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We consider dynamic auctions for finding Walrasian equilibria in markets with indivisible items and strong

gross substitutes valuation functions. Each price adjustment step in these auction algorithms requires finding

an inclusion-wise minimal maximally overdemanded set or an inclusion-wise minimal maximally underde-

manded set at the current prices. Both can be formulated as a submodular function minimization problem.

We observe that minimizing this submodular function corresponds to a polymatroid sum problem, and

using this viewpoint, we give a fast and simple push-relabel algorithm for finding the required sets. This

improves on the previously best running time of Murota, Shioura and Yang (ISAAC 2013). Our algorithm is

an adaptation of the push-relabel framework by Frank and Miklós (JJIAM 2012) to the particular setting. We

obtain a further improvement for the special case of unit-supplies.

We further show the following monotonicity properties of Walrasian prices: both the minimal and maximal

Walrasian prices can only increase if supply of goods decreases, or if the demand of buyers increases. This

An abstract of this article appeared in the proceedings of WINE 2023 [27].

Katharina Eickhoff was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 2236/2.

Meike Neuwohner was supported by the Engineering and Physical Sciences Research Council, part of UK Research and

Innovation, grant ref. EP/X030989/1.

László A. Végh received funding from the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement no. ScaleOpt– 757481).
Authors’ Contact Information: Katharina Eickhoff, School of Business and Economics, RWTH Aachen University, Aachen,

Germany; e-mail: eickhoff@oms.rwth-aachen.de; Meike Neuwohner, Department of Mathematics, London School of Eco-

nomics and Political Science, London, United Kingdom; e-mail: m.neuwohner@lse.ac.uk; Britta Peis, School of Busi-

ness and Economics, RWTH Aachen University, Aachen, Germany; e-mail: peis@oms.rwth-aachen.de; Niklas Rieken,

School of Business and Economics, RWTH Aachen University, Aachen, Germany; e-mail: rieken@oms.rwth-aachen.de;

Laura Vargas Koch, Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics, University of

Bonn, Bonn, Germany and School of Business and Economics, RWTH Aachen University, Aachen, Germany; e-mail:

vargaskoch@gdm.rwth-aachen.de; László A. Végh, London School of Economics and Political Science, London, United

Kingdom, Institute for Advanced Studies, Corvinus University of Budapest, Budapest, Hungary, Hertz Chair for Algorithms

and Optimization, University of Bonn, Bonn, Germany; e-mail: lvegh@uni-bonn.de.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2167-8375/2025/06-ART13

https://doi.org/10.1145/3729429

ACM Trans. Econ. Comput., Vol. 13, No. 3, Article 13. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-9809-8821
HTTPS://ORCID.ORG/0000-0002-3664-3687
HTTPS://ORCID.ORG/0000-0002-8938-8843
HTTPS://ORCID.ORG/0000-0001-7018-8692
HTTPS://ORCID.ORG/0000-0002-7499-5958
HTTPS://ORCID.ORG/0000-0003-1152-200X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729429
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3729429&domain=pdf&date_stamp=2025-06-16


13:2 K. Eickhof et al.

is derived from a fine-grained analysis of market prices. We call packing prices a price vector such that there

is a feasible allocation where each buyer obtains a utility maximizing set. Conversely, by covering prices we

mean a price vector such that there exists a collection of utility maximizing sets of the buyers that include all

available goods. We show that for strong gross substitutes valuations, the component-wise minimal packing

prices coincide with the minimal Walrasian prices and the component-wise maximal covering prices coincide

with the maximal Walrasian prices. These properties in turn lead to the price monotonicity results.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; • Mathematics of

computing → Matroids and greedoids;

Additional Key Words and Phrases: Dynamic auctions, walrasian prices, strong gross substitutes, polymatroid

sum, push-relabel, monotonicity

ACM Reference Format:

Katharina Eickhoff, Meike Neuwohner, Britta Peis, Niklas Rieken, Laura Vargas Koch, and László A. Végh.

2025. Faster Dynamic Auctions via Polymatroid Sum. ACM Trans. Econ. Comput. 13, 3, Article 13 (June 2025),

47 pages. https://doi.org/10.1145/3729429

1 Introduction

We study computational and structural aspects of Walrasian market equilibria. Let us consider a
market involving a set of buyers with quasi-linear utilities that are interested in buying a set of
goods. The main objective is to find an allocation of the goods to buyers along with prices for the
goods which should fulfill the following properties: (i) every buyer gets a preferred bundle, i.e., a
set of items maximizing her utility at the given prices, (ii) no good is oversold, (iii) all goods are
sold, and (iv) the allocation is Pareto-optimal. Properties (i)–(iii) together are the Walrasian equilib-
rium conditions, which coincidentally imply property (iv); this is often referred to as First Welfare
Theorem. In this article, we are interested in finding such an equilibrium allocation and prices via
a dynamic auction. In simple terms, in a dynamic auction, the auctioneer iteratively announces
prices for goods and the buyers report their demand correspondence. If there is a feasible way to
satisfy all the demands (i.e., properties (i) and (ii) are satisfied) and all goods are distributed to the
buyers (i.e., property (iii) is satisfied in addition) then the auction terminates with the announced
prices and an allocation that is feasible. Otherwise, prices are adjusted in an intuitive way: goods
that are overdemanded increase in price, whereas underdemanded goods decrease in price.

It is easy to see that such a dynamic auction can take longer than a static sealed-bid auction,
in which the auctioneer receives all the buyers’ information at the start instead of incrementally
after announcing new prices. There are several reasons why a dynamic auction may be preferable
(see [4, 20] for a detailed discussion). First of all, dynamic auctions as described above are more
transparent; buyers observe how some goods increase or decrease in price, whereas in a sealed-
bid auction, the auctioneer just sets a price whose origin remains opaque to the buyers as the
auctioneer is the only agent with full information. Typically, the buyers’ valuation functions (and
hence, the utilities upon receiving a bundle at a given price) are private information and buyers
do not want to disclose this to an auctioneer in full if it is not necessary. Moreover, while one can
argue that sealed-bid auctions might run faster given complete information of buyers (see [54]),
this is only true under the assumption that there are no communication costs between buyers and
auctioneer; after all, a valuation function of a buyer has to specify a value for every subset of goods
(i.e., exponentially many in the number of goods) and all these values have to be communicated
to the auctioneer. In fact, one might even argue that the exact valuation functions might not be
known to the buyers themselves if they are only implicitly given in form of some combinatorial
structure, so some of the computational tasks are just outsourced to the buyers.
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As mentioned above, a dynamic auction iteratively adjusts prices by raising prices on underde-
manded, or overdemanded sets. Informally speaking, overdemanded sets are those sets of items for
which the demand exceeds the supply, and maximally overdemanded sets are those overdemanded
sets that maximize the difference between demand and supply (analogously, we can define under-
demanded sets and maximally underdemanded sets). A precise definition is given in Definition 1.1.
We study four different types of dynamic auctions that are listed below (see Section 2.2 for a precise
description). They are known to terminate with Walrasian price vectors, assuming gross substi-
tutes valuations. The first [second] type of auction computes the unique component-wise minimal
[maximal] Walrasian price vector by raising [decreasing] prices on the inclusion-wise minimal set
among all maximally overdemanded [underdemanded] sets in each iteration. We call this set the
minimal maximally overdemanded [underdemanded] set. In this article, we present fast algorithms
for the problem of finding the minimal maximally overdemanded [underdemanded] set.

(I) An ascending auction that finds minimal Walrasian prices from any lower bound on prices,
(II) a descending auction that finds maximal Walrasian prices from any upper bound on prices,

(III) a two-phase auction, that finds some Walrasian prices from any initial price vector, and
(IV) a greedy auction, that finds some Walrasian prices from any initial price vector.

The auctions (I)–(III) can be viewed as efficient implementations of the corresponding auc-
tions by Ausubel [6], whereas the auction (IV) is a speeded-up version of the auction by
Murota et al. [52].

Moreover, we are able to show that the minimal and maximal Walrasian prices have the follow-
ing properties, where we refer to the component-wise ordering among price vectors.

(1) Every price vector satisfying (i) and (ii) is at least as large as the minimal Walrasian price
vector,

(2) every price vector satisfying (i) and (iii) is at most as large as the maximal Walrasian price
vector, and

(3) minimal and maximal Walrasian price vectors react naturally to changes in demand and
supply, i.e., they cannot decrease if demand increases or supply decreases and they cannot
increase if demand decreases or supply increases.

To start with, we first have a closer look into the economic model.

1.1 The Economic Model

In this article, we consider the following market. Let E = {1, . . . ,m} be a set of m item types
(we will just refer to those as items), and N = {1, . . . ,n} be a set of n buyers. Each item e ∈ E is
available inb(e) indivisible units for someb ∈ ZE

+ , and each buyer i ∈ N has an individual valuation
function vi : [0,b]Z → Z+ over the set [0,b]Z � {z ∈ Zm | 0 ≤ z ≤ b} of possible bundles. For
z ∈ [0,b]Z, the value z(e) represents the number of items of type e ∈ E. The value vi (z) ∈ Z+ can
be interpreted as buyer i’s maximum willingness to pay for a bundle z ∈ [0,b]Z. Throughout the
article, we assume that all valuation functions are non-decreasing, i.e., for all z, z ′ ∈ [0,b]Z with
z ≤ z ′, we have vi (z) ≤ vi (z

′). We let B � maxe ∈E b(e). We refer to the case where b(e) = 1 for all
e ∈ E as the unit-supply case, and to the general problem as the multi-supply case.

For a given price vector p ∈ RE
+ , the utility function of buyer i is given by ui (z) = vi (z) − 〈p, z〉.

Buyer i’s indirect utility function is given by

Vi (p) � max {vi (z) − 〈p, z〉 | z ∈ [0,b]Z} .

Let us denote by Di (p) the set of preferred bundles (also called demand set), which are the maximiz-
ers of ui , that is,

Di (p) � arg max {vi (z) − 〈p, z〉 | z ∈ [0,b]Z} .
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Further let qDi (p) denote the set of minimal preferred bundles and pDi (p) denote the set of maximal
preferred bundles of buyer i for a given price vector p, i.e.,

qDi (p) � {z ∈ Di (p) | there is no y ∈ Di (p) \ {z} with y ≤ z}

and
pDi (p) � {z ∈ Di (p) | there is no y ∈ Di (p) \ {z} with y ≥ z}.

Using qDi (p) and pDi (p), we can already quantify whether the supply for a set S ⊆ E is too high
or too low with respect to the current prices p. To do so, we define

θ̌
p
i (S) � min{z(S) | z ∈ qDi (p)} and ρ̂

p
i (S) � max{z(S) | z ∈ pDi (p)}.

Informally speaking, θ̌
p
i (S) denotes the minimum number of items buyer i has to receive from S ,

whereas ρ̂
p
i (S) denotes the maximum number of items buyer i is willing to take from set S . With

this at hand, we can define the overdemandedness of a set S to be

overdp (S) �
∑
i ∈N

θ̌
p
i (S) − b(S).

Similarly, we can define the underdemandedness of a set S to be

underdp (S) �
∑
i ∈N

b(S) − ρ̂
p
i (S).

Definition 1.1. We call a set S ⊆ E overdemanded [underdemanded] w.r.t. pricesp if overdp (S) > 0
[underdp (S) > 0]. Moreover, a set S ⊆ E is called maximally overdemanded [maximally underde-
manded] if it is overdemanded [underdemanded] and maximizes the overdemandedness overdp (S)
[underdemandedness underdp (S)] among all bundles S ⊆ E.

We call S minimal maximally overdemanded [underdemanded] if S is the inclusion-wise minimal
set among all maximally overdemanded [underdemanded] sets.

The concept of overdemanded sets has already been introduced in [38], where overdemanded-
ness is called excess demand.1 This concept generalizes the notion overdemandedness introduced
in [23] for the case of buyers with unit demands. In [61], the notion of underdemandedness has
been introduced, again for the setting of buyers with unit demand.

An allocation (z1, . . . , zn) is called packing with respect to the prices p ∈ RE
+ if

zi ∈ Di (p) for all i ∈ N and
∑
i ∈N

zi (e) ≤ b(e) for all e ∈ E. (packing)

Packing refers to the fact that one preferred bundle per buyer can be chosen such that the sets
can be packed into the set of items (no item is assigned too often). A price vector p that admits a
packing allocation is also called packing.2 We will see in Section 3 that a price vector p is packing
if and only if there is no overdemanded set w.r.t. p. Note that it is easy to get packing prices by just
setting them sufficiently high such that no buyer is interested in any item anymore.

An allocation (z1, . . . , zn) is called covering with respect to the prices p ∈ RE
+ if

zi ∈ Di (p) for all i ∈ N and
∑
i ∈N

zi (e) ≥ b(e) for all e ∈ E. (covering)

Here, covering refers to the fact that there is a preferred bundle per buyer such that all items are
covered by these sets. We may also call a price vector covering if there is a supporting covering

1Note that Gul and Stacchetti [38] consider the unit-supply setting, meaning that there is one item of each object type

(b(e) = 1 for all e ∈ E).
2Note that [9] call packing prices envy-free prices.
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allocation. In Section 3, we will see that a price vector p is covering if and only if there is no
underdemanded set.

A price vector p ∈ RE
+ is called a Walrasian price vector [67] or a competitive equilibrium price

vector if there is an allocation (z1, . . . , zn) with

zi ∈ Di (p) for all i ∈ N and
∑
i ∈N

zi (e) = b(e) for all e ∈ E. (Walrasian)

So there is one allocation that is both packing and covering. We show in Appendix B.1 that in
auctions with strong gross substitutes valuations, a price vector is Walrasian if and only if it is both
packing and covering, i.e., that there is an allocation with both properties and not just different
allocations, one packing and one covering.

Walrasian prices may not always exist (see Example A.1 in Appendix A.1). However, Walrasian
prices are guaranteed to exist if all buyers’ valuation functions satisfy the strong gross substitutes
property [42] (see Definition 2.2). Intuitively, gross substitutes expresses the property that the de-
mand of an item does not decrease if only the prices on other items go up. For strong gross substi-
tutes valuations, the Walrasian price vectors form a lattice w.r.t. the component-wise ordering, see
Gul and Stacchetti [37] and Ausubel [6]. Consequently, there exists a unique component-wise min-
imal and a unique component-wise maximal Walrasian price vector. We also call the component-
wise minimal Walrasian prices buyer-optimal Walrasian prices and the component-wise maximal
Walrasian prices seller-optimal Walrasian prices.

In this article, we focus on computational aspects of the ascending auctions described by Gul
and Stacchetti [38] (for unit-supply) and by Ausubel [6] (for multi-supply) for computing the min-
imal [maximal] Walrasian price vector in a market with (strong) gross substitutes valuations. In
both cases, the maximally overdemanded [underdemanded] sets are the minimizers of a submod-
ular function. Thus, the minimal maximally overdemanded [underdemanded] set can be found by
general submodular function minimization algorithms.

An exciting connection between market equilibrium computation and discrete optimization was
established by Fujishige and Yang [30], who pointed out the equivalence of the gross substitutes
property and M�-concavity, a key concept in the field of discrete convex analysis. This theory com-
bines convex analysis and matroid theory, summarized in the monograph by Murota [50]. Thus,
powerful tools from discrete convex analysis became available to obtain more efficient equilib-
rium computations. In particular, Murota et al. [51] obtained faster algorithms for the minimal
maximally overdemanded [underdemanded] set computation by exploiting the special structure
of the submodular function and taking advantage of demand oracle queries; this will be discussed
in Section 1.3.

1.2 Our Contributions

Our contributions are twofold: we provide faster auction algorithms and we present structural
results on price monotonicity.

In the same vein as Murota et al. [51], we exploit the special structure of the Lyapunov function
to obtain even faster running times. We view the submodular minimization problem from a dual
viewpoint as a matroid union problem (for the unit-supply case) or a polymatroid sum problem (for
the multi-supply case), and use a fast (and also simple) push-relabel algorithm for this problem.
Let us denote by DO the time needed for each demand oracle query and by ExO the time of each
exchange oracle query (see Section 2.4 for definitions and discussion). Then, our algorithm runs in
time O(n · DO + nm3 · ExO) in the multi-supply case. In comparison, the algorithm in [51] runs in
time O(n · DO+nm4 log(nmB) · ExO). For the unit-supply case, the problem becomes the classical
matroid union problem, and we obtain an even better running time of O(n ·DO+ (m3 +nm2) ·ExO).

ACM Trans. Econ. Comput., Vol. 13, No. 3, Article 13. Publication date: June 2025.
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We note that our algorithm is significantly simpler than the one in [51]. We also show that
given an optimal solution to the polymatroid sum problem, the minimal maximally overdemanded
[underdemanded] set can be found by a simple breadth-first search in an exchange graph.

Our push-relabel algorithm is a special implementation of the more general submodular flow
feasibility algorithm by Frank and Miklós [28]. In this context, our contribution is giving an ef-
ficient implementation in terms of the number of oracle calls. The description in [28] is generic
and gives bounds in terms of basic operations. Implementing a single such operation may take
O(nm · ExO); however, we show that this can be amortized over a sequence of basic operations.
See Section 1.3 on further discussion of push-relabel algorithms.

Our second main contribution is on price monotonicity. We make a clear conceptual distinction
between packing, covering and Walrasian prices. For example, it is not clear a priori whether there
may exist a packing price vector q with q(e) < p∗(e) for some items e ∈ E, where p∗ denotes the
buyer-optimal Walrasian price vector, or whether there may exist a covering price vector q′ with
q′(e) > p∗(e) for some items e ∈ E, where p∗ is the maximal Walrasian price vector. In Theorem 5.3,
we show that in factp∗ ≤ q for all packing price vectorsq and in Theorem 5.6, we show thatp∗ ≥ q′

for all covering price vectors q′.
Building on this result, we can also prove in Section 6 that the minimal [maximal] Walrasian

prices react naturally to changes in supply and demand, i.e., if total supply of items decreases or
the total demand of buyers increases, the minimal [maximal] Walrasian prices can only increase.
Independently, Raach [56] proved the same monotonicity results.

1.3 Related Work

In this section, we give a literature review over the topics related to our economic model and equi-
librium concept. For an excellent overview over (strong) gross substitutes, Walrasian equilibria,
and ascending auctions we refer to the survey by Paes Leme [53].

Gross substitutes and Walrasian equilibria. Kelso and Crawford [42] showed in their seminal
article that a Walrasian equilibrium is guaranteed to exist if all valuation functions satisfy the
gross substitutes condition that in layman’s terms can be stated as, “the demand for an item does
not not decrease, if only the prices of other items are increased”.3 Roughly speaking, the study of
economic models from an algorithmic and complexity theoretical point of view really started off
in the 1990s when also the foundations of algorithmic game theory were laid out. Gul and Stacchetti
[37] showed with their Maximum Domain Theorem that indeed gross substitutes are a maximal
class of valuation functions (containing unit-demand valuations) that guarantee the existence of
Walrasian equilibria. Additionally, they provided equivalent definitions for the gross substitutes
condition and showed that Walrasian prices form a complete lattice, which implies that there
exist unique component-wise minimal and maximal Walrasian price vectors. There are additional
equivalent characterization of gross substitutes in [9]. However, the characterization by Fujishige
and Yang [30] turns out to be most useful from a mathematical point of view. It states that a
valuation function has the gross substitutes property if and only if it is M�-concave, which allows
for the usage of powerful tools from discrete convexity. This result also has been extended to strong
gross substitutes valuation functions in [51]. The differences between strong gross substitutes and
“weak gross substitutes” is discussed in [47].

There are other classes than (strong) gross substitutes for which Walrasian prices are guaranteed
to exist [9, 62] but these classes do not contain the natural unit-demand valuations. On the other
hand, there are subclasses of gross-substitute valuations such as unit-demand valuations [23, 49]

3A formal definition is provided in Section 2.
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and additive valuations with demand cap [26] for which the structure of Walrasian prices has been
described more explicitly.

Dynamic Auctions or Walrasian tâtonnement. Léon Walras, the namesake of our equilibrium con-
cept, already proposed how equilibria may be found, namely by a “tâtonnement”4 process. This
procedure basically describes a dynamic auction: an auctioneer posts prices and unless these prices
are at equilibrium, the auctioneer makes an adjustment. The first modern study of such a process
was done by Demange et al. [23] for unit-demand valuations. In Gul and Stacchetti’s follow-up
work [38], they gave the framework for ascending auctions for gross substitutes valuations; that is,
start at all-zero prices and increase prices on an inclusion-wise minimal maximally overdemanded
set until there is no overdemanded set anymore. They proved that such an auction always termi-
nates with minimal Walrasian prices. However, while they showed that an overdemanded set of
items has to exist whenever the prices are not yet at equilibrium, they left it open how to compute
those sets. This gap was initially closed by Ausubel [5, 6] using submodular function minimization.
There is a discrete version of the Lyapunov function (a potential function, introduced by Varian
[65] for divisible goods) which is minimized at Walrasian prices [6]. If all valuation functions are
gross substitutes, then this function is submodular and its minimum (and every steepest descent
direction, which corresponds to a maximally overdemanded set) can be found efficiently using
submodular function minimization, which can be done efficiently (see [35, 39–41]). Murota et al.
[51] showed that the Lyapunov function is not just submodular but L�-convex, which allows for
even faster methods than plain submodular function minimization. Note that these methods by
Ausubel [6] and Murota et al. [51] allow for descending auctions or other kinds of dynamic auc-
tions, where prices maybe adjusted in a non-monotone fashion. Similar auctions and guarantees
for termination with minimal/maximal Walrasian prices are discussed in [2] and [9].

We should mention that the literature mentioned above follows the definition of a dynamic
auction as proposed by Gul and Stacchetti [38]. However, the literature also explores other auction
designs, e.g., in [4, 7, 13, 55] that consider slightly different market settings or different ways for
buyers to report their demands to the auctioneer.

A weak point of dynamic auctions would be their running time if we assume full information
for the auctioneer; e.g., in an ascending auction ‖p∗‖∞ price increase steps are needed, where p∗ is
the (minimal) Walrasian price vector computed by the auction [51]. This process can be speeded
up by increasing prices on an overdemanded set not only by one but by the maximal possible
amount before the steepest descent direction of the Lyapunov function changes. This results in at
most nmB price adjustment steps (c.f. [59, Proposition 4.17]). Further speed ups of the ascending
auction as a rounding scheme are discussed in [53, Section 10.1.]. There are other algorithms which
can compute Walrasian prices efficiently [54]. However, in contrast to dynamic auctions, these
algorithms need direct information of the valuation functions, i.e., by a value oracle.

Oracles and communication complexity. To compute Walrasian prices, it is crucial to get some
information on buyers’ valuation functions. Usually, the necessary communication between auc-
tioneer and buyers is modeled via oracle calls. Depending on which oracle type is used, one can
get different information. A comparison of the computational power of some oracle types can be
found, e.g., in [15]. In auction literature, typically, value oracles and demand oracles are used. For
our dynamic auctions, we require a demand oracle and an exchange oracle as those work natu-
rally in our proposed algorithm to find the required overdemanded or underdemanded sets. The
exchange oracle is related to the dynamic rank oracle [14], as both provide information on sets

4French: trial-and-error.
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close to already requested ones. A detailed overview which oracles we use and how they can be
compared is given in Section 2.4.

VCG prices. As a corner stone of auction theory and mechanism design, we have the VCG The-
orem [18, 36, 66] that states that there is a sealed-bid mechanism that has truthful bidding as a
dominant strategy. However, as briefly discussed in the introduction, ascending auctions are often
preferred as they yield a more natural and transparent price-finding process. As a consequence,
mathematical economists went to great lengths to implement the VCG mechanism in an ascending
auction [4, 6, 11, 12, 16, 22, 48, 63]. Kern et al. [43] showed that for unit-demand valuations, the
auction by Demange et al. [23] mentioned above indeed returns VCG prices. If we go beyond unit-
demand valuations, VCG prices cannot be achieved using a single price trajectory in a dynamic
auction, as shown by Gul and Stacchetti [38] since the auction does not gain enough information
during the iterations to determine VCG prices. However, there exist variants of dynamic auctions
that circumvent this and can obtain VCG prices [6, 16, 63], e.g., by the use of proxy auctions, which
compute multiple price trajectories.

In a multi-supply setting, [26] show that VCG prices that are Walrasian and in which every copy
of an item has the same cost, do not necessarily exist.

Discrete convexity: matroid union and polymatroid sum. We refer the interested reader to the
monographs by Murota [50] and Fujishige [29]. A survey on the connections between discrete
convexity and auction theory is [60].

As pointed out above, all buyers having (strong) gross substitutes valuation functions means
that we can use methods from discrete convex optimization to solve the computational problem
that arises during a dynamic auction. In particular, the whole auction can be viewed as an iterative
process to minimize a submodular (and even L�-convex) function [6, 51, 52, 59]. As we will see in
the sequel, these methods can be quite complicated. For the unit-supply case and gross substitutes
valuations, the problem of finding a maximally overdemanded set becomes equivalent to the ma-
troid union problem on n matroids, which is efficiently solvable as shown in [25]. Over time, more
efficient algorithms were developed [17, 21, 34, 44] and most recently by Terao [64] and Blikstad
et al. [14]. Note that some of these methods are hard to compare due to the use of different oracles.

In the more general setting with multi-supply and strong gross substitutes valuations, we need
to consider the more general polymatroid sum problem.

Push-relabel algorithms. The algorithms mentioned above to solve the matroid union and the
polymatroid sum problem are so called augmenting path algorithms. They start by taking a triv-
ially feasible solution (e.g., the empty set or the all-zero vector, respectively) and augment it by
finding additional elements that can be added to the current solution or (k + 1)-to-k-swaps to in-
crease the size of the solution until it is optimal. However, more recently, so called push-relabel
algorithms have been studied for various combinatorial optimization problems and they can outper-
form augmenting path algorithms both in theory as well as in practice. The push-relabel paradigm
was introduced for the maximum flow problem by Goldberg and Tarjan [33]. The idea is in some
sense dual to augmenting path algorithms: One starts with a possibly infeasible solution which
otherwise satisfies some optimality condition. The push and relabel operations then maintain this
optimality condition while making the solution “less infeasible” over time. We use a push-relabel
algorithm by Frank and Miklós [28] for matroid union. Our algorithm in Section 4 gives an efficient
implementation in the auction setting and also generalizes to polymatroid sum and M-convex sets
in general. It is interesting to note that the level functions and local exchanges of push-relabel al-
gorithms have some resemblance to auction algorithms, as already pointed out by Bertsekas [10].
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In our push-relabel algorithm in Section 4, one could interpret the level Θ(e) of an item as a small
marginal price discount used for tie-breaking.

1.4 Overview

In Section 2, we start by giving some basic definitions (Section 2.1) and the well-known dynamic
auctions that iteratively increases [decrease] prices on items that are overdemanded [underde-
manded] (Section 2.2). This is followed by a summary of known definitions and facts from dis-
crete convex analysis and (poly-)matroids in Section 2.3. Finally, we discuss oracle models in
Section 2.4.

In Section 3, we describe how to find minimal maximally overdemanded/underdemanded sets,
given an optimal solution to the corresponding polymatroid sum problem. Afterward, in Section 4,
we present the push-relabel framework and show how to implement it in an efficient way for both
the matroid union and the polymatroid sum problem. Combining these results enables us to com-
pute the minimal maximally overdemanded [underdemanded] sets fast, while using only oracle
calls that are natural in the auction setting. In Section 5, we show that there exists a component-
wise minimal packing price vector and that it coincides with the minimal Walrasian price vector.
Further, we show that there also exists a component-wise maximal covering price vector, which
is equal to the maximal Walrasian price vector. In Section 6, we use these facts to show that Wal-
rasian prices fulfill natural monotonicity properties, i.e., when the supply decreases or the demand
increases, Walrasian prices can only increase.

2 Preliminaries

In this section, we give some basic definitions and known facts on the connection between strong
gross substitutes valuations, polymatroids and discrete convex optimization. We introduce the
ascending auction presented by Gul and Stacchetti [38] for the unit-supply setting, which was
extended by Ausubel [6] for the multi-supply setting.

Notation. For a vector x ∈ RE , we let supp+(x) � {e ∈ E | x(e) > 0} and supp−(z) � {e ∈ E |

x(e) < 0}. For S ⊆ E, we let x(S) �
∑

e ∈S x(e). For x ,y ∈ RE , we define the meet x ∧y ∈ RE as the
component-wise minimum, and the join x ∨ y ∈ RE as the component-wise maximum of x and
y. Furthermore, for e ∈ E, we write χe ∈ RE to denote the incidence vector of e , i.e., the entry at
position e is 1 and all other entries are 0. Similarly, we define χS �

∑
e ∈S χe to be the incidence

vector of a set S ⊆ E.

2.1 Strong Gross Substitutes Valuations

Recall from the introduction that Di (p) is the set of preferred bundles of buyer i ∈ N with respect
to prices p. Kelso and Crawford [42] introduced the concept of gross substitutes valuations which
guarantee the existence of Walrasian prices. Intuitively, gross substitutes expresses the property
that the demand for an item will not decrease if only prices of other items are raised.

Definition 2.1. A valuation function vi : 2E → Z is gross substitutes if for all price vectors p,q ∈

RE with p ≤ q, it holds that for all xi ∈ Di (p), there exists yi ∈ Di (q) such that xi (e) ≤ yi (e) for
all e ∈ E with p(e) = q(e).

Note that this definition of gross substitutes (see [42]) only considers the unit-supply case (i.e.,
where b(e) = 1 for all e ∈ E). It can be generalized to the multi-supply setting by treating each
copy of an item type as an individual item [6]. The following direct definition (see [51]) is a bit
more involved. In particular, it includes the additional requirement that higher prices cannot lead
to larger preferred bundles.
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Definition 2.2. A valuation function vi : [0,b]Z → Z is strong gross substitutes if it is concave-
extensible5 and for all price vectors p,q ∈ RE with p ≤ q, it holds that for all xi ∈ Di (p),
there exists yi ∈ Di (q) such that xi (e) ≤ yi (e) for all e ∈ E with p(e) = q(e) and such that
xi (E) ≥ yi (E).

Strong gross substitutes valuations form a natural and well-studied class of valuation functions.
Such functions are always submodular, i.e., have the diminishing marginal returns property (see
Definition 2.4 below). Simple examples of strong gross substitutes valuations include unit-demand
valuations (i.e., v(z) = maxe ∈supp+(z)w(e) for w ∈ Rm

+ ), weighted matroid and polymatroid rank
functions (i.e., v(z) = max{〈w,y〉 : y ≤ z,y(S) ≤ ρ(S), S ⊆ E} for a submodular set function ρ
and weights w ∈ Rm

+ ), and OXS valuations (i.e., the maximum weight of a matching in a bipartite
graph, restricted to a subset of the items).

It is well-known that strong gross substitutes are a maximal class of functions (containing the
unit-demand valuations) that guarantee existence of Walrasian equilibria [37, Theorem 2].

In the sequel, we assume that all valuation functions are strong gross substitutes and non-
decreasing. In this case, it is known that the collection of minimal or maximal preferred bundles
forms an M-convex set (see Section 2.3). This allows us to use tools from discrete optimization and
integral polymatroids.

2.2 Dynamic Auctions

In this section, we present multiple dynamic auctions that can be used to compute Walrasian
prices, if they exist. All of them crucially rely on the observation that a price vector p is Wal-
rasian (if such a price vector exists) if and only if it constitutes a minimizer of the Lyapunov
function [6]

L(p) =
∑
i ∈N

Vi (p) + 〈p,b〉.

Kelso and Crawford [42] show that Walrasian prices exist if the valuation functions of the buyers
are gross substitutes. Ausubel [6] observed in addition that if Walrasian prices exist, they are min-
imizers of the Lyapunov function. These observations of Kelso and Crawford [42] and Ausubel [6]
are summarized in the following lemma:

Lemma 2.3 ([6]). If all buyers have strong gross substitutes valuation functions, then prices p are
Walrasian if and only if they minimize the Lyapunov function.

In light of Lemma 2.3, a natural approach to compute a Walrasian price vector is to start with
an arbitrary price vector p and to iteratively replace p by p ± χS for some S ⊆ E if this decreases
the value of the Lyapunov function.

It turns out that the sets S ⊆ E minimizing L(p + χS ) [L(p − χS )] are precisely the max-
imally overdemanded [underdemanded] sets. For the unit-supply case, this is shown in [8].
With a standard copy trick, we can obtain the same result for the multi-supply case, see
Appendix B.4.

Ausubel [6] shows that an auction, starting with an arbitrary price vector p and then alternating
increasing and decreasing price adjustments, will return a Walrasian price vector. Further, Sun and
Yang [62] show that by first iteratively increasing prices on a minimal maximally overdemanded

5A function vi : [0, b]Z → Z is concave-extensible if there exists a concave function ṽi : {x ∈ Rn | 0 ≤ x ≤ b } → R such

that vi (x ) = ṽi (x ) for every x ∈ [0, b]Z.
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set, and then iteratively decreasing prices on a minimal maximally underdemanded set, the auction
terminates with a Walrasian price vector as well. This is what we call a Two-Phase Auction.

Two-Phase Auction

Start with an arbitrary price vector p
while an overdemanded set exists do

choose minimal maximally overdemanded set S ⊆ E
p(e) � p(e) + 1 for all e ∈ S

while an underdemanded set exists do
choose minimal maximally underdemanded set S ⊆ E
p(e) � p(e) − 1 for all e ∈ S

return p

In the unit-supply setting, the Two-Phase Auction is also known as the Vickrey-English-Dutch
auction [3]. However, note that in our general multi-supply setting, no such auction can be guar-
anteed to return Vickrey prices: In [26], it is shown that Vickrey prices might not exist if just one
price per object type is allowed.

Murota et al. [51] shows that one can reduce the number of iterations by interleaving both phases
and always performing an increasing or decreasing step depending on which of the two provides
the greater reduction of the Lyapunov function. This results in the following Greedy Auction.

Greedy Auction

Start with an arbitrary price vector p
while an overdemanded or underdemanded set exists do

choose minimal maximally overdemanded set So ⊆ E
choose minimal maximally underdemanded set Su ⊆ E
if overd(So ) ≥ underd(Su ) then

p(e) � p(e) + 1 for all e ∈ So

else
p(e) � p(e) − 1 for all e ∈ Su

return p

As the Lyapunov function is submodular and the minimizers of any submodular function form
a lattice, by Lemma 2.3, this is also true for the Walrasian price vectors. In particular, there ex-
ists a unique buyer-optimal, i.e., minimal [seller-optimal, i.e., maximal] Walrasian price vector p∗
[p∗]. Ausubel [6] has shown that p∗ [p∗] can be obtained via the following Ascending Auction
[Descending Auction].

Ascending Auction

p(e) � 0 for all e ∈ E
while an overdemanded set exists do

choose minimal maximally overdemanded set S ⊆ E
p(e) � p(e) + 1 for all e ∈ S

return p∗ � p

Descending Auction

p(e) � maxi ∈N vi (E) + 1 for all e ∈ E
while an underdemanded set exists do

choose minimal maximally underdemanded set S ⊆ E
p(e) � p(e) − 1 for all e ∈ S

return p∗ � p

Note that both the Ascending Auction and the Descending Auction constitute special cases
of both the Two-Phase Auction and the Greedy Auction: When starting with p(e) � 0 for all
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e ∈ E [p(e) � maxi ∈N vi (E) + 1 for all e ∈ E], throughout the algorithm, there will never be an
underdemanded [overdemanded] set (see, e.g., [8]).

We further point out that for the Ascending Auction [Descending Auction] to return the buyer-
optimal [seller-optimal] Walrasian price vector, it suffices to start with a vector ≤ p∗ or ≥ p∗, re-
spectively (see [4]). The running time of the above auctions depends crucially on the time required
to find a minimal maximally over- or underdemanded set in each iteration. In this article, we show
how to obtain faster algorithms to compute minimal maximally over- and underdemanded sets by
leveraging an algorithm for the polymatroid sum problem.

2.3 Discrete Convex Optimization and Polymatroids

In this section, we summarize some basics from discrete convex optimization and their connection
to polymatroids. In the following sections, we show that in markets with strong gross substitutes

valuations, the set of minimal preferred bundles qDi (p), and also the set of maximal preferred bun-

dles pDi (p), form the sets of bases of integral polymatroids. As we will see in Section 3.1, we can
use the properties stated here to compute the sets on which we increase or decrease the prices in
the auction using a polymatroid sum algorithm.

Definition 2.4. A set function f : 2E → Z is submodular if

f (S) + f (T ) ≥ f (S ∪T ) + f (S ∩T ) for all S,T ⊆ E.

A function v : [0,b]Z → Z is (lattice) submodular if

v(x) +v(y) ≥ v(x ∨ y) +v(x ∧ y) for all x ,y ∈ [0,b]Z.

A special class of submodular functions are M�-concave functions, see Murota [50].

Definition 2.5. A valuation function v : [0,b]Z → Z is M�-concave, if for any x ,y ∈ [0,b]Z, and
for any e ∈ supp+(x − y), one of the following holds:

(M1) v(x) +v(y) ≤ v(x − χe ) +v(y + χe ), or
(M2) there exists f ∈ supp−(x − y) such that v(x) +v(y) ≤ v(x − χe + χf ) +v(y + χe − χf ).

Lemma 2.6 (Murota et al. [51]). A valuation function is strong gross substitutes if and only if it
is M�-concave.

The utility function ui of a buyer i is defined as the valuation minus the price, i.e., ui (z) �
vi (z) − 〈p, z〉 for some z ∈ [0,b]Z and some given price vector p. Note that the above lemma
also implies that a buyer’s utility function ui is M�-concave if her valuation function vi is
strong gross substitutes. This gives us some nice structure of the minimal and maximal preferred
bundles.

Definition 2.7. A set of bundles B ⊆ [0,b]Z is M-convex if for any x ,y ∈ B, and for any e ∈

supp+(x − y), there exists f ∈ supp−(x − y) such that x − χe + χf ∈ B and y + χe − χf ∈ B.

Lemma 2.8. If vi is strong gross substitutes, then qDi (p) and pDi (p) are M-convex sets for any price
vector p ∈ RE

+ .

The simple proof of Lemma 2.8 is given in Appendix B.2.

As qDi (p) and pDi (p) are M-convex, it follows (see Appendix B.2) that

qDi (p) = arg min{‖z‖1 | z ∈ Di (p)} and pDi (p) = arg max{‖z‖1 | z ∈ Di (p)}.

An M-convex set forms the set of integer points in a corresponding polymatroid base polytope as

the next lemma shows. This leads to a new interpretation of qDi (p) and pDi (p).

ACM Trans. Econ. Comput., Vol. 13, No. 3, Article 13. Publication date: June 2025.



Faster Dynamic Auctions via Polymatroid Sum 13:13

Lemma 2.9 ([50, Theorem 4.15]). For an M-convex set B ⊆ [0,b]Z, we define

ρ(S) � max{z(S) | z ∈ B} for S ⊆ E. (1)

Then, ρ(S) is an integer valued submodular set function, and B is the set of integer points in the
corresponding base polytope, that is

B =
{
z ∈ Zm

+ | z(S) ≤ ρ(S) for all S ⊆ E, z(E) = ρ(E)
}
. (2)

Summarizing, we observed that if vi is strong gross substitutes, then for every price vector

p, buyer i’s set of minimal preferred bundles qDi (p) as well as the set of maximal preferred bun-

dles pDi (p) is an M-convex set. Moreover, qDi (p) is the set of integer points in a polymatroid base

polytope and the same holds for pDi (p).

Definition 2.10. For an M-convex set B ⊆ [0,b]Z with associated rank function ρ defined as in
(1), and a vector z ∈ B, we say that set S ⊆ E is tight if z(S) = ρ(S).

A set of item types S is tight with respect to a minimal [maximal] preferred bundle z of (individ-
ual) items if among all minimal [maximal] preferred bundles, the bundle z contains as many items
as possible from S .

Note that the collection of tight sets TB(z) � {S ⊆ E | z(S) = ρ(S)} with respect to z ∈ B

is closed with respect to intersection and union. To see this, observe that for any two tight sets
S,T ∈ TB(z), we have z(S)+z(T ) = ρ(S)+ρ(T ) ≥ ρ(S∪T )+ρ(S∩T ) ≥ z(S∪T )+z(S∩T ) = z(S)+z(T )
by submodularity of ρ and since z ∈ B. Hence, we get ρ(S∪T ) = z(S∪T ) and ρ(S∩T ) = z(S∩T ). As
a consequence, there exists a unique minimal tight set among those tight sets containing e , which
we call TB(e, z).

Definition 2.11. Let B be an M-convex set and z ∈ B. We denote the unique minimal tight set
containing e by TB(e, z), i.e.,

TB(e, z) �
⋂

{S ∈ TB(z) | e ∈ S}.

We will show later in Lemma 2.14 that the set T
|Di
(e, zi ) contains exactly those items f ∈ E

which can be exchanged against e , i.e., those f for which zi + χe − χf remains a minimal preferred
bundle for buyer i . Analogously, T

xDi
(e, zi ) contains those items f ∈ E which can be exchanged

against e such that zi + χe − χf remains a maximal preferred bundle.
Let B1,B2, . . . ,Bn ⊆ [0,b]Z be M-convex sets, and let B× �

�
i ∈N Bi be the collection of

all n-tuples z = (z1, . . . , zn) with zi ∈ Bi . The following Min-Max Theorem holds for general
polymatroids and implies that prices are packing if and only if there is no overdemanded set (see
Lemma 3.1) and that they are covering if and only if there is no underdemanded set (Lemma 3.5).
The Min-Max Theorem follows, e.g., from [58, (44.8), (44.9), Theorem 44.6]; the sum of polyma-
troids was first studied by McDiarmid [46].

Theorem 2.12 (Min-Max Theorem for Polymatroid Sum). Let B1,B2, . . . ,Bn ⊆ [0,b]Z be
M-convex sets with associated rank functions ρi , i ∈ N and let B× �

�
i ∈N Bi . Then

max
z∈B×

{∑
e ∈E

min

{∑
i ∈N

zi (e),b(e)

}}
= min

S ⊆E

{∑
i ∈N

ρi (E \ S) + b(S)

}
. (3)

The problem of finding an optimal solution z ∈ B× to the left-hand side

max
z∈B×

{∑
e ∈E

min

{∑
i ∈N

zi (e),b(e)

}}
, (4)
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is also known as the polymatroid sum problem. The push-relabel algorithm to solve this problem
is given in Section 4 and provides a direct proof of the Min-Max Theorem for polymatroid sum.

The easy direction max ≤ min is shown in Lemma 2.13 below. Moreover, the lemma also for-
mulates the complementary slackness conditions that can be used to certify optimality of a pair of
solutions z ∈ B× and S ⊆ E.

Lemma 2.13. Let B1,B2, . . . ,Bn ⊆ [0,b]Z be M-convex sets with associated rank functions ρi ,
i ∈ N . Then, for any z = (z1, . . . , zn) ∈ B× �

�
i ∈N Bi , and any set S ⊆ E, we have∑

e ∈E

min

{∑
i ∈N

zi (e),b(e)

}
≤

∑
i ∈N

ρi (E \ S) + b(S). (5)

Moreover, equality holds if and only if∑
i ∈N

zi (e) ≥ b(e) for all e ∈ S, (6)∑
i ∈N

zi (e) ≤ b(e) for all e ∈ E \ S , (7)

zi (E \ S) = ρi (E \ S) for all i ∈ N . (8)

Proof. Let S ⊆ E be an arbitrary set. We have∑
i ∈N

ρi (E \ S) + b(S) ≥
∑
i ∈N

zi (E \ S) + b(S) =
∑

e ∈E\S

∑
i ∈N

zi (e) +
∑
e ∈S

b(e) ≥
∑
e ∈E

min

{∑
i ∈N

zi (e),b(e)

}
.

The first inequality holds with equality if and only if (8) holds. The second inequality holds with
equality if and only if both (6) and (7) hold. �

2.4 Oracle Models

Auction style algorithms (in contrast to direct methods as described in [54]) have to be evaluated
differently when we discuss computational efficiency. The overall running time is heavily depen-
dent on the valuation functions and hence, only pseudo-polynomial in the number of items and
buyers in the worst case. However, determining an overdemanded set to increase prices on (or
more generally, any single price-adjustment step) is a computational problem which we should
analyze under two different aspects: (1) how much information does the auctioneer require from
the buyers to perform a price update, and (2) given this information, how fast can this update be
computed? In summary, we should analyze the time to perform just a single step of the auction
and the communication cost incurred in such a step instead of the total running time of the auc-
tion. This seems reasonable as the total running time heavily depends on the number of steps, i.e.,
on something the auctioneer cannot influence with the limited information that is available in a
dynamic auction.

Most types of dynamic auctions involve an auctioneer who communicates item prices to the
buyers, who are then asked for a bundle z of items, which maximizes their utilities vi (z) − 〈p, z〉.
In [15], these so called demand oracles are compared against other natural types of oracles that
partially reveal the private information of the buyers. It should be mentioned that even for (strong)
gross substitutes valuations, the size of the set of preferred bundles can be exponential in |E | and
there is no more compact way to encode these sets as shown by Knuth [45].

In this section, we describe the oracles we use in our algorithm and we compare them to the
oracles used in the literature. As our oracle models only rely on the polymatroid properties of the
minimal, respectively maximal, preferred bundles at given prices p, we will use Bi as a placeholder

for qDi (p) and pDi (p).

ACM Trans. Econ. Comput., Vol. 13, No. 3, Article 13. Publication date: June 2025.



Faster Dynamic Auctions via Polymatroid Sum 13:15

We first define some weights, that play a key role in our algorithm. Given z = (z1, . . . , zn) where
zi ∈ Bi for i ∈ N , let us define the following weights for each pair {e, f } ⊆ E:

wi (e, f ) � max{α ∈ Z | zi − α χf + α χe ∈ Bi }.

Their importance is due to the following connection to i-tight sets:

Lemma 2.14. For an M-convex set Bi , i ∈ N with associated rank function ρi , zi ∈ Bi , and e, f ∈ E,
we have

wi (e, f ) = min{ρi (S) − zi (S) | e ∈ S, f � S}. (9)

Thus, wi (e, f ) > 0 if and only if f ∈ TBi
(e, zi ). Further, a set S is i-tight if and only if TBi

(e, zi ) ⊆ S
for all e ∈ S .

Proof. Let α � wi (e, f ) and let β denote the minimum value on the right-hand side of (9),
and S a minimizer. By definition, z ′i = zi − α χf + α χe ∈ Bi . We first show α ≤ β . This follows
since z ′i (S) ≤ ρi (S), and z ′i (S) = zi (S) + α , and therefore β = ρi (S) − zi (S) ≥ z ′i (S) − zi (S) =
z ′i (S) − (z ′i (S) − α) = α .

Let us now turn to α ≥ β . For a contradiction, assume that z ′′i = zi − β χf + β χe � Bi , that is,
z ′′i (T ) > ρi (T ) for some T ⊆ E. Thus, z ′′i (T ) > zi (T ); by definition, this means that e ∈ T , f � T .
Hence, T is in the scope of the minimization problem in (9), giving ρi (T ) − zi (T ) ≥ β . But this
means that z ′′i (T ) = zi (T ) + β ≤ ρi (T ), leading to a contradiction. This completes the proof of (9).

From here, the second statement is immediate. For the final statement, since TBi
(e, zi ) is the

inclusion-wise minimal tight set containing e , it is clearly contained in every i-tight set S ⊆ E
with e ∈ S . Conversely, if TBi

(e, zi ) ⊆ S is true for every e ∈ S , then
⋃

e ∈S TBi
(e, zi ) = S ,

which is i-tight as the union of i-tight set is i-tight by submodularity of the polymatroid rank
function ρi . �

In the market context, we can interpret the weightswi (e, f ) as part of the information required
by the auctioneer from buyer i . Given the current price vector p, each buyer i is asked to report
one minimal/maximal preferred bundle zi ∈ Bi (p). We denote the time of such a ‘demand oracle
query’ as DO. Further, we may query values wi (e, f ), which is the maximum number α ∈ Z such
that buyer i is willing to exchange α units of item f against α units of item e .

Our algorithm needs access to these valueswi (e, f ); we denote the time required for computing
one such value as ExO. Their computational complexity for the buyers depends on the particular
representation of the Bi sets.

A common model to represent the valuation functions vi is by a value oracle. Given a value or-
acle, a minimal/maximal preferred bundle zi ∈ Bi (p) can be computed using the greedy algorithm
bym2 value oracle calls. Given zi ∈ Bi and α ∈ Z, checking if zi −α χf +α χe ∈ Bi (p) takes a single
value oracle call. Thus, one can compute wi (e, f ) in O(log(B)) calls to the value oracle. We can
also formulate the computation of wi (e, f ) as the submodular function minimization problem in
(9). Hence, one can use a strongly polynomial submodular function minimization algorithm. Nev-
ertheless, this requires access to ρi (S), which may lead to running a greedy algorithm for each call.
In Appendix A.5, we provide an example that shows that the particular running time of DO and
ExO heavily depend on the representation of the valuation function, using the example of OXS
functions.

For the unit-supply setting, the sets qDi (p) and pDi (p) are matroid base sets and our task is to
solve the matroid union problem. For matroid optimization, the usual oracle settings are via in-
dependence or rank oracle queries. Such oracles may be expensive if our primary oracle is for
the valuation function vi : each independence or rank oracle query may require running a greedy
algorithm.
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To take the actual computation time to answer the oracle in some underlying structure into
account, Blikstad et al. [14] propose to use the dynamic rank oracle. The idea is that given an
independent set S , it is easy to find an independent set close to S , but much harder to find an
independent set which is farther away (with respect to the symmetric difference of the sets). To
be precise, a dynamic rank oracle starts with the empty set S , then three different operations are
denoted as oracle calls (1) adding an element to S , (2) deleting an element from S , and (3) obtaining
the rank of S (see also [14, Definition 1.2]). We denote the time of such a ‘dynamic rank oracle
query’ by DRO.

Our exchange oracle is efficient from this point of view, since given an independent set, we al-
ways query sets with symmetric difference two. We can perform an exchange oracle query by using
three dynamic rank oracles calls.6 Note that we assume that we do not have to build the first inde-
pendent set zi with the dynamic rank oracle but that we can perform the queries starting from the
set that we obtained from the demand oracle. A demand oracle query can be answered by O(m) dy-
namic oracle queries. The other way around, the dynamic rank oracle is stronger than the exchange
oracle, in the sense that the dynamic rank oracle can compute the rank of a given set S in O(|S |)
computations, while the exchange oracle cannot answer this question. Note that in the algorithm
for the unit-supply setting, we will use exchange operations that do not change the rank of the
sets, so in fact we know the ranks as well. It can therefore be said that the two models behave very
similarly in the matroid case and our exchange oracle model can be generalized to polymatroids.

If we analyze our matroid union algorithm in the unit-supply setting with the dynamic rank
oracle, we get a running time of O((m3 + nm2) · DRO). Hence, the running time of our ma-
troid union algorithm in the dynamic rank oracle model is not comparable to the running time
O(poly(n log(m))m3/2 · DRO) by Blikstad et al. [14] as we are linear in n, while Blikstad et al. [14]
achieve a better dependency on m.

3 Finding the Overdemanded and Underdemanded Sets

As described earlier, minimal maximally overdemanded and minimal maximally underdemanded
sets play an important role in the context of dynamic auctions. In this section, we discuss their

connection to the corresponding polymatroids and their rank functions. Remember that qDi (p) and
pDi (p) are the base sets of integral polymatroids with associated rank functions ρ̌ and ρ̂.

Moreover, we will see in Sections 3.2 and 3.4 how the minimal maximally over-/underdemanded
sets can be computed using an optimal solution to the corresponding polymatroid sum problem.

3.1 Overdemanded Sets

Recall that we defined θ̌
p
i (S) � min{z(S) | z ∈ qDi (p)} as the minimum number of items buyer

i has to receive from S (in any preferred bundle). By Lemma 2.9, the set qDi (p) is implicitly given

by ρ̌
p
i , and also θ̌

p
i can be expressed in terms of ρ̌

p
i via θ̌

p
i (S) = ρ̌

p
i (E) − ρ̌

p
i (E \ S). Hence, we can

rewrite the overdemandedness of a set S w.r.t. prices p as

overdp (S) �
∑
i ∈N

θ̌
p
i (S) − b(S) =

∑
i ∈N

(ρ̌
p
i (E) − ρ̌

p
i (E \ S)) − b(S).

We may omit the superscript p in overdp (S) when it is clear from the context.
Note that in the presence of an overdemanded set, the prices cannot be packing. In Lemma 3.1,

we show that the converse is also true, namely, a price vector is packing if and only if no overde-
manded set exists.

6If we cannot perform the queried exchange, one can also argue that we need two dynamic oracle calls more to return to

the original set, i.e., five dynamic oracle calls for one exchange oracle query.

ACM Trans. Econ. Comput., Vol. 13, No. 3, Article 13. Publication date: June 2025.



Faster Dynamic Auctions via Polymatroid Sum 13:17

Lemma 3.1. Given a market instance with strong gross substitutes valuations, prices p are packing
if and only if there is no overdemanded set.

In the unit-supply setting, this lemma was already shown by Gul and Stacchetti [38].

Proof. Letp be a packing price vector and z = (z1, . . . , zn) the corresponding packing allocation.

Hence zi ∈ qDi (p), i.e., zi (E) = ρ̌i (E) holds. This yields∑
i ∈N

ρ̌i (E) =
∑
i ∈N

zi (E) =
∑
e ∈E

∑
i ∈N

zi (e) =
∑
e ∈E

min

{∑
i ∈N

zi (e),b(e)

}
where the last equality holds as z is packing (

∑
i ∈N zi (e) ≤ b(e) for all e ∈ E). Hence, Theorem 2.12

allows us to conclude that∑
i ∈N

ρ̌i (E) =
∑
e ∈E

min

{∑
i ∈N

zi (e),b(e)

}
≤ max

z′ ∈|D×

∑
e ∈E

min

{∑
i ∈N

z ′i (e),b(e)

}

= min
S ⊆E

{∑
i ∈N

ρ̌i (E \ S) + b(S)

}
. (10)

The outer inequality can be transformed into the following formula, which can be seen as a gen-
eralized Hall formula: ∑

i ∈N

(ρ̌i (E) − ρ̌i (E \ S)) ≤ b(S) for all S ⊆ E. (11)

This is again equivalent to the fact that there is no overdemanded set S . To show the reverse
direction, assume that there is no overdemanded set at prices p. Thus, we apply Equation (11),
which yields∑

i ∈N

ρ̌i (E) ≤ min
S ⊆E

{∑
i ∈N

ρ̌i (E \ S) + b(S)

}
= max

z∈|D×

{∑
e ∈E

min

{∑
i ∈N

zi (e),b(e)

}}

≤ max
z∈|D×

{∑
e ∈E

∑
i ∈N

zi (e)

}
= max

z∈|D×

{∑
i ∈N

zi (E)

}
=

∑
i ∈N

ρ̌i (E).

Hence, equality must hold throughout the equation. In particular, this means that there exists an

allocation z ∈ qD× with
∑

i ∈N zi (e) ≤ b(e) for all e ∈ E, i.e., the allocation z is packing and the price
vector is packing as well. �

Next, we will consider the connection of maximally overdemanded sets to an optimal solution
z of the polymatroid sum problem

max
z∈|D×

∑
e ∈E

min

{∑
i ∈N

zi (e),b(e)

}
. (12)

This is done in several steps. First, we characterize which properties a minimal maximally
overdemanded set needs to satisfy and introduce a technical lemma. Then, we combine these two
statements to describe a nice way to compute an actual minimal maximally overdemanded set by
constructing an auxiliary digraph and choosing all items from which we can reach an oversold
item. We say that an item e ∈ E is undersold if

∑
i ∈N zi (e) < b(e), and oversold if

∑
i ∈N zi (e) > b(e).

For i ∈ N and zi ∈ qDi , let us call a set S ⊆ E i-tight if zi (S) = ρ̌i (S). To shorten notation slightly,
we write, for e ∈ E,

Ti (e) � T
|Di
(e, zi )

for the minimal i-tight set containing e when zi and qDi are clear from the context.
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Lemma 3.2. Assume z = (z1, . . . , zn) is an optimal solution to (12). Then, a set S is maximally
overdemanded if and only if it fulfills the following properties:

— E \ S is i-tight for every i ∈ N ;
— S does not include any undersold items;
— S includes all oversold items.

Moreover, there is a unique inclusion-wise minimal set fulfilling these properties.

Proof. Let S ⊆ E. We can write

overd(S) =
∑
i ∈N

ρ̌i (E) −

(∑
i ∈N

ρ̌i (E \ S) + b(S)

)
.

Hence, S is a maximally overdemanded set if and only if it is a minimizer of the right-hand side
of (3). Since z is optimal, we get, by Theorem 2.12,∑

e ∈E

min

{∑
i ∈N

zi (e),b(e)

}
=

∑
i ∈N

ρ̌i (E \ S) + b(S).

By Lemma 2.13, this is the case if and only if S satisfies all three properties stated in the lemma.
Moreover, if S and S ′ satisfy these three properties, then S ∩S ′ and S ∪S ′ also satisfy them. Hence,
there exists a unique inclusion-wise minimal set satisfying these three properties. �

In Section 3.2, we will see that we can compute a minimal maximally overdemanded set by
performing a breadth-first search in the exchange graph corresponding to an optimal solution z

of the polymatroid sum problem (12).

3.2 Finding Minimal Maximally Overdemanded Sets via the Exchange Graph

We define the exchange graph Ǧi (zi ) = (E, Ǎi ) for i ∈ N by setting

Ǎi � {(e, f ) ∈ E × E | w̌i (e, f ) > 0},

where w̌i (e, f ) � max{α ∈ Z | zi − α χf + α χe ∈ qDi } is the weight which can be computed by an

exchange oracle (ExO) call as described in Section 2.4. We let Ǧ(z) = (E, Ǎ), where Ǎ �
⋃

i ∈N Ǎi .

Theorem 3.3. Assume z is an optimal solution to (12). Then the minimal maximally overdemanded
set is the set R of items from which we can reach an oversold item in Ǧ(z).

Proof. Let z be an optimal solution to (12) and R the set of items from which an oversold item
can be reached in Ǧ(z). We will show that R is a maximally overdemanded set and, moreover,
included in any other maximally overdemanded set.

To this end, let S be a maximally overdemanded set. Then by Lemma 3.2, S contains all oversold
items and no undersold item. Moreover, E \ S is tight and thus, by Lemma 2.14, there is no arc
leaving E \ S , i.e., δ−(S) = �. Now, consider the set R. A sketch of S and R can be found in Figure 1.
By definition, R contains every oversold item. Moreover, as all undersold items are in E \ S , all
oversold items are in S , and δ−(S) = �, there is no path from an undersold item to an oversold
item. Hence, the undersold items are in E \ R. Furthermore, by definition of R, there is no arc
entering R, i.e., the set E \ R is tight. Hence R is maximally overdemanded.

Finally, observe that R ⊆ S , as otherwise, there would be an arc entering S which yields a
contradiction. This means that the set R is included in every maximally overdemanded set and is
thus the inclusion-wise minimal maximally overdemanded set. �

Lemma 3.4. Overdemanded sets can be computed in time O(nm2 · ExO), given an optimal solution
z to the polymatroid sum problem (12).
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\

oversold undersold

Fig. 1. A maximally overdemanded set S and the set of items R from which an oversold item can be reached.

Proof. First, we construct the exchange graph. We consider each of them items e ∈ E once and
do an edge-weight query for each of the n buyers i ∈ N and her currently assigned items. Thus,
we have a running time of O(nm2 · ExO) for this step. Then we do a breadth-first search in the
graph, starting from all oversold items in reverse direction of the arcs. This takes time O(m +m2).
Hence, we need O(nm2ExO +m2) time to compute the set of items from which we can reach any
oversold item, which is, by Theorem 3.3, equal to the minimal maximally overdemanded set. �

In Section 4, we will present an algorithm to compute an optimal solution z of the polymatroid
sum problem (4). This will lead to a total running time of O(n · DO + nm3 · ExO) to compute an
overdemanded set in the multi-supply setting and to an improved running time of O(n ·DO+(m3+

nm2) · ExO) in the unit-supply setting.

3.3 Underdemanded Sets

Recall that we formally defined the underdemandedness of a set S by

underdp (S) � b(S) −
∑
i ∈N

ρ̂
p
i (S),

where ρ̂
p
i (S) � max{z(S) | z ∈ pDi (p)} is the rank function of the corresponding polymatroid base

polytope given by the maximal demand sets pDi (p).
In the following, we will omit the superscript p to improve readability.

Lemma 3.5. Given a market instance with strong gross substitutes valuations, prices p are covering
if and only if there is no underdemanded set.

The lemma follows, similarly to Lemma 3.1, from the Min-Max Theorem for polymatroid sum
(Theorem 2.12). The proof can be found in Appendix B.3. There, we rephrase

underd(S) = b(S) −
∑
i ∈N

ρ̂i (S) = b(E) −

(
b(E \ S) +

∑
i ∈N

ρ̂i (E \ (E \ S))

)
.

By this, we obtain the following corollary.

Corollary 3.6. S ⊆ E is a maximally underdemanded set if and only if

E \ S ∈ arg min

{
b(T ) +

∑
i ∈N

ρ̂i (E \T )



 T ⊆ E

}
.
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Moreover, S is a minimal maximally underdemanded set if and only if E \ S is a maximal minimizer
of T �→ b(T ) +

∑
i ∈N ρ̂i (E \T ).

In order to determine a minimal maximally underdemanded set S , we follow the same approach
as in Section 3.1 using the Min-Max Theorem for polymatroid sum (Theorem 2.12). Given an opti-
mum solution z = (z1, . . . , zn) to the polymatroid sum problem

max
z∈xD×

{∑
e ∈E

min

{∑
i ∈N

zi (e),b(e)

}}
, (13)

we explain how to find a minimal maximally underdemanded set S . Recall that for S ⊆ E and i ∈ N ,

we call S i-tight if zi (S) = ρ̂
p
i (S). We obtain the following analogue of Lemma 3.2:

Lemma 3.7. Assume z = (z1, . . . , zn) is an optimal solution to (13). Then, a set S is maximally
underdemanded if and only if it fulfills the following properties:

— S is i-tight for every i ∈ N ;
— S includes all undersold items;
— S does not include any oversold items.

Moreover, there is a unique inclusion-wise minimal set fulfilling this properties.

It can be derived from Lemma 2.13, similar to the proof of Lemma 3.2 (see Appendix B.3).

3.4 Finding Minimal Maximally Underdemanded Sets

Similar to Section 3.2, we can compute the minimal maximally underdemanded set S via reacha-

bility in an exchange graph. Given prices p, zi ∈ pDi (p) and e, f ∈ E, we define weights, which can
be computed by an exchange oracle as described in Section 2.4, by

pw i
i (e, f ) � max{α ∈ Z | zi − α χf + α χe ∈ pDi (p)}.

Let further
pAi � {(e, f ) ∈ E × E | pw

p
i (e, f ) > 0} for i ∈ N ,

and define pG(z) � (E, pA) with pA �
⋃

i ∈N
pAi .

Theorem 3.8. The minimal maximally underdemanded set S is the set R of items which are reach-
able from an undersold item in pG(z).

This proof follows from Lemmas 2.14 and 3.7. It is similar to the one of Theorem 3.3 and given
in Appendix B.3.

In particular, we obtain the following analogue of Lemma 3.4:

Lemma 3.9. The minimal maximally underdemanded set can be computed in time O(nm2 · ExO),
given an optimal solution z to (13).

In the following section, we present an algorithm to compute an optimal solution z to the general
polymatroid sum problem (4). In particular, this algorithm allows us to compute optimal solutions
to (12) or to (13), respectively.

4 Push-Relabel Algorithm to Solve the Polymatroid Sum Problem

Push-relabel algorithms are a well-studied algorithmic paradigm to solve submodular function
minimization problems or subclasses of those. We start by presenting a general push-relabel frame-
work for polymatroids and prove its correctness. Afterward, we show how to implement this frame-
work first for matroids and then for polymatroids and analyze the running time. Note that, in
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principle, any algorithm could be used to solve the matroid union (polymatroid sum) problem in
order to compute the minimal maximally over-/underdemanded set with the help of the exchange
graph as described in Section 3.2 above. In this section, we present an efficient implementation of
a push-relabel algorithm for matroid union and polymatroid sum with respect to the number of
ExO oracle queries. Our push-relabel algorithm is based on Frank and Miklós [28] who present a
simpler algorithm for matroid union and a more general one for submodular flow feasibility; our
algorithm generalizes the first and is a special case of the second. In contrast to our analysis, Frank
and Miklós [28] only give a complexity bound in terms of “basic operations”, i.e., push-relabel steps.
We give a self-contained presentation of the algorithm and the analysis.

4.1 The Push-Relabel Framework

Let B1, . . . ,Bn ∈ [0,b]Z be M-convex sets. Furthermore, we consider the weights wi (e, f ) with
respect to an i ∈ N and a fixed zi ∈ Bi as described in Section 2.4. We define the level function
Θ : E → {0, 1, . . . ,m}, and denote Θmin(S) � min{Θ(e) : e ∈ S} for S ⊆ E. Recall that E =
{1, 2, . . . ,m}, i.e., items are labeled by integers and the same holds for buyers. Thus, we may use
the usual order ≤ on each of them. Further recall that we use the shorthand notation Ti (e) instead
of TBi

(e, zi ) for the unique minimal i-tight set containing e .

Definition 4.1. Given zi ∈ Bi for all i ∈ N , a mapping Θ : E → {0, 1, . . . ,m} is a valid level
function if it satisfies the following properties:

(L1) Θ(e) = 0 whenever e ∈ E is oversold,
(L2) Θmin(Ti (e)) ≥ Θ(e) − 1 for all i ∈ N and e ∈ E.

The general idea of the push-relabel algorithm is as follows. Initially, all e ∈ E have Θ(e) = 0.
As long as there still is an undersold item with label below m, we pick one such item e . Now, we
aim at pushing at this item if possible or relabel otherwise, where the push-relabel operations are
described as follows:

Push: If we find an item f with f ∈ Ti (e) and Θ(f ) = Θ(e) − 1, then we perform a push at
e with respect to i and f . In such a push, we replace zi by z ′i � zi − α χf + α χe for
α � min{b(e) −

∑
�∈N z�(e),wi (e, f )}. That is, we select the largest value of α such that e

does not get oversold, and such that z ′i ∈ Bi .
Relabel: If no such item exists, we relabel by setting Θ(e) � Θ(e) + 1.

If in the push operation, the minimum in α � min{b(e) −
∑

�∈N z�(e),wi (e, f )} is attained in
the second entry, this is called a saturating push at e w.r.t. f and i; otherwise, if the minimum is
attained only in the first entry, it is called a non-saturating push at e w.r.t. f and i .

Push-Relabel Algorithm

zi � any vector from Bi for all i ∈ N
Θ(e) � 0 for all e ∈ E
while there is an undersold item e with Θ(e) < m do

choose an undersold item e with Θ(e) < m
Push if there is some f with f ∈ Ti (e) and Θ(f ) = Θ(e) − 1

Relabel otherwise
return z

The following two lemmata state that the level invariants are maintained, and that the push-
relabel framework indeed computes an optimal solution.

Lemma 4.2. The level invariants (L1) and (L2) are maintained throughout the Push-Relabel Algo-
rithm.
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Proof. The invariants (L1) and (L2) clearly hold at initialization. To see that (L1) is maintained,
note that labels are only modified for undersold items, and no undersold item gets oversold during
the execution of the algorithm (by the choice ofα in every push operation). Note that it may happen
that an initially oversold item e with Θ(e) = 0 gets undersold, but then it never gets oversold again.

Let us now turn to (L2). First, consider a relabel operation of some item e . Since no push was
performed, it follows that for all f ∈ Ti (e), it holds that Θ(f ) > Θ(e) − 1 (smaller is not possible,
since (L2) is fulfilled before the relabeling operation). Thus, Θmin(Ti (e)) ≥ Θ(e), and hence, (L2) is
still fulfilled after the level of e is increased by one.

Consider now a push operation that changes zi to z ′i � zi − α χf + α χe for α > 0. Let T ′
j (д)

denote the j-tight sets for each д ∈ E after the push operation. We need to show

Θmin(T
′

j (д)) ≥ Θ(д) − 1 for all j ∈ N ,д ∈ E. (14)

This inequality is immediate for all j � i and д ∈ E since the bundle zj and the levels do not change,
therefore T ′

j (д) = Tj (д). It also remains true for j = i , and for all д ∈ E such that f � Ti (д), since

in this case Ti (д) is also i-tight for z ′i , and thus T ′
i (д) ⊆ Ti (д).

Hence, it is left to show (14) for the case j = i , and f ∈ Ti (д). We have T ′
i (д) ⊆ Ti (д) ∪ Ti (e),

since Ti (д) ∪ Ti (e) is tight before the push operation as the union of two tight sets, and remains
tight. Thus,

Θmin(T
′

i (д)) ≥ min {Θmin(Ti (д)),Θmin(Ti (e))} = min {Θmin(Ti (д)),Θ(f )} = Θmin(Ti (д)),

where the penultimate equality follows since Θ(f ) = Θmin(Ti (e)) if f is selected for a push (by the
selection property and since (L2) is fulfilled before the push). The last equality follows by f ∈ Ti (д).
This shows that (14) remains true after the push operation. �

Lemma 4.3. The Push-Relabel Algorithm returns an optimal solution to the polymatroid sum
problem (4).

Proof. First, we observe that when the algorithm stops, there is a value � ∈ {0, 1, . . . ,m} such
that there is no item e with Θ(e) = �. To see this, note that we have onlym items butm + 1 levels,
so by pigeonhole principle, there exists an empty level � ≤ m.

By Lemma 2.13, Equation (5) always holds. Using the equality criteria of Lemma 2.13, we show
that the equation is fulfilled with equality for our computed bundle z and S � {e ∈ E | Θ(e) < �},
implying that z is an optimal solution to the polymatroid sum problem (4). We note that S = �

and S = E are both possible.
Since there is no undersold item on any level below m by the stopping criterion, there is also

no undersold item on any level below � and the equality criterion (6) holds by definition of S .
Optimality criterion (7) is satisfied because all items in E \ S have a label greater than 0 while all
oversold items have label 0 by (L1). To show (8), note that Ti (e) ⊆ E \S for all e ∈ E \S by (L2) and
the choice of �. Hence, E \ S =

⋃
e ∈E\S Ti (e) is i-tight for each i ∈ N , as it is the union of i-tight

sets. �

We have seen that the Push-Relabel Algorithm returns an optimal solution z to the polymatroid
sum problem (4). In the next two sections, we explain how to find the items to push or relabel in a
fast way. Therefore, we distinguish the unit-supply setting, i.e., where b(e) = 1 for each e ∈ E and
the general multi-supply setting.

4.2 Running Time of the Unit-supply Case

We now consider the unit-supply case, i.e., b(e) = 1 for all e ∈ E. In this case, each Bi is an
M-convex subset of [0, 1]Z, which precisely corresponds to the set of bases of a matroid. Hence,
zi ∈ Bi is the indicator vector of a base; we will also use the notation Bi = supp(zi ). In this case,
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it is easy to see that Ti (e) = {e} if e ∈ Bi , and Ti (e) is the fundamental circuit C(Bi , e) in the i-th
matroid if e ∈ E \ Bi .

For the special case of unit-supply, the Push-Relabel Algorithm can be described as follows: In
each iteration with current bases Bi for i ∈ N , and levels Θ : E → {0, . . . ,m}, the algorithm checks
whether there exists an undersold, thus unsold, item e ∈ E of level Θ(e) < m, and if so, chooses
one such item.

In the body of the while loop, given an unsold item e , the algorithm checks if it can perform
a push operation. For this, the algorithm might need to go through all buyers i ∈ N , and check
whether there exists an item f in the fundamental circuit C(Bi , e) of level Θ(f ) = Θ(e) − 1. This
may cost nm queries, but only if e has level Θ(e) = 1. If e has level Θ(e) = 0, we can immediately
relabel. Whenever e has level Θ(e) ≥ 2, then it suffices to go through each item f at most once,
since each item f of level Θ(f ) = Θ(e) − 1 that is sold is owned by exactly one buyer (by (L1)
and since there is only one unit per item). The proof of the following theorem makes use of the
described procedure to bound the running time.

Theorem 4.4. The Push-Relabel Algorithm can be implemented in running time O(n ·DO+ (m3 +

nm2) · ExO) for the unit-supply case.

Proof. The algorithm starts with finding an initial allocation z inn·DO time. Given an allocation
z, we can compute how many buyers own an item e in O(nm). These values can be updated in time
O(1) at every push operation. Moreover, these values allow us to maintain a list of all unsold items,
which needs O(m) time for initialization and can be maintained in O(1) at each push. Note that at
a relabel operation, nothing changes for these values and the list.

We find an unsold item e and check its level Θ(e) in O(1). If Θ(e) = 0, we can relabel immediately.
If Θ(e) = 1, we will go through all buyer-item combinations of items in level 0 to determine a push
(if possible, else we relabel). This takes O(mn) exchange oracle calls. For every other level � ≥ 2,
any item on level � − 1 belongs to at most one buyer (by (L1), and since there is only one unit per
item). Thus, we just need to go through the items once to determine a push or a relabel operation.
This can be done in O(m) exchange oracle calls.

The number of relabel operations per level � ≥ 1 is bounded by O(m). The number of pushes
per level is also bounded by O(m). To see this, we show that for each level � the value Φ(�) =∑

i ∈N



Bi,≥�



 is non-decreasing in every relabel or push operation, where


Bi,≥�



 is the number of
items in the base of buyer i that were added to the base when their level was at least �. Relabel
operations are only used for unsold items, and hence they do not affect the Bi,≥� sets; thus, Φ(�)
does not change. At any push at e with respect to f and i ,



Bj,≥�



 does not change for j � i . For
buyer i , the item f which leaves the base Bi is exactly one level lower than the level of the item e
which enters the base. Hence,



Bi,≥�



 is not decreasing. When pushing at e with respect to i and f

with Θ(e) = �, we strictly increase


Bi,≥�



 and thus, Φ(�).
Since Φ(�) ≤ m for each � ≥ 1 (as each item with level � ≥ 1 appears in just one base), we get a

bound ofm on the number of pushes per level.
This gives a total running time of O((m2n +m3) · ExO) after finding the initial allocation, where

the first term is generated by the pushes and relabel operations on items at level 1 and the second
term captures all remaining pushes. �

Corollary 4.5. Given prices p, we can compute the minimal maximally overdemanded [underde-
manded] set in time O(n · DO + (m3 + nm2) · ExO) in the unit-supply setting.

This follows by Lemma 3.4 [Lemma 3.9, respectively] and Theorem 4.4. Note that the demand

and exchange oracle calls are based on the matroids corresponding to the preferred bundles qDi (p)

or pDi (p), respectively.
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4.3 A Polymatroid Sum Algorithm

In this section, we provide a fast implementation of the push-relabel framework for the multi-
supply setting. We will need a different approach here than in the unit-supply setting. There, the
key property of the approach is that an item which is not oversold is owned by at most one buyer.
This is not true any longer.

Recall that the generic push-relabel algorithm selects an undersold item e and then searches for
a buyer-item pair (i, f ) satisfying wi (e, f ) > 0 and Θ(f ) = Θ(e) − 1. If such a pair exists, a push is
performed. If not, item e gets relabeled. In this section, we show that it is possible to go through
the buyer-item pairs in a structured way. Namely, for a fixed item e we consider the buyer-item
pairs in lexicographically increasing order. This (total) lexicographical ordering is based on the
ordering of the buyers N = {1, . . . ,n} and the items E = {1, . . . ,m} by natural numbers, i.e., (i, f )
is lexicographically smaller than (i ′, f ′) if i < i ′, or if i = i ′ and f < f ′.

In Lemma 4.7, we show a crucial monotonicity property: For a fixed item e , the lexicographically
minimal buyer item pair (i, f ) which fulfills all necessary conditions for a push will lexicographi-
cally only increase until e is relabeled. This implies that for a fixed item e , we can find all possible
pushes until e is relabeled by going in lexicographically increasing order through all item-buyer
combinations.

We note that lexicographic selection rules are commonly used in submodular optimization.
This idea traces back to the first polynomial-time algorithm for polymatroid intersection by
Schönsleben [57], and was used in the push-relabel algorithms by Fujishige and Zhang [31, 32].
Notably, the algorithm by Frank and Miklós [28] does not rely on this rule. It is beneficial in our
implementation as it enables to decrease the number of exchange oracle queries, leading to an
implementation of the push-relabel framework in O(m3n · ExO).

4.3.1 Algorithm. We implement the general push-relabel algorithm with two subtleties. First
of all, we always select an undersold item e of highest level among those of level strictly smaller
thanm. Second, for some given item e , when selecting the buyer-item pair (i, f ) for the next push,
we always select the pair which is lexicographically smallest among all buyer-item pairs that fulfill
the necessary requirements for a push at item e .

To implement this rule efficiently, we exploit the monotonicity property stated in Lemma 4.7.
This means that for every item e , we keep track of the next buyer-item pair which we have to
consider as a candidate for a push in case e gets selected. Starting from this pair, we search for
a feasible candidate in lexicographically increasing order. When a candidate is found, a push is
performed and the pointer to the next buyer-item pair to consider is updated. For a non-saturating
push, this is the buyer-item pair for which the push was performed, for a saturating one it is the
lexicographically next buyer-item pair. If no feasible pair for a push can be found, this means
that e gets relabeled and the pointer to the next buyer-item pair to consider is reset to the lex-
icographically minimal one. We give an implementation of the described procedure in pseudo
code.

Theorem 4.6. The Polymatroid Sum Algorithm via Push-Relabel returns a solution to (4). The
algorithm runs in time O(n · DO + nm3 · ExO).

To prove this theorem, we first show correctness of the algorithm. More precisely, we have to
show the correctness of the procedure to select a buyer-item pair for a push. In particular, we
need to prove that with the described procedure, we do not relabel although there is still a feasible
buyer-item pair for a push when ignoring buyer-item pairs which are lexicographically below the
pointer.

4.3.2 Correctness. We start by proving the above mentioned monotonicity lemma.
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Polymatroid Sum Algorithm via Push-Relabel

zi � any vector from Bi for all i ∈ N
Θ(e) � 0 for all e ∈ E
initialize pointer to the buyer-item pair for the exchange at item e as (je ,дe ) � (1, 1) for all e ∈ E
while there is an undersold item e with Θ(e) < m do

push � f alse
Choose e ∈ arg maxe ∈E {Θ(e) | e is undersold and Θ(e) < m}

for buyer-item pairs (i, f ) in lexicographically increasing order starting with the pair (je ,дe ) do

if wi (e, f ) > 0 and Θ(e) = Θ(f ) + 1 then // buyer-item pair to perform a push
push � true
α � min{b(e) −

∑
�∈N z�(e),wi (e, f )}

zi � zi − α χf + α χe

if b(e) −
∑

�∈N z�(e) < wi (e, f ) then // non-saturating push
(je ,дe ) � (i, f ) // set pointer to current pair

continue with next undersold item e (by aborting the for-loop) // e is not undersold

anymore

else // saturating push

(je ,дe ) �

{
(i, f + 1) if f + 1 exists,

(i + 1, 1) otherwise
// set pointer to next pair in lex. order

if not push then // relabel if no push was found for e
Θ(e) � Θ(e) + 1

(je ,дe ) � (1, 1) // reset pointer to first pair in lex. order

return z and Θ(e) for all e ∈ E

Lemma 4.7. Let e ∈ E with Θ(e) = � and let i ∈ N . Under the assumption that every push in
Push-Relabel Algorithm is executed with respect to a minimal suitable item,

min{ f | f ∈ Ti (e),Θ(f ) = � − 1}, (15)

is monotonically increasing and strictly increases at every saturating push at e with respect to f and
i as long as we do not relabel e , i.e., as long as Θ(e) remains �.

Proof. We prove the lemma by considering the different steps a push and relabel algorithm can
execute, namely pushing and relabeling and show that after both these operations, the statement
of the lemma is fulfilled. A relabel operation does not affect Ti (e). Moreover, by (L2), there is no
item f ∈ Ti (e) with � − 2 = Θ(f ) < Θ(e) − 1 = � − 1. Thus, no additional candidates can appear in
{ f | f ∈ Ti (e),Θ(f ) = � − 1}. The label of the currently minimal item could increase from � − 1 to
� though, in which case (15) increases. In total, we obtain the desired monotonicity for a relabel
operation.

For push operations with respect to i ′ � i , neither Ti (e) nor the labels change and thus, again,
the statement holds since the minimal item remains the same.

Consider a push operation at k with respect to i andд. Let z ′i = zi −α χд+α χk be the set assigned
to i after the push and let T ′

i (e) denote the minimal i-tight set containing e after the push.
First assume that k = e . In this case, д is the minimal item in Ti (e) with Θ(д) = Θ(e) − 1 by the

assumption of the lemma that every push is executed with respect to a minimal suitable item.

— For a saturating push, we have α = wi (e,д). This implies z ′i −χд+χe � Bi and thus,д � T ′
i (e)

by Lemma 2.14. Moreover, ρi (Ti (e)) = zi (Ti (e)) = z ′i (Ti (e)) since e,д ∈ Ti (e). Hence, Ti (e)
is a tight set with respect to z ′i and, thus, T ′

i (e) ⊆ Ti (e). We get T ′
i (e) ⊆ Ti (e) \ {д}, which

implies that the item fulfilling all requirements is strictly increasing.
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— For a non-saturating push, we get α < wi (e,д). Thus, z ′i −(wi (e,д)−α)χд + (wi (e,д)−α)χe ∈

Bi , which implies д ∈ T ′
i (e) by Lemma 2.14. Moreover, Ti (e) is tight with respect to z ′i ,

hence, T ′
i (e) ⊆ Ti (e). This implies that the minimal item fulfilling all requirements remains

the same.

Next, we show monotonicity for k � e . To this end, we distinguish three cases:

— If k,д � Ti (e), then T ′
i (e) = Ti (e) and thus, (15) remains the same.

— If k ∈ Ti (e), it holds that Ti (k) ⊆ Ti (e) by Lemma 2.14. Thus, we get that also д is in Ti (e),
as д ∈ Ti (k) ⊆ Ti (e). This implies that z ′i (Ti (e)) = zi (Ti (e)). Since Ti (e) is a tight set, we
have zi (Ti (e)) = ρ(Ti (e)). In other words, Ti (e) remains tight after the push. This yields
T ′

i (e) ⊆ Ti (e), as T ′
i (e) is defined as the minimal tight set containing e and Ti (e) is already a

valid candidate. Monotonicity of (15) follows immediately.
— If k � Ti (e) and д ∈ Ti (e), it holds that T ′

i (e) ⊆ Ti (e) ∪ Ti (k). This follows since the set
Ti (e) ∪ Ti (k) is tight and remains tight after the push since it contains k and д. Now, we
distinguish three cases, based on the level of k . First assume Θ(k) > �. Then Θmin(Ti (k)) ≥ �
by (L2) and therefore { f ∈ E | Θ(f ) = � − 1} ∩ T ′

i (e) ⊆ Ti (e). In other words, every item
that is a candidate in the minimum after the push was also in Ti (e) and thus a candidate
before the push since all items in Ti (k) have a label which is too high. Next, consider the
case Θ(k) = �. Then we get

min{ f ′ | f ′ ∈ Ti (k),Θ(f ′) = � − 1} = д ≥ min{ f ′ | f ′ ∈ Ti (e),Θ(f ′) = � − 1},

since we are now assuming д ∈ Ti (e) and Θ(д) = � − 1 and thus, д is a valid candidate
for the minimum on the right side. This shows the desired monotonicity of (15) since we
showed that T ′

i (e) ⊆ Ti (e) ∪ Ti (k). Finally, Θ(k) < � is not possible, as on one hand we have
Θ(д) = Θ(k) − 1 < � − 1 since we push on k with respect to д and on the other hand we have
д ∈ Ti (e) by case distinction and thus, Θ(д) ≥ Θ(e) − 1 = � − 1. This is a contradiction.

Hence monotonicity of (15) holds in every case. �

Note that when pushes are only executed with respect to lexicographically minimal item-buyer
pairs, the condition of Lemma 4.7 is fulfilled. Thus, we can apply the lemma to obtain monotonicity
of (15) for every buyer i . This implies that, when fixing i , the potential items for a push at e are
monotonically increasing, i.e., not below the items considered so far. Note that this implies that
whenever there was no push for a buyer i at item e , there will not be any push for this buyer
until e is relabeled. Moreover, at a saturating push (15), increases strictly and thus also the buyer-
item pair. Hence, the procedure in Polymatroid Sum Algorithm via Push-Relabel is indeed a valid
implementation of the general push-relabel framework.

Corollary 4.8. The Polymatroid Sum Algorithm via Push-Relabel returns an optimal solution
to (4).

Next, we aim at bounding the running time.

4.3.3 Running Time Analysis. As a first step to show Theorem 4.6, we bound the number of
non-saturating pushes. This is crucial since for these pushes, we cannot proceed with the next
lexicographically higher item-buyer pair, but instead have to reconsider a pair that we looked at
already. The key ingredient of the proof is that we always choose an undersold item of maximal
level belowm for a push and the fact that an item is not undersold anymore after a non-saturating
push and can only get undersold again by a push on an item from a higher level.

Lemma 4.9. The number of non-saturating pushes in the Polymatroid Sum Algorithm via Push-
Relabel is at mostm3.
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Proof. A phase of the algorithm is the set of iterations between two relabel operations. Once
every item e ∈ E has reached Θ(e) = m, the algorithm stops since then there is no item left we
can choose for a push. Since an item with levelm is never selected, there are at mostm2 phases (m
items, that are relabeled at mostm times).

We will show that for each e ∈ E, there can be at most one non-saturating push in each phase.
Here, we exploit that the algorithm picks an undersold item e with Θ(e) = � maximal. After a non-
saturating push, item e is not undersold anymore. Thus, it cannot be picked again before it becomes
undersold again. Push operations of an item at level �′ may create new undersold items but only
on level �′ − 1. Therefore, item e could become undersold again due to a push at an undersold item
f with Θ(f ) = � + 1. However, no undersold item at level � + 1 may appear without a relabeling
after e was picked, i.e., within the same phase.

Hence, there can be at most one non-saturating push per item, i.e., at most m non-saturating
pushes in a phase. As there are at most m2 phases, there are at most m3 non-saturating pushes
during the algorithm. �

Lemma 4.10. The Polymatroid Sum Algorithm via Push-Relabel runs in O(n · DO + nm3 · ExO)

time.

Proof. We can find an initial allocation in n · DO time by asking every buyer i for a vector
zi ∈ Bi .

According to the previous lemma, the total number of non-saturating pushes is O(m3). We esti-
mate the running time of all relabel and saturating push operations induced by a fixed item e while
it is on level Θ(e) = �. Given e , we go through all buyer-item combinations in a structured way
such that we consider every buyer-item combination at most once unless there is a non-saturating
push. So, without the non-saturating pushes an item e on a fixed level � induces a running time
of mn arithmetic operations and edge-weight queries, in particular one ExO query for each item-
buyer pair. Since there are m items, that can be on at most m different levels with a total addition
of m3 overall, the running time is O(nm3 + m3) = O(nm3) edge-weight queries and arithmetic
operations.

In the analysis so far, we ignored the time needed to pick an undersold item e on the maximal
possible level belowm. We show now that this is not a bottleneck operation. We do so by using a
standard network flow push-relabel construction (see e.g., [1, Section 7.8]). In the beginning, we
initialize a list per level giving all undersold items that are on this level. In the beginning, all lists
are empty except for the level 0 list, which contains all undersold items. This construction takes
O(m) but is only needed once. Moreover, we keep track of the maximal level that has a non-empty
list and is below m. The list is easily maintainable, since only one item changes the level and the
property undersold per iteration. The total increase of the maximal relevant level is bounded by
O(m2) (m items on up tom levels). Thus, the total decrease is at most O(m2). Hence, scanning the
lists to find the first non-empty list is not a bottleneck operation. Having such a data structure, we
can access any item from the list on the level of the pointer in O(1). �

Now, we are ready to prove our main Theorem 4.6 as we considered correctness and running
time of the algorithm.

Proof of Theorem 4.6. The statement follows directly by Corollary 4.8 and Lemma 4.10. �

Using the Polymatroid Sum Algorithm via Push-Relabel and a breadth-first search in the ex-
change graph, we can compute the minimal maximally over-/underdemanded sets efficiently.

Corollary 4.11. Given prices p, we can compute the minimal maximally overdemanded [under-
demanded] set in time O(n · DO + nm3 · ExO) in the multi-supply setting.

ACM Trans. Econ. Comput., Vol. 13, No. 3, Article 13. Publication date: June 2025.



13:28 K. Eickhof et al.

This follows by Lemma 3.4 [Lemma 3.9, respectively] and Theorem 4.6. Recall that the demand

and exchange oracle calls are based on the matroids corresponding to the preferred bundles qDi (p)

or pDi (p), respectively.

5 Minimal Packing Prices and Maximal Covering Prices are Walrasian

It is well-known that Walrasian prices form a complete lattice using the component-wise mini-
mum and component-wise maximum as meet and join operations, respectively. Hence, there also
exists a component-wise minimal and maximal Walrasian price vector p∗ and p∗, which we already
discussed in the previous sections.

Packing and covering prices are already interesting on their own as they both constitute weaker
notions of equilibria (packing: every buyer gets a preferred bundle, covering: all items are sold).
Moreover, packing and covering prices are guaranteed to exist, also for non strong gross substi-
tutes valuation functions, e.g., by setting the prices very high (such that no buyer is interested in
any good) or to zero, respectively. It is a natural question whether these relaxations inherit those
lattice properties and whether minimal packing prices or maximal covering prices (if they exist)
are guaranteed to be Walrasian. Particularly, the question whether minimal packing and maximal
covering prices exist is interesting.

For non strong gross substitutes valuations, we show in Appendix A.2 and A.3 that packing and
covering prices do not form a lattice. Moreover, the example in Appendix A.2 even shows that
there is no unique minimal packing price vector.

However, for strong gross substitutes valuations, the answer is positive: in the following, we
show that there is a unique minimal packing price vector and a unique maximal covering price
vector. Moreover, we show that these vectors are equal to the minimal, respectively maximal, Wal-
rasian price vector.

5.1 Reduction to Unit-supply Case

Recall that we are given some market consisting of items (types) e ∈ E, where b(e) is the number
of units which are available of item e and where each buyer i ∈ N has a strong gross substitutes
valuation function vi : [0,b]Z → Z+. Moreover, we set prices p(e) for each unit of item e .

Now, we will transfer this setting to a market with unit-supply, i.e., where only one unit of each
item is available. This unit-supply setting is used in the following proofs since with an individual
price for every copy, it is easier to show the statements and we can directly use well-known results
for the unit-supply case. This simple trick of copying the items is also used for example in [51,
Appendix A.2].

Given an instance in the multi-supply setting, we construct an instance in the unit-supply setting

by defining b(e) copies ẽ1, . . . , ẽb(e) of item e ∈ E. We call the set of all copies of items Ẽ, i.e.,

Ẽ � {ẽ1, . . . , ẽb(e) : e ∈ E}. This means that ẽk is a copy of item e . For simplicity, we may omit the

index if we pick an item of Ẽ. To convert the bundles z to the unit-supply setting, we go through
the buyers one by one and allocate any zi (e) (preferably unsold) different copies of e to buyer i .
Note that if z is packing there are enough unsold copies available, otherwise, we have to allocate

some item copies to multiple buyers. We convert a bundle S ⊆ Ẽ to a bundle z ∈ [0,b]Z by setting
z(e) = |{ẽ ∈ S | ẽ is a copy of e}|. Thus, the valuation of S is given by v(S) � v(z).

Note that in the unit-supply setting, it is allowed that two different copies ẽj and ẽk of item e
have different prices. However, in the following lemma, we show that in the minimal and maximal
Walrasian price vector no two copies of an item have a different price. Given this, converting a
price vector from the unit-supply setting to the multi-supply setting becomes straight-forward.
For the reverse direction, given a multi-supply price vector p, we can construct a unit-supply price
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vector by just setting the price of each copy of e to p(e). We stick to calling these prices p since it
will be clear from the context whether we are talking about the multi-supply or the unit-supply
setting.

Lemma 5.1. A vectorp is the minimal [maximal] Walrasian price vector in the multi-supply setting
if and only if p is also the minimal [maximal] Walrasian price vector in the corresponding unit-supply
setting, i.e., the prices of each copy of an item e are given by p(e).

Proof. It suffices to show that the minimal [maximal] Walrasian price vector p̃ in the unit-
supply setting has the same prices for each copy of an item. If two item copies ẽj and ẽk of item type
e do not have the same price, we will show that this price vector is not the minimal, respectively
maximal, Walrasian price vector.

If p̃(ẽj ) � p̃(ẽk ), we have that p̃ ′ with p̃ ′( f̃ ) = p̃( f̃ ) for f̃ ∈ Ẽ \ {ẽj , ẽk }, p̃
′(ẽj ) = p̃(ẽk ), and

p̃ ′(ẽk ) = p̃(ẽj ) is Walrasian by symmetry. Hence, as Walrasian prices form a lattice [37], p̃ ∧ p̃ ′ and
p̃ ∨ p̃ ′ are Walrasian as well. This is a contradiction to p̃ being the minimal, respectively maximal,
Walrasian price vector and thus, all item copies have the same price given the minimal [respectively
maximal] Walrasian price vector p̃. �

The following lemma states that when using the described reduction to the unit supply setting
(see Section 5.1), the valuation functions of the buyers remain gross substitutes.

Lemma 5.2 ([51, Proposition A.1]). The valuation function v : 2Ẽ → Z+ is gross substitutes.

5.2 Minimal Packing Prices are Walrasian

It is already known that in the unit-supply setting, packing prices are also Walrasian if they lie
below a Walrasian price vector [8]. However, this is not sufficient to show that there exists a unique
minimal packing price vector (which is Walrasian), as it is not a priori clear whether there can be
a packing price vector that is in some component smaller (but in another larger) than the minimal
Walrasian price vector. In this section, we show that this is never the case as the minimal Walrasian
price vector is a componentwise lower bound on every packing price vector.

Theorem 5.3. Given an instance where all valuation functions are strong gross substitutes, let p∗
be the minimal Walrasian price vector. Then p∗ ≤ q for any packing price vector q.

Remember that every Walrasian price vector is also packing, but not vice versa. Thus, we can
reformulate the main theorem of this section as follows.

Corollary 5.4. There exists a component-wise minimal packing price vector and it is equal to the
minimal Walrasian price vector.

To show Theorem 5.3, we will use the following lemma, that compares p∗(e) and q(e) for the
items e which are at least partially sold in a packing allocation w.r.t. prices q.

Lemma 5.5. Let p∗ be the minimal Walrasian price vector and let q be any packing price vector.
Moreover, let (z1, . . . , zn) be a packing allocation w.r.t. prices q. Then p∗(e) ≤ q(e) for all e ∈ E with∑

i ∈N zi (e) > 0.

Proof. To prove this lemma, we will use the reduction to the unit-supply case. Therefore, let

Ẽ denote the set containing all item copies and let (S1, . . . , Sn) be the sets of bundles in the unit-
supply setting corresponding to (z1, . . . , zn).

By Lemma 5.1 and since p∗ is a minimal Walrasian price vector in the multi-supply setting, it is
also a minimal Walrasian price vector in the unit-supply setting. Hence, in the unit-supply setting,
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it minimizes the submodular Lyapunov function L(p) �
∑

i ∈N Vi (p) +
∑

ẽ ∈Ẽ p(ẽ) (see Lemma 2.3),
i.e., p∗ is an optimal solution to

α � min

⎧⎪⎪⎨⎪⎪⎩
∑
i ∈N

Vi (p) +
∑
ẽ ∈Ẽ

p(ẽ) | p(ẽ) ≥ 0 for all ẽ ∈ Ẽ

⎫⎪⎪⎬⎪⎪⎭ . (16)

Let S =
⋃

i ∈N Si be the set of item copies chosen in the preferred bundles. Now, we define a new
price vector q′ by

q′(ẽ) �

{
q(ẽ) if ẽ ∈ S,

∞ otherwise.

Note that Vi (q) = Vi (q
′) holds by definition. The price vector q restricted to S is Walrasian. The

same holds for q′, thus, it minimizes the Lyapunov function restricted to S . In other words, q′ is
an optimal solution to

β � min

{∑
i ∈N

Vi (p) + p(S) | p(ẽ) ≥ 0 for all ẽ ∈ S and p(ẽ) = ∞ for all ẽ ∈ Ẽ \ S

}
. (17)

Next, we define the join p̌ � p∗ ∨ q′ and the meet p̂ � p∗ ∧ q′ of the two price vectors p∗ and q′

(i.e., p̌(ẽ) � max{p∗(ẽ),q
′(ẽ)} and p̂(ẽ) � min{p∗(ẽ),q

′(ẽ)}). Then, the following holds:

α + β =
∑
j ∈N

Vj (p∗) + p∗(Ẽ) +
∑
j ∈N

Vj (q
′) + q′(S) =

∑
j ∈N

(Vj (p∗) +Vj (q
′)) + (p∗(Ẽ) + q

′(S))

≥
∑
j ∈N

(Vj (p̂) +Vj (p̌)) + (p̂(Ẽ) + p̌(S)) =
∑
j ∈N

Vj (p̂) + p̂(Ẽ) +
∑
j ∈N

Vj (p̌) + p̌(S)

≥ α + β,

where the first inequality follows from submodularity of p �→ Vj (p) (cf. [7, Theorem 10]) and since

p∗(ẽ) + q
′(ẽ) = p̌(ẽ) + p̂(ẽ) for all ẽ ∈ S and p̂(ẽ) = p∗(ẽ) for all ẽ ∈ Ẽ \ S . The second inequality

follows since p̂ is a feasible price vector for (16) and since p̌ is a feasible price vector for (17).
Therefore, equality must hold in the equation system. This implies that p̂ is an optimal solution
for (16) and thus a Walrasian price vector. Since p∗ is the minimal Walrasian price vector, it holds
that p∗(ẽ) ≤ p̂(ẽ) = min{p∗(ẽ),q

′(ẽ)} ≤ q′(ẽ) = q(ẽ) for ẽ ∈ S . By definition of S , it follows that
p∗(e) ≤ q(e) holds for all e ∈ E with

∑
i ∈N zi (e) > 0. �

Proof of Theorem 5.3. Let q be a minimal packing price vector and consider a packing alloca-
tion (z1, . . . , zn) w.r.t. prices q. By Lemma 5.5, we already know that p∗(e) ≤ q(e) for all e with∑

i ∈N zi (e) > 0. For e with zi (e) = 0 for all i ∈ N , we consider two cases.
If z ′i (e) > 0 for some z ′i ∈ Di (q) for some buyer i ∈ N , we show that there is z ′′i ∈ Di (q) with

z ′′(e) > 0 and z ′′i ≤ zi + χe : Since both zi and z ′i are preferred bundles of buyer i , they maximize

the utility function ui . Since the utility function ui is M�-concave, for e ∈ supp+(z ′i −zi ) one of the
following cases holds (see Definition 2.5):

(a) It holds that ui (z
′
i ) + ui (zi ) ≤ ui (z

′
i − χe ) + ui (zi + χe ). Hence, equality holds since z ′i and zi

are maximizers of the utility and thus, z ′′i = zi + χe is also a preferred bundle.
(b) There exists an f ∈ supp−(z ′i − zi ) with ui (z

′
i ) +ui (zi ) ≤ ui (z

′
i − χe + χf ) + ui (zi + χe − χf ).

Again, equality must hold and thus z ′′i = zi + χe − χf is a preferred bundle.

In both cases, there exists a packing allocation z̄ = (z1, . . . , zi−1, z
′′
i , . . . , zn) with respect to prices

q with
∑

i ∈N z̄i (e) > 0. Thus, it follows by Lemma 5.5 that p∗(e) ≤ q(e).
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If e � supp+(z ′i ) for any z ′i ∈ Di (q) and any buyer i ∈ N , we can reduce the price of e slightly,7

which results in a smaller packing price vector and thus in a contradiction to the choice of q. �

5.3 Maximal Covering Prices are Walrasian

In this section, we establish that maximal covering prices are Walrasian. More precisely, we show
that first of all, there exists a unique component-wise maximal covering price vector, and second
that this price vector coincides with the maximal Walrasian price vector.

The main result of this section can be formulated as follows:

Theorem 5.6. Given an instance where all valuation functions are strong gross substitutes, let p∗

be the maximal Walrasian price vector. Then p∗ ≥ q for any covering price vector q.

Corollary 5.7. There exists a component-wise maximal covering price vector and it is equal to
the maximal Walrasian price vector.

The remainder of this section is dedicated to the proof of Theorem 5.6. By Lemma 5.1, it suffices
to establish Theorem 5.6 in the unit-supply setting because for any covering vector q in the multi-
supply setting, q will also be covering in the corresponding unit-supply instance.

Fix a unit-supply instance with item set E and buyers i ∈ N with gross substitutes valuation
functions vi : 2E → Z+. Denote the maximal Walrasian price vector by p∗ and let q be covering.
Fix preferred bundles (Si )i ∈N for prices q with

⋃
i ∈N Si = E. For e ∈ E, let ke � |{i ∈ N | e ∈ Si }|

denote the multiplicity of item e among the bundles (Si )i ∈N .
Our strategy to prove Theorem 5.6 is to construct an instance in which we have ke copies of

each item, and argue that q will be Walrasian prices for that instance (assigning to each copy of e
a price of q(e)).

To this end, let E ′ � {e ′1, . . . , e
′
ke

| e ∈ E} and let π : E ′ → E, e ′i �→ e be the projection of E ′ onto

E. We define new valuation functions v ′
i : E ′ → Z+ for i ∈ N by setting

v ′
i (S

′) � vi (π (S
′)).

For a price vector p ∈ RE
+ [p ′ ∈ RE′

+ ], we denote the set of preferred bundles of buyer i w.r.t. prices
p [prices p ′] by Di (p) [D′

i (p
′)].

For a price vector p ′ ∈ RE′

+ , we denote by p↓ ∈ RE
+ the price vector with

p↓(e) � min{p ′(e ′i ) | i ∈ {1, . . . ,ke }}.

Lemma 5.8. Let p ′ ∈ RE′

+ and S ′ ⊆ E ′. Then S ′ ∈ D′
i (p

′) for an i ∈ N if and only if

— π (S ′) ∈ Di (p
↓),

— S ′ only contains cheapest copies of each item, and
— whenever S ′ contains multiple copies of an item, all of them have price 0.

Proof. Let p ′ ∈ RE′

+ and let S ′ ⊆ E ′ be an arbitrary set and S � π (S ′) its projection. Further, let

T ∈ Di (p
↓) and let T ′ arise from T by picking a cheapest copy of each item in T . Then

v ′
i (S

′) − p ′(S ′) = vi (S) − p ′(S ′)
(∗)
≤ vi (S) − p↓(S)

(∗∗)
≤ vi (T ) − p↓(T ) = v ′

i (T
′) − p ′(T ′).

The first inequality holds by definition of p↓ and the second inequality holds by definition of T .
This chain of inequalities shows thatT ′ ∈ D′

i (p
′) because S ′ ⊆ E ′ was chosen arbitrarily. Knowing

7Note, that we are talking about preferred bundles which do not need to be minimal. Hence, if p(e) = 0, it can be added to

every preferred bundle of every buyer.
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this, we have S ′ ∈ D′
i (p

′) if and only if the outer inequality is tight, which is the case if and only
if (∗) and (∗∗) are tight.

(∗) is tight if and only if p ′(S ′) = p↓(S), i.e., S ′ only contains cheapest copies of any item and
whenever S contains multiple copies of an item, all of them have price 0. (∗∗) is tight if and only if
S ∈ Di (p

↓). �

Lemma 5.9. The valuation function v ′
i is gross substitutes for each i ∈ N .

Proof. By Lemma 2.8, it suffices to establish that v ′
i is M�-concave for each i ∈ N .

Let X ′,Y ′ ⊆ E ′ and let X � π (X ′) and Y � π (Y ′). Let further e ′ ∈ X ′ \Y ′ and define e � π (e ′).
Then e ∈ X .

Case 1: It holds that e � Y .
Then, as vi is gross substitutes, it is M�-concave (see Lemma 2.8), so at least one of the Equa-
tions ((M1)) or ((M2)) holds:
Case 1.1: Equation ((M1)) holds, i.e., vi (X ) +vi (Y ) ≤ vi (X \ {e}) +vi (Y ∪ {e}).

As X \ {e} ⊆ π (X ′ \ {e ′}) and π (Y ′ ∪ {e ′}) = Y ∪ {e}, it holds by monotonicity of vi that
v ′

i (X
′) +v ′

i (Y
′) = vi (X ) +vi (Y ) ≤ vi (X \ {e}) +vi (Y ∪ {e}) ≤ v ′

i (X
′ \ {e ′}) +v ′

i (Y
′ ∪ {e ′}).

Case 1.2: Equation ((M2)) holds, i.e., vi (X ) +vi (Y ) ≤ vi (X \ {e} ∪ { f }) +vi (Y \ { f } ∪ {e}) for
an f ∈ Y \ X . Let f ′ ∈ Y ′ with π (f ′) = f . Then f ′ ∈ Y ′ \ X ′. Moreover, X \ {e} ∪ { f } ⊆

π (X ′ \ {e ′} ∪ { f ′}) and Y \ { f } ∪ {e} ⊆ π (Y ′ \ { f ′} ∪ {e ′}). Hence, by monotonicity of vi , we
get

v ′
i (X

′) +v ′
i (Y

′) = vi (X ) +vi (Y ) ≤ vi (X \ {e} ∪ { f }) +vi (Y \ { f } ∪ {e})

≤ v ′
i (X

′ \ {e ′} ∪ { f ′}) +v ′
i (Y

′ \ { f ′} ∪ {e ′}).

Hence, either (M1) or (M2) holds for v ′
i .

Case 2: It holds that e ∈ Y .
Case 2.1: There exists an e ′′ ∈ X ′ \ {e ′} with π (e ′′) = e .

Then we have π (X ′ \ {e ′}) = π (X ′) = X and π (Y ′ ∪ {e ′}) = π (Y ′) = Y . This yields

v ′
i (X

′) +v ′
i (Y

′) = vi (X ) +vi (Y ) = v
′
i (X

′ \ {e ′}) +v ′
i (Y

′ ∪ {e ′}).

Case 2.2: There is no e ′′ ∈ X ′ \ {e ′} with π (e ′′) = e .
As e ∈ Y , there exists an f ′ ∈ Y ′ with π (f ′) = e . It holds that e ′ � Y ′, so f ′ � e ′. In particular,
it follows that f ′ � X ′. Hence, f ′ ∈ Y ′ \ X ′. We further have π (X ′ \ {e ′} ∪ { f ′}) = X and
π (Y ′ \ { f ′} ∪ {e ′}) = Y . This results in

v ′
i (X

′) +v ′
i (Y

′) = vi (X ) +vi (Y ) = v
′
i (X

′ \ {e ′} ∪ { f ′}) +v ′
i (Y

′ \ { f ′} ∪ {e ′}).

Hence, also either (M1) or (M2) holds for v ′
i .

Thus, v ′
i is M�-concave and thus gross substitutes by Lemma 2.8. �

Lemma 5.10. Let q ∈ RE
+ be a covering price vector. Then q′ ∈ RE′

+ with q′(e ′) � q(π (e ′)) for
e ′ ∈ E ′ is a Walrasian price vector with respect to supply E ′ and valuation functions v ′

i for i ∈ N .

Proof. By our definition of the numbers (ke )e ∈E , we can partition E ′ into sets (S ′i )i ∈N with
π (S ′i ) = Si and |S ′i | = |Si | for i ∈ N . By Lemma 5.8, we have S ′i ∈ D′

i (q
′) for all i ∈ N . �

Now, we are ready to prove the main theorem of this section.

Proof of Theorem 5.6. As mentioned before, it suffices to show this statement in the unit-
supply setting, i.e., we assume b(e) = 1 for all e ∈ E. Let p∗ be the maximal Walrasian price
vector and let q be any covering price vector.
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In the following, we will use that Walrasian prices are minimizers of the Lyapunov function (see
Lemma 2.3). We distinguish the settings by using L for the Lyapunov function with respect to E
and vi for all i ∈ N , and L′ for the Lyapunov function with respect to E ′ and v ′

i . Analogously, let
Vi (p) = maxS ⊆E vi (S) − p(S) and V ′

i (p
′) = maxS ′ ⊆E′ v ′

i (S
′) − p ′(S ′).

We know thatp∗ is a minimizer of the Lyapunov function in the original setting, i.e., it minimizes

L(p) =
∑
i ∈N

Vi (p) + p(E).

Moreover, q′ with q′(e ′) � q(π (e ′)) for e ′ ∈ E ′ is a Walrasian price vector for E ′ and (v ′
i )i ∈N (see

Lemma 5.10), i.e., it minimizes

L′(p ′) =
∑
i ∈N

V ′
i (p

′) + p ′(E ′).

Note that q↓ = q by definition of q′. By Lemma 5.8, we have

V ′
i (q

′) = max
S ′ ⊆E′

v ′
i (S

′) − q′(S ′) = max
S ⊆E

vi (S) − q↓(S) = Vi (q
↓) = Vi (q),

for all i ∈ N . Thus,

L′(q′) =
∑
i ∈N

Vi (q) + q
′(E ′).

Define p̌ ∈ RE
+ and q̂′ ∈ RE′

+ via

p̌(e) � max{p∗(e),q(e)} and q̂′(e ′�) �

{
min{p∗(e),q(e)} for � = 1,

q(e) otherwise.

This yields

L(p∗) + L′(q′) =
∑
i ∈N

Vi (p
∗) + p∗(E) +

∑
i ∈N

Vi (q) + q
′(E ′)

=
∑
i ∈N

(Vi (p
∗) +Vi (q)) +

∑
e ∈E

(p∗(e) + ke · q(e))

≥
∑
i ∈N

(Vi (max{p∗,q}) +Vi (min{p∗,q}))

+
∑
e ∈E

(max{p∗(e),q(e)} +min{p∗(e),q(e)} + (ke − 1) · q(e))

=
∑
i ∈N

Vi (p̌) +Vi (q̂
′↓) + p̌(E) + q̂′(E ′)

= L(p̌) + L′(q̂′),

where in the first inequality, we used that Vi is lattice submodular (cf. [7, Theorem 10]). Hence, p̌
and q̂′ are minimizers of L and L′, respectively, as well. Thus, p̌ is Walrasian. As p∗ is the maximal
Walrasian price vector, q(e) ≤ max{p∗(e),q(e)} = p̌(e) ≤ p∗(e) for all e ∈ E. This yields q ≤ p∗. �

6 Monotonicity Analysis

In this section, we show monotonicity results in supply and demand for the (unique) buyer-optimal,
as well as for the (again unique) seller-optimal Walrasian prices, provided that all buyers’ valua-
tions are strong gross substitutes. Independently, Raach [56] proved the same monotonicity results.
We also provide an example showing that monotonicity cannot be guaranteed if the valuation func-
tions are changed. We model the decrease in supply by restricting the market to less copies of items
b ′ ≤ b with b ′(e) < b(e) for at least one e ∈ E and by restricting all valuations to v ′

i = vi |[0,b′]Z .
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The decrease in demand is modeled as item-truncation, i.e., we assume that a buyer i is only
interested in di items in total. Since it is known that strong gross substitutes functions are closed
under item-truncation (cf. [19]8), all valuation functions remain (strong) gross substitutes after this
operation. Formally, this leads to the following definition.

Definition 6.1. Let vi : [0,b]Z → Z+ be a valuation function and d ∈ ZN
+ . The truncation vd

i of

buyer i to demand d is given by vd
i (z) � max{vi (y) | y ≤ z,

∑
e ∈E y(e) ≤ di }.

We write Dd
i (p) [respectively qDd

i (p) and pDd
i (p)] to denote the set of [minimal/maximal] pre-

ferred bundles of buyer i at prices p with valuation function vd
i . Note that if we choose di large

enough, it holds that vi (z) = v
d
i (z) for all z ∈ [0,b]Z. Hence, without loss of generality, we assume

that each buyer indeed has a demand and denote the demand vector by d = (d1, . . . ,dn).
The monotonicity properties we want to show are the following:

— in supply: Let p be the buyer-optimal [seller-optimal] Walrasian price vector. If the supply of
some items decreases, i.e., if there are only b ′ ≤ b items to be sold, then the corresponding
buyer-optimal [seller-optimal] Walrasian prices p ′ for items e ∈ E ′ = { f ∈ E | b ′(f ) > 0}
will only increase, i.e., p(e) ≤ p ′(e) for all e ∈ E ′.

— in demand: Consider two demand vectors d ′ and d in ZN
+ with d ′ ≤ d , and let p and p ′

be the buyer-optimal [seller-optimal] Walrasian price vectors if the valuation functions
vi : [0,b]Z → Z+ of the buyers i are truncated at demands d and d ′, respectively. Then
the buyer-optimal [seller-optimal] Walrasian prices p ′ will only decrease if the demand de-
creases, i.e., p ′ ≤ p.

Theorem 6.2. Monotonicity in supply and demand with respect to the minimal and the maximal
Walrasian price vector can be guaranteed if all buyers’ valuations are strong gross substitutes.

The main idea of the proof is to use the equivalence between minimal packing [maximal cover-
ing] and minimal [maximal] Walrasian prices. We first show monotonicity in supply.

Lemma 6.3. Monotonicity in supply with respect to the minimal Walrasian price vector can be
guaranteed if all buyers’ valuations are strong gross substitutes.

Proof. Let b and b ′ be two supply vectors with b ′ ≤ b. Assume without loss of generality that
b and b ′ only differ in one item f and only in one unit, i.e., b(f ) − b ′(f ) = 1 and b(e) = b ′(e)
for all e ∈ E \ { f }. We fix a Walrasian allocation (z1, . . . , zn) given the minimal Walrasian prices

p ′ at supply E ′. Now, we use the reduction to the unit-supply setting. Therefore, let Ẽ denote the
set containing all item copies with respect to b. Further let (S1, . . . , Sn) be the packing allocation
corresponding to (z1, . . . , zn).

We fix an arbitrary copy f̃ ∈ Ẽ of the unique item f ∈ supp+(b−b ′). Next, we adapt the prices p ′

to prices p̄ by setting p̄(ẽ) = p ′(ẽ) for ẽ ∈ Ẽ\{ f̃ } and p̄( f̃ ) = maxi ∈N vi (E)+1. Thus, no buyer wants

to buy item f̃ , so any packing allocation with respect to supply Ẽ \{ f̃ } and prices p ′ is also packing

with respect to supply Ẽ and prices p̄. As there is a packing allocation in the first setting, we know

that the same allocation is packing for prices p̄ at supply Ẽ. Using that p is the component-wise

minimal packing price vector at supply Ẽ, we get by Theorem 5.3 that p(ẽ) ≤ p̄(ẽ) = p ′(ẽ) for all

ẽ ∈ Ẽ \ { f̃ }.

Thus, p(e) ≤ p ′(e) holds for every item e ∈ E with a copy in Ẽ \ { f̃ }, i.e., for the items e ∈ E
with b ′(e) > 0. �

8Collina and Weinberg [19] showed it in the unit-supply setting. The statement for the multi-supply setting follows by

copying the items as presented in Section 5.1.
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Lemma 6.4. Monotonicity in supply with respect to the maximal Walrasian price vector can be
guaranteed if all buyers’ valuations are strong gross substitutes.

Proof. As before, let b and b ′ be two supply vectors with b ′ ≤ b and assume without loss of
generality that there is f ∈ E such that b(f ) = b ′(f ) + 1 and b(e) = b ′(e) for all e ∈ E \ { f }. Let
(z1, . . . , zn) be a Walrasian allocation for the maximal Walrasian prices p at supply b. Again, we

reduce to the unit-supply setting. Let Ẽ denote the set containing all item copies with respect to b

and let p̃ ∈ RẼ
+ be the price vector with p̃(ẽ) = p(e) for every copy ẽ of e ∈ E. Let further (S1, . . . , Sn)

be the partition of Ẽ corresponding to (z1, . . . , zn).

We fix an arbitrary copy f̃ of f and define a price vector p̄ ∈ RẼ
+ by setting p̄(ẽ) = p̃(ẽ) for all

ẽ ∈ Ẽ \ { f̃ } and p̄( f̃ ) = maxi ∈N vi (E) + 1. As the valuation functions (ṽi )i ∈N are gross substitutes,

we know that there exist preferred bundles (S̄i )i ∈N with respect to p̄ such that Si \ { f̃ } ⊆ S̄i .

Moreover, by our choice of p̄( f̃ ), we can infer that f̃ � S̄i for i ∈ N . In particular, the bundles

(S̄i )i ∈N also constitute preferred bundles for supply Ẽ \ { f̃ } and the restriction of p̃ to Ẽ \ { f̃ }.

Furthermore,
⋃

i ∈N Si = Ẽ implies
⋃

i ∈N S̄i = Ẽ \ { f̃ }.
Going back to the multi-supply setting, this tells us that the prices p are covering for supply

b ′. By Theorem 5.6, we may conclude p ≤ p ′ where p ′ is the minimal Walrasian price vector for
supply b ′. �

Now, we examine the effect of changes in the buyer’s demand on the minimal [maximal] Wal-
rasian prices.

Lemma 6.5. Monotonicity in demand with respect to the minimal Walrasian price vector can be
guaranteed if all buyers’ valuations are strong gross substitutes.

Lemma 6.6. Monotonicity in demand with respect to the maximal Walrasian price vector can be
guaranteed if all buyers’ valuations are strong gross substitutes.

Clearly, Theorem 6.2 follows directly form Lemmas 6.3–6.6. To show the last two lemmas, we
will use that in the unit-supply setting, gross substitutes valuations are well-layered (cf. [24, 53]).
Intuitively, well-layered means that the greedy algorithm (always selecting an item with the high-
est marginal value) computes in each iteration a bundle with the highest utility among all bundles
of that size.

Definition 6.7 ([24]). In the unit-supply setting, let v : 2E → Z+ and p ∈ ZE . A greedy sequence
for v and p is an ordering e1, . . . , e |E | of the elements of E such that for every j ∈ {1, . . . , |E |}, we
have

ej ∈ arg max
e�{e1, ...,ej−1 }

{v({e1, . . . , ej−1, e}) −v({e1, . . . , ej−1}) − p(e)}.

Based on our reduction to the unit-supply case, we obtain the following analogous notion of a
greedy sequence for the multi-supply setting:

Definition 6.8. In the multi-supply setting, let v : [0,b]Z → Z+ and p ∈ ZE . A greedy sequence
for v and p is a sequence e1, . . . , eb(E) of elements of E with the following properties: For j ∈

{0, . . . ,b(E)}, let z j ∈ [0,b]Z such that z j (e) equals the number of occurrences of e among e1, . . . , ej .

Then zb(E) = b and for each j ∈ {1, . . . ,b(E)}, we have ej ∈ arg maxe ∈supp+(b−z(j−1)){v(z
(j−1) + χe ) −

v(z(j−1)) − p(e)}.

Definition 6.9 ([24]). A valuation function v : 2E → Z+ is called well-layered if for any price
vector p ∈ ZE and any greedy sequence e1, . . . , e |E | for v and p, we have

{e1, . . . , ej } ∈ arg max{v(S) − p(S) : S ⊆ E, |S | = j} for all j ∈ {1, . . . , |E |}.
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Lemma 6.10 ([24]). In the unit-supply setting, a non-decreasing gross substitutes functionv : 2E →

Z+ is well-layered.

For non-decreasing gross substitutes valuations, it is further known that every bundle that is
optimum for a given size can be obtained via a greedy sequence.

Lemma 6.11 ([53, Remark 6.5]). In the unit-supply setting, let v : 2E → Z+ be a non-decreasing
gross substitute valuation function and let p ∈ ZE . Let further j ∈ {1, . . . , |E |} and S∗ ∈

arg max{v(S) − p(S) : S ⊆ E, |S | = j}. Then there exists a greedy sequence e1, . . . , e |E | for v and
p such that S∗ = {e1, . . . , ej }.

In the multi-supply setting, we can obtain a similar result by using the reduction to the unit
supply case as described in Section 5.1, in particular, that the corresponding valuation functions
are gross substitutes and thus well-layered.

Corollary 6.12. In the multi-supply setting, for a strong gross substitutes valuation function v ,
demand d and prices p ∈ ZE

+ , and a preferred bundle z ∈ Dd
i (p), there exist a greedy sequence

e1, . . . , eb(E) for vd and p, as well as j∗ ∈ {0, . . . ,b(E)}, such that

— z j∗ = z,
— maxe ∈supp+(b−z(j−1)){v(z

(j−1) + χe ) −v(z(j−1)) − p(e)} ≥ 0 for all j ∈ {1, . . . , j∗} and

— maxe ∈supp+(b−z(j−1)){v(z
(j−1) + χe ) −v(z(j−1)) − p(e)} ≤ 0 for all j ∈ {j∗ + 1, . . . ,b(E)}.

With this knowledge, we can prove Lemma 6.5.

Proof of Lemma 6.5. Let d and d ′ be two demand vectors with d ′ ≤ d . Let p∗ and p∗
′ be the

minimal Walrasian prices for demand d and d ′, respectively, and let (z1, . . . , zn) be a Walrasian
allocation for prices p∗ and demand d .

We will show that for each buyer i , there is a vector yi ≤ zi with yi ∈ Dd ′

i (p∗). If
zi (E) ≤ d ′

i we are done (we set yi = zi ). Thus, we assume zi (E) > d ′
i in the sequel.

Since vd
i is strong gross substitutes and zi ∈ Dd

i (p∗), we can obtain zi using the greedy al-
gorithm (Corollary 6.12). Let yi be the bundle of the d ′

i items that were selected first. Hence,
yi ≤ zi . Moreover, all marginal returns in the greedy sequence leading to yi are non-negative
and by definition of vd ′

i , every further item has a non-positive marginal utility w.r.t. yi . Hence,

yi ∈ Dd ′

i′ (p∗).
Thus, for demand d ′, we know that (y1, . . . ,yn) is a packing allocation at prices p∗. Hence, p∗ is

a packing price vector. Since p∗
′ is the buyer-optimal Walrasian price vector at demand d ′, it holds,

by Theorem 5.3, that p∗
′ ≤ p∗. �

Proof of Lemma 6.6. Let d and d ′ be two demand vectors with d ′ ≤ d . Let p ′ be Walrasian
prices for demand d ′ and let (z ′1, . . . , z

′
n) be a Walrasian allocation for prices p ′ and demand d ′.

By Corollary 6.12, we can extend each bundle z ′i to a preferred bundle zi ∈ Dd
i (p

′) with zi ≥ z ′i
(component-wise) by continuing the greedy allocation process until the marginal returns become
negative. In particular, (z1, . . . , zn) will be a covering allocation for prices p ′ and demand d . By
Theorem 5.6, we can conclude that for the maximal Walrasian prices p for demand d , we have
p ′ ≤ p. �

In contrast to the monotonicity in supply and demand, there is no monotonicity if we change
the valuation functions for some buyers and some items. We provide an example showing this
for minimal Walrasian prices with purely additive valuation functions (which are strong gross
substitutes):
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Example 6.13. Let there be three items E = {e1, e2, e3} and three buyers with unit-demand val-
uations v1 = (2, 3, 0), v2 = (0, 1, 1) and v3 = (0, 1, 1), i.e., vi (S) = maxe ∈S vie for all S ⊆ E. The
buyer-optimal Walrasian prices are given by p∗ = (0, 1, 1). Now, assume that the valuation of the
first buyer for the second item e2 is decreased by one, i.e., v ′

1 = (2, 2, 0). In this setting, the prices
p∗

′ = (0, 0, 0) is the buyer-optimal Walrasian price vector. Hence, the price of the items whose
valuation was not changed are the same or reduced by one unit.

Consider the same setting again and assume that the first buyer decreases her valuation for item
e1 as well, i.e., v ′′

1 = (1, 2, 0). The minimal Walrasian price vector is p∗
′′ = (0, 1, 1). Thus, the price

of the items whose valuation was not changed are increased by one unit.

The example shows that the minimal Walrasian prices do not change in a monotone way when
the valuations change (an example for maximal Walrasian prices can be found in Appendix A.4).
This seems to be intuitive since if the valuation of one item is decreased, it could increase the
demand for other items which then increases the price. On the other hand, the item itself is less
attractive, such that the demand can reduce (and thus also potential conflicts).

Note also that the question regarding price monotonicity w.r.t. changes in valuations is a some-
what very restricted problem, as the strong gross substitutes property might get lost if one is not
careful with the changes in the valuation function.

7 Conclusion

We provide a simple, combinatorial algorithm to compute minimal maximally overdemanded sets
and minimal maximally underdemanded sets for markets where items are available in multiple
copies and all buyers have strong gross substitutes valuation functions. The algorithm is essentially
an implementation of a polymatroid sum algorithm using an appropriate oracle model. It turns out
to be quite useful as it allows for a fast execution of the dynamic auction step.

Moreover, we prove that unique minimal packing prices as well as unique maximal covering
prices always exist. The unique minimal packing prices coincide with the minimal Walrasian prices,
while the unique maximal packing prices coincide with the maximal Walrasian prices. The distinc-
tion between packing prices and Walrasian prices had been mostly overlooked in the literature.
The clear distinction made here and the aforementioned results allow us to prove monotonicity
properties of minimal and maximal Walrasian prices w.r.t. changes in demand and supply.
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Appendices

A Examples

A.1 Walrasian Prices May Not Exist if Valuations are Not Strong Gross Substitutes

Example A.1. Consider an example with two buyers N = {1, 2} and three items E = {e1, e2, e3}.
The multiplicity of every item is one, i.e., b(e) = 1 for all e ∈ E. The valuation functions of the
buyers are as follows (note that they are not strong gross substitutes):

v1(χS ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if {e1, e2} ⊆ S,

1 if {e1, e2} � S, {e3} ⊆ S,

0 otherwise,

v2(χS ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if {e2, e3} ⊆ S,

1 if {e2, e3} � S, {e1} ⊆ S,

0 otherwise.

Here p = (0, 0, 0) is not packing since the unique minimal preferred bundle of buyer 1 is (1, 1, 0),
while the unique minimal preferred bundle of buyer 2 is (0, 1, 1). The vector p = (0, 1, 0) is packing
but it is not covering, since item e2 is not sold.

Assume that there is a packing and covering allocation z, i.e.,
∑

i ∈{1,2} zi (e) = 1 for all e ∈ E and
zi ∈ Di (p) for i ∈ {1, 2}.

— In case that z1 = (0, 0, 0), it holds that p(e1) + p(e2) ≥ 2 and p(e3) ≥ 1, since z1 ∈ D1(p). So,
the utility for the second buyer isv2(χE )−p(E) ≤ 2−3 = −1 and thus, χE = (1, 1, 1) � D2(p).

— In case that z1 = (1, 0, 0) ∈ D1(p), the utility of buyer 1 needs to be zero andp(e1) = 0,p(e2) ≥

2 and p(e3) ≥ 1. Hence, the second buyer receives items e2, e3 with utility v2(χ {e2,e3 }) −

p({e2, e3}) ≤ 2 − 3 = −1 which is a contradiction to χ {e2,e3 } ∈ D2(p).
— If z1 = (0, 1, 0) ∈ D1(p), the utility of buyer 1 is zero again and p(e1) ≥ 2, p(e2) = 0 and
p(e3) ≥ 1. Then, buyer 2 does not receive a preferred bundle since the utility of χ {e1,e3 } =

(1, 0, 1) is given by v2(χ {e1,e3 }) − p({e1, e3}) ≤ 1 − 2 = −2.
— In case that z1 = (0, 0, 1) ∈ D1(p), we know that p(e3) ≤ 1 and p(e1)+p(e2) ≥ p(e3)+ 1. Since

χ {e1,e2 } = z2 ∈ D2(p), it holds that p(e2) = 0 and v2(χ {e1,e2 }) − p({e1, e2}) ≥ v2(χ {e2,e3 }) −

p({e2, e3}) which is equivalent to p(e1)+1 ≤ p(e3). This is a contradiction to p(e1) ≥ p(e3)+1.

In case that ‖z1‖1 ≥ 2, we obtain the same contradictions by using ‖z2‖1 ≤ 1 and the symmetry of
the valuations. To sum up, there exists no Walrasian price vector p in this market.

A.2 Packing Vectors do not form a Lattice Given Non Strong Gross Substitutes

Valuations

In the following, we show that the component-wise minimal vector of packing prices is not nec-
essarily packing if valuations are not strong gross substitutes. Note that Walrasian prices are not
guaranteed to exist if buyer valuations are not all strong gross substitutes [42]. Buyer-optimal
packing prices are neither unique nor covering in the following example.
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Example A.2. Given a market with four items E = {e1, e2, e3, e4} where b(e) = 1 for each
e ∈ E and two buyers. The valuations for the first buyer are given by the item-wise valuations
ṽ1 = (6, 6, 6, 10) and the independent sets I1 = {I ⊆ F | F ∈ {{e1, e2, e3}, {e4}}} (i.e., not a matroid).
Thus, the valuation of a bundle χS is given by v1(S) = maxI ∈I1

∑
e ∈I∩S ṽ1(e). The valuation func-

tion for the second buyer is defined similarly using item-wise valuations ṽ2 = (10, 6, 6, 6) and the
independent sets I2 = {I ⊆ F | F ∈ {{e1}, {e2, e3, e4}}}.

First, we show that there is no packing price vector p with
∑

e ∈E p(e) < 8. Consider such a
vector p and let E ′ be all elements in e ∈ E with p(e) < 6. By definition, |E \ E ′ | ≤ 1. The
unique preferred bundle for buyer 1 is {e1, e2, e3} ∩ E ′ and for buyer 2, it is {e2, e3, e4} ∩ E ′. Since
|{e1, e2, e3} ∩ {e2, e3, e4}| = 2 the intersection of the preferred bundles is non-empty, so p cannot
be a packing price vector.

Moreover, there are packing price vectors with
∑

e ∈E p(e) = 8, namely p = (0, 2+α , 6−α , 0) with
α ∈ [0, 4] are packing price vectors, since the first buyer is indifferent between {e1, e2, e3} and {e4}

and the second one is indifferent between {e1} and {e2, e3, e4}. Thus, the allocation {e4} to the first
buyer and {e1} to the second buyer is packing. This family of packing prices gives a component-
wise minimal vector (0, 2, 2, 0) which itself is not packing. However, since

∑
e ∈E p(e) = 8 for all

price vectors in the defined family, they are all buyer-optimal packing prices. Hence, clearly, the
buyer-optimal packing prices are not unique and moreover these buyer-optimal packing price
vectors are all not covering.

Note that the valuations functions in this example are not strong gross substitutes (in contrast
to weighted matroid rank valuations the independent sets do not fulfill the exchange property
and thus, do not form a matroid). Consider the valuation function of the first buyer. It holds
that{e1, e2, e3} ∈ D1(0). But if we increase the prices of items e1 and e2 by 6, i.e., p = (6, 6, 0, 0),
there is no demand for e3 anymore since D1(p) = {{e4}}. Similarly, the valuation function of the
second buyer is also not strong gross substitutes.

A.3 Covering Vectors do not form a Lattice Given Non Strong Gross Substitutes

Valuations

Here we give an example that the join of two packing price vectors is not necessarily packing if
the valuation functions are not gross substitutes.

Example A.3. Given a market with three items E = {e1, e2, e3} and unit-supply, i.e, b(e) = 1 for
each e ∈ E, and two buyers. Both buyers have the same valuation function, given by the following
table:

S � {e1} {e2} {e3} {e1, e2} {e1, e3} {e2, e3} {e1, e2, e3}

vi (S) 0 7 7 8 14 13 13 18

Then p = (6, 7, 7) is covering, since Di (p) = {{e1}, {e1, e2}, {e3}}. Moreover, p ′ = (6, 7, 7) is
covering with Di (p) = {{e2}, {e1, e2}, {e3}}. However, q = p ∨ p ′ = (7, 7, 7) is not covering, as
Di (q) = {{e3}}.

Note there is a Walrasian price vector above all these price vectors, which is p∗ = (7, 7, 8).

A.4 Maximal Walrasian Prices are not Monotone with Respect to Changes in the

Valuations

As already seen for minimal Walrasian prices, the maximal Walrasian prices do not change in a
monotone way when the valuations are changed:
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Example A.4. Let there be four items E = {e1, e2, e3} and three buyers with unit-demand valua-
tions i.e., vi (S) = maxe ∈S vie . The valuations per item and the corresponding maximal Walrasian
prices can be found in the following table:

valuations buyer 1 valuations buyer 2 valuations buyer 3 max Walrasian price
(v11,v12,v13,v14) (v21,v22,v23,v24) (v31,v32,v33,v34) p∗

(0, 9, 1, 1) (6, 10, 0, 0) (4, 0, 1, 1) (4, 8, 0, 0)
(0, 9, 2, 1) (6, 10, 0, 0) (4, 0, 1, 1) (3, 7, 0, 0)
(0, 9, 2, 2) (6, 10, 0, 0) (4, 0, 1, 1) (3, 7, 0, 0)
(0, 10, 2, 2) (6, 10, 0, 0) (4, 0, 1, 1) (4, 8, 0, 0)

Hence, also for the maximal Walrasian prices, the price can either stay the same, go up or go down,
i.e., there is no monotone behavior.

A.5 Example of Running Time of Different Oracle Calls

Let us consider an OXS valuation function vi in the unit-supply case. This is described by a
weighted bipartite graph (E ∪ Ti ,Hi ,w

(i)). For a vector zi ∈ {0, 1}E , we let Si = supp(zi ). Then,
vi (zi ) is the maximum weight of a matching between the sets Si and Ti .

Thus, the time DO needed to find a set zi ∈ qDi (p) amounts to the time needed to compute a
maximum weight matching. This can be done using the Hungarian algorithm; better algorithms

exist if the graph is not dense, or in the weakly polynomial regime. However, given zi ∈ qDi (p)
along with an optimal matching and an optimal dual solution, the time ExO of a wi (e, f ) query is
the time of finding a single augmenting path.

A.6 Example of an Exchange Graph

Suppose there are six items E = {e1, e2, e3, e4, e5, e6}, every e ∈ E is available in quantity b(e) = 2,
and there are three buyers N = {Blue,Red,Green}.

Further suppose at some stage of the auction, the allocation z = (zB , zR , zG ) is as follows:

zB = (2, 2, 2, 1, 0, 0),

zR = (2, 1, 0, 0, 1, 1),

zG = (0, 2, 0, 1, 1, 0).

Thus, the items {e1, e2} are oversold and {e6} is undersold at current prices. The auctioneer also
queries each buyer i ∈ N for the values wi (e, f ) for each e, f ∈ E with zi (f ) > 0 and zi (e) < b(e).
Suppose the buyers answer with the following non-zeros:

wB (e4, e1) = 1, wR (e3, e1) = 2, wG (e1, e5) = 1,

wB (e4, e2) = 1, wR (e3, e2) = 1, wG (e3, e4) = 1,

wB (e4, e3) = 1, wR (e5, e6) = 1, wG (e4, e2) = 1,

wG (e4, e5) = 1.

Then the exchange graph looks as depicted as in Figure 2. Note that there is no path from an un-
dersold to an oversold item (otherwise the polymatroid sum problem would not have been solved
to optimality). The set of items from which we can reach an oversold item is {e1, e2, e3, e4}, which
then by Theorem 3.3 is a minimal maximally overdemanded set (i.e., not just the oversold items
themselves but also suitable substitutes for them).
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1

23

4

5 6

Fig. 2. Exchange graphG(z) = (E,A)where blue (dotted) lines indicateAB , red (dashed) lines indicateAR , and
green (solid) lines indicate AG . Oversold items are indicated by orange cycles, undersold items are indicated
by turquoise squares.

B Missing Proofs

B.1 Packing, Covering, and Walrasian

A Walrasian price vector is packing and covering. Now, we show the other direction, i.e., that p is
Walrasian if it is packing and covering.

Lemma B.1. Let p be a price vector in an auction with strong gross substitutes valuations that is
both packing and covering. Then p is Walrasian.

Proof. Let z = (z1, . . . , zn) be a covering allocation with respect to p. Further, let y =

(y1, . . . ,yn) be a packing allocation with respect to p that, among all such collections, minimizes∑
i ∈N

∑
e ∈E |zi (e) − yi (e)|. Note that such allocations exists as p is both packing and covering. We

will show that we have
∑

i ∈N yi (e) = b(e) for every e ∈ E, i.e., y is also covering and thus p is
Walrasian.

Assume toward a contradiction that this is not the case, i.e., there is an e ∈ E such that∑
i ∈N yi (e) ≤ b(e) − 1 (where we used that b and all yi are integral). As b(e) ≤

∑
i ∈N zi (e), we

know that there is a j ∈ N such that yj (e) < zj (e). As vj is gross substitutes, it is M�-concave

by Lemma 2.6. Hence, uj is M�-concave too, as the difference of an M�-concave function and a
modular function. As e ∈ supp+(zj − yj ), we can infer that one of the following holds:

(M1) uj (zj ) + uj (yj ) ≤ uj (zj − χe ) + uj (yj + χe ), or
(M2) there exists f ∈ supp−(zj −yj ) such that uj (yj )+uj (zj ) ≤ uj (zj − χe + χf )+uj (yj + χe − χf ).

First, assume that (M1) holds true. Then yj , zj ∈ Dj (p) implies that both zj − χe and yj + χe are
contained in Dj (p) as well.

Define an allocation y′ = (y ′
1, . . . ,y

′
n) by setting y ′

i = yi for all i ∈ N \ {j} and y ′
j = yj + χe .

Then y ′
i ∈ Di (p) holds for all i ∈ N . Furthermore, we have

∑
i ∈N y ′

i (д) =
∑

i ∈N yi (д) ≤ b(д) for all
д ∈ E\{e}, and

∑
i ∈N y ′

i (e) =
∑

i ∈N yi (e)+1 ≤ b(e). Moreover, we have |zi (д)−y
′
i (д)| = |zi (д)−yi (д)|

for all (i,д) ∈ N × E \ {(j, e)}, and |zj (e) − y ′
j (e)| = |zj (e) − yj (e)| − 1 because e ∈ supp+(zj − yj ).

But this contradicts our assumption that y minimizes
∑

i ∈N

∑
д∈E |zi (д) − yi (д)|.

Next, assume that (M2) holds. Again, yj , zj ∈ Dj (p) allows us to conclude that both zj − χe +

χf and yj + χe − χf are contained in Dj (p) as well. Define a collection of bundles y ′ by setting
y ′

i = yi for all i ∈ N \ {j}, and y ′
j = yj + χe − χf . Then y ′

i ∈ Di (p) for all i ∈ N . Moreover,∑
i ∈N y ′

i (д) =
∑

i ∈N yi (д) ≤ b(д) for all д ∈ E \ {e, f },
∑

i ∈N y ′
i (e) =

∑
i ∈N yi (e) + 1 ≤ b(e) and∑

i ∈N y ′
i (f ) =

∑
i ∈N yi (f ) − 1 ≤ b(f ). Additionally, for (i,д) ∈ N × E \ {(j, e), (j, f )}, we have

|zi (д) − y ′
i (д)| = |zi (д) − yi (д)|. As e ∈ supp+(zj − yj ) and f ∈ supp−(zj − yj ), we further know
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that |zj (e) − y ′
j (e)| = |zj (e) − yj (e)| − 1 and |zj (f ) − y ′

j (f )| = |zj (f ) − yj (f )| − 1. But again, this

contradicts the fact that y minimizes
∑

i ∈N

∑
e ∈E |zi (e) − yi (e)|.

To sum up, we obtained a contradiction in both cases and hence, we have
∑

i ∈N yi (e) = b(e) for
all e ∈ E. Thus, y is packing and covering. We conclude that p is a Walrasian price vector. �

B.2 Gross Substitutes Valuations Yield M-convex Demand Sets

Lemma 2.8. If vi is strong gross substitutes, then qDi (p) and pDi (p) are M-convex sets for any price
vector p ∈ RE

+ .

Proof. By Lemma 2.6, the valuation function vi is M�-concave. Thus, the utility function ui is

also M�-concave as the sum of an M�-concave and a modular function. Let x ,y ∈ qDi (p) and let
e ∈ supp+(x − y). Then, since ui is M�-concave, either ui (x) + ui (y) ≤ ui (x − χe ) + ui (y + χe ), or
there is f ∈ supp−(x − y) with ui (x) + ui (y) ≤ ui (x − χe + χf ) + ui (y + χe − χf ). In the first case,
x − χe ,y + χe ∈ Di (p), and in the second case, x − χe + χf ,y + χe − χf ∈ Di (p). The first case is

impossible since qDi (p) is the set of inclusion wise minimal vectors in Di (p), but x − χe ≤ x . Hence,
the second case holds and it remains to show that there is no preferred bundle strictly included in
x ′ � x − χe + χf or y ′ � y + χe − χf .

W.l.o.g. consider x ′ and assume that there is a preferred bundle z � x ′ with z ≤ x ′. Hence,
there exist an item д with z(д) < x ′(д) ≤ x(д). As x is a minimal preferred bundle, we must
have z(f ) = x(f ) + 1, as otherwise z ≤ x as well. Moreover, z(e) ≤ x(e) − 1 as z ≤ x ′. Hence,
f ∈ supp+(z−x) = { f } and thus by M�-concavity ofui , we haveui (z)+ui (x) ≤ ui (x+χf )+ui (z−χf )

or there exists an item д ∈ supp−(z − x) with ui (z) +ui (x) ≤ ui (x + χf − χд) +ui (z − χf + χд). By
minimality of x , the first case is not possible since z − χf ≤ x with z − χf � x .

Thus, we can focus on the second case with z − χf + χд ∈ Di (p). By definition of z and д, we
know that z− χf + χд ≤ x . Hence, by minimality of x it follows that z− χf + χд = x . As z(e) < x(e),
this implies д = e . However, this yields z(e) + 1 ≤ x ′(e) < x(e), a contradiction.

Hence, x − χe + χf ,y + χe − χf ∈ qDi (p) holds and we have shown that qDi (p) is an M-convex
set.

The proof that pDi (p) is an M-convex set follows the same lines. �

B.3 Underdemanded Sets

Lemma 3.5. Given a market instance with strong gross substitutes valuations, prices p are covering
if and only if there is no underdemanded set.

Proof. Observe that for any price vector p, we have

max
y∈xD(p)

{∑
e ∈E

min

{∑
i ∈N

yi (e),b(e)

}}
≤

∑
e ∈E

b(e). (18)

Moreover, equality holds in (18) if and only if there is a covering allocation z ∈ pD(p), i.e., p
is covering. Now, assume that p is covering. Using the Min-Max Theorem for polymatroid sum
(Theorem 2.12), we get

min
T ⊆E

{
b(T ) +

∑
i ∈N

ρ̂(E \T )

}
= max

y∈xD(p)

{∑
e ∈E

min

{∑
i ∈N

yi (e),b(e)

}}
=

∑
e ∈E

b(e).
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We obtain

b(T ) +
∑
i ∈N

ρ̂(E \T ) ≥ b(E) for all T ⊆ E

⇔ b(E \ S) +
∑
i ∈N

ρ̂(S) ≥ b(E) for all S ⊆ E

⇔ 0 ≥ underdp (S) for all S ⊆ E

i.e., there is no underdemanded set S .
Next, we show that there is a covering allocation if there is no underdemanded set. By the same

arguments as above, we get

b(E) ≤ min
T ⊆E

{
b(T ) +

∑
i ∈N

ρ̂(E \T )

}
= max

y∈xD

{∑
e ∈E

min

{∑
i ∈N

yi (e),b(e)

}}
≤

∑
e ∈E

b(e), (19)

where the first inequality holds as there is no underdemanded set S and the next equality holds
by the Min-Max Theorem for polymatroid sum (Theorem 2.12). Thus, (19) holds with equality
everywhere, especially for the last equation. But this is only possible if there is a covering allocation

z ∈ pD. Hence, the prices p are covering if there is no underdemanded set. �

Lemma 3.7. Assume z = (z1, . . . , zn) is an optimal solution to (13). Then, a set S is maximally
underdemanded if and only if it fulfills the following properties:

— S is i-tight for every i ∈ N ;
— S includes all undersold items;
— S does not include any oversold items.

Moreover, there is a unique inclusion-wise minimal set fulfilling this properties.

Proof. Let S be a maximally underdemanded set and let T � E \ S . By Corollary 3.6,
Theorem 2.12 and optimality of z, we have∑

e ∈E

min

{∑
i ∈N

zi (e),b(e)

}
=

∑
i ∈N

ρ̂
p
i (E \T ) + b(T ).

By Lemma 2.13, S = E \T satisfies all three properties stated in this lemma. Moreover, if two sets
S and S ′ satisfy these three properties, then S ∩ S ′ and S ∪ S ′ also satisfy them. Hence, there exists
a unique minimal set S satisfying these three properties. By Lemma 2.13, E \ S is a minimizer of

T �→
∑

i ∈N ρ̂
p
i (E \T ) +b(T ), and for every other minimizerT ′, we have S ⊆ E \T ′. Hence, S is the

minimal maximally underdemanded set for prices p. �

Theorem 3.8. The minimal maximally underdemanded set S is the set R of items which are reach-
able from an undersold item in pG(z).

Proof. We first show that R ⊆ S . By Lemma 3.7, S includes all undersold items. Moreover, S is
i-tight for every i ∈ N , which, by Lemma 2.14, means that whenever e ∈ S and (e, f ) ∈ A, we have
f ∈ S as well. Hence, R ⊆ S .

As S does not include any oversold item by Lemma 3.7, R does not include any oversold item,

either. By definition, R contains all undersold items and R does not have any leaving arc in pG(z).
By Lemma 2.14, this implies that R is i-tight for every i ∈ N . Hence, R satisfies all three conditions
listed in Lemma 3.7. Minimality of S , thus, allows us to conclude that S = R. �

ACM Trans. Econ. Comput., Vol. 13, No. 3, Article 13. Publication date: June 2025.



13:46 K. Eickhof et al.

B.4 Maximally Overdemanded [Underdemanded] Sets are Steepest Descent

Directions of the Lyapunov Function

Ben-Zwi [8] provided two alternative definitions for gross substitutes, adding to the standard one
from Definition 2.2 and the one from discrete convexity (see [30] and [51]) as stated in Lemma 2.6.

Ben-Zwi’s definition is in terms of change in a buyer’s indirect utility function. We add this
lemma here to have a similar definition for the multi-supply setting, which Ben-Zwi did not con-
sider. The lemma holds in the same way as in the unit-supply setting by using Lemma 5.1.

Lemma B.2. Given a valuation function vi : [0,b]Z → R+, the following are equivalent:

(1) For all p ∈ RE
+ and S ⊆ E, Vi (p) = Vi (p + χS ) + θ̌

p
i (S).

(2) For all p ∈ RE
+ and S ⊆ E, Vi (p) = Vi (p − χS ) − ρ̂

p
i (S).

(3) The function vi is non-decreasing and gross substitutes.

With this lemma, we can prove that the steepest descent directions coincide either with the
maximally overdemanded sets or with the maximally underdemanded sets.

Lemma B.3 (c.f. [8]). Let p ≥ 0 be a price vector, then

arg min{L(p + χS ) | S ⊆ E} = arg max{overdp (S) | S ⊆ E}.

Proof of Lemma B.3. We show that for all S,T ⊆ E, we have

L(p + χT ) − L(p + χS ) = overdp (S) − overdp (T ). (20)

This implies the statement of the lemma because for a set S∗ ⊆ E, we have

S∗ ∈ arg min{L(p + χS ) | S ⊆ E} ⇔ ∀T ⊆ E : L(p + χT ) − L(p + χS∗ ) ≥ 0

(20)
⇔ ∀T ⊆ E : overdp (S∗) − overdp (T ) ≥ 0 ⇔ S∗ ∈ arg max{overdp (S) | S ⊆ E}.

To verify (20), we calculate

L(p + χT ) − L(p + χS )

=
∑
i ∈N

Vi (p + χT ) + 〈p + χT ,b〉 −
∑
i ∈N

Vi (p + χS ) − 〈p + χS ,b〉

=
∑
i ∈N

(Vi (p + χT ) −Vi (p + χS )) + 〈p + χT ,b〉 − 〈p + χS ,b〉

=
∑
i ∈N

(
(Vi (p) − θ̌

p
i (T )) − (Vi (p) − θ̌

p
i (S))

)
+ 〈χT − χS ,b〉

=
∑
i ∈N

(θ̌
p
i (S) − θ̌

p
i (T )) + 〈χT − χS ,b〉

=

(∑
i ∈N

θ̌
p
i (S) − 〈χS ,b〉

)
−

(∑
i ∈N

θ̌
p
i (T ) − 〈χT ,b〉

)
= overdp (S) − overdp (T ). �

Analogously, we can also show the following result.

Lemma B.4 (c.f. [8]). Let p ≥ 0 be a price vector, then

arg min{L(p − χS ) | S ⊆ E} = arg max{underdp (S) | S ⊆ E}.
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Proof of Lemma B.4. We show that for all S,T ⊆ E, we have

L(p − χT ) − L(p − χS ) = underdp (S) − underdp (T ). (21)

This implies the statement of the lemma because for a set S∗ ⊆ E, we have

S∗ ∈ arg min{L(p − χS ) | S ⊆ E} ⇔ ∀T ⊆ E : L(p − χT ) − L(p − χS∗ ) ≥ 0

(21)
⇔ ∀T ⊆ E : underdp (S∗) − underdp (T ) ≥ 0 ⇔ S∗ ∈ arg max{underdp (S) | S ⊆ E}.

To verify (21), we calculate

L(p − χT ) − L(p − χS )

=
∑
i ∈N

Vi (p − χT ) + 〈p − χT ,b〉 −
∑
i ∈N

Vi (p − χS ) − 〈p − χS ,b〉

=
∑
i ∈N

(Vi (p − χT ) −Vi (p − χS )) + 〈p − χT ,b〉 − 〈p − χS ,b〉

=
∑
i ∈N

(
(Vi (p) + ρ̂

p
i (T )) − (Vi (p) + ρ̂

p
i (S))

)
+ 〈χS − χT ,b〉

=
∑
i ∈N

(ρ̂
p
i (T ) − ρ̂

p
i (S)) + 〈χS − χT ,b〉

=

(
〈χS ,b〉 −

∑
i ∈N

ρ̂
p
i (S)

)
−

(
〈χT ,b〉 −

∑
i ∈N

ρ̂
p
i (T )

)
= underdp (S) − underdp (T ). �
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