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We propose a one-to-many matching estimator of the average treatment effect based
on propensity scores estimated by isotonic regression. This approach is predicated
on the assumption of monotonicity in the propensity score function, a condition
that can be justified in many economic applications. We show that the nature of the
isotonic estimator can help us to fix many problems of existing matching methods,
including efficiency, choice of the number of matches, choice of tuning parameters,
robustness to propensity score misspecification, and bootstrap validity. As a by-
product, a uniformly consistent isotonic estimator is developed for our proposed
matching method.

1. INTRODUCTION

In both randomized experiments and observational studies, matching estimators
are widely used to estimate treatment effects. This article proposes a novel one-
to-many propensity score matching method of the average treatment effect (ATE),
where the propensity score is assumed to be monotone increasing in the exogenous
covariate and is estimated by the isotonic regression. Our matching scheme is
exact, i.e., for the outcome Y, the binary treatment W, the covariate X, and a sample
of size N, the matched set for the i-th unit is defined as

J (i) = {
j = 1, . . . ,N : Wj = 1−Wi and p̃(Xj) = p̃(Xi)

}
,

where p̃(·) is a uniformly consistent isotonic estimator of the propensity score
developed in Section 2.2. For multi-dimensional covariates X, we employ a
monotone index model and consider the matched set:

J (i) = {
j = 1, . . . ,N : Wj = 1−Wi and p̃α̃(X′

j α̃) = p̃α̃(X′
i α̃)
}
,

where p̃α̃(·) is a uniformly consistent monotone single-index estimator of the
propensity score developed in Section 4.
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2 MENGSHAN XU AND TAISUKE OTSU

Remarkably, the isotonic estimator proves to be especially well-suited as the
initial nonparametric estimator in a two-stage semiparametric approach to estimat-
ing the ATE. It incorporates features of both matching and weighting estimators
into the second-stage ATE estimator, addressing at least five issues commonly
encountered by existing matching methods in the causal inference literature.

First, it is well known that the existing matching estimators of the ATE with a
fixed number of matches are inefficient (Abadie and Imbens, 2006) since they do
not balance bias and variance in the second-stage estimation. In comparison, our
isotonic matching estimator is more efficient. In the univariate case, our method
attains the semiparametric efficiency bound; in the multivariate case, where the
efficiency bound becomes more complicated, we show that our proposed estimator
performs better than those based on a fixed number of matches with propensity
scores derived from widely used parametric models, such as probit and logit, which
are prevalent in applied research.

Second, although the performance of fixed-number matching estimators can be
improved by increasing the number of matches with the sample size, the efficiency
gain is somewhat artificial (Imbens, 2004) since the optimal number of matches
and data-dependent ways of choosing it have been open questions. However, these
issues are addressed by recent papers by Armstrong and Kolesár (2021) and Lin,
Ding, and Han (2023). By specifying a large enough Lipschitz constant, Armstrong
and Kolesár (2021) showed that the matching estimator with the number of
matches set to one is minimax optimal if the conditional mean is restricted to
be Lipschitz; by adding an estimated correction term. Lin et al. (2023) gave the
optimal number of matches for a bias-corrected matching estimator. In this article,
we argue that the isotonic estimator can provide an alternative solution: It gives
a piece-wise monotone increasing estimator, which partitions observations into
different groups. Within these groups, the treated and untreated observations have
the same estimated propensity scores, so they can be naturally matched to each
other without the need of choosing the number of matches, weights, and relevant
distance measures. (For our method, the distance is zero under any measure.) In
contrast, these choice problems are unavoidable in traditional methods for both
covariates matching and propensity score matching, no matter whether they are
based on the inverse variance matrix (e.g., Abadie and Imbens, 2006) or the
(empirical) density function (e.g., Imbens, 2004) of covariates. Surprisingly, the
set of the matching counterparts adaptively selected by the isotonic estimator
automatically becomes the optimal choice in the second stage, in that it achieves
the semiparametric efficiency bound of ATE (Hahn, 1998) for the univariate case.

Third, compared to other semiparametric matching methods, where the first-
stage propensity score is estimated with kernel or series-based techniques, our
method is more practical in a twofold sense. It is not only free from the choice of
the optimal number of matches, as mentioned in the second point above, but also
does not involve smoothing parameters of conventional nonparametric methods,
such as series length or bandwidth. In general, choosing the tuning parameters
of a first-stage nonparametric estimator remains a difficult open question in the
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semiparametric estimation literature. The MSE optimal tuning parameter is usually
not a good choice since the optimal first-stage estimator of the nuisance function
does not imply the optimality of the second-stage semiparametric estimation
(Bickel and Ritov, 2003). To ensure the

√
N−consistency of a semiparametric

estimator, “undersmoothed” tuning parameters should be applied (Newey, 1994).
But it is difficult to find a clear standard for shrinking tuning parameters below their
MSE optimal values. The non-smooth nature of the isotonic estimator, on the other
hand, turns out to automatically render an adequate amount of undersmoothing.
At the cost of a monotonicity assumption imposed on the nuisance function, our
proposed estimator avoids this choice problem while still maintaining other desir-
able properties of a decent semiparametric estimator, such as

√
N−consistency or

efficiency.
Fourth, compared to popular parametric models of propensity scores, such

as probit and logit, our proposed method contains a nonparametric first stage,
so it is more robust to model misspecification. We acknowledge that combined
with a single index structure, the probit and logit models can also approximate
many different data-generating processes. But our method will always be more
robust than them since both probit and logistic functions are monotone increasing
themselves. In other words, the isotonic regression can well estimate all the data
generating processes that can be well approximated by probit or logit model, but
not vice versa. In addition, this robustness is achieved without costing the effi-
ciency (compared to parametric methods) of the second-stage matching estimator.

Fifth, it is well known that the nonparametric bootstrap of the fixed-number
matching estimator is invalid in the presence of continuous covariates (Abadie and
Imbens, 2008). In the past decade, much work has been done to solve this problem
by proposing cleverly structured wild bootstrap procedures. Otsu and Rai (2017)
proposed a consistent wild bootstrap for covariates matching, and their approach
was extended by Bodory et al. (2016) and Adusumilli (2020) to propensity score
matching estimators. In our article, we show that all these intricate bootstraps
are no longer necessary in the case of monotone increasing propensity scores
since the nonparametric bootstrap inference is asymptotically valid for our isotonic
matching estimator.

Our method relies on the monotonicity assumption on propensity scores. Mono-
tonicity is a natural shape restriction that can be justified in many applications
in social science, economic studies, and medical research. Well-known examples in
economics include the demand function, which is usually monotone decreasing in
prices, and the supply or the utility functions, which are often monotone increasing
in quantities. Furthermore, many functions derived from cumulative distribution
functions (CDFs) inherit the monotonicity from the latter. For example, in a
threshold-crossing binary choice model,

Y =
{

1 if X′β0 > ε

0 if X′β0 ≤ ε,
(1)
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4 MENGSHAN XU AND TAISUKE OTSU

the conditional expectation of Y on X can be written as E[Y|X] = P(Y = 1|X) =
Fε(X′β0), where Fε(·) is the CDF of an independent noise ε. If we assume ε ∼
N(0,1), (1) becomes a probit model; if we assume ε ∼ Logistic(0, π2

3 ), it becomes
a logit model. Although both parametric models are widely applied in estimating
the probability of treatments, we can relax the distributional assumptions on ε

and express (1) with a semiparametric model Y = Fε(X′β0) + ν, where Fε(·) is
a nonparametric link function. We emphasize that the link function is monotone
increasing by construction. See Cosslett (1983, 1987, 2007), Matzkin (1992), and
Klein and Spady (1993) for more discussions of the model (1).1

One of the main challenges of developing the asymptotic properties of the
proposed estimator is the inconsistency of the isotonic estimator at its boundaries,
sometimes called the “spiking” problem in the literature. If the dependent variable
is binary, there is a non-trivial probability for a non-shrinking group of left-end
estimates to be exactly zero even under the strict overlap condition, regardless
of the sample size; the right-end estimates have a similar issue. As a result, the
matched sets for observations at two ends are empty, and we cannot construct a
valid sample analog of ATE. Furthermore, observations near two ends are matched
according to inconsistently estimated propensity scores, which are biased toward
zero or one, resulting in a detrimental effect on the ATE estimator similar to the
one caused by limited overlaps (see Khan and Tamer, 2010; Rothe, 2017, among
others). Although truncating those observations, whose propensity scores (either
estimated parametrically or nonparametrically) are closer to 0 and 1, is widely
implemented in applied work, this strategy has two caveats if one works with
the isotonic estimator. The first problem is the size of truncation: If too little
was truncated, it might be insufficient to correct the boundary problem. A safe
choice of truncation in the literature for different problems involving isotonic
estimators is to truncate the first and last αN-th quantile, with αN ∼ N−1/3 (or
up to a logarithmic factor, see Wright, 1981; Durot, Kulikov and Lopuhaä, 2013;
Babii and Kumar, 2023). However, this truncation scheme is too much for our
purpose. In fact, for any αN such that αNN1/2 → ∞, the truncated ATE estimator
might be no longer

√
N-consistent.2 Second, as discussed in Appendix A.6.2, one

of the key conditions for
√

N-consistency and efficient estimation of ATE is (A40)
below, but whether this condition still holds after truncation is unclear. To solve
these two problems, we extend the everywhere-consistent isotonic estimator of
Meyer (2006) to a uniformly consistent isotonic (hereafter, UC-isotonic) estimator,

1Although this article explores monotonicity of the propensity score function, our isotonic regression approach may
be extended to the regression-based estimators with monotonicity constraints on the expected outcome functions
E[Y(1)|X] and E[Y(0)|X]. However, it should be noted that if monotonicity is imposed on the link functions of index
models, the regression-based approach is clearly more restrictive than the propensity-score-based approach (because
monotonicity on Fε(·) is not substantive).
2This problem is not universal for every semiparametric estimator. For example, for a partially linear model Y =
Xβ +ψ(Z)+ ε, we can truncate more than its N−1/2-th quantile, and the estimator of β maintains

√
N-consistency.

In fact, one can get
√

N-rates even if β is estimated from an arbitrary sub-sample with a size proportional to N since
different X’s are linked to the same β. However, for ATE, in general, the truncated parts directly constitute estimation
bias.
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which is by design to suit our two-stage semiparametric matching estimator.
The proposed estimation procedure does not involve any truncation, the above-
mentioned favorable properties of the isotonic estimator remain intact, and the full
set of data is utilized in both the first stage estimation of the propensity score and
the second stage estimation of ATE.

Our proposed method builds on the large literature of causal inference for
covariate and propensity score matching estimators (e.g., Rosenbaum and Rubin,
1983, 1984; Rosenbaum, 1989; Heckman, Ichimura, and Todd, 1997, 1998;
Heckman et al., 1998; Dehejia and Wahba, 1999; Abadie and Imbens, 2006,
2008, 2011, 2016; Imbens, 2004; Frölich, 2004; Frölich, Huber, and Wiesenfarth,
2017; Otsu and Rai, 2017; Bodory et al., 2016; Adusumilli, 2020, among others).
The propensity score matching estimators studied in the literature mainly use
parametrically estimated propensity scores, such as probit and logit. Our proposed
method, in contrast, uses a special type of nonparametric estimator, the isotonic
estimator, to estimate the propensity score.

The isotonic estimator has a long history. The earlier work includes Ayer et al.
(1955), Grenander (1956), Rao (1969, 1970), and Barlow and Brunk (1972),
among others. The isotonic estimator of a regression function can be formulated
as a least square estimation with a monotonicity constraint. Suppose that the
conditional expectation E[Y|X] = p0(X) is monotone increasing. Then, for an
independent and identically distributed (iid) random sample {Yi,Xi}N

i=1, the isotonic
estimator is the minimizer of the sum of squared errors, minp∈M

∑N
i=1{Yi −

p(Xi)}2, where M is the class of monotone increasing functions. The minimizer
can be calculated with the pool adjacent violators algorithm (Barlow and Brunk,
1972), or equivalently by solving the greatest convex minorant of the cumulative
sum diagram {(0,0),(i,

∑i
j=1 Yj),i = 1, . . . ,N}, where the corresponding {Xi}N

i=1 are
ordered sequence. See Groeneboom and Jongbloed (2014) for a comprehensive
discussion of different aspects of isotonic regression.

Our work is linked to the vast literature on semiparametric estimation (e.g.,
Chamberlain, 1987; Robinson, 1988; Newey, 1990, 1994; van der Vaart, 1991;
Andrews, 1994; Hahn, 1998; Ai and Chen, 2003; Bickel and Ritov, 2003; Chen,
Linton, and Van Keilegom, 2003; Chen and Santos, 2018, among others). In most
of the works cited above, nonparametric methods involving smoothing parameters
were applied at the initial stage, while our work uses the isotonic estimation that
is non-smooth and does not involve smoothing parameters. On the other hand, the
double machine learning (DML) estimators (see, e.g., Robins and Rotnitzky, 1995;
Chernozhukov et al., 2017, 2018, among others) provide efficient estimators of the
ATE that do not rely on subjective choices of smoothing parameters, thereby, to
some extent, sharing many advantages of our approach. We provide a detailed
comparison between the isotonic propensity score matching estimator and the
DML for the ATE in Section 3.4.

There are some authors working on concrete semiparametric models with
plug-in isotonic estimators. Huang (2002) studied the properties of the mono-
tone partially linear model, and his work was extended by Cheng (2009) and
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Yu (2014) to the monotone additive model. Balabdaoui, Durot, and Jankowski
(2019) studied the monotone single-index model with the monotone least square
method, and Groeneboom and Hendrickx (2018), Balabdaoui, Groeneboom, and
Hendrickx (2019), and Balabdaoui and Groeneboom (2021) (the last two papers
are called BGH hereafter) developed a score-type approach for the monotone
single-index model and showed the single index parameter can be estimated at√

N-rate. Building on previous works, Xu (2021) studied a general framework of
semiparametric Z-estimation with plug-in isotonic estimators, monotone single-
index estimators, or monotone additive estimators, and applied the generic result
to inverse probability weighting (IPW) estimators of ATE. For the augmented
IPW (AIPW) model, Qin et al. (2019) and Yuan, Yin, and Tan (2021) applied
the monotone single-index model to estimate the propensity score, then plugged
the estimated propensity scores with other estimates of potential outcomes into
a doubly-robust moment function. Their asymptotic results rely on the consistent
estimations of both propensity scores and potential outcomes, and thus differ from
our approach.

In terms of applying isotonic regression to estimate the ATE, the primary
difference between this article and Chapter 3 of Xu (2021) is that we address
the boundary issue inherent in the isotonic estimator, while Xu (2021) relies on
a stronger assumption adapted from Assumption 5.1 in Newey (1994). In the
process of writing this article, we have gradually realized that this assumption
does not automatically apply to the IPW estimator, although it straightforwardly
holds for some other semiparametric models, such as the monotone partially linear
model and the monotone single index model, wherein the plugged-in isotonic
estimator is not in the denominator. Compared to Chapter 3 of Xu (2021), the
main contributions of this article are: (i) proposing a UC-isotonic estimator that
is suitable as the first-stage estimator in a propensity score matching estimator
of the ATE; (ii) revealing the equivalence between the matching estimator and
the IPW estimator when the first-stage propensity score is estimated via UC-
isotonic regression; and (iii) based on this equivalence, enriching the literature on
propensity score matching by introducing a new approach that addresses several
problems of the existing matching methods, as detailed at the beginning of this
introduction.3

The rest of the article is organized as follows. After introducing the setting
and notations, Section 2 shows the implementation and asymptotic properties of
the proposed isotonic matching estimator with a univariate covariate. Section 3
compares our approach with existing matching estimators as well as the DML

3At almost the same time, an independent work by Liu and Qin (2022) derived a similar equivalence result for the
ATE on treated (ATT). Recently, a revised version of Liu and Qin (2022) is published as Liu and Qin (2024). There
are two main differences between our article and their papers. First, we formally address the boundary problem of the
isotonic estimator and achieve the

√
N-normality of the ATE estimator by proposing a uniformly consistent isotonic

estimator. Second, our asymptotic analysis of the model with multivariate covariates in Section 4 focuses on a more
general case, where the influence of the estimation errors from the parametric component of the first-stage monotone
single-index model is maintained.
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estimator for the ATE. The univariate results are extended to the case of mul-
tivariate covariates in Section 4, where the propensity score is modeled by a
semiparametric single-index model with an unknown monotone increasing link
function. In Section 5, we establish the validity of the nonparametric bootstrap.
Monte-Carlo simulation studies are presented in Section 6. All proofs are presented
in the Appendix, while additional theoretical details and simulation comparisons
are provided in the Supplementary Material.

2. MAIN RESULTS

2.1. Setup and Isotonic Propensity Score

Suppose we observe the triple (Y,W,X) drawn randomly from the product space
Z = R× {0,1} ×X . Within the triple, W ∈ {0,1} is a binary treatment variable,
Y = W · Y(1) + (1 − W) · Y(0) is an outcome variable with potential outcomes
Y(1) and Y(0) for W = 1 and 0, respectively, and X is a scalar covariate with
continuous domain X = [xL,xU] ⊂ R. In this section, we tentatively assume X
is scalar, and discuss extensions for multivariate X in Section 4. Without loss of
generality, {Yi,Wi,Xi}N

i=1 is an iid sample of (Y,W,X) and is ordered by X. If X is
continuously distributed, we should have X1 < X2 < · · · < XN with probability one
(i.e., no ties).

In this section, we consider the estimation of the ATE, τ = E[Y(1)−Y(0)], by
matching the propensity score p(x) = P(W = 1|X = x) = E[W|X = x], where p(·)
is an unknown monotone increasing function. In particular, we estimate p(·) by the
isotonic estimator

p̂(·) = arg min
p∈M

N∑
i=1

{Wi −p(Xi)}2, (2)

where M is the class of all monotone increasing functions defined on X . Since
Brunk (1958), this isotonic regression estimator has been extensively studied in the
statistics literature (see, e.g., Barlow et al. (1972) and Groeneboom and Jongbloed
(2014) for an overview). One of the well-known features of isotonic regression is
that the estimator p̂(·) is a monotone increasing piecewise constant function with
jump points at {Xnk}K

k=1 for some integer K with 1 ≤ K ≤ N. By these jump points,
the sample is divided into K disjoint groups, with {nk}K

k=1 denoting the first indices
of these K groups. Further, we let Nk denote the number of observations belonging
to the k-th group. Based on these definitions, it holds that nk +Nk = nk+1 for each
k = 1, . . . ,K −1, and

∑K
k=1 Nk = N. Note that the integer K and the corresponding

disjoint groups are automatically determined by the isotonic estimation algorithm
(see formula (7) below), rather than being chosen by the user.

To avoid ambiguity caused by splitting a flat piece into several sub-pieces with
the same estimated value, we impose

p̂(Xn1) < p̂(Xn2) < · · · < p̂(XnK ), (3)
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to ensure uniqueness of this partition (i.e., if p̂(Xnk) = p̂(Xnk+1), we simply combine
the groups k and k+1). Then, the isotonic estimator p̂(·) is characterized as follows.

Assumption 1 [Sampling]. {Yi,Wi,Xi}N
i=1 is an iid sample of (Y,W,X) ∈ R×

{0,1}×X , where X = [xL,xU] ∈ R. X is continuously distributed, and the sample
{Yi,Wi,Xi}N

i=1 is indexed according to X1 < X2 < · · · < XN .

Proposition 1. Under Assumption 1, the isotonic estimator p̂(·) satisfying (3)
partitions the sample into K disjoint groups in the sense that for each k = 1, . . . ,K
and i = nk, . . . ,nk +Nk −1,

p̂(Xi) = 1

Nk

nk+Nk−1∑
j=nk

Wj. (4)

To define our propensity score matching estimator based on p̂(·), let Nk,1 and
Nk,0 denote the numbers of treated and controlled observations within group k,
i.e., Nk,1 =∑nk+Nk−1

i=nk
Wi and Nk,0 = Nk −Nk,1. Our one-to-many matching method

is implemented within each of these K groups, and each treated (controlled)
observation in group k will be matched with its Nk,0 (Nk,1) counterparts, which
belong to the same group and have the same value of the estimated propensity
score. The following results directly follow from Proposition 1.

Proposition 2. Suppose Assumption 1 holds.

(i) [Isotonic estimator] For each integer k = 1, . . . ,K, the isotonic estimator p̂(·)
for p(·) is represented as

p̂(x) = Nk,1

Nk
, (5)

for each x ∈ {Xi}nk+Nk−1
i=nk

.

(ii) [Existence of matching counterparts] For any i ∈ {1, . . . ,N} with 0 < p̂(Xi) <

1, the set of its matching counterparts {j : Wj = 1−Wi,p̂(Xj) = p̂(Xi)} is non-
empty.

Before we proceed, we need to solve the problem of the potential lack of
matching counterparts for those i’s with p̂(Xi) = 0 or 1. Under the strict overlaps (in
Assumption 3 below), the problem is essentially associated with the inconsistency
of the isotonic estimator at the boundary. In the next subsection, we propose a
modified isotonic estimator that is uniformly consistent on X .

2.2. Uniformly Consistent Isotonic Estimator

Like other nonparametric estimators, the isotonic estimator is imprecise at the
boundary. If we apply the isotonic estimator to the binary dependent variable W,
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there is a non-trivial probability of p̂(Xi) = 0 or 1 even if the true propensity score
p(x) is bounded away from zero and one for all x ∈ X . For example, if p̂(X1) = 0,
(5) implies N1,1 = 0, i.e., there are no matching counterparts for the treated units.

To fix this problem, we propose a modified isotonic estimator that is uniformly
consistent in its domain at a (logN)1/3 N−1/3 rate and is easy to implement. For
the sample {Wi,Xi}N

i=1 with X1 < · · · < XN , we transform {Wi}N
i=1 into {W̃i}N

i=1 by
averaging its first and last 
N2/3� observations:

W̃i =

⎧⎪⎪⎨
⎪⎪⎩

1

N2/3�

∑
N2/3�
i=1 Wi for i ≤ 
N2/3�

Wi for 
N2/3� < i ≤ N −
N2/3�
1


N2/3�
∑N

i=N−
N2/3�+1 Wi for i > N −
N2/3�.

(6)

Our proposed UC-isotonic estimator is obtained by implementing the standard
isotonic regression of W̃ on X:

p̃(x) =

⎧⎪⎨
⎪⎩

maxs≤i mint≥i
∑t

j=s W̃j/(t − s+1) for x = Xi

p̃(Xi) for Xi−1 < x ≤ Xi

p̃(XN) for x > XN .

(7)

A similarly modified estimator was proposed by Meyer (2006), where she averaged
the first and last 
log(N)� dependent variables instead of the first and last 
N2/3�
ones. The choices are different because she focuses on the consistency of the
isotonic estimator itself, while we are interested in the performance of the second-
stage matching estimator. To achieve an N−1/2 rate at the second stage, we need
the isotonic estimator to be uniformly consistent at a rate faster than N−1/4, which
won’t be achieved under Meyer’s choice. Meyer (2006) presented a theorem
regarding the consistency of the modified estimator at the boundary; however, a
proof of consistency was not provided, nor was the rate of convergence discussed.

In this article, we formally establish the uniform convergence rate of the
modified isotonic estimator p̃(·). To this end, we impose the following assumption.

Assumption 2 [Monotonicity and continuity]. (i) p(x) = E[W|X = x] is a
monotone increasing function of x ∈X , (ii) p(x) is continuously differentiable with
its first derivative p(1)(x) > 0 for all x ∈X , and (iii) X has a continuous density f (x)
satisfying that for some positive constants f and f , it holds f < f (x) < f all x ∈ X .

Assumption 2 (i) is our main assumption, the monotonicity of p(·). Assump-
tion 2 (ii) is required for the

√
N−consistency of the second-stage matching

estimator. The same assumption has been adopted by Groeneboom and Hendrickx
(2018, Assump. A2) and by BGH (Assumption A3 and its accompanying remark;
see also Lemma 22 in the Supplementary Material of BGH) in the context of
the monotone single-index model. If we believe that the underlying propensity
score function has some flat parts where p(1)(x) = 0, we could first run an isotonic
estimation of W̃i +c ·Xi on Xi, where c is a positive constant, to obtain p̃c(x). Then,
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by subtracting the linear trend c · x from p̃c(x), we obtain a consistent estimator of
p(x).4 Assumption 2 (iii) imposes an upper and lower bound for the density of X.

To avoid unnecessarily repeatedly defined notations, we let the same set of
notations, K,Nk,1, Nk, and nk, denote the number of groups, the number of treated
observations in group k, the number of members in group k, and the index of the
first element of group k, under the grouping scheme given by the UC-isotonic
estimator p̃(·) (Nk,1 is calculated with the original treatment variable {Wi}N

i=1). We
obtain an analogous result to Proposition 2 for the UC-isotonic estimator.

Proposition 3. Under Assumptions 1 and 2, it holds:

(i) N1 ≥ 
N2/3� and NK ≥ 
N2/3�.

(ii) p̃(x) = Nk,1
Nk

for each k = 1, . . . ,K and x ∈ {Xi}nk+Nk−1
i=nk

.

(iii) N1 = Op(N2/3) and NK = Op(N2/3).

Part (i) of this proposition says that all the averaged Wi’s at the beginning and
end of the data are absorbed in the first and the last group. Part (ii) provides an
analogous representation of the UC-isotonic estimator p̃(·) as p̂(·). While Part
(i) gives a lower bound of the sizes of the first and the last group, Part (iii)
gives (stochastic) upper bounds of them. Based on this proposition, the uniform
convergence rate of the UC-isotonic estimator is obtained as follows.

Theorem 1. Under Assumptions 1 and 2, it holds

sup
x∈X

|p̃(x)−p(x)| = Op

(
logN

N

)1/3

.

Finally, to guarantee the existence of matching counterparts by p̃(·), we impose
the strict overlap condition.

Assumption 3 [Strict overlaps]. There exist positive constants p and p̄ such that
0 < p ≤ p(x) ≤ p̄ < 1 for all x ∈ X .

Assumption 3 is standard in the treatment effect literature. It is necessary for the
identification and

√
N-consistent estimation of the ATE. Combining Proposition 3

and Theorem 1 with Assumption 3, the existence of the matching counterparts by
p̃(·) is obtained as follows.

4Technically, if p(·) has some flat parts where p(1)(x) = 0, then the original estimator p̃(·) may not satisfy the
requirement in (A32) in Appendix A.6, |δ(x)− δ̄N (x)| ≤ C0|p(x)− p̃(x)|. Flat parts in p(·) imply that p(x)− p̃(x) = 0
might hold within an entire interval, potentially leading to a violation of (A32). In contrast, if p(·) is strictly monotone
increasing, then p(·) and p̃(·) will cross at most once within each partition given by the isotonic estimator, since p̃(·)
is a piecewise flat function. We refer to Sections 10.2 and 10.3 and Figure 10.1 of Groeneboom and Jongbloed (2014)
for more details.
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ISOTONIC PROPENSITY SCORE MATCHING 11

Corollary 1. Suppose Assumptions 1–3 hold. For each i = 1, . . . ,N, the set of
its matching counterparts {j = 1, . . . ,N : Wj = 1−Wi,p̃(xj) = p̃(xi)} is non-empty
with probability approaching one.

2.3. Isotonic Propensity Score Matching

Based on the UC-isotonic estimator p̃(·), the isotonic propensity score matching
estimator for the ATE τ can be implemented as follows:

1. Transform the sample {Yi,Wi,Xi}N
i=1 indexed by X1 < · · ·< XN into {Yi,W̃i,Xi}N

i=1
using (6).

2. Compute the UC-isotonic estimator p̃(·) using (7).
3. For each i = 1, . . . ,N, compute the matching counterparts

J (i) = {
j = 1, . . . ,N : Wj = 1−Wi and p̃(Xj) = p̃(Xi)

}
. (8)

4. Calculate the matching estimator for the ATE τ by

τ̂ = 1

N

N∑
i=1

(2Wi −1)

⎛
⎝Yi − 1

Mi

∑
j∈J (i)

Yj

⎞
⎠, (9)

where Mi = |J (i)| is the number of matches for i.

We proceed with the following assumptions.

Assumption 4. [Data generating process] (i) E[Y(0)2] < ∞ and E[Y(1)2] < ∞,
(ii) E[Y(0)|X = x] and E[Y(1)|X = x] are continuously differentiable for all x ∈X ,
(iii) for D(Z) = WY

p(X)2 + Y(1−W)

{1−p(X)}2 , there exist positive constants c0 and M0 such that

E[|D(Z)|m|X = x] ≤ m!Mm−2
0 c0 holds for all integers m ≥ 2 and every x, and (iv)

Y(1),Y(0) ⊥ W|X almost surely.

Assumption 4 (i)–(iii) regulates the tail behaviors of the (conditional func-
tions of) potential outcomes, which are necessary for

√
N-consistent estimation.

Assumption 4 (iv) is the standard unconfoundedness assumption. Under these
assumptions, we have the following key equivalence result.

Theorem 2. Under Assumptions 1–4, the matching estimator τ̂ for the ATE τ

using the UC-isotonic estimator p̃(·) is equal to the corresponding IPW estimator.

2.3.1. Remark on Theorem 2. Imbens (2004) pointed out that with M → ∞
and M/N → 0, the matching estimator is essentially like a regression estimator.
In comparison, we find out that with propensity scores estimated by the UC-
isotonic estimator, the (propensity score) matching estimator is numerically equal
to the weighting estimator in each finite sample. This equivalence is tightly
associated with the fact that the isotonic estimator can be regarded as a type of
partitioning estimator (e.g., Györfi et al., 2002; Cattaneo and Farrell, 2013). See
Section 3.1 below for a further comparison of isotonic and partitioning estimators
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12 MENGSHAN XU AND TAISUKE OTSU

within the context of a two-stage matching estimator of the ATE. Additionally,
our method is related to the propensity score methods of blocking, stratifica-
tion, and radius matching (see Rosenbaum and Rubin, 1983, 1985; Dehejia and
Wahba, 1999, 2002, among others). See Section 3.2 for a comparison with these
methods.

Moreover, as mentioned in the introduction, the equivalence result in Theorem 2
relies crucially on the implementation of the UC-isotonic estimator (7), which
guarantees that both the matching and IPW estimators at the second stage are well-
defined.

We notice that the threshold 
N2/3� in the algorithm (6) can be interpreted
as an implicit tuning parameter. We would like to point out that, first, it is
convenient to choose since it depends only on the sample size N; second, it is
aimed at correcting the boundary problem, which is also faced by other semipara-
metric and even parametric matching methods. In practice, trimming estimated
propensity scores is widely adopted, and the amount of trimming is chosen
subjectively in most cases. Our proposed method provides transparent guidance
for correcting this common boundary issue. Furthermore, to investigate the impact
of different threshold choices, we have included both theoretical analysis and
simulation evidence in Sections S1 and S2.3 of the Supplementary Material,
respectively.

Our main result, consistency and asymptotic normality of the isotonic propensity
score matching estimator, is obtained as follows.

Theorem 3. Under Assumptions 1–4, it holds τ̂
p→ τ and

√
N(τ̂ − τ)

d→ N(0,
),

where 
 = V(E[Y(1) − Y(0)|X]) + E[V(Y(1)|X)/p(X)] + E[V(Y(0)|X)/(1 −
p(X))].

We note that the asymptotic variance 
 is the semiparametric efficiency bound
for τ (see, e.g., Hahn, 1998; Hirano, Imbens, and Ridder, 2003). Although we may
conduct inference based on an estimator of 
, we suggest a bootstrap inference
method, which will be discussed in Section 5.

3. COMPARISON TO RELATED PROPENSITY SCORE METHODS

In this section, we draw comparisons of our approach with a range of related
estimators for the ATE. The comparison with matching methods based on propen-
sity score estimated by partitioning estimator is presented in Section 3.1, the
comparison with propensity score methods of blocking, stratification, and radius
matching is presented in Section 3.2, the comparison with matching methods based
on propensity score estimated by regression trees is presented in Section 3.3, and
the comparison with the DML estimator for the ATE can be found in Section 3.4.
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3.1. Propensity Score Estimated by Partitioning Estimator

One notable feature of the proposed isotonic propensity score matching method is
that it is a one-to-many matching method that provides exact matches, as illustrated
by formula (8). This is attributed to the isotonic estimator being considered a
special type of partitioning estimator, in which the volume sizes of partitions
are automatically chosen by the monotonicity constraint, and a simple average
is implemented within each partition.

The partitioning estimator is a nonparametric method for estimating regression
functions.5 It divides the domain of the running variables into disjoint partitions.
Within each partition, a local estimator is implemented by the user, such as
the sample mean, a linear estimator, or a series estimator. Each sample point
is exclusively used in the estimation within the partition to which it belongs.
This feature simplifies the complex correlation structure of a matching estimator
such that it achieves equivalence with an IPW estimator. For the UC-isotonic
estimator, this equivalence is presented by equation (A24) in Appendix A.5. In
the resulting matching estimator of ATE, the same set of partitions serves both the
first- and the second-stage nonparametric estimation. Usually, these two stages are
not associated with each other since they have distinct objects, the propensity score
and the potential outcomes. Certainly, a matching estimator of the ATE that utilizes
propensity scores estimated with a partitioning estimator should exhibit a similar
equivalence to the weighting estimator. However, the selection of the number of
partitions and their sizes necessitates careful consideration, as they must meet
specific undersmoothing conditions to secure the desired asymptotic properties
of the second-stage ATE estimator. The challenge of selecting an appropriate
undersmoothed bandwidth or volume size, as mentioned in the introduction,
remains a difficult open question in the semiparametric estimation. In contrast,
our proposed isotonic matching estimator automatically chooses these tuning
parameters, leading to the efficient estimation of the ATE, as demonstrated in
Theorem 3.

3.2. Propensity Score Methods of Blocking, Stratification, and Radius
Matching

Our proposed isotonic matching estimator is also related to some of the seminal
ideas introduced at the outset of the propensity score methods: blocking, stratifi-
cation (Rosenbaum and Rubin, 1983; Dehejia and Wahba, 1999, 2002), and radius
matching (Rosenbaum and Rubin, 1985).

The isotonic propensity score matching shares similarities with blocking and
stratification matching on propensity scores, notably: (i) they initially categorize
data points into distinct groups (or strata, blocks, and partitions) according to esti-
mated propensity scores and (ii) within each group, they calculate the conditional

5We refer to Györfi et al. (2002) and Cattaneo and Farrell (2013) for comprehensive discussions of the partitioning
estimator.
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14 MENGSHAN XU AND TAISUKE OTSU

ATE as the simple difference in means of outcomes between the treatment and
comparison groups. The primary distinction lies in the grouping mechanism:
for isotonic propensity score matching, the groups are determined adaptively in
a data-driven manner through isotonic regression, whereas for the stratification
estimator of the ATE, the strata must be explicitly specified by the user. Another
distinction is that for the isotonic propensity score matching method, the same
set of partitions is utilized for both the first and second stages of nonparametric
estimation. As presented by Theorem 2, this characteristic leads to the equivalence
between the matching and IPW estimator, resulting in the efficient estimation of
the ATE. In contrast, in the case of blocking or stratification matching methods,
particularly when the propensity score is estimated using parametric models, this
equivalence cannot generally be established, and efficiency cannot be assured
without implementing some bias-correction method.

The case for the radius matching estimator is similar to the stratified matching
estimator. The difference is that for stratified matching, each unit is matched solely
with units from the opposite treatment group within the same stratum, while radius
matching allows each unit to be matched to several local balls, the centers of which
belong to the opposite treatment group. For both radius and stratified matching
estimators, the sizes of strata or the radii act as tuning parameters, which must
be chosen by the users when the propensity score is estimated via parametric
or nonparametric methods dependent on smoothing parameters (such as kernel
or series estimation). These smoothing parameters play a key role in balancing
the bias and variance, thereby significantly affecting the second-stage estimator
of ATE. In contrast, isotonic regression distinguishes itself by automatically
generating these partitions through the application of the monotonicity constraint.

3.3. Propensity Score Estimated by Regression Trees

As methods of estimating the propensity scores, the isotonic estimator and regres-
sion trees share several similarities. First, both are nonparametric estimators that do
not impose restrictive parametric structures on the underlying response function.
Second, both approaches partition the domain of running variables (the feature
space in regression tree terminology) into several regions and use the sample aver-
age within each region as estimators. As a result, both estimators take the form of
piecewise-constant functions. Third, both methods form their piecewise-constant
functions in data-adaptive manners. In particular, the partitions created by both
methods depend on the dependent variable (the response), which differentiates
them from regular nonparametric methods, such as the kernel estimator.

On the other hand, there are notable distinctions between the two methods.
First, both approaches construct their piecewise-constant functions differently:
the partitions in a regression tree are obtained in a stepwise manner. In each
step, a partition is chosen to achieve the maximum marginal reduction of the
mean square error (MSE), without imposing any shape constraints during this
process. In contrast, the isotonic estimator employs a one-step approach that
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determines partitions to minimize the MSE over the class of monotone functions.
Second, although both approaches are data-driven, the isotonic estimator is free of
smoothing parameters, whereas the regression tree depends on the user to specify
the tree’s length. (When the tree length is determined by cross-validation, the
user must select the penalty parameter.) Third, the regression tree is inherently
designed for multi-dimensional problems, whereas the canonical form of isotonic
regression addresses one-dimensional issues, given that the traditional definition of
monotonicity characterizes the relationship between two variables. Nevertheless,
the isotonic estimation can be extended to multivariate cases by being incorporated
into a partially linear model or a monotone single-index model. The latter is
illustrated in Section 4 below.

To summarize, the isotonic estimator necessitates the monotonicity assumption
in the underlying response function, a requirement not shared by regression
trees. This assumption, however, enables the isotonic estimation algorithm to
automatically regulate the trade-off between bias and variance. Conversely, when
using regression trees, practitioners are tasked with the challenge of selecting an
appropriate tree length to effectively manage the balance between bias and the risk
of overfitting. The strength of regression trees is their natural aptitude for tackling
multivariate problems. When employing regression trees in the preliminary stage
of propensity score estimation as part of a two-stage approach to estimating the
ATE, it is commonly combined with methods for bias correction and sample
splitting, as discussed by Chernozhukov et al. (2018). See Section 3.4 below for
more details about the comparison of our approach with the DML estimator.

3.4. DML Estimator

The isotonic propensity score matching estimator and the DML estimator for the
ATE both share the benefit of not requiring subjective choices of tuning parameters.
For estimating the ATE, a typical example of a DML estimator is given by applying
the sample splitting to the AIPW estimator. In the following, we abstract from
sample splitting to simplify notation:

1

N

N∑
i=1

{ψ̂1(Xi)− ψ̂0(Xi)}+ 1

N

N∑
i=1

[
Wi(Yi − ψ̂1(Xi))

p̂(Xi)
− (1−Wi)(Yi − ψ̂0(Xi))

1− p̂(Xi)

]

= 1

N

N∑
i=1

[
YiWi

p̂(Xi)
− Yi(1−Wi)

1− p̂(Xi)

]

− 1

N

N∑
i=1

[
Wi − p̂(Xi)

p̂(Xi)
ψ̂1(Xi)− Wi − p̂(Xi)

1− p̂(Xi)
ψ̂0(Xi)

]
, (10)

where ψ̂1(·) and ψ̂0(·) are estimators of E[Y(1)|X = ·] and E[Y(0)|X = ·],
respectively. The first and second lines of (10) present two formulations of the
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16 MENGSHAN XU AND TAISUKE OTSU

DML estimator for the ATE. The first terms in both lines correspond to the standard
regression and IPW estimators, respectively, while the subsequent terms represent
their bias-correction components.

The AIPW has been extensively studied since the seminal work of Robins,
Rotnitzky, and Zhao (1995) and Robins and Rotnitzky (1995) (see also Newey,
Hsieh, and Robins, 1998, 2004; Scharfstein, Rotnitzky, and Robins, 1999; Rothe
and Firpo, 2019, among others). In an influential work, Chernozhukov et al. (2018)
combined orthogonal moment functions – of which formula (10) is a specific case
for the ATE – with sample splitting, accommodating a broad array of the first-stage
machine learners that are prone to bias due to regularization or model selection.
Recent developments by Chernozhukov et al. (2022) and Chernozhukov, Newey,
and Singh (2022) have proposed methods for constructing the correction term
without requiring an explicit function form for the bias correction.

Both estimators have their own advantages and comparative strengths. From
a practical standpoint, the isotonic propensity score matching method stands out
for its simplicity and ease of implementation: it does not require the correction
terms, thereby sparing the effort of estimating the conditional means of potential
outcomes and sidesteps the challenges associated with their correct specification.
In contrast, the DML estimator’s efficiency relies on correctly specifying and effec-
tively estimating both the propensity score and the conditional means of potential
outcomes. A misstep in either leads to a consistent yet inefficient estimator. On
the other hand, the DML estimator exhibits great flexibility: through the use of
sample splitting, it supports a variety of first-stage estimators, accommodating
high-dimensional data or highly complex function classes, such as random forest,
neural networks, and other advanced machine learning technologies.

From a technical standpoint, the isotonic propensity score matching and the
DML for the ATE represent two distinct pathways of semiparametric estima-
tion: undersmoothing and bias correction. Both strategies aim for

√
N-consistent

(or efficient in certain cases) estimators (see Newey (1994) for a relevant dis-
cussion). The undersmoothing strategy depends on a first-stage estimator with
reduced bias, achievable in nonparametric estimators by selecting smoothing
parameters smaller than the MSE-optimal levels. Conversely, the bias-correction
method addresses bias by incorporating an estimated correction term into the
second-stage sample moment function, rather than concentrating on the first
stage.

The proposed isotonic propensity score matching estimator utilizes the isotonic
estimator, which achieves a similar effect of “undersmoothing,” and this effect is
automatically rendered by enforcing monotonicity. The isotonic estimator does not
really shrink its bias to a level lower than N−1/2. However, when combined with
the monotonicity, it eventually achieves a deviation from the efficient influence
function that decays at a rate faster than N−1/2 (see (A40) in the Appendix). In
contrast, the DML for the ATE represents a typical bias-correction approach. The
second terms in both lines of (10), while achieving the “doubly robust” effect,
also serve as bias-correction components. At the cost of computing additional
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correction terms and some efficiency loss due to sample splitting, the DML
approach manages to mitigate potential bias and prevent overfitting risks, while
being less restrictive on the first-stage estimation. It is not only less sensitive to
the choice of the smoothing parameter for the traditional first-stage nonparametric
estimator but can also accommodate many black-box machine learning methods,
whose asymptotic properties remain to be fully understood. Consequently, the
theoretical development of the isotonic propensity score matching and the DML for
the ATE differs substantially. The DML approach significantly reduces the effort
needed to address issues arising from the complexity of function classes, which
is associated either with the correlation brought by plug-in estimators or with the
choice of smoothing parameter. In contrast, this article needs to address the impact
of the plug-in estimator in the theoretical development of the isotonic propensity
score matching estimator.

Finally, we would like to emphasize that our proposed method represents
a targeted advancement within the matching estimation literature, specifically
addressing several limitations present in existing matching techniques for esti-
mating the ATE. In contrast, the DML is a versatile tool designed for broader
semiparametric estimation tasks, which include a wide array of econometric
problems, such as average derivatives, partially linear models, and parameters of
economic structural models. Our approach, therefore, complements rather than
competes with the expansive toolkit that DML offers, by providing subtle yet
significant improvements in the specialized area of matching estimation.

4. MULTIVARIATE COVARIATES

Certainly, researchers are more interested in models with multivariate covariates
X. One way to balance the robustness and the curse of dimensionality is to estimate
the propensity score with the monotone single-index model:

W = p0(X
′α0)+ ε, E[ε|X] = 0, (11)

where p0(·) is a monotone increasing link function of its index X′α0 and
X ∈ R

k. For identification, α0 is a k-dimensional vector normalized with
||α0|| = 1.6

For a binary dependent variable, this model can be derived from (1), and p0(·)
is by nature monotone increasing. It was studied by Cosslett (1983, 1987, 2007),
Han (1987), Matzkin (1992), Sherman (1993), and Klein and Spady (1993), among
others. In the case where p0(·) is estimated with isotonic regression, Balabdaoui
et al. (2019) studied (11) with the monotone least square method, and Groeneboom
and Hendrickx (2018), Balabdaoui et al. (2019), and Balabdaoui and Groeneboom
(2021) (BGH) estimated α0 and p0(·) by solving a score-type sample moment

6In the estimation, the constraint ||α0|| = 1 can be dealt with reparametrization or the augmented Lagrange method by
Balabdaoui and Groeneboom (2021). In this section, we study our model without discussing those technical details.
See BGH for more details.
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condition of

E[X{W −p0(X
′α0)}] = 0. (12)

To estimate p0 and α0, we can apply the method of BGH. For a fixed α, define

p̂α = arg min
p∈M

1

N

N∑
i=1

{Wi −p(X′
iα)}2, (13)

where M is the set of monotone increasing functions defined on R. Note that
p̂α(u) can be solved with isotonic regression of Wi on the data points {X′

iα}N
i=1.

Then, α0 can be estimated by minimizing the squared sum of a score function.
For example, the simple score estimator in Balabdaoui and Groeneboom (2021) is
given by solving

α̂ = argmin
α

∥∥∥∥∥ 1

N

N∑
i=1

X′
i{Wi − p̂α(X′

iα)}
∥∥∥∥∥

2

. (14)

BGH showed that under certain assumptions, α̂ is a
√

N-consistent estimator for
α0,7 and E[p̂α̂(X′α̂) − p0(X′α0)] = OP((logN)N−2/3). We apply their method to
estimate the propensity score with multi-dimensional control variables X.

In this section, τ̃ denotes the ATE estimator based on the multi-dimensional
covariates X. Similarly to Section 2.2, to solve the boundary problem of the isotonic
estimator to ensure that each observation has a non-empty matched set, we develop
a uniformly consistent monotone single-index (hereafter, UC-iso-index) estimator,
which is denoted by p̃α̃ . The matching procedure can be implemented as follows.

1. Compute α̂ by (13) and (14).
2. Define α̃ = α̂, and transform the sample {Yi,Wi,Xi}N

i=1 indexed by X′
1α̃ < · · · <

X′
N α̃ into {Yi,W̃i,Xi}N

i=1 with (6).
3. Compute the UC-iso-index estimator p̃α̃ by

p̃α̃ = arg min
p∈M

1

N

N∑
i=1

{W̃i −p(X′
i α̃)}2.

4. For each i = 1, . . . ,N, compute the matching counterparts

J (i) = {
j = 1, . . . ,N : Wj = 1−Wi and p̃α̃(X′

j α̃) = p̃α̃(X′
i α̃)
}

. (15)

7BGH proposed solving a “zero-crossing” root of 1
N

∑N
i=1 X{Wi − p̂α(X′

iα)} = 0. Then, they realized that there was
an issue with the existence of the zero-crossing root for a finite sample (due to the discreteness of p̂α ). To fix this
problem, Balabdaoui and Groeneboom (2021) replaced this objective function with (14), where a minimizer always
exists. If there are multiple minimizers, any of them is a

√
N-consistent estimator for α0. (See a discussion on p. 1426

of Groeneboom and Hendrickx (2018).) BGH also proposed an efficient estimator of α0 by solving a kernel-adjusted
score function. Since our aim is the second-stage ATE τ instead of the first-stage propensity score p, we do not apply
BGH’s efficient estimator. It will introduce additional tuning parameters without improving the second-stage ATE.
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5. Calculate the matching estimator for the ATE τ by

τ̃ = 1

N

N∑
i=1

(2Wi −1)

⎛
⎝Yi − 1

Mi

∑
j∈J (i)

Yj

⎞
⎠, (16)

where Mi = |J (i)| is the number of matches for i.

We modify Assumptions 1–4 in Section 2 as follows.

Assumption 1’ (Sampling). {Yi,Wi,Xi}N
i=1 is an iid sample of (Y,W,X) ∈ R×

{0,1}×X , where the space X is a convex subset of Rk with a nonempty interior.
There exists R > 0 such that X ⊂ B(0,R) = {x : ||x|| ≤ R}.

Given α, we define the true link function of (13):

pα(u) = E[W|X′α = u].

Obviously, pα0 = p0. Let a0 and b0 be the minimum and the maximum of the
interval Iα0 = {x′α0 : x ∈ X }, respectively.

Assumption 2’ [Monotonicity and continuity]. (i) There exists δ0 > 0 such that
for each α ∈ B(α0,δ0), the function u �→ E[W|X′α = u] is monotone increasing
in u and differentiable in α; (ii) p0(·) is continuously differentiable with its first
derivative p(1)(u) > 0 on u ∈ (a0 − δ0R,b0 + δ0R); and (iii) X has a continuous
density f (x) satisfying that for some positive constants f and f , it holds f < f (x) < f
all x ∈ X .

Assumption 3’ [Strict overlaps]. There exist positive constants p and p̄ such
that 0 < p ≤ p0(x′α0) ≤ p̄ < 1 for all x ∈ X .

Assumption 4’ [Data-generating process]. (i) E[Y(0)2] < ∞ and E[Y(1)2] <

∞, (ii) u �→ E[Y(1)|X = x] are continuously differentiable for all x ∈ X and α ∈
B(α0,δ0), (iii) for D(Z) = WY

p0(X′α0)2 + Y(1−W)

{1−p0(X′α0)}2 , there exist positive constants c0

and M0 such that E[|D(Z)|m|X = x] ≤ m!Mm−2
0 c0 holds for all integers m ≥ 2 and

every x, and (iv) Y(1),Y(0) ⊥ W|X almost surely.

Let Z denote the triple (Y,W,X), and Z denote the space of the random
vector Z. For each α ∈ B(α0,δ0), u ∈ Iα = {x′α : x ∈ X }, and a function f (·)
defined on Z , we define Eα[f (Z)|u] = E[f (Z)|X′α = u]. Similarly, we define
the conditional covariance Covα0(f (Z),X|u). The following two assumptions are
adapted from BGH, which ensure that the score estimators (13) and (14) have
desirable properties.

Assumption 5. For all α �= α0 such that α ∈ B(α0,δ0), the random variable
Cov[(α −α0)

′X,p0(X′α0)|X′α] is not equal to 0 almost surely.

Assumption 6. [Potential outcomes] Let p(1)
0 (u) denote the first derivative of

p0(u). The matrix E[p(1)
0 (X′α0)Cov(X|X′α0)] has rank k −1.
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Based on Assumptions 1’, 2’, 5, and 6, we have a result similar to Proposition 3,
but the numbering is according to X′

1α̃ < · · · < X′
N α̃. The uniform convergence rate

of the UC-iso-index estimator is obtained as follows.

Theorem 4. Under Assumptions 1’, 2’, 5, and 6, it holds

sup
x∈X

|p̃α̃(x′α̃)−p0(x
′α0)| = Op

(
logN

N

)1/3

.

The existence of matching counterparts is guaranteed by an argument similar to
Corollary 1. Finally, let B− denote the Moore–Penrose inverse of a square matrix
B. The asymptotic properties of the isotonic propensity score matching estimator
are obtained as follows.

Theorem 5. Under Assumptions 1’–4’, 5, and 6, it holds τ̃
p→ τ and

√
N(τ̃ − τ)

d→ N(0,�),

where � = E[{m(Z)+M(Z)+A(Z)}{m(Z)+M(Z)+A(Z)}], and

m(Z) = YW

p0(X′α0)
− Y(1−W)

1−p0(X′α0)
− τ, D(Z) = YW

p0(X′α0)2
+ Y(1−W)

(1−p0(X′α0))2
,

M(Z) =−Eα0 [D(Z)|X′α0]{W −p0(X
′α0)},

A(Z) =−E[Covα0(D(Z),X|X′α0)p
(1)
0 (X′α0)],

×E[p(1)
0 (X′α0)Covα0(X|X′α0)]

−{X −Eα0 [X|X′α0]}{W −p0(X
′α0)}.

(17)

Note that the semiparametric efficiency bound for estimating τ with known
α0 is given by E[{m(Z) + M(Z)}{m(Z) + M(Z)}′] (see, e.g., Newey, 1994). The
additional term A(Z) can be interpreted as the influence of estimating the index
coefficients α0. This influence is also faced by parametric matching estimators.
In general, our proposed method uses the matched sets, in which the number of
matches increases to infinite, so it better balances the variance and bias in the
second stage and should asymptotically outperform any matching method with
fixed numbers of matches. In Section 6.2 below, we present simulation results
to illustrate that the proposed ATE estimator τ̃ outperforms the probit matching
estimator in every sample size, even in the case that the true propensity score is a
probit (the correct specification).

Theoretically, the additional term A(Z) can be avoided by using a semiparamet-
ric weighting estimator. However, the costs are strong assumptions on the smooth-
ness of the propensity scores (typically, 7 ·dim(X)-th continuous differentiability;
see Hirano et al., 2003) and a proper choice of smoothing parameters. Our proposed
method only requires the propensity score to be once continuously differentiable,
and it does not involve smoothing parameters, such as bandwidths or series lengths.
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5. BOOTSTRAP INFERENCE

The asymptotic variances in Theorems 3 and 5 contain conditional mean and
variance functions, such as V(Y(1)|X) and E[X|X′α0], which need to be estimated.
If we use nonparametric methods to estimate them, we still have to choose some
smoothing parameters even though the point estimators are free from smoothing.
To avoid the estimation of such nonparametric components, we employ a bootstrap
method to approximate the asymptotic distribution of the proposed isotonic
propensity score matching estimator.

After Abadie and Imbens (2008) showed that the nonparametric bootstrap of
the fixed-number matching estimator is invalid in the presence of continuous
covariates, much work tried to solve this problem by proposing modified wild
bootstraps, including Otsu and Rai (2017) for covariates matching estimators,
and Bodory et al. (2016) and Adusumilli (2020) for propensity score matching
estimators. In contrast, the nonparametric bootstrap of our one-to-many matching
method is valid, which is an interesting implication of Theorem 2. In this section,
we discuss an asymptotically valid bootstrap procedure for the estimator τ̂ in
Theorem 3. This result can be similarly adapted to τ̃ in Theorem 5.

The nonparametric bootstrap is implemented as follows:

1. {Y∗
i ,W

∗
i ,X

∗
i }N

i=1 is a bootstrap sample from {Yi,Wi,Xi}N
i=1, and the numbering is

according to X∗
1 ≤ ·· · ≤ X∗

N .
2. p̃∗(·) is the UC-isotonic estimator based on {Y∗

i ,W
∗
i ,X

∗
i }N

i=1.
3. The bootstrap counterpart τ̂ ∗ of τ̂ is given by

τ̂ ∗ = 1

N

N∑
i=1

(2W∗
i −1)

⎛
⎝Y∗

i − 1

M∗
i

∑
j∈J ∗(i)

Y∗
j

⎞
⎠,

J ∗(i) ={j = 1, . . . ,N : W∗
j = 1−W∗

i and p̃∗(X∗
j ) = p̃∗(X∗

i )
}
,

where M∗
i = |J ∗(i)| is the number of matches for the i-th observation in the

bootstrap sample.
4. After repeating Steps (1)–(3) for B times and obtaining estimator τ̂ ∗

1 ,τ̂ ∗
2 , . . . ,τ̂ ∗

B,

we can conduct inference for τ .

The asymptotic validity of this bootstrap approximation is obtained as follows.

Theorem 6. Let P
∗ be the bootstrap distribution conditional on the data,

and c∗
1−α be the (1 − α)-th sample quantile of (

√
N
(
τ̂ ∗

1 − τ̂
)
,
√

N
(
τ̂ ∗

2 − τ̂
)
, . . . ,√

N
(
τ̂ ∗

B − τ̂
)
). Under Assumptions 1–4, it holds

(i) supt∈R |P∗{√N(τ̂ ∗ − τ̂ ) ≤ t}−P{√N(τ̂ − τ) ≤ t}| p→ 0;
(ii) P{√N(τ̂ − τ) ≤ c∗

1−α} p→ 1−α.

https://doi.org/10.1017/S0266466625100133 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100133


22 MENGSHAN XU AND TAISUKE OTSU

6. MONTE-CARLO SIMULATIONS

In this section, we use three simulation studies to assess the finite sample properties
of our isotonic propensity score matching estimator.

6.1. Univariate Case

Let X = 0.15 + 0.7Z, where Z and ν are independently uniformly distributed on
[0,1], and

W =
{

0 if X < ν

1 if X ≥ ν,

Y = 0.5W +2X + ε,

ε ∼N(0,1). (18)

The true ATE is the coefficient of W, which is 0.5. The simulation results are
presented in Table 1, where μ̂τ is the Monte-Carlo mean, and the MSEs are
rescaled by N. The number of Monte-Carlo simulations is 5,000 for each sample
size.

The left panel shows the simulation results of the proposed matching method
based on propensity scores estimated by the UC-isotonic estimator, and the right
panel shows those of the one-to-one matching estimator based on propensity scores
estimated with the logit model P(W = 1|X = x) = exp(a+bx)

exp(a+bx)+1 . The last row shows
the true value of ATE and the semiparametric efficiency bound of this problem
calculated according to Hahn (1998):


SEB = Var(E[Y(1)−Y(0)|X])+E[Var(Y(1)|X)/p0(X)]

+E[Var(Y(0)|X)/(1−p0(X))]

= Var(0.5)+E[1/p0(X)]+E[1/(1−p0(X))]

= 0+
∫ 0.85

0.15

1

x

1

0.7
dx+

∫ 0.85

0.15

1

1− x

1

0.7
dx ≈ 4.96.

Table 1. Matching estimators of ATE: the univariate case

With UC-isotonic With logit and M = 1

N μ̂τ MSE N μ̂τ MSE

100 0.4977 5.2723 100 0.4997 7.1068

1,000 0.4934 5.2589 1,000 0.5009 7.0630

2,000 0.4946 5.2158 2,000 0.4999 7.0816

5,000 0.4963 4.9418 5,000 0.4995 6.8376

10,000 0.4974 4.9785 10,000 0.5000 6.8238

∞ 0.5 4.96 ∞ 0.5 4.96

https://doi.org/10.1017/S0266466625100133 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100133


ISOTONIC PROPENSITY SCORE MATCHING 23

In comparison, the logit matching estimator has a slightly smaller bias, and it
seems that both estimators are asymptotically unbiased. The MSEs of the isotonic
propensity score matching estimator are considerably smaller than those of the
logit matching estimator in every sample size. With the sample size growing,
the MSEs of isotonic propensity score matching estimator approaches to the
semiparametric efficiency bound.

6.2. Multivariate Case

Consider the following setting:

Y = X′γ0 +Wτ0 + ε,

W =
{

0 if X′α0 < ν

1 if X′α0 ≥ ν,

ε ∼N(0,1), ν ∼ N(0,1), ε ⊥ ν,

where X ∼ U[−1,1]3, and the true parameters are set as α0 = (1,1,1)′/
√

3,
and γ0 = (0.1,0.2,0.3)′, and the ATE is τ0 = 0.5. Under this setting, we have
P(W = 1|X = x) = p0(x) = 
(x′α0), where 
 is the CDF of the standard normal
distribution, i.e., the propensity score is correctly specified in probit estimation.

The simulation results are presented in Table 2, where μ̂τ is the Monte-Carlo
mean, and the MSEs are rescaled by N. The number of Monte-Carlo simulations
is 5,000 for each sample size. The left panel shows the simulation results of
the proposed matching method based on propensity scores estimated by the UC-
iso-index estimator, and the right panel shows those of the one-to-one matching
estimator based on propensity scores estimated with the correctly specified probit
model.

The pattern is similar to the univariate case. The biases of both estimators are
small and converge to zero. The isotonic matching estimator outperforms the probit
matching estimator in every sample size in terms of MSE.

Table 2. Matching estimators of ATE: The multivariate case

With UC-iso-index With probit and M = 1

N μ̂τ MSE N μ̂τ MSE

100 0.5080 5.0442 100 0.5114 7.3459

1,000 0.5016 5.0014 1,000 0.5030 6.9813

2,000 0.4991 5.0727 2,000 0.4997 7.2275

5,000 0.5003 5.2115 5,000 0.5010 7.2640

10,000 0.5001 5.0161 10,000 0.5002 7.0509
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Table 3. Bootstrap coverage rates

n 90% CI 95% CI

100 0.860 0.918

1,000 0.889 0.938

2,000 0.881 0.940

5,000 0.901 0.945

10,000 0.891 0.948

∞ 0.90 0.95

6.3. Bootstrap

Table 3 shows the bootstrap coverage rates. We draw 2,000 Monte-Carlo simula-
tions, and for each simulation, we draw 500 bootstrap samples. The coverage rates
are calculated with these 2,000 sets of confidence intervals for both 90% and 95%
confidence levels. From Table 3, we see clear trends that the bootstrap coverage
rates are converging to their theoretical limits.

Overall, the simulation outcomes of the univariate case, the multivariate case,
and the bootstrap encourage the proposed isotonic propensity score matching
method. Additionally, for further simulation comparisons of our approach with
propensity score methods of one-to-many matching and radius matching, as well
as the impact of thresholds for averaging treatment variables at boundaries, see
Section S2 of the Supplementary Material.

7. CONCLUSION

We develop a one-to-many matching estimator of ATE based on propensity
scores estimated by modified isotonic regression. We reveal that the nature of
the isotonic estimator can help us to fix many problems of existing matching
methods, including efficiency, choice of the number of matches, choice of tuning
parameter, robustness to the propensity score misspecification, and bootstrap
validity. As by-products, a uniformly consistent isotonic estimator and a uniformly
consistent monotone single-index estimator, for both univariate and multivariate
cases, are designed for our proposed isotonic matching estimator, and we study
their asymptotic properties. The method can be further extended to other causal
estimators based on propensity scores, such as blocking on propensity scores and
regression on propensity scores.

A. PROOFS

A.1. Proof of Proposition 1

The proof is based on the following lemma.
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Lemma A1 (Groeneboom and Jongbloed (2014, Lemma 2.1)). The vector p̂ =
(p̂1, . . . ,p̂N) minimizes Q(p) = 1

2
∑N

i=1(Wi − pi)
2 over the closed convex cone C = {p ∈

R
N : p1 ≤ p2 ≤ ·· · ≤ pN} if and only if

i∑
j=1

p̂j

{
≤∑i

j=1 Wj

=∑i
j=1 Wj if p̂i+1 > p̂i or i = N.

(A1)

We now prove Proposition 1. For any k = 1, . . . ,K, we have p̂nk > p̂nk−1 and p̂nk+1 >

p̂nk+1−1 by (3). By (A1), we have

nk−1∑
j=1

p̂j =
nk−1∑
j=1

Wj,

nk+1−1∑
j=1

p̂j =
nk+1−1∑

j=1

Wj, p̂nk = p̂nk+1 = ·· · = p̂nk+Nk−1.

(A2)

Since nk −1 = nk−1 +Nk−1 −1 and nk+1 −1 = nk +Nk −1, (A2) implies

nk+Nk−1∑
j=nk

p̂j =
nk+Nk−1∑

j=nk

Wj. (A3)

Combining (A2) and (A3), it holds that for any i = nk, . . . ,nk +Nk −1,

p̂i = 1

Nk

nk+Nk−1∑
j=nk

p̂j = 1

Nk

nk+Nk−1∑
j=nk

Wj.

A.2. Proof of Proposition 2

Part (i) is a direct implication of Proposition 1 and the definitions of Nk,1, Nk, and nk.
By Wi ∈ {0,1}, 0 < p̂(Xi) < 1, and (4), we must have Wi = 1 and Wj = 0 for some i,j ∈
{nk, . . . ,(nk +Nk −1)}. Thus, Part (ii) follows.

A.3. Proof of Proposition 3

A.3.1. Proof of (i). Since the proof is similar, we focus on the proof of the first
statement, N1 ≥ 
N2/3�. The isotonic estimator can be written as (see, Barlow and Brunk,
1972):

p̂(Xi) = max
s≤i

min
t≥i

t∑
j=s

Wj

t − s+1
. (A4)

Let

W̄l = 1


N2/3�

N2/3�∑

i=1

Wi, W̄u = 1


N2/3�
N∑

i=N−
N2/3�+1

Wi. (A5)
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For any i with 1 ≤ i ≤ 
N2/3�, (6), (7), and (A4) imply

p̃(Xi) = max
s≤i

min
t≥i

t∑
j=s

W̃j

t − s+1

= max
s≤i

min
t≥i

∑t∧
N2/3�
j=s W̄l + I{t > 
N2/3�}∑t

j=
N2/3�+1 Wj

t − s+1

= max
s≤i

min
t≥i

∑t
j=s W̄l + I{t > 
N2/3�}

(∑t
j=
N2/3�+1 Wj −

∑t
j=
N2/3�+1 W̄l

)
t − s+1

= W̄l +max
s≤i

min
t≥i

⎡
⎣I{t > 
N2/3�} t −
N2/3�

t − s+1

⎛
⎝ 1

t −
N2/3�
t∑

j=
N2/3�+1

Wj − W̄l

⎞
⎠
⎤
⎦ .

(A6)

Since I{t > 
N2/3�} t−
N2/3�
t−s+1 ≥ 0, the minimizer with respect to t is determined by the sign

of
(

1
t−
N2/3�

∑t
j=
N2/3�+1 Wj − W̄l

)
, and we discuss two cases:

(I) mint>
N2/3� 1
t−
N2/3�

∑t
j=
N2/3�+1 Wj > W̄l;

(II) mint>
N2/3� 1
t−
N2/3�

∑t
j=
N2/3�+1 Wj ≤ W̄l.

For Case (I), adding any terms after 
N2/3� cannot make the average smaller. Thus, we
have p̃(Xi) = W̄l for all 1 ≤ i ≤ 
N2/3�, and it holds N1 = 
N2/3�.

For Case (II), it makes sense to add more terms after 
N2/3� since for any fixed s, adding
more items after 
N2/3� will lower the overall level of the sample mean (A6). Define

ts = arg min
t≥
N2/3�

I{t > 
N2/3�} t −
N2/3�
t − s+1

⎛
⎝ 1

t −
N2/3�
t∑

j=
N2/3�+1

Wj − W̄l

⎞
⎠ . (A7)

After minimizers are chosen for each s, the maxmin operator requires to choose the
maximum across different s. For any i smaller than 
N2/3� and any j ≤ i, we have
W̃j = W̄l ≥ mint>
N2/3� 1

t−
N2/3�
∑t

m=
N2/3�+1 Wm. Therefore, adding more terms before

i will increase the overall level of the sample mean (A6), so we must have s = 1.

(This is also justified by (A7): for s < t, the smaller s, the greater − t−
N2/3�
t−s+1 . Note that

mint>
N2/3� 1
t−
N2/3�

∑t
j=
N2/3�+1 Wj − W̄l ≤ 0 by the setup of Case (II).)

Consequently, (A6) can be written as

p̃(Xi) = W̄l + t1 −
N2/3�
t1

⎛
⎝ 1

t1 −
N2/3�
t1∑

j=
N2/3�+1

Wj − W̄l

⎞
⎠=

t1∑
j=1

W̃j

t1
, (A8)

with t1 > 
N2/3�. (A8) gives a common value of p̃(Xi) for all i = 1, . . . ,
N2/3�. By (3), we
have N1 = t1 > 
N2/3�, which implies the conclusion.

A.3.2. Proof of (ii). Part (i) shows that all the changed treatment variables are
clustered in the first and the last group. Therefore, for k = 2,3, . . . ,K − 1, Part (ii) holds
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by the same arguments for Propositions 1 and 2 (i), so it remains to show the cases for for
k = 1 and K. Since the proof is similar, we only present the proof for k = 1.

By using N1 ≥ 
N2/3� from Part (i), it holds that for each i = 1, . . . ,N1,

p̃(Xi) =
N1∑
j=1

W̃j

N1
=


N2/3�∑
j=1

W̃j

N1
+ I{N1 > 
N2/3�}

N1∑
j=
N2/3�+1

Wj

N1

= 1

N1

⎛
⎝
N2/3�∑

j=1

⎛
⎝ 1


N2/3�

N2/3�∑

i=1

Wi

⎞
⎠+ I{N1 > 
N2/3�}

N1∑
j=
N2/3�+1

Wj

⎞
⎠

= 1

N1

⎛
⎝
N2/3�∑

i=1

Wi + I{N1 > 
N2/3�}
N1∑

j=
N2/3�+1

Wj

⎞
⎠

=
N1∑
j=1

Wj

N1
= N1,1

N1
.

A.3.3. Proof of (iii). Since the proofs are similar, we focus on the first statement,
N1 = Op(N2/3). The idea of this proof is based on the intuition that under Assumption 2
(ii), the treatment propensity should be higher after 
N2/3� than before this point. As a
result, it becomes increasingly unlikely for the points to the right of 
N2/3� to be allocated
to the first partition.

By definition, it is equivalent to show that for any ν > 0, there exists c > 0 such that
P(c1 > c) < ν, where

c1 = N1

N2/3
. (A9)

Without loss of generality, we choose N such that N2/3 = 
N2/3�; and we can set c to be a
positive integer and c > 2; note that N1 = c1N2/3, and we have

P(c1 > c) = P

⎛
⎝W̄l ≥ 1

c1N2/3 −N2/3

c1N2/3∑
j=N2/3+1

Wj,c1 > c

⎞
⎠

= P

⎛
⎝ 1

N2/3

N2/3∑
i=1

Wi >
1

c1N2/3 −N2/3

c1N2/3∑
j=N2/3+1

Wj,c1 > c

⎞
⎠

= P

(
1

N2/3

N2/3∑
i=1

{Wi −p(Xi)}+ 1

N2/3

N2/3∑
i=1

p(Xi)

>
1

c1N2/3 −N2/3

c1N2/3∑
j=N2/3+1

{Wj −p(Xj)}

+ 1

c1N2/3 −N2/3

c1N2/3∑
j=N2/3+1

p(Xj), c1 > c

)
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= P

(
1

N1/3

N2/3∑
i=1

{Wi −p(Xi)}− N1/3

c1N2/3 −N2/3

c1N2/3∑
j=N2/3+1

{Wj −p(Xj)}

>
N1/3

c1N2/3 −N2/3

c1N2/3∑
j=N2/3+1

p(Xj)− 1

N1/3

N2/3∑
i=1

p(Xi), c1 > c

)

= P

⎛
⎝c1N2/3∑

i=1

Bi > a, c1 > c

⎞
⎠, (A10)

where the first equality follows from c1 > c > 2 and the implication of Case (II) of the
proof of Proposition 3 (i), the second equality follows from the definition of W̄l in (A5) and
N2/3 = 
N2/3�, the third equality follows by centering W around p(X), the fourth equality
follows from a rearrangement and multiplying both sides by N1/3, and the last equality is
given by the definitions:

Bi =
⎧⎨
⎩

Wi−p(Xi)

N1/3 for 1 ≤ i ≤ N2/3

−N1/3{Wi−p(Xi)}
c1N2/3−N2/3 for 
N2/3�+1 ≤ i ≤ c1N2/3,

a = N1/3

c1N2/3 −N2/3

c1N2/3∑
j=N2/3+1

p(Xj)− 1

N1/3

N2/3∑
i=1

p(Xi). (A11)

Note that
∑c1N2/3

i=1 Bi is an average centered around zero; the term a, due to Assumption 2
(ii), should be strictly positive. We now apply the following Bernstein inequality (see, e.g.,
van de Geer, 2000) to (A10).

Bernstein Inequality: Let B1,, . . . ,Bn be independent random variables satisfying

E[Bi] = 0, E[|Bi|m] ≤ m!

2
Am−2

V(Bi) for each m = 2,3, . . . ,

b2 =
n∑

i=1

V(Bi), (A12)

for some constant A. Then,

P

⎛
⎝ n∑

i=1

Bi ≥ a

⎞
⎠≤ exp

(
− a2

2aA+2b2

)
.

Let qα denote the α-th quantile of X. For any positive integer c > 2,

N1/3

cN2/3 −N2/3

cN2/3∑
j=N2/3+1

p(Xj)− 1

N1/3

N2/3∑
i=1

p(Xi)

= N1/3

⎛
⎝
∫ qc·N−1/3

qN−1/3 p(x)f (x)dx∫ qc·N−1/3
qN−1/3 f (x)dx

−
∫ qN−1/3

xL p(x)f (x)dx∫ qN−1/3
xL f (x)dx

+Op((N2/3)−1/2)

⎞
⎠
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= N1/3
(∫ qc·N−1/3

qN−1/3 {p(xL)+p(1)(xL) · (x− xL)+o(x− xL)}f (x)dx∫ qc·N−1/3
qN−1/3 f (x)dx

−
∫ qc·N−1/3

xL {p(xL)+p(1)(xL) · (x− xL)+o(x− xL)}f (x)dx∫ qN−1/3
xL f (x)dx

+Op(N−1/3)

)

≥ N1/3
[

p(xL)+p(1)(xL)f (qc·N−1/3 − xL)

−{p(xL)+p(1)(xL)p(1)(xL)f (qN−1/3 − xL)+o(N−1/3)}
]

+Op(1)

= p(1)(xL)N1/3{f qc·N−1/3 (qc·N−1/3 − xL)− f (qN−1/3 − xL)}+Op(1)

=: ac +Op(1), (A13)

where the first equality follows from the fact that the sample mean of a sample of size N2/3

can estimate the population mean at the Op((N2/3)−1/2) rate, the second equality follows
from an extension of p(x) around xL, the first inequality follows from Assumption 2 (iii),
and the last equality is given by the definition

ac = p(1)(xL)N1/3{f (qc·N−1/3 − xL)− f (qN−1/3 − xL)}. (A14)

Now, we show

ac → ∞ as c → ∞. (A15)

To this end, it is enough to show limc→∞ N1/3 · f (qc·N−1/3 − xL) = ∞. By Assumption 2
(iii), for or any c ∈ N, we have

N−1/3/f ≤ q(c+1)·N−1/3 −q(c)·N−1/3 ≤ N−1/3/f . (A16)

Combining (A14) and (A16) yields ac ≥ p(1)(xL) · c(f /f )+O(1), which implies (A15).
Furthermore, by (A14), we have

c1 > c ⇒ ac1 > ac. (A17)

On the other hand, for a defined in (A11), applying (A13) to a yields

a = ac1 +Op(1). (A18)

Now, we study b in (A12). Note that for a binary W and p(X) = E(W|X), we have V(W −
p(X)) = {1−p(X)}p(X). Thus, for any c > 2,

cN2/3∑
i=1

V(Bi) = N2/3

(cN2/3 −N2/3)2

cN2/3∑
j=N2/3+1

{1−p(Xj)}p(Xj)+ 1

N2/3

N2/3∑
i=1

{1−p(Xi)}p(Xi)

= 1

c−1

1

(c−1)N2/3

cN2/3∑
j=N2/3+1

{1−p(Xj)}p(Xj)+ 1

N2/3

N2/3∑
i=1

{1−p(Xi)}p(Xi)

= c

c−1
{1−p(xL)}p(xL)+op(1)

=: b2
c +op(1),
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where the second equality follows from the consistency of the sample mean to the population
mean, and the last equality follows by the definition b2

c = c
c−1 {1 − p(xL)}p(xL). Thus, we

have

N1∑
i=1

V(Bi) =
c1N2/3∑

i=1

V(Bi) = b2
c1

+op(1). (A19)

Due to (A15), (A17), and (A18), for any ν > 0, we can choose a large enough N and c such
that

P

(
a <

1

2
ac, c1 > c

)
≤ P

(
a <

1

2
ac, ac1 > ac

)
<

ν

4
. (A20)

Further, note that b2
c = c

c−1 {1 − p(xL)}p(xL) is decreasing in c when c > 1. By (A19), we
have

P

⎛
⎝ c1N2/3∑

i=1

V(Bi) ≥ 2b2
c, c1 > c

⎞
⎠≤ P

⎛
⎝ c1N2/3∑

i=1

V(Bi) ≥ 2b2
c1

, c1 > c

⎞
⎠<

ν

4
. (A21)

Now, we use the Bernstein inequality. Since Bi defined in (A11) is a centered and normalized
binary variable, we can simply choose A = 1 in (A12), then

P(c1 > c) ≤P

⎛
⎝c1N2/3∑

i=1

Bi > a, c1 > c

⎞
⎠

≤P

⎛
⎝ N1∑

i=1

Bi ≥ a, a ≥ 1

2
ac, c1 > c

⎞
⎠+ ν

4

≤P

⎛
⎝ N1∑

i=1

Bi ≥ a, a ≥ 1

2
ac, c1 > c,

c1N2/3∑
i=1

V(Bi) < 2b2
c

⎞
⎠+ ν

2

≤P

⎛
⎝ N1∑

i=1

Bi ≥ 1

2
ac,

N1∑
i=1

V(Bi) < 2b2
c

⎞
⎠+ ν

2

≤exp

(
−

1
4 a2

c

ac +4b2
c

)
+ ν

2
≤ ν. (A22)

After choosing a large enough N and c, the second inequality follows from (A20); the third

inequality follows from (A21); the fourth inequality follows from (A9) and
∑N1

i=1 Bi ≥
a, a ≥ 1

2 ac ⇒∑N1
i=1 Bi ≥ 1

2 ac; and the fifth inequality follows from Bernstein inequality.

Consequently, the conclusion N1 = Op(N2/3) follows.
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A.4. Proof of Theorem 1

Let qα denote the α-th quantile of X. We define the following sequences of positive numbers:

aN =XN1, bN = q(c1+1)N−1/3,

cN =q1−(cK+1)N−1/3, dN = XnK ,

where nK is defined in Section 2.1, which is the first element of partition K (the last
partition). c1 is defined in (A9). cK is defined similarly to c1 by cKN2/3 = NK , where
NK is the number of elements partition K. Without loss of generality, we assume that N is
large enough to ensure that both quantiles bN and cN are well defined. For given N, the
UC-isotonic estimator estimates the following function:

pN(x) =

⎧⎪⎪⎨
⎪⎪⎩

E[p(X)I(X<aN )]
P(X<aN )

if x ∈ [xL,aN)

p(x) if x ∈ [aN,dN ]
E[p(X)I(X>dN )]

P(X>dN )
if x ∈ (dN,xU].

It is shown in the following figure (Figure A1).
The conclusion of Theorem 1 follows by showing these steps.
Step 1: supx∈[xL,aN ] |p̃(x) − p(x)| = Op(N−1/3) and supx∈[dN,xU ] |p̃(x) − p(x)| =

Op(N−1/3).

Step 2: supx∈[bN,cN ] |p̃(x)−p(x)| = Op

(
logN

N

)1/3
.

Step 3: supx∈(aN,bN ) |p̃(x) − p(x)| = Op

(
logN

N

)1/3
and supx∈(cN,dN ) |p̃(x) − p(x)| =

Op

(
logN

N

)1/3
.

Step 1. Note that p̃(aN) = p̃(x) for each x ∈ [xL,aN ]. Therefore, for supx∈[xL,aN ] |p̃(x)−
p(x)| = Op(N−1/3), it is enough to show that

sup
x∈[xL,aN ]

|p̃(aN)−p(x)| = Op(N−1/3).

Figure A1. UC-isotonic estimator. The left panel is p(x), and the right panel is pN(x).
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First, by Assumption 2 (iii) and Proposition 3 (iii), we have aN − xL = Op(N−1/3), which
implies

x− xL = Op(N−1/3) for x ∈ [xL,aN ]. (A23)

Thus, we have

p̃(aN) = 1

N1

N1∑
i=1

Wi = 1

c1N2/3

c1N2/3∑
i=1

Wi

=
∫ qc1·N−1/3

xL p(x)f (x)dx∫ qc1·N−1/3

xL f (x)dx
+Op((c1N2/3)−1/2)+Op(N−1/2)

=
∫ qc1·N−1/3

xL {p(xL)+p(1)(xL) · (xc1 − xL)}f (x)dx∫ qc1·N−1/3

xL f (x)dx
+Op(N−1/3)

= p(xL)+Op(c1 ·N−1/3)+Op(N−1/3) = p(x)+Op(N−1/3),

where the first equality follows from Proposition 3 (ii); the Op(N−1/2) term in the third
equality follows from that Xc1N2/3 can estimate qc1·N−1/3 at the rate of Op(N−1/2); xc1 in
the fourth equality is a number within the interval (xL,qc1·N−1/3 ); the fifth equality follows

from xc1 − xL = Op(c1 ·N−1/3); the sixth equality follows from (A23) and Assumption 2;
and the last equality follows from c1 = Op(1), which is implied by (A22).

Similarly, we can show supx∈[dN,xU] |p̃(x)−p(x)| = Op(N−1/3).

Step 2. The result supx∈[bN,cN ] |p̃(x) − p(x)| = Op

(
logN

N

)1/3
follows by Durot,

Kulikov, and Lopuhaä (2012, Thm. 2.1). We can adapt the domain from [0,1] in their theo-
rem to [xL,xU] in our problem, and their conditions (A1)–(A3) hold under Assumptions 1
and 2.

Step 3. The statement follows directly by combining the results from Steps 1 and 2
with Assumption 2, bN −aN = Op(N−1/3), and dN − cN = Op(N−1/3).

Combining these steps, the conclusion of this theorem follows.

A.5. Proof of Theorem 2

If Xi is in the k-th partition given by the UC-isotonic estimator (i.e., i ∈ {nk, . . . ,(nk +Nk −
1)}), then we have Mi = Nk,1−Wi . Thus, the matching estimator τ̂ is written as

τ̂ = 1

N

N∑
i=1

(2Wi −1)

⎛
⎝Yi − 1

Mi

∑
j∈J (i)

Yj

⎞
⎠

= 1

N

K∑
k=1

⎧⎨
⎩

nk+Nk−1∑
i=nk

(2Wi −1)

⎛
⎝Yi − 1

Nk,1−Wi

∑
j∈J (i)

Yj

⎞
⎠
⎫⎬
⎭
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= 1

N

K∑
k=1

⎧⎨
⎩

∑
i∈{nk,...,(nk+Nk−1)},Wi=1

⎛
⎝Yi − 1

Nk,0

∑
j∈{nk,...,(nk+Nk−1)},Wj=0

Yj

⎞
⎠

+
∑

i∈{nk,...,(nk+Nk−1)},Wi=0

⎛
⎝ 1

Nk,1

∑
j∈{nk,...,(nk+Nk−1)},Wj=1

Yj −Yi

⎞
⎠
⎫⎬
⎭

= 1

N

K∑
k=1

⎧⎨
⎩
(

1+ Nk,0

Nk,1

) ∑
i∈{nk,...,(nk+Nk−1)},Wi=1

Yi

−
(

Nk,1

Nk,0
+1

) ∑
i∈{nk,...,(nk+Nk−1)},Wi=0

Yi

⎫⎬
⎭

= 1

N

K∑
k=1

⎧⎨
⎩Nk,1 +Nk,0

Nk,1

∑
i∈{nk,...,(nk+Nk−1)},Wi=1

Yi

−Nk,1 +Nk,0

Nk,0

∑
i∈{nk,...,(nk+Nk−1)},Wi=0

Yi

⎫⎬
⎭

= 1

N

K∑
k=1

⎧⎨
⎩

∑
i∈{nk,...,(nk+Nk−1)},Wi=1

Yi

Nk.1/Nk
−

∑
i∈{nk,...,(nk+Nk−1)},Wi=0

Yi

Nk.0/Nk

⎫⎬
⎭

= 1

N

K∑
k=1

⎧⎨
⎩

∑
i∈{nk,...,(nk+Nk−1)}

(
WiYi

p̃(Xi)
− (1−Wi)Yi

1− p̃(Xi)

)⎫⎬
⎭

= 1

N

N∑
i=1

(
WiYi

p̃(Xi)
− (1−Wi)Yi

1− p̃(Xi)

)
, (A24)

where the first equality is the formula of matching estimator for ATE (see, e.g., Abadie and
Imbens, 2016), with a changing matched set of size Mi, the fourth equality follows from the
fact that with w ∈ {0,1} and i �= j, we have

∑
i∈nk:(nk+Nk−1),Wi=w Yj = Nk,w ·Yj, the second

last equality follows from Lemma 3, and the last equality follows from
∑K

k=1 Nk = N.

A.6. Proof of Theorem 3

Given Theorem 2, it is sufficient to show that the last line of (A24) has the desired properties.
By the Taylor extension,

WiYi

p̃(Xi)
− (1−Wi)Yi

1− p̃(Xi)
=
(

WiYi

p(Xi)
− (1−Wi)Yi

1−p(Xi)

)
−
(

WiYi

p(Xi)
2

+ Yi(1−Wi)

{1−p(Xi)}2

)
{p̃(Xi)−p(Xi)}

+2

(
WiYi

p̌3
i

− Yi(1−Wi)

{1− p̌i}3

)
{p̃(Xi)−p(Xi)}2, (A25)
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where the random variable p̌i takes values in the interval between p̃(Xi) and p(Xi). For
Z = (Y,X,W), we define

D(Z) = WY

p(X)2
+ Y(1−W)

{1−p(X)}2
. (A26)

For any x ∈ X , we denote E[D(Z)|X = x] by E[D(Z)|x]. Then, the second term in the first
line of (A25) can be written as:

−D(Zi){p̃(Xi)−p(Xi)}
=−E[D(Zi)|Xi]{p̃(Xi)−p(Xi)}−{D(Zi)−E[D(Zi)|Xi]}{p̃(Xi)−p(Xi)}
=−E[D(Zi)|Xi][{Wi −p(Xi)}−{Wi − p̃(Xi)}]

−{D(Zi)−E[D(Zi)|Xi]}{p̃(Xi)−p(Xi)}
=−E[D(Zi)|Xi]{Wi −p(Xi)}+E[D(Zi)|Xi]{Wi − p̃(Xi)}

−{D(Zi)−E[D(Zi)|Xi]}{p̃(Xi)−p(Xi)}.
Plugging it back to (A25), we have

τ̂ − τ = 1

N

N∑
i=1

[(
WiYi

p(Xi)
− (1−Wi)Yi

1−p(Xi)
− τ

)
−E[D(Zi)|Xi]{Wi −p(Xi)}

]

+ 1

N

N∑
i=1

E[D(Zi)|Xi]{Wi − p̃(Xi)}

− 1

N

N∑
i=1

{D(Zi)−E[D(Zi)|Xi]}{p̃(Xi)−p(Xi)}

+ 2

N

N∑
i=1

(
WiYi

p̌3
i

− Yi(1−Wi)

{1− p̌i}3

)
{p̃(Xi)−p(Xi)}2

=:I + II − III + IV . (A27)

We will show the asymptotic properties of these four terms in the subsequent subsections.

A.6.1. The Limit of I. Note that E[D(Zi)|Xi] = E

[
WiYi
p(Xi)

2 + (1−Wi)Yi
{1−p(Xi)}2

∣∣∣∣Xi

]
=

E[Y(1)]
p(Xi)

+ E[Y(0)]
1−p(Xi)

. Therefore, by Theorem 1 of Hirano et al. (2003) (see also their equations
(12) and (38)), it holds

√
N · I

d→ N(0,
), (A28)

where 
 = V(E[Y(1)−Y(0)|X])+E[V(Y(1)|X)/p(X)]+E[V(Y(0)|X)/(1−p(X))].

A.6.2. The Rate of II. Since p̃(·) is the isotonic estimator of regressing {W̃i}N
i=1 on

{Xi}N
i=1, by the construction of the isotonic estimator (see, e.g., Groeneboom and Jongbloed,

2014, Lemmas 2.1 and 2.3; see also Barlow and Brunk, 1972), we have
∑nk+1−1

i=nk
{W̃i −

p̃(Xi)} = 0 for each k = 1, . . . ,K. (For the last summand, we can simply set nK+1 = N +1.)
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By Proposition 3 (i) and the construction of W̃ (given by (6)), it holds that
∑nk+1−1

i=nk
{Wi −

p̃(Xi)} = 0 for each k = 1, . . . ,K. As a result,

K∑
k=1

mk

nk+1−1∑
i=nk

{Wi − p̃(Xi)} = 0 (A29)

holds for any weights {mk}K
k=1. To proceed, we define the function δ(x) as

δ(x) = E[D(Z)|X = x], (A30)

and its corresponding step function δ̄N(x) as

δ̄N(x) =

⎧⎪⎨
⎪⎩

δ(Xnk ) if p(x) > p̃(Xnk ) for all x ∈ (Xnk,Xnk+1)

δ(s) if p(s) = p̃(s) for some s ∈ (Xnk,Xnk+1)

δ(Xnk+1) if p(x) < p̃(Xnk ) for all x ∈ (Xnk,Xnk+1),

for each x ∈ [Xnk,Xnk+1) with k = 1, . . . ,K (if k = K, set Xnk+1 = max
k

Xnk ). Further, we

define z = (y,w,x) as a given vector belonging to the domain of the random vector Z =
(Y,W,X). By (A29), it holds∫

δ̄N(x){w− p̃(x)}dPN(z) = 0,

where PN is the empirical measure. Thus, we have

II = 1

N

N∑
i=1

E[D(Zi)|Xi]{Wi − p̃(Xi)} =
∫

δ(x){w− p̃(x)}dPN(z)

=
∫

{δ(x)− δ̄N(x)}{w− p̃(x)}dPN(z). (A31)

By definition, δ(x) is a bounded function with a finite total variation, so is δ̄N(x). For P0
denoting the joint probability measure of (Y,W,X), the last row of (A31) can be decomposed
as:∫

{δ(x)− δ̄N(x)}{w− p̃(x)}dPn(z).

=
∫

{δ(x)− δ̄N(x)}{w− p̃(x)}d(Pn(z)−P0(z))

+
∫

{δ(x)− δ̄N(x)}{w−p(x)}dP0(z)+
∫

{δ(x)− δ̄N(x)}{p(x)− p̃(x)}dP0(z)

=:II1 + II2 + II3.

It shall be noted that by Assumption 4, δ(x)− δ̄N(x) is a bounded function with a finite total
variation, and δ(x) is continuously differentiable in x. Under Assumption 2 (ii) and similar
arguments following (10.64) of Groeneboom and Jongbloed (2014), it holds that for some
C0 > 0 and all x ∈ X ,

|δ(x)− δ̄N(x)| ≤ C0|p(x)− p̃(x)|. (A32)
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A.6.3. The Rate of II1. For R := max{|xL|,|xu|} and a positive constant K, let us
define

MRK = {monotone increasing functions on[−R,R]and bounded byK},
GRK = {g : g(x) = p(x),x ∈ X ,p ∈ MRK},

DRKv = {d : d(x) = g1(x)−g2(x), (g1,g2) ∈ G2
RK, ‖d(·)‖P0 ≤ v},

HRKv = {h : h(y,x) = wd1(x)−d2(x), (d1,d2) ∈ D2
RKv, z ∈ Z}, (A33)

where ‖f‖P =
√∫ |f (x)|2dP(x) denotes the L2(P) norm of function f, given the probability

measure P. Then, the integrand of II1 can be written as

{δ(x)− δ̄N(x)}{w− p̃(x)} = {δ(x)− δ̄N(x)}w−{δ(x)− δ̄N(x))}p̃(x). (A34)

Furthermore, we define

Fa = {
f : f (z) = {δ(x)− δ̄N(x)}w−{δ(x)− δ̄n(x)}p̃(x), z ∈ Z

}
.

We note the following points:
(i) By Assumption 2 and the construction of δ̄N(x), {δ(x)− δ̄N(x)} is a bounded function

of x with a finite total variation.
(ii) W̃ ∈ [0,1] implies that supx∈X |p̃(x)| ≤ 1. Therefore, for any constant K1 > 1, it holds

that p̃(x) ∈ GRK1 .
(iii) By Theorem 1 and (A32), there exists some constant C1 > 0, such that∥∥δ(x)− δ̄N(x)

∥∥
P

≤ C1

(
logN

N

)1/3
holds with the probability arbitrarily close to one

(hereafter denoted as w.p.a.1) if we choose a large enough C1. Therefore, by (i) and
Lemma 21 in the Supplementary Material of BGH (BGH-supp hereafter),8 for a constant
C2 that is larger than twice the bound of δ(x) (which is guaranteed by Assumption 4) and

v1 = C1

(
logN

N

)1/3
, it holds that {δ(x)− δ̄N(x)} ∈ DRC2v1 , w.p.a.1.

(iv) By (i), (ii), a similar argument to that (iii), Theorem 1, Jensen’s inequality, and the
fact that the product of two monotone increasing functions remains monotone increasing,
we have {δ(x)− δ̄n(x)}p̃(x) ∈ DRKv holds for constants K = C2K1 and v = v1K1, w.p.a.1.

(v) By definition of function classes presented by (A33), we have Fa ⊆ HRKv, w.p.a.1.
Let N[](ε,F, ‖·‖) be the ε-bracketing number of the function class F under the norm ‖·‖,
and

HB(ε,F, ‖·‖) = logN[](ε,F, ‖·‖)
be the entropy of N[](ε,F, ‖·‖). Furthermore, let us define

JB(δ,F, ‖·‖) :=
∫ δ

0

√
1+HB(ε,F, ‖·‖)dε.

By Theorem 2.7.5 in van der Vaart and Wellner (1996) and Lemma 11 in BGH-supp, given
a positive constant C and a bracket size ε, there exists a constant A > 0, such that the entropy

8The lemma states that a function f, which is bounded and has a finite total variation, can be decomposed as f = f1 − f2,
where both f1 and f2 are bounded and monotone increasing.
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of the function class DRCv satisfies

HB(ε,DRCv, ‖·‖P0) ≤ AC

ε
.

Let (dL
1,dU

1 ) and (dL
2,dU

2 ) be two ε-brackets for the function class DRKv. Now, we calculate
the entropy of HRKv, by using a set of brackets derived from the ε-brackets of DRKv. Note
that w ∈ {0,1} is nonnegative. Then, we can define a bracket (hL,hU) within HRKv as

hL = wdL
1 (x)−dU

2 (x), hU = wdU
1 (x)−dL

2 (x),

and its size is√∫
{hU(z)−hL(z)}2dP0(z)

≤
√

2

[∫
w2{dU(x)−dL(x)}2dP0(z)+

∫
{dU(x)−dL(x)}2dP0(z)

]

≤
√

4
∫

{dU(x)−dL(x)}2dP0(x) ≤ 2ε,

where the last inequality follows from the definition of ε-bracket with respect to (w.r.t.) the
L2(P0) norm. As a result, for a constant Ã > 0, it holds

HB(ε,HRCv, ‖·‖P0) ≤ ÃC

ε
. (A35)

Combining the point (v) above and (A35), there exists C3 > 0, such that

HB(ε,Fa, ‖·‖P0) ≤ C3

ε
(A36)

holds w.p.a.1. For fa ∈ Fa, points (iii) and (iv) imply that

‖fa‖P0
≤ C1

(
logN

N

)1/3
(A37)

holds w.p.a.1.
We have defined P0 to be the joint probability measure of Z = (Y,W,X). With some

abuse of notation, in the following, Pwill be used to denote P0 whenever the context permits
without risk of confusion. Further, we use E to denote the event that both (A36) and (A37)
happen. Note that we can select sufficiently large constants to ensure that P(E ) approaches
as close to one as desired.

In the following, we define ‖GN‖F = supf ∈F |√N(PN −P0)f |, and we use JB(δ) to

denote JB(δ,Fa, ‖·‖B,P0 ). Let ηN := C1

(
logN

N

)1/3
. For any positive constants B and ν,

there exist positive constants B1, B2, and C2, such that for all N large enough,

P(|II1| > BN−1/2) ≤ P(|II1| > BN−1/2,E )+P(E c)

≤P
(‖GN‖Fa

> B,E
)+ ν

2
≤ E

(‖GN‖Fa
|E )

B
+ ν

2
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� 1

B
JB(ηN)

(
1+ JB(ηN)√

Nη2
N

)
+ ν

2
� 1

B
(ηN +2B1/2

1 η
1/2
N )

(
1+ ηN +2B1/2

1 η
1/2
N√

Nη2
N

)
+ ν

2

�C2

(
logN

N

)1/6
×
(

1+ B2

(logN)
1
2

)
+ ν

2
≤ ν, (A38)

where the third inequality follows from the Markov inequality; the first wave inequality (�)
follows from Lemma 3.4.2 of van der Vaart and Wellner (1996); the second wave inequality
follows from (A36) and equation (.2) in BGH-supp9; and the third wave inequality follows

from ηN � η
1/2
N and the definition of ηN . Since ν can be chosen arbitrarily small, we

obtain

II1 = op(N−1/2). (A39)

A.6.4. The Rate of II2. By the law of iterated expectations and p(x) = E[W|X = x],

II2 =
∫

{δ(x)− δ̄N(x)}{w−p(x)}dP0(z)

=
∫

{δ(x)− δ̄N(x)}E[{W −p(X)}|X = x]dP0(x) = 0.

A.6.5. The Rate of II3. The inequality (A32) implies:

II3 =
∫

{δ(x)− δ̄N(x)}{p(x)− p̃(x)}dP0(z)

�
∫

{p(x)− p̃(x)}2dP0(z) = Op

((
logN

N

)2/3
)

= op(N−1/2),

where the wave inequality follows from (A32), and the second equality follows from
Theorem 1. Combining the rates for II1, II2, and II3, we have

II = 1

N

N∑
i=1

E[D(Zi)|Xi]{Wi − p̃(Xi)} = op(N−1/2). (A40)

A.6.6. The Rate of III. By defining V(·) = D(·)−E[D(Z)|X = ·], we have

III =
∫

V(z){p̃(x)−p(x)}dPN(z)

=
∫

V(z){p̃(x)−p(x)}d(Pn(z)−P0(z))+
∫

V(z)
[
p̃(x)−p(x)

]
dP0(z)

=: III1 + III2.

9Equation (.2) in BGH-supp states that JB(δ) ≤ δ +2C1/2δ1/2 holds for some positive constant C.
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By definition, E[V(Z)|X = x] = 0 holds for all x ∈ X . Then, III2 = 0 follows from the law
of iterated expectations.

The derivation of the rate of III1 is similar to that of II1. The main difference is D(z)
not being assumed to be uniformly bounded over Z . Consequently, we shall use Lemma
3.4.3 from van der Vaart and Wellner (1996), instead of Lemma 3.4.2. The former is
formulated w.r.t. the Bernstein norm and is suitable for unbounded function classes. To
simplify our discussion and avoid cumbersome notation, we will reuse some notations
previously introduced in Appendix A.6.2 (e.g., those notations denoting various constants),
provided it does not lead to confusion in the context.

Recall the function classes MRK , GRK , and DRKv defined in (A33). Here, we define
additionally

H(2)
RKv = {h : h(z) = V(z)d(x), d(·) ∈ DRKv, z ∈ Z},
Fb = {

f : f (z) = V(z){p̃(x)−p(x)}, z ∈ Z
}
.

Let (dL,dU) be any ε-bracket within the function class DRCv. Define

hL =
{

D(z)dL(x) if D(z) ≥ 0

D(z)dU(x) if D(z) < 0,

hU =
{

D(z)dU(x) if D(z) ≥ 0

D(z)dL(x) if D(z) < 0.

Note that (hL,hU) is a bracket within H(2)
RKv, and its size is

√∫
{hU(z)−hL(z)}2dP0(z) =

√∫
D(z)2{dU(x)−dL(x)}2dP0(z)

=
√∫

E
[
D(Z)2|X = x

] {dU(x)−dL(x)}2dP0(x) ≤ A1ε,

for some A1 > 0. The last inequality follows from Assumption 4 and the definition of ε-
bracket w.r.t. the L2(P0) norm. As a result, for some Ã > 0, we have

HB(ε,H(2)
RCv, ‖·‖P0) ≤ ÃC

ε
. (A41)

We now switch to the Bernstein norm because we prefer not to impose a bound on D(z).
Let ‖·‖B,P be the Bernstein norm under a measure P. By the definition,

‖h‖2
B,P = 2P(exp(|h|)−|h|−1) = 2

∫ ∞∑
k=2

1

k!
|h|kdP(z),

where the second equality follows by the extension of the natural exponential function.
Next, we attempt to bound the Bernstein norm of H−1h(·), where H is a positive number
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that we will select in subsequent steps to establish a finite upper bound. For a constant C

and any h ∈ H(2)
RCv, it holds

∥∥∥H−1hU −H−1hL
∥∥∥2

B,P0
= 2

∫ ∞∑
k=2

1

Hk

1

k!
|D(z){dU(x)−dL(x)}|kdP0(z)

≤ 2
∫ ∞∑

k=2

1

Hk

1

k!
|D(z)|k|dU(x)−dL(x)|kdP0(z)

≤ 2
∞∑

k=2

1

Hk

(4C)k−2

k!
k!Mk−2

0 c0

∫
|dU(x)−dL(x)|2dP0(x)

= 2

H2

∞∑
k=2

(4M0C)k−2

Hk−2
c0

∫
|dU(x)−dL(x)|2dP0(x)

= 2

H2

∞∑
k=2

(
4M0C

H

)k−2
c0ε2 = 2c0

( ε

H

)2
,

where the second inequality follows from Assumption 4 and d(·) ≤ 2C (implied by d(·) ∈
DRCv); c0 and M0 are the same constants defined in Assumption 4 (iii); the third equality
follows from the definition of the ε-bracket; and the last equality follows from choosing
H = 8M0C. As a result, we have for some positive constant C1,

HB(ε,H(2)
RCv, ‖·‖B,P0) ≤ C1

ε
. (A42)

Further, by similar arguments, for any h ∈ H(2)
RCv, it holds

∥∥∥H−1h
∥∥∥2

B,P0
≤ 2

∫ ∞∑
k=2

1

Hk

1

k!
|D(z)|k|d(x)|kdP0(z)

= 2

H2

∞∑
k=2

(2M0C)k−2

Hk−2
c0

∫
|d(x)|2dP0(x)

= 2

H2

∞∑
k=2

(
2M0C

H

)k−2
c1v2 =

(
2

H

)2
c1v2,

where the third equality follows from d(·) ∈ DRCv. Thus,∥∥∥H−1h
∥∥∥

B,P0
� v

H
. (A43)

Based on these results, we now study the function class Fb. Set C ≥ 1 and v :=
C2

(
logN

N

)1/3
for some C2 > 0. Then, by Theorem 1 and the definitions of H(2)

RCv and

Fb,

Fb ⊆ H(2)
RCv (A44)

holds w.p.a.1. Furthermore, we define

F̃b = H−1Fb. (A45)
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By combining (A42), (A44), and (A45), there exists C2 > 0, such that

HB(ε,F̃b, ‖·‖B,P0) ≤ C2

ε
(A46)

holds w.p.a.1. Further, for fb ∈Fa, we define f̃b = H−1fb. By (A43) and v = C2

(
logN

N

)1/3
,

there exists some C3 > 0, such that

∥∥∥f̃b
∥∥∥

B,P0
≤ C3

(
logN

N

)1/3
(A47)

holds w.p.a.1.
Again, we use E to denote the event that both (A46) and (A47) happen. With sufficiently

large constants selected, P(E ) can approach as close to one as desired. For ηN :=
C3

(
logN

N

)1/3
and any positive constants B and ν, there exist constants B1, B2, and C4,

such that for all N large enough, it holds that

P(|III1| > BN−1/2) ≤ P(|II1| > BN−1/2,E )+P(E c)

≤P
(‖GN‖Fb

> B,E
)+ ν

2
≤ H

B
E

(
‖GN‖F̃b

|E
)

+ ν

2

�H

B
JB(ηN)

(
1+ JB(ηN)√

Nη2
N

)
+ ν

2
� H

B
(ηN +2B1/2

1 η
1/2
N )

(
1+ ηN +2B1/2

1 η
1/2
N√

Nη2
N

)
+ ν

2

�C4

(
logN

N

)1/6
×
(

1+ B2

(logN)
1
2

)
+ ν

2
≤ ν, (A48)

where the third inequality follows from the Markov inequality and the definition of F̃b in
(A45); the first wave inequality (�) comes from Lemma 3.4.3 of van der Vaart and Wellner
(1996); the second wave inequality comes from (A46) and equation (.2) in BGH-supp; and

the third wave inequality follows from ηN � η
1/2
N and the definition of ηN . Since ν can be

chosen arbitrarily small, we obtain III1 = op(N−1/2). Combined with III2 = 0 yields

III = op(N−1/2). (A49)

A.6.7. The Rate of IV. Note that

IV = 2

N

N∑
i=1

(
Wi

p̌3
i

− 1−Wi

{1− p̌i}3

)
Yi{p̃(Xi)−p(Xi)}2

= 2

N

N∑
i=1

(
Wi

p̌3
i

− 1−Wi

{1− p̌i}3

)
{YiI(Yi > 0)}{p̃(Xi)−p(Xi)}2

+ 2

N

N∑
i=1

(
Wi

p̌3
i

− 1−Wi

{1− p̌i}3

)
{YiI(Yi ≤ 0)}{p̃(Xi)−p(Xi)}2

=:IV+ + IV−.
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For IV+, we have

|IV+| ≤2 sup
i∈{1:N}

∣∣∣∣∣Wi

p̌3
i

− 1−Wi

{1− p̌i}3

∣∣∣∣∣ 1

N

N∑
i=1

{YiI(Yi > 0)}{p̃(Xi)−p(Xi)}2

≤2 sup
i∈{1:N}

∣∣∣∣∣ 1

p̌3
i

+ 1

{1− p̌i}3

∣∣∣∣∣ sup
i∈{1:N}

{p̃(Xi)−p(Xi)}2 1

N

N∑
i=1

{YiI(Yi > 0)}

≤2 ·
∣∣∣∣∣ 1

p3
+ 1

{1− p̄}3
+op(1)

∣∣∣∣∣ ·Op

(
logN

N

)2/3
·Op(1)

=op(N−1/2),

where the second inequality follows from Wi ∈ {0,1}, and p̌i being nonnegative (because
both p̃(Xi) and p(Xi) are nonnegative); the third inequality follows from Assumptions 3
and 4 and Theorem 1.

By a similar argument, we have

|IV−| ≤2 max
1≤i≤N

∣∣∣∣∣ 1

p̌3
i

+ 1

{1− p̌i}3

∣∣∣∣∣ max
1≤i≤N

{p̃(Xi)−p(Xi)}2 1

N

N∑
i=1

{−YiI(Yi ≤ 0)}

=op(N−1/2),

and thus,

IV = op(N−1/2). (A50)

Remark A1. [The role of the UC-isotonic estimator] We observe the critical role played
by the UC-isotonic estimator in establishing the rate of IV: it allows us to uniformly bound
Wi
p̌3

i
− 1−Wi

{1−p̌i}3 from above (with probability approaching one). However, if we were to use a

standard isotonic estimator instead, there is no guarantee that those Wi
p̌3

i
− 1−Wi

{1−p̌i}3 at bound-

aries are bounded. This lack of boundedness occurs because the bias inherent in the standard
isotonic estimator at boundaries is not mitigated by increasing the sample size. Although
this bias affects only the summands at the two shrinking boundaries, the bias is toward zero
and will be disproportionately amplified by the reciprocal structure, considerably impacting
the overall moment estimator. The consequence is partially exemplified by column (d) of
Table S8 in the Supplementary Material. This column presents the case with a conservative
per-averaging (only averaging the first and the last 
N1/3�), which closely approximates
the scenario without pre-processing the data.

A.6.8. Summary of Appendix A.6. Combining (A28), (A40), (A49), and (A50)
yields

√
N(τ̂ − τ)

d→ N(0,
),

where 
 = V(E[Y(1)−Y(0)|X])+E[V(Y(1)|X)/p(X)]+E[V(Y(0)|X)/(1−p(X))].
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A.7. Proof of Theorem 4

The proof is similar to that of Theorem 1. Since we have α̃−α0 = Op(N−1/2) = op(N−1/3),
the estimation of α0 does not affect the uniform convergence rate. All the steps in
Appendix A.4 can be similarly applied with plugged-in α̃.

A.8. Proof of Theorem 5

Note that Proposition 3 and Corollary 1 also hold for the UC-iso-index estimator p̃α̃ . By a
similar argument for the proof of Theorem 2 (in Appendix A.6), we have

τ̃ = 1

N

N∑
i=1

(2Wi −1)

⎛
⎝Yi − 1

Mi

∑
j∈J (i)

Yj

⎞
⎠= 1

N

N∑
i=1

(
WiYi

p̃α̃(X′
i α̃)

− (1−Wi)Yi

1− p̃α̃(X′
i α̃)

)
. (A51)

It remains to derive the asymptotic properties of (A51). Recall that Eα[D(Z)|u] :=
E[D(Z)|X′α = u]. Similarly to (A27),

τ̃ − τ = 1

N

N∑
i=1

[(
WiYi

p0(X′
iα0)

− (1−Wi)Yi

1−p0(X′
iα0)

− τ

)
−Eα̃[D(Z)|X′

i α̃]{Wi −p0(X′
iα0)}

]

+ 1

N

N∑
i=1

Eα̃[D(Z)|X′
i α̃]{Wi − p̃α̃(X′

i α̃)}

− 1

N

N∑
i=1

{D(Zi)−Eα̃[D(Z)|X′
i α̃]}{p̃α̃(X′

i α̃)−p0(X′
iα0)}

+ 2

N

N∑
i=1

(
WiYi

p̌3
i

− Yi(1−Wi)

{1− p̌i}3

)
{p̃α̃(X′

i α̃)−p0(X′
iα0)}2

=:Im + IIm − IIIm + IVm.

Among these terms, the convergence rates of Im, IIm, and IVm can be derived similarly as
that in Section A.6, while IIIm behaves differently than III. We will discuss these rates in
the following subsections.

A.8.1. The Limit of Im. It holds that

Im = 1

N

N∑
i=1

[(
WiYi

p0(X′
iα0)

− (1−Wi)Yi

1−p0(X′
iα0)

− τ

)
−Eα0 [D(Zi)|X′

iα0]{Wi −p0(X′
iα0)}

]

+ 1

N

N∑
i=1

{Eα0 [D(Zi)|X′
iα0]−Eα̃[D(Zi)|X′

i α̃]}{Wi −p0(X′
iα0)}

=:Im,1 + Im,2.
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Similarly to (A30), we define δα(u) = E[D(Z)|X′α = u]. Then,

Im,2 =
∫

{δα0(x
′α0)− δα̃(x′α̃)}{w−p0(x′α0)}d(Pn(z)−P0(z))

+
∫

{δα0(x
′α0)− δα̃(x′α̃)}{w−p0(x′α0)}dP0(z)

=:Im,2,1 + Im,2,2.

Let us first study the rate of Im,2,1. Given that the function class of
{
δα(u) =Eα[D(Z)|X′α =

u] : α ∈B(α0,δ0),u ∈ Iα = {x′α : x ∈X }} is parameterized by a k-dimensional parameter α,

the ε-bracket number of this class is of the order of 1
ε (see, e.g., van der Vaart and Wellner,

1996, Ex. 19.7). Its corresponding entropy is smaller than that presented in (A36).
Furthermore, BGH shows that α̃ is

√
N-consistent of α0 (recall that we have defined

α̃ = α̂), and we know that δα(u) is by construction differentiable w.r.t. α for all α ∈B(α0,δ0)

and u ∈ Iα = {x′α : x ∈ X }. As a result, we have
∥∥δα0(·′α0)− δα̃(·′α̃)

∥∥
P0

= Op(N−1/2).
Therefore, we can apply similar arguments for the term II1 in Appendix A.6.2 to show that
Im,2,1 = op(N−1/2).

Finally, Im,2,2 = 0 by the law of iterated expectations. Thus, we have shown that Im,2 =
op(N−1/2). Consequently,

Im = 1

N

N∑
i=1

[(
WiYi

p0(X′
iα0)

− (1−Wi)Yi

1−p0(X′
iα0)

− τ

)
−Eα0 [D(Zi)|X′

iα0]{Wi −p0(X′
iα0)}

]

+op(N−1/2)

= 1

N

N∑
i=1

{m(Zi)+M(Zi)}+op(N−1/2), (A52)

where functions m(·) and M(·) are defined in Theorem 5.

A.8.2. The Rates of IIm and IVm. By the consistency of α̃ and Assumption 2’,
it holds that for all large N, the function pα̃(u) = E[W|X′α̃ = u] is monotone increasing,
w.p.a.1. As a result, we can apply Theorem 4 and the same arguments presented in
Appendix A.6.2 to show

IIm = op(N−1/2). (A53)

See pp. 17–20 of BGH-supp for a similar case concerning the monotone single-index model.
By Theorem 4 and the same arguments as presented in Appendix A.6.7, it holds that

IVm = op(N−1/2). (A54)
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A.8.3. The Rates of IIIm. The term IIIm can be decomposed as

IIIm = 1

N

N∑
i=1

{D(Zi)−Eα̃[D(Zi)|X′
i α̃]}{p̃α̃(X′

i α̃)−p0(X′
iα0)}

= 1

N

N∑
i=1

{D(Zi)−Eα̃[D(Zi)|X′
i α̃]}{p̃α̃(X′

i α̃)−pα̃(X′
i α̃)}

+ 1

N

N∑
i=1

{D(Zi)−Eα̃[D(Zi)|X′
i α̃]}{pα̃(X′

i α̃)−p0(X′
iα0)}

=:IIIm,1 + IIIm,2. (A55)

By the consistency of α̃, Assumption 2’, it holds that for all large N, the function pα̃(u) =
E[W|X′α̃ = u] is monotone increasing, w.p.a.1. Therefore, we can apply Theorem 4 and the
same arguments presented in Appendix A.6.6 to show

IIIm,1 = op(N−1/2). (A56)

For IIIm,2, by Lemma 17 of BGH-supp, it holds that

∂

∂α(j)
pα(x′α)

∣∣∣∣
α=α0

= {x(j) −Eα0 [X(j)|X′α0 = x′α0]}p(1)
0 (x′α0),

where α(j) and x(j) are j-th elements of vectors α and x. Extending IIIm,2 around α0 yields

IIIm,2 = 1

N

N∑
i=1

{D(Zi)−Eα̃[D(Zi)|X′
i α̃]}{pα̃(X′

i α̃)−p0(X′
iα0)}

= 1

N

N∑
i=1

[D(Zi)−Eα̃[D(Zi)|X′
i α̃]][Xi −Eα0 [Xi|X′

iα0]]′p(1)
0 (X′

iα0)(α̃ −α0)

+op(α̃ −α0)

= (α̃ −α0)
1

N

N∑
i=1

{D(Zi)−Eα0 [D(Zi)|X′
iα0]}[Xi −Eα0 [Xi|X′

iα0]]′p(1)
0 (X′

iα0)

+op(α̃ −α0), (A57)

where the last equality follows from Eα0 [D(Zi)|X′
iα0] −Eα̃[D(Zi)|X′

i α̃] = op(1). By the
law of large numbers and the law of iterated expectations,

1

N

N∑
i=1

[D(Zi)−Eα0 [D(Zi)|X′
iα0]][Xi −Eα0 [Xi|X′

iα0]]′p(1)
0 (X′

iα0)

→p E[Covα0 (D(Z),X|X′α0)p(1)
0 (X′α0)], (A58)

where Covα0(D(Z),X|·) := E
{
[D(Z)−Eα0 [D(Z)|X′α0]][Xi −Eα0 [X|X′α0]]′|X′α0 = ·}.
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Furthermore, by Theorem 5 of BGH and α̃ ≡ α̂, we have

α̃ −α0 = E[p(1)
0 (X′α0)Covα0(X|X′α0)]− 1

N

N∑
i=1

{Xi −Eα0 [Xi|X′
iα0]}{Wi −p0(X′

iα0)}

+op(α̃ −α0), (A59)

where B− represents the Moore–Penrose inverse of a matrix B.
For each i = 1, . . . ,N, define

A(Zi) =−E[Covα0(D(Z),X|X′α0)p(1)
0 (X′α0)]E[p(1)

0 (X′α0)Covα0(X|X′α0)]−

×{Xi −Eα0 [Xi|X′
iα0]}{Wi −p0(X′

iα0)}.
Then, combining (A55)–(A59) and α̃ −α0 = Op(N−1/2) yields

IIIm = 1

N

N∑
i=1

−A(Zi)+op(N−1/2). (A60)

A.8.4. Summary of Appendix A.8. Combining (A52)–(A54) and (A60), we obtain
√

N(τ̃ − τ) =√
N(Im + IIm − IIIm + IVm)

= 1√
N

N∑
i=1

{m(Zi)+M(Zi)+A(Zi)}+op(1).

A.9. Proof of Theorem 6

The proof is adapted from Groeneboom and Hendrickx (2017). By Theorem 2, it is sufficient

to show the validity of the bootstrap approximation for τ̂ = 1
N
∑N

i=1

(
WiYi
p̃(Xi)

− (1−Wi)Yi
1−p̃(Xi)

)
.

Let {Zi}N
i=1 = {Yi,Wi,Xi}N

i=1 be the original sample and {Z∗
i }N

i=1 be its bootstrap
resample. Define p̃∗(·) and τ̂∗ as the UC-isotonic estimator of the propensity score and
the corresponding ATE estimator with the resample {Z∗

i }N
i=1. By the same arguments for

(A27), we have

τ̂∗ − τ = 1

N

N∑
i=1

[(
W∗

i Y∗
i

p(X∗
i )

− (1−W∗
i )Y∗

i
1−p(X∗

i )
− τ

)
−E[D(Zi)|X∗

i ]{W∗
i −p(X∗

i )}
]

+ 1

N

N∑
i=1

E[D(Zi)|X∗
i ]
[
W∗

i − p̃(X∗
i )
]− 1

N

N∑
i=1

{D(Zi)−E[D(Zi)|X∗
i ]}{p̃(X∗

i )−p(X∗
i )}

+ 2

N

N∑
i=1

(
W∗

i Y∗
i

p̌3
i

− (1−W∗
i )Y∗

i

{1− p̌i}3

)
{p̃(X∗

i )−p(X∗
i )}2 := I∗ + II∗ − III∗ + IV∗. (A61)

For the term IV∗, with some abuse of notation, we use the same p̌3
i to denote a random value

between p̃(X∗
i ) and p(X∗

i ). By similar arguments in Appendices A.6.2, A.6.6, and A.6.7, we
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have

II∗ = opM (N−1/2), III∗ = opM (N−1/2), IV∗ = opM (N−1/2),

where PM is the probability measure in the bootstrap world defined in p. 3450 of Groene-
boom and Hendrickx (2017). As a result, we have

τ̂∗ − τ = 1

N

N∑
i=1

[(
W∗

i Y∗
i

p(X∗
i )

− (1−W∗
i )Y∗

i
1−p(X∗

i )
− τ

)
−E[D(Z)|X∗

i ]{W∗
i −p(X∗

i )}
]

+opM (N−1/2).

Define

m(Z,τ,p(·)) = YW

p(X)
− Y(1−W)

1−p(X)
− τ, M(Z) = −E[D(Z)|X]{W −p(X)}.

Then, we can write

τ̂∗ − τ =
⎡
⎣ 1

N

N∑
i=1

m(Z∗
i ,τ,p(X∗

i ))− 1

N

N∑
i=1

m(Zi,τ,p(Xi))

⎤
⎦

+
⎡
⎣ 1

N

N∑
i=1

M(Z∗
i )− 1

N

N∑
i=1

M(Zi)

⎤
⎦

+ 1

N

N∑
i=1

{m(Zi,τ,p(Xi)+M(Zi)}+opM (N−1/2). (A62)

From Appendix A.6.1, we have

τ̂ − τ = 1

N

N∑
i=1

{m(Zi,τ,p(Xi))+M(Zi)}+op(N−1/2). (A63)

Subtracting (A63) from (A62),

τ̂∗ − τ̂ =
⎧⎨
⎩ 1

N

N∑
i=1

m(Z∗
i ,τ,p(X∗

i ))− 1

N

N∑
i=1

m(Zi,τ,p(Xi))

⎫⎬
⎭

+
⎧⎨
⎩ 1

N

N∑
i=1

M(Z∗
i )− 1

N

N∑
i=1

M(Zi)

⎫⎬
⎭

+opM (N−1/2)+op(N−1/2).

Note that EPM [m(Z∗
i ,τ,p(X∗

i ))] = 1
N
∑N

i=1 m(Zi,τ,p(Xi)) and EPM [M(Z∗
i )] =

1
N
∑N

i=1 M(Zi), where EPM [·] is the expectation under PM . Consequently, a central limit

theorem yields
√

N(τ̂∗ − τ̂ )
d→ N(0,
), where 
 is defined in Theorem 3. This proves the

conclusion (i) of Theorem 6, i.e.,

sup
t∈R

|P∗{√N(τ̂∗ − τ̂ ) ≤ t}−P{√N(τ̂ − τ) ≤ t}| p→ 0. (A64)
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For (ii), note that by the definition of c∗
1−α

, it holds that P∗{√N(τ̂∗ − τ̂ ) ≤ c∗
1−α

} = 1 −
α +op(1). Combining this result with (A64) yields

|P{√N(τ̂ − τ) ≤ c∗
1−α}− (1−α)|

= |P{√N(τ̂ − τ) ≤ c∗
1−α}−P

∗{√N(τ̂∗ − τ̂ ) ≤ c∗
1−α}|+op(1)

≤ sup
t∈R

|P{√N(τ̂ − τ) ≤ t}−P
∗{√N(τ̂∗ − τ̂ ) ≤ t}|+op(1)

p→ 0,

and thus the conclusion (ii) of Theorem 6 follows.
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