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Abstract
We combine a hidden Markov model (HMM) and a kernel machine (SVM/MKL) into a
hybrid HMM-SVM/MKL generative-discriminative learning approach to accurately classify
high-frequency financial regimes and predict the direction of trades. We capture temporal
dependencies and key stylized facts in high-frequency financial time series by integrating
the HMM to produce model-based generative feature embeddings from microstructure time
series data. These generative embeddings then serve as inputs to a SVM with single- and
multi-kernel (MKL) formulations for predictive discrimination. Our methodology, which
does not require manual feature engineering, improves classification accuracy compared to
single-kernel SVMs and kernel target alignment methods. It also outperforms both logistic
classifier and feed-forward networks. This hybrid HMM-SVM-MKL approach shows high-
frequency time-series classification improvements that can significantly benefit applications
in finance.
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1 Introduction

Intraday price volatility spikes in financial markets pose challenges for accurate intraday
regime classification. Classification of regimes is important for trading strategies that exploit
short-term anomalies, especially when considering their importance for algorithmic execu-
tion and market surveillance (Hamilton 1990; Phillips and Xiao 1998; Cont 2001; Ang and
Timmermann 2012). However, many methods overlook key aspects such as the information
clock (Bauwens and Veredas 2004), high-frequency dynamics, model adaptability (Vanden
2005; Barndorff-Nielsen et al. 2009; Aldrich et al. 2016; Wang 2021) and volatility spikes
that cause regime changes. This paper presents a new hybrid HMM-SVM-MKL learning
approach to address these limitations.

Our methodology combines a hidden Markov model (HMM) and a kernel machine
machine (SVM and MKL) into a two-stage HMM-SVM-MKL approach. Using a HMM on
microstructure time series data, we capture regimes which are overlooked by conventional
time series models, Cartea and Jaimungal (2013). Although a HMM can model complex
dynamics well, it often faces challenges when used in a discriminative capacity (Jaakkola
and Haussler 1999; Bicego 2013). Kernel machines, however, achieve good performance
in predictive tasks, but that depends on the quality of their set of features (Schölkopf and
Smola 2001; Breneman 2005). We extract descriptive features from the HMM (Bicego 2013;
Bicego et al. 2009) and use the different kernel classifiers to improve precision and accuracy
(Lasserre et al. 2006; Valstar and Pantic 2007; Fletcher and Shawe-Taylor 2013). These are
known as generative embeddings. A generative embedding transforms objects into a fixed-
dimensional feature space through a generative model learned from the data. This removes
the need for hand-crafting features and extends the work of Kozhan and Salon on the exacting
information from the order book (Kozhan and Salmon 2012).

In algorithmic trading and, generally, in computational finance applications, it is important
to strike a balance between accuracy and computational efficiency. Our methodology com-
bines the strengths of both approaches, with a balance of interpretability and computational
efficiency (Lasserre et al. 2006; Wang et al. 2012). Our work is motivated by Zhang et al.
(2013), where the graph neural network encoder acts on the input features and their relation-
ships, while contrast learning helps to learn representations of multivariate time series data.
This is a form of hybrid learning, since it combines a graph neural network architecture with
a loss function for unsupervised representation learning.

We classify six distinct intraday regimes using high-frequency data derived from 40major
stocks of the FTSE100. Ourmodel substantially improves accuracy over alternatives, advanc-
ing themodeling of regime identification (Cont 2001;Andersen 1996;Dacorogna et al. 2001).
However, we also acknowledge challenges, especially those related to model validation and
complexity. For the purposes of promoting explainability, we explore feature visualizations
such as t-stochastic neighbor embedding (t-SNE) and RadViz to gain insight and increase
the interpretability of the feature set.

This paper presents three contributions that advance research inmarket microstructure and
high-frequency trading. First, we propose a hybrid learning paradigm that combines prob-
abilistic generative modeling (Cartea and Jaimungal 2015; Hong and Sutardja 2015) with
discriminative machine learning to predict trade direction (Mainali 2021; Li and Liu 2022),
extending previous work (Fletcher and Shawe-Taylor 2013; Coates and Ng 2012). While
Shu et al. (2024) also propose hybrid approaches for financial regime detection, our gen-
eralized HMM-SVM/MKL framework for high-frequency trading applications differs from
their specialized methodology combining statistical jump models for portfolio allocation.
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Second, we establish new benchmarks for ultra-high-frequency financial time series clas-
sification, demonstrating improvements in intraday regime prediction accuracy compared
to existing methods. Third, although hybrid models exist in other domains, this applica-
tion is novel in a high-frequency setting and effectively captures temporal patterns through
HMM-generated feature embeddings from market microstructure data. It represents a novel
extension of applied probability theory.

Our approach does not require manual feature engineering, improves classification accu-
racy compared to single-kernel SVMs and kernel target alignment methods, and outperforms
both logistic classifier and feed-forward networks on market-based features.

1.1 Organisation of the Paper

Section 2 presents themodeling context. The experiment workflow is presented in Section 2.3
presents, followed by the data splitting strategy in Section 2.3.1. Section 3 describes theHMM
market microstructure model, and Section 4 presents the generative feature embeddings
generated by the model. Section 5 presents multiple kernel learning and support vector
machine methods. Section 6 details the automatic class label construction methodology.
In Subsection 7.3 we also evaluate the performance of generative features versus market
features in a simple model setting. The benchmark experiments and descriptions of their
results are presented in Subsections 8.1.1 and 8.1.2. Section 8 presents the results, and
Section 9discusses our conclusions. Thematerial in theSupplement contains further technical
details, feature vizualisations, the algorithm for the data splitting strategy, the algorithms for
the generative embeddings and the Fisher score, and additional material on multiple kernel
algorithms including EasyMKL.

2 ModelingMethodology

This work builds on recent advances in hybrid learning for sequence modeling (Li and Liu
2022), integratingmodernmachine learning techniques for the discriminative element (Wang
2021). We use a two-stage modeling approach.

2.1 First Stage: Choosing a Probabilistic Model of Market Microstructure

In the first stage, building on Cartea and Jaimungal (2013) and Kearns and Nevmyvaka
(2013), we propose a probabilistic model that integrates transaction data with nonlinearity
and heterogeneity. The hidden dynamic structure of executed trade prices and inter-trade
arrival times is inferred, motivated by Cartea and Jaimungal (2013), who focused on joint
dynamics and their simultaneous interdependence.

A central element of this approach is a hidden Markov model (henceforth, HMM) that
identifies intraday trading states and their persistence, focusing on trade price revisions and
arrival times as highlighted by Nasir and Ezeife (2023). This model can incorporate expert
prior knowledge about the underlying variables; for example, setting the number of hidden
states to three — representing bull, bear, and neutral market regimes — appeals to market
intuition, Wang (2021).

This type of HMM is flexible for handling cross-sectional and temporal dependencies in
financial data, which makes it a natural choice for modeling these dynamics. However, it will
lead to fewer states than the maximum likelihood approach introduced by Pohle et al. (2017).
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The first stage involves fitting a hidden Markov model (HMM) to each trading day’s data,
using the previous day’s observations to identify distinct market regimes. The HMMcaptures
underlying market dynamics by modeling the sequential relationships between trades, with
a particular focus on trade price revisions and arrival times (Nasir and Ezeife 2023).

Weobtain the probability distribution of tradeswith nonzero-price and zero-price revisions
after fitting the model in the first stage. One of the most relevant characteristics in this model
is the duration between trades, as it can identify trading behavior over short periods given the
information contained (Aldrich et al. 2016; Cartea and Jaimungal 2013; Engle and Russell
1998). The transitions between states in the HMM are learned from observing sequences of
purchases to build the transition probability matrix (Nasir and Ezeife 2023).

Next, we introduce a principled approach to extract features by leveraging the sequential
modeling strength of an HMM for flexible representation of data sequences in conjunc-
tion with kernel-based discriminative learning, which is inspired by Li and Liu (2022) and
Bicego (2013); Bicego et al. (2008). Market conditions and dynamics are represented by the
generative embeddings, which update continuously based on incoming data ticks.

2.1.1 Generative Embeddings

Generative embeddings, such as the Fisher score and informationmatrix, are derived from the
HMM to capture the sensitivity and information content of the model structure (Jaakkola and
Haussler 1999; Bicego et al. 2009; Carli et al. 2010). These embeddings provide a principled
approach to extract informative features from trade and quote (TAQ) data, serving as a
foundation for creating the discriminative classifiers (Bicego 2013; Mainali 2021; Haiying
et al. 2012). We use a dynamic approach to handle the high-frequency nature of trading data.
Each trading day starts with fitting a new HMM-model based on the previous day’s data
to generate initial embeddings. These embeddings are continuously updated throughout the
trading day via a real-time adjustment mechanism that responds to incoming data ticks.

These type of feature embeddings offer a bridge between traditionalmarketmicrostructure
models and machine learning methods, that we explore in the proposed HMM-SVM-MKL
hybrid framework. As these embeddings can extract meaningful information from latent
variable models, they serve as a foundation for creating discriminative classifiers (Bicego
2013; Mainali 2021; Haiying et al. 2012). Similarly to the information-theoretic approach of
Mainali (2021), the use of HMM-induced generative embeddings provides the mechanism
to quantify and select informative features from trade and quotes (TAQ) data. Embeddings
such as the Fisher score allow us to extract gradients and curvature information from the
model parameters. This captures the underlying sensitivity and information content related
to the model structure.

2.2 Second Stage: Kernel Classification

In the second stage, the HMM-derived embeddings are used as input features for the kernel
classifier. Firstly, an SVM is trained to classify market movements or regimes. In a second set
of experiments, and to capture the complexities of financial data, a multiple kernel learning
(MKL) approach is employed, allowing for the combination of different kernel functions
(Fletcher et al. 2010; Kercheval and Zhang 2015). We use discriminative learning as it is
known to improve generative modeling (Jaakkola and Haussler 1999; Lasserre et al. 2006;
Ghahramani 2001), as an HMM has limited discriminative ability (Valstar and Pantic 2007).
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Each discriminative classifier models the boundaries between various classes representing
intraday market regimes while indicating potential future trade direction.

2.2.1 Multiple Kernel Learning

The reasons for focusing onmultiple kernel learning (MKL)methods are threefold: theMKL
approach is essentially a dynamic ensemble method that constructs a mixture kernel, thereby
encoding complementary information. Second, it is known thatMKLmethods are appropriate
for small but wide datasets (Gönen and Alpaydin 2011; Gong 2020), as is the case with our
high-dimensional generative embeddings extracted from the HMM. The MKL approach
involves integration of different kernels, such as polynomials and RBF. This integration
helps capture nonlinear decision boundaries even with limited data, while the kernel-based
regularization reduces the risk of overfitting (Vapnik 1999). Finally, MKL identifies the
optimal combination of information sources encoded across kernels. This aligns well with
our objective of finding the right balance between the generative embedding features (Bach
et al. 2004; Hussain and Shawe-Taylor 2011; Aiolli and Donini 2015).

The proposed HMM-SVM-MKL learning process is set up in such a manner that it will
be inherently tied to the price distribution and how prices adjust in response to information
flow. This is based on characterizing market regimes with a state-dependent distribution of
logarithmic returns, adjusting for any identifiable activity (Cartea and Jaimungal 2013). These
states highlight the balance between informed traders and noise traders in the price discovery
process. Moreover, a significant implication of this approach to studying microstructure is
the potential to use order flow data to better distinguish the return profiles associated with
different trading activities (Easley et al. 2012; O’Hara 2014). This not only offers insights
into high-frequency trading dynamics, but also emphasizes the potential of exploiting limit
order book dynamics for algorithmic strategies.

Although the use of single kernel approaches (Tay and Cao 2001; Van Gestel 2001; Yang
et al. 2002; Huang et al. 2005) provided foundational groundwork, multi-kernel approaches
align more closely with the intricacies of financial data and have shown success in simi-
lar applications (Fletcher et al. 2010; Kercheval and Zhang 2015). Our proposed learning
approach combines the benefits of generative and discriminative models. Generative models
can capture the underlying structure of the data and learn the relationships between different
variables (Lasserre et al. 2006). Order book embeddings improve classification (Fletcher and
Shawe-Taylor 2013). Therefore, we derive generative embeddings, similar to the Fisher score
and information matrix, that incorporate information about the microstructure of the market
(Jaakkola and Haussler 1999; Bicego et al. 2009; Carli et al. 2010).

We note that we opted to consider these methods in favour of alternative approaches
involving deep learning methods for a few reasons. The first is they are open more readily
to direct interpretation. As highlighted by Kearns and Nevmyvaka (Kearns and Nevmyvaka
2013), two-stage models strike a balance between interpretability and predictive power.

The HMM component captures underlying market dynamics and regime shifts, while the
kernel component focuses on classification performance. In contrast, single-stage models
like neural networks may lack interpretability due to their black-box nature (Sirignano 2019;
Sirignano and Cont 2019).

The proposed generative approach offers robust statistical estimation and calibration capa-
bilities. This framework demonstrates consistent performance across both liquid and illiquid
markets when applied to high-frequency trading and quote data.While deep learningmethods
have shown limitations with high-frequency financial data, particularly regarding overfitting,
our method provides reliable daily predictions across diverse market conditions.
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2.2.2 Core Methodological Ideas

In summary, the core ideas from a modeling perspective are:

1. A principled hybrid approach (generative embeddings used as input into a discriminative
algorithm), which removes the ad hoc choice of handcrafted features.

2. An HMM-induced feature construction method automates the building of features in a
way that is efficient. This can be adapted to a wide range of time-series structures.

3. Specialised time series kernel structures are considered based on Fisher kernels and other
generative embeddings. Explicit and efficient algorithm are developed for the compu-
tation of the Fisher score, the information matrix and other embeddings. The Fisher
score algorithm is the gradient of the log-likelihood function with respect to the model
parameters.

4. In addition, an automated process formaking labels for the classifier training is developed.
5. Last, we utilise the methodology proposed by Bertolini and Finch (2022) to evaluate

feature stability across various market conditions and analyze convergence properties for
generative features.

The performance of the framework is presented in several variants. The objective is to
validate the algorithm’s performance and to compare the algorithm’s accuracy and execution
time in a manner that is applicable in a practical financial application. Specifically, to validate
the effectiveness of the proposed two-stage model, experiments are conducted that compare
its performance with single-stage models.

The results indicate that the HMM-SVM-MKL hybrid model performs better than
single-stage models in classification accuracy and profitability. The literature supports that
two-stage models outperform on complex tasks involving heterogeneity or minority classes.
Carranza-García et al. (2021) showed that two-stage detectors continue to offer the most
robust performance, despite the increasing popularity of one-stage detectors. Similarly, Kon-
topantelis (2018) found that for interaction effects, variations between models were more
pronounced with the two-stage model consistently surpassed by the two fully specified one-
stage models.

Comparing performance across different label mechanisms, the hybrid model improves
accuracy by over 30% and f1 score by over 15% over the other models, confirming its ability
to better capture market complexity.

2.3 Design of the experimental flow

A stepwise procedure of the proposed methodology is described next and presented in Fig. 1.

1. Accumulate training data: from TAQ data compute returns and inter-arrival durations
based on trade clock.

2. Fit an HMM with 3 states for each day in the sample of length T .
3. Compute the HMM-based features for each day i = 1, . . . , T .
4. Fit SVM/MKL models for each day i , and combination of labels 1 to 6 (6 models per

day) using grid search for parameters C and γ . For our purposes, we use polynomial
kernels for MKL and RBF for the single-kernel cases.

5. Evaluate out-of-sample for each day j : j > i , for each combination 1 to 6 (6 models
per day, one for each parametrization of the label mechanism).

123



Methodology and Computing in Applied Probability            (2025) 27:36 Page 7 of 32    36 

Fig. 1 Workflow of the experimental evaluation. In Step 1, TAQ data are used to train the HMM algorithm
and derive features, which are then used to train the various kernel-based classifiers. In Step 2, the classifier
is applied to out-of-sample data and the performance is evaluated

2.3.1 WindowedWaterfall Data Split

We use the windowed waterfall methodology that combines the temporal preservation char-
acteristics of serial waterfall distributions with the computational efficiency of window-based
sampling for time series data partitioning (Raykar and Saha 2015).

Let Wtrain,Wval,Wtest be fixed-size windows,

|Wtrain| > |Wval| > |Wtest|
∀t ∈ T : ttest > tval > ttrain

∀x ∈ Wtest : time(x) > max
y∈Wval

time(y)

∀x ∈ Wval : time(x) > max
y∈Wtrain

time(y),

(1)

where time(x) represents the timestamp of data point x ,T is the time domain, and |W| denotes
the size of window W . The approach maintains strict temporal ordering through fixed-size
windows where the training window size exceeds validation which exceeds testing, while
ensuring that every data point in each window is strictly more recent than all points in the
preceding window, with timestamps satisfying ttest > tval > ttrain.

In this cascading window mechanism, the data systematically transitions through splits,
maintaining the statistical validity of validation and test sets while employing finite windows
to optimize computational resources. The methodology inherits the advantages of waterfall’s
temporal coherence and reduced validation bias, while leveraging windowing to address non-
stationarity and concept drift in temporal distributions. Empirical evidence suggests that this
combined approach can sustain model quality while significantly reducing computational
complexity. The method demonstrates effectiveness for high-frequency temporal sequences
where both long-term patterns and recent distributions must be effectively balanced in the
training regime. This approach addresses the fundamental challenge of temporal data par-
titioning while ensuring statistical robustness in model evaluation frameworks (Raykar and
Saha 2015; Derakhshan et al. 2019).

The method is graphically presented in Fig. 2 and the detailed algorithm is provided in
the Supplement, Section 2.1.

Financial Markets Hypotheses The stochastic nature of information flow, trader behavior,
and price discovery in financial markets forms the core of market microstructure proba-
bility models. While building on prior literature (Easley et al. 2012; O’Hara 2014), this
work combines features from a probabilistic market microstructure framework with machine
learning techniques, focusing on the statistical properties of high-frequency order flow data
to characterize return distributions and predictability in a trading environment. We test three
hypotheses:
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Fig. 2 Windowed waterfall: the figure shows the division of data into training, validation, and test windows,
each with fixed sizes, while maintaining temporal order. As new data becomes available, the test window slides
forward to incorporate the latest observations. The previous test data cascades into the validation window, the
validation data cascades into the training window, and the oldest training data is removed, ensuring a dynamic
and temporally consistent split for model development and evaluation

1. Market participant behavior follows regime-switching stochastic processes influenced by
volatility and price changes, detectable through high-frequency generative embeddings
within the HMM-SVM-MKL framework;

2. State-dependent trading patterns reveal probabilistic market regimes linked to participant
behavior, such as market makers or noise traders, characterized by distinct statistical
signatures in strategies like rebate trading; and

3. Features from the generative HMM embeddings can effectively represent the probabilis-
tic nature of participant behaviors, validated via statistical visualization methods and
characterized through stochastic financial interpretability.

We position microstructure models as probabilistic learning systems capturing the empirical
distributions of prices and state-dependent returns, emphasizing the role of trades as stochastic
information signals in decision-making (Cartea and Jaimungal 2013).

3 Market Structure Captured by HiddenMarkovModels

With the prevalence of high-frequency trading, insight intomarket dynamics can be gained by
examining the tick-by-tick dynamics of trade durations and price revisions (Andersen 1996).
However, the joint distribution of these variables exhibit different statistical properties, as the
trading varies between regimes dominated by distinct participants. Participants with different
information and payoff functions dominate different regimes of market activity (Andersen
1996; Kirilenko et al. 2017; Rengifo and Trendafilov 2015; Rothschild and Sethi 2016).

HMMs model stochastic dynamic systems whose states comprise observable and unob-
servable components. An HMM consists of two processes: a hidden state process Z that
encompasses the general state of the system (i.e.,the market) and an observation process O
that follows a parametric distribution and models the observations, label sequence, providing
an information flow about the market studied. The first fundamental assumption underlying
a discrete-state HMM is that the latent process is a finite-state Markov chain. The second
fundamental assumption is that the distribution of the observation process at any given time
depends only on the current state on which the hidden process finds itself, not on the path of
the observation process or the history of the latent states, see Definition 1.
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Definition 1 Hidden Markov model. A hidden Markov model is a pair of discrete-time
stochastic processes (Zi ,Oi ), i = 0, . . . , T , where Z is a Markov chain, i.e. a station-
ary and homogeneous process that takes values in the finite set of states Z = {ζ0, . . . , ζK }
and such that

P
[
Zi+1 = ζ |Z0, . . . , Zi

] = P
[
Zi+1 = ζ |Zi

]
, (2)

for i = 0, . . . , T , ζ ∈ Z;
O is vector-valued and such that at any time ti , i = 0, . . . , T , the distribution of the random
vectorOi conditional on all the information collected up to time ti depends only on the state
of the latent process,

P (Oi |O0, . . . ,Oi−1, Z0, . . . , Zi ) = P (Oi |Zi ) . (3)

We model the relation of trade durations and logarithmic returns as two independent,
continuously distributed random variables (Cartea and Jaimungal 2013). An observation
process is a two-dimensional object with a parametric distribution, the exact parameters of
which are governed by the states of a latent Markov chain. We assume that we have a finite
number of trades (observations) T , indexed by i = {0, . . . , T }. The latent process is a finite-
state Markov chain and, as such, its dynamics is governed by a K × K transition probability
matrix A with elements a jk ∈ [0, 1],

a jk
def= P

(
Zi+1 = ζk |Zi = ζ j

)
, (4)

i = 0, . . . , T − 1, ζ j , ζk ∈ Z.

The distribution of the initial state at t = 0 is π = (π1, . . . , πk),

πk
def= P(Z0 = ζk), ζk ∈ Z. (5)

In this work, log denotes the natural logarithm, i.e., the logarithm with base e, where e is
Euler’s number. We denote by P : R×R+ ×Z → R the probability function of the complete
data at any time ti . Themarginal probability of the observation data (trade durations and trade
log-price revisions, which is known as the emission probability) is, of course, dependent on
the latent process and will be denoted by POi |Zi=ζ , ζ ∈ Z for compactness, i.e.,

POi |Zi=ζ (o)
def= P (Oi ∈ o|Zi = ζ ) , (6)

o
def= (ξ, τ ) ∈ R × R+, i = 0, . . . , T .

However, given our earlier assumption on the independence of the distribution of duration
and price revision conditional on a state, we may write

POi |Zi=ζ (o) = P�i |Zi=ζ (ξ)Pτi |Zi=ζ (τ ). (7)

We assume that the marginal distribution of trade durations follows an exponential density,

Pτi |Zi=ζ (τ ) = λζ exp(−λζ τ), λζ ∈ R+. (8)

In this study, wemodel the trades for a selection of stocks listed on the FTSE100, where on
any given calendar date we treat each day as a separate data set comprised of intra-daily data,
producing one fitted HMM per day per symbol. We denote the event times for these trades by
{t1, . . . , tT }. These times are recorded as the trades occur and need not be equally spaced; they
form event-spaced time series data. The duration between two consecutive trades is denoted

τi
def= 	ti = ti − ti−1 , τi ∈ R+. The price process of the symbol we are studying, sampled
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at the time of the symbol’s trades, that is, the spot price of the i-th trade, is Si , i = 0, . . . , T .

Logarithmic returns are ξi
def= log Si

Si−1
, i = 1, . . . , T . For these observation processes, we

will interchangeably use the notation Oi or (ξi , τi ). Given a discrete-time stochastic process,
for example, the hidden state process Z, we will use the compact notation Zk:l to denote
the collection of values {Zk, Zk+1, . . . , Zl}, k < l. A similar notation applies to any other
process. Lastly, we will denote the realization of a stochastic process along a given path with

lowercase letters, e.g. zk:l
def= {zk, zk+1, . . . , zl}.

Remark 1 Notice that the assumption of independence in the distribution of duration and
price changes conditional on the latent process, within the context of an HMM, does not
contradict the intuition offered to us by inspecting the data in Fig. 3, that is, a dependence
structure between durations and price changes, since from the perspective of our model, this
is only the marginal density, once the latent process has been integrated out.

Remark 2 The choice of the probability density for trade durations differs from that used
by Cartea and Jaimungal (2013), as the exact format of the exponential distribution with-
out quantisation is utilised. There are well-established degeneracies in any high-frequency
financial data set that would justify a quantisation approach, particularly when one is con-
cerned with modeling the limit order book; see Filimonov and Sornette (2015, Section 4)
for a detailed discussion on the ‘bundling’ effect of high-frequency data and plausible expla-
nations. However, as we are only concerned with the trades data on any given symbol and
having access to data with microsecond accuracy, we found no significant differences when
using quantisation for the trades duration density, and hence chose to work with the exact
density.

Log-price revisions are modeled according to a mixture distribution that arises naturally
from the trade data. We often see a significant number of trades that occur at the same price,
i.e., at zero price revision. In contrast, we model the nonzero part of the price revision as
a normal random variable with zero mean and standard deviation that again depends on

Fig. 3 Logarithmic duration in milliseconds (on the y axis) versus the relative traded price return (on the
x axis) for Anglo Pacific Group, observed over two trading days, 4 August 2017 (left) and 26 September
2017 (right). There is a cluster around trades that arrive quickly and cause either a very small or a very large
perturbation of price. As the duration increases, the price impact is more meaningful
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Fig. 4 An HMM with states ζi that emit variables Oi , i = 1, 2, 3. The transition probability between two
states ζi and ζ j is Ai j , Eq. 4. This example shows a one-step process in which states can only reach the
adjacent state or themselves

the state of the latent process. Specifically, the probability density function of the log-price
revision for our trades data set is

f�i |Zi=ζ (ξ)
def= wζ δ(ξ) + (1 − wζ ) fN (ξ ; 0, σζ ), (9)

where

1. wζ
def= P(ξi = 0|Zi = ζ ) is the conditional probability of observing a zero price revision

trade given the event that the hidden process is at ζ .
2. δ(ξ) is the Dirac delta function centered on zero.
3. fN (ξ ; 0, σζ ) is the probability density of a normal random variable with mean 0 and

standard deviation σζ .

To be able to do anymeaningful work with our parametric model, one needs to learn/calibrate
all parameters to the data. Therefore, to facilitate discussion, we will denote the set of all

parameters that define our discrete-state HMM (Fig. 4) as θ
def= {π ,A, λ̄, w̄, σ̄ }, λ̄, w̄, σ̄ ∈

R
K , where, for example, λ̄ is the vector of trade arrival parameters with entries K , one for

each hidden state and similarly for the other two vectors. The density of the complete data
and the marginal density of the observation data will depend on the vector θ . When we need
to be explicit about the density dependence of this vector, we will use the notation P(o; θ).

The parameter estimation for the HMM is performed using expectation maximization
(EM), which iteratively maximizes the log-likelihood of the observation data through expec-
tation andmaximization steps. To avoid local maxima, we initialize using k-means clustering
and employ multiple parallel solutions with randomized initial conditions, converging when
parameters achieve a relative precision of 10−6. The complete derivation of the EMalgorithm,
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including closed-form solutions for the model parameters and the algorithm, is provided in
the Supplement.

4 HMM Induced Generative Feature Embeddings

In applying HMMs to financial data, our goal was leveraging model-induced features for
their discriminative power, an approach initially proposed by Jaakkola, Jaakkola et al. (1999)
and applied in other domains (Bicego et al. 2008; Jebara et al. 2004; Brodersen 2011) but
not yet with high-frequency financial data. This section outlines our structured process for
deriving the generative-model embeddings.

We employ HMM-induced feature spaces, often referred to as the generative embedding
feature space. This approach is twofold: model calibration (HMM parameter estimation) and
construction of generative features based on the calibrated model (Bicego 2013; Jaakkola
et al. 1999; Bicego et al. 2008). This calibration and feature generation will be performed
intra-daily on a day-by-day basis. Note that these embeddings constitute a model-driven
dimensionality reduction of the data. We focus on four classes of feature space embeddings
derived from the calibrated HMM: state-space embeddings; transition-space embeddings;
emission-space embeddings; and information-flowembeddings. TheseHMM-derived feature
embeddings can be interpreted using machine learning based visualization methods. We
explore visualizations and the characterization of the features in the Supplement, in Section
4.

For a detailed overview of the algorithms and analysis of their computational complexity
of each component (SSE: O(T × K 2), TSE: O(T × K 2), ESE: O(T × K )), see Section 8
of the Supplement.

4.1 State-Space Embedding

The state-space embedding (SSE) measures individual states’ contribution to the most prob-
able generation of the observation sequence. Specifically, this feature vector describes the
frequency (and associated probability) that the state process will pass through a particular
state when a specific observation sequence is seen from the model (Bicego et al. 2009). The
components of the SSE feature vector are defined as

γi,ζ j
def= P

(
Zi = ζ j |O0:T ; θ

)
, (10)

and are the probability of being in state ζ j given the observation sequence O0:T (Bicego et al.
2009). Consequently, we define the quantity (Bicego et al. 2008)

γ̃ζ j
def=

T∑

i=0

γi,ζ j . (11)

Therefore, the quantity γ̃ζ j is the sum over time of (probability) γi,ζ j and can be viewed as
the predicted number of transitions from the state ζ j . As a result, it is a natural indicator of
the importance of the state in the estimation process P (O0:T |θ). Thus, the HMM is in the
state ζ j , while observing O0:T in the model θ . The state-space embedding can now formally
be defined.
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Definition 2 State-space embedding:

γSS(O0:T ; θ)
def=

(
T∑

i=0

γ̃i,ζ1 , . . . ,

T∑

i=0

γ̃i,ζK

)T

∈ R
K . (12)

4.2 Transition-Space Embedding

The transition-space embedding (TSE) evaluates the importance of individual transitions
of our chosen generative model, and is therefore similar to Definition 2. Specifically, the
characteristic property of the model, with which each transition is utilized in the process of
generating the realization of the observation process o0:T . The basic variable is a byproduct
of the EM algorithm, which is the probability of transitioning from one state to another. The
symbol ξ corresponds to the original reference (Bicego et al. 2008).

Definition 3 Transition-space embedding. The transition-space embedding feature ξTS ∈
R

K 2
is

ξTS (o0:T ; θ)
def=

⎡

⎢⎢⎢
⎣

∑T
i=0 P(Zi = ζ1, Zi+1 = ζ1|o0:T , θ)∑T
i=0 P(Zi = ζ1, Zi+1 = ζ2|o0:T , θ)

...∑T
i=0 P(Zi = ζk, Zi+1 = ζk |o0:T , θ)

⎤

⎥⎥⎥
⎦

. (13)

The vector has K 2 components, which can be interpreted as the number of transitions
between all pairs of states, conditional on an observed sequence (Martins et al. 2010). There-
fore, this is a vector representation of the probabilities of transitioning between different
hidden states based on the observed data. Each element of the vector corresponds to the
probability of transitioning between a particular pair of states. By analysing the transition-
state embedding, one can gain insight into the temporal dynamics of the data and how the
different hidden states interact with each other over time.

4.3 Emission-Space Embedding

The emission-space embedding (ESE) is characterised by the sum of the emission probabil-
ities of the model in a particular state. We define such a characteristic property of the model
as the sum of emission probabilities in a given state,

∑T
i=0 P(Oi |Zi = ζ ).

Definition 4 Emission-space embedding (Bicego et al. 2009):

εES(O
T
i=0; θ)

def=
(

T∑

i=0

P(Oi |Zi = ζ1), . . . ,

T∑

i=0

P(Oi |Zi = ζK )

)T

. (14)

4.4 Fisher Score and InformationMatrix Embeddings

Two additional embeddings popular in dynamic settings, such as state-space models, are
the Fisher score and Fisher Information matrix embeddings, Perronnin et al. (2010); Van
Der Maaten et al. (2011). The algorithm to calculate these quantities is presented in the
Supplement (Section 9.5).
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Definition 5 Fisher score and information matrix (Perronnin et al. 2010; Van Der Maaten
et al. 2011): We would like to perform the calculations of the following quantities up to time
n = 1, . . . , T on a set of data (a sequence of observations and parameters),

Fisher score ∇θ logP(o1:n; θ), (15)

Information matrix − ∇2
θ logP(o1:n; θ), (16)

where o1:n is a sequence of observations.

5 Multi-kernel learning and support vector machines

The proposed HMM-SVM-MKL framework leverages support vector machines (SVMs) and
multiple kernel learning (MKL) to perform the classification task. SVMs optimize a decision
boundary by minimizing the empirical risk regularized by a penalty term

min
f ∈F

1

n

n∑

i=1

�(yi , f (xi )) + λ‖ f ‖H, (17)

where � is the hinge loss function and λ controls the trade-off between margin maximization
and misclassification error. The solution involves identifying the optimal hyperplane defined
by

d(xi ,w, b) = w · xi + b = 0, (18)

wherew is the weight vector and b is the bias term. The dual formulation of the optimization
problem is given by

max
α

n∑

i=1

αi − 1

2

n∑

i, j=1

αi yi k(xi , x j )y jα j , (19)

subject to
∑n

i=1 αi yi = 0 and 0 ≤ αi ≤ 1
2nλ

. Here, k(xi , x j ) is the kernel function, allowing
nonlinear classification through the kernel trick.

5.1 Kernel Trick

The kernel trick projects data into a higher-dimensional space where it becomes linearly
separable. The kernel function computes the inner product in this space,

k(xi , x j ) = 〈φ(xi ),φ(x j )〉H, (20)

where φ is the feature map. Common kernel functions include radial basis functions (RBF),
polynomial kernels, and linear kernels, as detailed in Table 1 in the Supplement.

5.2 Multi-kernel Learning (MKL)

We leverage MKL which enables the automated combination of multiple kernels, rather
than relying on a single kernel. Two key challenges are addressed: determining optimal
similarity measures across different kernel functions, and effectively integrating information
from diverse data sources or modalities. The latter point is of particular relevance for our
approach. Careful consideration is needed for the functional form of kernel combination and
the optimization framework for learning combination weights. This usually happens through
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structural risk minimization or similarity-based optimization. We can express the combined
kernel as

kη(xi , x j ) =
M∑

m=1

ηmkm(xmi , xmj ), (21)

where ηm ≥ 0,
∑M

m=1 ηm = 1 represent the weights.

5.2.1 Computation of the Weights

Optimization-based MKLmethods set kernel weights by solving optimization problems that
minimize risk or maximize margins. In contrast, kernel alignment approaches use simpler
methods based on measuring similarity between kernel matrices and the ideal kernel from
label information.Wewill use both, as the KTA approach is a useful benchmark. The weights
ηm represent the relative importance of each kernel, computed using performance metrics or
kernel target alignment (KTA). KTA is defined as follows,

Definition 6 Kernel target alignment (Cristianini et al. 2006).
Consider a kernel matrix K with elements Ki j = k(xi , x j ) for a Mercer kernel k(〈·, ·〉);

then the kernel target alignment (KTA) is

F(K,Y) = 〈K,Y〉√〈K,K〉〈Y,Y〉 , (22)

where the covariance matrix Y = yyT has element yi j = yi y j = 1 if both examples belong
to the same class, otherwise −1, as the class labels yi = ±1. As a baseline mixture weight
for the multi-kernel method, the mixture weights for the kernel j are

ηm = F(Km,Y)
∑M

m=1 F(Km,Y)
. (23)

While not guaranteeing global optimality of the mixture weights for kernel kη(xi , x j ), this
approach provides a computationally efficient baseline that improves prediction accuracy
over single kernels. We refer the reader to Section 2 in the Supplement, and to this (partial)
list of excellent references on the topic: Cristianini et al. (2006); Lanckriet et al. (2004);
Smola and Schölkopf (2004); Gonen and Alpaydin (2011).

6 Automatic Class Label Construction

Supervised learning in high-frequency markets requires constructing meaningful labels as
targets. For our second stage, we develop an automated labeling framework using dynamic
thresholds based on empirical quantile estimates, building on López de Prado (2018)’s
multiple-barrier approach. Our proposed labeling method builds on prior work in state
identification and segmentation of time-series data, including persistent state modeling (by
penalizing transitions) and probabilistic regime identification using statistical jump mod-
els (Nystrup et al. 2020; Aydınhan et al. 2024). While these methods do emphasize latent
state modeling and probabilistic segmentation, they rely on either penalizing state jumps for
temporal consistency or estimating regime probabilities. We complement this by employing
dynamic empirical quantile thresholds that adapt to local volatility dynamics andmarket con-
ditions, operating on trade time rather than calendar time. We combine multiple time frames
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through moving averages and exponential weighting to capture both short-term fluctuations
and longer-term trends. Unlike the existing methods that focus on latent states, our method
generates both binary and multiclass labels using range-based volatility estimators, making
it specifically tailored for supervised learning. By grounding regime detection in observable
market behavior while maintaining computational efficiency, we offer a method that inte-
grates into machine learning pipelines and offers a scalable solution for high-frequency data.
Adaptability in volatile, data-intensive environments is improved while avoiding the need
for assumptions about market states. The framework generates labels using smoothed return
trends,

sEWMA(ti ) = wxti + (1 − w)sEWMA(ti−1), (24)

where xti is the log return and w ∈ [0, 1] is the smoothing parameter. Labels oti = −1, 0, 1
are assigned based on deviations from this trend using a threshold cvti , with vti as the realized
volatility estimator,

vt =
√√
√
√ 1

4N log 2

N∑

i=1

(

log
pHi
pLi

)2

. (25)

Two primary labeling strategies are implemented:

• Point-in-time: Labels based on threshold crossings relative to previous trade prices
• Moving-average-based: Labels derived from deviations from price moving averages

The labeling mechanism generates six label sets through different parameterizations of these
strategies, detailed in the Supplement. This approach ensures adaptability across various asset
classes and trading frequencies while maintaining robustness to market noise and volatility
dynamics (Sirignano and Cont 2019; Krauss et al. 2017; Dixon 2018). Furthermore, we
provide an illustrative example of the algorithm in Fig. 5.

We use a range of options for capturing different aspects of market behavior, from short-
term fluctuations to longer-term trends, and from binary to multiclass categorizations. The

Fig. 5 Illustrative time series with the visualization of some stylized boundaries for the labeling mechanism
framework. At every point in the trade clock, we observe what the moving average trade price was, and as
long as the current trade price exceeds the empirical quantile threshold, computed using historical volatility,
an event that constitutes a label is constructed. The binary label indicator function can be seen with the green
and red labels
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Table 1 Parameter settings for each label in the experiments

Label Type Lookback window Updown threshold

One Binary point in time 40 0.05%

Two Binary point in time 8 0.09%

Three Multiclass point in time 24 0.05%

Four Binary point in time 9 0.41%

Five Multiclass point in time 15 0.10%

Six Binary point in time 15 0.03%

The updown threshold is used to trigger the labelingmechanism.This table presents the experimental parameter
settings for six different labels (one to six) in the context of financial time-series analysis. Each row represents
a distinct label, and the columns provide information on the label’s type, lookback window, and updown
threshold expressed as a percentage

choice of parameterization depends on the specific trading objectives, risk tolerance, and
market conditions of interest. These are provided in Table 1.

7 Data and Features

This section presents an overview of the raw high-frequency trading data from 40 FTSE
100 stocks and a set of analyses for the features, establishing the empirical foundation for
our experiments. Building on the raw data, we demonstrate that HMM-based generative
embeddings effectively capture market regimes and outperform traditional market features,
particularly during high-volatility periods.

7.1 Data Description

The data consists of millisecond resolution quotes and trades for 40 FTSE 100 stocks over
the 2017 calendar year, with time stamps featuring 10−7 precision sourced fromReuters. The
raw data includes trades and (top of the order book) quotes (TAQ), OHLC information, with
key variables comprising time stamps, trade prices, bid/ask, and quoted volumes, enabling
intra-day microstructure modeling of inter-trade durations and price changes. To construct
the features, models were fitted separately for each symbol and day to generate embedding
features, with the kernel classifiers built on top. Table 2 compiles an aggregate summary of the

Table 2 Summary of data for all 40 symbols for all trading days of 2017

Metric Median

Duration/milliseconds 0.71

Standard deviation of the log return 0.46

Number of trades in a day 2115

Number of traded shares 717.25

Duration is the difference between the calendar time of sequential trades. The table summarizes key trading
statistics, such as the duration in milliseconds, the standard deviation of logarithmic return, the number of
trades per day, and number of traded shares
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40 assets throughout 2017. The data exhibit significant cross-stock variability in key descrip-
tors, highlighting diverse market microstructure dynamics. This spans multiple dimensions:
mean durations (0.41 seconds for CCL.L to 1.29 for AV.L), daily trades (789.5 for APF.L to
5,493.0 for BLT.L), return volatility (0.40 for SDR.L to 0.55 for AZN.L), and traded volume
(predominantly 900.00, with exceptions like BLT.L at 509.00 and CCL.L at 500.00).

7.1.1 Choice of Symbols to Illustrate the Methodology

Our analysis centers on five representative FTSE 100 stocks (APF.L, CCL.L, CPG.L, RBS.L,
and KGF.L) chosen across basic materials, consumer goods, banking, and retail sectors.
These stocks exhibit diverse microstructure properties, exemplified by CCL.L’s fast trading
dynamics (0.41-second durations) versus APF.L’s slower patterns (0.56 seconds), enabling
evaluation of our framework across varying market regimes. This difference in liquidity,
volatility, and trading characteristics, supplemented by features from additional FTSE 100
symbols, provides insights into sector-specific influences on high-frequency strategies, fea-
ture engineering, and trading performance (Chaboud et al. 2014).

7.1.2 Performance Metrics

In the machine learning literature, a classifier is evaluated with precision (positive predictive
value) and recall (sensitivity), which we define below (Takahashi et al. 2022; Santafe et al.
2015). No single metric fully captures the efficacy of the model (Manning et al. 2008), but
together these metrics are well-suited for evaluating multi-class imbalance problems. Our
goal is to create a pragmatic and practical framework, the experimental assessment becomes
an integral part of our efforts. However, there is no precise recipe for the evaluation of
classification algorithms (Takahashi et al. 2022). The relevant details and formulation can be
found in Manning, Manning et al. (2008).

1. Precision is the ratio of true positives to the sum of true positives and false positives.
Similarly, the recall gauges the model’s ability to correctly identify true positives.

2. Beyond these individual metrics, the f1-score offers a harmonized evaluation criterion,
taking into account the trade-offs between precision and recall. To accommodate the
complexity of multiclassification problems, variations such as the macro- f1, micro- f1,
and the weighted f1 score are employed. The latter, in particular, modifies the macro
version to weight out label imbalance.

3. In multilabel classification scenarios, theHamming loss emerges as an important metric.
It accounts for the number of instances-label pairs that are misclassified, providing a
single comprehensive measure of performance across multiple labels (Gao and Zhou
2013). The experimental results and performance metrics are presented in Tables 3, 4, 5,
6, 7, 8 and 9.

7.2 Feature Extraction and Analysis

Our feature analysis methodology consists of three complementary approaches: empirical
feature characterization, stability validation and comparative analysis.

The empirical analysis employs statistical and visual techniques to understand feature
relationships and discriminative power. We use Pearson correlation coefficients to quantify
linear dependencies between features, while Shapiro-Wilk tests assess their distributional
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Table 3 Mean duration, number
of trades, mean return standard
deviation of logarithmic price
change, and mean traded volume
for each stock

Stock Mean Mean nr. Mean stdev Mean
ticker duration of trades of returns traded volume

AAL.L 0.50 845 0.53 900.00

APF.L 0.56 790 0.55 900.00

AV.L 1.29 845 0.53 900.00

AZN.L 0.58 1487 0.55 900.00

BARC.L 0.75 1778 0.54 900.00

BATS.L 0.54 4488 0.48 900.00

BLT.L 0.48 5493 0.43 509.00

CCL.L 0.41 4576 0.46 500.00

CEY.L 0.49 2371 0.49 510.00

CPG.L 0.46 1768 0.46 600.00

CPI.L 0.49 1688 0.49 679.25

ITV.L 0.53 1653 0.50 717.25

KGF.L 0.50 1713 0.48 750.00

LAND.L 0.50 1652 0.48 720.50

LGEN.L 0.54 1713 0.47 750.00

LLOY.L 0.60 1780 0.46 900.00

MAB.L 0.70 1717 0.47 750.00

MKS.L 0.76 1780 0.47 900.00

NG.L 0.78 1934 0.46 753.50

PRU.L 0.75 2153 0.45 750.00

PSON.L 0.71 2082 0.46 752.62

RB.L 0.71 2163 0.45 750.00

RBS.L 0.72 2193 0.45 753.50

RDSa.L 0.71 2260 0.44 748.50

RDSb.L 0.73 2314 0.43 695.75

REL.L 0.71 2284 0.41 674.62

RR.L 0.69 2209 0.42 700.00

RTO.L 0.71 2188 0.41 706.50

RSA.L 0.51 811 0.50 900.00

SDR.L 0.72 2165 0.40 700.00

SGE.L 0.71 2139 0.41 706.50

SHP.L 0.69 2165 0.42 700.00

SMIN.L 0.71 2115 0.41 674.62

SPT.L 0.73 1883 0.42 677.00

STAN.L 0.75 2115 0.41 663.00

TSCO.L 0.76 2165 0.41 676.00

ULVR.L 0.74 2198 0.40 659.75

UU.L 0.77 2165 0.41 641.00

VOD.L 0.74 2198 0.40 661.00

All data are from 2017. All symbols were used in the experiments, but
only a subset of the results are presented in this main body
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Table 4 The table lists 12 symbols

Symbol Accuracy Precision Recall f1-weighted f1-micro f1-macro Hamming loss

AAL.L 0.03 0.21 0.07 0.08 0.03 0.12 -0.03

APF.L 0.02 0.06 0.03 0.04 0.02 0.04 -0.02

AV.L 0.01 0.20 0.04 0.06 0.01 0.08 -0.01

AZN.L 0.03 0.27 0.09 0.07 0.03 0.13 -0.03

BARC.L 0.00 0.18 0.02 0.03 0.00 0.05 0.00

BATS.L 0.06 0.26 0.10 0.09 0.06 0.14 -0.06

BLT.L 0.05 0.25 0.11 0.09 0.05 0.15 -0.05

CCL.L 0.09 0.36 0.23 0.14 0.09 0.28 -0.09

CEY.L 0.02 0.18 0.07 0.08 0.02 0.11 -0.02

CPG.L 0.05 0.28 0.15 0.12 0.05 0.20 -0.05

ITV.L 0.01 0.15 0.04 0.05 0.01 0.07 -0.01

KGF.L 0.02 0.23 0.09 0.06 0.02 0.14 -0.02

Differences between generative embeddings and market features across key metrics (generative-market) are
presented. Positive values indicate that generative embeddings outperform market features, while negative
values indicate the opposite. For Hamming loss, negative values are favourable since a lower Hamming loss
indicates fewer prediction errors

properties. To visualize high-dimensional feature interactions, we employ RadViz for reveal-
ing feature-label relationships through radial coordinate mapping, and t-SNE for analyzing
local feature similarity structures through nonlinear dimensionality reduction.

To validate feature stability, we conduct extensive synthetic experiments using an HMM
calibrated to match typical market characteristics. The synthetic data generation process
employs a two-state HMMwith transition probabilities and emission distributions estimated
from historical market data. We generate multiple price series of increasing lengths (1,000 to
100,000 observations) to assess convergence properties. For each series, we compute the full
set of generative embedding features and analyze their statistical properties across different
sample sizes and market regimes. The experiments demonstrate that our features exhibit
strong stability properties: mean values converge within 5,000 observations, while variance
estimates stabilize within 10,000 observations - equivalent to approximately one trading day

Table 5 Summary of methods used, their roles, and performance characteristics

Method Role Performance description

Logistic regression Baseline Standard binary and multiclass classi-
fication with one-vs-rest extension

Feed-forward network (FFN) Baseline Deep learning model capturing non-
linear relationships, adaptive learning
rate

Single-kernel SVM Benchmark Traditional SVM trained with all cho-
sen features

Kernel target alignment (KTA) Benchmark Utilizes kernel target alignment

Multi-kernel learning (MKL) Best-performing method Deploys 11 distinct polynomial ker-
nels

123



Methodology and Computing in Applied Probability            (2025) 27:36 Page 21 of 32    36 

Table 6 Logistic regression performance across market regime labels

Label Accuracy Precision Recall f1-weighted f1-micro Hamming loss

One 0.45 0.42 0.45 0.43 0.45 0.55

Two 0.42 0.39 0.42 0.40 0.42 0.58

Three 0.31 0.28 0.31 0.29 0.31 0.69

Four 0.48 0.45 0.48 0.46 0.48 0.52

Five 0.35 0.32 0.35 0.33 0.35 0.65

Six 0.31 0.29 0.31 0.30 0.31 0.69

of tick data. The data study validates that our generative embeddings exhibit rapid asymptotic
convergence to consistent estimates, typically within single trading day timescales. This
stability in feature estimation supports their applicability for capturingmarket microstructure
dynamics in real financial time series applications. The experimental protocol and detailed
convergence analysis are provided in the Supplement.

Finally, we evaluate the predictive value of our generative embedding features against
traditional market indicators through a comparative analysis using logistic regression models
across multiple stock symbols.

7.2.1 Analysis of the HMM-Based Generative Feature Embeddings

We analyze the generative features extracted from real market data to identify and remove
potential collinear structures that could impair out-of-sample classification accuracy. Our
analysis examines feature separability (Wang and Suter 2008; Zhang et al. 2017) through two
approaches: correlation analysis of feature embeddings computed day-by-day for each asset,
andmulti-dimensional visualization techniques to explore relationships between features and
target labels (Liu and Wang 2016).

Our objectives include ranking individual features and feature pairs by covariance and
applying RadViz and t-SNE for separability analysis. The same features and labels are used
as in the hybrid model, without kernelization for RadViz and t-SNE. This reveals links
between classification accuracy and separability, justifying our multi-kernel approach, as
linear or single kernel classifiers cannot sufficiently separate all class pairs based on their
geometry (Makowiec 2017).

Table 7 Feed-forward neural network performance across market regime labels.

Label Accuracy Precision Recall f1-weighted f1-micro Hamming loss

One 0.97 0.49 0.97 0.96 0.97 0.03

Two 0.85 0.45 0.85 0.82 0.85 0.15

Three 0.45 0.22 0.45 0.41 0.45 0.55

Four 0.65 0.31 0.65 0.62 0.65 0.35

Five 0.35 0.18 0.35 0.32 0.35 0.65

Six 0.10 0.08 0.10 0.09 0.10 0.90
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Table 8 Kernel target alignment (KTA) performance metrics across six market regime labels

Label Accuracy Precision Recall f1-weighted f1-micro f1-macro Hamming loss

1 0.81 0.96 0.81 0.85 0.81 0.47 0.19

2 0.71 0.74 0.71 0.72 0.72 0.47 0.29

3 0.33 0.40 0.33 0.32 0.33 0.27 0.68

4 0.71 0.74 0.71 0.72 0.72 0.47 0.29

5 0.33 0.40 0.33 0.32 0.33 0.27 0.68

6 0.42 0.47 0.42 0.40 0.42 0.30 0.58

Results show strong performance for Labels 1 and 2 (high volatility regimes) but significant degradation for
more complex market states (Labels/Regimes 3-6). Performance metrics include accuracy, precision, recall,
various f1 scores, and Hamming loss, averaged across all stocks and out-of-sample test periods

RadViz RadViz projects multidimensional data onto a 2D plane through a unit circle repre-
sentation (Hoffman et al. 1997), where variables are anchored equidistantly and instances are
positioned by spring forces proportional to their normalized [0, 1] coordinate values. This
visualization reveals feature correlations and dependencies, with central points indicating
similar values across contrasting dimensions and peripheral points showing dominance of
specific features (Patrick et al. 1999). The RadViz analysis reveals distinct class/regime sepa-
ration patternswhen combining volatility-based theHMMfeatureswith transition probability
embeddings. State transition features (ξ0→1, ξ2→0) demonstrate strong discriminative power
through distinct radial clustering, while volatility indicators (Fischer score of δ weight and
of δλ) exhibit broader dispersion, capturing complementary instantaneous volatility infor-
mation. The opposition between transition probability features and emission distribution
parameters (γ0, λweight) characterizes market regime changes, with compact clusters in spe-
cific market conditions demonstrating shared feature interactions. Features like ξ1→0 bridge
multiple market regimes, while dispersed features excel at outlier identification. A detailed
feature-wise selection of RadViz plots is available in the Supplement.

t-SNE
t-SNE is a technique for embedding high-dimensional data in lower dimensions for visu-
alization (Van Der Maaten and Hinton 2008). It models similarities between data points
in both high and low-dimensional spaces, minimizing KL divergence between distributions
with gradient descent. This non-linear transformation reveals structure while preserving local

Table 9 Multi-kernel learning (MKL) classification performance across market regime labels

Label Accuracy Precision Recall f1-weighted f1-micro f1-macro Hamming loss

1 0.98 0.96 0.98 0.97 0.98 0.49 0.02

2 0.91 0.84 0.91 0.87 0.91 0.48 0.09

3 0.50 0.50 0.50 0.46 0.50 0.33 0.50

4 0.84 0.70 0.84 0.77 0.84 0.46 0.16

5 0.79 0.62 0.79 0.69 0.79 0.44 0.21

6 0.73 0.55 0.73 0.61 0.73 0.39 0.27

The approach demonstrates robust performance across all labels, with particularly strong results for labels 1
and 2 (0.98 and 0.91 accuracy respectively). Results are averaged across all 40 FTSE stocks and out-of-sample
test periods, showing consistent performance even in complex market states (labels 5 and 6)
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relationships. We apply t-SNE to the raw features and kernelized features, exposing the value
of our kernelization approach.

The t-SNE visualizations of the kernelized features reveal three primary clustering struc-
tures: high volatility states form distinct clusters in the outer regions of the projection space,
while moderate and low volatility states showmore nuanced separation in the central regions.
In the three-dimensional t-SNE space, we observe that the first component (t-SNE 1) pri-
marily captures the separation between extreme market states, while the second and third
components (t-SNE 2, t-SNE 3) reveal finer granularity in the feature relationships, particu-
larly in transition periods between volatility regimes. These nonlinear projections, provided
in the Supplement, demonstrate how our kernel transformations improve the separability
of market states while preserving the continuous nature of regime transitions, with notable
clustering occurring at scales between -400 and 600 in the primary components.

7.2.2 Market Features for the Benchmarking

We construct sets of features based on the indicators moving average spread, on-balance
volume (OBV) and Chaikin money flow (CMF). The set of moving average spreads identifies
trends based on price momentum over different time frames. It can signal potential reversals
when short-term price movements deviate significantly from a more long term trend. The
OBV adds a volume dimension to these set of features, helping confirm the strength of the
detected trend. For instance, if the price is trending upward andOBV is also rising, it suggests
that there is significant buying pressure supporting the trend. CMF confirms trend strength
by measuring volume-weighted accumulation and distribution over a specified period. A
positive CMF during an uptrend indicates buying pressure, while a negative CMF during
a downtrend signals selling pressure. All formulas and implementation are detailed in the
Supplemental material.

7.3 Do the Generative Features AddValue?

The initial comparison involves testing on an unknown testing subset after evaluating the
performance of generative embeddings and market features in a logistic regression model
using a training subset. This comparison aims to determine which type of feature (generative
embeddings or market features) performs better in predicting the outcome variable in a
logistic regression model. We find that generative embeddings outperformmarket features in
predicting the outcome variable in a logistic regression model based on their higher accuracy
and lower error rates.Wepresent the results for 13 symbols.We calculate various performance
metrics (such as the classification report, which provides precision, recall, and f1 scores and
the overall accuracy).

This specific experiment includes splitting the dataset into training and testing subsets for
model training and evaluation. After training on the training subset, the logistic regression
model undergoes performance evaluation on the testing subset. Similar, to the rest of the
experiments, this assessment comprises calculating various performance metrics such as
precision, recall, f1 scores, and overall accuracy in the classification report. In this comparison
of two types of features, the first type is generative embeddings, and the second type is market
features.

Specifically, generative embeddings demonstrate higher accuracy (e.g., AAL.L: 0.71 vs.
0.68), f1 macro (e.g., APF.L: 0.63 vs. 0.59), f1 micro (e.g., CPG.L: 0.72 vs. 0.67), and f1
weighted scores (e.g., KGF.L: 0.75 vs. 0.69), along with superior precision and recall (e.g.,
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AZN.L: precision 0.60 vs. 0.34, recall 0.51 vs. 0.42) and lower Hamming loss (e.g., BATS.L:
0.19 vs. 0.25). These findings suggest that the generative embeddings are more reliable and
effective, providing a more balanced prediction performance and fewer errors.

8 Model Performance Results and Discussion

Weevaluate ourHMM-based generative embeddings through three increasingly sophisticated
approaches: baseline models (logistic regression, FFN) previously validated in financial pre-
diction tasks (Dixon et al. 2017; Dixon 2018; Gu et al. 2020), single-kernel method (SVM)
(The results of the single method can be found in the Supplement, Tables 1 & 1.), and
multi-kernel approaches (KTA as in Eq. 22, and our proposed MKL algorithm) utilizing
11 distinct polynomial kernels. The experimental framework employs cross-validation for
robust out-of-sample testing, with particular attention to performance during varying market
conditions.

All experiments are conducted on the FTSE 100 stock data (described in Section 7.1),
with summaries of the performance metrics provided.

8.1 Baseline Models Analysis

We establish baseline performance through two widely-used approaches in financial predic-
tion tasks: logistic regression and feed-forward neural networks (FFN). These methods serve
as fundamental benchmarks against which we evaluate our kernel-based approaches.

8.1.1 Logistic Classification

For binary classification tasks, we implement logistic regression with a standard 0.5 decision
threshold, balancing sensitivity and specificity. The multiclass extension employs a one-vs-
rest (OvR) approach, where separate models are fitted for each class against all others. This
approach maintains consistent decision criteria while addressing the inherent multi-regime
nature of market states. Performance varies significantly across the six market regime labels,
with accuracy ranging from 31.32% to 48.01%. Label/Regime Four achieves the highest
accuracy, while Label/Regime Six shows the poorest performance. The large variation in
performancemetrics (detailed in Table 6) reveals the challenges of capturing complexmarket
dynamics through linear classification (Tables 7, 8 and 9).

8.1.2 Feed-Forward Neural Network

Following validated architectures (Dixon et al. 2017;Dixon 2018),we implement a sequential
FFN model with an input layer matched to feature dimensionality, two dense hidden layers
(64 and 32 neurons) with ReLU activation, a sigmoid output layer, and Adam optimizer using
binary cross-entropy loss.

Despite achieving high accuracy, the FFN model demonstrates key limitations: frequent
false positives (48.62%precision), substantial performance deterioration forminority classes,
and poor generalization to complex market states (evidenced by Label Six’s low 9.54%
accuracy and high 90.46% Hamming loss).

These baseline experiments uncover fundamental challenges in market regime classifica-
tion.While linear methods struggle to handle complex market dynamics, neural architectures
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have shown promise but lack consistency, and traditional approaches often fail to maintain
performance across all regimes, particularly when contending with class imbalances.

8.2 Kernel-BasedMethods

Building on the baseline results, we evaluate three kernel approaches (progressively):
single-kernel SVM, kernel target alignment (KTA), and multi-kernel learning (MKL). This
progression allows assessment of how generative embeddings perform with increasingly
complex learning frameworks.

8.2.1 Single Kernel Experiments

For the single-kernel implementation, we apply SVMs using both RBF and polynomial ker-
nels to predict trade direction. The experimental framework employs 5-fold cross-validation
to select optimal parameters, with C values ranging from 10−1 to 102 for RBF kernels and
degrees ν ∈ 1, . . . , 11 for polynomial kernels. This cross-validation search exhaustively
iterates over parameter combinations, with RBF kernels exploring α values from 10−5 to
10−1.

8.2.2 Kernel Target Alignment andMulti-Kernel Approach

The KTA approach demonstrates improved classification capability over single-kernel meth-
ods, achieving 55% accuracy and 62% precision across all labels. However, performance
varies significantly across market regimes, particularly during high-volatility periods. This
variability suggests that while KTA effectively aligns kernel features with target labels, it may
not fully capture the complexity of market state transitions. TheMKL framework, employing
11 distinct polynomial kernels, consistently delivers superior performance (79% accuracy,
70% precision). This improvement stems from MKL’s ability to adaptively combine multi-
ple kernel representations, effectively capturing both linear and nonlinear relationships in the
HMM-derived features. The framework’s strength lies in its ability to maintain performance
across differentmarket conditions,making it particularly valuable for real-world applications.

8.2.3 Multi-Kernel Learning Framework

The MKL implementation utilizes 11 distinct polynomial kernels, optimizing their com-
bination through individual kernel performance weighting. This approach demonstrates
consistently superior performance (across all metrics and market regimes).

The MKL framework shows particular strength in handling complex market regimes,
maintaining robust performance even in challenging conditions. For Label 1, it achieves
98% accuracy with 0.96 precision, while maintaining above 70% accuracy even for the more
challenging Labels 5 and 6. This consistent performance across different market conditions
highlights the framework’s ability to capture and adapt to varying market dynamics. Each
kernel method demonstrates progressive improvement in handling market microstructure
complexities, with MKL showing the most robust and consistent performance. The results
validate our approach of combining multiple kernels to capture different aspects of market
behavior, particularly evident in the handling of complex market regimes.
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8.2.4 Implementation Considerations

Each symbol exhibits distinct characteristics in terms of volume traded, average trade arrival
times, and price volatility. Our approach of fitting and training models daily, then applying
the learned classifiers out-of-sample, offers two key advantages: it requires relatively small
training sets and emphasizes kernel quality over the classifier choice in determining final
model accuracy. This methodology proves especially valuable in high-frequency trading
environments where rapid adaptation to changing market conditions is crucial.

8.3 Comparative Analysis Across Methods

To systematically evaluate the relative performance of all methods, we present a unified
comparison across baseline and kernel approaches. Table 10 provides this comprehensive
comparison.

This comparison reveals key insights. First, there is a clear progression in performance
from simple to more sophisticated methods, with each kernel approach showing improve-
ment over baseline methods. Second, while FFN shows strong initial improvement over
logistic regression (accuracy increase from 41% to 64%), it struggles with precision (32%),
indicating potential overfitting. Finally, MKL demonstrates superior performance across all
metrics, with statistically significant improvements over both baseline and other kernel meth-
ods. This comparison naturally leads us to examine performance variations across different
market regimes-labels inmore detail. The following section showshoweachmethod performs
under varying market conditions, with particular attention to the stability and consistency of
predictions in complex market states.

8.4 Label-Specific Analysis Across Methods

The relative performance of each method varies significantly across different market
regimes/labels. We analyze performance patterns across all six, with particular attention
to how methods handle increasing regime complexity (Fig. 6).

MKL demonstrates notably strong performance for Labels One and Two (accuracies of
0.98 and 0.91 respectively), indicating robust classification of clear market regimes. Even for
more complex states (Labels Three through Six), MKLmaintains superior performance, with
accuracy never falling below 0.50. In contrast, KTA shows strong initial performance (0.81
accuracy for Label One) but degrades more rapidly for complex market states, falling to 0.33
accuracy for Labels Three and Five. The baseline methods show a more severe performance

Table 10 Performance comparison across all classification methods

Model Accuracy Precision Recall f1-weighted f1-micro f1-macro Hamming loss

Logistic 0.41 0.49 0.42 0.47 0.41 0.35 0.59

FFN 0.64 0.32 0.42 0.55 0.64 0.32 0.36

KTA 0.55 0.62 0.55 0.56 0.55 0.38 0.45

MKL 0.79 0.70 0.79 0.73 0.79 0.43 0.21

Results demonstrate progressive improvement from baseline to kernel methods, with MKL showing statistical
superiority (p < 0.05 compared to logistic baseline) across all metrics. Metrics are averaged across all labels
and symbols for out-of-sample predictions, with best results highlighted in bold. Results shown are averages;
for detailed statistics including median, standard deviation, and min/max values, see Supplement Section 13
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Fig. 6 Comparative classification performance across all methods and labels. Solid bars represent accuracy
while diagonally-hatched bars show precision. Methods are color-coded: Logistic regression (light blue),
FFN (green), KTA (pink), and MKL (dark blue). Performance metrics range from 0 to 1 on the y-axis. Results
demonstrateMKL’s superior andmore consistent performance across all labels, particularly in complexmarket
regimes (labels 3-6)

deterioration across labels.While FFNachieves competitive accuracy forLabelsOne andTwo
(0.97 and 0.85), its performance drops dramatically for complex regimes, reaching just 0.10
accuracy for Label Six. Logistic regression shows consistent but poor performance across
all labels, never exceeding 0.48 accuracy. This label-specific analysis reveals that method
performance correlates strongly with market regime complexity, with MKL maintaining the
most stable performance across all regime types while traditional approaches struggle with
market state complexity. Though simpler methods may suffice for basic market states, our
findings demonstrate that robust classification of complex market regimes requires multi-
kernel-based approaches.

9 Conclusion

Our work presents a hybrid machine learning methodology (HMM-SVM-MKL) that com-
bines multiple kernel learning (MKL), the HMM-induced features, and an automated flexible
labeling algorithm for advanced financial time series classification.We demonstrate its effec-
tiveness in classifying trade directionality and short-term high-frequency regimes for FTSE
100 stocks. This combination is unique and marks a significant improvement for algorithmic
trading and high-frequency time series applications by enhancing prediction accuracy and
capturing complex market dynamics.

A key advantage of our approach is the ability to handle various types of financial data,
such as traded prices, volumes, and intertrade durations, which can be beneficial for model-
ing state-dependent trading. The HMM-derived generative embeddings effectively leverage
distributional changes in prices and durations to identify regimes associated with different
market participants’ behaviors. This type feature extraction provides valuable information
for developing adaptive trading strategies. Empirical comparisons with deep learning alter-
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natives reveal two important advantages. First, our methodology achieves comparable or
superior performance with substantially lower computational requirements, making it par-
ticularly suitable for real-time applications. Second, the framework requires significantly
smaller training datasets, addressing a key limitation of deep learning approaches in prac-
tical trading applications. These benefits are demonstrated through extensive evaluations
using unbalanced FTSE data sets, where the MKL model shows consistent advantages in
both binary and multiclass classification problems.

The framework’s effectiveness stems from its ability to fuse information from multiple
kernels, addressing the inherent complexity of high-frequency financial data. Our hybrid
approach delivers robust performance while requiring far less training data compared to
deep learning methods, making it more practical for real-world implementations. This effi-
ciency in handling market microstructure analysis enables trading systems to recognize and
adapt to changing market conditions dynamically. Although the methodology provides sig-
nificant practical value to traders through well-informed decision-making capabilities amid
changing regimes, it faces limitations in model complexity and interpretability. These chal-
lenges, however, are outweighed by the substantial contributions to algorithmic trading and
the framework’s importance in understanding market dynamics. Future research directions
should focus on three key areas: enhancing model transparency to address interpretability
challenges, evaluating additional data types beyond traditional market metrics, and exploring
alternative kernel learning approaches for specific market conditions. This work represents
an essential step toward more responsive and insightful modeling of complex financial mar-
kets, while acknowledging the ongoing need for continued refinement and extension of these
techniques.
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