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A decision maker repeatedly chooses one of a finite set of actions. In each period, the decision 
maker’s payoff depends on a fixed basic payoff of the chosen action and the frequency with which 
the action has been chosen in the past. We analyze optimal strategies associated with three types of 
evaluations of infinite payoffs: discounted present value, the limit inferior, and the limit superior 
of the partial averages. We show that when the first two are the evaluation schemes (and the 
discount factor is sufficiently high), a stationary strategy can achieve the best possible outcome. 
However, for the latter evaluation scheme, a stationary strategy can achieve the best outcome only 
if all actions that are chosen with strictly positive frequency by an optimal stationary strategy have 
the same basic payoff.

1. Introduction

When Phil Connors1 was trapped in a time loop, he initially enjoyed being able to do as he liked without fearing any repercussions. 
Yet, after a while, he became depressed as the rather limited entertainment options available in Punxsutawney did not measure up 
to his taste for variety. In this paper we investigate what Phil’s optimal long-term payoff would have been, had he not been able to 
escape his temporal prison. That is, we consider a decision maker who has to repeatedly choose from a finite set of actions and whose 
stage payoff depends both on the action itself and also on how often she has chosen it in the past.

The model that we propose here looks rather innocuous. There is a finite set of actions, each endowed with a fixed basic payoff, 
and at each period the decision maker has to choose one of them. Her stage utility from choosing some action 𝑎 is 𝑎’s basic payoff 
multiplied by a factor that depends on the frequency with which 𝑎 has been played so far and her taste for variety. The greater this 
frequency, the smaller the utility.

The decision maker is interested in her long-run payoff. We analyze three types of long-term payoff evaluations: the limit inferior 
and limit superior of the partial averages and the discounted one. It turns out that the limit inferior and discounted evaluations share 
the important feature that their optimal outcomes can be achieved by stationary strategies. However, the optimal strategy for the 
limit superior evaluation is stationary only in the degenerate case where all actions chosen with strictly positive frequency by an 
optimal stationary strategy have the same basic payoff.
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From a mathematical perspective, the decision-maker faces a deterministic Markov Decision Process (MDP) with countably many 
states, which are represented by the empirical distribution of previous actions and the time. In each period, the actual payoff depends 
on the current state and the decision made, while the transition between states is determined by the effect of the current decision on 
the empirical distribution.

Compared to MDP models with a finite or compact set of states, a model with countably many states introduces additional technical 
complexity. Addressing this complexity typically requires methods specifically developed for such models. Indeed, the fixed-point 
arguments that are typically used to prove the optimality of stationary strategies in problems with discounted evaluation cannot be 
applied in our case due to the countably infinite state space.

The paper presents two main results: stationary strategies are optimal in cases involving limit inferior and discounted evaluation. 
To achieve the first result, we introduce a potential function, defined in Equation (19). To the best of our knowledge, this is the first 
application of a potential function to the analysis of an MDP with a countable state space. It seems that similar techniques, as used 
for instance for the discounted problem, see Equation (41), could be useful for other such MDPs as well. Our third main result relates 
to the limit superior and shows that (generically) it cannot be achieved by a stationary strategy. We prove, however, that it can be 
achieved by some (non-stationary) strategy.

The paper is organized as follows. In Section 3 we introduce the necessary notation and provide some examples that highlight 
the different ways an infinite history of actions might be evaluated. In particular, we illustrate by means of an example with two 
actions that the optimal limes superior cannot be achieved by a stationary strategy. In Section 4 we investigate greedy histories, which 
maximize the stage utility in each period. We observe that such strategies are stationary, but we show that they are far from optimal 
even within the set of stationary strategies. In Section 5 we show that the optimal limit inferior can be achieved by a stationary 
strategy. Moreover, we show that the action frequencies of optimal histories are first-order stochastically ordered as the fatigue factor 
increases: the larger this factor, the more weight the optimal frequency will put on poor actions. Section 6 deals with the optimal 
limit superior. We show that the sequence of optimal average payoffs after finite time converges against the optimal limit superior 
and we use this observation to show that the latter cannot be achieved by a stationary strategy unless the optimal stationary strategy 
chooses the same action in each period. Section 7 deals with two aspects of discounting: discounting future payoffs and discounting 
the effect of past uses of actions. Discounting future payoffs means that one values future positive payoffs less than present ones. This 
is because one prefers to have good things now rather than later. Discounting the effect of past uses of actions means the impact of 
past experience on the present utility diminishes with time. For example, if one eats the same meal every day, one will eventually 
get tired of it. However, if one had a delicious meal yesterday, he or she would prefer the same meal today less than if he or she 
had it only a year ago. The main result of this section states that the optimal outcome for a relatively patient decision maker can be 
obtained with stationary strategies.

2. Related literature

Our model leaves the realm of classical economic theory as the assumptions of static preferences and discounted utility (proposed 
by Samuelson (1937) and later motivated with an axiomatic foundation by Koopmans (1960)) are dropped. Since then, this approach 
has been challenged in various contexts. Most closely related to our decision maker’s preferences are models of “habit formation” and, 
in particular, the one of Kaiser and Schwabe (2012). Originally, Becker and Murphy (1988) propose a model of “rational addiction” 
in which a decision maker maximizes aggregated future utility whereby the stage utility at any time depends on past consumption. 
In this flavor, axiomatic characterizations of history-dependent consumer preferences over future consumption paths were developed 
to account for this effect (e.g., He et al., 2013; Rozen, 2010; Rustichini and Siconolfi, 2014). These models play a crucial role in 
macroeconomic models as they explain some phenomena and fit data better than standard expected utility theory. For instance, 
Boldrin et al. (2001) introduce habit persistence into a business cycle model, and Constantinides (1990) uses habit persistence to 
resolve the equity premium puzzle (cf. Mehra and Prescott, 1985).

A less immediate connection can be made to models of reference-dependent utility (Kőszegi and Rabin, 2006; O’Donoghue and 
Sprenger, 2018) where the reference point is based on the past (Baucells et al., 2011). However, our decision maker does not derive 
a reference point based on past choices, but rather obtains (or loses) some utility for making the same choice very often.

There is a strand of literature that characterizes limit evaluations (as players become very patient) by using Markov chains 
with non-standard preferences. This is done, for instance, by using recursive utilities (see Al-Najjar and Shmaya, 2019, Stanca, 
2024, Cerreia-Vioglio et al., 2023, and references therein). Similarly, the question whether or not an asymptotic value in a zero-sum 
stochastic game exists can be phrased as a question about non-standard preferences: The asymptotic value exists when the limit of 
the (maxmin) value of average of the rewards is equal to the limit of the (maxmin) discounted value as patience increases. The limit 
of the averages can be thought of as non-standard time preferences. Sorin (2002) Chapter 5, Ziliotto (2016), and Cerreia-Vioglio et 
al. (2023) provide further discussion.

The arguably most developed branch of literature dealing with history-dependent preferences focuses on situations with incom-

plete information. Based on the famous example of Allais (1953) dynamic consistency was challenged, and two major branches of the 
literature emerged: one focused on behavioral aspects and challenged expected utility as a whole (e.g., Machina, 1989; Thaler, 1981); 
the other focused on optimizing stage decisions based on one’s experience from the past (Gilboa and Schmeidler, 1995). This form of 
“instance-based learning”, which has also found its way into cognitive science (Gonzales et al., 2003; Stewart et al., 2006), asserts a 
causal connection between past and present behavior rather than dynamic consistency. While this paper investigates precisely such a 
causal connection, it does so in a setting with complete information. Hence, we refrain from providing an extensive overview of the 
literature here and refer to Etner et al. (2012).
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Outside the scope of economic theory, a similar idea has been brought forward in psychology. The “mere exposure effect” (Zajonc, 
1968), also called the “familiarity effect”, describes the change in preferences from simply being exposed to some object. Originally, 
only positive effects were observed in experiments: an object became more popular as the decision maker was exposed to it more 
often. But there are scenarios where this effect is reversed (Crisp et al., 2008), or the relation is even non-monotonic: increasing, 
reaching a satiation point, and decreasing again as exposure increases (Williams, 1987; Zajonc et al., 1972). In particular, research 
on the interdependences between the mere exposure effect and boredom (Bornstein et al., 1990) or the novelty principle (Liao et al., 
2011) has provided a range of stage preferences over objects that depend on past exposure.

3. Preliminaries

Let 𝐴 be a finite set of actions that a decision maker has to choose from at each period 𝑡 ∈ ℕ ⧵ {0} and let 𝑢 ∶ 𝐴 → (0,∞) be 
the decision maker’s basic payoff function. A finite history of length 𝑇 is a map 𝑎 ∶ {1,… , 𝑇 } → 𝐴, and an infinite history is a map 
𝑎 ∶ ℕ ⧵ {0}→ 𝐴. For 𝑇 ∈ ℕ we denote the set of histories of length 𝑇 by 𝐴𝑇 , where 𝐴0 only contains the empty history. The set of 
all finite histories is denoted by 𝐴<∞, that is, 𝐴<∞ =

⋃∞
𝑇=0 𝐴𝑇 , and the set of all infinite histories is denoted by 𝐴∞ . For an infinite 

history 𝑎 ∈ 𝐴∞ and a non-negative integer 𝑡 ∈ ℕ ⧵ {0} we write 𝑎𝑡 for the 𝑡-th element of the sequences, 𝑎𝑡 for the finite history (
𝑎1, 𝑎2,… , 𝑎𝑡

)
, and also 𝑎0 = 𝑎0 = ∅. A strategy is a map 𝜎 ∶ 𝐴<∞ →𝐴.

We denote the indicator function by 1, that is, for a history 𝑎 we have that 1 𝑙𝑎𝑠=𝑎 = 1 if 𝑎𝑠 = 𝑎 and 1 𝑙𝑎𝑠=𝑎 = 0 otherwise. We define 
the map 𝜑 ∶𝐴 ×𝐴<∞ →Δ(𝐴) as

𝜑
(
𝑎||𝑎𝑡

)
=

{
1
𝑡 
∑𝑡

𝑠=1 1 𝑙𝑎𝑠=𝑎, if 𝑡 ≥ 1,
0, if 𝑡 = 0.

That is, 𝜑
(
𝑎
|||𝑎𝑡−1) is the frequency of 𝑎 in the history 𝑎𝑡−1 =

(
𝑎1, 𝑎2,… , 𝑎𝑡−1

)
.

In the repeated decision problem the decision maker experiences some “fatigue” when choosing the same action repeatedly. More 
precisely, there is 𝛾 ∈ (0,1] such that when taking action 𝑎 ∈ 𝐴 after history 𝑎𝑡−1, the stage payoff at stage 𝑡 is

𝑢𝛾,𝑡(𝑎;𝑎𝑡−1) =
(
1 − 𝛾𝜑

(
𝑎
|||𝑎𝑡−1))𝑢(𝑎𝑡).

A large 𝛾 represents strong fatigue or a strong “taste for variety”: the stage payoff quickly declines if an action is chosen repeatedly. 
If 𝛾 = 0, there is no need for variety, and the maximization of stage payoff and basic payoff are equivalent. We exclude this case.

We are interested in the “maximal” payoff a decision maker can obtain in such a repeated decision problem. Specifically, for an 
infinite history 𝑎 ∈ 𝐴∞ the decision maker’s average (undiscounted) utility at 𝑇 is

𝑈𝑇
𝛾

(
𝑎
)
= 1 

𝑇

𝑇∑
𝑡=1 

𝑢𝛾,𝑡(𝑎𝑡;𝑎𝑡−1) = 1 
𝑇

𝑇∑
𝑡=1 

(
1 − 𝛾𝜑

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

)
.

Surely, 𝑈𝑇
𝛾

(
𝑎
)

< ∞ for all 𝑎 ∈ 𝐴∞ and all 𝑇 ∈ ℕ ⧵ {0}. Yet, in general, the sequence 
(
𝑈𝑇

𝛾

(
𝑎
))

𝑇∈ℕ⧵{0}
will not converge.

Example 3.1. Let 𝐴 = {𝑎, 𝑏} with 𝑢(𝑎) = 1 and 𝑢(𝑏) = 10. Consider the history 𝑎 that is defined by 𝑎1 = 𝑎, 𝑎2 = 𝑏, 𝑎3 = 𝑎 and

𝑎𝑡 =

{
𝑎, if there is an odd 𝑚 ∈ℕ ⧵ {0} such that 3 ⋅ 2𝑚 + 1 ≤ 𝑡 ≤ 3 ⋅ 2𝑚+1,

𝑏, if there is an even 𝑚 ∈ℕ ⧵ {0} such that 3 ⋅ 2𝑚 + 1 ≤ 𝑡 ≤ 3 ⋅ 2𝑚+1,

for 𝑡 ≥ 4. That is, 𝑎 = (𝑎, 𝑏, 𝑎, 𝑏, 𝑏, 𝑏, 𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑏,…). In this sequence, exponentially increasing blocks of consecutive 𝑎’s and 𝑏’s are 
played alternating. In particular, from 𝑡 ≥ 4 onwards each block is as long as the entire history before the block, so that the frequency 
of either action fluctuates between 1∕3 at the beginning of each block and 2∕3 at the end. The sequence of average utilities of this 
infinite history does not converge. Intuitively, it will be lowest at the end of any 𝑎-block, and highest at the end of any 𝑏-block. We 
shall have a closer look at this behavior later. □

As the sequence 
(
𝑈𝑇

𝛾

(
𝑎
))

𝑇∈ℕ⧵{0}
might not converge for all 𝑎 ∈ 𝐴∞, there is no “obvious” way to compare two infinite histories 

𝑎, �⃗� ∈ 𝐴∞. Yet, as every sequence of average utility is bounded, we can use their upper and lower accumulation points for comparisons. 
To keep notation short, define for any 𝑎 ∈ 𝐴∞

𝑉 𝛾

(
𝑎
)
= lim sup

𝑇→∞ 
𝑈𝑇

𝛾

(
𝑎
)

and 𝑉
𝛾

(
𝑎
)
= lim inf

𝑇→∞ 𝑈𝑇
𝛾

(
𝑎
)
,

which are the highest and lowest accumulation points that the sequence of average utilities can reach for the history 𝑎. We define 
correspondingly

𝑉 𝛾 = sup
{

𝑉 𝛾

(
𝑎
)|||𝑎 ∈ 𝐴∞

}
and 𝑉

𝛾
= sup

{
𝑉

𝛾

(
𝑎
)|||𝑎 ∈ 𝐴∞

}
. (1)
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While 𝑉 𝛾 and 𝑉
𝛾

may initially seem to have similar importance, the latter is, in fact, much more significant from a behavioral 
perspective. An infinite history that (approximately) achieves 𝑉

𝛾
ensures that, from a certain point onward, the average payoffs are 

at least close to 𝑉
𝛾
. In contrast, an infinite history that (approximately2) achieves 𝑉 𝛾 only guarantees that, intermittently and over a 

sparse set of periods, the average payoffs approach 𝑉 𝛾 . To enhance intuition, suppose that 𝑣 < 𝑉
𝛾
. In this case, there exists a history 

𝑎 in which the average utility is at least 𝑣 for all but finitely many periods. However, if 𝑣 < 𝑉 𝛾 , then there exists a history 𝑎 where 
the average utility is at least 𝑣 over an infinite, potentially sparse set of periods.

The previous evaluations pertain to infinite histories, while the following evaluation applies to finite histories. For every 𝑇 ≥ 1
define

𝑣𝑇
𝛾 = max 

𝑎∈𝐴∞
𝑈𝑇

𝛾

(
𝑎
)
. (2)

That is, 𝑣𝑇
𝛾 denotes the maximal average payoff that can be obtained from a history of length 𝑇 . While 𝑉 𝛾 is not important in its own 

right, we introduce it because, as shown in Proposition 6.2, the limit of 𝑣𝑇
𝛾 as 𝑇 →∞ is equal to 𝑉 𝛾 .

Example 3.2. Recall the history 𝑎 from Example 3.1. As 𝑡 gets large, the average frequency of the action that is played in a block is 
approximated by

𝑥 =

1 

∫
0 

(
1 − 2 

3𝑠+ 3

)
𝑑𝑠 = 1 −

(2
3
ln (2) − ln (1)

)
= 1 − 2

3
ln(2). (3)

Thus, even though the frequencies of 𝑎 and 𝑏 do not converge, the average of 𝜑
(
𝑎
|||𝑎𝑡−1) taken over all 𝑡 with 𝑎𝑡 = 𝑎 converges towards 

𝑥, and the same is true for the average of 𝜑
(
𝑏
|||𝑎𝑡−1) taken over all 𝑡 with 𝑎𝑡 = 𝑏. Hence, at the end of any block of 𝑎’s, the average 

payoff is approximately

𝑈𝑇
𝛾

(
𝑎
)
≈ 2

3

(
1 − 𝛾

(
1 − 2

3
ln(2)

))
𝑢(𝑎) + 1

3

(
1 − 𝛾

(
1 − 2

3
ln(2)

))
𝑢(𝑏)

= 4
(
1 − 𝛾

(
1 − 2

3
ln(2)

))
.

Observe that for such 𝑇 it holds that

𝑢𝑇
(
𝑎;𝑎

)
=
(
1 − 2

3
𝛾
) ≤ 𝑈𝑇

𝛾

(
𝑎
)

and 𝑢𝑇+1 (𝑏;𝑎) = 10
(
1 − 1

3
𝛾
) ≥ 𝑈𝑇

𝛾

(
𝑎
)
,

for all 𝛾 ∈ [0,1]. Thus, 𝑈𝑇
𝛾

(
𝑎
)

is minimized at the end of each 𝑎-block, and we find 𝑉
𝛾

(
𝑎
)
= 4

(
1 − 𝛾

(
1 − 2

3 ln(2)
))

.

In order to find 𝑉 𝛾

(
𝑎
)

we show that 𝑈𝑇
𝛾

(
𝑎
)

achieves its maxima always at the end of 𝑏-blocks. So, consider a (large) 𝑏-block. We 
want to show that the average utility of 𝑎 is increasing throughout the entire block. So, keeping in mind that the block is large, let 
𝑥 ∈ [0,1] and consider the period after a fraction 𝑥 of the block has passed. The frequencies of 𝑎 and 𝑏 at this point in time are given 
by 𝑓𝑎 ≈

2 
3𝑥+3 and 𝑓𝑏 = 1 − 𝑓𝑎 ≈

3𝑥+1
3𝑥+3 . Hence, the stage utility is given by

𝑣(𝑥) = 10
(
1 − 𝛾𝑓𝑏

)
≈ 30 (1 − 𝛾)𝑥+ 30 − 10𝛾

3𝑥+ 3 
.

The average frequency of 𝑎 at 𝑥 (taken over the periods where 𝑎 has been chosen) is still given in (3). The average frequency of 𝑏 at 
𝑥 > 0 is given by

1 
𝑥

𝑥 

∫
0 

1 − 2 
3𝑠+ 3

𝑑𝑠 = 1 − 1 
𝑥

(2
3
ln (3𝑥+ 3) − 2

3
ln (3)

)
= 1 − 2 

3𝑥
ln (𝑥+ 1) .

Thus, the average utility at 𝑥 is approximated by

𝑈 (𝑥) = 𝑓𝑎

(
1 − 𝛾

(
1 − 2

3
ln(2)

))
𝑢(𝑎) + 𝑓𝑏

(
1 − 𝛾

(
1 − 2 

3𝑥
ln (𝑥+ 1)

))
𝑢(𝑏)

= 2 
3𝑥+ 3

(
1 − 𝛾

(
1 − 2

3
ln(2)

))
+ 3𝑥+ 1

3𝑥+ 3

(
1 − 𝛾

(
1 − 2 

3𝑥
ln (𝑥+ 1)

))
10.

In particular, 𝑈 (1) < 𝑣(1) for all 𝛾 ∈ [0,1]. As 𝑈 is increasing at 𝑥 if and only if 𝑣(𝑥) > 𝑈 (𝑥), and 𝑣 is falling in 𝑥, this implies that 𝑈
reaches its maximum at 𝑥 = 1. Thus, we obtain

2 We show later that, even though 𝑉
𝛾

and 𝑉 𝛾 are non-continuous functions defined on a compact set, the supremum in the definitions of 𝑉
𝛾

and 𝑉 𝛾 can be replaced 
by maximum.
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𝑉 𝛾

(
𝑎
)
= 𝑈 (1) = 7

(
1 − 𝛾

(
1 − 2

3
ln(2)

))
for the highest limit point that 𝑈𝑇

𝛾

(
𝑎
)

can reach. □

4. Greedy behavior and stationary strategies

A simple strategy 𝜎 that a decision maker might follow is to maximize her stage utility at each 𝑡, that is, choose her action at 𝑡
according to

𝑎𝑡 = 𝜎
(
𝑎𝑡−1) ∈ arg max

𝑎∈𝐴 

(
1 − 𝛾𝜑

(
𝑎
|||𝑎𝑡−1))𝑢(𝑎).

We call such a strategy a greedy strategy. In this case the frequency 𝜑
(
𝑎||𝑎𝑡

)
necessarily converges for all 𝑎 ∈ 𝐴.

Proposition 4.1. Let 𝑎 ∈ 𝐴∞ be the history evolving from a greedy strategy. Then 𝜑
(
𝑎||𝑎𝑡

)
converges for all 𝑎 ∈ 𝐴 and

lim 
𝑡→∞

𝜑
(
𝑎||𝑎𝑡

)
=

𝛾 − ||𝐴∗||+ ∑
𝑏∈𝐴∗

𝑢(𝑎)
𝑢(𝑏) 

𝛾
∑

𝑏∈𝐴∗

𝑢(𝑎)
𝑢(𝑏) 

(4)

for all 𝑎 ∈ 𝐴∗, where 𝐴∗ is the set of actions that are chosen infinitely often.

Proof. For each 𝜀 > 0 there is 𝑇 ∈ℕ ⧵ {0} such that||||(1 − 𝛾𝜑
(
𝑎
|||𝑎𝑡−1))𝑢(𝑎) −

(
1 − 𝛾𝜑

(
𝑏
|||𝑎𝑡−1))𝑢(𝑏)

|||| < 𝜀

for all 𝑎, 𝑏 ∈ 𝐴∗ and all 𝑡 ≥ 𝑇 . As 
∑

𝑎∈𝐴∗ 𝜑
(
𝑎||𝑎𝑡

)
= 1 for all 𝑡 ≥ 1, the frequencies converge. Let 𝑓𝑎 = lim𝑡→∞ 𝜑

(
𝑎||𝑎𝑡

)
. Then (

1 − 𝛾𝑓𝑎

)
𝑢(𝑎) =

(
1 − 𝛾𝑓𝑏

)
𝑢(𝑏) for all 𝑎, 𝑏 ∈ 𝐴∗. Solving for 𝑏 and summing over all 𝑏 we find that

1 =
∑

𝑏∈𝐴∗
𝑓𝑏 =

1 
𝛾

∑
𝑏∈𝐴∗

(
1 − 𝑢(𝑎)

𝑢(𝑏) 
(
1 − 𝛾𝑓𝑎

))
= 1 

𝛾

(||𝐴∗||− (
1 − 𝛾𝑓𝑎

) ∑
𝑏∈𝐴∗

𝑢(𝑎)
𝑢(𝑏) 

)
Solving for 𝑓𝑎 delivers (4). □

The expression in (4) provides a bound on the number of actions that can be played with positive probability. In particular, for 𝛾 < 1
it is possible that the greedy strategy will only choose a single action that is played at every 𝑡.

As seen in Example 3.1, frequencies do not converge for all 𝑎 ∈ 𝐴∞. Yet, if they do, as for the greedy strategy above, the average 
utility converges as well. We say that a history 𝑎 ∈ 𝐴∞ is stationary if lim𝑡→∞ 𝜑

(
𝑎
|||𝑎𝑡−1) exists for all 𝑎 ∈ 𝐴. In this case we write 

𝜑
(
𝑎||𝑎) = lim𝑡→∞ 𝜑

(
𝑎
|||𝑎𝑡−1). If there is no risk of confusion, we will even write 𝜑(𝑎) = 𝜑

(
𝑎||𝑎). The limit of the average utilities is 

then given by

𝑉 𝛾

(
𝑎
)
= 𝑉

𝛾

(
𝑎
)
= lim 

𝑇→∞
𝑈𝑇

𝛾

(
𝑎
)
=

∑
𝑎∈𝐴

𝜑 (𝑎) (1 − 𝛾𝜑 (𝑎))𝑢(𝑎). (5)

We denote the optimal limit that can be achieved by any stationary history by

𝑉 ∗
𝛾 = sup

{
𝑉

𝛾

(
𝑎
)
∣ 𝑎 ∈ 𝐴∞ is stationary

}
.

Finally, we say that a strategy is stationary if it generates a stationary history.

Example 4.2. Let 𝐴 = {𝑎, 𝑏} with 𝑢(𝑎) = 1 and 𝑢(𝑏) = 10. If 𝛾 ≤ 0.9, the greedy strategy will choose 𝑏 for all 𝑡. If 𝛾 > 0.9, then the 
frequencies achieved by the greedy strategy are 𝜑 (𝑎) = 10𝛾−9

11𝛾 and 𝜑 (𝑏) = 𝛾+9
11𝛾 . Thus,

𝑉
𝛾

(
𝑎
)
= 10𝛾 − 9

11𝛾 

(
1 − 𝛾

10𝛾 − 9
11𝛾 

)
𝑢(𝑎) + 𝛾 + 9

11𝛾 

(
1 − 𝛾

𝛾 + 9
11𝛾 

)
𝑢(𝑏) = 20 − 10𝛾

11 
.

In particular, for 𝛾 = 0.9, only 𝑏 will be chosen and its stage payoff converges towards 1. □

The previous example illustrates that the greedy strategy does not deliver particularly high payoffs. Indeed, the “good” actions are 
overused so that their stage payoffs become very low, resulting in a low average payoff. Finding 𝑉 ∗

𝛾 is indeed not very difficult; by 
(5), it is given by
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𝑉 ∗
𝛾 = max 

𝑥∈Δ(𝐴)

∑
𝑎∈𝐴

𝑥𝑎

(
1 − 𝛾𝑥𝑎

)
𝑢(𝑎), (6)

where Δ(𝐴) denotes the set of probability measures over 𝐴. As the objective function is strictly quasi-concave for all 𝛾 > 0, the 
maximization problem in (6) has a unique solution 𝑥∗ ∈ Δ(𝐴). In particular, every stationary history 𝑎 with 𝜑

(
⋅||𝑎) = 𝑥∗ is optimal. 

The next proposition specifies these optimal frequencies.

Proposition 4.3. Let 𝑎 ∈ 𝐴∞ be the history evolving from an optimal stationary strategy. Then

𝜑 (𝑎) =

2𝛾 − ||𝐴∗||+ ∑
𝑏∈𝐴∗

𝑢(𝑎)
𝑢(𝑏) 

2𝛾
∑

𝑏∈𝐴∗

𝑢(𝑎)
𝑢(𝑏) 

(7)

for all 𝑎 ∈ 𝐴∗, where 𝐴∗ ⊆ 𝐴 is the largest subset of 𝐴 with 𝑢(𝑎) ≤ 2𝛾−||𝐴∗||∑
𝑏∈𝐴∗ 1 

𝑢(𝑏)
and 𝑢 (𝑎∗) ≥ 𝑢(𝑎) for all 𝑎 ∈ 𝐴 ⧵𝐴∗.

Proof. The first-order conditions of the maximization problem in (6) are

(1 − 2𝛾𝜑 (𝑎))𝑢(𝑎) = (1 − 2𝛾𝜑 (𝑏))𝑢(𝑏).

for all 𝑎, 𝑏 ∈ 𝐴∗. With the same steps as in the proof of Proposition 4.1 one obtains (7) for all 𝑎 with 𝜑(𝑎) > 0. DK(2): Optimality 
requires that if 𝐴∗ contains some action 𝑎, it also contains all actions with higher basic payoff. This proves the second inequality. The 
best action 𝑎 ∈ 𝐴 ⧵𝐴∗ must satisfy (1 − 2𝛾𝜑 (𝑎∗))𝑢 (𝑎∗) ≥ 𝑢(𝑎) for all 𝑎∗ ∈ 𝐴∗, as otherwise optimality would require 𝑎 ∈ 𝐴∗ as well, 
at least with some small frequency. Substitution 𝜑(𝑎) by the right hand side of (7) completes the proof. □

Example 4.4. Let 𝐴 = {𝑎, 𝑏} with 𝑢(𝑎) = 1 and 𝑢(𝑏) = 10. Let 𝑎 be the history evolving from an optimal stationary strategy. For 𝛾 ≤ 9 
20

action 𝑎 will not be played with positive probability. For 𝛾 >
9 
20 , the optimal frequencies are 𝜑(𝑎) = 20𝛾−9

22𝛾 and 𝜑(𝑏) = 2𝛾+9
22𝛾 . Thus,

𝑉
𝛾

(
𝑎
)
= 20𝛾 − 9

22𝛾 

(
1 − 𝛾

20𝛾 − 9
22𝛾 

)
𝑢(𝑎) + 2𝛾 + 9

22𝛾 

(
1 − 𝛾

2𝛾 + 9
22𝛾 

)
𝑢(𝑏) = −40𝛾2 + 80𝛾 + 81

44𝛾 
.

In particular, this expression is strictly larger than the average utility of the greedy strategy in Example 4.2. □

A special case of optimal stationary histories emerges if 𝐴 contains exactly two elements and 𝛾 = 1. In this case Proposition 4.3

immediately implies the following corollary.

Corollary 4.5. Let 𝛾 = 1, let 𝐴 = {𝑎, 𝑏}, and let 𝑎 ∈ 𝐴∞ be an optimal stationary history. Then 𝜑(𝑎) = 𝜑(𝑏) = 1
2 . In particular, 𝑉 ∗

1 =
1
4 (𝑢(𝑎) + 𝑢(𝑏)).

At this point it has become clear that defining what an optimal strategy is crucially depends on how the evolving histories are 
evaluated. Finding optimal stationary strategies is rather simple, as shown in Proposition 4.3, yet Examples 3.2 and 4.4 illustrate that 
stationary strategies might not be able to achieve 𝑉 𝛾 as an average utility. Indeed, for 𝛾 = 1, the strategy in Example 3.2 achieves an 
average utility of 143 ln(2) ≈ 3.23, while the best stationary strategy in Example 4.4 achieves only 114 = 2.75.

In the remainder of the paper we shall investigate how the three possible values, that is, the optimal highest accumulation point, 
the optimal lowest accumulation point, and the optimal limit (if it exists) compare. They must satisfy

𝑉 ∗
𝛾 ≤ 𝑉

𝛾
≤ 𝑉 𝛾 .

Our main results will be that here the first inequality is actually an equality, while the second inequality is strict if there are at least 
two actions 𝑎, 𝑏 ∈ 𝐴 with 𝑢(𝑎) ≠ 𝑢(𝑏) that are chosen with positive frequency in an optimal stationary history.

5. Stationary strategies achieve 𝑽
𝜸

Stationary strategies in dynamic problems offer several advantages that make them appealing. The first advantage is their sim-

plicity in implementation and analysis compared to non-stationary strategies, which may require tracking the entire history.

Suppose that 𝑥∗ ∈ Δ(𝐴) is such that

𝑉 ∗
𝛾 =

∑
𝑎∈𝐴

𝑥∗𝑎
(
1 − 𝛾𝑥∗𝑎

)
𝑢(𝑎).

It is relatively straightforward to construct an infinite history that asymptotically follows the distribution 𝑥∗ . This can be achieved, 
for instance, by selecting an action at each period randomly according to the distribution 𝑥∗ , independently of the history. The strong 
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law of large numbers guarantees that, with probability 1, the frequency of actions will converge to 𝑥∗ , and thereby support 𝑉 ∗
𝛾 . If 𝑥∗

consists of rational numbers, an infinite history that follows the distribution 𝑥∗ can be achieved through periodic behavior, such as 
having pizza every Sunday evening. This illustrates why people often exhibit periodic behavior in their routines.

For many types of Markov Decision Processes, including those with discounted rewards and a compact set of actions, stationary 
strategies are proven to be optimal. This implies that more complex strategies are unnecessary to achieve the best possible outcome. 
Furthermore, the simplicity of stationary strategies allows for an efficient computation, as algorithms designed to find optimal strate-

gies can often do so more quickly when only stationary strategies are considered. The existence of optimal stationary strategies also 
simplifies the theoretical analysis of MDPs, allowing us to focus on a smaller class of strategies when proving specific properties, as 
demonstrated in Subsection 5.2.

In our case, finding a strategy such that the evolving history 𝑎 achieves 𝑉
𝛾
(𝑎) = 𝑉

𝛾
essentially constitutes a dynamic programming 

problem on a countable state space. Unfortunately, these problems typically lack a tractable structure, so there are no general results 
applicable in the current context. Therefore, we will develop specific tools in Subsection 5.1 to obtain our result. In Subsection 5.2, 
we will then investigate how the optimal frequencies change as the parameter 𝛾 varies.

5.1. The optimality of 𝑉 ∗
𝛾

Let 𝑎 be a history. For any 𝑡1, 𝑡2 ∈ℕ⧵{0} with 𝑡2 > 𝑡1 let the block from 𝑡1 to 𝑡2 in 𝑎 be the sequence of actions 
(
𝑎𝑡1+1, 𝑎𝑡1+2,… , 𝑎𝑡2

)
. 

The average utility within this block is given by

𝑊𝛾 = 𝑊𝛾

(
𝑎, 𝑡1, 𝑡2

)
= 1 

𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

(
1 − 𝛾𝜑

(
𝑎𝑠 ∣ 𝑎𝑠−1))𝑢(𝑎𝑠). (8)

Let 𝑝(𝑎) be the frequency with which 𝑎 is played in the block, that is,

𝑝(𝑎) = 𝑝
(
𝑎;𝑎, 𝑡1, 𝑡2

)
= 1 

𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

1𝑎𝑠=𝑎. (9)

If such a block is “not too long”, the frequencies will not change much between 𝑡1 and 𝑡2. We want to use this observation to derive 
an approximation of 𝑊𝛾 by means of 𝑝 and the frequency at the beginning, that is, 𝜑

(
⋅ ∣ 𝑎𝑡1

)
. In particular, we define 𝑈𝛾 as

𝑈𝛾 = 𝑈𝛾

(
𝑎, 𝑡1, 𝑡2

)
=

∑
𝑎∈𝐴

𝑝(𝑎)
(
1 − 𝛾𝜑

(
𝑎||𝑎𝑡1

))
𝑢(𝑎). (10)

We show that 𝑈𝛾 is close to 𝑊𝛾 if 𝑡2 is relatively close to 𝑡1, that is, if 𝑡2−𝑡1
𝑡1

is small, the proof of the following lemma can be found 
in the appendix.

Lemma 5.1. Let 𝑎 ∈ 𝐴∞ be a history and let 𝑡1, 𝑡2 ∈ ℕ ⧵ {0} with 𝑡2 > 𝑡1. Then|||𝑊𝛾 −𝑈𝛾
||| ≤ 2

𝑡2 − 𝑡1
𝑡1

𝛾
∑
𝑎∈𝐴

𝑢(𝑎). (11)

With Lemma 5.1 we can now prove our first main result, namely that there is a stationary strategy such that the evolving history 
𝑎 satisfies 𝑉

𝛾
= 𝑉

𝛾

(
𝑎
)
= 𝑉 ∗

𝛾 . The idea of the proof is to suppose by contradiction that there is a non-stationary history 𝑎 with 
𝑉

(
𝑎
)
= 𝑉 ∗

𝛾 +4𝑐 for some strictly positive constant 𝑐. This infinite history is divided into blocks, whose lengths depend on a parameter 
𝛼 that will be adjusted to 𝑐 and 𝛾 . The lengths of the blocks are designed to increase over time while remaining sufficiently short 
so that, relative to the total history up to that point, each block’s length remains small. This structure enables the application of 
Lemma 5.1.

To be more specific, let 𝜑𝑘(𝑎) = 𝜑
(
𝑎 ∣ 𝑎𝑡𝑘

)
denote the frequency of 𝑎 at the beginning of the 𝑘-th block. For each block 𝑘, consider 

the quantity

𝑥𝑘 =
∑
𝑎∈𝐴

(
1 −𝜑𝑘(𝑎)

)2
𝑢(𝑎).

We will show that these numbers exhibit impossible behavior if 𝑉
𝛾

were bounded away from 𝑉 ∗
𝛾 . To this end, we define a potential 

function 𝐻(𝐾,𝛼) as the weighted average of 𝑥1,… , 𝑥𝐾 , where the weight of 𝑥𝑘 corresponds to the relative length of the 𝑘-th block 
within the first 𝐾 blocks. This step lies at the heart of the proof.

The main idea behind the definition of 𝐻(𝐾,𝛼) is to derive a recursive formula, given by (20), that relates 𝐻(𝐾,𝛼) and 𝐻(𝐾−1, 𝛼). 
Since 𝐻(𝐾,𝛼) converges as 𝐾 →∞, the gap 𝐻(𝐾,𝛼) − 𝐻(𝐾 − 1, 𝛼) diminishes. However, if 𝑉

𝛾
were bounded away from 𝑉 ∗

𝛾 , this 
gap would remain strictly negative, leading to a contradiction, as shown in (23).

Theorem 5.2. It holds that 𝑉
𝛾
= 𝑉 ∗

𝛾 .
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Proof. Assume, by contradiction, that 𝑉
𝛾
> 𝑉 ∗

𝛾 . Then there is 𝑎 ∈ 𝐴∞ such that 𝑉
𝛾

(
𝑎
)
= 𝑉 ∗

𝛾 + 4𝑐 for some constant 𝑐 > 0. Thus,

𝑈𝑇
𝛾

(
𝑎
) ≥ 𝑉 ∗

𝛾 + 3𝑐 (12)

for all sufficiently large 𝑇 . Let 𝑇1 be such that (12) holds for all 𝑇 ≥ 𝑇1.

Let 𝛼 ∈ (0,1). We divide the set of periods into blocks. To that end let 𝑡0 = 0, and for each integer 𝑘 ≥ 1 the let 𝑡𝑘 be defined by 
𝑡𝑘 =

⌈
(1 + 𝛼)𝑘−1𝑇1

⌉
, which is the smallest integer larger than or equal to (1 + 𝛼)𝑘−1𝑇1. The 𝑘-th block starts at 𝑡𝑘−1 + 1 and ends at 𝑡𝑘. 

For each block 𝑘, denote the average payoff, the frequency, and the approximation by 𝑊 𝑘
𝛾 = 𝑊𝛾

(
𝑎, 𝑡𝑘−1, 𝑡𝑘

)
, 𝑝𝑘(𝑎) = 𝑝

(
𝑎;𝑎, 𝑡𝑘−1, 𝑡𝑘

)
, 

and 𝑈𝑘
𝛾 = 𝑈𝛾

(
𝑎, 𝑡𝑘−1, 𝑡𝑘

)
, respectively, as in Equations (8), (9), and (10). In particular, 𝑊 1

𝛾 = 𝑈
𝑇1
𝛾 .

By construction, 𝑡𝑘+1−𝑡𝑘
𝑡𝑘

≤ 𝛼 + 1 
(1+𝛼)𝑘−1𝑇1

for all 𝑘 ≥ 1. Thus, by Lemma 5.1,

|||𝑊 𝑘
𝛾 −𝑈𝑘

𝛾
||| ≤ 2

(
𝛼 + 1 

(1 + 𝛼)𝑘−2 𝑇1

)
𝛾
∑
𝑎∈𝐴

𝑢(𝑎),

for every 𝑘 ≥ 2. Denote 𝛽 = 𝛼

1+𝛼
and also 𝑑𝑘(𝑎) = 𝑝𝑘(𝑎) −𝜑𝑘(𝑎) for each 𝑘 ∈ ℕ ⧵ {0} and 𝑎 ∈ 𝐴. Recall from (12) and the definition of 

𝑇1 that

𝑉 ∗
𝛾 + 3𝑐 ≤ 𝑈

𝑡𝐾
𝛾

(
𝑎
)

(13)

for all 𝐾 ≥ 1. In particular,

𝑉 ∗
𝛾 + 3𝑐 ≤ 𝑈

𝑡𝐾
𝛾

(
𝑎
)

=
𝑡1
𝑡𝐾

𝑊 1
𝛾 +

𝐾∑
𝑘=2

𝑡𝑘 − 𝑡𝑘−1
𝑡𝐾

𝑊 𝑘
𝛾

=
𝑇1⌈

(1 + 𝛼)𝐾−1𝑇1
⌉𝑊 1

𝛾 +
𝐾∑

𝑘=2

⌈
(1 + 𝛼)𝑘−1𝑇1

⌉
−
⌈
(1 + 𝛼)𝑘−2𝑇1

⌉⌈
(1 + 𝛼)𝐾−1𝑇1

⌉ 𝑊 𝑘
𝛾

≤ 𝑇1
(1 + 𝛼)𝐾−1𝑇1

𝑊 1
𝛾 +

𝐾∑
𝑘=2

⌈
(1 + 𝛼)𝑘−2𝑇1 + 𝛼(1 + 𝛼)𝑘−2𝑇1

⌉
−
⌈
(1 + 𝛼)𝑘−2𝑇1

⌉⌈
(1 + 𝛼)𝐾−1𝑇1

⌉ 𝑊 𝑘
𝛾

≤ 1 
(1 + 𝛼)𝐾−1 𝑊 1

𝛾 +
𝐾∑

𝑘=2

⌈
(1 + 𝛼)𝑘−2𝑇1

⌉
+
⌈
𝛼(1 + 𝛼)𝑘−2𝑇1

⌉
−
⌈
(1 + 𝛼)𝑘−2𝑇1

⌉⌈
(1 + 𝛼)𝐾−1𝑇1

⌉ 𝑊 𝑘
𝛾

= 1 
(1 + 𝛼)𝐾−1 𝑊 1

𝛾 +
𝐾∑

𝑘=2

⌈
𝛼(1 + 𝛼)𝑘−2𝑇1

⌉⌈
(1 + 𝛼)𝐾−1𝑇1

⌉ 𝑊 𝑘
𝛾

≤ 1 
(1 + 𝛼)𝐾−1 𝑊 1

𝛾 +
𝐾∑

𝑘=2

⌈
𝛼(1 + 𝛼)𝑘−2

⌉
⋅ 𝑇1

(1 + 𝛼)𝐾−1𝑇1
𝑊 𝑘

𝛾

≤ 1 
(1 + 𝛼)𝐾−1 𝑊 1

𝛾 +
𝐾∑

𝑘=2

𝛼(1 + 𝛼)𝑘−2 + 1
(1 + 𝛼)𝐾−1 𝑊 𝑘

𝛾

≤ 1 
(1 + 𝛼)𝐾−1 𝑊 1

𝛾 +
𝐾∑

𝑘=2

𝛼(1 + 𝛼)𝑘−2 + 1
(1 + 𝛼)𝐾−1

(
�̃�𝑘

𝛾 + 2

(
𝛼 + 1 

(1 + 𝛼)𝑘−2 𝑇1

)
𝛾
∑
𝑎∈𝐴

𝑢(𝑎)

)

≤ 1 
(1 + 𝛼)𝐾−1 𝑊 1

𝛾 +
𝐾∑

𝑘=2

(1 + 𝛼)𝑘−2 𝛼 + 1
(1 + 𝛼)𝐾−1 𝑈𝑘

𝛾

+ 2𝛾
∑
𝑎∈𝐴

𝑢(𝑎)
𝐾∑

𝑘=2

(1 + 𝛼)𝑘−2𝛼 + 1
(1 + 𝛼)𝐾−1

(
𝛼 + 1 

(1 + 𝛼)𝑘−2

)
, (14)

for every 𝐾 ≥ 2.

Let �̄� = 𝑐
(
4𝛾

∑
𝑎∈𝐴 𝑢(𝑎)

)−1
. Then, for every 0 < 𝛼 < �̄� there is 𝐾 (𝛼) such that for all 𝐾 ≥ 𝐾 (𝛼) it holds that

2𝛾
∑
𝑎∈𝐴

𝑢(𝑎)
𝐾∑

𝑘=2

(1 + 𝛼)𝑘−2𝛼 + 1
(1 + 𝛼)𝐾−1

(
𝛼 + 1 

(1 + 𝛼)𝑘−2

)
< 𝑐.

This is so because

𝐾∑
𝑘=2

(1 + 𝛼)𝑘−2𝛼 + 1
(1 + 𝛼)𝐾−1

(
𝛼 + 1 

(1 + 𝛼)𝑘−2

)
←←←←←←←←←←←←←←←←←←←←←←←←→
𝐾→∞ 𝛼.
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By (14) we, hence, have

𝑉 ∗
𝛾 + 2𝑐 ≤ 𝑊 1

𝛾 +
𝐾∑

𝑘=2

(1 + 𝛼)𝑘−2 𝛼 + 1
(1 + 𝛼)𝐾−1 𝑈𝑘

𝛾 . (15)

For every 𝑥, 𝑦 ∈ℝ𝐴, denote

⟨𝑥, 𝑦⟩ ∶= ∑
𝑎∈𝐴

𝑥𝑎𝑦𝑎𝑢(𝑎) and ‖𝑥‖2 ∶= ⟨𝑥,𝑥⟩. (16)

For each 𝑘 and 𝑎 ∈ 𝐴 define 𝑑𝑘(𝑎) = 𝑝𝑘(𝑎) − 𝜑𝑘(𝑎), and define 𝛽 = 𝛼

1+𝛼
. Since 𝜑𝑘(⋅) is a convex combination of 𝜑𝑘−1 (⋅) and 𝑝𝑘−1 (⋅), 

with weights 𝑡𝑘−1
𝑡𝑘

and 𝑡𝑘−𝑡𝑘−1
𝑡𝑘

, we have

𝜑𝑘(𝑎) −𝜑𝑘−1(𝑎) =
𝑡𝑘−1
𝑡𝑘

𝜑𝑘−1(𝑎) +
𝑡𝑘 − 𝑡𝑘−1

𝑡𝑘
𝑝𝑘−1(𝑎) −𝜑𝑘−1(𝑎)

=
𝑡𝑘 − 𝑡𝑘−1

𝑡𝑘

(
𝑝𝑘−1(𝑎) −𝜑𝑘−1(𝑎)

)
≥ (1 + 𝛼)𝑘 − (1 + 𝛼)𝑘−1 − 1

(1 + 𝛼)𝑘
𝑑𝑘(𝑎)

≥ 𝛽𝑑𝑘(𝑎) − 1 
(1 + 𝛼)𝑘

. (17)

Let 𝑝𝑘 =
(
𝑝𝑘(𝑎)

)
𝑎
, 𝜑𝑘 =

(
𝜑𝑘(𝑎)

)
𝑎

and 𝑑𝑘 =
(
𝑑𝑘(𝑎)

)
𝑎
, so that 𝑝𝑘,𝜑𝑘, 𝑑𝑘 ∈ℝ𝐴. Moreover, denote by 𝟏 ∈ℝ𝐴 the vector with 1 in each 

entry. By (6)

𝑉 ∗
𝛾 = sup 

𝑥∈Δ(𝐴)
⟨𝑥,𝟏− 𝛾𝑥⟩ ≥ ⟨

𝜑𝑡𝑘 ,𝟏− 𝛾𝜑𝑡𝑘
⟩

for all 𝑘. Since 𝑈𝑘
𝛾 =

⟨
𝑝𝑘,𝟏− 𝛾𝜑𝑘

⟩
, we obtain from the definition of 𝑑𝑘 and Inequality (15) that for all 0 < 𝛼 < �̄� and 𝐾 ≥ 𝐾 (𝛼)

𝑉 ∗
𝛾 + 2𝑐 ≤

𝐾∑
𝑘=1

(1 + 𝛼)𝑘−1 𝛼

(1 + 𝛼)𝐾
⟨𝑝𝑘,𝟏− 𝛾𝜑𝑘⟩

=
𝐾∑

𝑘=1

(1 + 𝛼)𝑘−1 𝛼

(1 + 𝛼)𝐾
⟨𝜑𝑡𝑘 ,𝟏− 𝛾𝜑𝑘⟩+ 𝐾∑

𝑘=1

(1 + 𝛼)𝑘−1 𝛼

(1 + 𝛼)𝐾
⟨𝑑𝑘,𝟏− 𝛾𝜑𝑘⟩

≤ 𝑉 ∗
𝛾 +

𝐾∑
𝑘=1

(1 + 𝛼)𝑘−1 𝛼

(1 + 𝛼)𝐾
⟨𝑑𝑘,𝟏− 𝛾𝜑𝑘⟩.

Hence,

2𝑐 ≤
𝐾∑

𝑘=1

(1 + 𝛼)𝑘−1 𝛼

(1 + 𝛼)𝐾
⟨𝑑𝑘,𝟏− 𝛾𝜑𝑘⟩ = 𝐾∑

𝑘=1

𝛼

(1 + 𝛼)𝐾−𝑘+1 ⟨𝑑𝑘,𝟏− 𝛾𝜑𝑘⟩
= 1 

1 + 𝛼

𝐾∑
𝑘=1

𝛼

(1 + 𝛼)𝐾−𝑘
⟨𝑑𝑘,𝟏− 𝛾𝜑𝑘⟩. (18)

For any 𝐾 and 𝛼 define

𝐻(𝐾,𝛼) =
𝐾∑

𝑘=1

𝛼

(1 + 𝛼)𝐾−𝑘+1
‖‖‖𝟏− 𝛾𝜑𝑘‖‖‖2. (19)

Note that 
∑𝐾

𝑘=1
𝛼

(1+𝛼)𝐾−𝑘+1 ≤ 1, so that 𝐻(𝐾,𝛼) is bounded by some weighted average of ‖‖1 − 𝛾𝜑𝑘‖‖2 where 𝑘 = 1,2, ...,𝐾 . Furthermore,

𝐻(𝐾,𝛼) =
𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘+1
‖‖‖𝟏− 𝛾𝜑𝑘‖‖‖2 + 𝛼

(1 + 𝛼)
‖‖‖𝟏− 𝛾𝜑𝐾‖‖‖2

= (1 − 𝛽)𝐻(𝐾 − 1, 𝛼) + 𝛽
‖‖‖𝟏− 𝛾𝜑𝐾‖‖‖2 .

Therefore,

𝐻(𝐾,𝛼) −𝐻(𝐾 − 1, 𝛼) = −𝛽𝐻(𝐾 − 1, 𝛼) + 𝛽
‖‖‖𝟏− 𝛾𝜑𝐾‖‖‖2 . (20)
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Equation (20) is crucial, as it establishes a connection between 𝐻(𝐾,𝛼) and 𝐻(𝐾 − 1, 𝛼). The remainder of the proof focuses on 
the gap 𝐻(𝐾,𝛼) − 𝐻(𝐾 − 1, 𝛼). On one hand, this gap should diminish, but on the other hand, due to (13), it must remain strictly 
negative, leading to a contradiction.

Define

𝜀𝐾,𝛼 = 𝛼

(1 + 𝛼)𝐾
‖‖‖𝟏− 𝛾𝜑1‖‖‖2 .

Then

𝐻(𝐾,𝛼) = 𝜀𝐾,𝛼 +
𝐾∑

𝑘=2

𝛼

(1 + 𝛼)𝐾−𝑘+1
‖‖‖𝟏− 𝛾𝜑𝑘‖‖‖2

≤ 𝜀𝐾,𝛼 +
𝐾∑

𝑘=2

𝛼

(1 + 𝛼)𝐾−𝑘+1
‖‖‖𝟏− 𝛾𝜑𝑘−1 − 𝛾𝛽𝑑𝑘−1‖‖‖2 + 𝐾∑

𝑘=2

𝛼

(1 + 𝛼)𝐾−𝑘+1
1 

(1 + 𝛼)𝑘

= 𝜀𝐾,𝛼 +
𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

‖‖‖𝟏− 𝛾𝜑𝑘 − 𝛾𝛽𝑑𝑘‖‖‖2 + (𝐾 − 2)𝛼 
(1 + 𝛼)𝐾+1

= 𝜀𝐾,𝛼 +
𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

(‖‖‖𝟏− 𝛾𝜑𝑘‖‖‖2 − 2𝛾𝛽
⟨
𝑑𝑘,𝟏− 𝛾𝜑𝑘

⟩
+ 𝛾2𝛽2‖‖‖𝑑𝑘‖‖‖2

)
+ (𝐾 − 2)𝛼 

(1 + 𝛼)𝐾+1

= 𝜀𝐾,𝛼 +𝐻(𝐾 − 1, 𝛼) − 2𝛾𝛽

𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

⟨
𝑑𝑘,𝟏− 𝛾𝜑𝑘

⟩
+ 𝛾2𝛽2

𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

‖‖‖𝑑𝑘‖‖‖2
+ (𝐾 − 2)𝛼 

(1 + 𝛼)𝐾+1 .

Thus, we obtain an upper bound on the gap 𝐻(𝐾,𝛼) −𝐻(𝐾 − 1, 𝛼), as follows.

𝐻(𝐾,𝛼) −𝐻(𝐾 − 1, 𝛼) ≤ 𝜀𝐾,𝛼 − 2𝛽𝛾

𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘
⟨𝑑𝑘,𝟏− 𝛾𝜑𝑘⟩

+ 𝛽2𝛾2
𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘
‖𝑑𝑘‖2 + (𝐾 − 2)𝛼 

(1 + 𝛼)𝐾+1

and together with (18) and (20), we get

𝛽𝐻(𝐾 − 1, 𝛼) − 𝛽 ‖‖𝟏− 𝛾𝜑𝑡𝐾 ‖‖2 ≥ −𝜀𝐾,𝛼 + 2𝛽𝛾

𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

⟨
𝑑𝑘,𝟏− 𝛾𝜑𝑘

⟩
− 𝛽2𝛾2

𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

‖‖‖𝑑𝑘‖‖‖2 − (𝐾 − 2)𝛼 
(1 + 𝛼)𝐾+1

> −𝜀𝐾,𝛼 + 4𝛽𝛾(1 + 𝛼)𝑐

− 𝛽2𝛾2
𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

‖‖‖𝑑𝑘‖‖‖2 − (𝐾 − 2)𝛼 
(1 + 𝛼)𝐾+1 ,

or equivalently,

𝐻(𝐾 − 1, 𝛼) − ‖‖‖𝟏− 𝛾𝜑𝐾‖‖‖2 > −
𝜀𝐾,𝛼

𝛽
+ 4𝛾(1 + 𝛼)𝑐 − 𝛽𝛾2

𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

‖‖‖𝑑𝑘‖‖‖2 − (𝐾 − 2)𝛼 
𝛽 (1 + 𝛼)𝐾+1

= 4𝛾(1 + 𝛼)𝑐 − 𝛼

1 + 𝛼
𝛾2

𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

‖‖‖𝑑𝑘‖‖‖2 −
(

𝜀𝐾,𝛼

𝛽
+ (𝐾 − 2) 

(1 + 𝛼)𝐾

)
. (21)

We now proceed to show that the right-hand side of (21) is bounded away from zero.

Since ‖‖𝑑𝑘‖‖2 are all uniformly bounded, the sum on the right-hand side is bounded. Thus,

𝛼

1 + 𝛼
𝛾2

𝐾−1∑
𝑘=1 

𝛼

(1 + 𝛼)𝐾−𝑘

‖‖‖𝑑𝑘‖‖‖2 ≤ 𝛼

1 + 𝛼
𝛾2 sup 

𝑘∈ℕ

‖‖‖𝑑𝑘‖‖‖2 ∞ ∑
𝑘=0

𝛼

(1 + 𝛼)𝑘

= 𝛼

1 + 𝛼
𝛾2 sup 

𝑘∈ℕ

‖‖‖𝑑𝑘‖‖‖2
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< 𝑐𝛾

for all 𝐾 and all sufficiently small 𝛼 > 0. Moreover, there are 𝛼∗ and 𝐾∗ ≥ 𝐾 (𝛼∗) such that for all 𝐾 ≥ 𝐾∗

𝜀𝐾,𝛼∗

𝛽∗ + (𝐾 − 2) 
(1 + 𝛼∗)𝐾

= 1 
(1 + 𝛼∗)𝐾−1

‖‖‖𝟏− 𝛾𝜑1‖‖‖2 + (𝐾 − 2) 
(1 + 𝛼∗)𝐾

< 𝑐𝛾,

where 𝛽∗ = 𝛼∗

1+𝛼∗
. This implies that

𝐻 (𝐾 − 1, 𝛼) − ‖‖‖𝟏− 𝛾𝜑𝐾‖‖‖2 > 4𝛾 (1 + 𝛼) 𝑐 − 𝛾𝑐 − 𝛾𝑐 > 2𝛾𝑐 (22)

for all 𝛼 ≤ 𝛼∗ and all 𝐾 ≥ 𝐾∗.

We are now ready to obtain a contradiction. Due to (20), for 𝛼 ≤ 𝛼∗ we get from (22),

0 = lim sup
𝐾→∞ 

(𝐻 (𝐾,𝛼) −𝐻 (𝐾 − 1, 𝛼))

= lim sup
𝐾→∞ 

𝛽(‖‖‖𝟏− 𝛾𝜑𝐾‖‖‖2 −𝐻(𝐾 − 1, 𝛼)) ≤ −2𝛽𝛾𝑐 < 0 (23)

and have reached a contradiction. □

Observe that from Equation (19) it is not obvious that 𝐻 should be called a “potential function”. However, as can be seen from (20) 
and (22), 𝐻 is decreasing in 𝐾 for sufficiently large 𝐾 and sufficiently small 𝛼, which makes it a potential function in the original 
sense.

5.2. Increasing fatigue

As we have shown that 𝑉
𝛾

can be achieved using a stationary strategy, we shall now have a closer look into how the frequencies of 
optimal histories change as 𝛾 varies. Intuitively, a larger 𝛾 forces good actions to be used less often so that their stage payoff does not 
wear down too much. The following lemma makes this formal. As 𝛾 increases, the aggregated weight on the top actions is decreasing.

Lemma 5.3. Let 𝐴 =
{
𝑎1,… , 𝑎𝑚

}
with 𝑢

(
𝑎1

) ≥ 𝑢
(
𝑎2

) ≥⋯ ≥ 𝑢
(
𝑎𝑚

)
. For each 𝛾 ∈ (0,1] let 𝑥𝛾 ∈ Δ(𝐴) be the (unique) solution to the 

maximization problem in (6). Then

𝑘 ∑
𝑖=1 

𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

) ≤ 0 (24)

for all 𝑘 = 1,… ,𝑚.

The proof of Lemma 5.3 is a straightforward application of standard optimization tools and therefore deferred to the appendix

As 
∑

𝑎∈𝐴 𝑥𝛾 (𝑎) = 1 for all 𝛾 ∈ (0,1], an immediate consequence of Lemma 5.3 is that the aggregated weight on the poor actions is 
increasing as 𝛾 increases. Hence, we immediately obtain the following proposition, which says that a decision maker who exhibits a 
higher fatigue parameter 𝛾 will choose actions with poorer basic utility more frequently.

Proposition 5.4. Let 𝐴 =
{
𝑎1,… , 𝑎𝑚

}
with 𝑢

(
𝑎1

) ≥ 𝑢
(
𝑎2

) ≥⋯ ≥ 𝑢
(
𝑎𝑚

)
, let 0 < 𝛾 < 𝛾 ′ ≤ 1, and let 𝑎, �⃗� ∈ 𝐴∞ be two optimal stationary 

histories with respect to 𝛾 and 𝛾 ′, respectively. Then 𝜑
(
⋅||𝑎) first order stochastically dominates 𝜑

(
⋅ |||�⃗�).

As the proposition follows immediately from Lemma 5.3, its formal proof is omitted.

6. The values of the finite decision problems and 𝑽 𝜸

In Examples 3.2 and 4.4 we have seen a set of actions for which 𝑉 𝛾 > 𝑉 ∗
𝛾 . This relation is quite robust, as we will show in this 

section: whenever 𝐴 contains at least two actions with different basic payoffs, it holds true. The rough idea of the proof is to show 
first that the sequence 

(
𝑣𝑇

𝛾

)
𝑇∈ℕ

(which is the sequence of maximal average payoffs that can be achieved by histories of length 𝑇 , 

see Equation (2)) converges with lim𝑇→∞ 𝑣𝑇
𝛾 = 𝑉 𝛾 , and second that lim𝑇→∞ 𝑣𝑇

𝛾 is bounded away from 𝑉 ∗
𝛾 .

6.1. The sequence 
(
𝑣𝑇

𝛾

)
𝑇∈ℕ

converges to 𝑉 𝛾

In this subsection we show that the sequence 
(
𝑣𝑇

𝛾

)
𝑇∈ℕ

converges. The idea of the proof is to show that for a history 𝑎 of sufficient 

length 𝑇 and any 𝑆 > 𝑇 we can find a history �⃗� of length 𝑆 that has an average payoff at 𝑆 that is close to the one of 𝑎 at 𝑇 . This 
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implies that lim inf𝑆 𝑣𝑆
𝛾 is at least close to 𝑈𝑇

𝛾

(
𝑎
)
. As 𝑎 can be chosen such that 𝑈𝑇

𝛾

(
𝑎
)

is close to lim sup𝑇 𝑣𝑇
𝛾 , one finds that the 

limit inferior and limit superior of 
(
𝑣𝑇

𝛾

)
𝑇

must be identical.

The construction of ⃗𝑏 relies on the division of 𝑎 into blocks such that the length of any block is a fraction 𝛼 of the previous history, 
similar to the construction in the proof of Theorem 5.2. These blocks are then “stretched” by some factor 𝛿 > 1 such that 𝑆 = 𝛿𝑇 . 
Using the same approximations as in Equations (8), (9), and (10) in the proof of Theorem 5.2, we show that in each block 𝑘 the 
average utility of �⃗�, denoted 𝑌 𝑡

𝛾 , is close to the average utility in the 𝑘-th block of 𝑎, denoted 𝑊 𝑡
𝛾 . The average payoff of 𝑎 at time 

𝑇 is a convex combination of these average block utilities, where each 𝑊 𝑘 is weighted by 𝑡𝑘+1−𝑡𝑘
𝑇

. Similarly, the average payoff of �⃗�
at time 𝑆 is a convex combination, where each 𝑌 𝑘 is weighted by 𝑠𝑘+1−𝑠𝑘

𝑆
. By the construction of �⃗�, these two fractions are close as 

well (recall that �⃗� is merely a stretched version of 𝑎). Hence, 𝑈𝑆
𝛾

(
�⃗�
)

and 𝑈𝑇
𝛾

(
𝑎
)

are close as well.

Proposition 6.1. The sequence 
(
𝑣𝑇

𝛾

)
𝑇∈ℕ

converges.

Proof. Clearly, the sequence is bounded, so that lim sup𝑇→∞ 𝑣𝑇
𝛾 and lim inf𝑇→∞ 𝑣𝑇

𝛾 exist. We show that for each 𝜀 > 0 there is 𝑇 ∗ ∈ℕ
such that if 𝑣𝑇 ∗ ≥ lim sup𝑇→∞ 𝑣𝑇

𝛾 − 𝜀, then 𝑣𝑆 ≥ lim sup𝑇→∞ 𝑣𝑇
𝛾 − 2𝜀 for all 𝑆 ≥ 𝑇 ∗. This implies that for every 𝜀 > 0 it holds that 

lim sup𝑇→∞ 𝑣𝑇 − lim inf𝑇→∞ 𝑣𝑇 < 2𝜀, so that lim sup𝑇→∞ 𝑣𝑇
𝛾 = lim inf𝑇→∞ 𝑣𝑇

𝛾 = lim𝑇→∞ 𝑣𝑇
𝛾 .

So, let 𝜀 > 0 be sufficiently small. Let

𝑡1 ≥max

{
1 
𝜀3

(|𝐴|+ 8𝛾
∑
𝑎∈𝐴

𝑢(𝑎)

)
,
1 + 2𝜀2

𝜀3
16𝛾

∑
𝑎∈𝐴

𝑢(𝑎)

}
,

𝛼 = 𝜀 
16𝛾

∑
𝑎 𝑢(𝑎)

− 2 
𝑡1

,

and let 𝑇 ∗ ≥ 4𝑡1
∑

𝑎 𝑢(𝑎)
𝜀 be such that 𝑣𝑇 ∗ ≥ lim sup𝑇→∞ 𝑣𝑇 − 𝜀. Observe that for sufficiently small 𝜀 we have

1 ≥ 𝛼 = 𝜀 
16𝛾

∑
𝑎 𝑢(𝑎)

− 2 
𝑡1

≥ 1 + 2𝜀2

𝜀2𝑡1
− 2 

𝑡1
= 1 

𝜀2𝑡1
>

1 
𝑡1

. (25)

For 𝑘 ≥ 2, let 𝑟𝑘 be the smallest integer such that 𝑟𝑘 ≥ (1 + 𝛼)𝑘−1 𝑡1, and let 𝐾 be the smallest integer with 𝑟𝐾 ≥ 𝑇 ∗. Let 𝑡0 = 0, for 
𝑘 = 2,… ,𝐾 − 1 let 𝑡𝑘 = 𝑟𝑘, and let 𝑡𝐾 = 𝑇 ∗ > 𝑡𝐾−1. Let 𝑎 ∈ 𝐴∞ be such that 𝑈𝑇 ∗

𝛾

(
𝑎
)
= 𝑣𝑇 ∗

𝛾 . As in the proof of Theorem 5.2, let 

the 𝑘-th block of 𝑎 be the finite sequence 
(
𝑎𝑡𝑘+1,… , 𝑎𝑡𝑘+1

)
. For 𝑘 = 0,… ,𝐾 − 1, denote the average payoff, the frequency, and the 

approximation by 𝑊 𝑘
𝛾 = 𝑊𝛾

(
𝑎, 𝑡𝑘, 𝑡𝑘+1

)
, 𝑝𝑘(𝑎) = 𝑝

(
𝑎;𝑎, 𝑡𝑘, 𝑡𝑘+1

)
, and 𝑈𝑘

𝛾 = 𝑈𝛾

(
𝑎, 𝑡𝑘, 𝑡𝑘+1

)
, respectively, as in Equations (8), (9), and 

(10). In particular, 𝑊 0
𝛾 = 𝑈𝑡1 and 𝑝0 = 𝜑

(
.||𝑎𝑡1

)
. By construction, 𝑡𝑘+1−𝑡𝑘

𝑡𝑘
≤ 𝛼 + 1 

𝑡1
for all 𝑘 = 1,… ,𝐾 . Thus, by Lemma 5.1 and the 

definition of 𝛼,|||𝑊 𝑘
𝛾 −𝑈𝑘

𝛾
||| ≤ 2

(
𝛼 + 1 

𝑡1

)
𝛾
∑
𝑎∈𝐴

𝑢(𝑎) ≤ 2 𝜀 
16𝛾

∑
𝑎 𝑢(𝑎)

𝛾
∑
𝑎∈𝐴

𝑢(𝑎) = 1
8
𝜀 (26)

for 𝑘 = 1,… ,𝐾 .

Let 𝑆 ≥ 𝑇 ∗ and define 𝛿 = 𝑆

𝑇 ∗ . For each 𝑘 ≥ 1, let 𝑠𝑘 be the largest integer smaller than or equal to 𝛿𝑡𝑘 . Let �⃗� ∈ 𝐴∞ be such that 
�⃗�𝑡1 = 𝑎𝑡1 and

�⃗�𝑠 =

{
arg min𝑎∈𝐴 𝜑

(
𝑎 ∣ 𝑏𝑠−1)−𝜑

(
𝑎 ∣ 𝑎𝑡1

)
, if 𝑠 = 𝑡1 + 1,… , 𝑠1,

arg min𝑎∈𝐴
1 

𝑠−𝑠𝑘

∑𝑠
𝑠′=𝑠𝑘+1

1 𝑙
�⃗�𝑠′ =𝑎

− 𝑝𝑘(𝑎), if 𝑠𝑘 + 1 ≤ 𝑠 ≤ 𝑠𝑘+1, where 𝑘 ≥ 1.
(27)

That is, the individual blocks of history �⃗� are longer than those of 𝑎, stretched by the factor 𝛿, and in the 𝑘-th block of �⃗� actions are 
chosen to minimize the difference between the frequencies in the 𝑘-th block of 𝑎 and ⃗𝑏. For 𝑘 = 0,… ,𝐾 −1 denote the average payoff, 
the frequency, and the approximation in �⃗� by 𝑌 𝑘

𝛾 = 𝑊𝛾

(
�⃗�, 𝑠𝑘, 𝑠𝑘+1

)
, 𝑞𝑘(𝑎) = 𝑝

(
𝑎; �⃗�, 𝑠𝑘, 𝑠𝑘+1

)
, and 𝑉 𝑘

𝛾 = 𝑈𝛾

(
�⃗�, 𝑠𝑘, 𝑠𝑘+1

)
, respectively, 

as in Equations (8), (9), and (10). As 𝑠𝑘+1−𝑠𝑘

𝑠𝑘
≤ 𝛼 + 2 

𝑡1
for all 𝑘 ≥ 1, Lemma 5.1 together with the definition of 𝛼 gives

|||𝑌 𝑘 − 𝑉 𝑘
𝛾
||| ≤ 2

(
𝛼 + 2 

𝑡1

)
𝛾
∑
𝑎∈𝐴

𝑢(𝑎) = 2 𝜀 
16𝛾

∑
𝑎 𝑢(𝑎)

𝛾
∑
𝑎∈𝐴

𝑢(𝑎) = 1
8
𝜀. (28)

By construction, 𝜑
(
.||𝑎𝑡1

)
= 𝜑

(
.
|||�⃗�𝑡1

)
. By (27), for all 𝑡1 + 1 ≤ 𝑠 ≤ 𝑠1, action 𝑎 is only chosen if 𝜑

(
𝑎
|||�⃗�𝑠−1) ≤ 𝜑

(
𝑎||𝑎𝑡1

)
. Thus, 𝜑

(
𝑎
|||�⃗�𝑠

) ≤
𝜑
(
𝑎||𝑎𝑡1

)
+ 1

𝑠 for all 𝑠 ≤ 𝑠1. Since 
∑

𝑎∈𝐴 𝜑
(
𝑎
|||�⃗�𝑠

)
= 1, this implies that 𝜑

(
𝑎
|||�⃗�𝑠

) ≥ 𝜑
(
𝑎||𝑎𝑡1

)
− |𝐴|−1

𝑠 for all 𝑠 ≤ 𝑠1. Thus, for sufficiently 
small 𝜀 > 0|||𝜑(

𝑎||𝑎𝑡1
)
−𝜑

(
𝑎
|||�⃗�𝑠

)||| ≤ |𝐴|− 1
𝑠 

≤ |𝐴|− 1
𝑡1

≤ 𝜀3
|𝐴|− 1 |𝐴|+ 8𝛾

∑
𝑎 𝑢(𝑎)

≤ 𝜀2 (29)
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for all 𝑠 ≤ 𝑠1. Let 𝑘 ≥ 1 and 𝑠𝑘 + 1 ≤ 𝑠 ≤ 𝑠𝑘+1. By (27), action 𝑎 is only being played at 𝑠 if 1 
𝑠−𝑠𝑘

∑𝑠
𝑠′=𝑠𝑘+1

1 𝑙
�⃗�𝑠′ =𝑎

≤ 𝑝𝑘(𝑎). Thus, 

𝑝𝑘(𝑎) ≤ 1 
𝑠−𝑠𝑘 + 1 

𝑠−𝑠𝑘

∑𝑠

𝑠′=𝑠𝑘+1 1 𝑙�⃗�𝑠′ =𝑎
. In particular, for 𝑠 = 𝑠𝑘+1 it holds that

𝑝𝑘(𝑎) ≤ 1 
𝑠𝑘+1 − 𝑠𝑘

+ 1 
𝑠𝑘+1 − 𝑠𝑘

𝑠𝑘+1∑
𝑠′=𝑠𝑘+1

1 𝑙
�⃗�𝑠′ =𝑎

= 1 
𝑠𝑘+1 − 𝑠𝑘

+ 𝑞𝑘(𝑎).

Since 
∑

𝑎∈𝐴 𝑞𝑘(𝑎) =
∑

𝑎∈𝐴 𝑝𝑘(𝑎) = 1, this implies 𝑝𝑘(𝑎) ≥ 𝑞𝑘(𝑎) + |𝐴|−1 
𝑠𝑘+1−𝑠𝑘

, so that for sufficiently small 𝜀 > 0

|||𝑝𝑘(𝑎) − 𝑞𝑘(𝑎)||| ≤ |𝐴|− 1 
𝑠𝑘+1 − 𝑠𝑘

≤ |𝐴|− 1 
𝑡𝑘+1 − 𝑡𝑘

(30)

≤ |𝐴|− 1
𝛼𝑡𝑘 − 1 

≤ |𝐴|− 1 
𝛼 (1 + 𝛼)𝑘 𝑡1 − 1

≤ |𝐴|− 1 
1 
𝜀2

(1 + 𝛼)𝑘 − 𝑘
≤ 𝜀2

|𝐴|− 1 
(1 + 𝛼)𝑘 − 𝜀2

≤ 𝜀 
8 |𝐴|𝑢(𝑎)

for all 𝑎 ∈ 𝐴 and all 𝑘 ≥ 1. In particular,∑
𝑎∈𝐴

|||𝑝𝑘(𝑎) − 𝑞𝑘(𝑎)|||𝑢(𝑎) ≤ ∑
𝑎∈𝐴

𝜀 
8 |𝐴|𝑢(𝑎)𝑢(𝑎) = 1

8
𝜀.

Further, by using (30) we find for 𝑘 ≥ 2 that|||𝜑(
𝑎||𝑎𝑡𝑘

)
−𝜑

(
𝑎
|||�⃗�𝑠𝑘

)||| = |||| 𝑡𝑘−1𝑡𝑘
𝜑
(
𝑎||𝑎𝑡𝑘−1

)
+

𝑡𝑘 − 𝑡𝑘−1
𝑡𝑘

𝑝𝑘(𝑎) −
𝑠𝑘−1
𝑠𝑘

𝜑
(
𝑎
|||�⃗�𝑠𝑘−1

)
−

𝑠𝑘 − 𝑠𝑘−1
𝑠𝑘

𝑞𝑘(𝑎)
||||

≤ |||| 𝑡𝑘−1𝑡𝑘
𝜑
(
𝑎||𝑎𝑡𝑘−1

)
−

𝛿𝑡𝑘−1 − 𝑥1
𝛿𝑡𝑘 − 𝑥2

𝜑
(
𝑎
|||�⃗�𝑠𝑘−1

)||||
+
|||| 𝑡𝑘 − 𝑡𝑘−1

𝑡𝑘
𝑝𝑘(𝑎) −

𝛿𝑡𝑘 − 𝑥2 − 𝛿𝑡𝑘−1 + 𝑥1
𝛿𝑡𝑘 − 𝑥2

𝑞𝑘(𝑎)
||||

≤ 𝑡𝑘−1
𝑡𝑘

|||𝜑(
𝑎||𝑎𝑡𝑘−1

)
−𝜑

(
𝑎
|||�⃗�𝑠𝑘−1

)|||+ 𝑥1
𝑠𝑘

𝜑
(
𝑎
|||�⃗�𝑠𝑘−1

)
+

𝑡𝑘 − 𝑡𝑘−1
𝑡𝑘

|||𝑝𝑘(𝑎) − 𝑞𝑘(𝑎)|||+ ||𝑥1 − 𝑥2||
𝑠𝑘

𝑞𝑘(𝑎)

≤ 𝑡𝑘−1
𝑡𝑘

|||𝜑(
𝑎||𝑎𝑡𝑘−1

)
−𝜑

(
𝑎
|||�⃗�𝑠𝑘−1

)|||+ 2 
𝑡𝑘

+
𝑡𝑘 − 𝑡𝑘−1

𝑡𝑘

|𝐴|− 1 
𝑡𝑘+1 − 𝑡𝑘

≤ 𝑡𝑘−1
𝑡𝑘

|||𝜑(
𝑎||𝑎𝑡𝑘−1

)
−𝜑

(
𝑎
|||�⃗�𝑠𝑘−1

)|||+ |𝐴|+ 1
𝑡𝑘

,

where 𝑥1, 𝑥2 ≤ 1 are such that 𝑠𝑘−1 = 𝛿𝑡𝑘−1 − 𝑥1 and 𝑠𝑘 = 𝛿𝑡𝑘 − 𝑥2. We thus find inductively that, for sufficiently small 𝜀,

|||𝜑(
𝑎||𝑎𝑡𝑘

)
−𝜑

(
𝑎
|||�⃗�𝑠𝑘

)||| ≤ 𝑡1
𝑡𝑘

|||𝜑(
𝑎
|||𝑎𝑡1

)
−𝜑

(
𝑎
|||�⃗�𝑠1

)|||+ (|𝐴|+ 1)
𝑘 ∑

𝑙=2 

1 
𝑡𝑙

≤ 𝑡1
𝑡𝑘

𝜀2 + |𝐴|+ 1
𝑡1

𝑘 ∑
𝑙=2 

( 1 
1 + 𝛼

)𝑙

≤ 1 
(1 + 𝛼)𝑘

𝜀2 + |𝐴|+ 1
𝛼𝑡1

≤ 1 
(1 + 𝛼)𝑘

𝜀2 + (|𝐴|+ 1)𝜀2

≤ (|𝐴|+ 2)𝜀2

≤ 𝜀 
8 |𝐴|𝑢(𝑎)

for all 𝑘 ≥ 1, so that∑
𝑎∈𝐴

|||𝜑(
𝑎||𝑎𝑡𝑘

)
−𝜑

(
𝑎
|||�⃗�𝑠𝑘

)||| ≤ 1
8
𝜀

for all 𝑘 ≥ 0. (The case 𝑘 = 0 follows from (29).) Hence,



Games and Economic Behavior 152 (2025) 396–422

409

G. Ashkenazi-Golan, D. Karos and E. Lehrer 

|||𝑈𝑘
𝛾 − 𝑉 𝑘

𝛾
||| = |||||

∑
𝑎∈𝐴

𝑝𝑘(𝑎)
(
1 −𝜑

(
𝑎||𝑎𝑡𝑘

))
𝑢(𝑎) −

∑
𝑎∈𝐴

𝑞𝑘(𝑎)
(
1 −𝜑𝑘

(
𝑎
|||�⃗�𝑠𝑘

))
𝑢(𝑎)

|||||
=
|||||
∑
𝑎∈𝐴

(
𝑝𝑘(𝑎) − 𝑞𝑘(𝑎)

)(
1 −𝜑

(
𝑎||𝑎𝑡𝑘

))
𝑢(𝑎) −

∑
𝑎∈𝐴

𝑞𝑘(𝑎)
(
𝜑
(
𝑎
|||𝑎𝑡𝑘

)
−𝜑

(
𝑎
|||�⃗�𝑠𝑘

))
𝑢(𝑎)

|||||
≤ ∑

𝑎∈𝐴

|||𝑝𝑘(𝑎) − 𝑞𝑘(𝑎)|||𝑢(𝑎) − ∑
𝑎∈𝐴

|||𝜑(
𝑎||𝑎𝑡𝑘

)
−𝜑

(
𝑎
|||�⃗�𝑠𝑘

)|||𝑢(𝑎)
≤ 1

4
𝜀 (31)

for all 𝑘 ≥ 1. From (26), (28), an (31) we find|||𝑊 𝑘
𝛾 − 𝑌 𝑘

𝛾
||| ≤ |||𝑊 𝑘

𝛾 − �̃�𝑘
𝛾
|||+ |||�̃�𝑘

𝛾 − 𝑉 𝑘
𝛾
|||+ |||𝑉 𝑘

𝛾 − 𝑌 𝑘
𝛾
||| ≤ 1

2
𝜀

for all 𝑘 ≥ 1. Thus, recalling that 𝑡𝐾 = 𝑇 ∗ and 𝑠𝐾 = 𝑆 , we have

|||𝑈𝑇
𝛾

(
𝑎
)
−𝑈𝑆

𝛾

(
�⃗�
)||| ≤ 𝐾−1∑

𝑘=0 

|||| 𝑡𝑘+1 − 𝑡𝑘

𝑇
𝑊 𝑘

𝛾 −
𝑠𝑘+1 − 𝑠𝑘

𝑆
𝑌 𝑘

𝛾

||||
≤

𝐾−1∑
𝑘=0 

|||| 𝛿𝑡𝑘+1 − 𝛿𝑡𝑘

𝛿𝑇 
𝑊 𝑘

𝛾 −
𝑠𝑘+1 − 𝑠𝑘

𝛿𝑇 
𝑌 𝑘

𝛾

||||
≤

𝐾−1∑
𝑘=0 

(|||| 𝛿𝑡𝑘+1 − 𝛿𝑡𝑘

𝛿𝑇 

(
𝑊 𝑘

𝛾 − 𝑌 𝑘
𝛾

)||||+ |||| 1 
𝛿𝑇

𝑌 𝑘
𝛾

||||
)

≤
𝐾−1∑
𝑘=0 

(1 + 𝛼)𝑘+1 𝑡1 − (1 + 𝛼)𝑘 𝑡1 + 1
(1 + 𝛼)𝐾−1 𝑡1

|||𝑊 𝑘
𝛾 − 𝑌 𝑘

𝛾
|||+ 𝐾

𝛿 (1 + 𝛼)𝐾−1 𝑡1

∑
𝑎∈𝐴

𝑢(𝑎)

≤ 𝜀 
2

𝐾−1∑
𝑘=0 

(
𝛼 (1 + 𝛼)𝑘−𝐾+1 + 1 

(1 + 𝛼)𝐾−1 𝑡1

)
+ 𝐾

(1 + 𝛼)𝐾−1 𝑡1

∑
𝑎∈𝐴

𝑢(𝑎)

≤ 𝜀 
2

(
1 + 𝐾

(1 + 𝛼)𝐾 𝑡1

)
+ 𝐾

(1 + 𝛼)𝐾−1 𝑡1

∑
𝑎∈𝐴

𝑢(𝑎).

Using that

𝐾

(1 + 𝛼)𝐾 𝑡1
≤ 𝐾

(1 + 𝛼)𝐾−1 𝑡1
≤ 𝐾

(1 + 𝛼(𝐾 − 1)) 𝑡1
≤ 𝐾

(𝛼 + 𝛼𝐾 − 𝛼) 𝑡1
= 1 

𝛼𝑡1
≤ 𝜀2

we conclude that, for sufficiently small 𝜀,||||𝑈𝑇
𝛾

(
�⃗�
)
−𝑈𝑆

𝛾

(
𝑎
)|||| ≤ 𝜀 

2
(
1 + 𝜀2

)
+ 𝜀2

∑
𝑎∈𝐴

𝑢(𝑎) ≤ 𝜀.

Thus,

𝑣𝑆
𝛾 ≥ 𝑈𝑆

𝛾

(
�⃗�
) ≥ 𝑈𝑇

𝛾

(
𝑎
)
− 𝜀 ≥ lim sup

𝑇 ′
𝑣𝑇 ′ − 2𝜀

as required. □

After establishing that lim𝑇→∞ 𝑣𝑇
𝛾 is well-defined, we will now show that the sequence converges to 𝑉 𝛾 . As explained earlier, the 

value 𝑉 𝛾 itself may not be behaviorally sound. However, the convergence of lim𝑇→∞ 𝑣𝑇
𝛾 to 𝑉 𝛾 grants it a certain significance.

Proving that 𝑣𝑇
𝛾 converges towards 𝑉 𝛾 is now fairly simple: as there is a sequence 𝑎 whose average payoff gets infinitely often 

arbitrarily close to 𝑉 𝛾 , the sequence 𝑣𝑇
𝛾 gets infinitely often at least close to 𝑉 𝛾 as well. Hence, lim𝑇→∞ 𝑣𝑇

𝛾 ≥ 𝑉 𝛾 . For the other 
inequality note that for any history 𝑎 the number 𝑉 𝛾

(
𝑎
)

gets arbitrarily close to 𝑈𝑇
𝛾

(
𝑎
)

for sufficiently large 𝑇 . This is true, in 
particular, for the optimal 𝑎, for which 𝑈𝑇

𝛾

(
𝑎
)

gets arbitrarily close to lim𝑇→∞ 𝑣𝑇
𝛾 .

Proposition 6.2. It holds that lim𝑇→∞ 𝑣𝑇
𝛾 = 𝑉 𝛾 .

Proof. Let 𝜀 > 0 and let 𝑎 be such that 𝑉 𝛾

(
𝑎
) ≥ 𝑉 𝛾 − 𝜀. Then there is a sequence 

(
𝑇𝑘

)
𝑘∈ℕ such that

𝑣
𝑇𝑘
𝛾 ≥ 𝑈

𝑇𝑘
𝛾

(
𝑎
) ≥ 𝑉 𝛾

(
𝑎
)
− 𝜀 ≥ 𝑉 𝛾 − 2𝜀
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for all 𝑘 ∈ℕ. Thus, lim𝑇→∞ 𝑣𝑇
𝛾 = lim𝑘→∞ 𝑣

𝑇𝑘
𝛾 ≥ 𝑉 𝛾 − 2𝜀. As 𝜀 > 0 was arbitrary, we have lim𝑇→∞ 𝑣𝑇

𝛾 ≥ 𝑉 𝛾 .

Assume that there is 𝑐 > 0 such that lim𝑇→∞ 𝑣𝑇
𝛾 ≥ 𝑉 𝛾 + 4𝑐. Let 𝑇 0 be such that 𝑣𝑇 ′

𝛾 ≥ lim𝑇→∞ 𝑣𝑇
𝛾 − 𝑐 for all 𝑇 ′ ≥ 𝑇 0. There is 

𝑇1 ≥ 𝑇 0 such that

𝑣𝑇 ′
𝛾 ≥ lim 

𝑇→∞
𝑣𝑇

𝛾 − 𝑐 ≥ 𝑉 𝛾 + 3𝑐 = sup 
𝑎∈𝐴∞

lim sup
𝑇

𝑈𝑇
𝛾

(
𝑎
)
+ 3𝑐 (32)

for all 𝑇 ′ ≥ 𝑇1. For each 𝑎 there is 𝑇2
(
𝑎
) ≥ 𝑇1 such that lim sup𝑇 𝑈𝑇

𝛾

(
𝑎
) ≥ 𝑈𝑇 ′ (

𝑎
)
− 𝑐 for all 𝑇 ′ ≥ 𝑇2

(
𝑎
)
. In particular,

sup 
𝑎∈𝐴∞

lim sup
𝑇

𝑈𝑇
𝛾

(
𝑎
)
+ 3𝑐 ≥ sup 

𝑎∈𝐴∞
𝑈

𝑇2
(
𝑎
)

𝛾

(
𝑎
)
+ 2𝑐 ≥ lim 

𝑇→∞
𝑣𝑇

𝛾 + 𝑐, (33)

where the last inequality holds since 𝑇2
(
�⃗�
) ≥ 𝑇1 ≥ 𝑇0 for all 𝑎 ∈ 𝐴∞. From (32) and (33) we obtain 𝑣𝑇 ′

𝛾 ≥ lim𝑇→∞ 𝑣𝑇
𝛾 + 𝑐 for all 

𝑇 ′ ≥ 𝑇1, which is impossible as 
(
𝑣𝑇

𝛾

)
converges by Proposition 6.1. □

6.2. Stationary strategies cannot achieve 𝑉 𝛾

The next main result shows that (generically) 𝑉 𝛾 cannot be achieved by any stationary strategy, or, to be more precise, that the 
optimal stationary strategy achieves an average payoff that is strictly less than 𝑉 𝛾 . In the proof we start from a stationary history 𝑎
and then iteratively construct a sequence of histories by only switching two actions in each step. We begin with the following lemma, 
which provides a sufficient condition for increasing all future payoffs by swapping the positions of two actions 𝑎 and 𝑏 within some 
history 𝑎. Let 𝑡 be the last occurrence of 𝑎 before 𝑏. Then the switch of 𝑎 and 𝑏 increases the average payoff if

𝜑(𝑎 ∣ 𝑎𝑡−1)𝑢(𝑎) −𝜑(𝑏 ∣ 𝑎𝑡−1)𝑢(𝑏) > 0.

The intuition here is that actions with high base utility, when shifted backward, can be played with a relatively small fatigue cost.

Lemma 6.3. Let 𝑎, 𝑏 ∈ 𝐴 and let 𝑎, �⃗� ∈ 𝐴∞ be such that there are 𝑠 > 𝑡 with 𝑎𝑡 = �⃗�𝑠 = 𝑎, 𝑎𝑠 = �⃗�𝑡 = 𝑏, 𝑎𝑡′ = �⃗�𝑡′ for all 𝑡′ ≠ 𝑡, 𝑠, and 𝑎𝑡′ ≠ 𝑎

for all 𝑡′ = 𝑡,… , 𝑠− 1. Then

𝑈𝑇
𝛾 (�⃗�) −𝑈𝑇

𝛾 (𝑎) ≥ 𝛾 (𝑠− 𝑡)
(𝑠− 1)𝑇

(
𝜑
(
𝑎
|||𝑎𝑡−1)𝑢(𝑎) −𝜑

(
𝑏
|||𝑎𝑡−1)𝑢(𝑏)

)
(34)

for all 𝑇 ≥ 𝑠.

As the proof of Lemma 6.3 is fairly straightforward, it is deferred to the Appendix. Equation (34) provides us with a lower bound for 
the increase in payoff that results from switching two actions. In order to prove the next theorem, we start with a stationary history 
and then successively swap actions, such that in each step the premise of Lemma 6.3 is satisfied. We show that the increase in payoff 
(which applies to all sufficiently late periods) is significant.

Theorem 6.4. Let 𝐴 be a finite set of actions. Then 𝑉 𝛾 > 𝑉 ∗
𝛾 if and only if for the optimal stationary frequency 𝜑 ∈ Δ(𝐴) there are two 

actions 𝑎, 𝑏∈ 𝐴 with 𝜑(𝑎), 𝜑(𝑏) > 0 and 𝑢(𝑎) ≠ 𝑢(𝑏).

Proof. Necessity is clear. We show sufficiency. Let 𝑎 be an optimal stationary strategy, write 𝜑(𝑎) for 𝜑
(
𝑎||𝑎), and denote by 𝐴∗ the 

set of actions 𝑎 ∈ 𝐴 with 𝜑 (𝑎) > 0. By Proposition 4.3,

𝜑 (𝑎)𝑢(𝑎) =
2𝛾 − |𝐴∗|+∑

𝑏∈𝐴∗
𝑢(𝑎)
𝑢(𝑏) 

2𝛾
∑

𝑏∈𝐴∗
1 

𝑢(𝑏)

= 𝑢(𝑎)
2𝛾 

− |𝐴|− 2𝛾 
2𝛾

∑
𝑏∈𝐴∗

1 
𝑢(𝑏)

,

which implies that 𝜑(𝑎) ≥ 𝜑(𝑏) if and only if 𝑢(𝑎) ≥ 𝑢(𝑏). Moreover, we have

𝜑(𝑎)𝑢(𝑎) −𝜑(𝑏)𝑢(𝑏) = 𝑢(𝑎) − 𝑢(𝑏)
2𝛾 

(35)

for all 𝑎, 𝑏 ∈ 𝐴∗. As 𝑉 ∗
𝛾 and 𝑉 𝛾 depend continuously on 𝛾 and {𝑢(𝑎)}𝑎∈𝐴, and 𝜑 (⋅) ∈ℚ𝐴 if 𝛾, 𝑢(𝑎) ∈ℚ for all 𝑎 ∈ 𝐴 by Proposition 4.3, 

we can assume without loss of generality that 𝜑 (⋅) ∈ℚ𝐴. Thus, there are integers 𝑚𝑎 ∈ ℕ for all 𝑎 ∈ 𝐴 such that 𝜑 (𝑎) = 𝑚𝑎

𝑚 , where 
𝑚 =

∑
𝑎∈𝐴∗ 𝑚𝑎. Again, without loss of generality, we can assume that 𝑎 is the infinite repetition of a sequence of length 𝑚 in which 

each action 𝑎 ∈ 𝐴∗ is played exactly 𝑚𝑎 times. Let 𝑎 ∈ arg min𝑎∈𝐴∗ 𝑢(𝑎) and 𝑎 ∈ arg max𝑎∈𝐴∗ 𝑢(𝑎). By the premise of the theorem, 
𝑢
(
𝑎
)

< 𝑢
(
𝑎
)
, so that 𝑚𝑎 > 𝑚𝑎.

The proof of the following claim is deferred to the appendix.

Claim 1: For all 𝑡 ≥ 2 and all 𝑎 ∈ 𝐴∗ it holds that

𝜑 (𝑎) − 𝑚 
𝑡− 1

≤ 𝜑
(
𝑎
|||𝑎𝑡−1) ≤ 𝜑 (𝑎) + 𝑚 

𝑡− 1
. □
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Define now the following constants

𝛿 =
𝑢
(
𝑎
)
− 𝑢

(
𝑎
)

4𝛾 
,

𝑞′ =
𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
))

𝛿 +𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑏
)) ,

𝑞 =max
(3
4
, 𝑞′

)
,

𝜂 = 1 − 𝑞

64 
𝜑
(
𝑎
)
𝛾𝛿,

and observe that 𝛿 > 0, so that 𝑞 < 1 and 𝜂 > 0. Let

𝜀 ≤min
⎛⎜⎜⎝ 𝛿

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
)
,
1
2 𝜂

⎞⎟⎟⎠
and let

𝑇1 ≥ 2𝑚− 1 + (𝑚+ 1)
(
𝛿 +𝜑

(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
)))

𝛿

be a multiple of 𝑚 and be such that |||𝜑(
𝑎||𝑎𝑡

)
−𝜑(𝑎)||| ≤ 𝜀 for all 𝑎 ∈ 𝐴 and all 𝑡 ≥ 𝑇1. Finally, let

𝑇 ∗ ≥max

(
2𝑇1, 𝑇1 + 4𝑚,𝑇1 +

4
(
𝜑
(
𝑎
)
+ 2𝑚

)
(1 − 𝑞)𝜑

(
𝑎
) )

be such that |||𝑈𝑇
𝛾

(
𝑎
)
− 𝑉 ∗

𝛾
||| ≤ 𝜂 for all 𝑇 ≥ 𝑇 ∗. We show that there is an infinite sequence of 𝑇 ’s with 𝑣𝑇 ≥ 𝑉 ∗ + 𝜂 for all 𝑇 ≥ 𝑇 ∗. For 

this purpose we will construct for any 𝑇 in this sequence a history �⃗� with 𝑈𝑇
𝛾

(
�⃗�
) ≥ 𝑉 ∗ + 𝜂. By Proposition 6.2, this is sufficient to 

prove the theorem.

So, let 𝑇 ≥ 𝑇 ∗ be a multiple of 𝑚. We construct �⃗� by iteratively switching actions 𝑎 and 𝑎 between 𝑇1 + 1 and 𝑇 . Specifically, let 
𝑐 ∈∞ be a history that has been reached after some switches, and let 𝑇1 +1 ≤ 𝑠 ≤ 𝑇 be the first occurrence of 𝑎 such that the period 
of the last previous occurrence of 𝑎, denoted by 𝑡 < 𝑠, satisfies

𝜑
(
𝑎
|||𝑐𝑡−1)𝑢

(
𝑎
)
−𝜑

(
𝑎
|||𝑐𝑡−1)𝑢

(
𝑎
) ≥ 𝛿. (36)

If such 𝑡, 𝑠 ≤ 𝑇 do not exist, let �⃗� = 𝑐. Otherwise, note that (36) does not depend on 𝑠, so that the minimality of 𝑠 implies that there 
are no instances of 𝑎 between 𝑡+ 1 and 𝑠− 1. Let 𝑑 be such that 𝑑𝑡 = 𝑎, 𝑑𝑠 = 𝑎, and 𝑑𝑡′ = 𝑐𝑡′ for all 𝑡′ ≠ 𝑡, 𝑠. By Lemma 6.3,

𝑈𝑇
𝛾

(
𝑑
)
−𝑈𝑇

𝛾

(
𝑐
) ≥ 𝛾 (𝑠− 𝑡)

(𝑠− 1)𝑇
𝛿.

Thus, we say that the switch of 𝑎 and 𝑎 in 𝑐 is beneficial. Repeat the procedure with 𝑑 and continue as long as possible. Note that all 
beneficial switches will shift occurrences of 𝑎 towards the beginning, i.e., 𝑇1, and occurrences of 𝑎 towards the end, i.e., 𝑇 . Thus, for 
each finite 𝑇 ≥ 𝑇 ∗ there is a finite number of beneficial switches, so �⃗� is well-defined. Moreover, for any 𝑇1 + 1 ≤ 𝑡 ≤ 𝑇 −𝑚 it holds 
that the sequence 

(
�⃗�𝑡+1,… , �⃗�𝑡+𝑚

)
contains exactly 𝑚𝑎 +𝑚𝑎 periods in which either 𝑎 or 𝑎 are being chosen.

The proof of the next claim can also be found in the appendix.

Claim 2: In history �⃗�, the last occurrence of 𝑎 until 𝑇 is at some 𝑠 ≤ 𝑇1 +
(
𝑇 − 𝑇1

)
𝑞. □

So, in history �⃗� there are no occurrences of 𝑎 between 𝑇1 + 𝑞
(
𝑇 − 𝑇1

)
and 𝑇 . Let 𝑡∗ be the smallest integer such that 𝑡∗ ≥ 𝑇1 +

1+𝑞

2 
(
𝑇 − 𝑇1

)
and let 𝑘 be the number of occurrences of 𝑎 in 𝑎 between 𝑡∗ + 1 and 𝑇 . Then, with the bounds in Claim 1, and since 

𝑇 ≥ 𝑇 ∗ ≥ 𝑇1 +
4
(
𝜑
(
𝑎
)
+𝑚

)
(1−𝑞)𝜑

(
𝑎
) by construction,

𝑘 = 𝜑
(
𝑎 ∣ 𝑎𝑇

)
𝑇 −𝜑

(
𝑎 ∣ 𝑎𝑡∗

)
𝑡∗

≥ 𝜑
(
𝑎
)
𝑇 −𝜑

(
𝑎
)
𝑡∗ − 2𝑚

≥ 𝜑
(
𝑎
)(

𝑇 −
(

𝑇1 +
1 + 𝑞

2 
(
𝑇 − 𝑇1

)
+ 1

))
− 2𝑚

= 𝜑
(
𝑎
)(

𝑇 − 𝑇1
) 1 − 𝑞

2 
−𝜑

(
𝑎
)
−𝑚

= 𝜑
(
𝑎
)(

𝑇 − 𝑇1
) 1 − 𝑞

4 
+𝜑

(
𝑎
)(

𝑇 − 𝑇1
) 1 − 𝑞

4 
−𝜑

(
𝑎
)
− 2𝑚
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≥ 𝜑
(
𝑎
)(

𝑇 − 𝑇1
) 1 − 𝑞

4 
+𝜑

(
𝑎
)(

𝑇1 +
4
(
𝜑
(
𝑎
)
+ 2𝑚

)
(1 − 𝑞)𝜑

(
𝑎
) − 𝑇1

)
1 − 𝑞

4 
−𝜑

(
𝑎
)
− 2𝑚

= 𝜑
(
𝑎
)(

𝑇 − 𝑇1
) 1 − 𝑞

4 
. (37)

Let 𝑠1,… , 𝑠𝑘 be the times of all occurrences of 𝑎 in 𝑎 with 𝑇1 +
1+𝑞

2 
(
𝑇 − 𝑇1

) ≤ 𝑠1 ≤ ⋯ ≤ 𝑠𝑘 ≤ 𝑇 . Let 𝑡1 ≤ ⋯ ≤ 𝑡𝑘 be the last 𝑘
occurrences of 𝑎 in �⃗�, and recall that 𝑡𝓁 ≤ 𝑇1 + 𝑞

(
𝑇 − 𝑇1

)
for all 𝓁 = 1,… , 𝑘. Thus, 𝑠𝓁 − 𝑡𝓁 ≥ 1+𝑞

2 
(
𝑇 − 𝑇1

)
for all 𝓁 = 1,… , 𝑘. Define 

histories ⃗𝑏(0),… , �⃗�(𝑘) as follows. Let ⃗𝑏(0) = �⃗� and for all 𝓁 = 1,… , 𝑘, let ⃗𝑏𝑡𝓁 (𝓁) = �⃗�𝑠𝓁 (𝓁 − 1), ⃗𝑏𝑠𝓁 (𝓁) = �⃗�𝑡𝓁 (𝓁 − 1), and ⃗𝑏𝑡 (𝓁) = �⃗�𝑡 (𝓁 − 1)
for all 𝑡 ≠ 𝑡𝓁 , 𝑠𝓁 . Using Lemma 6.3 and the fact that 𝑇−𝑇1

𝑇
≥ 1

2 by construction, we therefore have

𝑈𝑇
𝛾

(
�⃗� (𝓁)

)
−𝑈𝑇

𝛾

(
�⃗� (𝓁 + 1)

) ≥ 𝛾
1 
𝑇

𝑠𝓁 − 𝑡𝓁

𝑠𝓁 − 1 

(
𝜑
(
𝑎
|||�⃗�𝑡𝓁−1)𝑢(𝑎)−𝜑

(
𝑎
|||�⃗�𝑡𝓁−1)𝑢(𝑎))

≥ 𝛾

𝑇

(1 + 𝑞)
(
𝑇 − 𝑇1

)
2𝑇 

𝛿

≥ 𝛾

4𝑇
𝛿

for all 𝓁 = 0,… , 𝑘−1. Observe that the iterative procedure that we used to construct ⃗𝑏 must have passed through these histories and, 
in particular, through �⃗�(𝑘). Thus, with the lower bound in (37) for 𝑘 we have

𝑈𝑇
𝛾

(
�⃗�
)
−𝑈𝑇

𝛾

(
𝑎
) ≥ 𝑈𝑇

𝛾

(
�⃗�
)
−𝑈𝑇

𝛾

(
�⃗�(𝑘)

)
=

𝑘−1 ∑
𝓁=0

(
𝑈𝑇

𝛾

(
�⃗�(𝓁)

)
−𝑈𝑇

𝛾

(
�⃗�(𝓁 + 1)

))
≥ 𝑘

𝛾

4𝑇
𝛿

≥ 𝜑
(
𝑎
) 1 − 𝑞

4 
𝑇 − 𝑇1

𝑇

𝛾

4 
𝛿

≥ 1 − 𝑞

32 
𝛾𝛿𝜑 (�̄�)

= 2𝜂.

Thus,

𝑣𝑇
𝛾 ≥ 𝑈𝑇

𝛾

(
�⃗�
) ≥ 𝑈𝑇

𝛾

(
𝑎
)
+ 2𝜂 ≥ 𝑉 ∗

𝛾 − 𝜂 + 2𝜂 = 𝑉 ∗
𝛾 + 𝜂

for all sufficiently large 𝑇 that are multiples of 𝑚. In particular, 𝑉 𝛾 = lim𝑇 𝑣𝑇
𝛾 ≥ 𝑉 ∗

𝛾 + 𝜂, which completes the proof of the theorem.

The construction in the proof of Theorem 6.4 also sheds some light on why the optimal limit superior cannot be achieved by a 
stationary strategy. As the decision maker who optimizes it only cares about the average payoff at some periods, she can first refrain 
for a long time from playing the good actions, only to play it later with a smaller fatigue punishment. The limit superior does not 
depend on all these periods where her average payoff is low, but only takes into account the few (but still infinitely many) periods 
that she optimizes.

6.3. A strategy that achieves 𝑉 𝛾

Taking advantage of Proposition 6.2, we now construct a strategy that guarantees a payoff close to 𝑉 𝛾 over an infinite set of 
periods. Let {𝑇𝑘}𝑘 be a sequence of times such that∑

𝑗<𝑘 𝑇𝑗

𝑇𝑘

<
1 
𝑘3

.

For every 𝑘, let 𝑎(𝑇𝑘) ∈ 𝐴𝑇𝑘 be a history of length 𝑇𝑘 that achieves 𝑣𝑇𝑘
𝛾 . That is, 𝑣𝑇𝑘

𝛾 = 𝑈
𝑇𝑘
𝛾

(
𝑎(𝑇𝑘)

)
. We construct an infinite sequence 

𝑎 by concatenating these finite sequences one after another. Let,

𝑎 = (𝑎(𝑇1), 𝑎(𝑇2),… ). (38)

The next proposition shows that 𝑎 achieves 𝑉 𝛾 as its limit superior. Specifically, it demonstrates that the supremum in the definition 
of 𝑉 𝛾 (see Equation (1)) can be replaced by a maximum.

Proposition 6.5. Let 𝑎 be defined as in (38). Then 𝑉 𝛾 (𝑎) = 𝑉 𝛾 .
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The proof appears in the Appendix.

7. Discounting

In the context of a taste for variety, discounting can have two meanings. The first is the classical discounting of future payoffs. This 
means that we value future positive payoffs less than present ones. For example, we would rather have a delicious meal today than 
a week from now. The second is a discount on the effect of past uses of actions. As before, this means that the more we experience 
something, the less we enjoy it. For example, if we eat the same meal every day, we will eventually get tired of it. However, if we 
had a delicious meal yesterday, we would prefer the same meal today less than if we had it only a year ago.

This section focuses on discounting the effects of the past. We will analyze optimal behavior both in the case where future payoffs 
are discounted and in the case where the decision maker maximizes the limit inferior of average payoffs as before. To take the meaning 
of a discounted past into account, we define for a discount factor 𝜆 ∈ (0,1) the discounted frequency of 𝑎 in the history 𝑎𝑡−1 as

𝜑𝜆
(
𝑎
|||𝑎𝑡−1) ={

1−𝜆 
1−𝜆𝑡−1

∑𝑡−1
𝑠=1 𝜆𝑡−𝑠−11 𝑙𝑎𝑠=𝑎, if 𝑡 ≥ 2,

0, if 𝑡 = 1.

7.1. Discounting future payoffs and past frequencies

A decision maker who discounts both the past and future payoffs derives from 𝑎 the payoff

𝑈𝜆,𝛿
𝛾

(
𝑎
)
= (1 − 𝛿)

∞ ∑
𝑡=1 

𝛿𝑡−1
(
1 − 𝛾𝜑𝜆

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

)
,

where 𝛿 > 0 is the future discount factor.

Let

𝑉 𝜆,𝛿
𝛾 =max

𝑎
𝑈𝜆,𝛿

𝛾

(
𝑎
)
.

The maximum exists since 𝑈𝜆,𝛿
𝛾 (⋅) is a continuous function defined on the compact set consisting of all infinite histories.3

When choosing an action, the decision maker considers two distinct implications for overall utility. First, the action directly affects 
the immediate utility in the current period. Second, it influences future payoffs through the fatigue factor associated with repeated use 
of the same action. This decision process is analogous to that in a standard Markov Decision Problem and is therefore fully consistent 
with the principle of dynamic consistency. In other words, the decision can be made ex ante by planning all future actions in advance. 
Then, at any point in time, the decision made at the outset remains optimal.

The following theorem states that if the discount on frequency is sufficiently large, then for a sufficiently patient decision maker, 
the best achievable payoff approaches the optimal stationary payoff, 𝑉 ∗

𝛾 . Specifically, for every 𝜀 > 0, there exists a lower bound 𝜆0
such that when 𝜆 > 𝜆0 and 𝛿 is sufficiently large, 𝑉 𝜆,𝛿

𝛾 does not exceed 𝑉 ∗
𝛾 by much. This situation exemplifies another instance where 

cyclical consumption is optimal.

The proof technique resembles that of Theorem 5.2; the main idea centers on defining a potential function 𝐻 as in (41). However, 
here there is no need to partition the periods into blocks. Instead, the discount factor 𝛿 allows for a definition that enables two 
expressions for 𝐻 , forming the key step of the proof in Equation (43). After establishing this equation, the proof proceeds by analyzing 
its two sides to obtain the desired result.

Theorem 7.1. There is a function 𝛿(𝜆)< 1 s.t. for every 𝜀 > 0 there is 𝜆0 satisfying

𝑉 ∗
𝛾 ≤ 𝑉 𝜆,𝛿

𝛾 < 𝑉 ∗
𝛾 + 𝜀,

for every 𝜆 > 𝜆0 and 𝛿 > 𝛿(𝜆).

Proof. As 𝛾 is fixed, for simplicity we drop it from the notation, that is, 𝑉 𝜆,𝛿 = 𝑉 𝜆,𝛿
𝛾 and 𝑉 ∗ = 𝑉 ∗

𝛾 . Clearly, 𝑉 𝜆,𝛿 ≥ 𝑉 ∗ for sufficiently 
large 𝜆 and 𝛿. This is so, because 𝑈𝜆,𝛿

(
𝑎
)
= 𝑉 ∗ for a stationary history 𝑎 that achieves 𝑉 ∗. We show the inverse direction. Let 𝑎 be 

an arbitrary sequence and let 𝜀 > 0. We show that for sufficiently large 𝜆 and 𝛿,

𝑈𝜆,𝛿
(
𝑎
)

< 𝑉 ∗ + 𝜀. (39)

3 The set of all histories is the infinite product 𝐴∞ , i.e., the Cartesian product of 𝐴 with itself countably many times. When endowed with the product topology, 
this set is compact by Tychonoff’s Theorem. Moreover, the function 𝑈𝜆,𝛿

𝛾
(⋅) is continuous on this space. Intuitively, two histories that coincide over a sufficiently long 

initial segment yield similar payoffs. This stands in sharp contrast to the functions 𝑉
𝛾

and 𝑉 𝛾 (see Footnote 2). Although they are defined on the same compact set, 
these functions are not continuous: their values are determined by the “tail” of the action sequences, whereas 𝑈𝜆,𝛿

𝛾
(⋅) depends essentially on finite, though sufficiently 

long, prefixes of the histories.
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To simplify the proof, we use the notation 𝜑𝑡−1,𝜆 (𝑎) = 𝜑𝜆
(
𝑎
|||𝑎𝑡−1). Note that for every 𝑡 ≥ 2, 

∑
𝑎 𝜑𝑡−1,𝜆(𝑎) = 1. We let 𝜑𝑡−1,𝜆 be the 

probability distribution that assigns probability 𝜑𝑡−1,𝜆 (𝑎) to 𝑎. Denote also 𝜂𝑡 = (1 − 𝛿)𝛿𝑡−1 and 𝛽𝑡 = 1−𝜆 
1−𝜆𝑡 . Finally, let 𝟏𝑡 stand for the 

unit 𝐴-dimensional vector assigning 1 to 𝑎 when 𝑎𝑡 = 𝑎, and 0 to all other members of 𝐴. Using these notations and the inner product 
introduced in (16), we have

𝑈𝜆,𝛿
(
𝑎
)
=

∞ ∑
𝑡=1 

𝜂𝑡
⟨
𝟏− 𝛾𝜑𝑡−1,𝜆,𝟏𝑡

⟩
. (40)

Denote

𝐻 ∶= 𝐻
(
𝑎
)
=

∞ ∑
𝑡=1 

𝜂𝑡

𝛽𝑡

‖‖‖𝟏− 𝛾𝜑𝑡,𝜆‖‖‖2. (41)

One easily verifies that 𝜑𝑡,𝜆 = 𝜑𝑡−1,𝜆 + 𝛽𝑡
(
𝟏𝑡 −𝜑𝑡−1,𝜆). Hence, with 𝜖1 = (1 − 𝛿)‖‖‖𝟏− 𝛾𝜑1,𝜆‖‖‖, one obtains

𝐻 =
∞ ∑
𝑡=1 

𝜂𝑡

𝛽𝑡

‖‖‖𝟏− 𝛾𝜑𝑡,𝜆‖‖‖2
= 𝜖1 +

∞ ∑
𝑡=2 

𝜂𝑡

𝛽𝑡

‖‖‖(𝟏− 𝛾
(
𝜑𝑡−1,𝜆))− 𝛾𝛽𝑡

(
𝟏𝑡 −𝜑𝑡−1,𝜆)‖‖‖2

= 𝜖1 +
∞ ∑
𝑡=2 

𝜂𝑡

𝛽𝑡

‖‖‖𝟏− 𝛾𝜑𝑡−1,𝜆‖‖‖2 − 2
∞ ∑
𝑡=2 

𝜂𝑡

𝛽𝑡

⟨
𝟏− 𝛾𝜑𝑡−1,𝜆, 𝛾𝛽𝑡

(
𝟏𝑡 −𝜑𝑡−1,𝜆)⟩

+ 𝛾2
∞ ∑
𝑡=2 

𝜂𝑡

𝛽𝑡

‖‖‖𝛽𝑡
(
𝟏𝑡 −𝜑𝑡−1,𝜆)‖‖‖2

= 𝜖1 +
∞ ∑
𝑡=2 

(
𝜂𝑡

𝛽𝑡
− 𝜂𝑡−1

𝛽𝑡−1

)‖‖‖𝟏− 𝛾𝜑𝑡−1,𝜆‖‖‖2 + ∞ ∑
𝑡=2 

𝜂𝑡−1

𝛽𝑡−1
‖‖‖𝟏− 𝛾𝜑𝑡−1,𝜆‖‖‖2

− 2𝛾
∞ ∑
𝑡=2 

𝜂𝑡
⟨
𝟏− 𝛾𝜑𝑡−1,𝜆,𝟏𝑡

⟩
+ 2𝛾

∞ ∑
𝑡=2 

𝜂𝑡
⟨
𝟏− 𝛾𝜑𝑡−1,𝜆,𝜑𝑡−1,𝜆⟩

+ 𝛾2
∞ ∑
𝑡=2 

𝜂𝑡𝛽𝑡‖‖‖𝟏𝑡 − 𝛾𝜑𝑡−1,𝜆‖‖‖2. (42)

Since 
∑∞

𝑡=2
𝜂𝑡−1

𝛽𝑡−1
‖‖‖𝟏− 𝛾𝜑𝑡−1,𝜆‖‖‖2 = 𝐻 , we can observe that 𝐻 appears on both sides of equation (42). This allows us, after rearranging 

equation (42), to derive the key equation of the proof:

2𝛾
∞ ∑
𝑡=2 

𝜂𝑡
⟨
𝟏− 𝛾𝜑𝑡−1,𝜆,𝟏𝑡

⟩
= 𝜖1 +

∞ ∑
𝑡=2 

(
𝜂𝑡

𝛽𝑡
− 𝜂𝑡−1

𝛽𝑡−1

)‖‖‖𝟏− 𝛾𝜑𝑡−1,𝜆‖‖‖2 + 2𝛾
∞ ∑
𝑡=2 

𝜂𝑡
⟨
𝟏− 𝛾𝜑𝑡−1,𝜆,𝜑𝑡−1,𝜆⟩

+ 𝛾2
∞ ∑
𝑡=2 

𝜂𝑡𝛽𝑡‖‖‖𝟏𝑡 − 𝛾𝜑𝑡−1,𝜆‖‖‖2. (43)

The remainder of the proof is devoted to analyzing both sides of Equation (43). We start with the left-hand side. Note that, by the 
definition of 𝑈𝜆,𝛿 ,

2𝛾
∞ ∑
𝑡=2 

𝜂𝑡
⟨
𝟏− 𝛾𝜑𝑡−1,𝜆,𝟏𝑡

⟩
= 2𝛾𝑈𝜆,𝛿

(
𝑎
)
− 2𝛾(1 − 𝛿)𝑢

(
𝑎1

)
.

Thus, there is 𝛿0 such that for all 𝛿 > 𝛿0 we have

2𝛾𝑈𝜆,𝛿
(
𝑎
) ≤ 2𝛾

∞ ∑
𝑡=2 

𝜂𝑡
⟨
𝟏− 𝛾𝜑𝑡−1,𝜆,𝟏𝑡

⟩
+ 𝜀𝛾

3 
. (44)

This completes the analysis of the left-hand side of (43), and we turn to the expressions on the right-hand side of it.
As 𝜖1 =

𝜂1

𝛽1
‖‖‖𝟏− 𝛾𝜑1,𝜆‖‖‖2 = 1− 𝛿, there is 𝛿1 such that 𝜖1 < 𝜀𝛾∕3 for all 𝛿 > 𝛿1. We show that the first sum on the right-hand side of 

(43) is, for 𝜆 and 𝛿 sufficiently close to 1, bounded by the same constant. For this purpose note first that ‖‖‖𝟏− 𝛾𝜑𝑡−1,𝜆‖‖‖2 ≤ 1 uniformly. 
Next, observe that

∞ ∑
𝑡=2 

||||| 𝜂
𝑡

𝛽𝑡
− 𝜂𝑡−1

𝛽𝑡−1

||||| ≤ 1 − 𝛿 
1 − 𝜆

∞ ∑
𝑡=1 

|||𝛿𝑡
(
1 − 𝜆𝑡+1)− 𝛿𝑡−1 (1 − 𝜆𝑡

)|||
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= 1 − 𝛿 
1 − 𝜆

∞ ∑
𝑡=1 

𝛿𝑡−1 |||𝛿 (1 − 𝜆𝑡+1)− (
1 − 𝜆𝑡

)||| . (45)

Let 𝑇 be the largest integer such that 𝛿(1 − 𝜆𝑡+1) ≥ (1 − 𝜆𝑡). (One easily checks that 𝑇 is well defined.) The right-hand side of (45) is 
then bounded from above by

1 − 𝛿 
1 − 𝜆

𝑇∑
𝑡=1 

𝛿𝑡−1 (𝛿 (1 − 𝜆𝑡+1)− (
1 − 𝜆𝑡

))
+ 1 − 𝛿 

1 − 𝜆

∞ ∑
𝑡=𝑇+1

𝛿𝑡−1 ((1 − 𝜆𝑡
)
− 𝛿

(
1 − 𝜆𝑡+1))

≤ 1 − 𝛿 
1 − 𝜆

𝑇∑
𝑡=1 

𝛿𝑡−1 ((1 − 𝜆𝑡+1)− (
1 − 𝜆𝑡

))
+ 1 − 𝛿 

1 − 𝜆

∞ ∑
𝑡=𝑇+1

𝛿𝑡−1 ((1 − 𝜆𝑡+1)− 𝛿
(
1 − 𝜆𝑡+1))

≤ (1 − 𝛿)
𝑇∑

𝑡=1 
𝛿𝑡−1𝜆𝑡 + 1 − 𝛿 

1 − 𝜆

∞ ∑
𝑡=𝑇+1

𝛿𝑡−1 (1 − 𝜆𝑡+1 − 𝛿
(
1 − 𝜆𝑡+1))

≤ 𝜆
1 − 𝛿 
1 − 𝜆𝛿

+ (1 − 𝛿)2

1 − 𝜆 

∞ ∑
𝑡=𝑇+1

𝛿𝑡−1 (1 − 𝜆𝑡+1) ≤ 1 − 𝛿 
1 − 𝜆𝛿

+ (1 − 𝛿)2

1 − 𝜆 

∞ ∑
𝑡=𝑇+1

𝛿𝑡−1

≤ 1 − 𝛿 
1 − 𝜆𝛿

+ 1 − 𝛿 
1 − 𝜆

≤ 2 1 − 𝛿 
1 − 𝜆

. (46)

For any 𝜆, there exists a function 𝛿2(𝜆) such that, when 𝛿 > 𝛿2(𝜆), the inequality 2 1−𝛿1(𝜆)
1−𝜆 <

𝜀𝛾

3 holds. Consequently, using (45) and 
(46), we find

∞ ∑
𝑡=2 

(
𝜂𝑡

𝛽𝑡
− 𝜂𝑡−1

𝛽𝑡−1

)‖‖‖1 − 𝛾𝜑𝑡−1,𝜆‖‖‖2 ≤ 1 − 𝛿 
1 − 𝜆

∞ ∑
𝑡=1 

𝛿𝑡−1 |||𝛿 (1 − 𝜆𝑡+1)− (
1 − 𝜆𝑡

)||| ≤ 2 1 − 𝛿 
1 − 𝜆

<
𝜀𝛾

3 
. (47)

So far for the first term on the right-hand side of (43).

As for the second sum on the right-hand side of (43), recall that for every 𝑡 the vector 𝜑𝑡−1,𝜆 is a distribution over 𝐴, so that by 
the definition of 𝑉 ∗ we have, for every 𝑡, 

⟨
𝟏−𝜑𝑡−1,𝜆,𝜑𝑡−1,𝜆⟩ ≤ 𝑉 ∗. Thus,

2𝛾
∞ ∑
𝑡=2 

𝜂𝑡
⟨
𝟏− 𝛾𝜑𝑡−1,𝜆,𝜑𝑡−1,𝜆⟩ ≤ 2𝛾𝑉 ∗

∞ ∑
𝑡=2 

𝜂𝑡 = 2𝛾𝑉 ∗(1 − 𝛿)
∞ ∑
𝑡=2 

𝛿𝑡−1 ≤ 2𝛾𝑉 ∗. (48)

For the last sum on the right-hand side of (43), first note that

∞ ∑
𝑡=2 

𝜂𝑡𝛽𝑡 =
∞ ∑
𝑡=2 

(1 − 𝛿)𝛿𝑡−1 1 − 𝜆 
1 − 𝜆𝑡

≤
∞ ∑
𝑡=1 

(1 − 𝛿)𝛿𝑡−1 1 − 𝜆 
1 − 𝜆𝑡

. (49)

For all 𝜆 < 1 there is 𝑡∗ such that 1−𝜆 
1−𝜆𝑡 ≤ 1− 𝜆+ 𝜀𝛾

6 for all 𝑡 ≥ 𝑡∗. Indeed, note that 1−𝜆 
1−𝜆𝑡 =

(∑𝑡−1
𝑠=0 𝜆𝑠

)−1
⟶ 1− 𝜆 as 𝑡 →∞. Moreover, 

for each 𝑡∗ there 𝛿′ < 1 such that 
∑𝑡∗

𝑠=1(1 − 𝛿)𝛿𝑡−1 1−𝜆 
1−𝜆𝑡 ≤ 𝜀𝛾

6 for all 𝛿 > 𝛿′. Hence, for each 𝜆 < 1 there is 𝛿3 (𝜆) such that by (49) one 
obtains,

𝛾2
∞ ∑
𝑡=2 

𝜂𝑡𝛽𝑡‖‖‖𝟏𝑡 − 𝛾𝜑𝑡−1,𝜆‖‖‖2 ≤ ∞ ∑
𝑡=2 

𝜂𝑡𝛽𝑡

≤
∞ ∑
𝑡=1 

(1 − 𝛿)𝛿𝑡−1 1 − 𝜆 
1 − 𝜆𝑡

=
𝑡∗∑

𝑠=1 
(1 − 𝛿)𝛿𝑡−1 1 − 𝜆 

1 − 𝜆𝑡
+

∞ ∑
𝑡=𝑡∗+1

(1 − 𝛿)𝛿𝑡−1 1 − 𝜆 
1 − 𝜆𝑡

≤ 𝜀𝛾

6 
+ (1 − 𝛿)

(
1 − 𝜆+ 𝜀𝛾

6 

) ∞ ∑
𝑡=𝑡∗+1

𝛿𝑡

≤ 1 − 𝜆+ 𝜀𝛾∕3

≤ 2𝜀𝛾
3 

, (50)

for all 𝜆 ≥ 1 − 𝜀𝛾

3 and 𝛿 ≥ 𝛿3 (𝜆).
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We now combine (44), which bounds the left-hand side of (43), with (47), (48), and (50), which bound the various terms on the 
right-hand side, to obtain

2𝛾𝑈𝜆,𝛿
(
𝑎
) ≤ 2𝛾

∞ ∑
𝑡=2 

𝜂𝑡
⟨
𝟏− 𝛾𝜑𝑡−1,𝜆,𝟏𝑡

⟩
+ 𝜀𝛾

3 
≤ 𝜀𝛾

3 
+ 𝜀𝛾

3 
+ 2𝛾𝑉 ∗ + 2𝜀𝛾

3 
+ 𝜀𝛾

3 

= 5𝜀𝛾
3 

+ 2𝛾𝑉 ∗.

Dividing by 2𝛾 yields 𝑈𝜆,𝛿
(
𝑎
) ≤ 𝑉 ∗ + 𝜀, as required. □

An immediate consequence of Theorem 7.1 is that a sufficiently patient decision maker can not achieve significantly more than what 
a stationary strategy would deliver. More precisely, a discounting decision maker can achieve 𝑉 ∗

𝛾 by playing a stationary history. 
But for each 𝜀 > 0 there are 𝜆 and 𝛿 such that a decision maker who discounts the past with factor at least 𝜆 and future payoffs with 
factor at least 𝛿 will not achieve a discounted payoff of more than 𝑉 ∗

𝛾 + 𝜀.

7.2. An undiscounted evaluation of payoffs while frequencies are discounted

We now consider a hybrid model where the frequency is discounted while the future payoffs are not. As before, 𝜆 is the discount 
on the frequency of past actions. We fix the fatigue factor 𝛾 and for convenience, we omit it from the notations. Define

𝑈𝜆,𝑇
𝛾

(
𝑎
)
= 1 

𝑇

𝑇∑
𝑡=1 

(
1 − 𝛾𝜑𝜆

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

)
and let

𝑉 𝜆
𝛾

(
𝑎
)
= lim inf

𝑇→∞ 𝑈𝜆,𝑇
𝛾

(
𝑎
)

and 𝑉 𝜆
𝛾
= sup

{
𝑉 𝜆

𝛾

(
𝑎
)|||𝑎 ∈ 𝐴∞

}
𝑉 𝜆

𝛾
represents the best achievable limit (inferior) of the finite averages when the frequency of past actions is discounted by 𝜆. As a 

consequence of Theorem 7.1, we show that for sufficiently large 𝜆, this limit cannot exceed 𝑉 ∗ by a significant amount. This implies 
that the best achievable payoff with stationary strategies is nearly optimal in the current model.

Proposition 7.2. For every 𝜀 > 0 there is 𝜆0 < 1 such that for every 𝜆 > 𝜆0,

𝑉 ∗
𝛾 ≤ 𝑉 𝜆

𝛾
< 𝑉 ∗

𝛾 + 𝜀. (51)

The proof is deferred to the Appendix.

8. Summary

We have analyzed a dynamic decision problem where a decision maker’s utility from a particular action decreases as the action 
is used more frequently. This phenomenon is captured through a fatigue factor, quantifying the extent to which utility diminishes 
with repeated use of the same action. The optimal strategy involves a stationary approach in behaviorally significant scenarios, such 
as when utility is evaluated using the limit inferior or when discounting is applied. In other words, periodic consumption emerges as 
the most effective strategy.

The decision problem is a Markov Decision Process with countably many states. We introduce a novel analytical technique based 
on potential functions to address its complexity. These potential functions provide a powerful tool for deriving the key results, allowing 
us to characterize the optimal strategies and establish conditions under which periodic consumption is optimal.

Our approach not only simplifies the analysis but also offers insights into how the decision maker can balance the trade-offs 
between immediate rewards and long-term utility, especially under conditions of diminishing returns when an action is repeatedly 
applied. By employing potential functions, we provide a systematic method for identifying optimal policies in complex decision-

making scenarios characterized by fatigue effects.
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Appendix A

The proof of Lemma 5.1. By the definition of 𝑊𝛾 , we have

𝑊𝛾 =
1 

𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

(
1 − 𝛾𝜑

(
𝑎𝑠
|||𝑎𝑠−1))𝑢(𝑎𝑠)
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= 1 
𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

∑
𝑎∈𝐴

1 𝑙𝑎𝑠=𝑎𝑢(𝑎) −
1 

𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

𝛾𝜑
(
𝑎𝑠
|||𝑎𝑠−1)𝑢(𝑎𝑠)

=
∑
𝑎∈𝐴

𝑢(𝑎)

(
1 

𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

1 𝑙𝑎𝑠=𝑎

)
− 1 

𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

𝛾𝜑
(
𝑎𝑠
|||𝑎𝑠−1)𝑢(𝑎𝑠)

=
∑
𝑎∈𝐴

𝑢(𝑎)𝑝(𝑎) − 1 
𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

𝛾𝜑
(
𝑎𝑠
|||𝑎𝑠−1)𝑢(𝑎𝑠). (52)

Furthermore, for every 𝑎 ∈ 𝐴 and 𝑡1 + 1 ≤ 𝑠 ≤ 𝑡2,

|||𝜑(
𝑎
|||𝑎𝑠−1)−𝜑

(
𝑎||𝑎𝑡1

)||| = |||||| 1 
𝑠− 1

𝑠−1 ∑
𝑟=1 

1 𝑙𝑎𝑟=𝑎 −
1 
𝑡1

𝑡1∑
𝑟=1 

1 𝑙𝑎𝑟=𝑎

||||||
=
|||||| 1 𝑡1

𝑡1
𝑠− 1

𝑡1∑
𝑟=1 

1 𝑙𝑎𝑟=𝑎 −
1 
𝑡1

𝑡1∑
𝑟=1 

1 𝑙𝑎𝑟=𝑎 +
1 

𝑠− 1

𝑠−1 ∑
𝑟=𝑡1+1

1 𝑙𝑎𝑟=𝑎

||||||
≤
|||||| 1 𝑡1

(
𝑡1

𝑠− 1
− 1

) 𝑡1∑
𝑟=1 

1 𝑙𝑎𝑟=𝑎

||||||+ 1 
𝑠− 1

𝑠−1 ∑
𝑟=𝑡1+1

1

=
𝑠− 1 − 𝑡1

𝑠− 1 
𝜑
(
𝑎||𝑎𝑡1

)
+

𝑠− 1 − 𝑡1
𝑠− 1 

< 2
𝑡2 − 𝑡1

𝑡1
,

where in the last step we use that 𝑡1 ≤ 𝑠− 1 ≤ 𝑡2 and 𝜑
(
𝑎||𝑎𝑡1

) ≤ 1. From (10) and (52) we now obtain

|||𝑊𝛾 −𝑈𝛾
||| = 𝛾

||||||
∑
𝑎∈𝐴

𝑝(𝑎)𝜑
(
𝑎||𝑎𝑡1

)
𝑢(𝑎) − 1 

𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

𝜑
(
𝑎𝑠
|||𝑎𝑠−1)𝑢(𝑎𝑠)

||||||
≤ 𝛾

∑
𝑎∈𝐴

𝑢(𝑎) 
𝑡2 − 𝑡1

||||||𝜑
(
𝑎||𝑎𝑡1

) 𝑡2∑
𝑠=𝑡1+1

1𝑎𝑠=𝑎 −
𝑡2∑

𝑠=𝑡1+1
1𝑎𝑠=𝑎𝜑

(
𝑎
|||𝑎𝑠−1)||||||

≤ 𝛾
∑
𝑎∈𝐴

𝑢(𝑎) 
𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

1𝑎𝑠=𝑎
|||𝜑(

𝑎||𝑎𝑡1
)
−𝜑

(
𝑎
|||𝑎𝑠−1)|||

< 𝛾
∑
𝑎∈𝐴

𝑢(𝑎) 
𝑡2 − 𝑡1

𝑡2∑
𝑠=𝑡1+1

1𝑎𝑠=𝑎2
𝑡2 − 𝑡1

𝑡1

= 2
𝑡2 − 𝑡1

𝑡1
𝛾
∑
𝑎∈𝐴

𝑢(𝑎)𝑝(𝑎)

≤ 2
𝑡2 − 𝑡1

𝑡1
𝛾
∑
𝑎∈𝐴

𝑢(𝑎)

as required. □

The proof of Lemma 5.3. First, observe that if 𝑥𝛾

(
𝑎𝑖

)
= 0 for some 𝑖, 𝑥𝛾

(
𝑎𝑗

)
= 0 for all 𝑗 ≥ 𝑖. Indeed, if 𝑢

(
𝑎𝑖

)
> 𝑢

(
𝑎𝑗

)
, this is 

immediately clear. If 𝑢
(
𝑎𝑖

)
= 𝑢

(
𝑎𝑗

)
, then let 𝑦𝛾

(
𝑎𝑖

)
= 𝑥𝛾

(
𝑎𝑗

)
, 𝑦𝛾

(
𝑎𝑗

)
= 𝑥𝛾

(
𝑎𝑖

)
and 𝑦𝛾 (𝑎) = 𝑥𝛾 (𝑎) for all 𝑎 ≠ 𝑎𝑖, 𝑎𝑗 . Then 𝑦𝛾 is a 

solution of (6), contradicting uniqueness. This means that 
∑𝑘∗

𝑖=1
𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

) ≤ 0, with equality if 𝜆𝑘∗+1 > 0, and 
∑𝑘

𝑖=1
𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

)
= 0 for 

all 𝑘 ≥ 𝑘∗ + 1.

It remains to prove the claim for 𝑘 < 𝑘∗. Let 𝐴∗ = {𝑎 ∈ 𝐴 ∶ 𝑥𝛾 (𝑎) > 0} =
{
𝑎1,… , 𝑎𝑘∗

}
. The Lagrangian of maximization problem 

(6) is
𝑚 ∑

𝑖=1 
𝑥
(
𝑎𝑖

)(
1 − 𝑥

(
𝑎𝑖

))
𝑢
(
𝑎𝑖

)
+ 𝜆𝑖𝑥

(
𝑎𝑖

)
− 𝜇

(
𝑚 ∑

𝑖=1 
𝑥
(
𝑎𝑖

)
− 1

)
,

with first-order conditions

𝑢
(
𝑎𝑖

)(
1 − 2𝛾𝑥

(
𝑎𝑖

))
+ 𝜆𝑖 − 𝜇 = 0.

for 𝑖 = 1,… ,𝑚. For all 𝑖 we either have 𝑥
(
𝑎𝑖

)
= 0 or 𝜆𝑖 = 0; in the latter case
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𝑢
(
𝑎𝑖

)(
1 − 2𝛾𝑥

(
𝑎𝑖

))
= 𝜇.

Summing over all 𝑎𝑖 ∈ 𝐴∗, solving for 𝜇 and substituting in we find that

𝑢 (𝑎) (1 − 2𝛾𝑥 (𝑎)) = 1 
𝑘∗

𝑘∗∑
𝑖=1 

𝑢
(
𝑎𝑖

)(
1 − 2𝛾𝑥

(
𝑎𝑖

))
= 1 

𝑘∗

𝑘∗∑
𝑖=1 

𝑢
(
𝑎𝑖

)
− 2𝛾

𝑘∗∑
𝑖=1 

𝑥
(
𝑎𝑖

)
𝑢
(
𝑎𝑖

)
.

So, 𝑥𝛾 satisfies for all 𝑘 = 1,… , 𝑘∗,

𝑥𝛾

(
𝑎𝑘

)
= 1 

2𝛾𝑢
(
𝑎𝑘

) (
𝑢
(
𝑎𝑘

)
− 1 

𝑘∗

𝑘∗∑
𝑖=1 

𝑢
(
𝑎𝑖

))
+ 1 

𝑢
(
𝑎𝑘

) 𝑘∗∑
𝑖=1 

𝑥𝛾
(
𝑎𝑖

)
𝑢
(
𝑎𝑖

)
.

Taking the derivative of both sides with respect to 𝛾 gives

𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑘

)
= 1 

2𝛾2

(
1 
𝑘∗

𝑘∗∑
𝑖=1 

𝑢
(
𝑎𝑖

)
− 𝑢

(
𝑎𝑘

))
+ 1 

𝑢
(
𝑎𝑘

) 𝑘∗∑
𝑖=1 

𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

)
𝑢
(
𝑎𝑖

)
. (53)

Suppose first that 
∑𝑘∗

𝑖=1
𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

)
𝑢
(
𝑎𝑖

)
> 0. Then the right-hand side of (53) is increasing in 𝑘, as 𝑢

(
𝑎𝑘

)
is decreasing in 𝑘. Thus, in 

particular,

𝑑

𝑑𝛾
𝑥𝛾

(
𝑎1

) ≤ 𝑑

𝑑𝛾
𝑥𝛾

(
𝑎2

) ≤⋯ ≤ 𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑘∗

)
. (54)

Suppose that (24) does not hold. Then there is 𝑘 < 𝑘∗ such that 
∑𝑘

𝑖=1
𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

)
> 0. Thus, by (54), we must have 

∑𝑘∗

𝑖=1
𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

) ≥∑𝑘
𝑖=1

𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

)
> 0, which is impossible. Suppose next that 

∑𝑘∗

𝑖=1
𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

)
𝑢
(
𝑎𝑖

) ≤ 0. Then, for all 𝓁 ≤ 𝑘∗,

𝓁∑
𝑘=1

𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑘

)
=

𝓁∑
𝑘=1

1 
2𝛾2

(
1 
𝑘∗

𝑘∗∑
𝑖=1 

𝑢
(
𝑎𝑖

)
− 𝑢

(
𝑎𝑘

))
+

𝓁∑
𝑘=1

1 
𝑢
(
𝑎𝑘

) 𝑘∗∑
𝑖=1 

𝑑

𝑑𝛾
𝑥𝛾

(
𝑎𝑖

)
𝑢
(
𝑎𝑖

)
≤ 1 

2𝛾2

(
𝓁
𝑘∗

𝑘∗∑
𝑖=1 

𝑢
(
𝑎𝑖

)
−

𝓁∑
𝑘=1

𝑢
(
𝑎𝑘

))
≤ 0,

where the last inequality holds because 1 
𝑘∗

∑𝑘∗

𝑖=1 𝑢
(
𝑎𝑖

) ≤ 1 
𝓁

∑𝓁
𝑘=1 𝑢

(
𝑎𝑘

)
for all 𝓁 ≤ 𝑘∗. □

The proof of Lemma 6.3. By the conditions on 𝑎 and �⃗�,

𝑠−1 ∑
𝑟=1 
1𝑎𝑟=𝑏 ≥

𝑡−1 ∑
𝑟=1 
1

�⃗�𝑟=𝑏
=

𝑡−1 ∑
𝑟=1 
1𝑎𝑟=𝑏

and

𝑠−1 ∑
𝑟=1 
1

�⃗�𝑟=𝑎
=

𝑡−1 ∑
𝑟=1 
1𝑎𝑟=𝑎.

Thus,

𝑇
(
𝑈𝑇

𝛾 (�⃗�) −𝑈𝑇
𝛾 (𝑎)

)
=
(
1 − 𝛾𝜑

(
𝑏
|||�⃗�𝑡−1))𝑢(𝑏) + (

1 − 𝛾𝜑
(
𝑎
|||�⃗�𝑠−1))𝑢(𝑎)

−
(
1 − 𝛾𝜑

(
𝑎
|||𝑎𝑡−1))𝑢(𝑎) −

(
1 − 𝛾𝜑

(
𝑏
|||𝑎𝑠−1))𝑢(𝑏)

= 𝛾
((

𝜑
(
𝑏
|||𝑎𝑠−1)−𝜑

(
𝑏
|||�⃗�𝑡−1))𝑢(𝑏) + (

𝜑
(
𝑎
|||𝑎𝑡−1)−𝜑

(
𝑎
|||�⃗�𝑠−1))𝑢(𝑎))

= 𝛾

((
1 

𝑠− 1

𝑠−1 ∑
𝑟=1 
1𝑎𝑟=𝑏 −

1 
𝑡− 1

𝑡−1 ∑
𝑟=1 
1

�⃗�𝑟=𝑏

)
𝑢(𝑏)

+

(
1 

𝑡− 1

𝑡−1 ∑
𝑟=1 
1𝑎𝑟=𝑎 −

1 
𝑠− 1

𝑠−1 ∑
𝑟=1 
1

�⃗�𝑟=𝑎

)
𝑢(𝑎)

)

≥ 𝛾

(𝑠− 1)(𝑡− 1)

(
(𝑡− 𝑠)

𝑡−1 ∑
𝑟=1 
1𝑎𝑟=𝑏𝑢(𝑏) + (𝑠− 𝑡)

𝑡−1 ∑
𝑟=1 
1𝑎𝑟=𝑎𝑢(𝑎)

)
= 𝛾 (𝑠− 𝑡)

𝑠− 1 
(
𝜑
(
𝑎 ∣ 𝑎𝑡−1)𝑢(𝑎) −𝜑

(
𝑏 ∣ 𝑎𝑡−1)𝑢(𝑏)

)
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as required. □

The proof of Claim 1. Let 𝑡 ≥ 1. There is 𝑘 ∈ℕ such that 𝑘𝑚 ≤ 𝑡 ≤ (𝑘+1)𝑚. At 𝑡, 𝑎 was chosen at least 𝑘𝑚𝑎 times, but no more than 
𝑘𝑚𝑎 + (𝑡− 𝑘𝑚) times. Thus,

𝜑
(
𝑎 ∣ 𝑎𝑡

) ≥ 𝑘𝑚𝑎

𝑡 
= 𝑘𝑚

𝑡 
𝜑(𝑎) = 𝜑(𝑎) − 𝑡− 𝑘𝑚

𝑡 
≥ 𝜑(𝑎) − (𝑘+ 1)𝑚− 𝑘𝑚

𝑡 
= 𝜑(𝑎) − 𝑚

𝑡 
and

𝜑
(
𝑎 ∣ 𝑎𝑡

) ≤ 𝑘𝑚𝑎 + 𝑡− 𝑘𝑚

𝑡 
= 𝑘𝑚

𝑡 
𝜑(𝑎) + 𝑡− 𝑘𝑚

𝑡 
≤ 𝜑(𝑎) + (𝑘+ 1)𝑚− 𝑘𝑚

𝑡 
= 𝜑(𝑎) + 𝑚

𝑡 
.

Shifting from 𝑡 to 𝑡− 1 completes the proof. □

The proof of Claim 2. Suppose first that in history �⃗�, there is between 𝑇1 + 1 and 𝑇 no occurrence of 𝑎 before 𝑎. Let 𝑠 be the last 
occurrence of �̄� and let 𝑠∗ be the largest multiple of 𝑚 with 𝑠∗ ≤ 𝑠 ≤ 𝑇 . As each occurrence of 𝑎 between 𝑇1 + 1 and 𝑠∗ has been 
replaced by an occurrence of 𝑎 that originally occurred after 𝑠∗, it holds that 𝜑

(
𝑎
)
(𝑇 − 𝑠∗) ≥ 𝜑

(
𝑎
)(

𝑠∗ − 𝑇1
)
. Thus,

2𝜑
(
𝑎
)(

𝑠∗ − 𝑇1
) ≤ (

𝜑
(
𝑎
)
+𝜑

(
𝑎
))(

𝑠∗ − 𝑇1
) ≤ 𝜑

(
𝑎
)(

𝑇 − 𝑇1
)
,

which means that 𝑠∗ ≤ 1
2

(
𝑇1 + 𝑇

)
. Hence, since by construction 𝑇 ≥ 𝑇 ∗ ≥ 𝑇1 + 4𝑚, we find that

𝑠 ≤ 𝑠∗ +𝑚 ≤ 1
2
(
𝑇1 + 𝑇

)
+ 1

4
(
𝑇 − 𝑇1

) ≤ 𝑇1 + 𝑞
(
𝑇 − 𝑇1

)
,

as required.

Suppose next that after all beneficial switches have been made, there is at least one occurrence of 𝑎 before the last occurrence of 
𝑎. Let 𝑡 be the period of said occurrence of 𝑎. Then, since by the definition of �⃗� the switch of 𝑎 with the last occurrence of 𝑎 is not 
beneficial, we have

𝛿 ≥ 𝜑
(
𝑎
|||�⃗�𝑡−1)𝑢(𝑎)−𝜑

(
𝑎
|||�⃗�𝑡−1)𝑢(𝑎) . (55)

As there is only one occurrence of 𝑎 in �⃗� between 𝑡 and 𝑇 , we have that (𝑡− 1)𝜑
(
𝑎
|||�⃗�𝑡−1) = 𝑇𝜑

(
𝑎
)
− 1, so that

𝜑
(
𝑎
|||�⃗�𝑡−1) = 𝑇

𝑡− 1
𝜑
(
𝑎
)
− 1 

𝑡− 1
. (56)

Similarly,

(𝑡− 1)𝜑
(
𝑎
|||�⃗�𝑡−1) = (𝑡− 1)𝜑

(
𝑎
|||𝑎𝑡−1)− ((

𝑇𝜑
(
𝑎
)
− 1

)
− (𝑡− 1)𝜑

(
𝑎
|||𝑎𝑡−1)) ,

where the expression in the round brackets describes the number of occurrences of 𝑎 that originally lay between 𝑇1 + 1 and 𝑡 but 
have been switched away for some 𝑎 that originally occurred after 𝑡. Using the bounds that we derived in Claim 1, we find that

(𝑡− 1)𝜑
(
𝑎
|||�⃗�𝑡−1) ≥ (𝑡− 1)

(
𝜑
(
𝑎
)
− 𝑚 

𝑡− 1

)
−
(
𝑇𝜑

(
𝑎
)
− 1 − (𝑡− 1)

(
𝜑
(
𝑎
)
− 𝑚 

𝑡− 1

))
= (𝑡− 1)𝜑

(
𝑏
)
− (𝑇 − (𝑡− 1))𝜑

(
𝑎
)
− (2𝑚− 1)

Therefore

𝜑
(
𝑎
|||�⃗�𝑡−1) ≥ 𝜑

(
𝑎
)
− 𝑇 − (𝑡− 1)

𝑡− 1 
𝜑
(
𝑎
)
− 2𝑚− 1

𝑡− 1 
.

This, together with (35), (55), and (56) shows that

𝛿 ≥
(

𝜑
(
𝑎
)
− 𝑇 − (𝑡− 1)

𝑡− 1 
𝜑
(
𝑎
)
− 2𝑚− 1

𝑡− 1 

)
𝑢
(
𝑎
)
−
(

𝑇

𝑡− 1
𝜑
(
𝑎
)
− 1 

𝑡− 1

)
𝑢
(
𝑎
)

= 𝜑
(
𝑎
)
𝑢
(
𝑎
)
−𝜑

(
𝑎
)
𝑢
(
𝑎
)
− 𝑇 − (𝑡− 1)

𝑡− 1 
𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
))

− 2𝑚− 1
𝑡− 1 

𝑢
(
𝑎
)

=
𝑢
(
𝑎
)
− 𝑢

(
𝑎
)

2𝛾 
−𝜑

(
𝑎
)
𝑢
(
𝑎
)
− 𝑇 − (𝑡− 1)

𝑡− 1 
𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
))

− 2𝑚− 1
𝑡− 1 

𝑢
(
𝑎
)

= 2𝛿 − 𝑇 − (𝑡− 1)
𝑡− 1 

𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
))

− 2𝑚− 1
𝑡− 1 

𝑢
(
𝑎
)
.

Thus,

𝛿 ≤ 𝑇 − (𝑡− 1)
𝑡− 1 

𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
))

+ 2𝑚− 1
𝑡− 1 

𝑢
(
𝑎
)
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and solving for 𝑡 delivers

𝑡 ≤ 𝑇
𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
))

𝛿 +𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
)) + 2𝑚− 1 

𝛿 +𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
)) + 1

= 𝑇 𝑞′ + 2𝑚− 1 
𝛿 +𝜑

(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
)) + 1.

Let 𝑠 be the period of the last occurrence of 𝑎 in �⃗�. Then 𝑠 ≤ 𝑡 + 𝑚. Indeed, the sequence 
(
�⃗�𝑡+1,… , �⃗�𝑡+𝑚

)
contains at least 𝑚𝑎 + 𝑚𝑎

periods in which either 𝑎 or 𝑎 is chosen, and at the first such period 𝑎 is chosen by construction. Therefore,

𝑠 ≤ 𝑇 𝑞′ + 2𝑚− 1 
𝛿 +𝜑

(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
)) + 1 +𝑚

=
(
𝑇 − 𝑇1

)
𝑞′ + 𝑇1 −

(
1 − 𝑞′

)
𝑇1 +

2𝑚− 1 
𝛿 +𝜑

(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
)) + 1 +𝑚

=
(
𝑇 − 𝑇1

)
𝑞′ + 𝑇1 +

−𝛿𝑇1 + 2𝑚− 1 + (𝑚+ 1)
(
𝛿 +𝜑

(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
)))

𝛿 +𝜑
(
𝑎
)(

𝑢
(
𝑎
)
+ 𝑢

(
𝑎
))

≤ (
𝑇 − 𝑇1

)
𝑞 + 𝑇1,

where in the last step we use the lower bound for 𝑇1 and 𝑞 ≥ 𝑞′. This concludes the proof. □

The proof of Proposition 6.5. Denote 𝑆𝑘 =
∑

𝑗≤𝑘 𝑇𝑗 . Recall that by the choice of the sequence {𝑇𝑘}, it holds that 𝑆𝑘−1
𝑇𝑘

<
1 
𝑘3

. We 

show that |||𝑈𝑆𝑘+1
𝛾

(
𝑎
)
−𝑈

𝑇𝑘+1
𝛾 (𝑎(𝑇𝑘+1))

||| is small and start with analyzing 𝑈𝑆𝑘+1
𝛾

(
𝑎
)
. Note that 𝑆𝑘+1 > 𝑆𝑘 + (𝑘+ 1)3𝑆𝑘 > (𝑘+ 1)𝑆𝑘.

𝑈
𝑆𝑘+1
𝛾

(
𝑎
)
= 1 

𝑆𝑘+1

𝑆𝑘+1∑
𝑡=1 

(
1 − 𝛾𝜑

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

)
= 1 

𝑆𝑘+1

((𝑘+1)𝑆𝑘∑
𝑡=1 

(
1 − 𝛾𝜑

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

)
+

𝑆𝑘+1∑
𝑡=(𝑘+1)𝑆𝑘+1

(
1 − 𝛾𝜑

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

))
. (57)

Thus, |||𝑈𝑆𝑘+1
𝛾

(
𝑎
)
−𝑈

𝑇𝑘+1
𝛾 (𝑎(𝑇𝑘+1))

||| ≤ (𝑘+ 1)𝑆𝑘

𝑆𝑘+1
max
𝑎∈𝐴 [𝑢(𝑎)]

+
|||||| 1 
𝑆𝑘+1

𝑆𝑘+1∑
𝑡=(𝑘+1)𝑆𝑘+1

(
1 − 𝛾𝜑

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

)
− 1 

𝑇𝑘+1

𝑇𝑘+1∑
𝑡=1 

(
1 − 𝛾𝜑

(
𝑎(𝑇𝑘+1)𝑡

|||𝑎(𝑇𝑘+1)𝑡−1
))

𝑢
(
𝑎(𝑇𝑘+1)𝑡

)|||||| . (58)

Since 𝑇𝑘+1 > (𝑘+ 1)3𝑆𝑘 > 𝑘2𝑆𝑘 ≥ 𝑘𝑆𝑘, the right term in the previous equation is

1 
𝑇𝑘+1

𝑇𝑘+1∑
𝑡=1 

(1 − 𝛾𝜑
(
𝑎(𝑇𝑘+1)𝑡

|||𝑎(𝑇𝑘+1)𝑡−1)
)
𝑢
(
𝑎(𝑇𝑘+1)𝑡

)
= 1 

𝑇𝑘+1

(
𝑘𝑆𝑘∑
𝑡=1 

(
1 − 𝛾𝜑(𝑎(𝑇𝑘+1)𝑡

|||𝑎(𝑇𝑘+1)𝑡−1)
)
𝑢
(
𝑎(𝑇𝑘+1)𝑡

)
+

𝑇𝑘+1∑
𝑡=𝑘𝑆𝑘+1

(
1 − 𝛾𝜑(𝑎(𝑇𝑘+1)𝑡

|||𝑎(𝑇𝑘+1)𝑡−1)
)
𝑢
(
𝑎(𝑇𝑘+1)𝑡

))

≤ 𝑘𝑆𝑘

𝑇𝑘+1
max
𝑎∈𝐴 [𝑢(𝑎)] +

𝑇𝑘+1 − 𝑘𝑆𝑘

𝑇𝑘+1

1 
𝑇𝑘+1 − 𝑘𝑆𝑘

𝑇𝑘+1∑
𝑡=𝑘𝑆𝑘+1

(
1 − 𝛾𝜑(𝑎(𝑇𝑘+1)𝑡

|||𝑎(𝑇𝑘+1)𝑡−1)
)
𝑢
(
𝑎(𝑇𝑘+1)𝑡

)
≤ 1 

𝑘
max
𝑎∈𝐴 [𝑢(𝑎)] +

(
1 − 1 

𝑘

) 1 
𝑇𝑘+1 − 𝑘𝑆𝑘

𝑇𝑘+1∑
𝑡=𝑘𝑆𝑘+1

(
1 − 𝛾𝜑(𝑎(𝑇𝑘+1)𝑡

|||𝑎(𝑇𝑘+1)𝑡−1)
)
𝑢
(
𝑎(𝑇𝑘+1)𝑡

)
(59)

where the last inequality additionally uses that



Games and Economic Behavior 152 (2025) 396–422

421

G. Ashkenazi-Golan, D. Karos and E. Lehrer 

max
𝑎∈𝐴 [𝑢(𝑎)] ≥

1 
𝑇𝑘+1 − 𝑘𝑆𝑘

𝑇𝑘+1∑
𝑡=𝑘𝑆𝑘+1

(
1 − 𝛾𝜑(𝑎(𝑇𝑘+1)𝑡

|||𝑎(𝑇𝑘+1)𝑡−1
)
𝑢
(
𝑎(𝑇𝑘+1)𝑡

)
.

Since 𝑘𝑆𝑘

𝑆𝑘+1
max𝑎∈𝐴[𝑢(𝑎)] <

1 
𝑘

for 𝑘 large enough, we obtain from (58) and (59) that

|||𝑈𝑆𝑘+1
𝛾

(
𝑎
)
−𝑈

𝑇𝑘+1
𝛾

(
𝑎(𝑇𝑘+1)

)|||
≤ 2 

𝑘
max
𝑎∈𝐴 [𝑢(𝑎)] +

1 
𝑘
+
|||||| 1 
𝑆𝑘+1

𝑆𝑘+1∑
𝑡=(𝑘+1)𝑆𝑘+1

(
1 − 𝛾𝜑

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

)
−

(
1 − 1 

𝑘

) 1 
𝑇𝑘+1 − 𝑘𝑆𝑘

𝑇𝑘+1∑
𝑡=𝑘𝑆𝑘+1

(
1 − 𝛾𝜑

(
𝑎(𝑇𝑘+1)𝑡

|||𝑎(𝑇𝑘+1)𝑡−1
))

𝑢
(
𝑎(𝑇𝑘+1)𝑡

)|||||| . (60)

Since 𝑆𝑘+1 − (𝑘+1)𝑆𝑘 = 𝑆𝐾+1 −𝑆𝑘 −𝑘𝑆𝑘 = 𝑇𝑘+1 −𝑘𝑆𝑘, the two summations in the previous equation are of equal length. Moreover, 
they involve the same actions, that is, 𝑎(𝑇𝑘+1)𝑡 = 𝑎𝑡+𝑆𝑘

for every 𝑡 = 𝑘𝑆𝑘 + 1, ..., 𝑇𝑘+1. The only difference lies in the fatigue element 
preceding each utility term. However, since|||𝜑(𝑎(𝑇𝑘+1)𝑡 ∣ 𝑎(𝑇𝑘+1)𝑡−1) −𝜑(𝑎𝑡+𝑆𝑘

∣ 𝑎𝑡+𝑆𝑘−1)||| ≤ 𝑆𝑘

𝑡− 1
≤ 𝑆𝑘

𝑘𝑆𝑘

= 1 
𝑘

,

for every 𝑡 = 𝑘𝑆𝑘 + 1, ..., 𝑇𝑘+1, it holds that||||||
𝑆𝑘+1∑

𝑡=(𝑘+1)𝑆𝑘+1

(
1 − 𝛾𝜑

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

)
−

𝑇𝑘+1∑
𝑡=𝑘𝑆𝑘+1

(
1 − 𝛾𝜑

(
𝑎(𝑇𝑘+1)𝑡

|||𝑎(𝑇𝑘+1)𝑡−1
))

𝑢
(
𝑎(𝑇𝑘+1)𝑡

)||||||
≤ (

𝑇𝑘+1 − 𝑘𝑆𝑘

) 1 
𝑘
max
𝑎∈𝐴 [𝑢(𝑎)]

As moreover,

max
(

1 
𝑆𝑘+1

,
(
1 − 1 

𝑘

) 1 
𝑇𝑘+1 − 𝑘𝑆𝑘

)
<

1 
𝑇𝑘+1 − 𝑘𝑆𝑘

,

we obtain from (60) that

|𝑈𝑆𝑘+1
𝛾

(
𝑎
)
− 𝑣

𝑇𝑘+1
𝛾 | = |𝑈𝑆𝑘+1

𝛾

(
𝑎
)
−𝑈

𝑇𝑘+1
𝛾 (𝑎(𝑇𝑘+1))| <

3 
𝑘
max
𝑎∈𝐴 [𝑢(𝑎)] +

1 
𝑘

.

This shows that 𝑉 𝛾

(
𝑎
) ≥ lim𝑘 𝑈

𝑆𝑘+1
𝛾

(
𝑎
)
= lim𝑘 𝑣

𝑇𝑘
𝛾 = 𝑉 𝛾 . The last equality is due to Proposition 6.2. This completes the proof. □

The proof of Proposition 7.2. For convenience, we keep 𝛾 fixed and drop it from the notation. The inequality 𝑉 ∗ ≤ 𝑉 𝜆 is clear. 
For the strict inequality, assume, to the contrary, that there exists 𝜀 > 0 such that 𝑉 𝜆 > 𝑉 ∗ + 3𝜀 for an infinite sequence of 𝜆 values 
converging to 1. This assumption implies that, for each such 𝜆, there exists an infinite history 𝑎(𝜆) such that

𝑉 𝜆,𝑇
(
𝑎(𝜆)

)
> 𝑉 ∗ + 3𝜀.

Therefore, we conclude that there exists a time 𝑇0(𝜆) such that 𝑈𝜆,𝑇
(
𝑎(𝜆)

)
> 𝑉 ∗ + 3𝜀 for all 𝑇 ≥ 𝑇0(𝜆).

We now resort to Theorem 7.1 and apply it to 𝜀. It states that there is 𝜆, sufficiently close to 1, such that for any 𝛿 big enough,

𝑉 𝜆,𝛿 < 𝑉 ∗ + 𝜀. (61)

From now on we fix this 𝜆 and denote 𝑎 = 𝑎(𝜆).
Recall that

𝑈𝜆,𝛿
(
𝑎
)
= (1 − 𝛿)

∞ ∑
𝑡=1 

𝛿𝑡−1
(
1 − 𝛾𝜑𝜆

(
𝑎𝑡
|||𝑎𝑡−1))𝑢

(
𝑎𝑡

)
,

which is a discounted sum. As such (see Lehrer and Sorin (1992)), it can be expressed as a convex combination of the finite averages 
𝑈𝜆,𝑇 (𝑎). Specifically, there exist weights 𝑤𝑇 (𝛿) ≥ 0 for 𝑇 = 1,2,… , that sum to 1 such that

𝑈𝜆,𝛿
(
𝑎
)
=
∑
𝑇

𝑤𝑇 (𝛿)𝑈𝜆,𝑇 (𝑎). (62)

Moreover, for each 𝑇 , we have 𝑤𝑇 (𝛿)→ 0 as 𝛿 → 1.

Let 𝛿0 be such that for any 𝛿 > 𝛿0,∑
𝑇<𝑇0(𝜆)

𝑤𝑇 (𝛿)𝑈𝜆,𝑇 (𝑎) < 𝜀,
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and the total sum of the weights, excluding this prefix, is large, that is,∑
𝑇≥𝑇0(𝜆)

𝑤𝑇 (𝛿) >
𝑉 ∗ + 2𝜀
𝑉 ∗ + 3𝜀

.

Together with (62), this implies that

𝑈𝜆,𝛿
(
𝑎
)

>
∑

𝑇≥𝑇0(𝜆)
𝑤𝑇 (𝛿)𝑈𝜆,𝑇 (𝑎) − 𝜀 >

(
𝑉 ∗ + 2𝜀
𝑉 ∗ + 3𝜀

)
(𝑉 ∗ + 3𝜀) − 𝜀 = 𝑉 ∗ + 𝜀.

Since 𝑉 𝜆,𝛿 ≥ 𝑈𝜆,𝛿
(
𝑎
)
, this contradicts (61). We conclude that for every 𝜀 > 0 there exists 𝜆0 < 1 such that for every 𝜆 > 𝜆0, it holds 

that 𝑉 𝜆 < 𝑉 ∗ + 𝜀, as desired. □

Data availability

No data was used for the research described in the article.
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