and a general embedding
strategy that we will use to prove our results about one-way locally finite graphs in Section 4 and graphs
of bounded ruling number in Section 5. In Section 6, we prove some additional results about graphs with
bounded degeneracy. In Section 7, we prove Theorem 1.16. In Section 8, we prove Theorems 1.13 and
1.14 together with a variety of supporting results which may be of independent interest. In Section 9,
we discuss a more general extension of the notion of a graph being Ramsey-dense. Finally, we end with
some open problems in Section 10.

1.6. Notation

For a positive integer n, we let [𝑛] = {1, 2, . . . , 𝑛}.
A subset X of an infinite set Y is called cofinite in Y if 𝑌 \ 𝑋 is finite. If Y is clear from context, we

will call X cofinite and write 𝑋𝑐 = 𝑌 \ 𝑋 . We write 𝐴 ⊆∗ 𝐵 to mean that 𝐴 \ 𝐵 is finite.
Given an edge-colored graph G and a color c, we write 𝐺𝑐 for the spanning subgraph of G with all

edges of color c. Given a vertex 𝑣 ∈ 𝑉 (𝐺), we define 𝑁 (𝑣) to be the set of neighbors of v, and given a
color c, we define 𝑁𝑐 (𝑣) ⊆ 𝑁 (𝑣) to be the set of vertices which are adjacent to v via an edge of color c.
Given 𝑆 ⊆ 𝑉 (𝐺), we write 𝑁 (𝑆) =

⋃
𝑣 ∈𝑆 𝑁 (𝑣) and 𝑁∩(𝑆) =

⋂
𝑣 ∈𝑆 𝑁 (𝑣), and given a color c, we define

𝑁𝑐 (𝑆) =
⋃

𝑣 ∈𝑆 𝑁𝑐 (𝑣) and 𝑁∩
𝑐 (𝑆) =

⋂
𝑣 ∈𝑆 𝑁𝑐 (𝑣).

If f is a function, we write dom 𝑓 and ran 𝑓 for the domain and range of f, respectively. (This notation
is useful because we are often constructing an embedding of a graph G into a graph H, and at each step,
we have a function from some subset of 𝑉 (𝐺) to some subset of 𝑉 (𝐻).)

The following well-known fact follows from the definition of upper- and lower-density. For disjoint
sets 𝐴, 𝐵 ⊆ N, we have

d(𝐴) + d(𝐵) ≤ d(𝐴 ∪ 𝐵) ≤ d(𝐴) + d(𝐵) ≤ d(𝐴 ∪ 𝐵) ≤ d(𝐴) + d(𝐵). (1.1)
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Figure 1. The lightly shaded area represents graphs which are Ramsey-dense. The blue text represents
graphs G for which Rd(𝐺) > 0. The red text represents graphs G which are Ramsey-dense, but
Rd(𝐺) = 0.

2. Examples

2.1. Basics

First, we present some examples to get a better understanding how the different parameters discussed in
this paper are related.

The infinite half graph is the graph on N such that 𝑢𝑣 is an edge if and only if 𝑢 < 𝑣 and v is even.
Given a complete bipartite graph G between two disjoint infinite sets A and B, the half graph coloring
of G is obtained by taking a bijection f from A to the odd integers and a bijection g from B to the even
integers and coloring an edge 𝑢𝑣 with 𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵 red if 𝑔(𝑢) < 𝑓 (𝑣) and blue otherwise. Note
that in this coloring, both the red and the blue graph are isomorphic to the infinite bipartite half graph.

The bipartite Rado graph is the graph R2 with vertex-setN\ {1} defined by placing an edge between
𝑚 < 𝑛 if and only if the mth digit in the binary expansion of n is 1 and m and n differ in the first bit (i.e.,
m and n have different parity).
Example 2.1.

(i) There is a graph G with rul(𝐺) = 0, but 𝜒(𝐺) = ∞, and thus, degen(𝐺) = ∞ (half graph, Rado
graph, infinitely many disjoint 𝐾N’s).

(ii) There is a graph G with 𝜒(𝐺) = 2, but rul(𝐺) = ∞, and thus, degen(𝐺) = ∞ (𝐾N,N).
(iii) There is a graph G with rul(𝐺) = 0 and 𝜒(𝐺) = 2, but degen(𝐺) = ∞ (bipartite Rado graph).
(iv) There is a one-way 2-locally finite graph G (with rul(𝐺) = 0 and 𝜒(𝐺) = 2), but degen(𝐺) = ∞

(bipartite half graph).
(v) There is a locally finite graph G with rul(𝐺) = 0 but 𝜒(𝐺) = ∞, and thus, degen(𝐺) = ∞ (infinite

collection of disjoint finite cliques of increasing size).
(vi) There is a graph which is d-degenerate (and d-ruled) but not one-way k-locally-finite for any k

(𝐾𝑑,N, 𝑇∞).

2.2. Upper bounds on upper densities

Example 2.2. Let 𝑟 ∈ N.
(i) Let 𝐷 ≥ 2. If T is an infinite D-ary tree, then Rd𝑟 (𝑇) ≤ 1

𝑟 (1 + 1
𝐷 ).

(ii) There exists a locally finite, infinite tree T such that Rd𝑟 (𝑇) ≤ 1/𝑟 .
Proof. Partition N by residues mod r – that is, N = 𝐴0 ∪ . . . ∪ 𝐴𝑟−1, where 𝐴𝑖 = {𝑛 ∈ N : 𝑛 ≡ 𝑖
(mod 𝑟)}. We define an r-coloring as follows: if 𝑚 ∈ 𝐴𝑖 and 𝑛 > 𝑚, color the edge 𝑚𝑛 with color i.
Note that if 𝑛 � 𝑖 (mod 𝑟), then n has at most �(𝑛 − 1)/𝑟� neighbors of color i.
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(i) Let T be an infinite D-ary tree and suppose we have a copy of T of color i. For all 𝑛 ∈ N, let 𝑉 ′
𝑛 be

the set of vertices in 𝑉 (𝑇) ∩ [𝑛] which are not congruent to 𝑖(mod 𝑟). Since every vertex 𝑚 ∈ 𝑉 ′
𝑛 can

only have successors (of color i) in 𝐴𝑖 ∩ [𝑛 − 1], we must have 𝐷 · |𝑉 ′
𝑛 | ≤ �(𝑛 − 1)/𝑟�. So we have

|𝑉 (𝑇) ∩ [𝑛] |
𝑛

≤
� 𝑛𝑟 � + |𝑉 ′

𝑛 |
𝑛

≤
� 𝑛𝑟 � +

1
𝐷 � 𝑛−1

𝑟 �
𝑛

𝑛→∞−−−−→ 1
𝑟
(1 + 1

𝐷
),

and thus, Rd𝑟 (𝑇) ≤ 1
𝑟 (1 + 1

𝐷 ).
(ii) Let 0 < 𝑑1 < 𝑑2 < . . . be an increasing sequence of integers. Let T be a tree in which every vertex

on level i has degree 𝑑𝑖 . We can repeat the argument from case (i), except now we have |𝑉 ′
𝑛 |/𝑛 → 0 as

𝑛→ ∞ and thus |𝑉 (𝑇 )∩[𝑛] |
𝑛 ≤ � 𝑛𝑟 �+ |𝑉

′
𝑛 |

𝑛

𝑛→∞−−−−→ 1
𝑟 . �

Note that when 𝑟 = 2, there are connected graphs G in which every vertex has infinite degree but
Rd2 (𝐺) = Rd(𝐺) ≥ 1/2 (Theorem 1.13, for instance). The following example shows that there is an
unexpected change in behavior as we go from 2 colors to 3 colors.

Example 2.3. Let 𝑟 ∈ N with 𝑟 ≥ 3. If G is a graph with finitely many components and finitely many
vertices of finite degree, then Rd𝑟 (𝐺) = 0.

Proof. Let 𝜖 > 0 be given, let c be the number of components of G, and let k be an integer with 𝑘 > 𝑐/𝜖 .
Partition N by residues mod k – that is, N = 𝐴0 ∪ . . . ∪ 𝐴𝑘−1, where 𝐴𝑖 = {𝑛 ∈ N : 𝑛 ≡ 𝑖 (mod 𝑘)}. For
all 0 ≤ 𝑖 ≤ 𝑘 − 1, color all edges inside 𝐴𝑖 with green, and for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 − 1, color the edges
between 𝐴𝑖 and 𝐴 𝑗 with the half graph coloring where the vertices in 𝐴𝑖 have cofinite red degree to 𝐴 𝑗

and the vertices in 𝐴 𝑗 have cofinite blue degree to 𝐴𝑖 . Note that we have only used three colors, but this
can be considered as an r-coloring for all 𝑟 ≥ 3.

Note that for all 0 ≤ 𝑖 ≤ 𝑘 −1, every vertex in 𝐴𝑖 has finite red degree to 𝐴0∪· · ·∪ 𝐴𝑖 . If there is a red
copy of G, then let 0 ≤ 𝑖 ≤ 𝑘 −1 be maximum such that𝑉 (𝐺) ∩ 𝐴𝑖 is infinite. But this is a contradiction
because every vertex in 𝑉 (𝐺) ∩ 𝐴𝑖 has finite red degree. Similarly, for all 0 ≤ 𝑖 ≤ 𝑘 − 1, every vertex
in 𝐴𝑖 has finite blue degree to 𝐴𝑖 ∪ · · · ∪ 𝐴𝑘−1. If there is a blue copy of G, then let 0 ≤ 𝑖 ≤ 𝑘 − 1 be
minimum such that 𝑉 (𝐺) ∩ 𝐴𝑖 is infinite. But this is a contradiction because every vertex in 𝑉 (𝐺) ∩ 𝐴𝑖

has finite blue degree. Therefore, every monochromatic copy of G is green and thus has upper density
at most 𝑐/𝑘 < 𝜖 . �

Example 2.4. For every nontrivial connected graph G, Rd(𝐺) ≤ 1
𝜒 (𝐺)−1 . In particular, if 𝜒(𝐺) = ∞,

then Rd(𝐺) = 0.

Proof. Assume first that 𝜒(𝐺) < ∞ and partition N by residues mod 𝜒(𝐺) − 1. Color all edges inside
the sets red and all edges between the sets blue. There is no blue copy of G, so every copy of G lies
entirely inside one of the sets, all of which have density 1

𝜒 (𝐺)−1 .
If 𝜒(𝐺) = ∞, this construction shows that Rd(𝐺) ≤ 1/(𝑘 − 1) for every 𝑘 ≥ 2, and therefore,

Rd(𝐺) = 0. �

Corollary 2.5.

(i) Rd(R) = 0 (where R is the Rado graph).
(ii) There exists a locally finite graph G such that Rd(𝐺) = 0.

Proof. (i) Since R contains an infinite clique, we have 𝜒(R) = ∞, and thus, the result follows from
Theorem 2.4.

(ii) Let G be a graph on vertex set N where [ 𝑛(𝑛+1)
2 , (𝑛+1) (𝑛+2)

2 ] induces a clique for all 𝑛 ∈ N. G is
locally finite, connected, and contains a clique of order n for all 𝑛 ∈ N. So 𝜒(𝐺) = ∞, and thus, the
result follows from Theorem 2.4. �
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Example 2.6. For all 𝑟 ∈ N, there is an r-coloring of 𝐾N,N in which every monochromatic path has
upper density at most 1/𝑟 . In particular, it is not possible to cover all but finitely many vertices with less
than r monochromatic paths.

Proof. Let A and B be the parts of 𝐾N,N and partition both of them into r parts 𝐴1, . . . , 𝐴𝑟 and
𝐵1, . . . , 𝐵𝑟 , each of density 1/(2𝑟). For all 𝑖, 𝑗 ∈ [𝑟], color every edge between 𝐴𝑖 and 𝐵 𝑗 by (𝑖 − 𝑗)
mod 𝑟 . It is easy to see that every part is incident to exactly one other part of each color, and therefore,
every monochromatic path can cover at most two parts, finishing the proof. �

2.3. Lower density

As mentioned in the introduction, Erdős and Galvin proved that for all positive integers Δ , there exists
a 2-coloring of 𝐾N such that if G is a graph with maximum degree at most Δ and finitely many isolated
vertices, then every monochromatic copy of G has lower density 0. We now show that a broader class
of graphs has this property.

Recall that a graph G is weakly expanding if for all 𝑘 ∈ N, there exists ℓ ∈ N such that for all
independent sets A in G with |𝐴| ≥ ℓ, we have |𝑁 (𝐴) | > 𝑘 . Note that if G is weakly expanding, then
there is an increasing function 𝑓 : N→ N such that for all 𝑘 ∈ N, if A is an independent set in G with
|𝐴| ≥ 𝑓 (𝑘), then |𝑁 (𝐴) | > 𝑘 . Also note that if G is weakly expanding, then G has finitely many isolated
vertices. To better understand this definition, we collect some useful properties which imply that that a
graph is weakly expanding.

Fact 2.7. G is weakly expanding if

(i) G has finite independence number, or
(ii) G has bounded maximum degree and finitely many isolated vertices, or

(iii) G is a tree with bounded leaf degree, or
(iv) for all 𝑛 ∈ N, G has finitely many vertices of degree n.

The following is a modification of the example used by Erdős and Galvin [13] to prove the result
mentioned about about graphs with bounded maximum degree and finitely many isolated vertices.

Example 2.8 (Forward interval coloring). If G is a graph which is weakly expanding, then G is not
Ramsey-lower-dense.

We note that the forthcoming Theorem 8.7 shows that if G is strongly contracting, then there is a
confinite monochromatic copy of G in every forward interval coloring.

Proof. Suppose G is weakly expanding and let f be the function guaranteed by the definition.
Let 𝑎𝑛 be an increasing sequence of natural numbers such that 𝑎0 = 1 and for all 𝑘 ≥ 1,

𝑎𝑘 > 𝑘 (𝑎𝑘−1 + 𝑓 (𝑎𝑘−1)). (2.1)

For all 𝑢, 𝑣 ∈ N with 𝑢 < 𝑣, color the edge 𝑢𝑣 red if 𝑢 ∈ [𝑎2𝑛−1, 𝑎2𝑛) and blue if 𝑢 ∈ [𝑎2𝑛, 𝑎2𝑛+1) for
some 𝑛 ∈ N.

Suppose there is a, say, blue copy of G in this 2-coloring with vertex set U. We must have that
𝐴𝑛 := 𝑈 ∩ [𝑎2𝑛−1, 𝑎2𝑛) induces an independent set for all 𝑛 ∈ N, and because of the coloring, we have
𝑁𝐵 (𝐴𝑛) ⊆ [0, 𝑎2𝑛−1), and thus, |𝑁𝐵 (𝐴𝑛) | ≤ 𝑎2𝑛−1. Thus, by the definition of weakly expanding, we
have |𝐴𝑛 | < 𝑓 (𝑎2𝑛−1). We conclude that for all 𝑛 ∈ N,

|𝑈 ∩ [0, 𝑎2𝑛) | = |𝑈 ∩ [0, 𝑎2𝑛−1) | + |𝐴𝑛 | < 𝑎2𝑛−1 + 𝑓 (𝑎2𝑛−1)
2.1
<

1
2𝑛
𝑎2𝑛,

and thus, d(𝑈) = 0. �

We conclude with two more examples.
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Example 2.9 (Backward interval coloring). If G is a graph with a finite dominating set (i.e., rul(𝐺) > 0),
then G is not Ramsey-lower-dense.

We note that the forthcoming Theorem 3.6 shows that if G has no finite dominating set, then there is
a spanning monochromatic copy of G in every backwards interval coloring.

Proof. Let 𝑎𝑛 be an increasing sequence of natural numbers and let 𝐴𝑖 = [𝑎𝑖 , 𝑎𝑖+1) for all 𝑖 ∈ N. For
all 𝑢 ∈ 𝐴𝑖 and 𝑣 ∈ 𝐴 𝑗 with 𝑢 < 𝑣, color the edge 𝑢𝑣 red if j is odd and blue if j is even. Let 𝐴0 be the
union of all even indexed intervals and let 𝐴1 be the union of all odd indexed intervals. We note that
every vertex in 𝐴0 has finite blue degree to 𝐴1 and every vertex in 𝐴1 has finite red degree to 𝐴0.

Let D be a finite dominating set in G and suppose there is a monochromatic, say, blue copy of G with
vertex set V. Since D is finite, there exists an index t such that 𝐷 ⊆ 𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑡 . Now for all i such
that 2𝑖+1 > 𝑡, there are no blue edges from 𝐴2𝑖+1 to D contradicting the fact that D is a dominating set. So
G has finite intersection with say 𝐴1, and thus, if 𝑎𝑛 is increasing fast enough, G has lower density 0. �

Example 2.10. Let G be a connected graph. If 𝜒(𝐺) ≥ 3, or G is bipartite with one part finite, then G
is not Ramsey-lower-dense.

Proof. Let {𝑋,𝑌 } be a partition of N into two sets of lower density 0 (for instance, as we did in
Example 2.8 and Example 2.9). Color all edges inside X or inside Y with blue, and color all edges
between X and Y red. Note that since G is connected, any blue copy of G is completely contained in X
or Y and thus has lower density 0.

If 𝜒(𝐺) ≥ 3, then there is no red copy of G, and we are done. If G is bipartite and one of the parts
is finite, then G intersects either X or Y in only finitely many vertices, and thus, any red copy of G will
have lower density 0. �

2.4. The Rado graph, 0-ruled and 0-coruled graphs

If G and H are two graphs, then we write 𝐺 � 𝐻 if G is isomorphic to a spanning subgraph of H.
Clearly, � is reflexive and transitive.

We say that an infinite graph G has the extension property if for every pair of disjoint finite sets
𝐹, 𝐹 ′ ⊆ 𝑉 (𝐺), there is a vertex 𝑣 ∈ 𝑉 (𝐺) \ (𝐹 ∪ 𝐹 ′) such that v is adjacent to every 𝑤 ∈ 𝐹 and not
adjacent to any 𝑤′ ∈ 𝐹 ′. The following well-known theorem (see [4]) shows why this property is useful.

Theorem 2.11. Any two infinite graphs satisfying the extension property are isomorphic.

Furthermore, it is not hard to see that the Rado graph R and (with probability 1) the infinite random
graph (every edge is present independently with probability 1/2) both satisfy the extension property.
Hence, with probability 1, the infinite random graph is isomorphic to the Rado graph.

Observe that G is 0-ruled if and only if G satisfies the ‘non-adjacency’ half of the extension property
above (i.e., if for every finite 𝐹 ′ ⊆ 𝑉 (𝐺) there is a vertex 𝑣 ∈ 𝑉 (𝐺) \ 𝐹 ′ such that v is not adjacent to
any 𝑤′ ∈ 𝐹 ′). We will call 𝐺0-coruled if G satisfies only the ‘adjacency’ half of extension property
(i.e., for every finite 𝐹 ⊆ 𝑉 (𝐺), there is a 𝑣 ∈ 𝑉 (𝐺) \ 𝐹 such that v is adjacent to every 𝑤 ∈ 𝐹). Using
this, it is easy (and very similar to the proof of Theorem 2.11) to prove the following proposition.

Proposition 2.12. G is 0-ruled if and only if 𝐺 � R and G is 0-coruled if and only if R � 𝐺.

Note that for finite graphs, 𝐺 � 𝐻 and 𝐻 � 𝐺 imply 𝐺 � 𝐻, and thus, � is a partial order (on
isomorphism classes of graphs), but this is not the case for infinite graphs. A simple example is letting
G be an infinite clique together with infinitely many disjoint copies of some finite graph F and letting
H be two disjoint infinite cliques together with infinitely many disjoint copies of some finite graph F).
Another example comes from the fact that the infinite half graph is both 0-ruled and 0-coruled, but is
not isomorphic to R. We ask the following question out of curiosity.2

2We asked this question on MathOverflow and received evidence [24] suggesting that there may not be a simple answer.
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Problem 2.13. Under what conditions on G and H does 𝐺 � 𝐻 and 𝐻 � 𝐺 imply that 𝐺 � 𝐻?

The Rado coloring of 𝐸 (𝐾N) is the 2-coloring 𝜌 defined by setting 𝜌({𝑠, 𝑡}) to be the sth bit in the
binary expansion of t for all 𝑠, 𝑡 ∈ N with 𝑠 < 𝑡. For instance, 𝜌({2, 14}) = 1 since the 2nd bit (reading
right to left) in the binary expansion of 14 is 1, and 𝜌({5, 14}) = 0 since the 5th bit (reading right to
left, and appending extra 0’s to the left as necessary) in the binary expansion of 14 is 0. Also note that
the Rado coloring can be described by coloring all of the edges of the Rado graph with color 1 and
coloring all of the edges in the complement of the Rado graph with color 0.

The key property of the Rado coloring is that for any 𝐹 ⊆ N and 𝑖 ∈ {0, 1}, we have

𝑑

(⋂
𝑣 ∈𝐹

𝑁𝑖 (𝑣)
)
= 2−|𝐹 | . (2.2)

We first use the Rado coloring to make the following observation about complete multipartite graphs.

Proposition 2.14. Let K be an infinite complete multipartite graph and let 𝑛 ∈ N.

(i) If K has at least two infinite parts, or infinitely many vertices in finite parts, then K is not Ramsey-
dense.

(ii) If K has exactly one infinite part and exactly n vertices in finite parts, then

1
22𝑛−1 ≤ Rd(𝐾) ≤ 1

2𝑛
.

Proof. Take the Rado coloring of 𝐾N.
If K has at least two infinite parts, or infinitely many vertices in finite parts, then K contains a

spanning copy of 𝐾N,N; let (𝐴, 𝐵) be such a spanning copy of 𝐾N,N. Let 𝑎1, 𝑎2, . . . be the elements of
A. Then B is contained in the neighborhood of 𝑎1, . . . , 𝑎𝑛, and hence has density ≤ 2−𝑛, for each n, by
(2.2). Hence, B must have density 0. The same goes for A.

Now suppose K has exactly one infinite part and exactly n vertices in finite parts. Then by (2.2), we
have Rd(𝐾) ≤ 1

2𝑛 since the infinite part is the intersection of the neighborhoods of the n vertices in
finite parts.

To see Rd(𝐾) ≥ 1
22𝑛−1 , we are given an arbitrary 2-coloring of 𝐾N, and we choose an arbitrary vertex

v. Either d(𝑁𝑅 (𝑣)) ≥ 1/2 or d(𝑁𝐵 (𝑣)) ≥ 1/2, and we choose the color with largest upper density. We
repeat this process inside the chosen neighborhood for 2𝑛 − 1 steps, at which point we have n vertices
whose common neighborhood in color, say, red has upper density at least 1

22𝑛−1 and the infinite part of
K can be embedded in such a way that it spans this set. �

The following result suggests that the question of whether G is Ramsey-dense or not may depend on
the rate of growth of the ruling sets in G.

Theorem 2.15. Let G be an infinite graph. If G has pairwise-disjoint ruling sets 𝐹𝑛 (𝑛 ∈ N) satisfying
|𝐹𝑛 | ≤ log2(𝑛) for all sufficiently large n, then G is not Ramsey-dense.

Proof. Consider the Rado coloring of 𝐾N. Suppose now that V is the vertex set of a monochromatic
copy of G, say with color i. Then for each N, we have

𝑉 ⊆∗
𝑁⋂
𝑛=1

⋃
𝑣 ∈𝐹𝑛

𝑁𝑖 (𝑣).

Note that

𝑑

(
𝑁⋂
𝑛=1

⋃
𝑣 ∈𝐹𝑛

𝑁𝑖 (𝑣)
)
=

𝑁∏
𝑛=1

(1 − 2−|𝐹𝑛 | ).
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Hence,

d(𝑉) ≤
∞∏
𝑛=1

(1 − 2−|𝐹𝑛 | ).

It is well known that an infinite product
∏∞

𝑛=1 𝛼𝑛, with 𝛼𝑛 ∈ (0, 1), converges to 0 if and only if

∞∑
𝑛=1

log(𝛼𝑛) = −∞.

In our case, we have |𝐹𝑛 | ≤ log2(𝑛) for all sufficiently large n, so

log(1 − 2−|𝐹𝑛 | ) ≤ log
(
1 − 1

𝑛

)
≤ −1/𝑛.

By the limit comparison test and the divergence of the harmonic series, we have 𝑑 (𝑉) = 0. �

3. Ultrafilters and embedding

The concept of ultrafilters will play an important role in this paper.

Definition 3.1. Given a set X, a set system 𝒰 ⊆ 2𝑋 is called an ultrafilter if

(i) 𝑋 ∈ 𝒰 and ∅ ∉ 𝒰,
(ii) If 𝐴 ∈ 𝒰 and 𝐴 ⊆ 𝐵 ⊆ 𝑋 , then 𝐵 ∈ 𝒰,

(iii) If 𝐴, 𝐵 ∈ 𝒰, then 𝐴 ∩ 𝐵 ∈ 𝒰 and
(iv) For all 𝐴 ⊆ 𝑋 , either 𝐴 ∈ 𝒰 or 𝑋 \ 𝐴 ∈ 𝒰, or

(iv)′ 𝒰 is maximal among all families satisfying (𝑖) - (𝑖𝑖𝑖).

A family satisfying (𝑖)–(𝑖𝑖𝑖) is called a filter. Conditions (𝑖𝑣) and (𝑖𝑣)′ are equivalent for filters (see
[18, Chapter 11, Lemma 2.3]), and we will make use whichever is more convenient for the current
application. Let us list some additional properties of ultrafilters.

Proposition 3.2. If 𝒰 is an ultrafilter on X, we have

(i) If 𝐴1, . . . , 𝐴𝑛 ∈ 𝒰, then 𝐴1 ∩ . . . ∩ 𝐴𝑛 ∈ 𝒰.
(ii) If 𝐴1, . . . , 𝐴𝑛 are pairwise disjoint and 𝐴1 ∪ . . . ∪ 𝐴𝑛 ∈ 𝒰, then there is exactly one 𝑖 ∈ [𝑛] with

𝐴𝑖 ∈ 𝒰.

Informally, we think of sets 𝐴 ∈ 𝒰 as ‘large’ sets. A common example of an ultrafilter is the so-called
trivial ultrafilter 𝒰𝑥 := {𝐴 ⊆ 𝑋 : 𝑥 ∈ 𝐴} for 𝑥 ∈ 𝑋 . It is not hard to see that an ultrafilter is trivial if and
only if it contains a finite set.

We say that an ultrafilter 𝒰 on N is positive if every set 𝐴 ∈ 𝒰 has positive upper density in N.
Positive ultrafilters play a crucial role in the proof of Theorem 1.6.

Proposition 3.3. If 𝑋 ⊆ N is infinite, then there exists a nontrivial ultrafilter 𝒰 on X. There exists a
positive ultrafilter 𝒰 on N.

Proof. To prove the first part of the theorem, apply Zorn’s lemma to

{F ⊆ 2N : F contains all cofinite sets and satisfies (i) - (iii) in Theorem 3.1}

to get a maximal such family 𝒰, which must be an ultrafilter. Finally, if A is finite, 𝒰 contains the
cofinite set 𝐴𝑐 , and hence, 𝐴 ∉ 𝒰.
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To prove the second part, apply Zorn’s lemma to

{F ⊆ 2N : F contains all sets of lower density 1 and satisfies (i) - (iii) in Theorem 3.1}

to get a maximal such family 𝒰, which must be an ultrafilter. Furthermore, if 𝐴 ⊆ N has upper density
0, then N \ 𝐴 has lower density 1 (see (1.1)) and consequently 𝐴 ∉ 𝒰. �

Definition 3.4 (Vertex-coloring induced by 𝒰). Let 𝑟 ≥ 2 be an integer and suppose the edges of an
infinite graph G are colored with r colors. Let 𝒰 be a nontrivial ultrafilter on 𝑉 (𝐺). Define a coloring
𝑐𝒰 : 𝑉 (𝐺) → [𝑟] where 𝑐𝒰 (𝑣) = 𝑖 if and only if 𝑁𝑖 (𝑣) ∈ 𝒰. Since 𝑉 (𝐺) \ {𝑣} ∈ 𝒰 for all 𝑣 ∈ 𝑉 (𝐺),
it follows from Theorem 3.2 (ii) that 𝑐𝒰 is well defined. We call 𝑐𝒰 the vertex-coloring induced by 𝒰.

The following two propositions allow us to use ultrafilters to embed the desired subgraphs in the
proof of Theorem 1.2 and Theorem 1.6.

Proposition 3.5. Let 𝑘 ≥ 2 be an integer, let G be a one-way k-locally finite graph and let H be a graph
such that {𝑈1, . . . ,𝑈𝑘 } is a partition of 𝑉 (𝐻) with |𝑈1 | = · · · = |𝑈𝑘 | = ∞ and for all 𝑖 ∈ [𝑘] and any
finite subset𝑊 ⊆ 𝑈1 ∪ · · · ∪𝑈𝑖−1, the set of common neighbors of W in 𝑈𝑖 is infinite. Then, there is an
embedding f of G into H such that𝑈1 ⊆ ran 𝑓 .

Given a k-partite graph G with parts𝑉1, . . . , 𝑉𝑘 and a set 𝑆 ⊆ 𝑉 (𝐺), the left neighborhood cascade of
S is the tuple (𝑆1, . . . , 𝑆𝑘 ), where 𝑆𝑘 = 𝑆 ∩𝑉𝑘 , and for all 1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑆𝑖 = (𝑆 ∪

⋃𝑘
𝑗=𝑖+1 𝑁 (𝑆 𝑗 )) ∩𝑉𝑖 .

Proof. Let 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘 be a partition of 𝑉 (𝐺) into independent sets which witness the fact that G
is one-way k-locally-finite (in particular, 𝑉1 is infinite). We will construct an embedding f iteratively in
finite pieces. Initially, f is the empty embedding. Then, for each 𝑛 ∈ N, we will proceed as follows: let

𝑆𝑛 = {min(𝑉𝑖 \ dom 𝑓 ) : 𝑖 ∈ [𝑘] with 𝑉𝑖 \ dom 𝑓 ≠ ∅}.

That is, 𝑆𝑛 contains the smallest not yet embedded vertex of each 𝑉𝑖 which is not completely embedded
yet. Let (𝑇1,𝑛, . . . , 𝑇𝑘,𝑛) be left neighborhood cascade of 𝑆𝑛 in G. We will now extend f to cover⋃

𝑖∈[𝑘 ] 𝑇𝑖,𝑛. Observe that 𝑇𝑖,𝑛 is disjoint from dom 𝑓 for all 𝑖 ∈ [𝑘] since we embedded the whole left
neighborhood cascade in every previous step. Since𝑉1 is infinite,𝑇1,𝑛 is nonempty. Let𝑇 ′

1,𝑛 ⊆ 𝑈1 \ ran 𝑓
be the set of |𝑇1,𝑛 | smallest vertices in𝑈1 \ ran 𝑓 and extend f by embedding 𝑇1,𝑛 into 𝑇 ′

1,𝑛 arbitrarily. By
assumption, 𝑇 ′

1,𝑛 has infinitely many common neighbors in𝑈2. Since ran 𝑓 is finite, we can select a set
𝑇 ′

2,𝑛 ⊆ (𝑈2 ∩ 𝑁∩(𝑇 ′
1,𝑛) \ ran 𝑓 of size |𝑇2,𝑛 |. Extend f by embedding 𝑇2,𝑛 into 𝑇 ′

2,𝑛 arbitrarily. Similarly,
we can extend f by embedding 𝑇𝑖,𝑛 into appropriate sets 𝑇 ′

𝑖,𝑛 for all 𝑖 = 3, . . . , 𝑘 .
Since we maintain a partial embedding of G into H throughout the process and every vertex of G

will eventually be embedded (by choice of 𝑆𝑛 which contains the smallest not yet embedded vertex of
𝑉 (𝐺)), the resulting function f defines an embedding of G into H. Since we cover the smallest not-yet
covered vertex of𝑈1 in each step, we further have𝑈1 ⊆ ran 𝑓 . �

Proposition 3.6. Let H be a graph having the property that for every finite set of vertices 𝑊 ⊆ 𝑉 (𝐻),
the set of common neighbors of W is infinite. If G is an infinite 0-ruled graph, then there is a surjective
embedding of G into H.

Proof. Let 𝑣1, 𝑣2, . . . be an enumeration of 𝑉 (𝐺) and let 𝑢1, 𝑢2, . . . be an enumeration of 𝑉 (𝐻). Let
𝑓 (𝑣1) = 𝑢1. Now suppose dom 𝑓 = {𝑣1, . . . , 𝑣𝑛} for some 𝑛 ∈ N. Let 𝑢𝑖𝑛 be the vertex of smallest index
in 𝑉 (𝐻) \ ran 𝑓 . Since G is 0-ruled, there exists a vertex 𝑣𝑝 with 𝑝 > 𝑛 such that 𝑣𝑝 has no neighbors
in {𝑣1, . . . , 𝑣𝑛}. We set 𝑓 (𝑣𝑝) = 𝑢𝑖𝑛 , and if 𝑝 > 𝑛 + 1, we do the following for all 𝑛 + 1 ≤ 𝑖 ≤ 𝑝 − 1:
since { 𝑓 (𝑣1), . . . , 𝑓 (𝑣𝑖−1), 𝑓 (𝑣𝑝)} has infinitely many common neighbors, we may choose a vertex
𝑢 ∈ 𝑉 (𝐻) \ ran 𝑓 which is adjacent to every vertex in { 𝑓 (𝑣1), . . . , 𝑓 (𝑣𝑖−1), 𝑓 (𝑣𝑝)} and set 𝑓 (𝑣𝑖) = 𝑢.
Continuing in this way, we obtain an embedding of G into H. Since on each step, the vertex of smallest
index in 𝑉 (𝐻) \ ran 𝑓 becomes part of the range of f, the embedding is surjective. �

https://doi.org/10.1017/fms.2025.42 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.42


Forum of Mathematics, Sigma 15

4. Graphs of bounded chromatic number

In this section, we will prove Theorem 1.2. First, note that if G is one-way k-locally-finite, then G is
0-ruled.

Proof of Theorem 1.2. (i) We are given an infinite one-way 2-locally-finite graph G and an r-coloring of
the edges of 𝐾N. Let 𝒰 be a nontrivial ultrafilter on N. Let 𝑐𝒰 be the vertex-coloring induced by 𝒰, and
for all 𝑖 ∈ [𝑟], let 𝐴𝑖 be the set of vertices receiving color i. We may suppose without loss of generality
that d(𝐴1) ≥ 1/𝑟 (see (1.1)). If 𝐴1 ∈ 𝒰, then the set of common neighbors of S in 𝐴1 of color 1 is infinite
for every finite set 𝑆 ⊆ 𝐴1. Thus, we can apply Proposition 3.6 to embed G in color 1 in such a way that
𝐴1 is covered. If 𝐴1 ∉ 𝒰, then every finite set 𝑆 ⊆ 𝐴1 has infinitely many common neighbors of color 1
in 𝐴𝑐

1 . Hence, by applying Proposition 3.5, we can find a monochromatic copy of G in color 1 such that
𝐴1 is covered. Either way, we have a monochromatic copy of G of upper density at least d(𝐴1) ≥ 1/𝑟 .

(ii) We are given an infinite one-way k-locally-finite graph G and an 2-coloring of the edges of 𝐾N.
Let 𝒰1 be a nontrivial ultrafilter on N. Let 𝑐𝒰1 be the vertex-coloring induced by 𝒰1, and for all 𝑖 ∈ [2],
let 𝐴1,𝑖 be the set of vertices receiving color i. Choose 𝑖1 ∈ [2] so that 𝐴1,𝑖1 ∈ 𝒰1 and let 𝑖′1 = 3 − 𝑖1.
If 𝐴1,𝑖′1 is finite, then stop; otherwise, let 𝒰2 be a nontrivial ultrafilter on𝑊2 = 𝐴1,𝑖′1 and let 𝑐𝒰2 be the
vertex-coloring of 𝑊2 induced by 𝒰2. For all 𝑖 ∈ [2], let 𝐴2,𝑖 be the set of vertices receiving color i.
Choose 𝑖2 so that 𝐴2,𝑖2 ∈ 𝒰2 and let 𝑖′2 = 3 − 𝑖2. Let 𝑊3 := 𝐴2,𝑖′2 and continue in this manner until the
point at which (a) 𝐴𝑡 ,𝑖′𝑡 is finite for some t, or (b) there exists t and 𝑗 ∈ [2] such that there exists a set
𝐽 ⊆ [𝑡] where |𝐽 | = 𝑘 −1 and 𝐴 𝑗 ,𝑖 𝑗 ∈ 𝒰𝑗 for all 𝑗 ∈ 𝐽. Note that by pigeonhole, we must have 𝑡 ≤ 2𝑘 −3
in either case.

If we are in case (a), then by (1.1), one of the sets 𝐴1,𝑖1 , 𝐴2,𝑖2 , . . . , 𝐴𝑡 ,𝑖𝑡 has upper density at least
1
𝑡 , say 𝐴 𝑗 ,𝑖 𝑗 . Now by applying Theorem 3.6 with color 𝑖 𝑗 , we get the desired monochromatic copy of
G covering 𝐴 𝑗 ,𝑖 𝑗 with upper density at least 1

𝑡 ≥ 1
2𝑘−3 >

1
2(𝑘−1) . If we are in case (b), suppose without

loss of generality that 𝑗 = 1. Set 𝑊𝑡+1 := 𝑊𝑡 \ 𝐴𝑡 ,1. Since {𝐴1,1, 𝐴2,1, . . . , 𝐴𝑡 ,1,𝑊𝑡+1} is a partition of
N, we have by (1.1) that one of the sets 𝐴1,1, 𝐴2,1, . . . , 𝐴𝑡 ,1,𝑊𝑡+1 has upper density at least 1

2(𝑘−1) . If,
say, d(𝐴ℓ,𝑖ℓ ) ≥ 1

2(𝑘−1) for some ℓ ∈ [𝑡], then applying Proposition 3.6 with color 𝑖ℓ gives the desired
monochromatic copy of G covering 𝐴ℓ ; otherwise, d(𝑊𝑡+1) ≥ 1

2(𝑘−1) , and applying Proposition 3.5 with
color 2 gives the desired monochromatic copy of G covering𝑊𝑡+1.

(iii) The process is very similar to (ii), in that we repeatedly choose ultrafilters until the leftover
vertices are finite, or we are guaranteed that some color appears 𝑘 − 1 times from every set at the end
of the process (see Figure 3). However, the formal proof is a bit more technical.

We will use the following notation. Given 𝑖1, 𝑖2 ∈ N, and 𝐿1 ∈ N𝑖1 and 𝐿2 ∈ N𝑖2 , we write 𝐿1 ≺ 𝐿2
if 𝐿1 is an initial segment of 𝐿2. Furthermore, given 𝐿 = ( 𝑗1, . . . , 𝑗𝑖) ∈ N𝑖 for some 𝑖 ∈ N, we define
𝐿− := ( 𝑗1, . . . , 𝑗𝑖−1).

Suppose the edges of 𝐾N are colored with r colors and let 𝑞 = (𝑘 − 2)𝑟 + 1. We will define sets 𝐴𝐿

for 𝐿 ∈
⋃𝑞

𝑖=0 [𝑟 − 1]𝑖 and colorings 𝜒1 : {𝐴𝐿 : 𝐿 ∈
⋃𝑞−1

𝑖=0 [𝑟 − 1]𝑖} → [𝑟] and 𝜒2 :
⋃𝑞

𝑖=1 [𝑟 − 1]𝑖 → [𝑟]
with the following properties.

(a) The sets 𝐴𝐿 , 𝐿 ∈
⋃𝑞

𝑖=0 [𝑟 − 1]𝑖 , are pairwise disjoint, and their union is cofinite.
(b) For every 𝐿 ∈

⋃𝑞
𝑖=1 [𝑟 − 1]𝑖 , 𝐴𝐿 is empty or every finite set 𝑆 ⊆ 𝐴𝐿 has infinitely many common

neighbors of color 𝜒1(𝐴𝐿) in 𝐴𝐿 .
(c) For every 𝐿 ∈

⋃𝑞
𝑖=1 [𝑟 − 1]𝑖 , 𝐴𝐿 is empty or every finite set 𝑆 ⊆

⋃
𝐿≺𝐿′ 𝐴𝐿′ has infinitely many

common neighbors of color 𝜒2(𝐿) in 𝐴𝐿− .

We will construct these sets and colorings recursively. In the process, we will also construct sets 𝐵𝐿

and ultrafilters 𝒰𝐿 on 𝐵𝐿 for every 𝐿 ∈
⋃𝑞

𝑖=0 [𝑟 − 1]𝑖 .
Let 𝐵 () = N and let 𝒰() be a nontrivial ultrafilter on 𝐵 () , where () denotes the empty sequence. Let

𝑐𝒰() be the vertex-coloring induced by 𝒰() . Let c be the color so that 𝐴() , the set of vertices of color c,
is in 𝒰() and let 𝜒1 (𝐴() ) = 𝑐. Let [𝑟] \ {𝑐} = { 𝑗1, . . . , 𝑗𝑟−1} and, for 𝑖 ∈ [𝑟 − 1], let 𝐵 (𝑖) be the set of
vertices receiving color 𝑗𝑖 and let let 𝜒2((𝑖)) = 𝑗𝑖 .
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Figure 2. An example of the proof of Theorem 1.2.(ii). In this example, G will be embedded in blue into
𝑊4 ∪ 𝐴3,𝑖3 ∪ 𝐴1,𝑖1 such that𝑊4 ⊆ 𝑉 (𝐺).

Figure 3. An example of the proof of Theorem 1.2.(iii) with 𝑟 = 3 and 𝑘 = 3. Here, we have highlighted
the sequence 𝐴(1,2,1,2) , 𝐴(1,2,1) , 𝐴(1,2) , 𝐴(1) , 𝐴∅ and note that some color, in this case red, must appear
at least twice, which means we can embed G into 𝐴(1,2,1,2) ∪ 𝐴(1,2,1) ∪ 𝐴∅ in such a way that 𝐴(1,2,1,2)
is covered.

In the next step, we proceed as follows for every 𝑖0 ∈ [𝑟 − 1]. If 𝐵 (𝑖0) is finite, let 𝐴(𝑖0) = 𝐵 (𝑖0 ,𝑖) = ∅
for every 𝑖 ∈ [𝑟 − 1]. Otherwise, let 𝒰(𝑖0) be a nontrivial ultrafilter on 𝐵 (𝑖0) and let 𝑐𝒰(𝑖0 )

be the vertex-
coloring induced by 𝒰(𝑖0) . Let c be the color so that 𝐴(𝑖0) , the set of vertices of color c, is in 𝒰(𝑖0) and
let 𝜒1(𝐴(𝑖0) ) = 𝑐. Let [𝑟] \ {𝑐} = { 𝑗1, . . . , 𝑗𝑟−1} and, for 𝑖 ∈ [𝑟 − 1], let 𝐵 (𝑖0 ,𝑖) be the set of vertices
receiving color 𝑗𝑖 and let 𝜒2((𝑖0, 𝑖)) = 𝑗𝑖 .

We proceed like this until we define the sets 𝐵𝐿 for every 𝐿 ∈ [𝑟 − 1]𝑞 and let 𝐴𝐿 := 𝐵𝐿 for all
𝐿 ∈ [𝑟 − 1]𝑞 . It is easy to see from the ultrafilter properties that the above properties hold.

Therefore, for every 𝐿 ∈
⋃𝑞−1

𝑖=0 [𝑟 − 1]𝑖 , 𝐴𝐿 is empty or can be covered by a monochromatic copy
of G by Theorem 3.6. Furthermore, for every 𝐿 ∈ [𝑟 − 1]𝑞 for which 𝐴𝐿 is nonempty, we find 𝑘 − 1
sets 𝐿1 ≺ . . . ≺ 𝐿𝑘−1 ≺ 𝐿 of the same color w.r.t. 𝜒2 by the pigeonhole principle. Therefore, applying
Theorem 3.5 to 𝑈𝑘 := 𝐴𝐿−

1
, . . . ,𝑈2 := 𝐴𝐿−

𝑘−1
,𝑈1 := 𝐴𝐿 , we find a monochromatic copy of G covering

𝐴𝐿 . Since, there are 𝐶 :=
∑𝑞

𝑖=0(𝑟 − 1)𝑖 sets 𝐴𝐿 , one of them has upper density at least 1/𝐶. �

Let G be a graph with Δ := Δ (𝐺) < ∞. Since 𝜒(𝐺) ≤ Δ (𝐺) + 1, we immediately obtain as a
corollary that Rd(𝐺) ≥ 1

2Δ . However, with a bit more work, we obtain the following corollary.

Corollary 4.1. Let G be an infinite graph. If 2 ≤ Δ := Δ (𝐺) < ∞, then Rd(𝐺) ≥ 1
2(Δ−1) .

First, we note the following fact (this result also appears in [23, Theorem 1(i)]).

Proposition 4.2. Let 𝑟 ∈ N. If G is a graph with infinitely many components, then Rd𝑟 (𝐺) ≥ 1/𝑟 .

Proof. Let G be a graph with infinitely many components and note that by merging components if
necessary, we may assume that G has infinitely many components, each of which has infinitely many
vertices.

By Ramsey’s theorem, it is possible to partition any r-colored 𝐾N into monochromatic infinite
cliques and a finite set. Indeed, greedily take disjoint monochromatic copies of 𝐾N in which the
smallest vertex is minimal. Either the process ends with a finite set of uncovered vertices, or the process
continues for infinitely many steps and the union misses infinitely many vertices. However, now there
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is a monochromatic copy of 𝐾N whose minimal vertex must be smaller than one of the monochromatic
cliques in our collection, a contradiction.

Without loss of generality, suppose the cliques of color 1 have upper density at least 1/𝑟 . Since G
has infinitely many components, G can be surjectively embedded into the cliques of color 1. �

Proof of Theorem 4.1. First, note that if G has infinitely many components, then we are done by Theorem
4.2. If 𝜒(𝐺) ≤ Δ , then we are done by Theorem 1.2; so suppose that G has finitely many components
and 𝜒(𝐺) = Δ + 1. Now by Brooks theorem, either Δ = 2 and G contains finitely many components
which are odd cycles, or Δ ≥ 3 and G contains finitely many components which are cliques on Δ + 1
vertices. Note that in either case, every infinite component of G (of which there is at least one) has
chromatic number at most Δ . Let 𝑉2 ⊆ 𝑉 (𝐺) be the vertex-set of the finitely many components which
are odd cycles or cliques of size Δ + 1, and let 𝑉1 = 𝑉 (𝐺) \𝑉2.

We are given a 2-coloring of 𝐾N. If there is a red clique R and a blue clique B each of size |𝑉2 |,
we can apply Theorem 1.2 to 𝐺 [𝑉1] (which is one-way Δ-locally finite) and 𝐾N [(𝑅 ∪ 𝐵)𝑐] to get a
monochromatic copy of 𝐺 [𝑉1] of upper density at least 1

2(Δ−1) . Together with either R or B, this gives
the desired copy of G.

So suppose that there is no, say, red clique of order |𝑉2 |. If Δ ≥ 3, we repeat the proof of Theorem
1.2(ii); however, in each iteration, 𝑖 𝑗 = 1 (here, blue is 1 and red is 2); otherwise, there would be an
infinite red clique. Thus, we can stop when 𝑡 = 𝜒(𝐺) − 1 ≤ Δ and get a monochromatic copy of G of
upper density at least 1

Δ+1 ≥ 1
2(Δ−1) . Finally, if Δ = 2, we repeat the proof of Theorem 1.2(ii), but after

the first step, we have 𝐴1,1 ∈ 𝒰1 and𝑊2 = 𝐴1,2. If d(𝐴1,1) ≥ 1/2, then we are done as usual. So suppose
d(𝐴1,2) ≥ 1/2. If there is an infinite red matching in 𝐴1,2, then these edges can be used to make the
odd cycles comprising 𝑉2 and then 𝑉1 can be embedded as usual. Otherwise, 𝐴1,2 does not contain an
infinite red matching, and thus, there is a cofinite subset of 𝐴1,2 which induces a blue clique into which
we can embed G. �

Finally, we note the following strengthening of Theorem 1.2 which generalizes a result of Elekes, D.
Soukup, L. Soukup and Szentmiklóssy [12] who proved a similar statement for powers of cycles.

Theorem 4.3. Let 𝑘, 𝑟 ∈ N and let G be a one-way k-locally finite graph. In every r-coloring of the
edges of 𝐾N, there exists a collection of

𝑓 (𝑟, 𝑘) =
{
𝑟 if 𝑘 = 2∑(𝑘−2)𝑟+1

𝑖=0 (𝑟 − 1)𝑖 if 𝑘 ≥ 3

vertex-disjoint, monochromatic copies of G whose union covers all but finitely many vertices.

Remark 4.4. The proof of Theorem 1.2 immediately shows that for every one-way k-locally finite graph
G and every r-colored 𝐾N, there is a collection of at most 𝑓 (𝑟, 𝑘) monochromatic copies of G covering
a cofinite subset of N, where 𝑓 (𝑟, 𝑘) is as in the statement of Theorem 4.3. In order to obtain a partition
as required by Theorem 4.3, we need to guarantee that these copies can be chosen to be disjoint. To
do so, instead of applying Theorems 3.5 and 3.6, we will embed the graphs simultaneously doing one
step of the embedding algorithms of Theorems 3.5 and 3.6 at a time always making sure not to repeat
vertices (which is possible since we have infinitely many choices in every step but only finitely many
embedded vertices). Otherwise, the proof is exactly the same and therefore we will omit it.

5. Graphs of bounded ruling number

In this section, we will prove Theorem 1.6.

Proof of Theorem 1.6. Let G be a finitely ruled graph and suppose 𝐾N is colored with r-colors for some
𝑟 ∈ N. Let 𝒰 be a positive ultrafilter on N and denote by 𝑉𝑖 the set of vertices of color i in the vertex-
coloring induced by 𝒰. Suppose without loss of generality that𝑉1 ∈ 𝒰. Since G is finitely ruled, there is
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a finite set 𝑆 ⊆ 𝑉 (𝐺) such that 𝐺 [𝑆𝑐] does not have any finite dominating set, and in particular, 𝐺 [𝑆𝑐]
is 0-ruled.

We will now construct the embedding 𝑓 : 𝑉 (𝐺) → N. First, embed S into an arbitrary clique of
color 1 in 𝑉1 of size |𝑆 | (such a clique can be found be iteratively applying the ultrafilter property).
Let 𝑉0

1 = 𝑁∩
1 ( 𝑓 (𝑆)) ∩ 𝑉1 and note that 𝑉0

1 ∈ 𝒰 and hence satisfies the assumptions of Theorem 3.6.
Therefore, 𝐺 [𝑆𝑐] can be surjectively embedded into 𝑉0

1 , and we can extend f to an embedding of G.
Since 𝑉0

1 ⊆ 𝑓 (𝑉 (𝐺)) has positive upper density, we are done. �

6. Graphs of bounded degeneracy

Given 𝑘 ∈ N and a graph G, we say that 𝑋 ⊆ 𝑉 (𝐺) is k-wise intersecting if for all 𝑆 ⊆ 𝑋 with |𝑆 | ≤ 𝑘 ,
𝑁∩(𝑆) is infinite. We say that 𝑋 ⊆ 𝑉 (𝐺) is k-wise self-intersecting if for all 𝑆 ⊆ 𝑋 with |𝑆 | ≤ 𝑘 ,
𝑋 ∩ 𝑁∩(𝑆) is infinite. We say that a graph G is k-wise intersecting if 𝑉 (𝐺) is k-wise intersecting (and
consequently k-wise self-intersecting). Finally, if G is an r-colored graph for some 𝑟 ∈ N, we say that
𝑋 ⊆ 𝑉 (𝐺) is k-wise (self-)intersecting in color i if X is k-wise (self-)intersecting in 𝐺𝑖 .

The following is related to Proposition 3.6.

Proposition 6.1. Let 𝑑 ∈ N and let G be an infinite, 0-ruled, d-degenerate graph. If H is a (𝑑 + 1)-wise
intersecting graph, then we can surjectively embed G into H.

Proof. Do the same as in the proof of Theorem 3.6, but since G is d-degenerate, when we get to the
second phase of the embedding step, where we embed all vertices from {𝑣𝑛+1, . . . , 𝑣𝑝−1} into H one at
a time, we note that each vertex 𝑣𝑖 is adjacent to at most 𝑑 + 1 vertices in {𝑣1, . . . , 𝑣𝑖−1} ∪ {𝑣𝑝}, so it is
possible to choose an image for 𝑣𝑖 in H. �

In the proofs of Theorem 1.2 and Theorem 1.6, we implicitly proved the following. However, for
completeness, we will give a short proof.

Proposition 6.2. Let 𝑟 ∈ N. For every r-coloring of 𝐾N, there is a set X with upper density at least 1/𝑟
and a color 𝑖 ∈ [𝑟] such that for every 𝑘 ∈ N, X is k-wise intersecting in color i. Moreover, there is a set
Y with positive upper density and a color 𝑖 ∈ [𝑟] such that for every 𝑘 ∈ N, Y is k-wise self-intersecting
in color i.

Proof. Let U be a positive ultrafilter on N (that is, U is an ultrafilter such that every set in U has positive
upper density). For all 𝑖 ∈ [𝑟], let 𝑉𝑖 be the set of vertices 𝑣 ∈ N such that 𝑁𝑖 (𝑣) ∈ U . Let X be the set
in {𝑉1, . . . , 𝑉𝑟 } with the largest upper density and let Y be the set in {𝑉1, . . . , 𝑉𝑟 } which is in U . �

Note that by Proposition 6.1, for the purposes of embedding 0-ruled, d-degenerate graphs, we do
not need the set Y described above to be k-wise self-intersecting for all 𝑘 ∈ N. Thus, we can ask if
it is possible to find a set Y which is (𝑑 + 1)-wise self-intersecting and has upper density bounded
below by some function of d. While we have not been able to address this question, we now give an
example which provides an upper bound on the upper density of such a set. This example is due to Chris
Lambie-Hanson [22].

Proposition 6.3. For all 𝑘 ∈ N, there exists a 2-coloring of 𝐾N such that every monochromatic k-wise
self-intersecting set has upper density at most 1/2𝑘 .

Proof. Let 𝑘 ∈ N and partition N into sets 𝐴1, . . . , 𝐴𝑘 and 𝐵1, . . . , 𝐵𝑘 of equal asymptotic density
1/2𝑘 . Let 𝐴 = 𝐴1 ∪ · · · ∪ 𝐴𝑘 and 𝐵 = 𝐵1 ∪ · · · ∪ 𝐵𝑘 . The coloring is as follows. Given 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵,
we color {𝑎, 𝑏} red if 𝑎 < 𝑏 and blue otherwise. Given 𝑎, 𝑎′ ∈ 𝐴, we color {𝑎, 𝑎′} red if a and 𝑎′ are in
the same set 𝐴𝑖 , and blue otherwise. Given 𝑏, 𝑏′ ∈ 𝐵, we color {𝑏, 𝑏′} blue if 𝑏, 𝑏′ are in the same set
𝐵𝑖 , and red otherwise.

The colors are clearly symmetric, so it suffices to consider a red k-wise self-intersecting set X. We
claim that X is contained in a single 𝐴𝑖 .
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Figure 4. An example of the coloring from Theorem 6.3 in the case when 𝑘 = 2. The shaded areas
denote cliques of the respective colors, and a blue/solid (red/dashed) arrow from one part to another
indicates that vertices in the first part have cofinitely many blue (red) neighbors in the second part.

Note that for all 𝑏 ∈ 𝐵𝑖 , 𝑁𝑅 (𝑏) ∩ 𝐴 is finite and 𝑁𝑅 (𝑏) ∩ 𝐵𝑖 = ∅. Thus, if 𝑋 ∩ 𝐵𝑖 ≠ ∅, 𝑋 ∩ 𝐵 𝑗 ≠ ∅
for some 𝑗 ≠ 𝑖. Applying the same argument with elements of 𝐵𝑖 and 𝐵 𝑗 , we see that 𝑋 ∩ 𝐵ℎ ≠ ∅ for
some ℎ ≠ 𝑖, 𝑗 , and continuing, we get 𝑋 ∩ 𝐵ℓ ≠ ∅ for all ℓ = 1, . . . , 𝑘 . But then taking F to be a subset
of X consisting of one vertex from each 𝐵ℓ , we see that 𝑁∩

𝑅 (𝐹) is finite, a contradiction.
So we must have 𝑋 ⊆ 𝐴. But note that 𝑁𝑅 (𝑎) ∩ 𝐴 ⊆ 𝐴𝑖 for all 𝑎 ∈ 𝐴𝑖 . Hence, X must be contained

in 𝐴𝑖 for some i. �

It is not immediately clear that there exists a d-wise intersecting graph with bounded degeneracy.
So we now give a construction of a family of d-wise intersecting graphs which are d-degenerate (and
0-ruled).

Proposition 6.4. For every 𝑑 ∈ N, there is an infinite graph 𝐻𝑑 which is d-wise intersecting,
d-degenerate and 0-ruled.

Proof. Let 𝑛0 = 𝑑. For all 𝑖 ≥ 0, let 𝑆1, 𝑆2, . . . , 𝑆(𝑛𝑖𝑑 ) be an enumeration of all the d-element subsets of
[𝑛𝑖], let 𝑛𝑖+1 = 𝑛𝑖 +

(𝑛𝑖
𝑑

)
, and let

𝐸𝑖+1 =
⋃

1≤ 𝑗≤(𝑛𝑖𝑑 )
{{𝑛𝑖 + 𝑗 , 𝑣} : 𝑣 ∈ 𝑆 𝑗 }.

Let 𝐻𝑑 be the graph on vertex set N with edge set
⋃

𝑗∈N 𝐸 𝑗 .
By the construction, it is clear that 𝐻𝑑 is d-wise intersecting and d-degenerate. To see that G is 0-

ruled, note that for any finite set 𝑋 ⊆ N and any d-element set 𝑌 ⊆ N \ 𝑋 , there are infinitely many
vertices which are adjacent to every vertex in Y and none of the vertices in X. Thus, G cannot have a
finite dominating set. �

Note that, in particular, 𝐻𝑑 contains a spanning copy of every (𝑑 − 1)-degenerate 0-ruled graph (by
Proposition 6.1). Denote by 𝜌(𝑑) the smallest Ramsey upper density of a d-degenerate infinite graph
and by 𝜏(𝑑) the largest 𝜏 ≥ 0 such that every 2-colored complete graph contains a monochromatic
d-wise self-intersecting subgraph of density at least d. The above propositions imply

𝜏(𝑑 − 1) ≥ 𝜌(𝑑 − 1) ≥ 𝜏(𝑑) ≥ 𝜌(𝑑)

for every 𝑑 ≥ 2. In particular, we have 𝜏(𝑑) > 0 for every 𝑑 ∈ N if and only if 𝜌(𝑑) > 0 for every 𝑑 ∈ N.
So in order to answer Theorem 1.5 positively for 0-ruled graphs, it would suffice to answer Theorem
1.5 positively for 𝐻𝑑 for all d. Note that 𝐻1 = 𝑇∞ and thus Theorem 1.13 gives a positive answer for the
case 𝑑 = 1.
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We conclude this section with a few comments about Theorem 1.5.
In light of Theorem 1.2, if there was a function 𝑓 : N→ N such that for all 𝑑 ∈ N, every d-degenerate

graph is one-way 𝑓 (𝑑)-locally finite, then we would have a positive answer to Theorem 1.5; however,
this is not the case, as there are d-degenerate graphs which are not one-way k-locally-finite for any k.
For instance, the graph 𝐻𝑑 constructed above is d-degenerate but, since every vertex has infinite degree,
is not one-way k-locally-finite for any k. Also 𝐾𝑑,N is d-degenerate but not one-way k-locally-finite for
any k (although in this case, we know Rd(𝐾𝑑,N) ≥ 1

22𝑑−1 ).
Theorem 1.5 is about all d-degenerate graphs. However, the discussion in this section is about 0-ruled,

d-degenerate graphs. It seems possible that answering Theorem 1.5 positively for 0-ruled, d-degenerate
graphs could imply a positive answer for all d-degenerate graphs (cf. the proof of Theorem 1.6).
Problem 6.5. If Theorem 1.5 were true for all 0-ruled d-degenerate graphs (in particular, 𝐻𝑑), would
this imply that Theorem 1.5 was true for all d-degenerate graphs?

Let 𝑑 ≥ 2 and say that a digraph D is d-directed if every d-set in 𝑉 (𝐷) has a common out-
neighbor; that is, for all 𝑆 ⊆ 𝑉 (𝐷) with |𝑆 | = 𝑑, there exists 𝑤 ∈ 𝑉 (𝐷) (where it is pos-
sible for 𝑤 ∈ 𝑆) such that for all 𝑣 ∈ 𝑆, (𝑣, 𝑤) ∈ 𝐸 (𝐷). For example, the digraph 𝐷 =
({𝑎, 𝑏, 𝑐}, {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎), (𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐)}) is 2-directed, but not 3-directed.

In order to get a monochromatic d-wise self-intersecting set with upper density at least some fixed
amount in an arbitrary 2-coloring of 𝐾N, we likely have to solve the following problem.3
Problem 6.6. Given a 2-coloring of the edges of a complete (finite) digraph K (including loops), is it
possible to cover𝑉 (𝐾) with at most 2𝑑 monochromatic d-directed graphs? (If not 2𝑑, some other bound
depending only on d?)

The reason is that given any 2-coloring of a complete digraph K (plus loops), we can create a
corresponding 2-coloring of 𝐾N as follows. Split N into infinite sets 𝐴𝑖 , one for each vertex i of K.
Color the edges inside 𝐴𝑖 according to the color of the loop on i. Now if both directed edges (𝑖, 𝑗) and
( 𝑗 , 𝑖) are the same color, give all edges between 𝐴𝑖 and 𝐴 𝑗 that color; if not, then color the bipartite
graph between 𝐴𝑖 and 𝐴 𝑗 with the bipartite half graph coloring (where (𝑖, 𝑗) being red means that
the vertices in 𝐴𝑖 have cofinite red degree to 𝐴 𝑗 ). Then any d-wise self-intersecting set B must be the
union of some collection of 𝐴𝑖’s whose corresponding vertices i make up a monochromatic 2𝑑-directed
set in K.

7. Bipartite Ramsey densities

In this section, we prove Theorem 1.16. An infinite graph G is said to be infinitely connected if G remains
connected after removing any finite set of vertices. Note that every vertex of an infinitely connected
graph has infinite degree. Given some set of vertices 𝑆 ⊆ 𝑉 (𝐺), we say that S is infinitely connected
if 𝐺 [𝑆] is infinitely connected. Similarly, we call a set 𝑆 ⊆ 𝑉 (𝐺) infinitely linked if for all distinct
𝑢, 𝑣 ∈ 𝑆, there are infinitely many internally vertex-disjoint paths in G from u to v (note that the internal
vertices of these paths need not be contained in the set S). Note that every infinitely connected set is
also infinitely linked, but the converse is not true (for example, both parts of 𝐾N,N are infinitely linked
but not connected). Further note that if 𝑆1, . . . , 𝑆𝑘 are sets, each of which is infinitely linked, then there
are disjoint paths 𝑃1, . . . , 𝑃𝑘 such that 𝑃1 ∪ · · · ∪ 𝑃𝑘 covers 𝑆1 ∪ · · · ∪ 𝑆𝑘 .

If G is a colored graph and c is a color, we say that G is infinitely connected in c if 𝐺𝑐 (the spanning
subgraph of G with all edges of color c) is infinitely connected. A set 𝑆 ⊆ 𝑉 (𝐺) is infinitely connected in
color c (infinitely linked in color c) if S is infinitely connected (infinitely linked) when restricted to 𝐺𝑐 .
S is called monochromatic infinitely connected (infinitely linked) if it is infinitely connected in some
color c.

The following proposition directly implies Theorem 1.16 which implies Theorem 1.15.

3Since we first posted this paper, this problem has essentially been resolved [9] (although, determining the minimum number
of d-directed graphs needed to cover 𝑉 (𝐾 ) is still open).
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Proposition 7.1. Every 2-colored 𝐾N,N can be partitioned into a finite set and two monochromatic
infinitely linked sets X and Y.
Proof. Let 𝑉1, 𝑉2 be the parts of the bipartite graph and let 𝒰1,𝒰2 be nontrivial ultrafilters on 𝑉1 and
𝑉2. For 𝑖 = 1, 2, let 𝐵𝑖 ⊆ 𝑉𝑖 be the blue vertices in the induced vertex-coloring and let 𝑅𝑖 = 𝑉𝑖 \ 𝐵𝑖 be
the red vertices.

Case 1 (|𝑅1 | = |𝑅2 | = |𝐵1 | = |𝐵2 | = ∞). If there are infinitely many disjoint red paths between 𝑅1
and 𝑅2, then 𝑋 := 𝑅1 ∪ 𝑅2 is infinitely linked in red. Indeed, if 𝑣1, 𝑣2 ∈ 𝑅1 or 𝑣1, 𝑣2 ∈ 𝑅2, then they
have infinitely many common red neighbors (by the properties of the ultrafilter). If 𝑣1 ∈ 𝑅1 and 𝑣2 ∈ 𝑅2,
we will construct infinitely many internally disjoint paths between 𝑥0 := 𝑣1 and 𝑥5 := 𝑣2 as follows: let
𝑃 = 𝑥2 . . . 𝑥3 be a red path so that 𝑥2 ∈ 𝑅1 and 𝑥3 ∈ 𝑅2, and let 𝑥1 be a common red neighbor of 𝑥0 and
𝑥2 (of which we have infinitely many as above) and 𝑥4 be a common neighbor of 𝑥3 and 𝑥5. It is clear
that 𝑥0𝑥1𝑥2 . . . 𝑥3𝑥4𝑥5 defines a red path and that we can construct infinitely many internally disjoint
paths like this. If there are only finitely many disjoint red paths between 𝑅1 and 𝑅2, then there is a finite
set S so that, in particular, 𝑋 := (𝑅1 ∪ 𝑅2) \ 𝑆 induces a complete blue bipartite graph with parts of
infinite size and hence is infinitely linked in blue. Similarly, there is a set 𝑌 ⊆ 𝐵1 ∪ 𝐵2 which is cofinite
in 𝐵1 ∪ 𝐵2 and infinitely linked in red or infinitely linked in blue.

Case 2. Suppose without loss of generality that 𝑅1 is finite. It is easy to verify that 𝑋 = 𝐵1 ∪ 𝐵2 is
infinitely linked in blue and 𝑌 := 𝑅2 is infinitely linked in red. �

As mentioned in the introduction, the above result combined with a recent result of Day and Lo [8]
implies that Rd3 (𝑃∞) = 1

2 .

8. Trees

8.1. General embedding results

Given 𝑘 ∈ N, we say that a connected graph T has radius at most k if there exists 𝑢 ∈ 𝑉 (𝑇) such that
for all 𝑣 ∈ 𝑉 (𝑇), there is a path of length at most k from u to v; if no such k exists, we say that T has
unbounded radius.
Lemma 8.1. Let T be a graph. A spanning copy of T can be found in every infinitely connected graph H
if and only if T is a forest and (i) T has a component of unbounded radius or (ii) T has infinitely many
components.

In order to simplify the proof of Lemma 8.1, we first prove the following structural result about trees
with unbounded radius. An increasing star is a tree obtained by taking an infinite collection of disjoint
finite paths of unbounded length and joining one endpoint of each of the paths to a new vertex v. Note
that an increasing star has unbounded radius, no infinite path, and exactly one vertex of infinite degree
(which is called the center). Also note that an increasing star has distinct vertices 𝑣0, 𝑣1, 𝑣2, . . . and
internally disjoint paths 𝑃1, 𝑃2, . . . such that for all 𝑖 ≥ 1, 𝑃𝑖 is a path from 𝑣0 to 𝑣𝑖 and the length of
𝑃𝑖+1 is greater than the length of 𝑃𝑖 .
Fact 8.2. Let T be a tree of unbounded radius. Either for all 𝑣 ∈ 𝑉 (𝑇), there is an infinite path in T
starting with v or there exists 𝑣0 ∈ 𝑉 (𝑇) such that T contains an increasing star having 𝑣0 as the center.
Proof. Let T be a tree, let 𝑣 ∈ 𝑉 (𝑇), and suppose there is no infinite path in T starting with v (since T
is connected, this implies that there is no infinite path in T at all). Since T has unbounded radius, we
can do the following: let 𝑄1 be a path from v to a leaf 𝑢1, which has some length 𝑘1. Now there must
exist a path 𝑄2 of length 𝑘2 > 𝑘1 from v to a leaf 𝑢2, and so on. This process gives an infinite set of
leaves U and an increasing sequence 𝑘1, 𝑘2, . . . such that there is a path from v to 𝑢𝑖 of length 𝑘𝑖 . Now
we apply the Star-Comb lemma [11, Lemma 8.2] to the set U. Since T has no infinite path, there must
exist a subdivision of an infinite star with center 𝑣0 such that all the leaves, call them 𝑈 ′, are in U. We
claim that for all k, there exists a path from 𝑣0 to𝑈 ′ which has length greater than k, which would prove
the lemma. If not, then there exists k such that every path from 𝑣0 to 𝑈 ′ has length at most k. However,
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since there is a path from v to 𝑣0, this would imply that there exists a 𝑘 ′ such that every path from v to
𝑈 ′ has length at most 𝑘 ′. But this contradicts the fact that the lengths of the paths from v to𝑈 ′ form an
increasing sequence. �

Proof of Theorem 8.1. First, suppose that a spanning copy of T can be found in every infinitely connected
graph H. It is known that there exist infinitely connected graphs with arbitrarily high girth (see [11,
Chapter 8, Exercise 7]); for instance, let 𝐻0 be a cycle of length k, and for all 𝑖 ≥ 1, let 𝐻𝑖 be the graph
obtained by adding a vertex 𝑥𝑖 and internally disjoint paths of length �𝑘/2� from 𝑥𝑖 to every vertex in
𝐻𝑖−1. Then let 𝐻 = ∪𝑖≥0𝐻𝑖 . So H is infinitely connected and has girth k. This proves that T is acyclic
(i.e., T is a forest) because otherwise there would be an infinitely connected graph in which every cycle
is longer than the shortest cycle in T.

Let H be the infinite blow-up of a one-way infinite path (i.e., replace each vertex with an infinite
independent set and each edge with a complete bipartite graph). Clearly, H is infinitely connected. If
T is a spanning subgraph of H, then T has a component of unbounded radius or T has infinitely many
components.

Thus, T must be a forest with a component of unbounded radius or infinitely many components.
Next suppose T is a forest with a component of unbounded radius or infinitely many components. If

T has infinitely many components 𝑇1, 𝑇2, . . . , we may select for all 𝑖 ≥ 1, 𝑡𝑖 ∈ 𝑉 (𝑇𝑖) and add the edge
𝑡𝑖𝑡𝑖+1 for all 𝑖 ≥ 1 to get a tree with unbounded radius which contains T as a spanning subgraph. If T
has finitely many components 𝑇1, . . . , 𝑇𝑘 , at least one of which has unbounded radius, we may for all
𝑖 ∈ [𝑘 − 1] add an edge from 𝑡𝑖 ∈ 𝑉 (𝑇𝑖) to 𝑡𝑖+1 ∈ 𝑉 (𝑇𝑖+1) to get a tree with unbounded radius which
contains T as a spanning subgraph. Thus, it suffices to prove the result when T is a tree with unbounded
radius.

By Theorem 8.2, there exists a vertex 𝑡0 such that either there is an infinite path starting with 𝑡0 (in
which case we say T is of Type 1), or an increasing star having 𝑡0 as the center (in which case we say T
is of Type 2). Now starting with 𝑡0, fix an enumeration of 𝑉 (𝑇) = {𝑡0, 𝑡1, 𝑡2 . . .} such that for all 𝑖 ≥ 1,
𝑇 [{𝑡0, . . . , 𝑡𝑖}] is connected (in fact, for all 𝑖 ≥ 1, 𝑡𝑖 has exactly one neighbor in {𝑡0, . . . , 𝑡𝑖−1}). Also fix
an enumeration of 𝑉 (𝐻) = {𝑣0, 𝑣1, 𝑣2, . . .}. We will build an embedding f of T into H recursively, in
finite pieces, at each stage ensuring that we add the first vertices of 𝑉 (𝑇) \ dom 𝑓 and 𝑉 (𝐻) \ ran 𝑓 into
the domain and range of f respectively.

Initially, let 𝑓 (𝑡0) = 𝑣0 (we think of 𝑡0 as being the root of the tree and 𝑣0 as the embedding of the root
in H) and let 𝑡𝑙𝑎𝑠𝑡 := 𝑡0 and 𝑣𝑙𝑎𝑠𝑡 := 𝑣0. We now show that Algorithm 1 gives the desired embedding.

Algorithm 1
1: while True do
2: if 𝑉 (𝐻) \ ran 𝑓 ≠ ∅ then
3: Let 𝑛𝑒𝑥𝑡 be the smallest index such that 𝑣𝑛𝑒𝑥𝑡 ∈ 𝑉 (𝐻) \ ran 𝑓 .
4: Let 𝑃𝑛𝑒𝑥𝑡 ⊆ 𝐻 be a finite path from 𝑣𝑛𝑒𝑥𝑡 to 𝑣𝑙𝑎𝑠𝑡 which is internally disjoint from ran 𝑓 .
5: Let𝑉𝑛𝑒𝑥𝑡 be a set of |𝑉 (𝑃𝑛𝑒𝑥𝑡 ) | −1 vertices in𝑉 (𝑇) \dom 𝑓 such that {𝑡𝑙𝑎𝑠𝑡 }∪𝑉𝑛𝑒𝑥𝑡 induces

a path in 𝑇 .
6: Extend 𝑓 by embedding 𝑉𝑛𝑒𝑥𝑡 into 𝑉 (𝑃𝑛𝑒𝑥𝑡 ) \ {𝑣𝑙𝑎𝑠𝑡 }.
7: if 𝑇 is of Type 1 then
8: Set 𝑡𝑙𝑎𝑠𝑡 := 𝑓 −1(𝑣𝑛𝑒𝑥𝑡 ) and 𝑣𝑙𝑎𝑠𝑡 := 𝑣𝑛𝑒𝑥𝑡 .
9: if 𝑉 (𝑇) \ dom 𝑓 ≠ ∅ then

10: Let 𝑛𝑒𝑥𝑡 be the smallest index such that 𝑡𝑛𝑒𝑥𝑡 ∈ 𝑉 (𝑇) \ dom 𝑓 .
11: Let 𝑏𝑎𝑐𝑘 < 𝑛𝑒𝑥𝑡 be the unique index such that 𝑡𝑏𝑎𝑐𝑘 is adjacent to 𝑡𝑛𝑒𝑥𝑡 .
12: Embed 𝑡𝑛𝑒𝑥𝑡 into an arbitrary vertex in 𝑁𝐻 ( 𝑓 (𝑡𝑏𝑎𝑐𝑘 )) \ ran 𝑓 .
13: if 𝑇 is of Type 1 and 𝑡𝑏𝑎𝑐𝑘 = 𝑡𝑙𝑎𝑠𝑡 then
14: Set 𝑡𝑙𝑎𝑠𝑡 := 𝑡𝑛𝑒𝑥𝑡
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Note that if T is of Type 2, then 𝑡𝑙𝑎𝑠𝑡 = 𝑡0 and 𝑣𝑙𝑎𝑠𝑡 = 𝑣0 throughout the process.
To see that f is a well-defined surjective embedding of T into H, first note that we can always follow

lines 4 and 12 of Algorithm 1 since H is infinitely connected and in particular every vertex has infinite
degree. Line 5 is always possible since there is either an infinite path starting at 𝑣0 or an increasing star
having 𝑣0 as the center. Line 11 is always possible by the enumeration of 𝑉 (𝑇). So f is well defined.

We alternate between embedding the vertex t of smallest index from T which has not yet been em-
bedded into an available vertex from H in such that way that the parent 𝑡 ′ of t has already been embedded
and 𝑓 (𝑡) is adjacent to 𝑓 (𝑡 ′), and embedding a path 𝑡0𝑡1 . . . 𝑡ℓ to a vertex such that 𝑓 (𝑡0) 𝑓 (𝑡1) . . . 𝑓 (𝑡ℓ)
is a path in H and 𝑓 (𝑡ℓ) is the vertex of smallest index from 𝑉 (𝐻) which has yet to be mapped to. So f
will be a surjective embedding of T. �

Now we prove another useful lemma.

Lemma 8.3. Let T be a tree with at least one vertex of infinite degree. If H is a graph in which every
vertex has infinite degree, then for all 𝑣 ∈ 𝑉 (𝐻), H contains a copy of T covering 𝑁𝐻 (𝑣).

Proof. Let 𝑡1 ∈ 𝑉 (𝑇) be a vertex of infinite degree and let 𝑣1 = 𝑣 from the statement of the theorem
(again we think of 𝑡1 as being the root of the tree and 𝑣1 as the embedding of the root in H). We will
build an embedding f of T into H recursively, in finite pieces, at each stage adding one more child of
every previously embedded 𝑡 ∈ 𝑇 (unless all children have been embedded already). The embedding
strategy is very similar to that in the proof of Theorem 8.1. Initially, let 𝑓 (𝑡1) = 𝑣1. We will use the
following Algorithm 2.

Algorithm 2
1: while True do
2: for 𝑡 ∈ dom 𝑓 do
3: if 𝑆 := 𝑁𝑇 (𝑡) \ dom 𝑓 is non-empty then
4: Embed min(𝑆) into min(𝑁𝐻 ( 𝑓 (𝑡)) \ ran 𝑓 ).

First, note that we can always follow line 4 of Algorithm 1 since every vertex in H has infinite degree.
Let 𝑓 : 𝑉 (𝑇) → 𝑉 (𝐻) be the function produced by Algorithm 2. We need to prove that f is well defined,
an embedding of T and that 𝑁𝐻 (𝑣) ⊆ dom 𝑓 .

Since we always embed the smallest not yet embedded neighbor of every previously embedded
𝑡 ∈ 𝑉 (𝑇) in line 4, every other vertex will be embedded eventually as well. Therefore, f is well defined.
Furthermore, by construction of f, it defines a proper embedding (whenever a new vertex 𝑡 ∈ 𝑇 is
embedded, its parent 𝑡 ′ is already embedded, and we make sure that 𝑓 (𝑡) is adjacent to 𝑓 (𝑡 ′)). Finally,
note that we are infinitely often in line 4 when 𝑡 = 𝑡1 since 𝑁𝑇 (𝑡1) is infinite. Since we always choose
the smallest available vertex in 𝑁𝐻 (𝑣) \ ran 𝑓 , it follows that 𝑁𝐻 (𝑣) ⊆ ran 𝑓 . �

8.2. Upper density of monochromatic trees

In this section, we will deduce Theorem 1.13 from Lemma 8.1, Lemma 8.3, and the following two
lemmas.

Lemma 8.4. For any 2-coloring of 𝐾N, there are sets R and S such that

(i) 𝑅 ∪ 𝑆 is cofinite,
(ii) if R is infinite, then it is infinitely connected in red, and

(iii) if S is infinite, then it is infinitely connected in one of the colors.
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Lemma 8.5. Let H be a 2-colored 𝐾N. There exists a set 𝐴 ⊆ N, a vertex 𝑣 ∈ 𝐴, and a color c such that
every vertex in 𝐹 := 𝐻𝑐 [𝐴] has infinite degree and d(𝑁𝐹 (𝑣)) ≥ 1/2.

It is now easy to prove Theorem 1.13.

Proof of Theorem 1.13. It clearly suffices to prove the result for trees, so let T be an infinite tree and
suppose the edges of 𝐾N are colored with two colors. If T does not have an infinite path, it must have at
least one vertex of infinite degree (by König’s infinity lemma [20]), and therefore, the theorem follows
immediately from Theorems 8.5 and 8.3. So suppose T has an infinite path. By Theorem 8.4, there is an
infinite set A with d(𝐴) ≥ 1/2 and a color c, so that the induced subgraph on A is infinitely connected
in c. By Theorem 8.1, there is a monochromatic copy of T spanning A, and we are done. �

It remains to prove the two lemmas.

Proof of Theorem 8.4. Fix a 2-coloring of 𝐾N. We define a sequence of sets 𝑅𝛼, 𝑆𝛼, for all ordinals
𝛼, as follows. Let 𝑆0 = N. For each 𝛼, let 𝑅𝛼 be the set of vertices in 𝑆𝛼 whose blue neighborhood
has finite intersection with 𝑆𝛼, and let 𝑆𝛼+1 = 𝑆𝛼 \ 𝑅𝛼. If 𝜆 is a limit ordinal, then we let 𝑆𝜆 be the
intersection of the sets 𝑆𝛼, for 𝛼 < 𝜆.

Note that the sets 𝑅𝛼 are pairwise disjoint, and hence, there is some countable ordinal 𝛾 such that
𝑅𝛼 = ∅ for all 𝛼 ≥ 𝛾. Let 𝛾∗ be the minimal ordinal such that 𝑅𝛾∗ is finite; it follows then that 𝑅𝛽 = ∅
for all 𝛽 > 𝛾∗. Set

𝑅 =
⋃

{𝑅𝛼 | 𝛼 < 𝛾∗}.

(Note that 𝛾∗ may be 0, in which case 𝑅 = ∅.)
Suppose that R is infinite. Then 𝛾∗ > 0 and 𝑅𝛼 is infinite for all 𝛼 < 𝛾∗. Let 𝑢, 𝑣 ∈ 𝑅 with 𝑢 ∈ 𝑅𝛼

and 𝑣 ∈ 𝑅𝛽 for some 𝛼 ≤ 𝛽 < 𝛾∗. It follows that the red neighborhoods of both u and v are cofinite in
𝑅𝛽 . Since 𝑅𝛽 is infinite, this implies that there is a red path of length 2 connecting u and v, even after
removing a finite set of vertices. Hence, R is infinitely connected in red.

Set 𝑆 = 𝑆𝛾∗+1. Then 𝑅 ∪ 𝑆 = N \ 𝑅𝛾∗ , so 𝑅 ∪ 𝑆 is cofinite. Moreover, since 𝑅𝛾∗+1 = ∅, it follows that
for every 𝑣 ∈ 𝑆, the blue neighborhood of v has infinite intersection with S. Now suppose that S is not
infinitely connected in blue. Then there is a finite set 𝐹 ⊆ 𝑆 and a partition 𝑆 \ 𝐹 = 𝑋 ∪ 𝑌 such that
X and Y are both nonempty, and every edge between X and Y is red. Note that X and Y must both be
infinite, since if 𝑥0 ∈ 𝑋 and 𝑦0 ∈ 𝑌 , then 𝑋 ∪ 𝐹 and 𝑌 ∪ 𝐹 must contain the blue neighborhoods of 𝑥0
and 𝑦0 (both of which are infinite), respectively. But then the red graph restricted to 𝑋 ∪ 𝑌 = 𝑆 \ 𝐹 is
infinitely connected. �

Proof of Theorem 8.5. Fix a 2-coloring of𝐾N. Similarly as in the proof of Theorem 8.4, we will construct
sets 𝑅𝛼, 𝐵𝛼, 𝑆𝛼 for all ordinals 𝛼. Let 𝑆0 = N. For each 𝛼, let 𝑅𝛼 be the set of vertices in 𝑆𝛼 whose blue
neighborhood has finite intersection with 𝑆𝛼, let 𝐵𝛼 be the set of vertices in 𝑆𝛼 whose red neighborhood
has finite intersection with 𝑆𝛼, and let 𝑆𝛼+1 = 𝑆𝛼 \ (𝑅𝛼 ∪ 𝐵𝛼). If 𝜆 is a limit ordinal, then we let 𝑆𝜆 be
the intersection of the sets 𝑆𝛼, for 𝛼 < 𝜆. As in the proof of Theorem 8.4, the following properties hold.

(i) There is a unique ordinal 𝛾∗ such that 𝑅𝛼 ∪ 𝐵𝛼 is infinite for all 𝛼 < 𝛾∗, finite for 𝛼 = 𝛾∗ and
empty for all 𝛼 > 𝛾∗. We denote 𝑅 =

⋃
𝛼<𝛾∗ 𝑅𝛼 and 𝐵 =

⋃
𝛼<𝛾∗ 𝐵𝛼.

(ii) 𝑆𝛼 = 𝑆𝛼′ for all ordinals 𝛼, 𝛼′ > 𝛾∗. We denote 𝑆 = 𝑆𝛾∗+1.
(iii) 𝑅, 𝐵, 𝑆 are pairwise disjoint, and 𝑅 ∪ 𝐵 ∪ 𝑆 is cofinite.
(iv) If 𝑣 ∈ 𝑅𝛾 for some ordinal 𝛾, then v has finitely many blue neighbors in 𝑆 ∪

⋃
𝛼≥𝛾 𝑅𝛼.

(v) If 𝑣 ∈ 𝐵𝛾 for some ordinal 𝛾, then v has finitely many red neighbors in 𝑆 ∪
⋃

𝛼≥𝛾 𝐵𝛼.
(vi) Every 𝑣 ∈ 𝑆 has infinitely many neighbors of both colors in S.

If 𝑅∪ 𝐵 is empty, then let 𝐴 = 𝑆 and choose an arbitrary vertex 𝑣 ∈ 𝑆. Since A is cofinite in N, either
the blue or the red neighborhood of v in A has upper density at least 1/2. Since every vertex in A has
infinite degree in both colors, we are done.
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Figure 5. The shaded areas denote cliques of the respective colors and a blue/solid (red/dashed) arrow
from𝑉𝑖 to𝑉 𝑗 indicates that vertices in𝑉𝑖 have cofinitely many blue (red) neighbors in𝑉) 𝑗 . On the right,
we have an example of the relevant edges in the case where we are embedding a blue copy of 𝑇 ∈ T ∗

with root t in 𝑉0.

If 𝑅 ∪ 𝐵 is nonempty, it must be infinite (by the way R and B are defined). Since 𝑅 ∪ 𝐵 ∪ 𝑆 =
(𝑅 ∪ 𝑆) ∪ (𝐵 ∪ 𝑆) is cofinite, we may assume without loss of generality that R is nonempty and
d(𝑅 ∪ 𝑆) ≥ 1/2. Let 𝐴 = 𝑅 ∪ 𝑆 and let 𝑣 ∈ 𝑅0 be arbitrary (if R is nonempty, then 𝑅0 must be infinite).
Clearly, every vertex in A has infinite red degree in A, and since v has only finitely many blue neighbors
in A, we are done. �

8.3. Ramsey-cofinite forests

In this section, we will prove Theorem 1.14.
We already know from Theorems 2.9 and 2.8 that if T is weakly expanding or has a finite dominating

set, then T is not Ramsey-lower-dense (and thus T is not Ramsey-confinite). So all that remains to prove
Theorem 1.14(ii) is to show that every forest in T ∗ is not Ramsey-lower-dense. Recall that T ∗ is the
family of forests T having one vertex t of infinite degree, every other vertex has degree at most d for
some 𝑑 ∈ N, t is adjacent to infinitely many leaves and infinitely many non-leaves, and cofinitely many
vertices of T have distance at most 2 to t (in particular, if T is not connected, then T has one infinite
component and finitely many finite components).

Proposition 8.6. If 𝑇 ∈ T ∗, then T is not Ramsey-lower-dense.

Proof. Let 𝑇 ∈ T ∗, let t be the vertex of infinite degree in T, and let d be the maximum degree of 𝑇 −{𝑡}
as guaranteed by the definition.

We begin by partitioning N into intervals 𝐴0, 𝐴1, 𝐴2, . . . as follows: Let 𝑎0 = 1, and for all 𝑖 ≥ 1,
let 𝑎𝑖 = 𝑖 · 𝑑 · 𝑎𝑖−1. Then for all 𝑖 ≥ 0, let 𝐴𝑖 = [𝑎𝑖 , 𝑎𝑖+1). Now for all 𝑟 ∈ {0, 1, 2, 3}, let 𝑉𝑟 =
𝐴𝑟 ∪ 𝐴4+𝑟 ∪ 𝐴8+𝑟 ∪ . . . .

Now color all edges which are inside 𝑉0 or 𝑉1 red, and all edges inside 𝑉2 or 𝑉3 blue. Color all edges
between 𝑉0 and 𝑉1 blue and all edges between 𝑉2 and 𝑉3 red. Finally, for all 𝑖 ∈ {0, 1}, 𝑗 ∈ {2, 3}, we
color the complete bipartite graphs 𝐾 (𝑉𝑖 , 𝑉 𝑗 ) according to Figure 5 as follows: Suppose first that there
is a red arrow from 𝑉𝑖 to 𝑉 𝑗 (and thus a blue arrow from 𝑉 𝑗 to 𝑉𝑖). Let 𝐴𝑠 ⊆ 𝑉𝑖 and 𝐴𝑡 ⊆ 𝑉 𝑗 . If 𝑠 < 𝑡,
then color all edges between 𝐴𝑠 and 𝐴𝑡 red. If 𝑡 < 𝑠, then color all edges between 𝐴𝑡 and 𝐴𝑠 blue. If
there is a blue arrow from 𝑉𝑖 to 𝑉 𝑗 (and thus a red arrow from 𝑉 𝑗 to 𝑉𝑖), we do the opposite.

Assume there is a monochromatic copy 𝑇 ′ of T, let f be the corresponding embedding, and let
𝑉 ′
𝑖 = 𝑓 (𝑇) ∩ 𝑉𝑖 for all 𝑖 ∈ {0, 1, 2, 3}. By symmetry, we may assume that t is embedded in 𝑉0; and let
𝑣 = 𝑓 (𝑡).
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Suppose first that T is embedded in the blue subgraph. Since v has finitely many blue neighbors
in 𝑉2 and cofinitely many vertices have distance at most 2 to v, all but finitely many vertices of
𝑉 ′

2 are neighbors of vertices in 𝑉 ′
1 in 𝑓 (𝑇). So for all sufficiently large q (i.e., large enough so that

𝑁𝑇 ′ (𝑣) ∩𝑉2 ⊆ 𝐴2 ∪ 𝐴6 ∪ · · · ∪ 𝐴4𝑞−2), we have

|𝑉 ′
2 ∩ 𝐴4𝑞+2 | ≤ 𝑑 |𝑉 ′

1 ∩ (𝐴1 ∪ 𝐴5 ∪ · · · ∪ 𝐴4𝑞+1) | ≤ 𝑑 · 𝑎4𝑞+1 ≤
𝑎4𝑞+2

4𝑞 + 2
,

and thus,

d(ran 𝑓 ) ≤ lim
𝑞→∞

| ran 𝑓 ∩ (𝐴1 ∪ . . . ∪ 𝐴4𝑞+2) |/(𝑎1 + . . . + 𝑎4𝑞+2)

≤ lim
𝑞→∞

(𝑎1 + . . . + 𝑎4𝑞+1 +
𝑎4𝑞+2
4𝑞+2 )/(𝑎1 + . . . + 𝑎4𝑞+2) = 0.

Suppose next that T is embedded in the red subgraph. Since v has no red neighbors in 𝑉1, all but
finitely many vertices of 𝑉 ′

1 are neighbors of vertices in 𝑉 ′
2 in 𝑓 (𝑇). So for all 𝑞 ≥ 1, we have

|𝑉 ′
1 ∩ 𝐴4𝑞+1 | ≤ 𝑑 |𝑉 ′

2 ∩ (𝐴2 ∪ 𝐴6 ∪ · · · ∪ 𝐴4𝑞−2) | ≤ 𝑑 · 𝑎4𝑞−2 ≤
𝑎4𝑞+1

4𝑞 + 1
,

and thus, d( 𝑓 (𝑇)) = 0. Since f was an arbitrary embedding, this shows that T is not Ramsey lower
dense. �

We now turn to part (i) of Theorem 1.14; that is, if T is a forest which is strongly contracting, has
no finite dominating set, and 𝑇 ∉ T ∗, then T is Ramsey-cofinite. We begin with a lemma which allows
us to embed forests which are strongly contracting into graphs with infinitely many vertices of cofinite
degree. Here, it is not important that we are embedding forests, and we will state and prove the lemma
more generally. Recall that a graph F is strongly contracting if there exists 𝑘 ∈ N such that for all ℓ ∈ N,
there exists an independent set A in F with |𝐴| ≥ ℓ such that |𝑁 (𝐴) | ≤ 𝑘 (and in particular, a forest is
strongly contracting if and only if it has finitely many components and unbounded leaf degree).
Lemma 8.7. Let F be a graph. A cofinite copy of F can be found in every graph H having infinitely
many vertices of cofinite degree if and only if F is strongly contracting.

In order to simplify the proof of the lemma, we first prove a structural result regarding strongly
contracting graphs.
Proposition 8.8. If F is strongly contracting, then there exists non-negative integers ℓ ≤ 𝑘 , an infinite
independent set U, a family of disjoint sets {𝑈𝑖 ⊆ 𝑈 : 𝑖 ∈ N} with |𝑈𝑖 | ≥ 𝑖 for all 𝑖 ∈ N, an ℓ-set 𝑉0, and
a family of disjoint (𝑘 − ℓ)-sets {𝑉𝑖 ⊆ 𝑉 (𝐹) \ (𝑈 ∪𝑉0) : 𝑖 ∈ N} such that for all 𝑖 ∈ N, 𝐹 [𝑈𝑖 , 𝑉0 ∪𝑉𝑖] is
a complete bipartite graph (note that the family {𝑉0 ∪ 𝑉𝑖 : 𝑖 ∈ N} is a k-uniform sunflower with a core
of order ℓ).
Proof. Since F is strongly contracting, there exists a non-negative integer 𝑘 ′, and without loss of
generality, there exists disjoint independent sets 𝑈 ′

1,𝑈
′
2, . . . such that for all 𝑖 ∈ N, |𝑈 ′

𝑖 | ≥ 𝑖2𝑘′ and
|𝑁 (𝑈 ′

𝑖 ) | ≤ 𝑘 ′. Now by pigeonhole, there exists a subset 𝑈𝑖 ⊆ 𝑈 ′
𝑖 with |𝑈𝑖 | ≥ 𝑖 and a nonempty subset

𝑉𝑖 ⊆ 𝑁 (𝑈𝑖) such that 𝐹 [𝑈𝑖 , 𝑉𝑖] is a complete bipartite graph. Indeed, since |𝑁 (𝑈 ′
𝑖 ) | ≤ 𝑘 , there are at

most 2𝑘′ different possible neighborhoods for vertices in𝑈 ′
𝑖 . By pigeonhole, there are at least i vertices

in𝑈 ′
𝑖 with the same neighborhood. Now by pigeonhole again, there exists an integer 0 ≤ 𝑘 ≤ 𝑘 ′ and an

infinite subsequence {𝑖 𝑗 } 𝑗∈N such that |𝑈𝑖 𝑗 | ≥ 𝑖 𝑗 and |𝑉𝑖 𝑗 | = 𝑘 and 𝐹 [𝑈𝑖 𝑗 , 𝑉𝑖 𝑗 ] is a complete bipartite
graph. Finally, by the infinite version of the sunflower lemma (see [19, Page 107, Problem 1]4), there
exists a subsequence { 𝑗ℎ}ℎ∈N such that the family {𝑉𝑖 𝑗ℎ : ℎ ∈ N} is a sunflower. �

4The proof is short. If 𝑘 = 1, then it is clear, so let 𝑘 ≥ 2 and suppose it is true for (𝑘 − 1)-uniform hypergraphs. If there is an
infinite matching, we are done; so suppose not. Since there is no infinite matching, there is a finite vertex cover and thus a vertex
v of infinite degree. Now apply induction to the (𝑘 − 1)-uniform link graph of v.
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Proof of Theorem 8.7. Note that in Example 2.8, both the red graph and the blue graph have the property
that there are infinitely many vertices of cofinite degree. So if a cofinite copy of F can be found in every
graph H having infinitely many vertices of cofinite degree, then F is not weakly expanding (i.e., F is
strongly contracting).

Now suppose F is strongly contracting. By Theorem 8.8, there exists non-negative integers k and ℓ,
an infinite independent set U, a family of disjoint sets {𝑈𝑖 ⊆ 𝑈 : 𝑖 ∈ N} with |𝑈𝑖 | ≥ 𝑖 for all 𝑖 ∈ N,
an ℓ-set 𝑉0, and a disjoint family of k-sets {𝑉𝑖 ⊆ 𝑉 (𝐹) \ (𝑈 ∪ 𝑉0) : 𝑖 ∈ N} such that for all 𝑖 ∈ N,
𝐹 [𝑈𝑖 , 𝑉0 ∪𝑉𝑖] is a complete bipartite graph.

Since there are infinitely many vertices 𝑉 ′ in H with cofinite degree, we may choose an infinite
clique 𝐾 ⊆ 𝐻 such that 𝑉 (𝐾) ⊆ 𝑉 ′. If 𝑉 (𝐻) \ 𝑉 (𝐾) is finite. Then we are done (since it is clear
that we can surjectively embed F into the clique K), so suppose not. Let 𝑋 ⊆ 𝑉 (𝐾) such that X and
𝑉 (𝐾) \ 𝑋 are both infinite. Let 𝑦1, 𝑦2, . . . be an enumeration of 𝑌 := N \ 𝑉 (𝐾). For all 𝑖 ∈ N, let
𝑋𝑖 = {𝑥 ∈ 𝑋 : ∀ 𝑗 ≥ 𝑖, {𝑥, 𝑦 𝑗 } ∈ 𝐸 (𝐻)}. Note that if there exists 𝑖 ∈ N such that 𝑋𝑖 is infinite, then we
have a copy of 𝐾N,N which covers all but finitely many vertices in Y, and from here, we can easily get
the desired embedding. So suppose that 𝑋𝑖 is finite for all 𝑖 ∈ N. For all 𝑥 ∈ 𝑋 , there exists 𝑖 ∈ N such
that 𝑥 ∈ 𝑋𝑖 , so let 𝜙(𝑥) = min{𝑖 ∈ N : 𝑥 ∈ 𝑋𝑖}. Let 𝑥1, 𝑥2, . . . be an enumeration of X such that for all
𝑖 ≤ 𝑗 , 𝜙(𝑥𝑖) ≤ 𝜙(𝑥 𝑗 ). Let 𝑋 ′

0 = {𝑥1, . . . , 𝑥ℓ } and for all 𝑖 ≥ 1, let 𝑋 ′
𝑖 = 𝑋

′
0 ∪ {𝑥ℓ+(𝑖−1)𝑘+1, . . . , 𝑥ℓ+𝑖𝑘 } and

let 𝜙(𝑖) = 𝜙(𝑥ℓ+𝑖𝑘 ). Finally, for all 𝑖 ≥ 1, let 𝑌𝑖 = {𝑦𝜙 (𝑖) , . . . , 𝑦𝜙 (𝑖+1)−1} (note that 𝑌𝑖 = ∅ if and only if
𝜙(𝑖) = 𝜙(𝑖 + 1)). Let 𝐼 = {𝑖 ≥ 1 : 𝑌𝑖 ≠ ∅} and note that since every 𝑋𝑖 is finite, we have that I is infinite.
Also note that for all 𝑖 ∈ 𝐼, [𝑋 ′

𝑖 , 𝑌𝑖] is a complete bipartite graph.
From the properties of F mentioned above, there is an injection 𝑓 : 𝐼 → N such that N \ 𝑓 (𝐼) is

infinite and for all 𝑖 ∈ 𝐼, |𝑈 𝑓 (𝑖) | ≥ |𝑌𝑖 |, and thus, there exists 𝑈 ′
𝑓 (𝑖) ⊆ 𝑈 𝑓 (𝑖) such that |𝑈 ′

𝑓 (𝑖) | = |𝑌𝑖 |.
Now for all 𝑖 ∈ 𝐼, we embed 𝑈 ′

𝑓 (𝑖) to 𝑌𝑖 and embed 𝑉 𝑓 (𝑖) to 𝑋 ′
𝑖 . Since N \ 𝑓 (𝐼) is infinite, there are

infinitely many remaining vertices in F, and these can be embedded to 𝐾 − 𝑋 (since K is a clique and
U is an independent set). �

Note that Theorem 8.7 allows us to focus on colorings in which all but finitely many vertices have
infinite degree in both colors. Given such a coloring, we will need to separate into a few cases depending
on the structure of T.

Proposition 8.9. Let T be an infinite tree with unbounded leaf degree, no finite dominating set, and
𝑇 ∉ T ∗. Then either T has unbounded radius, or there exists a vertex 𝑡 ∈ 𝑉 (𝑇) such that t is adjacent to
infinitely many non-leaves and

(i) there are infinitely many paths of length 3 starting at t which are pairwise vertex-disjoint apart
from t, or

(ii) there is a vertex in 𝑇 − {𝑡} of infinite degree, or
(iii) the neighbors of t have unbounded degrees.

Proof. Suppose that T has unbounded leaf degree, no finite dominating set, bounded radius, and
𝑇 ∉ T ∗. We first show that there is a vertex 𝑡 ∈ 𝑉 (𝑇) which is adjacent to infinitely many non-leaves.
Let 𝑠0 ∈ 𝑉 (𝑇) and think of it as the root. If 𝑠0 is adjacent to infinitely many non-leaves, we are done; so
assume it is adjacent to finitely many non-leaves 𝑆1. Since T has no finite dominating set, 𝑉 (𝑇) \ 𝑁 (𝑠0)
is infinite. In particular, some 𝑠1 ∈ 𝑆1 has an infinite subtree. If 𝑠1 is adjacent to infinitely many non-
leaves, we are done; so assume it is adjacent to finitely many non-leaves 𝑆2 other than 𝑠1. Since there is
no finite dominating set, some 𝑠2 ∈ 𝑆2 has an infinite subtree. We keep iterating until we find a vertex 𝑠𝑖
adjacent to infinitely many non-leaves. Since T has bounded radius, this process must finish eventually.

Let 𝑡 ∈ 𝑉 (𝑇) which is adjacent to infinitely many non-leaves and let S be the non-leaves adjacent
to t. Assume that there are only finitely many paths of length 3 starting at t which are pairwise vertex-
disjoint apart from t and that there is no 𝑡 ′ ∈ 𝑉 (𝑇) \ {𝑡} of infinite degree (otherwise we are done). Let
𝑆′ ⊆ 𝑆 be those vertices whose only children are leaves and let 𝑆′′ = 𝑆 \ 𝑆′. By the assumption, we have
that 𝑆′′ is finite. We claim that for each 𝑖 ∈ N, there is a vertex 𝑡 ′ ∈ 𝑆′ of degree at least i. Assume for
contradiction this is not the case and let 𝑑 := max𝑠∈𝑆′ deg(𝑠). Note that since T has bounded radius and
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no vertex of infinite degree other than t, there are only finitely many vertices which are successors of
vertices in 𝑆′′. Thus, since T has unbounded leaf degree, t must be adjacent to infinitely many leaves.
Therefore, 𝑇 ∈ T ∗, a contradiction. �

The main difficulty in the proof of Theorem 1.14 will be dealing with the trees of bounded radius
described in Theorem 8.9. The following lemma deals with that case.

Lemma 8.10. Let H be a 2-colored 𝐾N in which every vertex has infinite degree in both colors. Let T be
a tree of bounded radius containing a vertex t such that t is adjacent to infinitely many non-leaves and

(i) there are infinitely many paths of length 3 starting at t which are pairwise vertex-disjoint apart
from t, or

(ii) there is a vertex in 𝑇 − {𝑡} of infinite degree, or
(iii) the neighbors of t have unbounded degrees.

Then there is a cofinite monochromatic copy of T in H.

Assuming Theorem 8.10 (the proof of which we delay for the moment), we now prove Theorem 1.14.

Proof of Theorem 1.14. Part (ii) follows from Theorems 2.9, 2.8 and 8.6.
So let T be a forest which is strongly contracting, has no finite dominating set, and 𝑇 ∉ T ∗.
Let H be a 2-colored 𝐾N, and assume the colors are red and blue. If there are infinitely many vertices

of cofinite red degree or infinitely many vertices of cofinite blue degree, then we are done by Lemma 8.7;
so (by removing finitely many vertices) we may assume every vertex in H has infinite red degree and
infinite blue degree.

First, suppose that T has a component of unbounded radius or infinitely many components. If the
blue subgraph 𝐻𝐵 is infinitely connected, we can find a monochromatic spanning copy of T in 𝐻𝐵 by
Lemma 8.1. If𝐻𝐵 is not infinitely connected, there exists a finite set X such that𝐻𝐵−𝑋 is not connected.
So there exists a partition {𝑌, 𝑍} of N − 𝑋 such that all edges between Y and Z are red. Note that for all
𝑣 ∈ 𝑌 , 𝑁𝐵 (𝑣) ⊆ 𝑌 ∪ 𝑋 and for all 𝑣 ∈ 𝑍 , 𝑁𝐵 (𝑣) ⊆ 𝑍 ∪ 𝑋 . Since all vertices have infinite blue degree
and X is finite, this implies that both Y and Z are infinite. So 𝑌 ∪ 𝑍 is cofinite and 𝐻𝑅 [𝑌, 𝑍] induces a
red copy of 𝐾N,N. Since T has no finite dominating set, both parts of its bipartition are infinite, and we
can surjectively embed T into 𝐻𝑅 [𝑌, 𝑍].

Finally, suppose that T has finitely many components 𝑇1, . . . , 𝑇𝑘 all of which have bounded radius.
For all 𝑖 ∈ [𝑘], let 𝑡𝑖 ∈ 𝑉 (𝑇𝑖), and for all 2 ≤ 𝑖 ≤ 𝑘 , add the edge 𝑡1𝑡𝑘 to get a tree 𝑇 ′ which has bounded
radius, is strongly contracting, has no finite dominating set, 𝑇 ′ ∉ T ∗, and 𝑇 ′ contains T as a spanning
subgraph. Therefore, by Theorem 8.9, 𝑇 ′ satisfies the hypotheses of Theorem 8.10, and thus, we can
find a monochromatic copy of 𝑇 ′ (and consequently T) which spans cofinitely many vertices of H. �

It remains to prove Theorem 8.10.

Proof of Theorem 8.10. Let T and t be as in the statement and let H be a 2-colored 𝐾N which is as in
the statement. Note that deg(𝑡) = ∞, and there are infinitely many paths of length 2 starting at t which
are vertex disjoint apart from t (★). Let 𝑣 ∈ N be an arbitrary vertex. Let B be the set of blue neighbors
of v and let R be the set of red neighbors of v. Furthermore, let 𝐵′ be the set of vertices in B with finitely
many red neighbors in R and let 𝑅′ be the set of vertices in R with finitely many blue neighbors in B.
Let 𝑅′′ = 𝑅 \ 𝑅′ and 𝐵′′ = 𝐵 \ 𝐵′.

Case 1 (𝐵′ or 𝑅′ is finite.)
Suppose without loss of generality that 𝑅′ is finite. We will find an embedding f of T into the blue

subgraph 𝐻𝐵 covering the cofinite set {𝑣} ∪ 𝐵∪ 𝑅′′. We build f iteratively in finite pieces maintaining a
partial embedding of T whose domain is connected. Note that by keeping dom 𝑓 connected, we ensure
that every not yet embedded vertex is adjacent to at most one vertex in dom 𝑓 . Initially, we set 𝑓 (𝑡) = 𝑣.
Then we repeatedly follow the following two steps.
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Step 1. Let 𝑠 ∈ 𝑉 (𝑇) \ dom 𝑓 be the smallest not yet embedded vertex. Since every vertex has infinite
blue degree, it is easy to extend f so that dom 𝑓 remains connected and 𝑠 ∈ dom 𝑓 (by adding a path to s).
Step 2. Let 𝑢 ∈ (𝐵 ∪ 𝑅′′) \ ran 𝑓 be the smallest not yet covered vertex. If 𝑢 ∈ 𝐵, we can simply choose
a not-yet embedded neighbor of t and embed u into it (since t has infinite degree). If 𝑢 ∈ 𝑅′′, it has
infinitely many blue neighbors in B (by definition of 𝑅′), and therefore, there is a blue path 𝑣𝑥𝑢 of length
2 for some 𝑥 ∈ 𝐵 \ ran 𝑓 . By (★) we can extend f to cover x and u so that dom 𝑓 remains connected.

Routinely, this defines an embedding of T into 𝐻𝐵 covering 𝐵 ∪ 𝑅′.
Case 2 (𝐵′ and 𝑅′ are infinite.)

We further split into subcases depending on the structure of T.
Case 2.1 (T has infinitely many paths of length 3 starting at t which are pairwise vertex-disjoint

apart from t): We will find an embedding f of T into the blue subgraph 𝐻𝐵 covering N. We build f
iteratively in finite pieces maintaining a partial embedding of T whose domain is connected. Initially,
we set 𝑓 (𝑡) = 𝑣. Then we repeat the following two steps.
Step 1. We extend f to include the smallest not yet embedded vertex as above.
Step 2. Let 𝑢 ∈ N \ ran 𝑓 be the smallest not yet covered vertex. If 𝑢 ∈ 𝐵 ∪ 𝑅′′, we proceed as above; so
suppose 𝑢 ∈ 𝑅′. Note that u (as every other vertex) has infinitely many blue neighbors, and by definition
of 𝑅′, only finitely many of those can lie outside R. Furthermore, every vertex 𝑢′ ∈ 𝐵′ has only finitely
many red neighbors in R, and thus, u and 𝑢′ have infinitely many common blue neighbors in R. It follows
that there is a blue path P of length 3 from v to u so that (𝑃 \ {𝑣}) ∩ ran 𝑓 = ∅. By the case assumption,
we can extend f to cover this path.

Routinely, the resulting function f is an embedding of T into N. Observe that the only difference to
the previous case is how we deal with vertices in 𝑅′. This will be similar in the following cases and we
therefore skip some details.

Case 2.2 (T has a vertex 𝑡 ′ ∈ 𝑉 (𝑇) \ {𝑡} of infinite degree): Given some integer 𝑑 ≥ 1, we say
that a path P is d-good in blue (red) if it has length d, starts at v and ends at some 𝑣′ ∈ N \ {𝑣}, is
monochromatic in blue (red) and 𝑣′ has only finitely many red (blue) neighbors in 𝑅′ (𝐵′). We will first
show that (i) for every positive integer 𝑑 ≠ 2, there is a red d-good path and a blue d-good path, and (ii)
there is a red 2-good path or a blue 2-good path.

If 𝑑 = 1, any vertex in 𝐵′ forms a blue d-good path with v. Since any two vertices in 𝐵′ have infinitely
many common blue neighbors in R, we can extend this path to a 3-good path. We can proceed like this to
get a d-good path in blue path for any odd d. If 𝑑 ≥ 4 is even, we start by building a blue path of length
2 to some 𝑢 ∈ 𝑅′ and take some 𝑣′ ∈ 𝐵′ not yet in the path. Since u has infinitely many blue neighbors
in R and every vertex in 𝐵′ has only finitely many red neighbors in R, u and 𝑣′ have a common blue
neighbor not yet in the path, giving us a d-good path in blue. We can extend this path now as before to
any even length 𝑑 ≥ 4. We can proceed similarly for red paths. Finally suppose 𝑑 = 2. If there are 𝑢1 ∈ 𝑅
and 𝑢2 ∈ 𝑅′ such that 𝑢1𝑢2 is red, then 𝑣𝑢1𝑢2 is 2-good in red, and we are done. Otherwise, every 𝑢 ∈ 𝑅
has only blue neighbors in 𝑅′. We can thus form a blue path from v to R of length 2, which is 2-good
in blue.

Let now d be the distance from t to 𝑡 ′ in T and let P be a d-good path (say in blue). Embed t into v
and the unique path from t to 𝑡 ′ into P (and call this partial embedding f ). Let 𝑣′ = 𝑓 (𝑡 ′) and remove the
finite set of vertices in 𝑅′ which is not in the blue neighborhood of 𝑣′. We then extend f in finite pieces
exactly as in the previous case apart from when 𝑢 ∈ 𝑅′, where we simply embed an available neighbor
of 𝑡 ′ into u.

Case 2.3 (for all 𝑖 ∈ N, there is a vertex 𝑡 ′ ∈ 𝑁𝑇 (𝑡) of degree at least i): We may assume we are not
in Case 2.2 and thus there is an infinite set 𝑆 ⊆ 𝑁𝑇 (𝑡) of vertices with distinct degrees. Furthermore, we
may assume we are not in Case 2.1, and thus, cofinitely many vertices of T have distance at most 2 to t.
Let 𝑇0 be the finite subtree rooted at t which consists of all paths from t to leaves of distance at least 3.

Let 𝑢1, 𝑢2, . . . be an enumeration of 𝑁𝑇 (𝑡). Let 𝑦1, 𝑦2, . . . be an enumeration of R. Let 𝐵1 ⊆ 𝐵′ such
that 𝐵1 is infinite and 𝐵′ \ 𝐵1 is infinite, then set 𝐵2 = 𝐵 \ 𝐵1.
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For all 𝑥 ∈ 𝐵1 there exists 𝜙(𝑥) ∈ N such that 𝑦𝜙 (𝑥)−1 ∉ 𝑁𝐵 (𝑥) and 𝑦 𝑗 ∈ 𝑁𝐵 (𝑥) for all 𝑗 ≥ 𝜙(𝑥) (if
𝑌 ⊆ 𝑁𝐵 (𝑥), then 𝜙(𝑥) = 1). For all 𝑖 ≥ 1, let 𝑋 𝑖 = {𝑥 ∈ 𝐵1 : 𝜙(𝑥) = 𝑖}. If |𝑋 𝑖 | = ∞ for some 𝑖 ∈ N,
then reset 𝐵1 := 𝑋 𝑖 and 𝐵2 := 𝐵 \ 𝐵1, enumerate 𝐵1 as 𝑥1, 𝑥2, . . . . Otherwise, 𝑋 𝑖 is finite for all i and
thus there is a natural enumeration 𝑥1, 𝑥2, . . . of 𝐵1 such that 𝜙(𝑥𝑖) ≤ 𝜙(𝑥 𝑗 ) whenever 𝑖 ≤ 𝑗 .

Initially, we set 𝑓 (𝑡) = 𝑣, and we embed 𝑇0 in 𝐻𝐵 using the fact that every vertex in H has infinite
blue degree. Now every vertex in𝑉 (𝑇) \ dom 𝑓 has distance at most 2 to r. Now we repeat the following
two steps.

Step 1. Let 𝑥𝑖 and 𝑥 𝑗 (with 𝑖 < 𝑗) be the two smallest vertices in 𝐵1\ran 𝑓 and let 𝑢𝑛𝑖 ∈ 𝑁𝑇 (𝑡) \dom 𝑓
such that 𝑢𝑛𝑖 has at least 𝜙(𝑥 𝑗 ) − 𝜙(𝑥𝑖) children in T (which is possible by the case). Set 𝑓 (𝑢𝑛𝑖 ) = 𝑥𝑖 and
embed the (finitely many) vertices in 𝑁𝑇 (𝑢𝑛𝑖 ) \ {𝑡} to the smallest vertices in {𝑦𝜙 (𝑥𝑖 ) , 𝑦𝜙 (𝑥𝑖 )+1, . . . } \
ran 𝑓 .

Step 2. Injectively embed all vertices from {𝑢1, 𝑢2, . . . , 𝑢𝑛𝑖+1} \ dom 𝑓 (which is nonempty since
𝑢𝑛𝑖+1 ∉ dom 𝑓 ) to the smallest vertices in 𝐵2 \ ran 𝑓 . Now, using the fact that every vertex in H has
infinite blue degree, iteratively embed the children of each vertex 𝑢𝑛ℓ ∈ {𝑢𝑛𝑖−1+1, . . . , 𝑢𝑛𝑖−1} anywhere
in 𝑁𝐵 ( 𝑓 (𝑢𝑛ℓ )) \ ({𝑥 𝑗 } ∪ ran 𝑓 ). Now move to Step 1 (and notice that 𝑥 𝑗 will become the smallest vertex
in 𝐵1 \ ran 𝑓 ).

The resulting function f is an embedding of T into H covering a cofinite set. �

8.4. General graphs

In the previous section, we completely characterize forests which are Ramsey-cofinite. We know that if a
graph F is Ramsey-cofinite, then F is bipartite, strongly contracting, and has no finite dominating set (by
Theorems 2.8 to 2.10). However, from the proof in the previous section, we know that if G is bipartite,
strongly contracting, and has no finite dominating set and we are given a 2-coloring of 𝐾N such that
one of the colors is not infinitely connected, then there is a cofinite monochromatic copy of G. So this
raises the question of completely characterizing all graphs which are Ramsey-cofinite. However, given
the information from the previous sections, we can narrow this down to a much more specific question.

Problem 8.11. Characterize the graphs G which are bipartite, strongly contracting, and have no finite
dominating set such that there exists a cofinite monochromatic copy in every 2-coloring of 𝐾N in which
both colors are infinitely connected.

The following is an easy to state sufficient condition (we are aware of a more general sufficient
condition which contains Theorem 1.14(i), but as we don’t believe the more general condition is
necessary, we go for simplicity instead).

Theorem 8.12. If G is bipartite, strongly contracting, and has arbitrarily long paths whose internal
vertices have degree 2, then G is Ramsey-cofinite.

This follows because if we are given a 2-coloring of 𝐾N in which both colors are infinitely connected,
then at least one of those colors contains an infinite clique. So we can use the following lemma.

Lemma 8.13. Let F be a connected graph. A spanning copy of F can be found in every infinitely
connected graph H with an infinite clique if F has arbitrarily long paths whose internal vertices have
degree 2.

Proof. Assume that F has arbitrarily long induced paths and that H is infinitely connected with an
infinite clique 𝐾 ⊆ 𝐻. We will construct an embedding f of F into H iteratively in finite pieces. For
each 𝑖 ∈ N, we will do the following two steps: First, let 𝑡 ∈ 𝑉 (𝑇) \ dom 𝑓 be the smallest not-yet
embedded vertex and embed it into an arbitrary vertex 𝑢 ∈ 𝑉 (𝐾) \ ran 𝑓 . Second, let 𝑣 ∈ 𝑉 (𝐻) \ ran 𝑓
be the smallest not-yet covered vertex and let P be a finite path in H which starts and ends in K, contains
v and avoids ran 𝑓 (such a path exist since H is infinitely connected). Let 𝑃′ be an induced path in
T of the same length as P which avoids dom 𝑓 (such a path exists since T has arbitrary long induced
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paths). Extend f by embedding 𝑃′ into P. Note that all neighbors of the internal vertices of 𝑃′ will be
embedded, and the endpoints of 𝑃′ are in K. Therefore, we maintain a partial embedding throughout
the process. Since we eventually embed every 𝑡 ∈ 𝑉 (𝑇), the resulting function f is an embedding of T
into H. Since we eventually cover every 𝑣 ∈ 𝑉 (𝐻), this embedding is surjective. �

9. Ramseyness of coideals

9.1. Ideals and coideals

An ideal on a set X is a collection I of subsets of X such that (1) for any 𝐵 ∈ I and 𝐴 ⊆ 𝐵, we have
𝐴 ∈ I, and (2) for any 𝐴, 𝐵 ∈ I, we have 𝐴 ∪ 𝐵 ∈ I. We call an ideal I on X proper if 𝑋 ∉ I. If I is an
ideal, then we write I+ for its complement P (𝑋) \ I, and we call I+ a coideal.

In this section, we will primarily be concerned with ideals on countable sets, and in particular ideals
on N. Some commonly used examples of ideals on N are

(i) fin = {𝐴 ⊆ N | |𝐴| < ∞},
(ii) Z0 = {𝐴 ⊆ N | 𝑑 (𝐴) = 0},

(iii) I1/𝑛 = {𝐴 ⊆ N |
∑

𝑛∈𝐴 1/𝑛 < ∞}.
In general, we view an ideal I on X as a way of measuring which subsets of X are ‘small’. In this

light, we only consider an ideal I to be nontrivial if I is proper and contains the finite subsets of X,
since at the very least, the finite subsets of X should be ‘small’, and X itself should not be ‘small’.

Let G be a graph and I+ be a coideal on N. We say that G is I+-Ramsey if, for every finite coloring
of 𝐾N, there is a monochromatic copy of G whose vertex set is in I+.

The first thing to note is that we may reexpress one of the central notions of this paper using the
above terminology; namely, a graph G is Ramsey-dense if and only if G is Z+

0 -Ramsey. For another
example, Ramsey’s theorem says that 𝐾N is fin+-Ramsey. In the remainder of this section, we investigate
the relationship between coideals I+ and graphs G such that G is I+-Ramsey. We hope that the results
to follow will help the reader to better understand some of the characteristics of Ramsey-dense graphs,
while simultaneously establishing a more general setting for the kind of questions we are interested in,
where different notions of ‘small’ other than ‘asymptotic density zero’ are considered. Before continuing,
we note three easy observations.
Fact 9.1. Let I and J be ideals on N and suppose I ⊆ J . For any graph G, if G is J +-Ramsey, then
G is I+-Ramsey.
Fact 9.2. Let I be an ideal onN and let 𝐴 ∈ I+. For any partition {𝐴1, . . . , 𝐴𝑘 } of A, there exists 𝑖 ∈ [𝑘]
such that 𝐴𝑖 ∈ I+.
Fact 9.3. For every nontrivial ideal I, there is an ultrafilter 𝒰 ⊆ I+.
Proof. Let F = {𝐼𝑐 : 𝐼 ∈ I} and observe that F satisfies (𝑖) − (𝑖𝑖𝑖) in Theorem 3.1 (such a family is
called a filter). Hence, we can apply Zorn’s lemma as in Theorem 3.3 to get an ultrafilter 𝒰 containing
F . Then, for every 𝐼 ∈ I, we have 𝐼𝑐 ∈ F ⊆ 𝒰, and thus, 𝐼 ∉ 𝒰; hence, 𝒰 ⊆ I+. �

9.2. Finitely-ruled graphs and the ideal nwd

Recall that one of the motivating problems of this paper is to characterize the Ramsey-dense graphs – or
in other words, the graphs G such that G is Z+

0 -Ramsey. In Theorem 9.4, we provide a characterization
of those graphs G for which G is I+-Ramsey for every nontrivial ideal I on N. Interestingly, this
characterization reduces to one particular ideal, and one particular 2-coloring, both of which we will
describe now.

Note that every positive integer n has a binary expansion in which the leftmost digit is a 1, the
truncated binary expansion of n is what remains after removing the leftmost digit from the binary
expansion (for instance, the truncated binary expansion of 19 is 0011). Given 𝑠, 𝑡 ∈ N, we say that t
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extends s, if 𝑠 ≤ 𝑡 and the truncated binary expansion of t contains the truncated binary expansion of s as
its initial segment (for instance, 19 extends 7 since 0011 contains 11 as its initial segment, reading from
right to left). Given 𝑠 ∈ N, we write 〈𝑠〉 for the set of 𝑡 ∈ N which extend s (for instance, 〈1〉 = N, 〈2〉 is
the positive even integers, and 〈3〉 is the positive odd integers). The ideal nwd consists of all sets 𝐴 ⊆ N
such that for every 𝑠 ∈ N, there exists an extension t of s such that 𝐴 ∩ 〈𝑡〉 = ∅.5 It is straightforward to
check that nwd is a nontrivial ideal (that is, a proper ideal containing all of the finite subsets of N).

Recall that the Rado coloring was defined in Section 2.4.

Theorem 9.4. The following are equivalent for any countably infinite graph G.

(i) For every nontrivial ideal I on N, G is I+-Ramsey.
(ii) In the Rado coloring of 𝐾N, there is a monochromatic copy of G such that 𝑉 (𝐺) ∈ nwd+.

(iii) G is finitely-ruled.

Proof of Theorem 9.4. (i =⇒ ii) nwd is a nontrivial ideal on N, so in every 2-coloring of the edges of
𝐾N (and in particular, the Rado coloring), there is a monochromatic copy of G with 𝑉 (𝐺) ∈ nwd+.

(ii =⇒ iii) Suppose G is infinitely-ruled and there exists a monochromatic copy of G in the Rado
coloring of 𝐾N with color 𝑖 ∈ {0, 1}. We show that 𝑉 (𝐺) ∈ nwd.

Let 𝐹𝑛 (𝑛 ∈ N) be pairwise-disjoint, finite ruling sets in G, and fix 𝑠 ∈ N. Then there is some n such
that for all 𝑡 ∈ 𝐹𝑛, 𝑡 > 𝑠. Let 𝑢 ∈ N with 𝑢 > max{𝑡 | 𝑡 ∈ 𝐹𝑛} such that u extends s and the tth bit of u
is 1 − 𝑖 for all 𝑡 ∈ 𝐹𝑛. This means that no vertex in 〈𝑢〉 is adjacent to any vertex in 𝐹𝑛 in color i. Since
𝐹𝑛 is a ruling set, this implies that 𝑉 (𝐺) ∩ 〈𝑢〉 is finite. Since 𝑉 (𝐺) ∩ 〈𝑢〉 is finite, there exists 𝑢′ > 𝑢
such that 𝑢′ extends u and 𝑉 (𝐺) ∩ 〈𝑢′〉 = ∅, and thus, 𝑉 (𝐺) ∈ nwd.

(iii =⇒ i) Let F be a finite subset of 𝑉 (𝐺) for which 𝐺 \ 𝐹 is 0-ruled, and let 𝑛 = |𝐹 |. Fix a proper
ideal I on X containing the finite subsets of X, and let 𝒰 be an ultrafilter contained in I+ (which exists
by Theorem 9.3). Now we proceed exactly as in the proof of Theorem 1.6. �

We see that Theorem 1.6 is a special case of Theorem 9.4 since, in particular, Theorem 9.4 shows that
every finitely-ruled graph G is Z+

0 -Ramsey. Problem 1.11 asks whether the converse is true; that is, if G
is Z+

0 -Ramsey, is G finitely-ruled? Theorem 9.4 might be viewed as evidence towards this conclusion,
since it shows that this is true at least for the coideal nwd+ in place of Z+

0 . However, we might view
Theorem 9.4 as evidence in the opposite direction, since one would expect there to be some infinite
graph G which distinguishes the coideals nwd+ and Z+

0 as nwd and Z0 have very different properties as
ideals. Of course, this is all just speculation.

9.3. Infinitely ruled graphs and relative density zero ideals

Let 𝑓 : N → N be a function. The ideal Z 𝑓 is defined to be the set of all 𝐴 ⊆ N such that |𝐴 ∩
{1, . . . , 𝑛}|/ 𝑓 (𝑛) → 0 as 𝑛 → ∞. The ideal Z0 is one example, where we take f to be the identity
function. The reader may check that Z 𝑓 ⊆ Z𝑔 whenever 𝑓 ≤ 𝑔, though of course the converse does not
hold.

In Theorem 2.15, we showed that if G is infinitely ruled and the ruling sets grow slowly enough, then
G is not Z+

0 -Ramsey (i.e., G is not Ramsey dense). In this section, we will give an example of a family
G of infinitely ruled graphs (where the size of the ruling sets may go to infinity at any prescribed rate,
no matter how slowly) such that for all functions 𝑓 : N→ N satisfying 𝑓 (𝑛)/𝑛→ 0 and for all 𝐺 ∈ G,
G is Z+

𝑓 -Ramsey.
Let T be a tree with a fixed root r. Given vertices 𝑢, 𝑣 ∈ 𝑉 (𝑇), we say that v is an extension of u if u

lies on the unique path from r to v. We say that two vertices in T are compatible if one is an extension

5The notation nwd stands for ‘nowhere dense’, and typically the ideal nwd is studied on the set Q; however, for consistency
with the rest of the paper, we state all of the results in terms of the set N. That being said, it is possible to show that the set N,
when given the topology generated by the sets 〈𝑠〉, is homeomorphic to the space Q ∩ [0, 1) , and under this homeomorphism,
the sets in nwd correspond to those subsets of Q ∩ [0, 1) which are not dense in any subinterval of [0, 1) .
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of the other. The compatibility graph of (𝑇, 𝑟), 𝐶𝑇 ,𝑟 , is the graph with vertex set 𝑉 (𝑇) and edges {𝑢, 𝑣}
for all compatible vertices u and v. (This is sometimes called the downward closure of (𝑇, 𝑟).)

An antichain in T is a set of pairwise-incompatible vertices, and we call an antichain A maximal if
there is no antichain B such that A is a proper subset of B. Note that every finite maximal antichain in T
is a ruling set in 𝐶𝑇 ,𝑟 ; in particular, if T is locally finite, then the sets 𝑅𝑛 = {𝑣 ∈ 𝑉 (𝑇) | 𝑑𝑇 (𝑣, 𝑟) = 𝑛}
form finite ruling sets in 𝐶𝑇 ,𝑟 .

We say that T is perfect if every vertex has at least two incompatible extensions. If T is locally finite
and perfect, then |𝑅𝑛 | → ∞ as 𝑛→ ∞, but the growth of this sequence may be arbitrarily slow.

Theorem 9.5. Let 𝑓 : N → N be any function satisfying 𝑓 (𝑛)/𝑛 → 0, and let T be any locally finite,
perfect tree with fixed root r. Then 𝐶𝑇 ,𝑟 is Z+

𝑓 -Ramsey.

Theorem 9.5 is immediately implied by the following two results.

Proposition 9.6. Suppose 𝑓 : N → N satisfies 𝑓 (𝑛)/𝑛 → 0. Then for any finite coloring of 𝐾N, there
is a monochromatic complete multipartite subgraph, with finite parts, whose vertex set is in Z+

𝑓 .

Proposition 9.7. Let T be a perfect tree with a fixed root r, and let M be a complete, infinite multipartite
graph, with finite parts. Then there is a copy of 𝐶𝑇 ,𝑟 in M which spans all but finitely many of the parts
of M.

Proof of Theorem 9.6. Consider the ideal I 𝑓 consisting of all sets 𝐴 ⊆ N satisfying

sup
𝑛

|𝐴 ∩ {1, . . . , 𝑛}|/ 𝑓 (𝑛) < ∞

(Note that the assumption on f implies that I 𝑓 is proper.) Clearly, Z 𝑓 ⊆ I 𝑓 . We moreover note that
if 𝐴1, 𝐴2, . . . is a sequence from I+

𝑓 satisfying 𝐴1 ⊇ 𝐴2 ⊇ · · · , then there is a set 𝐴 ∈ I+
𝑓 satisfying

|𝐴 \ 𝐴𝑛 | < ∞ for all n. (For instance, A may be constructed by letting 𝐴 =
⋃

𝑛 𝐴𝑛 ∩ [𝑘𝑛, 𝑘𝑛+1], where
𝑘𝑛 is chosen recursively to satisfy |𝐴𝑛 ∩ [𝑘𝑛, 𝑘𝑛+1] |/ 𝑓 (𝑘𝑛+1) ≥ 𝑛.)

Now fix an r-coloring 𝜒 of 𝐾N. We will recursively construct sets 𝐴1, 𝐴2, . . . ∈ I+
𝑓 , and an r-coloring

𝜌 of N, such that 𝐴1 ⊇ 𝐴2 ⊇ · · · and for all n and 𝑚 ∈ 𝐴𝑛, 𝜒({𝑛, 𝑚}) = 𝜌(𝑛). This construction goes
as follows. First, we set 𝐴1 = N. Now, given 𝐴𝑛, note that the sets 𝐴𝑛 ∩ 𝑁𝑖 (𝑛), for 𝑖 = 1, . . . , 𝑟 , partition
𝐴𝑛 \ {𝑛}, and hence at least one must be in I+

𝑓 (by Theorem 9.2). We choose one to be 𝐴𝑛+1 and define
𝜌(𝑛) to be the associated color i.

Now by the above-mentioned property of I+
𝑓 , we may find a single set 𝐴′ ∈ I+

𝑓 such that |𝐴′\𝐴𝑛 | < ∞
for all n. Now let 𝐴 = 𝐴′ ∩ 𝜌−1(𝑖) for some 𝑖 ∈ [𝑟] such that 𝐴 ∈ I+

𝑓 . Hence, for all 𝑛 ∈ 𝐴, there are only
finitely-many 𝑚 ∈ 𝐴 for which 𝜒({𝑛, 𝑚}) ≠ 𝑖. In other words, the graph 𝐾𝑖 [𝐴] consisting of edges of
color i induced on vertex set A has the property that every vertex has cofinite degree. This allows us to
construct, recursively, a sequence 𝑏0 < 𝑏1 < · · · such that for all 𝑛, 𝑚 ∈ 𝐴 with 𝑛 ≤ 𝑏𝑘 and 𝑚 ≥ 𝑏𝑘+1,
𝜒({𝑛, 𝑚}) = 𝑖. Let

𝐴∗0 = 𝐴 ∩
∞⋃
𝑘=0

[𝑏2𝑘 , 𝑏2𝑘+1)

and 𝐴∗1 = 𝐴 \ 𝐴0. Then each of 𝐴∗0 and 𝐴∗1 is the vertex set of a monochromatic multipartite graph with
finite parts, and moreover, at least one is in I+

𝑓 , and hence, Z+
𝑓 (by Fact 9.1, since Z 𝑓 ⊆ I 𝑓 ). �

Proof of Theorem 9.7. Let 𝑟1 := 𝑟 and let 𝑃 = 𝑟1𝑟2 . . . 𝑟𝑘 be the shortest path from 𝑟1 to a vertex 𝑟𝑘 such
that 𝑟𝑘 has at least two successors (if 𝑟1 itself has two successors, then 𝑟𝑘 = 𝑟1 and 𝑃 = 𝑟1 is just a trivial
path). Note that every vertex 𝑟𝑖 on the path P is a maximal antichain (and thus a ruling set in𝐶𝑇 ,𝑟 ). Also,
every vertex 𝑣 ∈ 𝑉 (𝐶𝑇 ,𝑟 ) \𝑉 (𝑃) is part of a maximal infinite independent set which we denote 𝐼 (𝑣).

Let 𝐾 := 𝐾1,...,1,N,N,... be the complete multipartite graph with k parts of order 1 and infinitely many
infinite parts. Clearly, K can be embedded into M in such that way that K spans all but finitely many parts
of M. We will show that 𝐶𝑇 ,𝑟 can be surjectively embedded into K which will then complete the proof.
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First, we embed the path 𝑃 = 𝑟1 . . . 𝑟𝑘 into the parts of order 1. Let 𝑣1, 𝑣2, . . . be an enumeration
of the remaining vertices of K. Note that this ordering induces an ordering 𝑉1, 𝑉2, . . . of the infinite
parts themselves (meaning that if 𝑣𝑛 ∈ 𝑉 𝑗 , then {𝑣1, 𝑣2, . . . , 𝑣𝑛} ⊆

⋃ 𝑗
𝑖=1𝑉𝑖) and an ordering 𝑣𝑖1, 𝑣

𝑖
2 of

each 𝑉 𝑖 . Finally, let 𝑢1, 𝑢2, . . . be an enumeration of 𝑉 (𝑇) \𝑉 (𝑃) such that 𝑇 [{𝑟1, . . . , 𝑟𝑘 , 𝑢1, . . . , 𝑢𝑖}]
is connected for all 𝑖 ≥ 1.

Initially, we set 𝑓 (𝑢1) = 𝑣1 (where 𝑣1 ∈ 𝑉1) and then we repeat the following two steps.
Step 1. Let 𝑣𝑖𝑗 ∈ 𝑉 𝑖 be the smallest vertex in 𝑉 (𝐾) \ ran 𝑓 . If 𝑗 = 1 (i.e., 𝑉 𝑖 ∩ ran 𝑓 = ∅, move to Step 2.
Otherwise, let 𝑢 ∈ dom 𝑓 such that 𝑓 (𝑢) ∈ 𝑉 𝑖 . Now let 𝑢′ ∈ 𝐼 (𝑢) \ dom 𝑓 and set 𝑓 (𝑢′) = 𝑣𝑖𝑗 ).
Step 2. Let m be the largest index such that 𝑢𝑚−1 ∈ dom 𝑓 and let𝑈 ′ = {𝑢′1, 𝑢

′
2, . . . , 𝑢

′
ℓ } := {𝑢1, . . . , 𝑢𝑚}\

dom 𝑓 . Let n be the largest index such that 𝑉𝑛 ∩ ran 𝑓 ≠ ∅. Now for all 𝑖 ∈ [ℓ], set 𝑓 (𝑢′𝑖) = 𝑣𝑛+𝑖1 (where
𝑣𝑛+𝑖1 is the first vertex in 𝑉𝑛+𝑖). Note that for all 𝑖 ≥ 1, 𝑣𝑛+𝑖1 is adjacent to every vertex in ran 𝑓 .

At the end of each instance of Step 1 and Step 2, we have covered the first available vertex in
𝑉 (𝐾) \ ran 𝑓 , and we have embedded an entire interval {𝑢1, 𝑢2, . . . , 𝑢𝑚} in the ordering of 𝑉 (𝑇),
including the first available vertex in 𝑉 (𝑇) \ dom 𝑓 . Thus, we have defined a surjective embedding of
𝐶𝑇 ,𝑟 into K, which completes the proof. �

In the proof of Theorem 9.6, we have a graph with vertex set 𝐴 ∈ I+
𝑓 in which every vertex has

cofinite degree. We use this to show that A can be partitioned into two infinite complete multipartite
graphs with all parts finite, one of which, call it M, must have vertex set in I+

𝑓 . We then show that if T is
perfect tree with fixed root r, then𝐶𝑇 ,𝑟 can be embedded into M. This raises the following two questions.

Problem 9.8.

(i) Characterize all graphs which can be cofinitely embedded into every graph in which every vertex
has cofinite degree.

(ii) Characterize all graphs which can be cofinitely embedded into every infinite complete multipartite
graph with finite parts.

10. Conclusion and open problems

10.1. Graphs of bounded chromatic number/maximum degree/degeneracy

Let G be a graph with Δ := Δ (𝐺) ≥ 2. We know that 2 ≤ 𝜒(𝐺) ≤ Δ (𝐺) + 1, and we proved that
1

2(Δ−1) ≤ Rd(𝐺) ≤ 1
𝜒 (𝐺)−1 . It would be interesting to know whether these bounds can be improved in

general. From Theorem 2.2.(ii), we know that the bound in Theorem 1.2.(i) cannot be improved without
further restrictions.

Problem 10.1. If possible, improve the bounds in Theorem 1.2.(ii),(iii).

We make the following conjecture which would imply Theorem 1.5 in the case where G has no finite
dominating set (see Theorem 6.5 and Theorem 6.6).

Conjecture 10.2. Let 𝑑 ∈ N and let 𝐻𝑑 be the graph defined in Theorem 6.4. There exists 𝑐 = 𝑐(𝑑) > 0
such that Rd(𝐻𝑑) ≥ 𝑐. More weakly, Rd(𝐻𝑑) > 0.

We know that Theorem 10.2 is true when 𝑑 = 1 because 𝐻1 = 𝑇∞ and Rd(𝑇∞) = 1/2. Even solving
the conjecture when 𝑑 = 2 would be a big step forward.

Note that for all 𝑟 ≥ 3, Theorem 2.3 shows that Rd𝑟 (𝐻𝑑) = 0 for all 𝑑 ∈ N. This stands in contrast to
the finite case where Lee’s proof [23] shows that Theorem 1.4 holds for any number of colors. However,
if G is d-degenerate and locally finite, then Theorem 1.2.(iii) implies that Rd𝑟 (𝐺) ≥ 1/𝑟𝑑𝑟 . So for more
than 2 colors, the only interesting case is d-degenerate graphs with infinitely many vertices of finite
degree and some vertices of infinite degree.
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10.2. Ramsey-dense graphs and graphs with positive upper Ramsey density

We know that every 0-ruled graph is Ramsey-dense, and we know that there exist 0-ruled graphs G with
Rd(𝐺) = 0, but all such graphs G that we know of have 𝜒(𝐺) = ∞ (see Theorem 2.5). So we ask the
following question.

Problem 10.3. Does there exist a graph G which is 0-ruled and 𝜒(𝐺) < ∞, but Rd(𝐺) = 0? For
instance, is Rd(R2) = 0? (where R2 is the bipartite Rado graph)

Note that for 𝑟 ≥ 3, Theorem 2.3 provides examples of 0-ruled graphs G with 𝜒(𝐺) < ∞, but
Rd𝑟 (𝐺) = 0.

In Theorem 1.11, we ask if there are Ramsey-dense graphs with rul(𝐺) = ∞. A more expansive
series of questions is the following.

Problem 10.4.

(i) Characterize all Ramsey-dense graphs.
(ii) Characterize graphs G with Rd(𝐺) > 0.

(iii) Characterize graphs G which are Ramsey-dense, but Rd(𝐺) = 0.

In Theorem 9.5, we proved that every graph in a certain class of graphs with infinite ruling number
is Z+

𝑓 -Ramsey. So we raise the following problem. Also, see Theorem 9.8.

Problem 10.5. Characterize all graphs G having the property that for all functions 𝑓 : N→ N satisfying
𝑓 (𝑛)/𝑛→ 0, G is Z+

𝑓 -Ramsey.

10.3. Ramsey-lower-dense and Ramsey-cofinite graphs

One of the main results in the paper is a characterization of all Ramsey-cofinite forests. The most
interesting open problem here is the following (cf. Theorem 8.11).

Problem 10.6. Characterize all Ramsey-cofinite graphs.

In Theorem 1.14, we proved that every forest is either Ramsey-cofinite or is not Ramsey-lower-dense.
We suspect that this is true of every graph (in [10, Problem 8.10] we asked the weaker question of
whether Rd(𝐺) < 1 implies that G has Ramsey-lower-density 0).

Conjecture 10.7. For every graph G, if G is not Ramsey-cofinite, then G is not Ramsey-lower-dense.

10.4. Ramsey-upper-density of trees

We showed that Rd(𝑇) ≥ 1/2 for every infinite tree T, and we showed that this result is tight for some
trees such as 𝑇∞. Lamaison [21] obtained sharp results on Ramsey upper densities of locally finite trees.

It would be interesting to extend some of these results to more colors. By Theorem 2.3, we know
that for all 𝑟 ≥ 3, if T is a tree with finitely many vertices of finite degree, then Rd𝑟 (𝑇) = 0. However,
we know from Theorem 1.2, that if T is an infinite, locally finite tree, then Rd𝑟 (𝑇) ≥ 1/𝑟 (which is best
possible for some trees); or more generally, if T is an infinite, one-way k-locally finite tree for some
𝑘 ≥ 2, then Rd𝑟 (𝑇) ≥ 1/𝑟 (𝑘−2)𝑟+1. So for more than 2 colors, one should focus on trees with infinitely
many vertices of finite degree which are not one-way k-locally finite for any 𝑘 ≥ 2.

10.5. Bipartite graphs

We conjectured (Theorem 1.17) that the vertices of every r-colored 𝐾N,N can be partitioned into a finite
set and at most r monochromatic paths. We proved this for 𝑟 = 2 and mentioned how a result of Day
and Lo [8] implies that if Theorem 1.17 is true, then for all 𝑟 ≥ 3, Rd𝑟 (𝑃∞) ≥ 1

𝑟−1 (which is now an
open problem for 𝑟 ≥ 5).
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