
Optimization and Engineering
https://doi.org/10.1007/s11081-025-10001-4

RESEARCH ART ICLE

Compound optimal design of experiments – Semidefinite
Programming formulations

Belmiro P. M. Duarte1,2 · Anthony C. Atkinson3 · Nuno M. C. Oliveira4

Received: 20 June 2024 / Revised: 12 March 2025 / Accepted: 16 May 2025
© The Author(s) 2025

Abstract
An optimal experimental design represents a structured approach to collecting data
with the aim of maximizing the information gleaned. Achieving this requires defin-
ing an optimality criterion tailored to the specific model under consideration and the
purpose of the investigation. However, it is often observed that a design optimized for
one criterion may not perform optimally when applied to another. To mitigate this,
one strategy involves employing compound designs. These designs balance multiple
criteria to create robust experimental plans that are versatile across different applica-
tions. In our study, we systematically tackle the challenge of constructing compound
approximate optimal experimental designs usingSemidefinite Programming.We focus
on discretized design spaces, with the objective function being the geometric or the
arithmetic mean of design efficiencies relative to individual criteria. We address two
combinations of two criteria: concave-concave (illustrated by DE–optimality) and
convex-concave (such as DA–optimality). To handle the latter, we reformulate the
problem as a bilevel problem. Here, the outer problem is solved using Surrogate
Based Optimization, while the inner problem is addressed with a Semidefinite Pro-
gramming solver. We demonstrate our formulations using both linear and nonlinear
models (for the response) of the Beta class, previously linearized to facilitate analysis
and comparison.
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1 Motivation

The theoretical framework supporting the model-based optimal design of experiments
entails defining the parameter and regressor domains, as well as establishing themodel
form that relates the response and regressors and the distribution of the response.
Additionally, it necessitates selecting an optimality criterion to measure the size of the
parameters’ confidence region (Chernoff, 1953).While a designmay be optimalwithin
a given criterion, its performance could be unsatisfactory if assessed using a different
criterion. To address this, one strategic approach involves considering multiple criteria
simultaneously, leading to the concept of compound designs. These designs aim to
maximize combined efficiency across combinations of criteria.

Cook and Wong (1994) were pioneers in addressing this issue, demonstrating that
every constrained optimal design is also a compound optimal design, and vice versa.
Initially focusing on linear models with two objectives, they showed that compound
designs emerge from solving the original optimization problem with additional con-
straints representing lower bounds on efficiency for other criteria. Clyde and Chaloner
(1996) extended this equivalence to nonlinearmodels, particularly inBayesian optimal
design settings involving multiple objectives.

There are three main approaches to constructing compound optimal designs. The
first optimizes a primary criterion while enforcing constraints on others, similar to
multi-objective reformulations such as the ε-constraint method (Miettinen, 1999). The
second approach reformulates the design problem as a min-max optimization, which
can be particularly challenging when combining criteria from different classes (e.g.,
convex and concave). The third approach defines a new objective function by com-
bining multiple design criteria, often through weighted averages or products, with the
compoundoptimal designmaximizing a convex combination of these criteria.Building
on the robustness criteria introduced by Läuter (1974) for competing models, several
common weighting schemes arise: (i) the arithmetic mean, leading to a problem of the
Archimedean goal programming class; (ii) the minimum of all elements, resulting in a
min-max (or max-min) formulation; and (iii) the geometric mean, another frequently
used weighting method.

Another noteworthy aspect is the convenience of compound designs when the goal
involves: (i) parameter estimation, where all criteria belong to alphabetic classes aimed
at minimizing specific components of the parameter confidence ellipsoid (Atkinson
et al., 2007); and (ii) parameter estimation andmodel discrimination,which encompass
various criteria for parametrization alongwith theT-optimality criterion, as outlined by
Atkinson (2008) and McGree et al. (2008). Our paper specifically delves into designs
tailored for parametrization. Next, we provide an overview of the techniques employed
for their computation.
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1.1 Numerical algorithms for compound optimal designs

The current body of literature regarding systematic (numerical) approaches for deter-
mining compound optimal designs is limited. Initially, algorithms utilized for single
criteria were adapted, with the relative importance of each criterion being imposed
upfront (Cook and Wong, 1994). However, recent advancements have introduced
cocktail algorithms, which integrate both exchange and multiplicative techniques,
as proposed by Yu (2010) and Yang et al. (2013). These methods have been effectively
applied in the domain of compound designs, as demonstrated by Cheng and Yang
(2019).

Over the past two decades, there has been a consistent utilization of general opti-
mization algorithms to tackle the problem of optimal experimental design. Noteworthy
examples of approaches for finding approximate designs encompass Linear Pro-
gramming (Harman and Jurík, 2008), Second Order Conic Programming (Sagnol,
2011), Semidefinite Programming (Vandenberghe and Boyd, 1999; Duarte andWong,
2015), Semi-Infinite Programming (Duarte et al., 2015), and Nonlinear Program-
ming (Molchanov and Zuyev, 2002). Additionally, stochastic optimization methods
have emerged as successful tools for addressing this challenge. These methods, often
derivative-free, guide the evolution of candidate solutions by evaluating local perfor-
mance through a measure of quality.

Among the stochastic optimization techniques, evolutionary strategies stand out,
drawing inspiration from natural systems (Heredia-Langner et al., 2004; Qiu et al.,
2014), social dynamics (Masoudi et al., 2019), and local surrogate models (Duarte
et al., 2023). These diverse methodologies contribute to a comprehensive toolkit for
optimizing experimental designs, catering to different problem characteristics and
preferences.

In the context of stochastic optimization algorithms for determining compound
designs, McGree et al. (2008) exploited a simulated annealing algorithm, derived
fromCorana et al. (1987). Hu et al. (2010)merged the cross-entropymethodwith local
search techniques employing gradient descent methods. Similarly, Hyun et al. (2018)
adopted an algorithm adapted from Yang et al. (2013) optimal weights exchange algo-
rithm. Qiu and Wong (2023) harnessed the power of the Particle Swarm Optimization
algorithm proposed by Kennedy and Eberhart (1995) and the Differential Evolution
algorithm introduced by Storn and Price (1997).

Deterministic optimization algorithms have seen limited application in the domain
of compound designs, although there is a growing body of literature, as referenced
above, that has been successfully applied to single-criterion optimal designs. This
trend is expanding to encompass compound designs, with notable contributions such
as Wong and Zhou (2023) work utilizing Semidefinite Programming (SDP). They
tackle two distinct problems: (i) finding optimal designs relative to a single criterion
while considering constraints on other criteria, employing the ε-constraint method;
and (ii) seekingminimax optimal designs relative tomultiple criteria, where all criteria
are bounded from below, aiming to maximize efficiency across all criteria.

It is noticeable that objective functions based on the arithmetic mean or geometric
mean of single-criteria efficiencies remain unexplored. These functions fall within
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the robustness criteria classes A and C proposed by Läuter (1974). Designs derived
from these criteria may offer advantages in terms of overall efficiency. To date, this
problem remains unsolved, and our work endeavors to address this gap. We present
systematic formulations for computing compounddesigns using convexprogramming,
specifically SDP, with the aim of maximizing both arithmetic and geometric means of
single-criteria efficiencies within the setup of compound designs.

1.2 Novelty statement and organization

This paper introduces three novel contributions:

1. a computationally automated approach, based on Semidefinite Programming
(SDP), for calculating continuous compound experimental designs. The method
considers both geometric and arithmetic means of single criteria efficiencies to
represent the objective function;

2. formulations tailored for concave-concave and convex-concave pairs of criteria;
3. the reformulation of the problem pertaining to convex-concave criteria as a bilevel

problem.Here, the outer problem is addressed using SurrogateBasedOptimization
(SBO), while the inner problem is tackled via SDP.

The structure of the paper is as follows: Section 2 provides an introduction to
the problem. It outlines the notation used to formulate the optimal design of exper-
iments problem, along with fundamental concepts of Semidefinite Programming
and Surrogate Based Optimization — two numerical approaches employed in this
study. In Section 3, we present formulations for computing optimal designs under
concave-concave and convex-concave criteria. We delve into the specificities of these
formulations, particularly highlighting the adaptations necessary to address cases
involving both geometric and arithmetic means of single criterion efficiencies. The
utilization of these algorithms to compute compound optimal designs for pairs of cri-
teria exhibiting concave-concave and convex-concave characteristics is presented in
Sect. 4. Finally, Sect. 5 offers a review of the formulations and provides a summary
of the results obtained.

2 Notation and background

In our notation, boldface lowercase letters represent vectors, while boldface capital
letters denote continuous domains. Blackboard bold capital letters are utilized to indi-
cate discrete domains, and capital letters represent matrices. Finite sets containing ι

elements are compactly denoted by �ι�, defined as {1, · · · , ι}. The transpose opera-
tion of a matrix or vector is denoted by “ᵀ”, and the trace of a matrix (or vector) is
represented by tr(•).

We begin by introducing the fundamentals of our conceptual framework. Subse-
quently, in Section 2.1, we present an overview of the framework for model-based
optimal design of experiments (ODOE). Proceeding to Section 2.2, we delve into
the foundational principles of Semidefinite Programming (SDP), while Section 2.3 is
dedicated to the fundamentals of Surrogate Based Optimization (SBO).
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We consider a general univariate nonlinear model represented by the equation:

y = f (x, θθθ) + ε, (1)

where y denotes the response, x represents a regression factor, f (•) is a twice-
differentiable function, θθθ is the vector of parameters to be estimated from experiments,
and ε ≈ N (0, σ ) represents observational noise with zero mean and standard devia-
tion σ . The number of parameters in the model is denoted by nθ , with each parameter
θi (where i ∈ �nθ �) constrained within a compact domain [θ L

i , θUi ]. The Carte-
sian domain containing all parameter combinations for the model is denoted as
Θ ≡ ⊗nθ

i=1[θ L
i , θUi ] ⊂ R

nθ . To distinguish between the generic vector θθθ and a single-
ton vector representing parameters in Θ , the latter is denoted as p. Furthermore, let
x ∈ X ⊂ R, where X represents the closed domain containing all potential values of
the regressors, henceforth referred to as the design space. Model (1) is presented as
univariate for simplicity, but it can be extended to the multivariate case. For clarity,
this paper focuses on univariate models to simplify the formulation.

Employing SDP to optimize experimental designs requires discretizing the design
space and formulating a mathematical program to determine optimal weights for each
candidate point. To achieve this, a uniformly spaced grid is utilized for discretization,
with Δx being the step size. Consequently, the continuous design space X for the
regressor is approximated by a finite discrete set of candidate points, denoted asX�nx �.
Here, nx = 1 + �(xU − x L)/Δx�, where xU and x L respectively denote the upper
and lower bounds of X. After discretizing the design space, local Fisher Information
Matrices (FIMs) are constructed at each candidate point. In the case of nonlinear
models, the first-order approximation of the model used to construct the FIMs is
computed at p.

The global Fisher Information Matrix (FIM) corresponding to the model repre-
sented by Equation (1), evaluated at a specific singleton parameter vector p ∈ Θ , is
expressed as:

M(x,p) = −E

[
∂

∂θθθ

(
∂L(θθθ)

∂θθθᵀ

)]
=

nx∑
j=1

w j · M(x j |p) =

=
nx∑
j=1

w j · hᵀ
i (x j |p) · hi (x j |p), (2)

where w represents the vector of weights assigned to the support points in the design,
nx denotes the user-defined number of discrete candidate points, M(x j |p) represents
the elemental Fisher Information Matrix (FIM) at x j , E[•] denotes the expectation,
h(x j |p) ∈ R

nθ denotes the vector of parametric derivatives at x j ∈ X
�nx �, and L(•)

is the log-likelihood.
In the context of model fitting, the likelihood represents the joint probability of

the observed data, {yi , xi }ni=1, given the model parameters θθθ , where n is the number
of experimental points used for regression. The log-likelihood is then defined as the
natural logarithm of the likelihood:
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L(θθθ) =
n∑

i=1

log p(yi | xi , θθθ).

When the response variable y follows a normal distribution with mean f (xi , θθθ) and
variance σ 2, the log-likelihood simplifies to:

L(θθθ) = −n

2
log(2π) − n

2
log(σ 2) − 1

2σ 2

n∑
i=1

[yi − f (xi , θθθ)]2 .

2.1 Optimal design of experiments

There exist two distinct design categories: (i) continuous designs, also referred to
as approximate designs; and (ii) discrete designs, known as exact designs. In both
paradigms, the allocation of effort at each experimental point x j , quantified by the
weight (w j ), is defined asw j = n j/N , where n j represents the number of replications
conducted at the j th experimental point, and N denotes the total number of observations
in the experimental plan. For approximate designs, all n j values are constrained to
be non-negative real numbers. Conversely, exact designs necessitate that n j be non-
negative integers across all experimental points.

In both scenarios, the weights constitute a discrete probability measure, satisfying∑K
j=1 w j = 1; K is the number of support points of the design. For continuous designs,

these weights are confined within the interval [0, 1], while for discrete designs, they
are restricted to the set of rational numbers within [0, 1]. Notably, this set is finite
for a given N . The optimization problem for finding approximate optimal designs
demonstrates convexity (or can be reformulated as such) when the design criterion is a
convex (or concave) function of the Fisher Information Matrix (FIM). Consequently,
global optimality is guaranteed, as supported by equivalence theorems (Kiefer, 1974;
Pukelsheim, 1993), thereby enabling the utilization of tailored optimization algorithms
(Vandenberghe and Boyd, 1999). In this work, our focus lies on approximate designs,
represented by K -point tuples:

ξ =
(
x1 x2 · · · xK−1 xK
w1 w2 · · · wK−1 wK

)
.

In this representation, the upper row elements are for factor levels, which serve as
pivotal support points within our context, while the lower row elements are for the
corresponding weights. In practical terms, this corresponds to the set of candidate
points where w j > δ, j ∈ �nx�, with δ representing a small positive constant.

For independent, identically, and normally distributed observational errors, the vol-
ume of the confidence region for θ̂θθ is inversely proportional to

√
det(M). Therefore,

choosing a design that minimizes the determinant of the inverse of the Fisher Infor-
mation Matrix (or maximizes the determinant of the FIM) yields the most accurate
parameter estimates, a criterion known as D–optimality. Other optimization measures
for the parametric confidence region include: (i) the sum of the ellipsoid’s diagonals,
quantified by the inverse of the trace of the FIM, leading to the A–optimality criterion;
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(ii) the smallest eigenvalue of the FIM, representing the lower diagonal of the ellip-
soid, giving rise to the E–optimality criterion; and (iii) the condition number of the
FIM, indicating the ratio between the largest and smallest ellipsoid diagonals, leading
to the K-optimality criterion. The respective optimal experimental design problems
are formulated as follows:

ξD = argmax
ξ∈Ξ

{det[M(x,p)]}1/nθ (3a)

ξA = argmin
ξ∈Ξ

tr[M−1(x,p)] (3b)

ξE = argmax
ξ∈Ξ

λmin[M(x,p)] (3c)

ξK = argmin
ξ∈Ξ

κ[M(x,p)] (3d)

Here,Ξ represents the set of feasible designs inΘ ×Σ , whereΣ is the (K −1)-point
simplex defined as {wk : wk ≥ 0,

∑K
k=1 wk = 1, k ∈ �K �}. Further, λmin[•] denotes

the minimum eigenvalue of the argument, and κ[•] denotes the condition number.
The expressions (3a-3d) can be formulated as Semidefinite Programs (SDPs), as

demonstrated in Vandenberghe and Boyd (1999), Ye and Zhou (2013), and Boyd
and Vandenberghe (2004). Specifically, the objective functions can be rewritten as
a set of Linear Matrix Inequalities (LMIs), placing them within the framework of
SDP-a specialized subclass of convex optimization. A key advantage of SDP is its
compatibilitywith dedicated polynomial-time algorithms, ensuring efficient solutions.
For a more in-depth discussion, see Section 2.2. A Linear Matrix Inequality (LMI) is
a fundamental constraint in optimization and control theory, extending scalar linear
inequalities to matrix variables. LMIs generally take the following form:

max
ζζζ

{
dᵀζζζ

∣∣∣∣∣
m1∑
i=1

ζi Mi − M0 � 0

}
, (4)

where ζζζ is the decision variable vector, d is a given vector, and M0, Mi are symmetric
matrices. The notation � 0 signifies that the resulting matrix is positive semidefinite.

In this study, we employ design efficiency as ametric to balance, on a scale of [0, 1],
the information yield from various criteria, facilitating their comparison. Following
Equation (3), the efficiency of a given design ξ relative to a reference design ξ∗,
characterized by the Fisher Information MatrixM∗(x,p), is given by:

ηD =
{

det[M(x,p)]
det[M∗(x∗,p)]

}1/nθ

(5a)

ηA = tr[M∗−1(x∗,p)]
tr[M−1(x,p)] (5b)

ηE = λmin[M(x,p)]
λmin[M∗(x∗,p)] (5c)
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ηK = κ[M∗(x∗,p)]
κ[M(x,p)] . (5d)

In this context, the subscript of η denotes the specific optimality criterion under con-
sideration. The reference design ξ∗ is determined by optimizing a single optimality
criterion. The superscript “∗” stands for the single-criterion optimal design. The effi-
ciency constitutes a relativemeasure of information per observation. In practical terms,
it enables the comparison of designs across diverse criteria, facilitating the transfor-
mation of a multicriteria problem into a single-criterion program, where the objective
function comprises a convex combination of the original criteria set (Hwang and
Masud, 2012).

2.2 Semidefinite programming

In this Section, we introduce the foundational principles of convex optimization,
specifically tailored to tackle optimal design of experiments problems within the dis-
crete design domain X

�nx �, which comprises nx candidate experimental points.
Let Snθ+ represent the space of nθ × nθ symmetric positive semidefinite matrices,

and Snθ denote the space of nθ ×nθ symmetric matrices. A convex set S ∈ R
nθ is said

to be semidefinite representable (SDr) if, for every ζζζ ∈ S, the projection projSexp(ζζζ )

onto a higher-dimensional set Sexp can be expressed using Linear Matrix Inequalities
(LMIs).

A convex (or concave) function ϕ : R
m1 → R is considered semidefinite rep-

resentable (SDr) if and only if its epigraph, denoted by {(t, ζζζ ) : ϕ(ζζζ ) ≤ t}, or its
hypograph, denoted by {(t, ζζζ ) : ϕ(ζζζ ) ≥ t}, respectively, are SDr and can be expressed
using Linear Matrix Inequalities (LMIs) (Ben-Tal and Nemirovski, 2001; Boyd and
Vandenberghe, 2004). Consequently, the optimal values ζζζ of SDr functions are for-
mulated as semidefinite programs with the general form (4); i.e. expressed as LMI.

In our design framework, the vectord comprises known constants that are specific to
the design problem,while the positive semidefinitematricesMi , where i ∈ 0, · · · ,m1,
encapsulate local Fisher InformationMatrices (FIMs) and other matrices derived from
the transformation of the functions ϕ(ζζζ ) into LMIs. The decision variables within the
vector ζζζ correspond to the weights wi for i ∈ �nx�, representing the optimal design,
along with any auxiliary variables necessary. The task of determining a design for
a predetermined set of candidate experiments X�nx �, consisting of points xi for all
i ∈ �nx�, is addressed by employing formulation (4), complemented by the following
linear constraints on w: (i) w ≥ 0, and (ii) 1ᵀ

nx · w = 1, where 1ᵀ
nx denotes a unit

column vector with nx entries. The problem described by (4) constitutes the classic
SDP problem, incorporating LMIs that represent conic constraints.

Ben-Tal and Nemirovski (2001) offer a comprehensive collection of semidefinite
representable (SDr) functions, used for tackling continuous optimal design design
problems through SDP formulations, as discussed in Boyd and Vandenberghe (2004,
§7.3). The A–, D– and E–optimality criteria are special cases of a general family of
criteria introduced by Kiefer (1974) that is indexed by a parameter ν. A–optimality
corresponds to ν = −1, E–optimality to ν → −∞, and D–optimality to ν → 0.
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More recently, Sagnol (2013) demonstrated that each criterion within this class is SDr
for all rational values of ν ∈ (−∞, 0), and that Semidefinite Programming formula-
tions can be developed to address them. The determination of optimal approximate
experimental designs under common convex (or concave) criteria can be formulated
as a Semidefinite Programming (SDP) problem, aligning with the general framework
of (4) and incorporating constraints on w, as discussed in Vandenberghe and Boyd
(1999). Notably, D– and E–optimality criteria correspond to concave functions, while
A–optimality is convex. TheK–optimality criterion, being quasi-convex (Agrawal and
Boyd, 2020), can be reformulated as a convex problem on an α-sublevel set.

The methodology employed for single criterion designs can seamlessly extend to
compound designs, provided that the objective function incorporates all the considered
criteria. Both the geometric and arithmetic means of design efficiencies concerning
various criteria can be used to measure the performance relative to single criteria,
as they also manifest as semidefinite representable (SDr) functions. However, it is
important to note that handling combinations of concave-concave criteria necessitates
distinct reformulation approaches compared to other combinations of criteria.

2.3 Surrogate based optimizaton

In this Section, we delve into the fundamentals of Surrogate-Based Optimization
(SBO). Falling within the realm of polynomial response surface methods, SBO is
particularly suitable for tackling problems characterized by complex and black-box
functions, denoted as r(x). In such scenarios, the expense associated with fitting and
evaluating the surrogate model pales in comparison to that of function evaluation,
especially considering the absence of algebraic expressions for either the gradient or
the Hessian matrix (Bhosekar and Ierapetritou, 2018; Kim and Boukouvala, 2020).

TheSBOmethodology unfolds across three consecutive stages: (i) Simulation of the
Real Model: This stage involves the emulation of the “real (complex) model”, which
may or may not be a black box model, using a limited set of judiciously chosen data
points; (ii) Construction of an Approximate Model: Here, an “approximate model”
with the form of a response surface model is fitted based on the data generated in
the preceding stage; (iii) Optimization of the Approximate Model: The constructed
surrogate model is then optimized to yield a fresh set of points that faithfullymimic the
behavior of the “real model” while significantly expediting computation. This iterative
process continues until the response of f (x) converges satisfactorily to a complex (or
black box) model g(x) in a closed domain defined by constraints r(x) at a given point
x (Müller and Woodbury, 2017).

The optimization problems considered by SBO are compactly represented as fol-
lows:

min
x∈X f (x) (6a)

s.t. r(x) ≤ 0 (6b)

Here, f (•) represents the computationally inexpensive objective function that serves
as an approximation to the more intricate function subject to a set of constraints r(x).
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Equation (6b) defines the collection of computationally intensive black-box inequality
constraints, while X denotes the finite domain of decision variables.

The surrogate model is constructed from an initial set of simulations, generated
in accordance with a sampling plan. Among the techniques employed for generating
these initial sampling points, Latin Hypercube (LHC) designs stand out as particu-
larly common (Müller and Day, 2019). As for the surrogate models, denoted as f (•),
interpolating models hold sway, with kriging (Martin and Simpson, 2005) and Radial
Basis Functions (RBFs) (Powell, 1992; Buhmann, 2009) emerging as the most preva-
lent options. These models have found widespread application in optimizing problems
featuring computationally intensive objective functions, as demonstrated in the work
of Müller et al. (2013).

The algorithm comprises a series of steps wherein a merit function, integrating
both the optimality measured by the surrogate function and the distance from existing
points, assumes pivotal importance. Essentially, this merit function balances between
exploration – filling the voids between existing sample points by exploring various
regions within the optimization domain – and exploitation – using available sample
points to pinpoint an optimum (Regis and Shoemaker, 2007). Alizadeh et al. (2020)
provide a recent review of the application of surrogate models in optimization. Various
tools for surrogate optimization are currently available; among them are the works
of Müller and Woodbury (2017), Erikson et al. (2019), Le Digabel (2011), Müller
(2014), and Müller (2016). In Section 3, we adopt the algorithm proposed by Regis
and Shoemaker (2007), which, in turn, employs a cubic Radial Basis Function (RBF)
with a linear tail as the surrogate model (Gutmann, 2001).

3 SDP-based formulations for finding compound designs

This Section presents the formulations for computing locally optimal compound
designs through Semidefinite Programming. It is worth noting that while SDP guaran-
tees finding the global optimum within a grid of discrete candidate points, it can pose
computational challengeswith a large number of candidate experiments. The Semidef-
inite Programming formulations for all single criteria described in Equation (3) follow
the general structure depicted by Equation (4). These formulations, considered state–
of-the-art and can be found in the works cited in Sect. 2.2.

Utilizing SDP-based formulations to determine optimal experimental designs
involves the following initial steps:

1. Discretization of the design space: Initially, the design space is discretized using
a uniformly spaced grid, as detailed in Section 2.

2. Construction of local Fisher Information Matrices: Through Equation (2), local
Fisher Information Matrices are systematically generated at specified candidate
points.

3. Solution of optimal design problems for single criteria: The optimal design prob-
lem is solved for each single criterion, and the obtained optima are stored.

123



Compound optimal design of experiments – SDP formulations

4. Combination of optima: The optima obtained in Step 3 are combined to derive a
measure of combined efficiency, typically through arithmetic or geometric mean
functions.

5. Problem resolution with new objective function: Subsequently, the problem is
resolved with the new objective function within the same discretized domain.

Theoptimal designs derived inStep 3 (as described above) are pivotal in establishing
a standardized weighting for each criterion within a composite design formula-
tion, characterized by a convex (or concave) combination of measures denoted as
Φcr[M(x,p)], serving as the objective function. Here, Φcr[•] represents an optimal-
ity criterion of interest, with cr ∈ {D-,A-,E-,K-}, indicating the extent of information
captured about the parameters of the specific model, relative to a specified measure of
the parametric confidence ellipsoid. Given the diverse range of Φcr[M(x,p)] values
across different criteria, standardization becomes imperative. Reference designs, ξ∗

cr,
are employed to normalize the information measures. This ensures comparability and
uniform expression of the relative importance of each criterion within the objective
function, confined to the unitary interval [0, 1]. The metrics assessing the relative
information extracted for parametrizing each model are quantified as efficiencies, as
expressed in Equation (5).

The objective of this formulation is to identify a set of support points that collec-
tively maximize efficiency across pairs of criteria. This approach ensures that the final
design avoids undesirable properties of prediction variances by evenly distributing the
loss of efficiency among all criteria. We explore two alternative objective functions
for aggregating single-criterion efficiencies in compound design formulations: (i) the
geometric mean, referred to as the Geomt formulation in subsequent sections; and (ii)
the arithmetic mean, referred to as the Arthm formulation.

Some criteria are represented by convex functions, while others are concave, yet all
are SDr. Their reformulation must adhere to the rules of Disciplined Convex Program-
ming (DCP), which ensure that convex optimization problems remain well-posed
and solvable. These rules specify how functions and expressions can be combined
to preserve convexity, especially within the set of symmetric positive semidefinite
matrices (Nesterov and Nemirovski, 1994; Vandenberghe and Boyd, 1996, 1999;
Boyd and Vandenberghe, 2004; Agrawal and Boyd, 2020; MOSEK, 2024). To con-
struct solvable SDP formulations, following DCP is crucial. One key principle is
that a convex function expressed as an LMI has a convex epigraph, which allows
its maximum to be minimized. Conversely, a concave function has a concave hypo-
graph, allowing its minimum bemaximized. Since the treatment of compound designs
depends on whether they combine two concave criteria or a mix of convex and con-
cave criteria, we analyze these cases separately. Sect. 3.1 covers concave-concave
pairs (e.g., DE–optimality), while Sect. 3.2 examines convex-concave pairs (e.g., DA–
optimality).

3.1 Formulation for combinations of concave-concave criteria

Let Φcr[M(x,p)] represent the combined criteria, where cr is restricted to concave
criteria. Following the DCP rules require maximizing the hypograph. Semidefinite
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representability allows us to express these criteria using a set of LMIs, forming
a convex set known as the hypograph (the set of points below the function). For-
mally,

Φcr[M(x,p)] ≥ �cr, (7)

where �cr is the minimum of the hypograph. To normalize the function, we use the
optimal values from previously computed single-criterion designs, Φcr[M∗(x∗,p)].
This leads to a normalized efficiency measure bounded from below:

Φcr[M(x,p)]
Φcr[M∗(x∗,p)] = ηcr ≥ vcr, (8)

where vcr is the lower bound on cr-optimal design efficiency. Since Equation (8)
is SDr, it can be directly incorporated as a constraint in the Semidefinite Pro-
gram.

We now focus on the Geomt formulation, where we aggregate ncr concave crite-
ria. Notably, the geometric mean is an SDr concave function, while the arithmetic
mean is affine and requires convexified arguments, specifically the minima of concave
functions (Ben-Tal and Nemirovski, 2001). This condition holds for the hypographs
vcr, ∀cr. To generalize the formulation of the objective function, we introduce the
function J (v), which depends on the vector of hypograph values. The function J (v)
can take the following forms: (i) Geometric mean: J (v) = ∏

cr∈C v
1/ncr
cr ; (ii) Arith-

metic mean: J (v) = ∑
cr∈C vcr/ncr. Thus, the general formulation for this scenario is

as follows:

max
w,v

J (v) (9a)

s.t. M(x,p) =
nx∑
j=1

w j h
ᵀ(x j |p) hi (x j |p) (9b)

Φcr[M(x,p)]
Φcr[M∗(x∗,p)] ≥ vcr, cr ∈ �ncr� (9c)

nx∑
i=1

w j = 1 (9d)

w j ∈ [0, 1], j ∈ �nx� (9e)

v ∈ [0, 1] (9f)

Here, Equation (9a) represents the geometric mean of the standardized criteria, Equa-
tion (9b) computes the global FIM, Equation (9c) establishes the upper bound of the
hypographs of the standardized criteria, Equation (9d) ensures that the weights sum
to 1, Equation (9e) imposes their non-negativity, and Equation (9f) sets the domain of
v. The reference designs ξ∗ have been previously determined, allowing the setting of
the standardizing constant Φcr[M∗(x∗,p)]. Finally, C is the set of criteria aggregated
in the compound criterion.

123



Compound optimal design of experiments – SDP formulations

The formulation can be extended to handle more than two concave criteria. When
ncr = 2 and cr ∈ {D–,E–}, it takes the form:

max
w,v

(vD · vE)1/2 (10a)

s.t. Equations (9b − 9 f ) (10b)

Here, the ratios
Φcr[M(x,p)]

Φcr[M∗(x∗,p)]
are replaced by efficiencies from Equations (5), specifically for the D– and E–
optimality criteria. Finally, the objective function is the geometric mean, a concave
function under DCP rules, ensuring that we maximize the smallest value in the hypo-
graph set.

When we consider the Arthm formulation, the structures resemble those presented
in Equation (9) and Equation (10). The main modification concerns the objective
function, specifically the form of J (v).

3.2 Formulation for combinations of convex-concave criteria

We now delve into the combinations of pairs of convex-concave criteria, exemplified
by the DA-optimality criterion. When employing the geometric mean for aggregation,
the objective function for ncr = 2 (comprising one convex and one concave criterion)
is expressed as:

∏
cr∈C

η1/ncrcr =
{

Φ1[M(x,p)]
Φ1[M∗(x∗,p)] · Φ2[M∗(x∗,p)]

Φ2[M(x,p)]
}1/ncr

. (11)

The second term of the product exhibits a convex hypograph, stemming from the
reciprocal of a convex function. Consequently, the arguments within the geometric
mean are all convex. To simplify, let

α = Φ2[M∗(x∗,p)]
Φ1[M∗(x∗,p)] ,

be a constant and let z1 = Φ1[M(x,p)] and z2 = Φ2[M(x,p)] be decision variables.
Thus, the optimization problem becomes:

max
w

α · z1(w) · 1

z2(w)
. (12)

However, despite the semidefinite representability of z2, its reciprocal is not SDr.
Therefore, an alternative approachmust be adopted to handle combinations of convex-
concave criteria.
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To tackle this problem, we consider the Dinkelbach (1967) transformation. This
transformation reformulates the single-ratio problem (12) into the following form:

max
w,r

α · z1(w) − r · z2(w), (13)

where r is a newly introduced variable representing α · z1 · (1/z2), capturing the com-
bined efficiency. Notice that problem (13) is nonlinear due to the product of variables
in the second term. Consequently, it cannot be formulated as a convex problem under
the DCP rules. To address this, we reformulate the problem as a bilevel program and
adopt an algorithm inspired by Crouzeix et al. (2008) to solve it. The outer problem
maximizes the combined efficiency, r , while the inner problem solves a semidefinite
program (SDP) for a fixed value of r . To circumvent the need for computing gradi-
ent and Hessian information, the outer solver is designed as a stochastic optimization
procedure, ensuring a systematic search for the optimal solution. It can be demon-
strated that convergence is assured by iteratively updating r and solving the nonlinear
problem (13). In particular, when the single-ratio problem (12) is a concave-convex
combination of functions, optimizing z in (13) while keeping r fixed transforms the
problem into a convex one. Consequently, the iterative algorithm converges to the
global optimum solution of (12).

The reformulated problem (13) is as follows:

max
r

r (14a)

s.t. max
w

α · z1(w) − r · z2(w) (14b)

r ∈ [0, 1]. (14c)

Here, (14a) represents the objective function of the outer level problem, (14b) denotes
the reformulated convex problem solved for fixed r values, and (14c) establishes the
domain of r . To systematically address problem (14), we employ a SBO-based solver
(see Section 2.3) to handle the outer level program, iteratively converging r , and a SDP-
based solver (see Section 2.2) for the inner program. The SBO solver iteratively adjusts
r from various initial solutions to construct a response surface. For each iteration, the
corresponding SDP problem is solved. Then, the surface of r values is exploited and
the optimum found. This architecture is well-suited for SBO, given the complexity
of the inner program’s objective and the challenges associated with computing its
gradient and Hessian matrices. It’s worth noting that the value of r at convergence
represents the combined efficiency.

We now apply the bilevel reformulation (14) to a general case involving two criteria,
one concave (Criterion 1) and one convex (Criterion 2). The problem transforms into:

max
r

r (15a)

s.t. max
w,v

J (v, r) (15b)
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s.t. M(x,p) =
nx∑
j=1

w j h
ᵀ(x j |p) hi (x j |p) (15c)

Φ1[M(x,p)]
Φ1[M∗(x∗,p)] ≥ v1 (15d)

Φ2[M(x,p)]
Φ2[M∗(x∗,p)] ≤ v2 (15e)

nx∑
i=1

w j = 1 (15f)

w j ∈ [0, 1], j ∈ �nx� (15g)

v1 ∈ [0, 1], v2 ≥ 1 (15h)

r ∈ [0, 1]. (15i)

Equations (15c-15g) resemble those in (9). Equation (15a) sets the objective of the
outer program, (15b) represents the reformulated objective function of the inner prob-
lem, (15h) bounds the vector v, and (15i) bounds the domain of r . For the Geomt
formulation, the objective function is given by J (v, r) = v1 −r ·v2, where r is a fixed
parameter in the inner problem, but is treated as a variable to be optimized in the outer
problem. In the Arthm formulation, the objective is J (v, r , t) = v1 + t − r , where
t ∈ [0, 1] is a new decision variable from the semidefinite constraint:

(
v2 1
1 t

)
� 0,

with � indicating positive semidefiniteness.
In our study, we tackled SDP problems using the cvx environment coupled with

the Mosek solver, renowned for its efficient Interior Point algorithm (Ye, 1997). To
ensure precision in our computations, we set both the relative and absolute tolerances
for solving the SDP problem to 1 × 10−5.

For the SBO solver, we initiated our search with an initial sample comprising
max(20, 2K ) points, generated using a Latin Hypercube (LHC) sampling algorithm
within the domain of interest. Our numerical solution incorporated two stopping cri-
teria: (i) reaching the maximum function evaluations, fixed at 100 for all problems
addressed; and (ii) meeting the tolerance of the objective function. Here, we set the
absolute and relative tolerances to 1×10−6 and 1×10−7, respectively, with a require-
ment of 50 consecutive function evaluations to trigger termination.

All computations presented in this paper were performed on a 64-bit Windows 10
operating system, utilizing an Intel Core i7 processor clocked at 3.40GHz.

4 Numerical results

In this Section, we apply the formulations outlined in Section 3 to determine com-
pound designs falling under the categories of concave-concave and convex-concave
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Table 1 Models considered in the analysis. B(θ1, θ2) = (θ1 + θ2)
θ1+θ2/(θ

θ1
1 θ

θ2
2 )

Model Regression function (E(y)) nθ X p

1 θ1 + θ2 x + θ3 x2 3 [−1,+1] (1.0, 0.4, − 1.39)

2 θ1 + θ2B(θ2, θ3)
(

x
θ5

)θ3
(
1 − x

θ5

)θ4
5 [0, 15] (0.0, 0.4, 1.39, 1.39, 10.0)

criteria. Firstly, in Section 4.1, we construct single-criterion optimal designs, crucial
for computing efficiencies. Subsequently, in Section 4.2, we obtain compound opti-
mal designs for a pair of concave criteria, the example being DE–optimality. Finally,
in Section 4.3, we employ the algorithm to compute optimal designs for a pair of
concave-convex criteria where DA–optimality is our example of interest.

Table 1 outlines the two models utilized for demonstration purposes. Model 1
is linear concerning its parameters, enabling the determination of globally optimal
designs. Conversely, Model 2 is a 5-parameter non-linear representational form of
the Beta class, and we compute locally optimal designs. The third column of Table
1 denotes the number of parameters in each model (nθ ), while the values of these
parameters used for computing locally optimal designs (p) are specified in the fifth
column. The design space is detailed in the fourth column (X). Model 1 has undergone
extensive study, leading to the evaluationof the effect of criteria on theweights assigned
to each support point, which are independent of the criteria. In contrast, for Model 2,
optimal designs may simultaneously have distinct support points and weights.

In all calculations the tolerance parameter δ in Section 2.1, which ensures a mini-
mum weight for all support points of the design, is set equal to 1 × 10−4.

4.1 Reference optimal designs

This Section presents the optimal designs obtained for each individual optimality
criterion corresponding to the models listed in Table 1. The single criterion SDP
problems were solved with the computational framework described at the conclusion
of Section 3. In both cases we use nx = 401. Consequently, for Model 1, we set
Δx = 0.005, while for Model 2, Δx was set to 0.0375 (see the design spaces in
Table 1). The results are summarized in Table 2. The upper panel is for Model 1,
while the lower panel relates to Model 2. Optimal designs are presented in the second
column (as a tuple), accompanied by the corresponding optimum values in the third
column and the CPU time in the fourth column.

As expected, for Model 1, the support points remain consistent across all criteria,
with only theweights varying. Each design comprises three support points. Conversely,
designs for Model 2 incorporate either five or six support points, with changes in both
the location of the support points and their corresponding weights. In practice, if a
finer grid is employed, contiguous support points of ξD and ξK could be collapsed into
a single point. However, this consolidation is likely to have minimal impact on the
optimum and would not significantly affect the design efficiency. Across all cases, the
computational requirements remain modest.
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Table 2 Optimal designs for models in Table 1 (nx = 401)

Model 1
Criterion Optimal design Optimum CPU (s)

D-

(−1.0000 0.0000 1.0000
0.3334 0.3333 0.3334

)
0.5291 1.81

A-

(−1.0000 0.0000 1.0000
0.2500 0.5000 0.2500

)
8.0000 0.98

E-

(−1.0000 0.0000 1.0000
0.2000 0.6000 0.2000

)
0.2000 1.12

K-

(−1.0000 0.0000 1.0000
0.1666 0.6667 0.1667

)
5.8242 0.98

Model 2
Criterion Optimal design Optimum CPU (s)

D-

(
0.0000 1.5250 4.6250 8.0500 8.0750 10.0000
0.2000 0.1999 0.2000 0.1455 0.0545 0.2000

)
4.185 × 10−3 2.92

A-

(
0.0000 1.2500 4.6500 8.3750 10.0000
0.0884 0.1899 0.2101 0.3097 0.2019

)
7.211 × 10+5 1.21

E-

(
0.0000 1.2500 4.6500 8.3750 10.0000
0.0877 0.1899 0.2103 0.3102 0.2019

)
1.393 × 10−6 0.91

K-

(
0.0000 1.0500 1.0750 4.3000 8.3000 10.0000
0.1540 0.0584 0.2123 0.1842 0.2308 0.1602

)
1.021 × 10+6 1.22

Table 3 presents the efficiency matrices of optimal designs obtained for specific
criteria (D–, A–, E–, and K–) when applied to different criteria. The reference designs
are those outlined inTable 1,withEquation (5) employed for computation. Specifically,
Table 3a corresponds to Model 1, while Table 3b corresponds to Model 2. In virtually
all cases, as would be expected, a decrease in efficiency is observed when an optimal
design is utilized for a criterion different from the one it was originally designed for.
Mitigating these losses is the primary objective of compound optimal designs in the
next sections. The exception is the efficiency of the design for A–optimality, ξA, when
evaluated for E–optimality. Table 2 shows that, for Model 2, ξA and ξE are virtually
indistinguishable.

4.2 Compound optimal designs for concave-concave pairs of criteria.

In this Section, we use the formulations outlined in Section 3.1 to compute compound
optimal designs for concave-concave pairs of criteria. To illustrate this, we focus
on the DE–optimality criterion and tackle the design problem using both the Geomt
and Arthm formulations. To maintain consistency in our comparison, we utilize the
same grid of candidate points. The results of our analyses are summarized in Table
4, structured similarly to preceding tables. While the optimal designs obtained for
both formulations exhibit slight differences, they demonstrate efficient performance,
requiring minimal CPU time.
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Table 3 Efficiency of the
optimal designs obtained with an
optimality criterion when used
for another criterion: ((a))
Model 1; ((b)) Model 2

(a) Model 1.
Optimal designs (Table 2, upper panel)

Crit. ξD ξA ξE ξK

D- 1.0000 0.8888 0.7306 0.5601

A- 0.9449 1.0000 0.9549 0.8504

E- 0.8654 0.9601 1.0000 0.9714

K- 0.7937 0.8889 0.9763 1.0000

(a) Model 2.
Optimal designs (Table 2, lower panel)

Crit. ξD ξA ξE ξK

D- 1.0000 0.8267 0.8252 0.8535

A- 0.9409 1.0000 0.9999 0.7689

E- 0.9400 0.9999 1.0000 0.7687

K- 0.9433 0.9404 0.9398 1.0000

In reference to Model 1, our analysis shows that the Geomt and Arthm formula-
tions yield comparable efficiencies-0.9509 and 0.9531, respectively. The effectiveness
of compound designs is demonstrated in Table 3, which compares the efficiency of
single-criterion designs from Table 2 when applied to an incorrect criterion. For the
Geomt formulation, the D-optimal design’s overall efficiency, computed as the geo-
metric mean of D- and E-optimality efficiencies, is

√
1.0000 × 0.7306 = 0.8548,

lower than the reference value of 0.9509. Similarly, the E-optimal design achieves√
1.0000 × 0.8654 = 0.9303, as detailed in Table 3a, both significantly lower than

the compound designs’ efficiency. For the Arthm formulation, the objective function
is the average of two efficiencies: 0.8653 and 0.9327, closely aligned with the Geomt
results. As anticipated, the compound design, which integrates both criteria, outper-
forms both single-criterion designs when evaluated under the other criterion, yielding
a combined efficiency of 0.9531. This superiority of compound designs is further con-
firmed by the efficiency analysis in Table 5, where compound designs, when applied
to single-criterion frameworks, consistently outperform their single-criterion counter-
parts in Table 2. This trend extends across Model 2 as well.

4.3 Compound optimal designs for convex-concave pairs of criteria

We now focus on the design of compound designs involving convex-concave criterion
pairs, as discussed in Section 3.2. To illustrate this approach, we consider the DA-
optimal criterion, with detailed results provided in Table 6. A significant increase in
computational cost is observed, with CPU processing time approximately 100 times
higher than for concave-concave criteria. The increase in computational cost is due to
the SBO-based solver iteratively solving the SDP problem for different values of r ,
with 100 iterations imposed (see Section 3.2) to enhance the likelihood of obtaining a
high-quality solution.
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Table 4 DE–optimal designs for models in Table 1 (nx = 401)

Model 1
Formulation Optimal design Optimum CPU (s)

Geomt

(−1.0000 0.0000 1.0000
0.2408 0.5184 0.2408

)
0.9509 1.41

Arthm

(−1.0000 0.0000 1.0000
0.2396 0.5208 0.2396

)
0.9531 1.00

Model 2
Formulation Optimal design Optimum CPU (s)

Geomt

(
0.0000 1.2500 1.2750 4.5500 8.2750 10.0000
0.1312 0.1247 0.0742 0.2113 0.2663 0.1924

)
0.9711 2.80

Arthm

(
0.0000 1.2500 1.2750 4.5500 8.2750 10.0000
0.1309 0.1449 0.0540 0.2113 0.2666 0.1923

)
0.9715 2.84

Table 5 Efficiency of the
DE–optimal designs in Table 4
when used for the individual
criteria

Model Form. Geomt Form. Arthm
EffD EffE EffD EffE

1 0.9328 0.9694 0.9311 0.9711

2 0.9629 0.9793 0.9625 0.9798

Table 6 DA–optimal designs for models in Table 1 (nx = 401)

Model 1
Formulation Optimal design Optimum CPU (s)

Geomt

(−1.0000 0.0000 1.0000
0.2820 0.4361 0.2820

)
0.9624 164.02

Arthm

(−1.0000 0.0000 1.0000
0.2657 0.4687 0.2657

)
0.9812 163.28

Model 2
Formulation Optimal design Optimum CPU (s)

Geomt

(
0.0000 1.2750 4.5250 4.5500 8.2750 10.0000
0.1366 0.1984 0.0031 0.2074 0.2617 0.1929

)
0.9437 160.26

Arthm

(
0.0000 1.2500 4.6000 8.3250 10.0000
0.1069 0.1956 0.2116 0.2898 0.1962

)
0.9696 153.45

Table 6 also demonstrates (modest) enhancements in the overall efficiency of the
compound designs. Their efficiency relative to each criterion is depicted in Table 7,
emphasizing the advantageous nature of compound designs in optimally distributing
losses across various criteria.
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Table 7 Efficiency of the
DA–optimal designs in Table 6
when used for the individual
criteria

Form. Geomt Form. Arthm
Model EffD EffA EffD EffA

1 0.9782 0.9837 0.9630 0.9961

2 0.9676 0.9749 0.9382 0.9958

5 Conclusions

We have addressed the challenge of systematically computing approximate compound
optimal experimental designs. Our proposed approach utilizes Semidefinite Program-
ming to exploit the currently available convex programming algorithms,which notably
operate in polynomial time (i.e., are of P-type). Our strategy involves constructing new
objective functions that aggregate measures of design efficiency relative to single cri-
teria. Among the aggregation forms we consider are the geometric and arithmetic
mean operators, which align with the robustness criteria of Läuter (1974) proposed
for competing model setups.

Recognizing thenecessity ofSemidefinite representability of the objective functions
in the construction of consistent formulations, we have identified three distinct cases:

1. concave-concave pairs of criteria. These give rise to (convex) hypographs, which
combine into a new convex set, thus having a simple SDP representation aimed at
finding its minimum.

2. convex-concave pairs of criteria. Here, we combine a hypograph resulting from the
concave criterion with an epygraph arising from the convex criterion. To address
this, we employ the Dinkelbach (1967) transformation, converting it into a non-
linear (conic) problem, subsequently reformulated as a bilevel program with the
inner problem being SDr. The outer level is handled through a Surrogate Based
Optimization solver, optimizing the combined efficiency of the designs, while the
inner level is tackled with an SDP solver optimizing a proxy function of the overall
efficiency.

3. convex-convex pairs of criteria. This problem gives rise to two epygraphs that may
require Nonlinear Programming techniques beyond the scope of this paper but are
potential areas to exploit in future research endeavors.

We assessed the proposed formulations with both linear and nonlinear models,
resulting in globally optimal designs and locally optimal designs, respectively. Our
findings indicate a slight improvement in combined efficiency relative to scenarios
where a design optimized for one criterion is applied to another. Our formulations
minimize (and distribute) the efficiency loss. Importantly, our formulations enable
systematic resolution of problems in the optimal design of experiments for compound
criteria with manageable computational complexity, by using available convex pro-
gramming algorithms. In practical terms, this represents a significant step towards
generalizing these approaches to address various problem scenarios effectively.

Not all problems in the numerical construction of compound optimal designs can be
solved by themethod presented here. One statistically important and interesting case is
the class of DT optimal designs for model discrimination and parameter estimation, in
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which the component designs can be very different. However theDT compound design
cannot be obtained using SDP since the T-optimality criterion is not Semidefinite rep-
resentable (SDr). Duarte et al. (2015) provide numerical methods for the construction
of T-optimal designs. On the other hand, the K-optimality criterion is SDr, and the
K-optimality criterion is quasiconvex. It could have been used as an example of a
convex-concave combination of criteria. We have however chosen to illustrate this
class of compound criteria using DA–optimality, which is a member of the same class
of problems.

We follow Läuter (1974) in the robustness criteria considered. Use of the arith-
metic and geometric means implies that we are implicitly equidistributing the loss of
information in the chosen scale. In some cases it might be that there is more inter-
est in the estimation of some models than of others; a set of polynomial models is
an instance. Then, for example, Equation (9a) could be altered to give the required
unequal weighting.
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