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Abstract
The Maximum Leaf Spanning Arborescence problem (MLSA) in directed acyclic
graphs (dags) is defined as follows: Given a directed acyclic graph G and a vertex
r ∈ V (G) from which every other vertex is reachable, find a spanning arborescence
rooted at r maximizing the number of leaves (vertices with out-degree zero). The
MLSA in dags is known to beAPX-hard as reported byNadine Schwartges, Spoerhase,
andWolff (Approximation andOnlineAlgorithms, Springer, Berlin Heidelberg, 2012)
and the best known approximation guarantee of 7

5 is due to Fernandes and Lintzmayer
(J. Comput. Syst. Sci. 135: 158–174,2023): They prove that any α-approximation for
the hereditary 3-set packing problem, a special case of weighted 3-set packing, yields
a max{ 43 , α}-approximation for the MLSA in dags, and provide a 7

5 -approximation
for the hereditary 3-set packing problem. In this paper, we improve upon this result
by providing a 4

3 -approximation for the hereditary 3-set packing problem, and, thus,
the MLSA in dags. The algorithm that we study is a simple local search procedure
considering swaps of size up to 10 and can be analyzed via a two-stage charging
argument. We further provide a clear picture of the general connection between the
MLSA in dags and set packing by rephrasing the MLSA in dags as a hereditary set
packing problem. With a much simpler proof, we extend the reduction by Fernandes
and Lintzmayer and show that an α-approximation for the hereditary k-set packing
problem implies amax{ k+1

k , α}-approximation for theMLSAdags. On the other hand,
we provide lower bound examples proving that our approximation guarantee of 4

3 is
best possible for local search algorithms with constant improvement size.
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1 Introduction

Given a (simple) directed graph G = (V , E) and a root vertex r ∈ V , we call a
subgraph T ofG a spanning r-arborescence inG if it satisfies the following conditions:

(i) T is a spanning subgraph of G, that is, V (T ) = V .
(ii) r does not have any entering arc in T and each v ∈ V \ {r} has exactly one

entering arc in T .
(iii) Each vertex in V is reachable from r via a directed path in T .

We call a vertex v a leaf of T if v does not have any leaving arc in T .
TheMaximum Leaf Spanning Arborescence problem (MLSA) is defined as follows:

Definition 1 (Maximum Leaf Spanning Arborescence problem)

Input: A directed graph G, r ∈ V (G) such that every vertex of G is reachable from
r via a directed path.

Task: Find a spanning r -arborescence in G with the maximum number of leaves
possible.

It plays an important role in the context of broadcasting: Given a network consisting of
a set of nodes containing one distinguished source and a set of available arcs, amessage
needs to be transferred from the source to all other nodes along a subset of the arcs,
which forms (the arc set of) an arborescence rooted at the source. As internal nodes do
not only need to be able to receive, but also to re-distribute messages, they are more
expensive. Hence, it is desirable to have as few of them as possible, or equivalently,
to maximize the number of leaves.

The special case of the MLSA where every arc may be used in both directions is
called theMaximum Leaves Spanning Tree problem (MLST). In this setting, the com-
plementary task of minimizing the number of non-leaves is equivalent to theMinimum
Connected Dominating Set problem (MCDS). Both the MLST and the MCDS are NP-
hard, even if the input graph is 4-regular or planar with maximum degree at most 4 (see
[13], problem ND2). The MLST has been shown to be APX-hard [12],1 even when
restricted to cubic graphs [3]. The state-of-the-art for the MLST is an approximation
guarantee of 2 [22].

While an optimum solution to the MLST gives rise to an optimum solution to
the MCDS and vice versa, the MCDS turns out to be much harder to approximate:
Ruan et al. [20] have obtained an (ln� + 2)-approximation, where � denotes the
maximum degree in the graph. A reduction from Set Cover (with bounded set sizes)
further shows that unless P = NP, the MCDS is hard to approximate within a factor
of ln� − O(ln ln�) [14, 24]. An analogous reduction further yields the same hard-
ness result for the problem of computing a spanning arborescence with the minimum
number of non-leaves in a rooted acyclic digraph of maximum out-degree �.

In this paper, we study polynomial-time approximation algorithms for (a special
case of) the MLSA. For general digraphs, the best that is known is a min{√OPT, 92}-
approximation [5, 6]. Moreover, there is a line of research focusing on FPT-algorithms
for the MLSA [1, 2, 5].

1 Note that MaxSNP-hardness implies APX-hardness, see [16].
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Fig. 1 Illustration of the Maximum Leaf Spanning Arborescence problem. The leftmost picture shows a
simple directed graphG = (V , E), together with a vertex r ∈ V fromwhich every other vertex is reachable.
The middle picture illustrates a spanning r -arborescence in G with 3 leaves (indicated by green, empty
circles). The rightmost picture shows a spanning r -arborescence in G with 5 leaves

The special case where the graph G is assumed to be a dag (directed acyclic graph)
has been proven to be APX-hard by Schwartges, Spoerhase and Wolff [21]. They
further provided a 2-approximation, which was then improved to 3

2 by Fernandes and
Lintzmayer [9]. Recently, the latter authors managed to enhance their approach to
obtain a 7

5 -approximation [10], which has been unchallenged so far. In this paper,
following the approach by Fernandes and Lintzmayer, we improve on these results
and obtain a 4

3 -approximation for the MLSA in dags.
Fernandes and Lintzmayer [10] tackle the MLSA in dags by reducing it, up to an

approximation guarantee of 4
3 , to a special case of the weighted 3-set packing problem,

which we call the hereditary 3-set packing problem. Fernandes and Lintzmayer [10]
prove it to be NP-hard via a reduction from 3-Dimensional Matching [15].

Definition 2 (weighted k-set packing problem)

Input: A family S of non-empty sets, each of cardinality at most k, w : S → R≥0
Task: Compute a disjoint sub-collection A ⊆ S maximizing the total weightw(A) :=∑

s∈A w(s).

We call a set family S hereditary if for every s ∈ S, S contains all non-empty subsets
of s.

Definition 3 (hereditary 3-set packing problem) An instance of the hereditary 3-set
packing problem is an instance (S, w) of the weighted 3-set packing problem, where
S is a hereditary family and w(s) = |s| − 1 for all s ∈ S.

As the weights can be deduced from the set sizes, we will omit them in the following
and simply denote an instance of the hereditary 3-set packing problem by S (instead
of (S, w)). We remark that there are two natural ways to encode an instance S of
the hereditary 3-set packing problem, either by providing a list of all sets in S, or
by only listing the collection Smax of inclusion-wise maximal ones. As

∑
s∈S |s| ≤

4 · ∑
s∈Smax

|s|, both choices result in the same notion of polynomial running time.
However, when considering larger set sizes in Section 2, polynomial running time will
always mean polynomial with respect to

∑
s∈Smax

|s|.
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Theorem 4 ([10]) Let α ≥ 1 and assume that there is a polynomial-time α-
approximation algorithm for the hereditary 3-set packing problem. Then there exists
a polynomial-time max{α, 4

3 }-approximation for the MLSA in dags.

For k ≤ 2, the weighted k-set packing problem can be solved in polynomial time via
a reduction to the Maximum Weight Matching problem [7]. In contrast, for k ≥ 3,
even the special case where w ≡ 1, the unweighted k-set packing problem, is NP-
hard because it generalizes the 3-Dimensional Matching problem [15]. The technique
that has proven most successful in designing approximation algorithms for both the
weighted and the unweighted k-set packing problem is local search. The general idea
is to iteratively increase the weight of a feasible solution by adding and removing
a bounded number of sets in such a way that the solution remains feasible. More
precisely, when adding a collection X of pairwise disjoint sets to a feasible solution
A, we have to delete all sets from A that intersect sets in X . We call these sets the
neighborhood of X in A and denote it by N (X , A) := {a ∈ A : ∃x ∈ X : a∩x �= ∅}. A
disjoint set collection X constitutes a local improvement of A ifw(X) > w(N (X , A)),
i.e., if adding the sets in X and deleting the sets in the neighborhood results in a solution
of larger weight.

The state-of-the-art is a min{ k+1−τk
2 , 0.4986 · (k + 1) + 0.0208}-approximation

for the weighted k-set packing problem, where τk ≥ 0.428 for k ≥ 3 and
limk→∞ τk = 2

3 [18, 23]. Note that the guarantee of 1.786 for k = 3 is worse than the
guarantee of 7

5 that Fernandes and Lintzmayer achieve for the hereditary 3-set packing
problem.

In order to obtain the approximation guarantee of 7
5 , Fernandes and Lintzmayer

perform local search with respect to a modified weight function. In addition to certain
improvements of constant size, they incorporate another, more involved class of local
improvements that are related to alternating paths in a certain auxiliary graph. This
leads to a rather complex analysis because in addition to charging arguments similar
to ours, more intricate considerations regarding the structure of the auxiliary graph
are required.

In this paper, we study a local search algorithm that considers local improvements
consisting of up to 10 setswith respect to an objective that firstmaximizes theweight of
the current solution, and second the number of sets of weight 2 that are contained in it.
The intuition behind this is that we would like our solution to cover less set elements in
total, (potentially) resulting in fewer intersections with sets from an optimum solution
and making it “easier” to find local improvements. While one set of weight 2 only
contains 3 set elements, two disjoint sets of weight 1, together, contain 4 set elements,
making them less attractive to pick.

We show that the above-mentioned algorithm yields a polynomial-time 4
3 -

approximation for the hereditary 3-set packing problem. In particular, this results
in a polynomial-time 4

3 -approximation for the MLSA in dags. In doing so, we man-
age to tap the full potential of Theorem 4. Moreover, this work serves as a starting
point in identifying, understanding, and exploiting structural properties of set pack-
ing instances that arise naturally from other combinatorial problems. Studying these
instance classes may ultimately turn reductions to set packing instances into a more
powerful tool in the design of approximation algorithms.
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The remainder of this paper is organized as follows: In Section 2, we introduce the
hereditary k-set packing problem and the hereditary set packing problem, which con-
stitute natural extensions of the hereditary 3-set packing problem to sets of size at most
k and arbitrary set sizes, respectively. We provide a simple, approximation-preserving
reduction from the MLSA in dags to the hereditary set packing problem. Then, we
show that for every k ≥ 1, a polynomial-time α-approximation for the hereditary
k-set packing problem implies a polynomial-time max{α, k+1

k }-approximation for the
hereditary set packing problem, and thus, also for the MLSA in dags. These results
yield a clear picture of the connections between the MLSA in dags, the hereditary set
packing problem and the bounded size variants. Moreover, we obtain a significantly
simplified proof of Theorem 4.

The lower bound of k+1
k strictly decreases as k grows, and converges to 1 as k

tends to infinity. Hence, it appears natural to ask whether a better approximation ratio
than 4

3 can be achieved by reducing to the hereditary k-set packing problem with
k ≥ 4 instead. In Sect. 3, we show, however, that an algorithm for the hereditary k-set
packing problem that only considers local improvements of constant size cannot yield
a better approximation ratio than 2− 2

k . Note that k �→ max{ k+1
k , 2− 2

k } has a unique
minimum at k = 3, where it attains a value of 4

3 . As such, the approximation guarantee
of 4

3 is optimal for the approach we consider.
Finally, in Sect. 4, we present a simple local search based 4

3 -approximation for the
hereditary 3-set packing problem.

2 A set packing problem in disguise

In this section, we point out that theMLSA in dags is, at its core, a set packing problem.
In Sect. 2.1, we formally introduce the hereditary set packing problem and provide a
simple approximation-preserving reduction from the MLSA in dags to it. In Sect. 2.2,
we then show that up to an approximation guarantee of k+1

k , we can reduce further to
a setting where all sets in our instance contain at most k elements (k ≥ 1). The special
case k = 3 yields a simple and self-contained proof of Theorem 4.

2.1 Reducing theMLSA in DAGs to hereditary set packing

The hereditary set packing problem is defined as follows:

Definition 5 (hereditary set packing problem)

Input: a hereditary family S of non-empty sets
Task: Compute a disjoint sub-collection A ⊆ S maximizing w(A) = ∑

s∈A w(s),
where w(s) := |s| − 1.

In order to avoid an unnecessary, potentially exponential overhead in the encoding
length, we will assume in the following that a hereditary set family S is implicitly
given by only storing the inclusion-wise maximal sets in S explicitly.

Our main result for this section is given by the following theorem:
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Theorem 6 Let α ≥ 1. If there is a polynomial-time α-approximation algorithm for
the hereditary set packing problem, then there is a polynomial-time α-approximation
algorithm for the MLSA in dags.

In order to phrase our reduction from the MLSA in dags to the hereditary set packing
problem, we require the following definition:

Definition 7 Let G = (V , E) be a directed graph. For v ∈ V , we define �+
G (v) and

�−
G (v) to be the set of out- and in-neighbors of v, respectively, that is,

�+
G (v) := {w ∈ V : (v,w) ∈ E} and �−

G (v) := {w ∈ V : (w, v) ∈ E}.

If G is clear from the context, we may omit the subscript G and just write �+(v) and
�−(v), respectively.

The following proposition tells us that finding a spanning r -arborescence in G can be
interpreted as a set partitioning problem:

Proposition 8 Let G = (V , E) be a dag and let r ∈ V be a vertex from which every
other vertex is reachable. Let further T be a spanning subgraph of G. The following
are equivalent:

(a) T is a spanning r-arborescence in G.
(b) �−

T (r) = ∅ and |�−
T (v)| = 1 for every v ∈ V \ {r}.

(c) The sets (�+
T (v))v∈V form a partition of V \ {r}.

Proof Clearly, (b) and (c) are equivalent. Moreover, by definition of a spanning r -
arborescence, (a) implies (b). Hence, we are left with showing that any spanning
subgraph T of G that complies with (b) constitutes a spanning r -arborescence in G.
To this end, it remains to check that every vertex is reachable from r via a directed
path in T . But this follows from the fact that every vertex other than r has an entering
arc in T : As G does not contain any directed cycle, we can simply follow the entering
arcs backwards until we reach r . ��
Moreover, it is easy to see that the number of leaves of a spanning r -arborescence T
can be expressed in terms of the sizes of the out-neighborhoods in T .

Proposition 9 ( [6], Proof of Lemma 2.1) Let T be an arborescence. Then the number
of leaves of T equals 1 + ∑

v∈V (T ):�+
T (v) �=∅(|�+

T (v)| − 1). ��

By Proposition 8 and Proposition 9, finding a spanning r -arborescence with the max-
imum number of leaves is equivalent to partitioning V \ {r} into a collection S of
subsets of the out-neighborhoods of the vertices in V , maximizing the total weight∑

s∈S(|s| − 1). Given that adding additional elements to the sets cannot decrease the
objective value, we may actually relax the condition that the sets in S partition V \ {r}
to the weaker requirement that they are pairwise disjoint. This motivates the following
definition:
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Definition 10 Let (G = (V , E), r) be an instance of the MLSA in dags. We define
the hereditary set family associated with G to be

SG := {U ⊆ V : ∃v ∈ V : ∅ �= U ⊆ �+
G (v)}.

Note that we can compute the inclusion-wise maximal sets in SG in polynomial
time O(|V |3) by determining the inclusion-wise maximal ones among the sets
{�+

G (v) : v ∈ V }.
In the following, we formally present the reduction from the MLSA in dags to the

hereditary set packing problem. Proposition 11 shows that a spanning r -arborescence
with � leaves can be converted into a solution to SG of objective value � − 1. Con-
versely, Lemma 12 tells us that given a solution to SG of objective value t , we can, in
polynomial-time, compute a spanning r -arborescence in G with at least t + 1 leaves.

Proposition 11 Let (G = (V , E), r) be an instance of the MLSA in dags and let T be
a spanning r-arborescence in G with � leaves.

Define AT := {�+
T (v) : v ∈ V , �+

T (v) �= ∅}. Then AT is a feasible solution to SG

with objective value
∑

s∈AT
(|s| − 1) = � − 1.

Proof As in an arborescence, each vertex has at most 1 entering arc, the sets in AT

are pairwise disjoint. By Proposition 9, we have

∑

s∈AT

(|s| − 1) =
∑

v∈V :�+
T (v) �=∅

(|�+
T (v)| − 1) = � − 1.

��

Lemma 12 Let (G = (V , E), r) be an instance of the MLSA in dags and let A be
a feasible solution to SG. Then we can, in polynomial time, construct a spanning
r-arborescence in G with at least 1 + ∑

s∈A(|s| − 1) many leaves.

Proof For s ∈ A, pick vs such that s ⊆ �+
G (vs). For v ∈ V \ ({r} ∪ ⋃

s∈A s), pick an
arbitrary entering arc ev . Note that such an arc exists since every vertex is reachable
from r via a directed path in G.

Define a spanning subgraph T of G via V (T ) := V and

E(T ) := {(vs, w) : w ∈ s ∈ A} ∪
{

ev : v ∈ V \
(

{r} ∪
⋃

s∈A

s

)}

.

By definition of SG , T is a subgraph of G. As the sets in A are pairwise disjoint, we
have |�−

T (v)| = 1 for every v ∈ V \ {r}. Finally, as G is acyclic and every vertex is
reachable from r , r does not have any in-neighbor in G. In particular, �−

T (r) = ∅. By
Proposition 8, T is a spanning r -arborescence in G.
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Let T ′ be the spanning subgraph of T with arc set E(T ′) := {(vs, w) : w ∈ s ∈ A}.
By Proposition 9, the number of leaves of T is

1 +
∑

v∈V :�+
T (v) �=∅

(|�+
T (v)| − 1) = 1 +

∑

v∈V
max{0, |�+

T (v)| − 1}

≥ 1 +
∑

v∈V
max{0, |�+

T ′(v)| − 1} = 1 +
∑

v∈V :�+
T ′ (v) �=∅

(|�+
T ′(v)| − 1)

= 1 +
∑

v∈V :�+
T ′ (v) �=∅

|�+
T ′(v)| − |{v ∈ V : �+

T ′(v) �= ∅}|

= 1 +
∑

s∈A

|s| − |{vs : s ∈ A}| ≥ 1 +
∑

s∈A

|s| − |A| = 1 +
∑

s∈A

(|s| − 1).

��
Now, we are ready to prove Theorem 6.

Proof of Theorem 6 Assuming a polynomial-time α-approximation algorithm for the
hereditary set packing problem, we obtain a polynomial-time α-approximation for the
MLSA in dags as follows:

For a given instance (G, r), we first, in polynomial time, compute the representa-
tion of SG by its inclusion-wise maximal sets. Next, we apply the α-approximation
algorithm for the hereditary set packing problem to obtain an α-approximate solution
A to SG . Finally, we employ Lemma 12 to construct a spanning r -arborescence T in
G with at least 1 + ∑

s∈A(|s| − 1) many leaves.
In order to show that T is an α-approximate solution to the MLSA, denote the

optimum value for (G, r) by OPT. Note that OPT ≥ 1. By Proposition 11, there exists
a feasible solution to SG of objective value OPT − 1. As a consequence, we have

∑

s∈A

(|s| − 1) ≥ α−1 · (OPT − 1).

This yields

1 +
∑

s∈A

(|s| − 1) ≥ α−1 +
∑

s∈A

(|s| − 1) ≥ α−1 + α−1 · (OPT − 1) = α−1 · OPT.

��
Toconclude this section,we remark that not every instance of the hereditary set packing
problem corresponds to an instance of the MLSA in dags: To this end, note that for
an instance (G = (V , E), r) of the MLSA in dags, we have

⋃
s∈SG

s = V \ {r} since
every vertex other than r has an entering arc. Moreover, the number of inclusion-wise
maximal sets in SG is bounded by |V | − 1 = |V \ {r}| = |⋃s∈SG

s| (as G is a
dag, at least one vertex does not have any leaving arcs). Now, consider the instance
S = ({a,b,c,d}

1

) ∪ ({a,b,c,d}
2

)
consisting of all 1- and 2-element subsets of the 4-element
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ground set {a, b, c, d}. This instance contains (4
2

) = 6 > 4 inclusion-wise maximal
sets. As such, it cannot correspond to an instance of the MLSA in dags.

2.2 Reduction to bounded set sizes

In this section, we show that for every k ≥ 1, up to an approximation guarantee of
k+1
k , we can reduce the hereditary set packing problem to the special case where all

set sizes are bounded by k. The precise statement is given by Theorem 14.

Definition 13 (hereditary k-set packing problem) The hereditary k-set packing prob-
lem is the restriction of the hereditary set packing problem to instances with sets of
size at most k.

Note that this definition coincides with Definition 3 for k = 3.

Theorem 14 Let k ≥ 1. If there is a polynomial-time α-approximation algorithm for
the hereditary k-set packing problem, then there is a polynomial-time max{α, k+1

k }-
approximation algorithm for the hereditary set packing problem.

Note that Theorem 4 follows by combining Theorem 6 and Theorem 14 for k = 3.

Proof of Theorem 14 Assuming a polynomial-time α-approximation algorithm for
the hereditary k-set packing problem, we obtain a polynomial-time max{α, k+1

k }-
approximation algorithm for the hereditary set packing problem as follows.

Given an instance S of the hereditary set packing problem, let

S≥k+1 := {s ∈ S : |s| ≥ k + 1}.

As a first step, we compute a maximal solution M ⊆ S≥k+1: To this end, we
initialize M = ∅. We then traverse the inclusion-wise maximal sets in S in an arbitrary
order. For each maximal set s, we check whether |s \ ⋃

s′∈M s′| ≥ k + 1, and if yes,
we add s \ ⋃

s′∈M s′ to M .
We define U := ⋃

s∈M s. Let S ′ := {s \ U : s ∈ S, s \ U �= ∅}. By maximality of
M , S ′ is an instance of the hereditary k-set packing problem. Moreover, the inclusion-
wise maximal sets in S ′ are the inclusion-wise maximal ones among the sets s \ U ,
where s ∈ S is inclusion-wise maximal, and can, hence, be computed in polynomial
time.

We apply the α-approximation algorithm for the hereditary k-set packing problem
to S ′ and obtain a solution A′.

Finally, we output A := M ∪ A′.
By construction, the sets in A are pairwise disjoint. Hence, it remains to prove that

A is a max{α, k+1
k }-approximate solution. To this end, let B be an optimum solution

for S and define B ′ := {b \ U : b ∈ B, b \ U �= ∅}. Then B ′ is a feasible solution to
S ′, which yields

∑

b∈B
|b \U | − |B| ≤

∑

b∈B
|b \U | − |B ′| =

∑

b∈B′
(|b| − 1) ≤ α ·

∑

a∈A′
(|a| − 1). (1)
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As the sets in M are pairwise disjoint and of cardinality at least k + 1, we obtain∑
m∈M |m| = |U | and |M | ≤ 1

k+1 · |U |. Using that the sets in B are pairwise disjoint
as well, we have

∑

b∈B
|b ∩U | ≤ |U | = k + 1

k
· (|U | − 1

k + 1
· |U |) ≤ k + 1

k
·

∑

m∈M
(|m| − 1). (2)

Adding (1) and (2) results in

∑

b∈B
(|b| − 1) =

∑

b∈B
|b \U | − |B| +

∑

b∈B
|b ∩U |

≤ α ·
∑

a∈A′
(|a| − 1) + k + 1

k
·

∑

m∈M
(|m| − 1)

≤ max

{

α,
k + 1

k

}

·
∑

a∈A

(|a| − 1),

proving the desired approximation guarantee. ��

3 Lower bound

In this section, we show that we cannot obtain a better approximation guarantee than
2 − 2

k for the hereditary k-set packing problem via a local search algorithm that only
considers local improvements of constant size. To this end, we first recap the definition
of neighborhood from the introduction.

Definition 15 (neighborhood) Let X and Y be two set families. We define the neigh-
borhood of X in Y to be

N (X ,Y ) := {y ∈ Y : ∃x ∈ X : x ∩ y �= ∅}.

Moreover, for a single set x , we write N (x,Y ) := N ({x},Y ).

The main result for this section is given by the following theorem.

Theorem 16 Let k ≥ 3 and n, t ≥ 1. There exist

• an instance S of the hereditary k-set packing problem with |S| ≥ n and
• feasible solutions A and B

with the following properties:

• For every X ⊆ S \ A with |X | ≤ t and such that the sets in X are pairwise disjoint,
we have w(X) < w(N (X , A)). In particular, A is locally optimal with respect to
local improvements of size at most t .

• w(B) = (
2 − 2

k

) · w(A).
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Theorem 16 implies that an algorithm for the hereditary k-set packing that only con-
siders local improvements of size at most t cannot achieve a better approximation ratio
than 2− 2

k . Indeed, when applied to the instance from Theorem 16, such an algorithm
might find the (locally optimal) solution A by starting with the empty solution, and
then, for |A| iterations, applying local improvements of size 1 that add another set
from A (and do not remove any set). However, the weight of A is by a factor of 2− 2

k
smaller than the weight of B, so it is by a factor of at least 2 − 2

k smaller than the
weight of an optimum solution.

For the proof of Theorem 16, we first establish the following proposition, which is
a direct consequence of a result by Erdős and Sachs [8]. It is also (implicitly) proven
in [17].

Proposition 17 Let k ≥ 3 and n, t ≥ 1. There is a simple (2, k)-regular bipartite
graph G with |V (G)| ≥ n and girth(G) ≥ k · t + 1, where girth(G) denotes the girth
of G, i.e., the minimum length of a cycle in G.

Proof Let N := max{n, (k − 1)k·t }. By [8], there exists a k-regular graph H on
|V (H)| ≥ N vertices such that

girth(H) ≥ log(|V (H)|)
log(k − 1)

− 1 ≥ log(N )

log(k − 1)
− 1 ≥ k · t − 1.

Let G be the bipartite vertex-edge-incidence graph of H , that is,

V (G) = V (H) ∪ E(H) and E(G) = {{v, e} : v ∈ e ∈ E(H)}.

Then G is a simple (2, k)-regular bipartite graph with |V (G)| ≥ |V (H)| ≥ n. As
for every cycle v1, e1, . . . , vk, ek in G (where v1, . . . , vk ∈ V (H) and e1, . . . , ek ∈
E(H)), v1, . . . , vk is a cycle in H , we have

girth(G) ≥ 2 · girth(H) ≥ 2 · k · t − 2 ≥ k · t + 1,

where we used k ≥ 3 and t ≥ 1 for the last inequality. ��
Proof of Theorem 16 Let G = (V , E) be a simple (2, k)-regular bipartite graph with
|V | ≥ n and girth(G) ≥ k · t + 1. Let VA and VB be the two bipartitions of G, where
every vertex in A has degree 2, and every vertex in B has degree k.

Let δ(v) denote the set of incident edges of vertex v in G and let S := {s ⊆ E :
∃v ∈ V : ∅ �= s ⊆ δ(v)} consist of the non-empty subsets of the sets of incident edges
of vertices in G. As every vertex in G has degree at most k, S is an instance of the
hereditary k-set packing problem.

Define A := {δ(v) : v ∈ VA} and B := {δ(v) : v ∈ VB}. As VA and VB are
independent sets in G, A and B both consist of pairwise disjoint sets. As every vertex
in VA has degree 2 and every vertex in VB has degree k, we have

w(A) =
∑

v∈VA

(|δ(v)| − 1) = 1

2

∑

v∈VA

|δ(v)| = 1

2
· |E |, and
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w(B) =
∑

v∈VB

(|δ(v)| − 1) = k − 1

k

∑

v∈VB

|δ(v)| = k − 1

k
· |E |.

This yields w(B) = 2·(k−1)
k · w(A) = (

2 − 2
k

) · w(A).
It remains to show that A is locally optimal. To this end, let X ⊆ S \ A

such that the sets in X are pairwise disjoint and |X | ≤ t . We need to prove that
w(X) < w(N (X , A)).

First of all, we may assume that X does not contain any set s ∈ S with |s| = 1
since w(s) = 0 for such a set. In particular, as X ⊆ S \ A and A = {δ(v) : v ∈ VA}
consists of sets of size 2, we can infer that there is no x ∈ X such that x ⊆ δ(v) for
some v ∈ VA. Consequently, for each x ∈ X , there is a (unique) vx ∈ VB such that
x ⊆ δ(vx ).

Define EX := ⋃
x∈X x to be the collection of edges contained in the sets x ∈ X

and denote by VX := ⋃
e∈EX

e the set of endpoints of these edges. Then

VX ∩ VB = {vx : x ∈ X} and N (X , A) = {δ(v) : v ∈ VX ∩ VA}. (3)

Using that all sets in A have a size of 2 and a weight of 1, we can infer that

w(N (X , A)) = |N (X , A)| = |VX ∩ VA|. (4)

As |X | ≤ t , we know that |EX | ≤ k · |X | ≤ k · t and since the girth of G is at least
k · t + 1, (VX , EX ) is a forest. As such, we have

|VX | ≥ |EX | + 1. (5)

Hence, we obtain

w(N (X , A))
(4)= |VX ∩ VA| = |VX | − |VX ∩ VB | (3)≥ |VX | − |X |
(5)≥ 1 + |EX | − |X | (∗)= 1 +

∑

x∈X
(|x | − 1) = 1 + w(X) > w(X),

where the inequality marked (∗) follows from the fact that the sets in X are pairwise
disjoint. ��

4 A 4/3-approximation for the hereditary 3-set packing problem

In this section, we present a polynomial-time 4
3 -approximation for the hereditary 3-set

packing problem. For convenience, in the following, we will ignore the sets of size
1 and weight 0 contained in an instance S of the hereditary 3-set packing problem
because we can always remove them from any feasible solution without changing its
weight.
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Algorithm 1: 4/3-approximation for hereditary 3-set packing
Input: an instance S of the hereditary 3-set packing problem
Output: a disjoint sub-collection of S

1 A ← ∅
2 while ∃ local improvement X of A of size at most 10 do
3 A ← (A \ N (X , A)) ∪ X

4 return A

In order to phrase our algorithm, we formally introduce the notion of local improve-
ment that we consider. It aims at maximizing first the weight of the solution we find,
and second the number of sets of weight 2 contained in it.

Definition 18 (local improvement)LetS be an instance of the hereditary 3-set packing
problem and let A be a feasible solution. We call a disjoint set collection X ⊆ S a
local improvement of A of size |X | if
• w(X) > w(N (X , A)) or
• w(X) = w(N (X , A)) and X contains more sets of weight 2 than N (X , A).

We analyze Algorithm 1, which starts with the empty solution and iteratively searches
for a local improvement of size at most 10 (and performs the respective swap) until
no more exists. We first observe that it runs in polynomial time.

Proposition 19 Algorithm 1 can be implemented to run in polynomial time.

Proof A single iteration can be performed in polynomial time via brute-force enu-
meration. Thus, it remains to bound the number of iterations. By our definition of a
local improvement, w(A) can never decrease throughout the algorithm. Initially, we
have w(A) = 0, and moreover, w(A) ≤ w(S) ≤ 2 · |S| holds throughout. As all
weights are integral, we can infer that there are at most 2 · |S| iterations in whichw(A)

strictly increases. In between two consecutive such iterations, there can be at most |S|
iterations in which w(A) remains constant since the number of sets of weight 2 in A
strictly increases in each such iteration. All in all, we can bound the total number of
iterations by O(|S|2). ��

The remainder of this section is dedicated to the proof of Theorem 20, which
implies thatAlgorithm1 constitutes a 4

3 -approximation for the hereditary 3-set packing
problem.

Theorem 20 Let S be an instance of the hereditary 3-set packing problem and let
A ⊆ S be a feasible solution such that there is no local improvement of A of size at
most 10. Let further B ⊆ S be an optimum solution. Then w(B) ≤ 4

3 · w(A).

Let S, w, A and B be as in the statement of the theorem. Our goal is to distribute
the weights of the sets in B among the sets in A they intersect in such a way that
no set in A receives more than 4

3 times its own weight. We remark that each set in
B must intersect at least one set in A because otherwise, it would constitute a local
improvement of size 1.
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Fig. 2 Construction of the conflict graph

In order to present our weight distribution, we introduce the notion of the conflict
graph, which allows us to phrase our analysis using graph terminology. A similar
construction is used in [10].

Definition 21 (conflict graph) The conflict graph G is defined as follows: Its vertex
set is the disjoint union of A and B, i.e., V (G) = A∪̇B. Its edge set is obtained by
adding, for each pair (a, b) ∈ A × B, |a ∩ b| parallel edges connecting a to b.

See Fig. 2 for an illustration. We remark that for X ⊆ B, N (X , A) agrees with the
(graph) neighborhood of X in the bipartite graphG. Analogously, for Y ⊆ A, N (Y , B)

equals the neighborhood of Y in G. In the following, we will simultaneously interpret
sets from A∪̇B as the corresponding vertices in G and talk about their degree, their
incident edges and their neighbors. We make the following observation.

Proposition 22 Let v ∈ V (G) correspond to the set s ∈ A ∪ B. Then v has at most
|s| incident edges in G.

Proof As A and B both consist of pairwise disjoint sets, each element of s can induce
at most one incident edge of v. ��

4.1 Step 1 of the weight distribution

Our weight distribution proceeds in two steps. In order to describe how the weight of
the vertices in B is distributed among their neighbors in A, we will say that a vertex in
B sends a certain amount of its weight along edges to their endpoints in A. The first
step works as follows:

Definition 23 (Step 1 of the weight distribution) Let B1 consist of all sets v ∈ B with
exactly one neighbor in A. Each v ∈ B1 sends its full weight to its unique neighbor
in A.

Let further B2 consist of those v ∈ B with w(v) = 2 and exactly two incident
edges, with the additional property that they connect to two distinct sets from A. Each
v ∈ B2 sends half of its weight (i.e., 1) along each of its edges.
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Fig. 3 The first step of the weight distribution

See Fig. 3 for an illustration. Observe that in the first stage, u ∈ A receives weight
precisely from the sets in N (u, B1 ∪ B2).

We first prove Lemma 24, which tells us that we can represent the total amount
of weight a collection U ⊆ A receives in the first step as the weight of a disjoint set
collection X with N (X , A) ⊆ U . The construction of X will allow us to combine X
with sub-collections of B \ (B1 ∪ B2) to obtain local improvements.

Lemma 24 Let U ⊆ A. There is X ⊆ S with the following properties:

(24.1) N (X , A) ⊆ U.
(24.2) w(X) equals the total amount of weight that U receives in the first step.
(24.3) There is a bijection N (U , B1 ∪ B2) ↔ X mapping v ∈ B1 ∪ B2 to itself or to

one of its two-element subsets.

Proof We obtain X as follows: We start with X = ∅ and first add those sets in
N (U , B1 ∪ B2) to X that send all of their weight to U (i.e., whose neighborhood in
A is contained in U ). This includes all sets in N (U , B1). Second, for each set v ∈ B2
that has one incident edge to u ∈ U and one incident edge to r ∈ A \ U , we add its
two-element subset v \ r to X . By construction, (24.1)-(24.3) hold. See Fig. 4 for an
illustration. ��
Corollary 25 No set in A receives more than its own weight in the first step.

Proof Assume towards a contradiction that u ∈ A receives more than w(u) in the first
step. Apply Lemma 24 with U = {u} to obtain a collection X ⊆ S subject to (24.1)-
(24.3). Then w(X) > w(u) = w(N (X , A)) and (24.3) and Proposition 22 imply that
X is a disjoint set family with |X | ≤ 3. Hence, X constitutes a local improvement of
size atmost 3 < 10. This contradicts our assumption that there is no local improvement
of A of size at most 10. ��

4.2 Removing“covered” sets

Definition 26 LetC consist of those sets from A that receive exactly their ownweights
in the first step.

The intuitive idea behind our analysis is that the sets in C are “covered” by the sets
sending weight to them in the sense of Lemma 24. Hence, we can “remove” the
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Fig. 4 Illustration of the construction in the proof of Lemma 24. Fig. 4a shows a collection U ⊆ A of sets
(blue, filled, solid), the collection N (U , B1 ∪ B2) (red, dashed) of sets the sets in U receive weight from
in the first step, and further sets from A (blue, not filled, solid) the sets in N (U , B1 ∪ B2) send weight to.
Fig. 4b illustrates the construction of the set collection X

sets in C from our current solution A and the sets in B1 ∪ B2 from our optimum
solution B. If we can find a local improvement in the remaining instance, we will use
Lemma 24 to transform it into a local improvement in the original instance, leading to
a contradiction. See Lemma 27 for an example of how to apply this reasoning. Hence,
exploiting the fact that there cannot be a local improvement in the remaining instance,
we can design the second step of the weight distribution in such a way that overall, no
set in A receives more than 4

3 times its own weight.

4.3 Step 2 of the weight distribution

In order to define the second step of the weight distribution, we make the following
observations:

Lemma 27 There is no v ∈ B \ (B1 ∪ B2) with w(N (v, A \ C)) < w(v).

Proof Assume towards a contradiction that there is v ∈ B \(B1∪B2)withw(N (v, A\
C)) < w(v). Apply Lemma 24 to U := N (v,C) to obtain X subject to (24.1)-(24.3).
By (24.3), X ∪̇{v} consists of pairwise disjoint sets. Proposition 22 further yields
|N (v,C)| ≤ |v| ≤ 3, and, thus, |X | = |N (N (v,C), B1 ∪ B2)| ≤ 9 by (24.3). Finally,
w(X) = w(N (v,C)) by (24.2) and since sets fromC receive exactly their ownweights
in the first step. Hence, (24.1) yields

w(X ∪ {v}) = w(X) + w(v) > w(N (v,C)) + w(N (v, A\C)) = w(N (X ∪ {v}, A)).
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So X ∪ {v} is a local improvement of A of size at most 10, a contradiction. ��
Proposition 28 Let v ∈ B \ (B1 ∪ B2). Then

(i) v has at least one neighbor in A \ C.
(ii) If w(v) = 1, then v has exactly two neighbors in A.
(iii) If w(v) = 2, then v has three incident edges.

Proof (i) follows from Lemma 27. For (i i) and (i i i), we remind ourselves that each
v ∈ B has at most |v| neighbors/incident edges, but at least 1 neighbor in A by
Proposition 22 and since {v} would constitute a local improvement otherwise. (i i)
holds since v ∈ B1 otherwise. For (i i i), we observe that in case v has at most 2
incident edges, then either v has only one neighbor in A, or two distinct neighbors to
which it is connected by a single edge each. In either case, we have v ∈ B1 ∪ B2. ��
Definition 29 (Step 2 of the weight distribution) Let v ∈ B \(B1∪B2)withw(v) = 1.

(a) If v has a neighbor in C , then this neighbor receives 1
3 and the neighbor in A \ C

receives 2
3 .

(b) Otherwise, both neighbors in A \ C receive 1
2 .

Now, let v ∈ B \ (B1 ∪ B2) with w(v) = 2.

(c) If v has degree 1 to A \ C , then v sends 1
3 along each edge to C and 4

3 to the
neighbor in A \C . Note that this neighbor must have a weight of 2 by Lemma 27.

(d) If v has degree 2 to A \C , v sends 1 along each edge to a vertex in A \C of weight
2, 2

3 along each edge to a vertex in A \ C of weight 1, and the remaining amount
to the neighbor in C .

(e) If all three incident edges of v connect to A \C , then v sends 2
3 along each of these

edges.

We denote the set of vertices to which case � with � ∈ {a, b, c, d, e} applies by B�.

See Fig. 5 for an illustration.

4.4 No set in C receives more than 4/3 times its weight

Lemma 30 Let v ∈ Bd and let u ∈ N (v,C) be the unique neighbor of v in C. If u
receives more than 1

3 from v, then w(u) = 2 and u has exactly one incident edge to
B \ (B1 ∪ B2).

Proof Denote the endpoints of the two edges connecting v to A \ C by u1 and u2.
Assume u receives more than 1

3 from v. Then w(u1) = w(u2) = 1. In particular, u1
and u2 are distinct by Lemma 27. Apply Lemma 24 toU := {u} to obtain X subject to
(24.1)-(24.3). Then by (24.3), Y := X ∪̇{v} is a disjoint collection of sets. Moreover,
Proposition 22 yields

|X | (24.3)= |N (u, B1 ∪ B2)| ≤ |u| ≤ 3.
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Fig. 5 Illustration of the second step of the weight distribution. Blue circles in the top row indicate sets
from A, if they are dashed, the corresponding set is contained in C . Red circles in the bottom row indicate
sets from B\(B1 ∪ B2). The number within a circle indicates the weight of the corresponding set in case
it is relevant. Even though drawn as individual circles, the endpoints in A of the incident edges of a set
v ∈ B \ (B1 ∪ B2) need not be distinct. For example, in (e), two of the sets represented by the blue circles
may agree, in which case the corresponding set receives 4

3

Hence, |Y | ≤ 4. By (24.2) and as u ∈ C receives its own weight in the first step, we
get w(u) = w(X). Thus, w(u1) + w(u2) = 1 + 1 = 2 = w(v) results in

w(N (Y , A))
(24.1)= w(u) + w(u1) + w(u2) = w(X) + w(v) = w(Y ).

As Y does not constitute a local improvement, N (Y , A) = {u1, u2, u} contains at
least as many vertices of weight 2 as Y . As w(u1) = w(u2) = 1, but w(v) = 2, this
implies that w(u) = 2 and that all elements of X have a weight of 1. By (24.2), this
implies |X | = 2, and by (24.3), u intersects sets from B1 ∪ B2 in at least two distinct
elements in total. In particular, {u, v} is the only edge connecting u to B \ (B1 ∪ B2)

by Proposition 22. ��

Lemma 31 Each set in C receives at most 4
3 times its own weight during our weight

distribution.

Proof First, let u ∈ C with w(u) = 1. Then u receives 1 in the first step and has at
most one incident edge to B \ (B1 ∪ B2). Via this edge, u receives at most 1

3 , which
is clear for the cases (a) and (c), and follows from Lemma 30 for case (d). Thus, u
receives at most 4

3 = 4
3 · w(u) in total.

Next, let u ∈ C with w(u) = 2. Then u receives 2 in the first step and u has at most
two incident edges to B \ (B1 ∪ B2). If u has two incident edges to B \ (B1 ∪ B2),
then u can receive at most 1

3 via each of them: This is clear for the cases (a) and (c),
and follows from Lemma 30 for case (d). Thus, u receives at most 8

3 = 4
3 · w(u) in

total. If u has one incident edge to B \ (B1 ∪ B2), then the maximum amount u can
receive via this edge is 2

3 . Again, u receives at most 8
3 in total. ��
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4.5 No set in A \ C receives more than 4/3 times its weight

In order to make sure that no vertex from A \ C receives more than 4
3 times its own

weight, we need Lemma 32, which essentially states the following:

• If a vertex u ∈ A \ C with w(u) = 2 receives 4
3 from a vertex in Bc, then it does

not receive weight from any further vertex in B1 ∪ B2 ∪ Bc ∪ Bd .
• A vertex u ∈ A \C with w(u) = 2 may, in total, receive at most 2 units of weight
from vertices in B1 ∪ B2 ∪ Bd .

Lemma 32 Let u ∈ A \ C with w(u) = 2. Denote the set of vertices v ∈ Bd that are
connected to u by one/two parallel edges by D1 and D2, respectively.

Then |N (u, B1 ∪ B2)| + 2|N (u, Bc)| + |D1| + 2|D2| ≤ 2.

Our strategy to prove Lemma 32 can be summarized as follows: We show that similar
to Lemma 24, we can represent the term 2|N (u, Bc)| + |D1| + 2|D2| as the weight
of a disjoint set collection Y with N (Y , A \C) ⊆ {u}. Y consists of subsets of sets in
B \ (B1 ∪ B2).

We then apply Lemma 24 to U := N (Y ,C) ∪ {u} to obtain a set collection X .
We argue that if |N (u, B1 ∪ B2)| + 2|N (u, Bc)| + |D1| + 2|D2| > 2 = w(u), then
X ∪ Y constitutes a local improvement. In order to arrive at the desired contradiction,
we need to initially restrict our attention to a minimal sub-family Ȳ ⊆ N (u, Bc ∪ Bd)

with |N (u, B1 ∪ B2)| + 2|Ȳ ∩ Bc| + |Ȳ ∩ D1| + 2|Ȳ ∩ D2| > 2, which allows us to
conclude that |X ∪ Y | ≤ 10.

Proof of Lemma 32 Assume towards a contradiction that

|N (u, B1 ∪ B2)| + 2|N (u, Bc)| + |D1| + 2|D2| ≥ 3.

Note that |N (u, B1∪B2)| ≤ 1 because u /∈ C and u receives at least one unit of weight
per neighbor in B1 ∪ B2. Pick an inclusion-wise minimal set Ȳ ⊆ N (u, Bc ∪ Bd) such
that

|N (u, B1 ∪ B2)| + 2|Ȳ ∩ Bc| + |Ȳ ∩ D1| + 2|Ȳ ∩ D2| ≥ 3. (6)

Then

|N (u, B1 ∪ B2)| + 2|Ȳ ∩ Bc| + |Ȳ ∩ D1| + 2|Ȳ ∩ D2| = 3, or (7)

Ȳ ∩ D1 = ∅ and |N (u, B1 ∪ B2)| + 2|Ȳ ∩ Bc| + 2|Ȳ ∩ D2| = 4. (8)

We construct a set collection Y as follows: We start with Y = ∅ and first add all sets
contained in Ȳ ∩ (Bc ∪ D2) to Y . Note that for such a set v, N (v, A \ C) = {u} (see
Fig. 5). Second, for each v ∈ Ȳ ∩ D1, let v′ be the set of cardinality 2 containing the
element in which v intersects a set from C , and the element in which v intersects u.
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Add v′ to Y . Then Y has the following properties:

N (Y , A) ⊆ C ∪ {u} (9)

|Y | = |Ȳ ∩ Bc| + |Ȳ ∩ D1| + |Ȳ ∩ D2| (10)

w(Y ) = 2|Ȳ ∩ Bc| + |Ȳ ∩ D1| + 2|Ȳ ∩ D2|
(6)≥ 3 − |N (u, B1 ∪ B2)| (11)

|N (Y ,C)| ≤ 2|Ȳ ∩ Bc| + |Ȳ ∩ D1| + |Ȳ ∩ D2|. (12)

The inequality (12) holds since each vertex in Bc has at most 2 neighbors in C , and
each vertex in Bd has at most one neighbor in C (see Fig. 5).

Let U := N (Y ,C) ∪ {u}. Apply Lemma 24 to obtain X subject to (24.1)-(24.3).
Then by (24.2), we get

w(X) ≥ w(N (Y ,C)) + |N (u, B1 ∪ B2)| (13)

because each set in N (Y ,C) receives its weight in the first step, and u receives at least
1 per neighbor in B1 ∪ B2. By (24.3) and since the sets in Y constitute disjoint subsets
of sets in B \ (B1 ∪ B2), X ∪̇Y is a family of pairwise disjoint sets. We would like to
show that X ∪ Y yields a local improvement of size at most 10. By (13) and (11), we
obtain

w(X ∪ Y ) = w(X) + w(Y ) ≥ 3 + w(N (Y ,C))

> w(u) + w(N (Y ,C)) ≥ w(N (X ∪ Y , A)),

where N (X ∪ Y , A) ⊆ N (Y ,C) ∪ {u} follows from (24.1) and (9). Thus, it remains
to show that |X ∪ Y | ≤ 10. By (24.3), we have

|X | = |N (U , B1 ∪ B2)| ≤ |N (u, B1 ∪ B2)| + |N (N (Y ,C), B1 ∪ B2)|
≤ |N (u, B1 ∪ B2)| + 2|N (Y ,C)|. (14)

For the last inequality, we used Proposition 22,which tells us that each set z ∈ N (Y ,C)

has degree at most 3 in G. In addition, z must intersect at least one set from Y , and
thus, from Ȳ . In particular, z has at least one incident edge to B \ (B1 ∪ B2) ⊇ Ȳ , and,
thus, at most two incident edges to B1 ∪ B2. Hence, we obtain

|Y | + |X | (14)≤ |Y | + |N (u, B1 ∪ B2)| + 2|N (Y ,C)|
(10)≤
(12)

|N (u, B1 ∪ B2)| + 5|Ȳ ∩ Bc| + 3|Ȳ ∩ D1| + 3|Ȳ ∩ D2|︸ ︷︷ ︸
=:(∗)

.

If (7) holds, we can bound (∗) by 3 times the right-hand side of (7) and deduce an
upper bound of 9. In case (8) is satisfied, we can bound (∗) by 5

2 times the right-hand
side of (8) and obtain an upper bound of 10. Thus, we have found a local improvement
of size at most 10, a contradiction. ��
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Lemma 33 Each set u ∈ A \ C receives at most 4
3 times its own weight during our

weight distribution.

Proof Ifw(u) = 1, then u cannot receive anyweight in the first step because otherwise,
it would receive at least 1 and be contained inC . Moreover, u has at most two incident
edges and receives at most 2

3 via either of them in the second step.
Next, consider the case where w(u) = 2. If u receives 4

3 from a vertex in Bc, then
by Lemma 32, there is no further vertex in B1 ∪ B2 ∪ Bc ∪ Bd from which u receives
weight. As u receives at most 2

3 per edge in all remaining cases, u receives at most
4
3 + 2 · 2

3 = 8
3 = 4

3 · w(u). Finally, assume that N (u, Bc) = ∅. In the first step, u
can receive at most 1 in total (otherwise, u ∈ C) and this can only happen if u has a
neighbor in B1 ∪ B2. The maximum amount u can receive through one edge in the
second step is 1, and this can only happen in situation (d). By Lemma 32, there are
at most 2 edges via which u receives 1. Moreover, u can receive at most 2

3 via the
remaining edges. Again, we obtain an upper bound of 1 + 1 + 2

3 = 8
3 on the total

weight received. ��
Combining Lemma 31 and Lemma 33 proves Theorem 20. Together with Proposi-
tion 19 and Theorem 4, we obtain Corollary 34.

Corollary 34 There is a polynomial-time 4
3 -approximation algorithm for the MLSA in

dags.

5 Conclusion

In this paper, we have presented a simple local search-based 4
3 -approximation for the

MLSA in dags, improving upon the previous state-of-the-art of 7
5 due to Fernandes

and Lintzmayer [10]. Our result is based on a reduction to the hereditary 3-set packing
problem given in [10]. Given that in [10], the reduction is performed in a rather
complicated ad hoc fashion requiring several pages of analysis, the connection between
the MLSA in dags and the hereditary 3-set packing problem remains rather opaque.
In this work, we have shown via a very simple reduction that the MLSA in dags is,
at its core, a hereditary set packing problem. We have further explored the general
connection between approximation guarantees for the hereditary set packing problem
and its restriction to instances with bounded set sizes. More precisely, we have seen
that an α-approximation algorithm for the hereditary k-set packing problem implies
a max{α, k+1

k }-approximation for the hereditary set packing problem. The relation
between approximation guarantees for the hereditary 3-set packing problem and the
MLSA in dags obtained by Fernandes and Lintzmayer [10] corresponds to the special
case k = 3.

Finally, we have established a lower bound of 2− 2
k on the approximation guarantee

achieved by a local search algorithm for the hereditary k-set packing problem that only
considers local improvements of constant size.

As a result, we can conclude that the approximation guarantee of 4
3 is best possible

for the type of algorithm we consider.
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Whether a better guarantee than 4
3 can be, for example, obtained via a reduction

to the hereditary k-set packing problem with k ≥ 4 and an algorithm that considers
local improvements of super-constant size remains a question for future research. Note
that the state-of-the-art approximation algorithms for the unweighted k-set packing
problem crucially rely on also considering well-structured local improvements of
logarithmic size [4, 11].

Finally, it would be interesting to see whether there are other problems that can, in
a natural way, be interpreted as a special type of set packing problem that allows for
improved approximation guarantees.
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