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ABSTRACT
Functional data and their analysis have become increasingly popular in various fields of data science. This
article considers estimation and inference of the average treatment effect under unconfoundedness when
the covariates involve a functional variable, and proposes the inverse probability weighting estimator, where
the propensity score is estimated by using a kernel estimator for functional variables. We establish the

√
n-

consistency and asymptotic normality of the proposed estimator. Numerical experiments and an empirical
application demonstrate the usefulness of the proposed method.
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1. Introduction

Functional data and their statistical analysis have become
increasingly popular in various fields of data sciences (Ramsey
and Silverman 2005; Ferraty and Vieu 2006; Hsing and Eubank
2015; Kokoszka and Reimherr 2017). One of the major tools
of functional data analysis is regression analysis using func-
tional data, such as scalar-on-function regressions, functional
response models, and their generalizations to generalized linear
models, sparse models, or dependent observations. As in the
conventional statistical analysis for Euclidean data, these func-
tional regression methods are useful to describe the conditional
means for a response given covariates.

In this article, we are concerned with estimation and infer-
ence of the average treatment effect (ATE) of a binary treat-
ment when covariates contain some functional data. In the
conventional setup where the vector of covariates is Euclidean,
various estimation methods for the ATE are available, such
as the inverse probability weighting (IPW), regression-based,
and doubly-robust estimators (see Imbens and Rubin 2015, for
a survey). A common feature of these estimation methods is
that they are developed as functionals of preliminary estimators
for the conditional mean and/or propensity score functions.
Since researchers typically do not have enough information to
specify the parametric forms of those functions, nonparametric
approaches are commonly employed. When covariates contain
some functional data, such nonparametric approaches are even
more important due to complex structures of functional data.

In order to address this issue for estimation of the ATE
with a functional covariate, this article advocates the kernel
smoothing approach with functional covariates to estimate the
propensity score or conditional mean outcome functions (see
Ferraty and Vieu 2006, for an overview). In particular, we show
that the IPW estimator with the plug-in kernel estimator for the
propensity score function is consistent, asymptotically normal
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at the parametric rate, and asymptotically efficient. Although
this result is analogous to the one for the case of Euclidean
covariates (Hirano, Imbens, and Ridder 2003), its extension to
the case of functional covariates is far from trivial. A major
challenge is to develop a semiparametric theory for functionals
of nonparametric kernel estimators with functional covariates.
Ferraty et al. (2010) derived the uniform convergence rate of the
kernel estimator with functional covariates, which is a building
block for semiparametric theory. Boente and Vahnovan (2017)
established consistency and asymptotic normality for the kernel-
based estimator of the partially linear model. This article also
makes a theoretical contribution to the literature on semipara-
metric theory with functional data.

This article extends the scope of causal inference methods
to allow functional control variables. In the literature of causal
inference, Miao, Xue, and Zhang (2020) studied estimation of
the ATE with functional covariates. However, they employed
parametric forms to specify the propensity score function, and
did not present the theoretical properties of their parametric
approach. In contrast, our method is nonparametric and is
robust to misspecification of the propensity score function. A
recent paper by Lin, Kong, and Wang (2023) investigated causal
inference for functional outcomes with Euclidean covariates;
on the other hand, this article considers the case of Euclidean
outcomes with functional covariates. Finally, there are also
some related yet distinctly different papers in the literature,
such as Wong and Chan (2018); Zhao (2019), and Singh, Xu,
and Gretton (2024), developed functional covariate balancing
approaches using the reproducing kernel Hilbert space method
for causal inference in observational studies. Wong and Chan
(2018) and Zhao (2019) typically considered the case where
functional objects are functions of Euclidean covariates; in com-
parison, our paper focuses on the case where the covariate itself
is a functional variable. Singh, Xu, and Gretton (2024) covered
a more general setup, where both the treatment and covariates
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may be infinite-dimensional, and they derived a (nonparamet-
ric) uniform convergence rate for their estimator of the causal
response curve; in contrast, our paper is concerned with the
binary treatment and

√
n-consistent estimation of the ATE.

This article is organized as follows. Section 2 provides a
brief introduction to functional data and their applications in
economics. Section 3 outlines our setup and the IPW estimator
with a functional covariate. Section 4 presents our main theo-
retical results: Section 4.1 derives the uniform convergence rate
for a kernel-weighted summation with a functional covariate,
and Section 4.2 establishes the

√
n-consistency and asymptotic

normality of the IPW estimator. In Sections 5 and 6, we conduct
simulation studies and an empirical application to illustrate the
usefulness of the proposed method. The proofs of our theoretical
results, related lemmas, and additional simulation comparisons
are contained in the supplementary material.

2. Functional Data and their Application in Economics

A functional variable is defined as a random variable taking val-
ues in an infinite dimensional space, and observations of func-
tional variables are called functional data (Definition 1.1 of Fer-
raty and Vieu 2006). The functional data commonly emerge in
different aspects of research areas: archaeologists use the shapes
of bones—functional data captured from ancient skeletons—to
study diseases that affected people in the distant past; criminol-
ogists use the trajectory through life of offending—functional
data that record how criminal behavior develops and changes
over an individual’s lifetime—to study the formation and devel-
opment of criminal behaviors; meteorologists use historical
weather data—functional data often recorded at intervals of
minutes and spanning many years—to analyze and forecast
future weather trends. For the causal inference literature, func-
tional regressors are applied in clinical trials (e.g., Ciarleglio
et al. 2018; Zhao et al. 2018 for functional magnetic resonance
imaging data). We refer to the textbook by Ramsey and Silver-
man (2005) for various applications of functional data across
disciplines such as criminology, archaeology, psychology, neu-
rophysiology, auxology, meteorology, biomechanics, education,
etc.

Particularly, economic data collected over various time spans
represents one of the most extensively analyzed types of func-
tional data, including historical price indices from various goods
and financial markets as well as key macroeconomic indicators
such as GDP, trade volume, exchange rates, etc. (Ramsey and Sil-
verman 2005, chap. 3) analyze the functional data of the monthly
nondurable goods manufacturing for the United States, using a
technique called the phase-plane plot. Using functional covari-
ates, Florens and Van Bellegem (2015) study fertility rates over
ages, and Benatia, Carrasco, and Florens (2017) study hourly
temperature and electricity consumption. Also, in Section 5.2 of
our paper, we conduct a simulation study on a market regulator
model, using functional covariates sampled from real-world
high-frequency data of the Standard & Poor’s 500 Index over the
past 17 years; in Section 6, we incorporate the monthly realiza-
tions of the federal funds effective rate as functional covariates to
study the effects of monetary policy on economic indicators such
as inflation, industrial production, and unemployment rate.

In the examples mentioned above, a typical functional dataset
usually consists of a collection of curves. However, the func-
tional data encompasses a much broader scope than curves,
including vectors of curves (such as traces of handwriting),
surfaces, arrays, images, or any other more complicated infinite-
dimensional mathematical objects. A recent application in eco-
nomics and finance by Jiang, Kelly, and Xiu (2023) adapts a
statistical pattern recognition algorithm, using patterns of his-
torical prices—rather than conventional time series of prices—
as inputs for a convolutional neural network to predict future
returns. They show that their methods can yield more accurate
predictions of returns and provide more profitable investment
strategies.

To motivate our approach using functional data (say, {Xi}n
i=1),

it is insightful to compare with the conventional approach1

using its discretized version (say, {Xdisc
i }n

i=1 with Xdisc
i ∈ R

d).2
First, we cite a textbook explanation by (Ferraty and Vieu 2006,
Chapter 1.3, p. 7):

Indeed, if for instance we consider a sample of finely discretized
curves, two crucial statistical problems appear. The first comes
from the ratio between the size of the sample and the number
of variables (each real variable corresponding to one discretized
point). The second, is due to the existence of strong correlations
between the variables and becomes an ill-conditioned problem in
the context of multivariate linear model. So, there is a real necessity
to develop statistical methods/models in order to take into account
the functional structure of this kind of data.

In fact, the cited paragraph indicates three problems asso-
ciated with discretizing functional data into finite-dimensional
vectors and then applying conventional statistical approaches: (i)
high-dimensional covariates, (ii) strong correlations among the
covariates resulting from the discretization, and (iii) ignorance
of the functional structure of the data. In the following, we will
discuss these three problems in sequence.

Related to point (i), we further note that the researcher needs
to choose the dimension of d for discretization, which is a highly
nontrivial issue particularly for nonparametric regression using
Xdisc

i as (typically high-dimensional) covariates. If the chosen d
is too small, it will inevitably lead to the loss of data information.
Conversely, if d is too large, the nonparametric method will
suffer from the curse of dimensionality. Moreover, if d is chosen
to be higher than the sample size, many regular estimation
approaches, such as linear and nonlinear least squares methods,
cannot be implemented.

To illustrate point (ii), we reproduce (Ferraty and Vieu 2006,
Figure 2.8) and display 28 curves representing yearly differenti-
ated log electricity consumption from 1973 to 2001 in Figure 1:

1Here, we refer to the statistical approaches that obtain their estimators by
regressing a vector of dependent variables on a vector of finite-dimensional
covariates as the “conventional approach”. This includes various types of
common linear, nonlinear, and nonparametric estimators.

2Note that there is a distinction between the discretization used to conduct
the conventional approach and the discretization as a practical implemen-
tation for the functional approach. In practice, functional data are usually
collected as samples of discretized functional objects since inputting an
infinite amount of data into a computer is technically infeasible in most
cases. In this section, we focus on the first type of discretization, and leave
the investigation of the second type to Appendix B of the supplementary
material.
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Figure 1. Yearly differentiated log electricity consumption from 1973 to 2001
(reproduced from Fig. 2.8 of Ferraty and Vieu 2006).

We observe that all curves follow a similar seasonal pattern
in electricity consumption: increasing during summer, declining
through autumn, and rising once more toward year’s end. While
each curve can be represented as a high-dimensional vector in
the sample, we observe significant co-movement among curves
from different years, indicating high correlations between ran-
dom values from the same curve. Consequently, a conventional
regression method, which uses these highly correlated covariates
as direct inputs, is likely to experience a severe loss of estimation
efficiency.

Now we move to point (iii). As illustrated by Geenens (2011),
an issue especially important for nonparametric regression is
that conventional regression methods based on discretized vec-
tors transformed from functional covariates typically fail to
consider the functional structure of this type of data, resulting in
inefficient exploration of the information embedded in infinite-
dimensional functional data. To see concretely this point, con-
sider a nonparametric classification problem for discriminating
forgeries from genuine signatures as in Geenens (2011). In this
example, the dependent variable Di is the indicator for genuine
signatures, and Xi(t) = (X1i(t), X2i(t)) ∈ R

2 represents the
position of the pen at time t. The discretized covariates Xdisc

i =
{(X1i(tm), X2i(tm))}d

m=1 is constructed by the grid (t1, . . . , td).
To classify genuine signatures, we can estimate P(Di = 1| ‖Xi −
x‖ = 0) for the functional covariate or P(Di = 1|Xdisc

i = xdisc)
for the Euclidean covariates resulting from discretizing func-
tional covariates, where ‖ · ‖ is a semi-norm formally discussed
in the next section. One appealing feature of the functional data
approach is that the researcher can choose the seminorm ‖ · ‖
to measure proximity of two signatures based on the functional
structure. For instance, one may set

‖X1 − X2‖ =
√∫

(X′′
1 (t) − X′′

2 (t))2dt,

where X′′
i (t) is the tangential projection of the vector of second

derivatives with respect to time of Xi(t). Thus, this semi-norm
would account for the similarity in tangential pen acceleration
between two signing processes, which is typically determined
by the movement of the wrist (a feature commonly accepted as
very hard to reproduce by skilled forgers). On the other hand,
the conventional approach trying to estimate P(Di = 1|Xdisc

i =
xdisc) may exhibit rather different patterns and overlook key fea-
tures embedded in the functional data, such as wrist movement.

It should be noted the above distinction between two
approaches is not only practically useful but also theoretically
important. Note that the convergence rates of the nonparametric
estimators are typically determined by decay rates of the prob-
ability P(‖Xi − x‖ ≤ h) for the functional data approach or
P(‖Xdisc

i − xdisc‖E ≤ hdisc) for the discretized Euclidean data
approach, where h and hdisc are bandwidths shrinking to zero.
Then even though P(‖Xdisc

i − xdisc‖E ≤ hdisc) decays at a very
fast rate with a moderate or large value of d, the probability
P(‖Xi−x‖ ≤ h) with appropriately chosen ‖·‖ may decay much
slower so that one may achieve a sufficiently fast convergence
rate for the nonparametric estimator ofP(Di = 1| ‖Xi−x‖ = 0)

by the functional data approach.
Overall, all these discussions and examples demonstrate that

the introduction of functional data analysis in economics is not
only theoretically important but also holds substantial potential
for practical applications.

3. Setup and Estimator

Let us introduce the basic setup. For each unit i = 1, . . . , n,
we observe an indicator variable Di for a treatment (Di = 1 if
treated and Di = 0 otherwise), and an outcome variable

Yi =
{

Yi(0) if Di = 0
Yi(1) if Di = 1 ,

where Yi(0) and Yi(1) are potential outcomes for Di = 0 and 1,
respectively. This article is concerned with the situation where
in addition to Euclidean covariates Zi ∈ R

k, the researcher
observes a functional covariate Xi whose support X is a subset
of a semi-metric space M with a semi-norm. Let ‖ · ‖ be a semi-
norm for X . Based on the sample {Di, Yi, Xi, Zi}n

i=1 of size n, we
wish to conduct inference on the average treatment effect (ATE)
θ = E[Yi(1) − Yi(0)]. To identify θ , we impose the following
conventional assumption. Let p(x, z) = P{Di = 1| ‖Xi − x‖ =
0, Zi = z} be the propensity score. Note that similar to the
conditioning of the event Zi = z for (continuous) Euclidean
covariates Zi, the event ‖Xi −x‖ = 0 for the functional covariate
Xi is typically a null event.

Assumption 1. There exists a positive constant c ∈ (0, 1/2) such
that p(x, z) ∈ [c, 1 − c] for each x ∈ X and z ∈ R

k. Di and
{Yi(0), Yi(1)} are conditionally independent given (Xi, Zi).

Under this assumption, the ATE θ can be identified as

θ = E

[
DiYi

p(Xi, Zi)
− (1 − Di)Yi

1 − p(Xi, Zi)

]
. (3.1)

In order to estimate θ , we first estimate the propensity score
p(Xi, Zi) by kernel smoothing, that is,

p̂(Xi, Zi) =
∑n

j �=i DjK(‖Xj − Xi‖/h)Kz((Zj − Zi)/hz)∑n
j �=i K(‖Xj − Xi‖/h)Kz((Zj − Zi)/hz)

, (3.2)

where K : [0, ∞) → R and Kz : R
k → R are kernel func-

tions, and h and hz are bandwidths. It should be noted that the
propensity score p(x, z) is defined as the conditional probability
given that ‖Xi − x‖ = 0 by using the semi-norm ‖ · ‖, and
its estimator p̂(x, z) is also defined based on the kernel weights
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with respect to this semi-norm. Kernel localization by using
a semi-norm is commonly applied in nonparametric methods
with functional covariates (see Ferraty and Vieu 2006, for an
overview). As presented in Remark 1 and numerical illustrations
in Section 5, a large part of explanatory tools for functional
data consists in displaying them in low-dimensional spaces, so
allowing for a semi-norm for kernel smoothing is important in
our setup. An intuitive example of semi-norms for the Euclidean
space Rd is a norm for a lower dimensional Euclidean subspace
of Rd.

Based on this nonparametric estimator, the inverse probabil-
ity weighting estimator for θ can be estimated by

θ̂ = 1
n

n∑
i=1

[
DiYi

p̂(Xi, Zi)
− (1 − Di)Yi

1 − p̂(Xi, Zi)

]
. (3.3)

Although we focus on the Nadaraya-Watson or local constant
estimator p̂(Xi, Zi) to estimate the propensity score, it is pos-
sible to extend our asymptotic analysis to the local linear-type
estimator as in Ferraty and Nagy (2022). However, it is beyond
the scope of this article to study whether our asymptotic theory
can be adapted to other estimation methods, such as sieve-based
methods.

Since this is the first paper that introduces the kernel smooth-
ing approach to estimate the ATE with a functional covariate, we
present our theoretical results for the inverse probability weight-
ing (IPW) estimator θ̂ in (3.3) in the next section. Although
it is beyond the scope of this article, it is of interest to study
alternative estimation methods for the ATE, such as the non-
parametric regression-based and doubly robust estimators as in
Farrell (2015) for the case of Euclidean covariates (see Remark 4
for a further discussion).

4. Asymptotic Theory

4.1. Uniform Convergence Rate of Kernel Weighted Sums

Hereafter to simplify the presentation, we focus on the IPW esti-
mator θ̂ with no Euclidean covariates. In particular, we study the
asymptotic properties of the IPW estimator with no Euclidean
covariates

θ̂ = 1
n

n∑
i=1

[
DiYi
p̂(Xi)

− (1 − Di)Yi
1 − p̂(Xi)

]
,

where

p̂(Xi) =
∑n

j �=i DjK(‖Xj − Xi‖/h)∑n
j �=i K(‖Xj − Xi‖/h)

. (4.1)

To this end, as a building block, we first establish the uniform
convergence rate of the following general weighted summation:

�̂(x) = 1
nϕ(h)

n∑
i=1

K(‖Xi − x‖/h)Wi, (4.2)

where {Wi}n
i=1 is a sequence of scalar random variables of W ∈

R, and ϕ(h) is defined in Assumption 2(ii). Intuitively, nϕ(h)

can be viewed as the effective sample size for nonparametric
estimation. For example, the Nadaraya-Watson estimator for

the conditional mean or propensity score can be represented
by the ratio of the weighted summations in the form of (4.2).
The uniform convergence rate of �̂(x) was studied by Ferraty
et al. (2010). In order to achieve the

√
n-consistency for the

semiparametric object θ̂ , we need to establish a sufficiently fast
uniform convergence rate for �̂(x) overX (typically op(n−1/4)).
The treatment on the stochastic part is an adapted version of
Ferraty et al. (2010) to our focus on causal inference, and the
analysis on the bias part using higher-order kernels is new in
the literature.

LetB(x, h) = {y ∈ X : ‖x−y‖ ≤ h} be a ball centered around
x ∈ X with radius h and F(x, h) = P{X ∈ B(x, h)} be the small
ball probability of X. F(x, ·) may be interpreted as the cumulative
distribution function of ‖x − X‖ for given x. For ε > 0, a finite
set G ⊂ F is called an ε-covering of F with respect to ‖ · ‖ if
for any f ∈ F there exists g ∈ G such that ‖f − g‖ ≤ ε. The
minimum cardinality of a ε-covering of F with respect to ‖ · ‖ is
called the covering number ofF with respect to ‖·‖ and denoted
by N (F , ‖·‖, ε). Also for any positive sequences {c1n} and {c2n},
c1n ∼ c2n means c1n/c2n → C for some C ∈ (−∞, ∞) as n →
∞. To derive the uniform convergence rate of the stochastic part
�̂(x) − E[�̂(x)], we impose the following assumptions.

Assumption 2. (i) {Di, Yi, Xi}n
i=1 is an iid sample of (D, Y , X) ∈

{0, 1} × R × X . The ε-covering number of X satisfies
logN (X , ‖ · ‖, ε) = O((log(1/ε))η) for some η > 0.

(ii) There exist positive constants Cϕ , cF < CF , and cf < Cf , an
integer α ≥ 2, and a nonnegative function f (x) on x ∈ X
such that ϕ(h) = Cϕhα ,

cFϕ(h)f (x) ≤ F(x, h) ≤ CFϕ(h)f (x),
cf ≤ inf

x∈X f (x) ≤ sup
x∈X

f (x) ≤ Cf , (4.3)

hold for all x ∈ X .
(iii) supx∈X E[|Y|ζ | ‖X − x‖ = 0] ≤ CY for some ζ > 2 and

CY < ∞.
(iv) K : [0, ∞) → R has support on [0, 1] and is continuously

differentiable on (0, 1). Further, K is Lipschitz on [0, ∞),
that is, |K(v)−K(v1)| ≤ CK |v− v1| for some CK < ∞ and
all v, v1 ∈ [0, ∞), and it holds that

∫
K(z)dz = 1 and∫

z	K(z)dz = 0 for 	 = 1, . . . , α − 2, α, . . . , q − 1,∫
zα−1K(z)dz �= 0,

∫
zqK(z)dz �= 0,

for some positive integer q ≥ α + 1. Furthermore, F(x, s) is
differentiable in s, and∫

K(s/h)

{
dF(x, s)

ds

}
ds ∼ f̄ (x)

∫
K(s/h)

{
dϕ(s)

ds

}
ds,

(4.4)∫
K2(z)

{
dF(x, zh)

dz

}
dz ∼ f̄ (x)

∫
K2(z)

{
d
dz

ϕ(zh)

}
dz,

where f̄ (x) is a nonnegative functional on x ∈ X with 0 <

cf̄ ≤ infx∈X f̄ (x) ≤ supx∈X f̄ (x) ≤ Cf̄ < ∞ for some
constants cf̄ and Cf̄ .

(v) As n → ∞, h → 0 and nϕ(h)(log n)−η → ∞ where η is
the constant in Condition (i).
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Assumption 2 (i) is on the data.3 Although we focus on the
independent data, it can be extended to allow weakly dependent
data under certain mixing conditions as in Ferraty and Vieu
(2006, chap. 11). The condition on the covering number is a
key to establishing the uniform convergence rate as in Ferraty
et al. (2010). This assumption covers: a compact subset of a
separable Hilbert space with a projection semi-norm (η = 1)
(see Remark 1), and the unit ball of the Cameron-Martin space
with the supremum norm (η = 2) (see, van der Vaart and van
Zanten 2007).4

Note that in contrast to the Euclidean case (as in Li, Racine,
and Wooldridge 2009), we assume the total boundedness of X .
Indeed for the uniform convergence result in Proposition 1, the
total boundedness ofX imposed in Assumption 2(i) is sufficient.
Note that if the notion of total boundedness is defined for a
given metric space, then every compact set is totally bounded
and every totally bounded set is bounded.

Assumption 2(ii) is on the small ball probability F(x, h)

whose decay is characterized by a polynomial ϕ(h) = Cϕhα

of the bandwidth h. We emphasize that the kernel estimator
p̂(Xi, Zi) for the propensity score and the inverse probability
weighting estimator θ̂ in (3.3) for the ATE do not involve ϕ(h),
and thus the researcher typically does not have to know or
choose the constants Cϕ and α. These constants appear in the
intermediate object �̂(x) in (4.2) and are used for the asymptotic
analysis.

Intuitively, when X ∈ R, F(x, h) can be approximated by
2fX(x)h with the Lebesgue density fX of X, and this assumption
reduces to the one with ϕ(h) ∼ h. Thus, the requirement
cf ≤ infx∈X f (x) in (4.3) can be understood as the one that the
Lebesgue density fX should be bounded away from zero in the
Euclidean case (in our case, the density or mass of ‖X−x‖ at zero
should be bounded away from zero). Furthermore, as illustrated
in Remark 1, intuitively the constant α may be interpreted as
the dimension of X . In physical sciences, α is also known as the
fractal order for fractal-type processes (Ferraty and Vieu 2006,
chap. 13).

3This article focuses on the case of the binary treatment so that the expected
potential outcomes E[Yi(d)] for d = 0, 1 are two-dimensional objects. In a
recent paper, Singh, Xu, and Gretton (2024) proposed a reproducing Hilbert
space kernel-based ridge regression estimator for the causal response curve
θ(d) = E[Yi(d)] defined over a Polish space D, which may be continuous
or infinite-dimensional. Their paper also allows functional covariates and
presents a uniform convergence rate for their estimator θ̃ (d), that is, the
rate for supd∈D |θ̃ (d) − θ(d)|. Since θ(d) is an infinite-dimensional object
in Singh, Xu, and Gretton (2024), their convergence rate is typically slower
than the parametric

√
n-rate. In contrast, the ATE θ(1)− θ(0) of our interest

is finite-dimensional and the
√

n-consistent estimation may be possible as
shown in Theorem 1.

4The condition on the covering number is high level so that we do not need to
specify the dimension of the domain of the functions X ∈ X . The covering
number N (F , ‖ · ‖, ε) typically gets larger as the dimension of the domain
increases. For example, an upper bound of the covering number of the unit
ball of the reproducing kernel Hilbert space (RKHS) Hσ ([0, 1]d) generated
by the Gaussian radial basis function kernel K(x, y) = exp(−σ−2‖x −
y‖2

E) for a, b ∈ R
d and σ > 0 with the Euclidean norm ‖ · ‖E is given

as logN (Hσ ([0, 1]d), ‖ · ‖∞ , ε) � (log(1/ε))d+1, where ‖ · ‖∞ is the
supremum norm (see, Proposition 1 of Zhou (2002), for more details). Note
that the RKHS Hσ ([0, 1]d) includes the Cameron-Martin space associated
with a Gaussian measure as a special case (see Example 3 in Ferraty et al.
2010). In this example, the constant η in Assumption 2 (i) can be interpreted
as the dimension of the domain.

Assumption 2(iii) is a standard moment condition. Assump-
tion 2(iv) requires a sufficiently higher-order kernel (of order
q ≥ α + 1) compared to the decay rate of the small ball
probability. In order to control the bias term in Proposition 2,
another requirement on the kernel order q will be introduced.
The condition on

∫
zα−1K(z)dz (called Cϕ,K in Proposition 2)

is imposed to avoid degeneracy of a variance component. The
requirement in (4.4) intuitively rules out highly non-separable
functional forms on the derivative dF(x,s)

ds . The function f̄ (x) is
an approximately multiplicative component in dF(x,s)

ds depending
only on x. Under the condition (4.3) in Assumption 2(ii), this
requirement is typically satisfied with f (x) = f̄ (x). We refer to
(Ferraty and Vieu 2006, chap. 13) for specific examples. Assump-
tion 2(v) is on the bandwidth h. Its second condition says that h
cannot decay too fast to guarantee a sufficient amount of small
ball probability to control the variance term.

Under these assumptions, the uniform convergence rate of
�̂(x) − E[�̂(x)] is obtained as follows.

Proposition 1. Let W be a function of (D, Y , X) satisfying
supx∈X E[|W|ζ | ‖X − x‖ = 0] ≤ CW for some ζ > 2 and
CW < ∞. Under Assumption 2, it holds

sup
x∈X

|�̂(x) − E[�̂(x)]| = Op

(√
(log n)η

nϕ(h)

)
.

Note that the convergence rate depends on the decay rate
ϕ(h) of the small ball probability, and the component η controls
the covering number of X .

We next present two results to control the bias term of the
kernel estimators with a functional covariate. In our context, the
bias term can be written as (see Lemma 1 in Supplement)

E

[
1

nϕ(h)

n∑
i=1

K(‖Xi − x‖/h){g(Xi) − g(x)}
]

,

where g(x) = E[W| ‖X − x‖ = 0]. Let ϕ̂(x) = 1
n
∑n

i=1 K(‖Xi −
x‖/h) be an estimator of the normalizing component of the small
ball probability, Cϕ,K = ∫

zα−1K(z)dz, and ψg(s) = E[g(X) −
g(x)| ‖X − x‖ = s] for a functional g : X → R. As clarified in
Proposition 2, ϕ̂(x)/ϕ(h) can be considered as an estimator of
Cϕ,K f̄ (x), where f̄ (x) may be interpreted as the Lebesgue density
for the Euclidean case. We add the following conditions.

Assumption 3. Let γ > 0 and let γ0 be the integer such that
γ0 < γ ≤ γ0 + 1. ψg is γ0-times differentiable on (0, 1] and the
γ0th derivative ψ

(γ0)
g is (γ − γ0)-Hölder continuous on [0, 1].

Furthermore,∫
ψg(s)K(s/h)

{
dF(x, s)

ds

}
ds ∼ f̄ (x)

∫
ψg(s)K(s/h)

{
dϕ(s)

ds

}
ds,

(4.5)
where f̄ (x) is defined in Assumption 2 (iv).

The first condition is on the smoothness of the function g (or
ψg) to be estimated. The second condition is used to guarantee
approximations of functionals of the small ball probability in
terms of ϕ(·). The requirement in (4.5) is considered a gener-
alization of (4.4) in Assumption 2 (iv) (i.e., (4.4) corresponds to
the case of ψg(s) = 1). Under this assumption, we obtain the
following results to control the bias term.
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Proposition 2. Under Assumption 2, it holds

sup
x∈X

|ϕ(h)−1
E[ϕ̂(x)] − Cϕ,K f̄ (x)| = o(1).

Additionally, suppose that Assumption 2 (iv) is satisfied with
q ≥ max{α + 1, γ0 + α − 1}, and that Assumption 3 holds true.
Then it holds

sup
x∈X

|E[(g(X) − g(x))K(‖X − x‖/h)]ϕ(h)−1| = O(hγ ).

The first result of this proposition is a useful intermediate to
characterize the limit of the denominator of the kernel estimator
in (4.1) with a functional covariate. The second result establishes
the order of the bias term of the kernel estimator. Similar to the
conventional kernel estimator, the bias gets smaller for a given
sequence of h as the function ψg becomes smoother (i.e., γ gets
larger).

Remark 1. (Example) We close this subsection with an example
where Assumptions 2 and 3 are satisfied. Let L2

R
([0, 1]) be the

Hilbert space of all real-valued functions that are square inte-
grable with respect to the Lebesgue measure on [0, 1] with the
L2-norm given by ‖a‖2 = √〈a, a〉 where 〈a, b〉 = ∫ 1

0 a(t)b(t)dt
and a, b ∈ L2

R
([0, 1]). Let {1,i, . . . , α,i}n

i=1 be an iid sequence
with compactly supported density f and let {qk(t)}∞k=1 be an
orthogonal basis of L2

R
([0, 1]). Define Xi(t) = ∑α

k=1 k,iqk(t).
In this case, the space X for X can be defined as X = {X =∑α

k=1 ξkqk : (ξ1, . . . , ξα) ∈ supp(f)} ⊂ L2
R
([0, 1]). Note that

X ∈ X is determined by the α-dimensional coefficient vector
ξ = (ξ1, . . . , ξα)′. Furthermore, X is a compact set with respect
to the norm ‖X‖ := √〈X, X〉 =

√∑α
k=1 ξ 2

k . If the object
g(X) = g(

∑α
k=1 ξkqk) is sufficiently smooth on supp(f), then

Assumptions 2 and 3 are typically satisfied. For example, if we
assume that there exists a function ḡ : R

α → R such that
g(

∑α
k=1 ξkqk) = ḡ(ξ1, . . . , ξα) and that ḡ and f are (γ0 + 1)-

times continuously partially differentiable on the interior of
supp(f), then one can see that Assumptions 2 (i), (ii), (iv), and
(v) and 3 are satisfied with η = 1, ϕ(h) ∼ hα , and f = f̄ = f.

Remark 2 (Euclidean covariates). Although the presentation will
be tedious, when we have additional Euclidean covariates Z ∈ Z
for a compact Z ⊂ R

dz , the uniform convergence rate of the
kernel-weighted summation �̂(x, z) = 1

nϕ(h)hdz
z

∑n
i=1 K(‖Xi −

x‖/h)Kz((Zi − z)/hz)Wi will be

sup
x∈X ,z∈Z

|�̂(x, z) − E[�̂(x, z)]| = Op

(√
(log n)η

nϕ(h)hdz
z

)
,

and the bias term will be of an analogous order that involves a
power of hz.

Remark 3 (Conditional ATE). Although the focus of this article
is on estimation of the ATE θ , the theoretical results for �̂(x)

established in this subsection can be applied directly to derive
the uniform convergence rate for the nonparametric kernel esti-
mator of the conditional ATE md(x) = E[Y(d)| ‖X − x‖ = 0]
for d = 0, 1, that is

m̂d(x) =
∑n

i=1 I{Di = d}YiK(‖Xi − x‖/h)∑n
i=1 I{Di = d}K(‖Xi − x‖/h)

. (4.6)

The asymptotic properties of the numerator and denominator of
this estimator can be obtained by applying Propositions 1 and 2
with setting Wi = I{Di = d}Yi and I{Di = d}, respectively.

4.2. Asymptotic Property of Inverse Probability Weighting
Estimator

Based on the uniform convergence results in the last subsection,
we now derive the asymptotic distribution of the IPW estimator
θ̂ in (3.3).

Theorem 1. Suppose Assumptions 1, 2, and 3 hold true and g ∈
{p, p2, τp, m0}. Furthermore, assume nh2γ → 0 and nϕ(h)2 →
∞ as n → ∞. Then we have
√

n(θ̂ − θ)
d→ N

(
0,E

[
σ 2(X, D){D − p(X)}2

p2(X){1 − p(X)}2

]
+ var(τ (X))

)
,

where σ 2(x, d) = E[(Y − md(X))2| ‖X − x‖ = 0, D = d],
md(x) = E[Y| ‖X − x‖ = 0, D = d], and τ(x) = E[Y(1) −
Y(0)| ‖X − x‖ = 0].

This theorem says that even if the propensity score p(X) is
estimated by the kernel estimator using a functional covariate
X, we can still achieve the

√
n-consistency for the semiparamet-

ric IPW estimator θ̂ . The asymptotic normality is obtained by
adapting the U-statistic argument for semiparametric estimators
to the present setup. We also note that the above asymptotic vari-
ance equals the asymptotic efficiency bound for the ATE (Hahn
1998). Therefore, the proposed IPW estimator θ̂ is asymptoti-
cally efficient.

The asymptotic variance of θ̂ can be estimated by

V̂θ = 1
n

n∑
i=1

Û2
i {Di − p̂(Xi)}2

p̂2(Xi){1 − p̂(Xi)}2 + 1
n

n∑
i=1

(τ̂ (Xi) − θ̌ )2,

where Ûi = Yi − (m̂0(Xi) + τ̂ (Xi)Di), θ̌ = 1
n
∑n

i=1 τ̂ (Xi), and

m̂0(Xi) = p̂(Xi){r̂(Xi) − r̂1(Xi)}
p̂(Xi){1 − p̂(Xi)} ,

τ̂ (Xi) = r̂1(Xi) − r̂(Xi)p̂(Xi)

p̂(Xi){1 − p̂(Xi)} ,

r̂(Xi) =
∑

j �=i YjK(‖Xj − Xi‖/h)∑
j �=i K(‖Xj − Xi‖/h)

,

r̂1(Xi) =
∑

j �=i YjDjK(‖Xj − Xi‖/h)∑
j �=i K(‖Xj − Xi‖/h)

.

The consistency of this variance estimator is obtained as follows.

Theorem 2. Under the same assumption of Theorem 1, it holds

V̂θ

p→ E

[
σ 2(X, D){D − p(X)}2

p2(X){1 − p(X)}2

]
+ Var(τ (X)).

By Theorems 1 and 2, we obtain the t-ratio
√

n(θ̂−θ)√
V̂θ

d→
N(0, 1) to conduct asymptotic inference on θ .

Applying almost the same argument to show Theorem 1, it
is also possible to show a bootstrap version of the t-ratio. Let
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Si = (Yi, Xi, Di) and let Pn = n−1 ∑n
i=1 δSi denote its empirical

distribution. Conditionally on the data {S1, . . . , Sn}, generate
Sb

1 = (Yb
1 , Xb

1 , Db
1), . . . , Sb

n ∼iid Pn, and compute the bootstrap
counterpart

θ̂b = 1
n

n∑
i=1

(
Db

i Yb
i

p̂b(Xb
i )

− (1 − Db
i )Yb

i
1 − p̂b(Xb

i )

)
,

which is defined by replacing Si with Sb
i . An analogous argument

to (Li, Racine, and Wooldridge 2009, Theorem 2.2) yields the
validity of this bootstrap procedure as follows.

Theorem 3. Under the same assumption of Theorem 1, it holds

sup
r∈R

∣∣∣∣∣∣∣P
⎛
⎜⎝

√
n(θ̂b − θ̂ )√

V̂θ

≤ r

∣∣∣∣∣∣∣ {Si}n
i=1

⎞
⎟⎠ − �(r)

∣∣∣∣∣∣∣
p→ 0,

where �(·) is the cumulative distribution function of N(0, 1).

Remark 4 (Alternative estimation methods). Although it is
beyond the scope of this article, it is of interest to study alter-
native estimation methods for the ATE θ . For example, based
on the estimator for the conditional mean in (4.6), the non-
parametric regression-based estimator for θ is obtained as θ̂R =
1
n
∑n

i=1{m̂1(Xi)− m̂0(Xi)}. Another more intriguing example is
a doubly robust estimator, which can be constructed as

θ̂DR = 1
n

n∑
i=1

[
Di(Yi − m̂1(Xi))

p̂(Xi)
+ m̂1(Xi)

− (1 − Di)(Yi − m̂0(Xi))

1 − p̂(Xi)
− m̂0(Xi)

]
,

by using the propensity score estimator p̂(Xi) and regression
estimators m̂1(Xi) and m̂0(Xi). In the case of high-dimensional
Euclidean covariates, Farrell (2015) studied asymptotic proper-
ties of an analogous doubly robust estimator, where the propen-
sity score and regression functions are estimated by a group lasso
method, and established its doubly robust property.

In the current context, a key sufficient condition to achieve
the

√
n-consistency and asymptotic normality in Theorem 1 for

our estimator θ̂ is a sufficiently fast uniform convergence rate
of the propensity score estimator (i.e., supx∈X |p̂(x) − p(x)| =
op(n−1/4)) based on Lemma 1 in Appendix. As clarified in
Section 4.1, this sufficiently fast convergence rate requires the
entropy condition on X (in Assumption 2 (i)) and smoothness
conditions combined with the conditions on the small ball prob-
ability ϕ(h) (in Assumptions 2 (i) and (iv) and 3). On the other
hand, based on the theoretical developments in Farrell (2015),
we can expect that the doubly robust estimator θ̂DR will achieve
the same limiting distribution in Theorem 1 under different key
sufficient conditions: (i) 1

n
∑n

i=1(p̂(Xi) − p(Xi))2 = op(1), (ii)
1
n
∑n

i=1(m̂d(Xi) − md(Xi))2 = op(1) for d = 0, 1, and (iii) the
product rate conditions
√√√√ 1

n

n∑
i=1

Di(p̂(Xi) − p(Xi))2

√√√√ 1
n

n∑
i=1

Di(m̂1(Xi) − m1(Xi))2

= op(n−1/2),

√√√√ 1
n

n∑
i=1

(1 − Di)(p̂(Xi) − p(Xi))2

√√√√ 1
n

n∑
i=1

(1 − Di)(m̂0(Xi) − m0(Xi))2

= op(n−1/2).

These conditions are typically weaker than the key condition
supx∈X |p̂(x) − p(x)| = op(n−1/4) for our IPW estimator θ̂ : (i)
and (ii) are mild L2-consistency conditions, and (iii) is easier
to satisfy if either the propensity score or regression function
is easier to estimate. We note that as far as their regularity
conditions are satisfied, both the IPW and doubly robust estima-
tors will exhibit the same limiting distribution and achieve the
semiparametric efficiency bound. For example, Cattaneo (2010)
obtained the same limiting distribution for the IPW estimator
as the one by Farrell (2015) for the doubly robust estimator to
estimate multivalued treatment effects.

As studied in Farrell (2015) for the case of Euclidean covari-
ates, the asymptotic analysis for the doubly robust estimator
θ̂DR (and also the regression-based estimator θ̂R) in the present
setup requires a separate investigation and we leave it for future
research.

5. Numerical Illustrations

In this section, we present three numerical illustrations to show
the effectiveness of our proposed method.

5.1. Comparison with Parametric Approach

5.1.1. Correctly Specified Case
We consider the following data generating process (DGP):

Y = θ · D +
4∑

j=1
βjCj + ε, X(t) =

4∑
j=1

Cjφj(t),

p(X) = P(D = 1|X) =
exp

(∫ 1
0 η(t)X(t)dt

)
1 + exp

(∫ 1
0 η(t)X(t)dt

) , (5.1)

where ε ∼ N(0, 1). The functions {φj(t)}4
j=1 are the first four

elements of the Fourier basis on [0, 1], that is, φ1 = 1, φ2(t) =√
2 cos(2π t), φ3(t) = √

2 sin(2π t), and φ4(t) = √
2 cos(4π t),

and the Fourier coefficients {Cj}4
j=1 are generated by Cj ∼iid

Uniform[0, 1]. Note that the random coefficients Cj’s can be
regarded as observed since the functional covariate X(t) is fully
observed, and its Fourier expansion (if exists) is unique. The
function η(t) can be expressed as η(t) = ∑4

j=1 γjφj(t). For
the parameters in (5.1), we set θ = 0.5 and γ = β =
(0.3, 0.3, 0.1, 0.1)′. The researcher aims to estimate the ATE θ

without knowledge of γ and β .
To estimate the propensity score function p(·), we employ the

proposed nonparametric estimator p̂(Xi) =
∑n

j �=i DjK(‖Xj−Xi‖/h)∑n
j �=i K(‖Xj−Xi‖/h)

and the parametric logit estimator. Then to estimate the ATE,
we apply the IPW estimator in (3.3) for both methods. The logit
model for the propensity score is specified as

p(X) =
exp

(∑4
j=1 γjCj

)
1 + exp

(∑4
j=1 γjCj

) . (5.2)
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Note that under the setting (5.1), this logit model is correctly
specified because

∫ 1
0 η(t) X(t)dt = ∑4

j=1 γjCj, given that the
Fourier basis is orthonormal.

In this setting, since the functional covariates reside in a sieve
space of dimension d = 4 (a detail known to the user), we can
heuristically choose h = n− 1

d+4 = n− 1
8 . To measure the distance

of two functional covariates, we employ the L2-distance: ‖Xj −
Xi‖2 =

√∫ 1
0 {Xj(t) − Xi(t)}2dt. In the simulation, this distance

is approximated by
√

1
101

∑100
t=0

{
Xj

( t
100

) − Xi
( t

100
)}2, that is,

the average of squared distances evaluated at 101 equally spaced
points on [0, 1].

The simulation results based on 1000 Monte Carlo replica-
tions are presented in Table 1, where the Monte Carlo means
and MSEs rescaled by n are reported. The left panel shows the
simulation results of the IPW estimator based on the logit model,
and the right panel shows the results based on the nonparametric
kernel estimator. From Table 1, we can see that both methods
seem to consistently estimate the ATE θ = 0.5. Since the logit
model of p(·) is correctly specified in this DGP, the parametric
method slightly outperforms our proposed method in terms of
the MSE. Both methods appear to provide approximately correct
empirical coverages, and the average sizes of their confidence
intervals (CIs) remain comparable between the two methods
across all sample sizes.

5.1.2. Misspecified Case
In this subsection, we consider another DGP that mirrors DGP
(5.1), with the only difference being the specification of the
propensity score:

p(X) = l + ∑4
j=1 exp(−C2

j )

u + ∑4
j=1 exp(−C2

j )
, (5.3)

where we set l = 0.1 and u = 0.6 to prevent the propensity score
from approaching 0 or 1 (see Assumption 1). For the parametric
method, we continue to employ the logit model in (5.2), which is
misspecified under the DGP in (5.3). The implementation of our
IPW estimator remains identical to that for the DGP in (5.1).

From Table 2, it is evident that the misspecified propensity
score model fails to consistently estimate θ = 0.5, exhibiting

a persistent bias of roughly 0.1. Accordingly, its empirical cov-
erage gradually falls below 95% and continues to decrease as
the sample size increases. In contrast, our proposed method
appears to be consistent: the biases steadily converge to zero,
and the stable MSEs (rescaled by a factor of n) suggest a

√
n-

consistent estimation of the ATE under the DGP in (5.3). The
MSEs of the logit model are approximately twice as large as
those of the proposed nonparametric method, and they exhibit
a trend of further increasing (after being rescaled by a factor
of n). In addition, our approach provides approximately correct
empirical coverages and generally smaller CIs.

5.2. Functional ATE with User-Specified Semi-Norm

In this subsection, we generate a dataset from a market regulator
model to evaluate the effectiveness of the proposed method.

5.2.1. Market Regulator Model
Consider an imaginary financial market overseen by a market
regulator whose objective is to ensure smooth functioning of
the market. Her guiding principle is that the greater the mar-
ket’s volatility, the more likely she will implement the circuit
breaker. While most investors (say, the general public) may be
completely unaware of this principle, it is known to a small
group of investors (say, economists). However, this group of
investors remains unaware of the exact criteria employed by the
regulator. All investors seek to assess the necessity of appointing
such a market regulator by estimating the ATE of activating a
circuit breaker. Thus, in this subsection, the treatment variable
Di indicates whether the regulator activates a circuit breaker
after day i.

The regulator and investors observe the daily stock price
index X, which is a random function evaluated at m + 1 equally
spaced points throughout the opening time of the stock market.
In the following, we set m = 100.

The outcome variable Y represents welfare measures of finan-
cial market health, such as systematic risk or Moody’s Sovereign
Credit Ratings. Suppose these criteria are standardized such that
a larger Y indicates a higher level of welfare, and we can model
the outcome as

Table 1. Correctly specified logit versus nonparametric kernel estimation.

Logit Nonparametric

n mean n·MSE EC AL n mean n·MSE EC AL

100 0.5058 4.3345 0.9490 0.8243 100 0.5197 4.0786 0.9450 0.7934
200 0.5057 4.3618 0.9420 0.5739 200 0.5215 4.3875 0.9400 0.5624
500 0.4993 4.2752 0.9470 0.3602 500 0.5165 4.4701 0.9450 0.3565
1000 0.4976 4.3546 0.9490 0.2541 1000 0.5145 4.7667 0.9310 0.2523

NOTE: The true ATE is θ = 0.5. “MSE”stands for the mean square error; “EC”and “AL”stand for the empirical coverage and the average length for the 95% confidence interval.

Table 2. Misspecified logit versus nonparametric kernel estimation.

Logit Nonparametric

n mean n·MSE EC AL n mean n·MSE EC AL

100 0.3908 23.418 0.9520 1.6471 100 0.5170 9.0029 0.9350 1.1244
200 0.4100 18.312 0.9400 1.0989 200 0.5150 8.7165 0.9430 0.8145
500 0.4050 20.559 0.9090 0.6663 500 0.5052 10.012 0.9410 0.5235
1000 0.4056 22.980 0.8740 0.4616 1000 0.4969 9.0506 0.9440 0.3714

NOTE: The true ATE is θ = 0.5. “MSE”stands for the mean square error; “EC”and “AL”stand for the empirical coverage and the average length for the 95% confidence interval.
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Y = D · [θ1 · I{TVm(X) > z}+ θ2 · I{TVm(X) ≤ z}]+ ε, (5.4)

where TVm(X) = ∑m−1
	=0 |X(t	+1) − X(t	)| may be interpreted

as the “total variation” of the random function X(t) measured at
these m+1 points. (We use quotation marks because sometimes
the actual total variation of a function might not exist. For
example, the total variation for a Wiener process is infinite; see
the first setup of Section 5.2.2).

The constant z in (5.4) is a threshold for the market volatility
with θ1 > 0 and θ2 < 0, which indicates that if the market
volatility exceeds z, the regulator’s intervention has a positive
impact; however, if the volatility is below this threshold, her
intervention becomes counterproductive. The market regulator
does not know the threshold z, and her treatment rule D is
determined by

D = I{η ≤ p(X)}, η ∼ Uniform[0, 1],
p(X) = l + (u − l) · I{TVm(X) > zr}, (5.5)

where η is independent of (X, ε), l and u are the lower and
upper bounds of the propensity score satisfying 0 < l < u <

1, and zr is her subjective threshold. In a financial market, η

may represent long-term variations in regulatory policies, mar-
ket sentiment and risk appetite, or technological infrastructure.
These factors significantly influence systemic risk but may have
minimal impacts on daily stock prices. Given that η is assumed
to be independent of both X and ε, Assumption 1 is fulfilled.

Both z and zr are unknown to all investors. Investors in
Groups A and B employ our nonparametric method to esti-
mate the propensity score, and then apply the IPW presented
in (3.3) to estimate the ATE. The investors in Group A, who
are not aware that the regulator’s treatment rule fundamentally
relies on the measure of daily price fluctuations, inappropriately
use the L2-norm for their first-stage estimation. The investors
in Group B, who are informed about the regulator’s decision-
making principles, apply a user-defined semi-metric that reflects
these principles:

dTVm(x1, x2) = |TVm(x1) − TVm(x2)|, (5.6)

for x1, x2 ∈ X , where the space X will be defined in Sec-
tion 5.2.2. Based on this, the investors in Group B estimate the
propensity score by

p̂(Xi) =
∑n

j �=i DjK(dTVm(Xi, Xj)/h)∑n
j �=i K(dTVm(Xi, Xj)/h)

. (5.7)

In addition, the investors in Group C are aware of the general
principle. However, they decide to use a parametric logit model
to estimate the propensity score

p(X) = exp(1 + β · TVm(X))

1 + exp(1 + β · TVm(X))
, (5.8)

where β is an unknown parameter.

5.2.2. Simulation Setups
Here, we examine two data-generating processes for X. In the
first scenario, we generate the data by

X(t) = X(t − �t) + �X(t), �X(t) ∼iid N(0, �t · 100).

We let X(t) be evaluated at m+1 equally spaced points on [0, 1],
with m set to 100. Thus, a random function can be sampled as

X
(

	

100

)
=

{
0 for 	 = 0∑	

j=1 ej for 	 = 1, . . . , m
,

where ei ∼iid N(0, 1).
In the second scenario, X(t) is sampled from the real-world

financial market. We use the high-frequency data of the Stan-
dard & Poor’s 500 Index (S&P 500 hereafter) that are collected
at 1-min intervals.5 The data spans from April 2, 2007 to Octo-
ber 2, 2024, encompassing 4524 daily realizations of random
functions. We have adjusted the data collection frequency to
m = 100 for each day to maintain a consistent discussion
throughout this section. We use this pool of 4524 functions as
our population, from which we draw X(t) with replacement for
our simulation study.

Figure 2 displays some sample realizations of X in both
scenarios. The left panel presents 30 random draws for the case
where X(t) follows a Wiener process on the interval [0,1]; the
right panel presents 30 daily series spanning from August 22,
2024 to October 2, 2024.

Figures 3 and 4 display realizations of the random function X
with different levels of TVm(X).

For the outcome model (5.4), we set θ1 = 10, θ2 = −1, and
z = QTVm

x (0.8), where QTVm
x (α) denotes the αth quantile of the

random variable TVm(X). Under this setting, the true ATE is
θ = −1 × 0.8 + 10 × 0.2 = 1.2. For the propensity score
model in (5.5), we set zr = QTVm

x (0.5), l = 0.3, and u = 0.7.
In addition, we define r = QTVm

x (0.9) − QTVm
x (0.1) for both

scenarios. In the estimation of the first scenario, the investors
in Group A choose a bandwidth of h = r · n

1
8 , while those in

Group B choose h = r · n
1
5 . In the second scenario, since the

real data have a greater range of variation, we let the investors in
Group A choose a bandwidth of h = mean(TVm(X)) · r · n

1
8 , to

avoid the numerical issue during the simulation. The bandwidth
choice for investors in Group B remains h = r · n

1
5 .6

5.2.3. Simulation Results
The simulation results based on 1000 Monte Carlo replications
for both scenarios are presented in Tables 3 and 4, respectively.
For both tables, the Monte Carlo means and MSEs rescaled by n
are reported.

5The data is dowloaded from the website of BacktestMarket, https://www.
backtestmarket.com/en/sp-500-1m.

6In practice, one may choose the bandwidth by adapting a data-driven
method to estimate or conduct inference on the propensity score function
p(·), such as cross-validation or L∞-based selector by Bissantz et al. (2007).
However, our ATE estimator θ̂ is semiparametric and typically requires
undersmoothing to ensure that the bias term of the first-stage estimator
p̂(·) is asymptotically negligible. This issue remains an open question even
when dealing with conventional Euclidean covariates and we leave such
investigation for future research.

https://www.backtestmarket.com/en/sp-500-1m.
https://www.backtestmarket.com/en/sp-500-1m.
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Figure 2. 30 random realizations of X in both scenarios.
NOTE: The left figure presents 30 random draws for the case where X(t) follows a Wiener process on the interval [0,1]; the right panel presents 30 daily series of S&P 500
spanning from August 22, 2024 to October 2, 2024.

Figure 3. Two random realizations of X with different TVm(X), where X ∼ Wiener[0, 1].
NOTE: The left figure displays a random function with TVm(X) = 71.47, which is approximately the 10th percentile of TVm(X), and the right figure displays the one with
TVm(X) = 90.29, which is approximately the 90th percentile of TVm(X).

Figure 4. Two random realizations of X with different TVm(X), where X represents daily realizations of the S&P 500.
NOTE: The left figure displays an observation of S&P 500 with TVm(X) = 54.93, which is approximately the 10th percentile of TVm(X) of the population we choose for
our study, a pool of 4524 daily realizations of the S&P 500 indices between April 2, 2007 to October 2, 2024. The right figure displays one with TVm(X) = 285.31, which is
approximately the 90th percentile of TVm(X).

Table 3. Misspecified logit versus nonparametric methods under two different metrics for the first scenario.

Group A Group B Group C

n mean n·MSE EC AL mean n·MSE EC AL mean n·MSE EC AL

100 1.927 74.43 0.69 1.895 1.391 13.51 0.99 1.891 1.081 12.14 0.99 1.948
200 1.938 129.6 0.40 1.339 1.352 13.01 0.99 1.338 1.095 13.26 0.98 1.372
500 1.928 291.2 0.07 0.847 1.292 12.36 0.99 0.848 1.094 24.62 0.97 0.863
1000 1.927 560.8 0.00 0.599 1.266 11.58 0.99 0.600 1.096 39.22 0.95 0.610
2000 1.927 1101 0.00 0.423 1.245 11.02 0.99 0.425 1.093 68.43 0.89 0.431
5000 1.924 2705 0.00 0.267 1.229 10.46 0.99 0.269 1.092 151.5 0.58 0.272

NOTE: X ∼ Wiener[0, 1]. The true ATE is θ = 1.2. For the propensity score estimation, Group A investors employ the kernel method with the L2-norm, Group B investors
employ the kernel method with the user-defined metric in (5.6), and Group C investors employ the parametric logit model in (5.8). “MSE”stands for the mean square error;
“EC” and “AL” stand for the empirical coverage and the average length for the 95% confidence interval.
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Table 4. Misspecified logit versu nonparametric methods under two different metrics for the second scenario.

Group A Group B Group C

n mean n·MSE EC AL mean n·MSE EC AL mean n·MSE EC AL

100 1.845 57.17 0.78 1.893 1.282 8.905 0.99 1.891 1.161 13.60 0.99 2.088
200 1.827 94.62 0.55 1.339 1.270 8.414 1.00 1.338 1.096 2262 0.99 2.152
500 1.779 184.9 0.20 0.847 1.231 7.497 0.99 0.847 1.193 773.6 0.98 1.635

1000 1.750 319.3 0.02 0.599 1.214 6.484 1.00 0.599 1.201 196.6 0.98 1.203
2000 1.725 567.8 0.00 0.423 1.205 5.489 1.00 0.424 1.198 283.2 0.97 1.010
5000 1.689 1210 0.00 0.268 1.200 5.471 1.00 0.269 1.196 186.4 0.96 0.701

NOTE: X ’s are sampled from a pool of 4524 daily realizations of the S&P 500 indices. The true ATE is θ = 1.2. For the propensity score estimation, Group A investors employ
the kernel method with the L2-norm, Group B investors employ the kernel method with the user-defined metric in (5.6), and Group C investors employ the parametric
logit model in (5.8). “MSE” stands for the mean square error; “EC” and “AL” stand for the empirical coverage and the average length for the 95% confidence interval.

We first look at Table 3 for the first scenario. The biases
and variances in this simulation generally exceed those in Sec-
tion 5.1. This can be partly attributed to the Wiener processes,
which exhibit a much higher variance—the right endpoint of
each process has a variance of 100. Second, the left panel of this
table shows that the L2-norm employed by Group A investors
fails to capture the link between the highly fluctuating X and
the treatment D. There is a persistent bias of roughly 0.72, and
MSEs are growing with the sample size. Third, Group C investors
recognize that TVm(X) is crucial for treatment assignment, but
they employ a misspecified logit model. For the sample size of
n = 100, the parametric method seems to outperform in terms
of MSE. However, this perception may be deceptive, as for small
sample sizes, variance often dominates bias. With the sample
size growing, the parametric estimator is evidently inconsistent,
exhibiting a persistent bias of roughly 0.11. Finally, in contrast,
Group B investors, applying the nonparametric kernel estima-
tion and user-defined metric in (5.6), attain the best results.
While there is still a discernible bias of approximately 0.03 for
n = 5000, there is a clear trend indicating the bias is converging
to zero. Also, the stable MSEs (rescaled by a factor of n) suggest
a

√
n-consistent estimation of the ATE.

In terms of CI coverage, Group B consistently provides
empirical coverage above the nominal 95%. Although signs of
over-coverage are present, the size of CIs steadily decreases as
the sample size increases, suggesting that the approach used
in Group B yields informative CIs. In contrast, the empirical
coverages in Groups C and A gradually fall below 95% and
continue to decline as the sample size increases.

Comparing the results between Groups A and B highlights
the critical importance of selecting an appropriate semi-norm
when dealing with functional covariates, a notion that resonates
with (Ferraty and Vieu 2006, chap. 13.6). Without an appro-
priate choice, the vast amount of information embedded in
infinite-dimensional covariates cannot be effectively extracted
by economic models. This significance parallels the importance
of selecting the correct set of covariates in a linear regression
context. In this particular example, the choice of the right semi-
norm is evidently dependent on the knowledge of the regulator’s
objectives, typically guided by economic theory. Developing a
data-driven approach for selecting the semi-norm is beyond the
scope of this article. Nevertheless, it presents an interesting topic
for future research. We refer to (Ferraty and Vieu 2006, chap. 13)
for a relevant discussion.

Table 4, where we have changed the DGP of X(t) from
Wiener[0, 1] to a random draw from a pool of 4524 daily

realizations of the S&P 500 index, shows a pattern similar to that
of Table 3, except that the parametric estimator starts to perform
poorly from n = 200. Group B, in which the investors employ
nonparametric kernel estimation and a user-defined metric as
defined in (5.6), is the only group that delivers satisfactory
results across all sample sizes. Although the empirical coverages
in Groups B and C are both above the nominal 95% (up to
n = 5000), the coverage in Group C exhibits a clear downward
trend due to inconsistent estimation, and its CIs are considerably
larger than those in Group B.

Overall, the simulation results support the implementation of
our proposed method.

6. Empirical Application

In this section, we illustrate the usefulness of our approach.
Maintaining a low unemployment rate, stabilizing inflation, and
promoting rapid economic growth are the ultimate goals of cen-
tral banks. How monetary policies, such as changes in the Fed-
eral Open Market Committee (FOMC) target rates, can affect
macroeconomic targets, has been extensively studied in the
literature; see, for example, Romer and Romer (1989), Bagliano
and Favero (1998), and Christiano, Eichenbaum, and Evans
(1999), and many others. Much of the work mentioned relies on
structural models to identify the economic effects of monetary
contraction and expansion. Alternatively, (Angrist, Jordà, and
Kuersteiner 2018, AJK hereafter) proposed to use a potential
outcome time series framework, based on the IPW estimator
for treatment effects, to study the impulse response function of
monetary policy (see also Angrist and Kuersteiner 2011). AJK
(on p. 374) argued that the impulse response function can be
defined as a marginalized version of ATEs at different horizons.
Here, we build on the foundational method proposed by AKJ,
adapting it within our framework by incorporating functional
covariates.

AKJ studied a multinomial treatment effect model that
involves five treatment statuses of the monetary policy, increas-
ing the federal funds target rate by 0.25%, 0.5%, decreasing it by
0.25%, 0.5%, and no change. To align this with our framework,
we simplify their approach by consolidating these categories
into a binary treatment variable: treatment D = 1 if the target
rate is decreased (expansion), and D = 0 if it is increased or
unchanged (contraction). For Y , we use the outcome variables
from the monthly dataset adopted in AJK, including the federal
funds rate, indicators for inflation and industrial production,
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Figure 5. Estimated ATEs of target rate changes on funds rate, inflation, industrial production, and unemployment rate.
NOTE: The solid blue lines represent changes measured in percent of the level of inflation and industrial production and as point changes in the rates for the federal funds
rate and the unemployment rate. Dashed lines indicate 95% confidence bands.

and unemployment rate.7 Here, we focus on re-analyzing the
setup in Section 4 of AKJ, where they studied the effects of
the monetary policies before the 2008 financial crisis. For this
period, the data start from August 1989 to July 2007 and contain
242 observations.

As for the propensity score function, AKJ implemented an
(ordered) Probit model, choosing covariates based on the Taylor
rule (see Section 3.2 of AKJ for details). In contrast, we specify
our propensity score function nonparametrically, incorporating
a functional covariate X and a conventional vector covariate Z.
We estimate the propensity score by (3.2), which is replicated
below:

p̂(Xi, Zi) =
∑n

j �=i DjK(‖Xj − Xi‖/h)Kz((Zj − Zi)/hz)∑n
j �=i K(‖Xj − Xi‖/h)Kz((Zj − Zi)/hz)

. (3.2)

The vector of covariates Z includes the market expectation,
which is an adjusted difference between the futures contract
price and the current target rate (see AJK and their sup-
plemental data appendix for more details of this measure),
inflation, changes of unemployment rates, lagged inflations,

7We are grateful to Joshua Angrist for sharing the data and codes on
his website, https://economics.mit.edu/people/faculty/ josh-angrist/angrist-
data-archive.

lagged changes of unemployment rates, amounting to a five-
dimensional vector. Thus, we heuristically choose the band-
width hz = rz · n− 1

d+4 , where d = 5 and rz is the sample range
of {Zi}n

i=1.
To acknowledge the influence of historical federal funds rates

on current decisions, AKJ also incorporate a scalar variable,
which indicates the change in the previous month’s target rates,
in the propensity score model. In contrast, we include a func-
tional covariate X, which is a curve that records the entire federal
funds effective rates (FFER) from the previous month.8 The FFER
can be regarded as the real-world realization of the targets set
by the FOMC. Since it is reasonable to expect that the FOMC
would take into account both the level and the change of the
historical FFER when deciding target rates, this motivates us
to use the Sobolev norm, ‖x‖Wk,p = (∑

0≤α≤k
∫ |∂αx|pdx

)1/p

for k = 1 and p = ∞, to measure the distance between
different realizations of the functional covariate X. We chose
the bandwidth h = rx · n− 1

5 , where r is the sample range of
{supt Xi(t)}n

i=1.
The estimation results are summarized in Table 5 and Fig-

ure 5. They generally replicate Table 4 and Figure 4 of AKJ,
using our approach based on the nonparametrically estimated

8The data for the FFER is downloaded from https:// fred.stlouisfed.org, and they
are sampled on a daily basis.

https://economics.mit. edu/people/faculty/josh-angrist/angrist-data-archive.
https://economics.mit. edu/people/faculty/josh-angrist/angrist-data-archive.
https://fred.stlouisfed.org
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Table 5. Estimated ATEs at horizons 6, 12, 18, and 24 months based on data from August 1989 to July 2007.

Month Funds rate Inflation Indust.Prod Unem.Rate

6 −0.100 0.025 −0.124 0.039
[−0.168, −0.032] [−0.047, 0.097] [−0.398, 0.150] [−0.012, 0.090]

12 −0.078 −0.033 −0.326 0.047
[−0.140, −0.016] [−0.096, 0.030] [−0.659, 0.007] [0.105, −0.015]

18 0.008 0.004 0.034 0.021
[−0.043, 0.058] [−0.053, 0.060] [−0.165, 0.232] [−0.025, 0.068]

24 0.005 0.004 0.117 −0.064
[−0.043, 0.052] [−0.047, 0.055] [−0.042, 0.275] [−0.108, −0.019]

NOTE: Reported values represent changes, measured in percent for the levels of inflation and industrial production, and as point changes for the federal funds rate and the
unemployment rate, each accompanied by their 95% confidence intervals.

propensity score with functional covariates. Specifically, Table 5
presents the estimated ATEs of monetary expansion policies on
the FFER, inflation, industrial production, and the unemploy-
ment rate, measured at 6, 12, 18, and 24 months; the corre-
sponding CIs are also presented. Meanwhile, Figure 5 displays
the curves of these ATEs over the horizon from 1 to 24 months,
along with their corresponding 95% confidence bands. There
are several differences between our reports and those of AKJ:
we report the level impulse responses rather than the cumulated
impulse responses reported in AKJ; we present 95% confidence
intervals instead of standard deviations. The estimation results
show that monetary expansion (lowering the federal target
rate) has an immediate effect on reducing the FEER, but this
impact gradually diminishes over time. The expansion policy
also increases industrial production and decreases the unem-
ployment rate in the long run.

Supplementary Materials

The supplementary materials provide the proofs of the theoretical results in
the main text and related lemmas.
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