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Agents in a network adopt an innovation if a certain fraction of their neighbors has already done 
so. We study the minimal contagious set size required for a successful innovation adoption by 
the entire population, and provide upper and lower bounds on it. Since detailed information 
about the network structure is often unavailable, we study bounds that depend only on the degree 
distribution of the network -- a simple statistic of the network topology. Moreover, as our bounds 
are robust to small changes in the degree distribution, they also apply to large networks for which 
the degree distribution can only be approximated. Applying our bounds to growing networks 
shows that the minimal contagious set size is linear in the number of nodes. Consequently, for 
outside of knife-edge cases (such as the star-shaped network), contagion cannot be achieved 
without seeding a significant fraction of the population. This finding highlights the resilience 
of networks and demonstrates a high penetration cost in the corresponding markets.

1. Introduction

The diffusion of innovation is a fundamental process that enables the spread of new technologies, products, and ideas throughout 
a network. Typically, this process begins with a small group of individuals, known as early adopters or innovators, who are not 
significantly influenced by the opinions and actions of others. They are often the first to recognize the potential of a new technology 
and are motivated to adopt it even if it is unproven or untested, creating positive local externalities that encourage other agents to 
adopt the innovation.

The process of seeding—namely, the task of identifying the group of early adopters within a social network that maximizes the 
spread of the innovation—has been extensively studied in various domains and contexts, including the dissemination of information, 
the implementation of microfinance programs, and the adoption of new technologies. Numerous studies have proposed different 
heuristics to enable the selection of seeds in a manner that will likely improve the outcome of the diffusion process. Many of the 
proposed seeding strategies rely on detailed topological and structural information about the network; however, since such informa
tion is often unavailable (especially in large networks), a more robust approach to assessing the likelihood of contagion is to rely on 

✩ For their valuable comments, the authors thank Gabrielle Demange, Tim Hellman, Mathieu Leduc, Dominik Karos, Yakov Babichenko, Tizié Bene, and the 
participants of the 26th annual Coalition Theory Network conference (Bielefeld, 2023), the workshop on adaptive learning and opinion dynamics in social networks 
(Ramat Gan, 2023), the Alpine Game Theory Symposium (Grenoble, 2023), and the GSBE-ETBC Seminar (Maastricht, 2023). YT and RP acknowledge the support of 
the Israel Science Foundation Grant #2566/20. YT acknowledges the support of the Israel Science Foundation Grants #1626/18 & #448/22.

* Corresponding author.
E-mail address: tsodikev@bgu.ac.il (Y. Tsodikovich).

https://doi.org/10.1016/j.jet.2025.106009
Received 8 November 2023; Received in revised form 10 April 2025; Accepted 10 April 2025 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jet
http://orcid.org/0000-0002-5491-0849
http://orcid.org/0000-0001-7643-4073
mailto:tsodikev@bgu.ac.il
https://doi.org/10.1016/j.jet.2025.106009
https://doi.org/10.1016/j.jet.2025.106009
http://creativecommons.org/licenses/by/4.0/


Journal of Economic Theory 226 (2025) 106009

2

I. Arieli, G. Ashkenazi-Golan, R. Peretz et al. 

coarser information, such as the degree distribution of the network. The bounds on the size of the seed set derived below show that, 
in general, full contagion is only possible by seeding a significant fraction of the population.

We investigate this problem within the context of strategic interactions in finite social networks. In particular, we consider the 
well-studied classical model of local strategic interactions [see, e.g., Blume (1995), Ellison (1993), and Morris (2000)], where the 
strategic interaction is defined by a game in which the players are the network nodes. Each player participates in a coordination game 
with their neighbors and can take one of two actions: a status-quo action (action 0) or an innovation action (action 1). Each agent is 
better off playing the innovation action if a proportion of at least 𝜌 ∈ [0,1) of their neighbors has adopted the innovation and plays 
the action 1. Similarly to the works mentioned above, we consider the Best-Response Dynamics (BRD), in which players dynamically 
respond to their neighbors’ actions. Importantly, unlike other models of opinion dynamics and consensus formation [such as those 
presented in Rosenberg et al. (2009) and Bikhchandani et al. (2021)], our model does not assume the existence of either an underlying 
true state to be learned or a ‘correct’ action to be taken. The sole driving force in our model is strategic complementarities.

The BRD has two natural resting points, which are equilibria profiles of the static game: all players playing action 0, and all players 
playing action 1. Our main question is: how many agents must be targeted to divert the population from the status-quo equilibrium to 
the innovation equilibrium? As the status-quo equilibrium represents the dominant product in a market or a social norm, the answer 
offers an index that measures resilience to market penetration in social networks.

The answer to the abovementioned question strongly depends on the network structure. For example, in a star-shaped network, 
a single innovator (the central node) is always sufficient, regardless of the number of agents. While this question can be answered 
analytically for some specific, well-structured networks [such as grids, as in Chalupa et al. (1979)], finding the minimal contagious 
set in a general network is an NP-hard problem (Kempe et al., 2003). Hence, similar to Chang and Lyuu (2010), Ackerman et al. 
(2010), and many others, we resort to obtaining estimations rather than an exact answer. This approach has two merits: it renders 
the question tractable, and more importantly, our bounds rely mainly on the degree distribution of the network, rather than on its 
exact structure. Although the degree distribution provides only partial information about the network, we show that it is sufficient for 
calculating meaningful bounds. This conclusion is crucial because, in practice, the degree distribution may be the only information 
available on large networks. For example, while an advertiser can easily obtain information about the number of connections (i.e., 
“friends'') a Facebook user, obtaining information about the identity of these connections is difficult or even impossible.

The main results of our study are bounds on the size of the minimal contagious set: two lower bounds (Theorems 1 and 2) and an 
upper bound (Theorem 5). These bounds show that, except for highly centralized structures, a linear fraction of the population must 
be initially seeded in order to achieve full contagion. Importantly, the bounds depend only on the degree distribution of the network 
and not on its detailed topology, making them robust to small changes or approximations in network structure.

We provide two variations of the lower bounds: one that is particularly suited for sparse networks and another that is more appro
priate for dense networks. In both cases, the bounds can be expressed in the form 𝛼𝑛, where 𝛼 ∈ (0,1) depends continuously on the 
degree distribution under appropriate topologies. This allows us to analyze contagion in large networks where only partial informa
tion is available, and to quantify the resilience of such networks to innovation diffusion based on simple, aggregate characteristics. 
Furthermore, this continuity is useful when considering families of networks whose degree distribution is random but is known to 
converge to a certain limit; prominent examples include preferential attachment networks (Barabási and Albert, 1999; Albert and 
Barabási, 2002), wherein the degree distribution converges to a power-law distribution; networks generated from graphons (Erol et 
al., 2023); and large, real-life networks in which the degree distribution can only be estimated due to their size and the fact that they 
may gradually change over time. We derive explicit results employing this continuity in Theorems 3 and 4, which address growing 
sequences of networks with converging degree distributions.

An important insight from our linear lower bounds is that, except in very specific network structures such as the star network, 
achieving widespread innovation adoption requires seeding a substantial fraction of the population. This insight underscores the 
inherent resilience of networks to change and highlights a significant penetration cost in relevant markets. Additionally, our results 
show that such resilience, and the resulting penetration cost, can be understood by examining the degree distribution of the network. In 
practice, this finding implies that understanding the aggregate network characteristics—rather than the detailed network topology�-
is a good starting point for analyzing market penetration costs. Our findings have implications for industries and policymakers aiming 
to accelerate technology adoption and diffusion in real-world social networks, as well as for general marketing campaign planning.

Our upper bound (Theorem 5) only applies to networks of a particular type, which we term attachment networks (Definition 3). 
In these networks, the agents can be ordered such that, from a certain point 𝑚0 , each agent is connected to a fixed number of 
preceding agents, 𝑚; two prominent examples are trees (in which 𝑚0 = 𝑚 = 1) and the preferential attachment model of Barabási 
and Albert (1999). Similar to our lower bounds, our upper bound is linear in the network size and the linear coefficient depends 
on the parameters 𝑚0, 𝑚, and 𝜌, as well as on the degree distribution of the network. Our proof of Theorem 5 relies on a method, 
inspired by Morris (2000, Prop. 2), for constructing contagious sets based on agent ordering. This method can be applied not only to 
attachment networks but to any type of network; for example, Angel and Kolesnik (2018) used a similar approach on Erdős-Rényi 
random graphs with a uniform random agent ordering. The important feature of attachment networks is that they have a natural 
ordering, which prescribes the construction of the contagious set. Such ordering, along with the fact that all agents have the same 
number of preceding neighbors, 𝑚, has enabled us to obtain an explicit upper bound on the size of the contagious set.
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1.1. Related literature

Our work is primarily related to the work of Morris (2000) on the contagion of the BRD. Morris considers an infinite graph 
of bounded degree and investigates the maximal value of 𝜌 such that a finite contagious set exists. As Morris notes, such a finite 
contagious set can exist only if 𝜌 < 0.5.

In contrast to Morris, however, we focus on finite (rather than infinite) graphs and our analog of Morris’s results is an asymptotic 
result that applies to growing sequences of graphs. Unlike Morris, we do not assume a bounded degree, and while Morris only 
distinguishes between finite and infinite contagious sets, we care about the size of the smallest contagious set. Another difference 
between our work and that of Morris is that some of our results, namely, Theorems 1 and 3, only apply to cases in which 𝜌 ≥ 0.5: an 
assumption that reflects a scenario in which innovation has no an advantage for the players over the status-quo. Therefore, the case 
in which 𝜌 ≥ 0.5 corresponds to situations where competing technologies are essentially social norms or products of the same quality. 
We further demonstrate the differences between 𝜌 < 0.5 and 𝜌≥ 0.5 in Section 4.1, below.

In an economic context, Morris’s contagion model has been applied to the study of optimal seeding in models related to ours. Erol 
et al. (2023) and Jackson and Storms (2023) similarly addressed seeding in a strategic diffusion context for a general 𝜌, but with some 
key differences: Erol et al. (2023) employed a continuous graphon model to approximate diffusion in large networks, while Jackson 
and Storms (2023) analyzed equilibrium structures in stochastic block models. Both works examined two optimal-seeding problems: 
maximizing the proportion of an infected set subject to size restriction on the seed set,1 and minimizing the size of a seeding set that 
infects a set of a particular target size. In contrast, we focus on the BRD in finite networks with a proportional threshold. In addition, 
their work considers partial diffusion, whereas our main objective is to derive explicit bounds for complete diffusion.

Rossi et al. (2017) addressed a related issue: they studied the BRD under heterogeneous thresholds on large networks generated 
by the configuration model2 focusing on the asymptotic fraction of adopters as a function of the initial seed. By employing a mean
field approach, the authors derived a one-dimensional equation that approximates the evolution of the contagion process. They 
demonstrate that their reduction provides a good approximation to the total number of adopters in large networks. In contrast, our 
bounds on the minimal seed set size, based on the degree distribution, are applied for full contagion in finite networks.

Related to the BRD is the model where the threshold for switching to the innovation action is an absolute number, 𝑟, rather than a 
certain proportion of the neighbors. A fixed threshold may better suit word-of-mouth or spontaneous diffusion, whereas a proportional 
threshold suits strategic environments where adoption decisions are endogenous. Akbarpour et al. (2018) studied the special case 
of the fixed threshold 𝑟 = 1, applied to random graphs. Using the Susceptible-Infected-Recovered (SIR) diffusion model, the authors 
analyzed the ``value of network information'' in seeding problems and demonstrated that a randomly selected seed set could achieve 
diffusion comparable to that of optimally targeted seeding. This finding contrasts with our work, which employs a proportional 
threshold model; we show that in the strategic BRD model, targeting agents by their degree outperforms random seeding.

Amini and Fountoulakis (2012) studied bootstrap percolation on power-law networks, showing that a threshold of 𝑟 = 3 ensures 
a sub-linear contagious set and highlighting that targeted seeding can lead to widespread adoption. Conversely, Amini et al. (2013) 
demonstrated that, for a random set to achieve contagion on such networks, the seed size must be linear in the size of the network, 
which underscores the potential inefficiency of random seeding strategies. Furthermore, Freund et al. (2018) provided density condi
tions on general graphs, which guarantee the existence of a contagious set of a specific size, exploring the interplay between the graph 
structure and the minimum contagious set size. These results highlight the importance of network structure and seeding strategies 
in diffusion processes with fixed threshold models, further motivating our analysis of strategic diffusion in finite networks under a 
proportional threshold rule.

Structure of the paper. We describe the model and the main results in Section 2, followed by the proofs in Section 3. Next, in 
Section 4.1, we compare majority and minority dynamics and show a discontinuity in the lower bound when the required activation 
threshold changes from slightly less than 50% to 50%. Then, in Section 4.2, we use regular networks to show that Theorem 1 is tight. 
The discussion in Section 5 concludes the paper.

2. Model and results

We consider innovation diffusion in a network by using the Best-Response Dynamics (BRD) with a threshold 𝜌 ∈ [0,1). A social 
network is a finite undirected simple graph 𝐺 = (𝑉 ,𝐸), where 𝑉 is the set of 𝑛 agents (vertices) and 𝐸 ⊆

(𝑉
2 
)

is the set of edges. The 
set of neighbors of agent 𝑣 is denoted 𝑁𝑣 and the degree is 𝑑𝑣 = |𝑁𝑣|.

An object that plays a fundamental role in our analysis is the cumulative distribution function (CDF) of the degrees 𝐹 ∶ ℝ+ → [0,1]. 
Given the graph 𝐺 = (𝑉 ,𝐸), the distribution 𝐹 is defined as 𝐹 (𝑥) = 1

𝑛 |{𝑣 ∶ 𝑑𝑣 ≤ 𝑥}| for every 𝑥 ∈ ℝ+. The average degree of the 
network is denoted by ⟨𝐹 ⟩ ∶= ∫ 𝑥 d𝐹 (𝑥). For certain results, it is more convenient to work with continuous distributions; therefore, 
we denote by 𝐹 ∶ ℝ+ → [0,1] the piecewise linear interpolation of 𝐹 from ℕ to ℝ+, defined by

𝐹 (𝑥) ∶= (1 − (𝑥− ⌊𝑥⌋))𝐹 (⌊𝑥⌋) + (𝑥− ⌊𝑥⌋)𝐹 (⌈𝑥⌉). (1)

Finally, Δ1(ℕ) is defined as the space of all finite-expectation probability measures on ℕ = {0,1,2,… }, therefore, d𝐹 ∈Δ1(ℕ).

1 Given an initial seed set, the set obtained after iterative application of the BRD is called the infected set.
2 For definition and discussion on the configuration model, see, e.g., Van Der Hofstad (2024, Chapter 4).
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Fig. 1. An example of the dynamics with a seed of three (white) vertices for 𝜌 = 0.5. At time 𝑡 = 3, the last black vertex is activated and, therefore, 𝐴3 = 𝑉 and the 
seed is contagious.

As in Morris (2000), each agent 𝑣 plays a two-action coordination game against all his neighbors, where the actions are the status
quo action, 0, and the innovation action, 1. The payoffs of the coordination game define a cutoff threshold 𝜌∈ [0,1), such that action 
1 is the best response of agent 𝑣 to his neighbors if and only if the fraction of his neighbors who play action 1 is at least 𝜌. Without 
loss of generality, indifferent agents choose action 0.

More formally, the dynamic we consider evolves as follows. At the outset, all agents in the network take action 0. A specific 
innovation is introduced, such that an agent can either adopt it [in which case, he is activated or infected (Garbe et al., 2018)] or not. 
At time 𝑡 = 0, a set 𝐴0 ⊂ 𝑉 of agents is activated. These agents are called seeds, and 𝐴0 is called the seed set. While the seeds adhere to 
the innovation regardless of what others do, the other agents choose between the two actions on each day (𝑡 = 1,2,… ). An inactive 
agent adopts the innovation if and only if strictly more than a fraction 𝜌 of his neighbors are activated. In this case, we say that the 
agent sees that a 𝜌-majority of its neighbors are activated.

Formally, the sets 𝐴0 ⊂𝐴1 ⊂… of active agents at times 𝑡 = 0,1,… are defined3 recursively by

𝐴𝑡+1 =𝐴𝑡 ∪ {𝑣 ∈ 𝑉 ∶ |𝑁𝑣 ∩𝐴𝑡| > 𝜌𝑑𝑣}.

Let 𝐴∞ ∶=
⋃∞

𝑡=0𝐴𝑡. When the graph 𝐺 is finite, there exists 𝑡0 such that 𝐴𝑡 = 𝐴∞ for all 𝑡 ≥ 𝑡0. If 𝐴∞ = 𝑉 , then 𝐴0 is said to be 
𝜌-contagious. When 𝜌 is clear from the context, we omit it and say that 𝐴0 is contagious. Our goal is to determine the size of the 
smallest contagious seed set, denoted by ℎ𝜌(𝐺), which represents the minimal number of innovators required to shift the population 
from the status-quo equilibrium to the innovative equilibrium under an optimal seeding strategy, and serves as a lower bound on the 
contagious seed set size under sub-optimal strategies, such as random seeding. For some of our lower-bound results (Theorems 1 and 
3), we discuss the case of 𝜌 ≥ 0.5, which models scenarios where the innovation has no intrinsic advantage over the status-quo and 
is adopted solely due to peer pressure. We relax this assumption both for our other lower bounds (Theorems 2 and 4) and for our 
upper bound (Theorem 5).

Fig. 1 depicts the network dynamics for 𝜌 = 0.5, where the white vertices are active (𝐴𝑡) and the black are inactive (𝐴̄𝑡 ∶= 𝑉 ⧵𝐴𝑡). 
It is easy to verify, in this example, that ℎ0.5(𝐺) = 2.

Our main results are upper and lower bounds on ℎ𝜌(𝐺), in terms of the degree distribution of the agents of 𝐺. In contrast to 
published results [e.g., in Chang and Lyuu (2010)] which depend only on some statistics of that distribution (e.g., the maximal 
degree), our results rely on the entire distribution of the degrees of the network.

2.1. Lower bounds

We first establish two general lower bounds that apply to any network (Theorems 1 and 2). Next, we present asymptotic results, 
derived from these general bounds (Theorems 3 and 4), which pertain to sequences of networks whose degree distributions converge 
in specific modes.

2.1.1. General lower bounds

We present two general lower bounds whose behavior differs with respect to the number of edges in the network. Our first lower 
bound (Theorem 1) decreases as the set of edges increases; therefore, this theorem is primarily useful for sparse networks, i.e., for 
networks with relatively few edges. Our second lower bound (Theorem 2) complements the first lower bound because it increases with 
the edge set under the containment order; therefore, this bound is more applicable to dense networks. Another difference between 
Theorems 1 and 2 is that the former applies only to 𝜌 ≥ 1

2 , while the latter holds for any 𝜌.

Theorem 1. For every 𝜌≥ 1
2 , 𝑛 ∈ ℕ, and a network 𝐺 with 𝑛 agents and a degree distribution 𝐹𝐺,

ℎ𝜌(𝐺) ≥ 𝛼(𝐹𝐺)𝑛,

where 𝛼(𝐹𝐺) = 1 − 𝐹𝐺(𝑑∗) and 𝑑∗ is a solution of

𝐹𝐺(𝑑∗) =

∞ 

∫
𝑑∗

⌈𝑥⌉d𝐹𝐺(𝑥). (2)

3 In principle, we could allow active agents to become inactive again by postulating 𝑣 ∈𝐴𝑡+1 if and only if 𝑣∈𝐴0 , or |𝑁𝑣 ∩𝐴𝑡| > 𝜌𝑑𝑣 , or |𝑁𝑣 ∩𝐴𝑡| = 𝜌𝑑𝑣 and 𝑣 ∈𝐴𝑡 . 
The two definitions are equivalent since the seeds never become inactive, and by induction on 𝑡, any agent that becomes active at time 𝑡 remains active forever.
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The value 𝛼(𝐹𝐺) is obtained by identifying the quantile of the distribution 𝐹𝐺 , such that the aggregate degree of the nodes above 
that quantile equals the quantile value itself. Consequently, 𝛼(𝐹𝐺) increases with 𝐹𝐺 and, therefore, it decreases as the edge set grows.

The bound applies when 𝜌 = 1
2 and, therefore, also when 𝜌 >

1
2 . Interesting directions for future work would be to extend our 

calculation to identify lower bounds, 𝛼𝜌, which depend on 𝜌, and to obtain bounds that account for agent-dependent thresholds, i.e., 
distinct 𝜌𝑣 ≥ 1

2 for each 𝑣 ∈ 𝑉 , as in Ackerman et al. (2010) and in Chang and Lyuu (2010).
Despite its appearance, the bound in Theorem 1 is not necessarily linear in 𝑛 since 𝛼(𝐹𝐺) may depend on 𝑛. For example, for the 

complete network 𝐾𝑛, we obtain 𝛼(𝐹𝐾𝑛
) = 1 

𝑛+1 , in which case our bound is vacuous. Theorem 3 provides conditions on a family of 
networks {𝐺𝑛}∞𝑛=1, under which the sequence of coefficients 𝛼(𝐹𝐺𝑛

) converges to a positive number. Therefore, Theorem 3 ensures 
that the lower bound on ℎ𝜌(𝐺𝑛) is linear in 𝑛.

Our next lower bound generalizes the simple idea that ℎ𝜌(𝐺) must be at least 𝜌 times the minimum degree of 𝐺 (otherwise, 
any additional activation cannot occur). The minimal degree may reflect the degrees of outlier agents, rather than the typical ones. 
Theorem 2 considers this scenario, relying on low percentiles of the degree distribution instead of its exact minimum.

Theorem 2. For every network 𝐺 with 𝑛 agents, and for every 𝜌∈ (0,1),

ℎ𝜌(𝐺) > max 
𝑘=0,…,𝑛

{𝑘− 𝑛 ⋅ 𝐹𝐺(𝑘𝜌−1)}.

After establishing the general lower bounds, we turn to their asymptotic implications for sequences of networks of increasing size.

2.1.2. Asymptotic lower bounds

Our asymptotic bounds refer to families of networks whose degree distributions converge in certain modes. The results are stated 
in terms of the limiting distribution.

In Theorem 3, which is derived from Theorem 1, we assume that the degree distributions converge to the limit in two ways 
simultaneously: pointwise and in mean. Convergence in mean, in this context, implies that the average degree of the networks 
converges to the mean of the limiting degree distribution. The preferential attachment model (Albert and Barabási, 2002) exemplifies 
a process where the degree distribution converges to a specific limit (a power law) as the network grows.

Definition 1. A sequence of networks (𝐺𝑛 = (𝑉𝑛,𝐸𝑛))𝑛∈ℕ of sizes |𝑉𝑛| = 𝑛, where 𝐹𝑛 is the CDF of the degrees of 𝐺𝑛, is 𝕎1-converging 
if there exists a distribution on ℕ with a CDF 𝐹 such that:

1. 𝐹 is the pointwise limit of 𝐹𝑛, i.e., 𝐹𝑛(𝑑) ←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞ 𝐹 (𝑑), for every 𝑑 ∈ℕ.

2. The average degree of 𝐹𝑛 converges to the average degree of 𝐹 , i.e., ⟨𝐹𝑛⟩ ←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞ ⟨𝐹 ⟩.

Definition 1 is equivalent to stating that 𝐹𝑛 − 𝐹 ⟶ 0 in 𝐿1, or that 𝑑𝐹𝑛 → 𝑑𝐹 in the 1-Wasserstein metric.4

Theorem 3 leverages the notion of 𝕎1-convergence to establish an asymptotic lower bound. Specifically, it demonstrates that if a 
family of networks satisfies 𝕎1-convergence and the limiting degree distribution has a finite mean, then the lower bound on ℎ𝜌(𝐺𝑛)
increases linearly with the size of the network.

Theorem 3. Let (𝐺𝑛)𝑛∈ℕ be a 𝕎1-converging sequence of networks, where each 𝐺𝑛 has 𝑛 agents, 𝐹𝑛 is the CDF of the degrees of 𝐺𝑛 and 𝐹
is their limit distribution. If ⟨𝐹 ⟩ <∞, then ℎ𝜌(𝐺𝑛) is linear in 𝑛, i.e., there exists 𝛼 > 0 such that for all 𝜌≥ 1

2 and for every 𝑛 large enough, 
ℎ𝜌(𝐺𝑛) ≥ 𝛼𝑛.

To illustrate the significance of convergence in mean, consider the case where only a pointwise convergence of 𝐹𝑛 to 𝐹 is assumed. 
For example, in a star-shaped network with 𝑛 agents, the limit of 𝐹𝑛 is 𝐹 ∶= 𝟏[1,∞) and ⟨𝐹 ⟩ = 1, while ⟨𝐹𝑛⟩ = 2𝑛−1

𝑛 → 2. Indeed, in this 
case, ℎ𝜌(𝐺𝑛) remains constant at 1, failing to grow linearly with 𝑛. Hence, pointwise convergence alone does not ensure that ℎ𝜌(𝐺𝑛)
is linear in 𝑛. We believe that the finiteness of ⟨𝐹 ⟩ [which generalizes the common assumption of bounded degree distributions, as 
in Candogan (2022), Manshadi et al. (2020), and Morris (2000)] is essential for the result to hold, but we have been unable to prove 
this notion.

The finiteness of ⟨𝐹 ⟩ implies that the networks are sparse, i.e., the number of edges is linear in the number of nodes. Therefore, 
Theorem 3 applies only to families of sparse networks; dense networks are addressed in Theorem 4, which is an asymptotic derivation 
of Theorem 2. Another difference between Theorems 3 and 4 is the mode of convergence of the degree distributions: while Theorem 3
refers to 𝕎1-convergence, Theorem 4 refers to weak* convergence of the following notion of normalized degree distribution.

Definition 2. The normalized degree CDF of a network 𝐺 with 𝑛 agents 𝐺 ∶ ℝ→ [0,1] is defined by 𝐺(𝑥) = 𝐹𝐺(𝑛𝑥).

4 See Theorem 6.9 on Page 108 in Villani (2009).
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The normalized degree CDF captures the degree distribution as a function of the fraction of agents, rather than of their absolute 
degree. This normalization is crucial when analyzing dense networks, where the degrees of the agents scale linearly with the number 
of agents. The normalization process ensures that the degree distributions are comparable across networks of different sizes.

Theorem 4. Let (𝐺𝑛)𝑛∈ℕ be a sequence of networks, where each 𝐺𝑛 has 𝑛 agents, and let 𝑛 ∶= 𝐺𝑛
be their normalized degree CDFs. 

Suppose that there exists a CDF  such that 𝑛(𝑥) ←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞  at any 𝑥 at which  is continuous (i.e., weak* convergence of d𝑛 to d). Then 

ℎ𝜌(𝐺𝑛) is linear in 𝑛, i.e., for every 𝛼 < sup𝑥∈[0,1]{𝑥− (𝑥𝜌−1)} and for every 𝑛 large enough, ℎ𝜌(𝐺𝑛) ≥ 𝛼𝑛.

To see that Theorem 4 applies to families of dense graphs, note that for the supremum to be positive, there must be a positive 
proportion 𝑥𝜌−1 of the vertices whose degree is at least 𝑥𝑛. Therefore, the theorem is meaningful only when the number of edges is 
at least 12𝑥𝜌

−1𝑛2.

2.2. Upper bound

We now determine the upper bound on the minimal contagious set size for the interesting class of attachment networks. These 
networks are characterized by continuously adding new agents, who connect to existing agents according to specific rules. In many 
of the leading models of preferential attachment networks, the construction starts with a certain network of size 𝑚0 , and then each 
new agent is connected to a fixed number, 𝑚 ≤ 𝑚0, of existing agents. We call networks with the latter property (𝑚0,𝑚)-attachment 
networks.

Definition 3. An (𝑚0,𝑚)-attachment network is a network of size at least 𝑚0, whose agents can be ordered 𝑣1, 𝑣2,… such that, for 
every 𝑙 > 𝑚0, the degree of 𝑣𝑙 in the sub-network induced by {𝑣1,… , 𝑣𝑙} is equal to 𝑚.

For example, in the model of Barabási and Albert (1999), each new agent is connected to 𝑚 existing agents, where the probability 
to connect to a specific agent 𝑣 is proportional to 𝑑𝑣. The Barabási–Albert Model results in a network where the limiting probability 
density function (PDF) of the degrees is proportional to 𝑑−3, 𝑑 ≥𝑚.

Theorem 5 provides an upper bound on ℎ𝜌(𝐺), which applies only to attachment networks. We show that the two following sets 
of agents are contagious for attachment networks: the 𝑚0 initial agents and all agents of degree at least 𝑚∕𝜌, and the 𝑚0 initial agents 
and all agents of degree at most 𝑚∕(1− 𝜌). This finding is true for any 𝜌 ∈ (0,1), dropping the 𝜌 ≥ 0.5 requirement of Theorems 1 and 
3.

Theorem 5. Fix 𝜌∈ (0,1). For any (𝑚0,𝑚)-attachment network 𝐺 with 𝑛 agents and degree CDF 𝐹 , we have

ℎ𝜌(𝐺) ≤𝑚0 +min
{
1 − 𝐹 (⌈𝑚

𝜌 − 1⌉), 𝐹 ( 𝑚 
1−𝜌 )

}
𝑛. (3)

The proof relies on the following idea, which is inspired by Proposition 2 in Morris (2000). Consider an ordering of the agents 
𝑣1,… , 𝑣𝑛. The set of all agents for whom less than a fraction 𝜌 of their neighbors have indices smaller than their own is a contagious 
set (this is proven in Lemma 1 as part of the proof of the theorem). Moreover, any contagious set contains a subset that can be obtained 
this way with a certain ordering of the agents. Hence, the minimal contagious set can be found among those sets when considering 
all possible orderings of the agents. While this statement is true for any network, attachment networks are sufficiently structured to 
produce the closed-form formula in Eq. (3), which is obtained by considering either the ordering that defines attachment networks, 
or its reversal.

The proof of Theorem 5 provides a simple way to construct sets that are known to be contagious without the need to run the 
𝜌-majority dynamics on the network to verify that the set is indeed contagious. Therefore, it can be beneficial to limit algorithms 
to searching only sets of this form within the space of all permutations. An exact design of such an algorithm, and the study of the 
possible improvements compared to existing algorithms, is left for future research.

In the preferential attachment model of Barabási and Albert (1999) with parameters (𝑚0 ,𝑚), a family of networks 𝐺1 ⊂ 𝐺2 ⊂… 
is generated such that these networks have a limit degree distribution proportional to 𝑑−3 , 𝑑 ≥ 𝑚. Accordingly, Theorem 5 implies 
that

lim sup
𝑚→∞ 

lim sup
𝑛→∞ 

ℎ𝜌(𝐺𝑛)∕𝑛 ≤ 𝜌2.

In the case of 𝜌 = 1
2 , this upper bound is smaller than the general upper bound ℎ0.5(𝐺) ≤ ⌈𝑛∕2⌉, which is attained, e.g., by the complete 

and the line graphs [see Ackerman et al. (2010)].
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Fig. 2. An illustration of the proof of Eq. (5). The graph has 𝑛 = 5 vertices arranged in a non-decreasing order of degrees 𝑑𝑣1 = 𝑑𝑣2 = 1 < 𝑑𝑣3 = 𝑑𝑣4 = 2 < 𝑑𝑣5 = 4. The 
graphs of 𝐹 (𝑥) (solid) and 𝐹 (𝑥) (dashed) are drawn on the right. The points where 𝐹 (𝑥) crosses the heights 0, 1

5
,
2
5
,… ,1 are 𝑑(0) = 0, 𝑑(1) = 1

2
, 𝑑(2) = 1, 𝑑(3) = 1 1

2
, 

𝑑(4) = 2, 𝑑(5) = 4. The proof of the case 𝑑𝑣𝑚 = 𝑑𝑣𝑚−1 can be exemplified by considering 𝑚= 2. In the corresponding interval between 𝑑(1) = 1
2

and 𝑑(2) = 1, the value 
of ⌈𝑥⌉ is 𝑑𝑣2 = 1 and, therefore, ∫ 𝑑(2)

𝑑(1) ⌈𝑥⌉d𝐹 (𝑥) = 1
5
𝑑𝑣2 . The proof of the case 𝑑𝑣𝑚 > 𝑑𝑣𝑚−1 can be exemplified by considering 𝑚 = 5. The integral is computed in the 

interval [𝑑(4), 𝑑(5)] = [2,4]. The function 𝐹 is flat from 2 to 3, and then it climbs linearly from 4
5

to 1 in the interval [3,4].

3. Proofs

3.1. Proof of Theorem 1

Our proof relies on the observation that as the innovation spreads in the network, the number of ``disagreements'' between 
neighboring agents decreases. Formally, the boundary (also known as the set of discord) of a set of agents 𝐴 ⊂ 𝑉 is defined as the set 
of edges connecting agents in 𝐴 with agents in 𝐴̄, denoted 𝜕𝐴= {{𝑣1, 𝑣2} ∈𝐸|𝑣1 ∈𝐴,𝑣2 ∈ 𝐴̄}.

At each time 𝑡 ≥ 0, each agent in 𝐴𝑡+1 ⧵𝐴𝑡 has more neighbors in 𝐴𝑡 than outside of it, and, in particular, it has more neighbors in 
𝐴𝑡 than in 𝐴̄𝑡+1, so |𝜕𝐴𝑡| > |𝜕𝐴𝑡+1|. More precisely, an agent 𝑣 is activated if and only if 𝑥 of its neighbors are active, where 𝑥 > 𝜌𝑑𝑣
(and, since 𝑥 must be an integer, 𝑥 ≥ ⌊𝜌𝑑𝑣⌋+ 1). The net change in the size of the boundary due to its activation is

Δ𝑣 ∶= |𝜕{𝑣} ∩ 𝜕𝐴𝑡+1|− |𝜕{𝑣} ∩ 𝜕𝐴𝑡| ≤ (𝑑𝑣 − 𝑥) − 𝑥 ≤ 𝑑𝑣 − 2⌊𝜌𝑑𝑣⌋− 2.

It follows that as the activation process unfolds, the size of the set of discord decreases by at least |Δ𝑣| with the activation of each 
new agent 𝑣. Hence, |𝜕𝐴𝑡|− |𝜕𝐴𝑡+1| =∑

𝑣∈𝐴𝑡+1⧵𝐴𝑡
|Δ𝑣| and, if 𝐴 is 𝜌-contagious, then summing over all 𝑡 ≥ 0 gives

|𝜕𝐴| = ∑
𝑣∉𝐴

|Δ𝑣|≥∑
𝑣∉𝐴

(2 + 2⌊𝜌𝑑𝑣⌋− 𝑑𝑣) ≥ 𝑛− |𝐴|, (4)

where the last inequality follows from the fact that ⌊𝜌𝑑𝑣⌋ ≥ 1
2𝑑𝑣 −

1
2 , for 𝜌 ≥ 1

2 . Since ℎ𝜌(𝐺) is non-decreasing in 𝜌, and since we 
calculate a lower bound, we assume in the remainder of this proof that, w.l.o.g., 𝜌 = 1

2 .

Let 𝐺 = (𝑉 ,𝐸) be a network with 𝑛 agents and degree CDF 𝐹 ∶ ℝ+ → [0,1], and let 𝐹 be its linear continuation [see Eq. (1)]. For 
𝑚 ∈ {0,… , 𝑛}, let 𝑑(𝑚) be the lower 𝑚

𝑛 -quantile of 𝐹 , namely, the first point where 𝐹 reaches the height 𝑚∕𝑛, formally defined by

𝑑(𝑚) ∶= min
{
𝑥 ≥ 0 ∶ 𝐹 (𝑥) = 𝑚

𝑛 
}
.

Rename the agents in a non-decreasing order of degrees, such that 𝑑𝑣1 ≤⋯ ≤ 𝑑𝑣𝑛
. We claim that, for every 𝑚 ∈ {1,… , 𝑛},

𝑑(𝑚) 

∫
𝑑(𝑚−1)

⌈𝑥⌉d𝐹 (𝑥) = 1
𝑛 𝑑𝑣𝑚 . (5)

The steps of the proof of Eq. (5) can be visualized by considering the example depicted in Fig. 2. For every 𝑚 ∈ {1,… , 𝑛}, there 
are at least 𝑚 vertices whose degree is at most 𝑑𝑣𝑚 and less than 𝑚 vertices whose degree is less than 𝑑𝑣𝑚 ; therefore,

𝐹 (𝑑𝑣𝑚 − 1) < 𝑚

𝑛 ≤ 𝐹 (𝑑𝑣𝑚 ).

Since 𝐹 agrees with 𝐹 on the integers, we have 𝑑𝑣𝑚 − 1 < 𝑑(𝑚) ≤ 𝑑𝑣𝑚
, namely, ⌈𝑑(𝑚)⌉ = 𝑑𝑣𝑚

.
Set 𝑑𝑣0 ∶= 0. If 𝑑𝑣𝑚 = 𝑑𝑣𝑚−1

, then ⌈𝑑(𝑚)⌉ = ⌈𝑑(𝑚− 1)⌉ = 𝑑𝑣𝑚
and Eq. (5) holds. If 𝑑𝑣𝑚 > 𝑑𝑣𝑚−1

, then there are exactly 𝑚−1 vertices 
whose degree is at most 𝑑𝑣𝑚−1 and, therefore, 𝑑(𝑚− 1) = 𝑑𝑣𝑚−1

. Since 𝐹 has no jumps between 𝑑𝑣𝑚−1 and 𝑑𝑣𝑚 − 1, 𝐹 (𝑥) is constant in 
that interval. Since ⌈𝑑(𝑚)⌉ = 𝑑𝑣𝑚

, ⌈𝑥⌉ ≡ 𝑑𝑣𝑚
in the interval 𝑥 ∈ (𝑑𝑣𝑚 − 1, 𝑑(𝑚)]. It follows that
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Fig. 3. The intersection of 𝐹 (𝑑) (increasing) and ∫ ∞
𝑑
⌈𝑥⌉d𝐹 (𝑥) (decreasing) for 𝐹 (𝑑) = 1 − ⌊max(𝑑,1)⌋−2 . 

𝑑(𝑚) 

∫
𝑑(𝑚−1)

⌈𝑥⌉d𝐹 (𝑥) =

𝑑𝑣𝑚
−1 

∫
𝑑(𝑚−1)

⌈𝑥⌉d𝐹 (𝑥) +

𝑑(𝑚) 

∫
𝑑𝑣𝑚

−1

⌈𝑥⌉d𝐹 (𝑥) = 0 + (𝐹 (𝑑(𝑚)) − 𝐹 (𝑑𝑣𝑚 − 1))𝑑𝑣𝑚 = (𝐹 (𝑑(𝑚)) − 𝐹 (𝑑(𝑚− 1)))𝑑𝑣𝑚 = 1
𝑛 𝑑𝑣𝑚 ,

which concludes the proof of Eq. (5).
For 𝐴⊂ 𝑉 , we have by Eq. (5),

1
𝑛 

𝑛 ∑
𝑖=𝑛−|𝐴|+1𝑑𝑣𝑖 =

∞ 

∫
𝑑(|𝐴|)

⌈𝑥⌉d𝐹 (𝑥).

Therefore,

1
𝑛 |𝜕𝐴| ≤ 1

𝑛 
∑
𝑣∈𝐴

𝑑𝑣 ≤ 1
𝑛 

𝑛 ∑
𝑖=𝑛−|𝐴|+1𝑑𝑣𝑖 =

∞ 

∫
𝑛−𝑑(|𝐴|)

⌈𝑥⌉d𝐹 (𝑥).

Suppose that 𝐴 is contagious, then, by Eq. (4) and since 1
𝑛 |𝐴| = 𝐹 (𝑑(|𝐴|)),

1
𝑛 |𝜕𝐴| ≥ 1 − 𝐹 (𝑑(|𝐴|)),

we obtain that

∞ 

∫
𝑛−𝑑(|𝐴|)

⌈𝑥⌉d𝐹 (𝑥) ≥ 1 − 𝐹 (𝑑(|𝐴|)).
Recall that 𝐹 (𝑑) is increasing from 0 to 1, whereas ∫ ∞

𝑑
⌈𝑥⌉d𝐹 (𝑥) is decreasing from a positive number ⟨𝐹 ⟩ to 0. Therefore, by 

continuity (Fig. 3), there exists a 𝑑∗ such that

𝐹 (𝑑∗) =

∞ 

∫
𝑑∗

⌈𝑥⌉d𝐹 (𝑥). (6)

Moreover, by monotonicity, 𝐹 (𝑑∗) is uniquely defined and 𝐹 (𝑑∗) ≥ 𝐹 (𝑑(|𝐴|)) = 1
𝑛 |𝐴|. Defining 𝛼(𝐹 ) ∶= 1−𝐹 (𝑑∗) completes the proof 

of Theorem 1.

3.2. Proof of Theorem 2

Let 𝐺 be a network with 𝑛 agents. Suppose that there exists a contagious set 𝐴 and a number 𝑘 ∈ {0,… , 𝑛} such that |𝐴| ≤
𝑘− 𝑛𝐹𝐺(𝑘𝜌−1). Note that 𝑘 must be strictly smaller than 𝑛; otherwise, we would have |𝐴| = 0.

Let 𝐵 ⊃𝐴 be obtained by adding to 𝐴 a set of 𝑘− |𝐴| agents from 𝐴̄, whose degrees are the smallest. Since 𝑘− |𝐴| ≥ 𝑛𝐹𝐺(𝑘𝜌−1), 
the degrees of all agents outside 𝐵 are greater than 𝑘𝜌−1. Therefore, these agents need more than 𝑘 activated neighbors to become 
active. Since |𝐵| = 𝑘 < 𝑛, it cannot activate anyone outside of it, and, therefore, neither 𝐵 nor 𝐴⊂𝐵 are contagious.
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3.3. Proof of Theorem 3

The proof of Theorem 3 lies in showing that the function 𝛼(𝐹 ) of Theorem 1 is continuous w.r.t. the 1-Wasserstein metric. Let 
(𝐺𝑛)𝑛∈ℕ be a 𝕎1-converging sequence of networks, and let (𝐹𝑛)𝑛∈ℕ be their respective degree CDFs with 𝐹 being the limiting CDF. 
By Theorem 1, and since 𝛼(𝐹 ) > 0, it is sufficient to show that lim 

𝑛→∞
𝛼(𝐹𝑛) = 𝛼(𝐹 ).

Below, integrals of the form 
𝑏 ∫
𝑎 

should be interpreted as ∫
(𝑎,𝑏]

. We first claim that

lim 
𝑛→∞

max
𝑘∈ℕ 

|||||||
𝑘 

∫
0 
⌈𝑥⌉d𝐹𝑛(𝑥) −

𝑘 

∫
0 
⌈𝑥⌉d𝐹 (𝑥)

||||||| = 0. (7)

Let 𝑘𝑛, 𝑛 = 1,2,… , be maximizers in Eq. (7). If {𝑘𝑛 ∶ 𝑛 = 1,2,… } is bounded, then the claim holds since 𝐹𝑛(𝑑)
𝑛→∞ 
←←←←←←←←←←←←←←←←←←←←←→ 𝐹 (𝑑) for any 

integer 𝑑 ≥ 0. It remains to show that for any sub-sequence 𝑛′ →∞ such that 𝑘𝑛′ →∞, we have

lim sup
𝑛′→∞ 

||||||||
𝑘𝑛′

∫
0 
⌈𝑥⌉d𝐹𝑛′ (𝑥) −

𝑘𝑛′

∫
0 
⌈𝑥⌉d𝐹 (𝑥)

|||||||| = 0.

Let 𝜀 > 0 and 𝑚> 0 be large enough so that

𝑚 

∫
0 
⌈𝑥⌉d𝐹 (𝑥) + 𝜀 >

∞ 

∫
0 
⌈𝑥⌉d𝐹 (𝑥) = ⟨𝐹 ⟩.

Since lim𝑛→∞⟨𝐹𝑛⟩ = ⟨𝐹 ⟩ and lim𝑛→∞ ∫ 𝑚

0 ⌈𝑥⌉d𝐹𝑛(𝑥) = ∫ 𝑚

0 ⌈𝑥⌉d𝐹 (𝑥), we have

lim sup
𝑛→∞ 

∞ 

∫
𝑚 

⌈𝑥⌉d𝐹𝑛(𝑥) < 𝜀.

It follows that

lim sup
𝑛′→∞ 

||||||||
𝑘𝑛′

∫
0 
⌈𝑥⌉d𝐹𝑛′ (𝑥) −

𝑘𝑛′

∫
0 
⌈𝑥⌉d𝐹 (𝑥)

|||||||| ≤ lim sup
𝑛′→∞ 

|||||||
𝑚 

∫
0 
⌈𝑥⌉d𝐹𝑛′ (𝑥) −

𝑚 

∫
0 
⌈𝑥⌉d𝐹 (𝑥)

|||||||
+ lim sup

𝑛′→∞ 

∞ 

∫
𝑚 

⌈𝑥⌉d𝐹𝑛′ (𝑥) + lim sup
𝑛′→∞ 

∞ 

∫
𝑚 

⌈𝑥⌉d𝐹 (𝑥) < 0 + 𝜀+ 𝜀.

This is true for any 𝜀 > 0, thus proving Eq. (7).
Let 𝐹 (respectively, 𝐹𝑛) be the piece-wise linear interpolation from ℕ to ℝ+ of 𝐹 (respectively, 𝐹𝑛), as in Eq. (1). For each 𝑛, 

denote by 𝑑𝑛 the solution of Eq. (2) with respect to 𝐹𝑛. We next show that

lim 
𝑛→∞

|||||||𝐹 (𝑑𝑛) −

∞ 

∫
𝑑𝑛

⌈𝑥⌉d𝐹 (𝑥)
||||||| = 0. (8)

We will use the following observations regarding every CDF 𝐹 supported on ℕ, and for every 𝑘∈ℕ:

(O1)
𝑘+1∫
𝑘 
⌈𝑥⌉d𝐹 =

𝑘+1∫
𝑘 
⌈𝑥⌉d𝐹 = (𝑘+ 1)(𝐹 (𝑘+ 1) − 𝐹 (𝑘)), and, therefore, 

∞ ∫
𝑘 
⌈𝑥⌉d𝐹 =

∞ ∫
𝑘 
⌈𝑥⌉d𝐹 ;

(O2) The mapping 𝑑 ↦
∞ ∫
𝑑

⌈𝑥⌉d𝐹 (𝑥) is an a˙ine function over the domain 𝑑 ∈ [𝑘,𝑘+ 1].

For every 𝑛,|||||||𝐹 (𝑑𝑛) −

∞ 

∫
𝑑𝑛

⌈𝑥⌉d𝐹 (𝑥)
||||||| ≤

|||𝐹 (𝑑𝑛) − 𝐹𝑛(𝑑𝑛)
|||+

|||||||𝐹𝑛(𝑑𝑛) −

∞ 

∫
𝑑𝑛

⌈𝑥⌉d𝐹𝑛(𝑥)
|||||||+

|||||||
∞ 

∫
𝑑𝑛

⌈𝑥⌉d𝐹𝑛(𝑥) −

∞ 

∫
𝑑𝑛

⌈𝑥⌉d𝐹 (𝑥)
|||||||

≤ ‖𝐹 − 𝐹𝑛‖∞ + 0 + max 
𝑘∈{⌊𝑑𝑛⌋,⌈𝑑𝑛⌉}

|||||||
∞ 

∫
𝑘 
⌈𝑥⌉d𝐹𝑛(𝑥) −

∞ 

∫
𝑘 
⌈𝑥⌉d𝐹 (𝑥)

|||||||
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≤ ‖𝐹 − 𝐹𝑛‖∞ + ||⟨𝐹𝑛⟩− ⟨𝐹 ⟩||+max
𝑘∈ℕ 

|||||||
𝑘 

∫
0 
⌈𝑥⌉d𝐹𝑛(𝑥) −

𝑘 

∫
0 
⌈𝑥⌉d𝐹 (𝑥)

|||||||
𝑛→∞ 
←←←←←←←←←←←←←←⟶ 0.

In the second inequality, we first used (O2) to replace 𝑑𝑛 by 𝑘 ∈ {⌊𝑑𝑛⌋,⌈𝑑𝑛⌉}, and then applied (O1). Equation (8) implies that any 
partial limit of the sequence (𝑑𝑛)𝑛∈ℕ solves Eq. (2) with respect to 𝐹 , and, moreover, that 𝑑𝑛 is bounded because the set of solutions 
to this equation is bounded.

Suppose, for the sake of contradiction, that 𝛼(𝐹𝑛) does not converge to 𝛼(𝐹 ). Then there is a subsequence 𝑛′ in which 
lim sup𝑛′→∞ |𝛼(𝐹𝑛) − 𝛼(𝐹 )| > 0 and a further subsequence 𝑛′′ in which 𝑑𝑛′′ converges to some 𝑑∞. We have a contradiction by

|𝛼(𝐹𝑛′′ ) − 𝛼(𝐹 )| = |𝐹 (𝑑∞) − 𝐹𝑛′′ (𝑑𝑛′′ )|
≤ |𝐹 (𝑑∞) − 𝐹𝑛′′ (𝑑∞)|+ |𝐹𝑛′′ (𝑑∞) − 𝐹𝑛′′ (𝑑𝑛′′ )|
≤ ‖𝐹 − 𝐹𝑛′′‖∞ + |𝑑∞ − 𝑑𝑛′′ | 𝑛′′→∞ 

←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.

This concludes the proof of Theorem 3.

3.4. Proof of Theorem 4

Let 𝐺𝑛 be a sequence of networks, where 𝑛 is the number of agents and 𝑛 is the normalized degree CDF of 𝐺𝑛. Suppose there 
exists a CDF  such that d𝑛 ⟶ d in the weak* topology. Theorem 2 states that

𝛼𝑛 ∶= max 
𝑘=0,…,𝑛

{
𝑘

𝑛 −𝑛

(
𝑘

𝑛 𝜌
−1
)}

<
ℎ𝜌(𝐺𝑛)

𝑛 . (9)

It is sufficient to show that for every 𝑥 ∈ [0,1],

𝛼(𝑥) ∶= 𝑥− (𝑥𝜌−1) ≤ lim inf
𝑛→∞ 𝛼𝑛.

Since the continuity points of  are dense in [0,1] and  is right continuous at any point, it is sufficient to show that lim inf 𝑛→∞ 𝛼𝑛 ≥
𝛼(𝑥) for any 𝑥 at which  is continuous. Let 𝑥 ∈ [0,1] be an arbitrary such point. For 𝑛 ∈ ℕ, let 𝑦𝑛 ∶= ⌊𝑛𝑥⌋∕𝑛, which is 𝑥 rounded 
down to the nearest integer multiple of 1∕𝑛. Since 𝑛 is non-decreasing, we have

𝛼𝑛 ≥ 𝑦𝑛 −𝑛(𝑦𝑛𝜌−1) ≥ 𝑥− 1
𝑛 −𝑛(𝑥𝜌−1) ←←←←←←←←←←←←←←←←←←←←←→

𝑛→∞ 𝛼(𝑥).

This concludes the proof of Theorem 4.

3.5. Proof of Theorem 5

An ordering of the agents is an injection 𝜋 ∶ 𝑉 ↪ ℕ. We say that 𝑢∈ 𝑉 is a left neighbor of 𝑣 ∈ 𝑉 with respect to 𝜋 if 𝑣𝑢 ∈𝐸 and 
𝜋(𝑢) < 𝜋(𝑣). The left degree of 𝑣 ∈ 𝑉 is defined as the number of left neighbors of 𝑣, and it is denoted by 𝑑𝐿

𝑣
(𝜋) = |{𝑢 ∈𝑁𝑣 ∶ 𝜋(𝑢) <

𝜋(𝑣)}|. For every 𝜌 ∈ (0,1), consider

Λ𝜌(𝜋) = {𝑣 ∈ 𝑉 ∶ 𝑑𝐿
𝑣
(𝜋) ≤ 𝜌𝑑𝑣},

i.e., the set of agents who have at most 𝜌𝑑𝑣 left neighbors with respect to the ordering 𝜋. The two following lemmas provide a 
characterization of minimal contagious sets.

Lemma 1. For every network 𝐺 = (𝑉 ,𝐸), every ordering of the agents 𝜋 ∶ 𝑉 ↪ℕ, and every 𝜌∈ (0,1), the set Λ𝜌(𝜋) is 𝜌-contagious.

Proof. Let 𝐴⊂ 𝑉 be the set of agents not activated by Λ𝜌(𝜋). If 𝐴 ≠ ∅, let 𝑣 ∈𝐴 be the leftmost agent of 𝐴, namely, 𝑣 = argmin{𝜋(𝑢) ∶
𝑢 ∈𝐴}. Since 𝑣∉ Λ𝜌(𝜋), the left degree of 𝑣 is strictly greater than 𝜌𝑑𝑣; accordingly, more than 𝜌𝑑𝑣 of his neighbors are active. This 
implies that 𝑣 is activated in the next step of the 𝜌-majority dynamics, which is a contradiction. We conclude that 𝐴 = ∅ and Λ𝜌(𝜋)
is contagious. □

Lemma 2. For every network 𝐺 = (𝑉 ,𝐸), every 𝜌 ∈ (0,1), and every 𝜌-contagious set 𝐴 ⊂ 𝑉 , there is an ordering 𝜋 ∶ 𝑉 ↪ ℕ such that 
Λ𝜌(𝜋) ⊂𝐴.

Proof. Let 𝐴 = 𝐴0 ⊂ 𝐴1 ⊂ … be the sets of activated agents at times 0,1,… , respectively. Let 𝜋 ∶ 𝑉 ↪ ℕ be an ordering of the 
agents that agrees with the order of the sets {𝐴𝑡}, that is, if 𝑣 ∈𝐴𝑡 and 𝑢 ∉𝐴𝑡, then 𝜋(𝑣) < 𝜋(𝑢). We claim that Λ𝜌(𝜋) ⊂𝐴, which will 
conclude the proof of the lemma.

Let 𝑣 ∉𝐴. We must show that 𝑣 ∉ Λ𝜌(𝜋). Since 𝐴 is contagious, there exists 𝑡 > 0 such that 𝑣 ∈𝐴𝑡 ⧵𝐴𝑡−1. Since all the neighbors 
of 𝑣 who are in 𝐴𝑡−1 are placed before him by 𝜋 and form a 𝜌-majority of its neighbors, we obtain 𝑣 ∉Λ𝜌(𝜋). □
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Lemmas 1 and 2 immediately imply the following proposition:

Proposition 1. For every 𝜌∈ (0,1), and for every network 𝐺,

ℎ𝜌(𝐺) = min 
𝜋 ∶ 𝑉↪ℕ

|Λ𝜌(𝜋)|.
We are now ready to prove Theorem 5.

Proof of Theorem 5. Let 𝐺 = (𝑉 ,𝐸) be an (𝑚0,𝑚)-attachment network of size 𝑛. By definition, the agents can be indexed 𝑉 =
{𝑣1,… , 𝑣𝑛} such that, for every 𝑙 > 𝑚0, there are exactly 𝑚 edges between 𝑣𝑙 and {𝑣1,… , 𝑣𝑙−1}. The induced ordering is defined as 
𝜋𝐼 ∶ 𝑣𝑖 ↦ 𝑖 and the reverse ordering is defined as 𝜋𝑅 ∶ 𝑣𝑖 ↦ 𝑛+ 1 − 𝑖.

Note that, if 𝑣𝑖 ∈Λ𝜌(𝜋𝐼 ), then either 𝑖 ≤𝑚0 or 𝑑𝑣𝑖 ≥𝑚∕𝜌. Therefore,

|Λ𝜌(𝜋𝐼 )| ≤𝑚0 + (1 − 𝐹 (⌈𝑚

𝜌 − 1⌉))𝑛.
Similarly, if 𝑣𝑖 ∈Λ𝜌(𝜋𝑅), then either 𝑖 ≤𝑚0 or 𝑑𝑣𝑖 ≤ 𝑚 

1−𝜌 . Therefore,

|Λ𝜌(𝜋𝑅)| ≤𝑚0 + 𝐹 ( 𝑚 
1−𝜌 )𝑛.

By Lemma 1, both Λ𝜌(𝜋𝐼 ) and Λ𝜌(𝜋𝑅) are contagious, which concludes the proof. □

4. Examples

4.1. Discontinuity at 𝜌= 0.5

An interesting aspect of our index ℎ𝜌(𝐺) is the sharp phase transition that it exhibits around 𝜌 = 0.5. Theorems 1 and 3 provide 
linear lower bounds on ℎ0.5(𝐺) (and, therefore, also on ℎ𝜌(𝐺) for 𝜌 ≥ 0.5). Below, we show that ℎ𝜌(𝐺) may be discontinuous for 
𝜌 = 0.5, which may explain why these lower bounds do not exist for 𝜌 < 0.5.

Let us denote

ℎ0.5−(𝐺) ∶= lim 
𝜌↗0.5

ℎ𝜌(𝐺).

While the difference between ℎ0.5(𝐺) and ℎ0.5−(𝐺) is either small or nonexistent in some networks, it is dramatic in others. On 
one extreme, we find the complete graph 𝐾𝑛, for which ℎ0.5(𝐾𝑛) = ⌈𝑛∕2⌉ and ℎ0.5−(𝐾𝑛) = ⌊𝑛∕2⌋. Another example is any graph in 
which all the degrees are odd, for which ℎ0.5(𝐺) = ℎ0.5−(𝐺). On the other extreme, we find the line-shaped graph 𝐿𝑛 , for which 
ℎ0.5(𝐿𝑛) = ⌊𝑛∕2⌋ whereas ℎ0.5−(𝐿𝑛) = 1.

To illustrate the entire range of possible gaps between ℎ0.5 and ℎ0.5−, we consider the 𝑚-dimensional tori with 𝑛 = 𝑘𝑚 vertices, 
denoted 𝐶𝑚

𝑘
. Specifically, consider the 𝑚-fold product of a 𝑘-cycle graph, 𝐶𝑚

𝑘
= (𝑉 ,𝐸) where 𝑉 = {1,… , 𝑘}𝑚, and

𝐸 =
{
{𝑥, 𝑦} ∈

(
𝑉

2 

)
∶ ∃𝑖 ∈ [𝑚] 𝑥𝑖 − 𝑦𝑖 = ±1 mod 𝑘, 𝑥𝑗 = 𝑦𝑗 ∀𝑗 ≠ 𝑖

}
.

Proposition 2, below, states that ℎ0.5−(𝐶𝑚
𝑘
) = 𝜃𝑚

(
𝑛1−1∕𝑚

)
, whereas, by Proposition 3, ℎ0.5(𝐶𝑚

𝑘
) ≥ 𝑛 

𝑚+1 .

Proposition 2. For every 𝑘,𝑚∈ℕ,

⌊𝑘∕2⌋𝑚−1 ≤ ℎ0.5−(𝐶𝑚
𝑘
) ≤ 𝑛− (𝑘− 1)𝑚 ≤𝑚𝑛1−1∕𝑚

Proof. To prove the upper bound, consider the set 𝑊 = 𝑉 ⧵ {2,… , 𝑘}𝑚. This set clearly has the required size. It remains to show 
that it is contagious w.r.t. any 𝜌 < 0.5.

Following Morris (2000), a set of vertices 𝐵 ⊆ 𝑉 is called 𝜌-cohesive if, for every 𝑣 ∈𝐵, a proportion of at least 𝜌 of its neighbors 
is inside 𝐵, namely, |𝑁𝑣 ∩𝐵| ≥ 𝜌|𝑁𝑣|, and a set is 𝜌-contagious if and only if it intersects all the nonempty (1 − 𝜌)-cohesive sets.

Let 𝜌 < 0.5 and suppose, for the sake of contradiction, that there exists a nonempty (1 − 𝜌)-cohesive set 𝐵 that does not intersect 
𝑊 , namely, ∅ ≠ 𝐵 ⊂ {2,… , 𝑘}𝑚. Let 𝑥 = (𝑥1,… , 𝑥𝑚) ∈ argmin𝑦∈𝐵

∑𝑚

𝑖=1 𝑦𝑖. Since deg(𝑥) = 2𝑚 and 𝐵 is (1 − 𝜌)-cohesive, there must 
be an 𝑖 such that 𝑥− 𝑒𝑖 ∈ 𝐵 (as well as 𝑥+ 𝑒𝑖 mod 𝑘), where 𝑒1,… , 𝑒𝑚 is the standard basis of ℝ𝑚. However, 𝑥− 𝑒𝑖 contradicts the 
minimality of 𝑥.

To prove the lower bound, it is sufficient to find ⌊𝑘∕2⌋𝑚−1 disjoint (1−𝜌)-cohesive sets. Indeed, for any 𝑖1,… , 𝑖𝑚−1 ∈ {1,… ,⌊𝑘∕2⌋}, 
the set

{2𝑖1 − 1,2𝑖1} ×⋯ × {2𝑖𝑚−1 − 1,2𝑖𝑚−1} × {1,… , 𝑘}

is (1 − 𝜌)-cohesive and these sets are disjoint. □
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Fig. 4. A Cayley graph with 𝑛 = 13, 𝑑 = 4, and a minimal contagious set (in white). 

4.2. Regular networks

Here, we discuss the tightness of Theorem 1 by referring to regular networks of varying degrees. We define a 𝑑-regular network 
as a network in which the degree of all the agents is 𝑑, and we first determine the lower bound obtained for such networks. As in the 
proof of Theorem 1, it is sufficient to consider 𝜌 = 0.5. By Eq. (4), we obtain two different expressions for odd and even 𝑑.

ℎ0.5(𝐺) ≥
⎧⎪⎨⎪⎩

𝑛 
𝑑+1 𝑑 is odd,

2𝑛 
𝑑+2 𝑑 is even.

For the seed to be able to activate any agent, its size must be greater than 𝜌𝑑. We thus have,

ℎ0.5(𝐺) ≥
{

𝑑+1
2 𝑑 is odd,

𝑑+2
2 𝑑 is even.

Combining the two bounds, we obtain the following proposition.

Proposition 3. For any 𝑑-regular network 𝐺 and any 𝜌≥ 0.5, we have

ℎ𝜌(𝐺) ≥
⎧⎪⎨⎪⎩
max{ 𝑛 

𝑑+1 ,
𝑑+1
2 } 𝑑 is odd,

max{ 2𝑛 
𝑑+2 ,

𝑑+2
2 } 𝑑 is even.

Note that Proposition 3 implies that ℎ0.5(𝐺) = Ω(
√
𝑛) for any regular graph. The following examples prove the tightness of 

Proposition 3 up to a multiplicative factor of two. For any 𝑑 ≥ 2, we construct a growing family of networks along with 0.5-contagious 
sets whose sizes are obtained by replacing the ``maximum'' in the expression of Proposition 3 with a ``sum.''

For an even 𝑑 (i.e., Eulerian graphs), consider the Cayley graph of ℤ𝑛 ∶=ℤ∕𝑛ℤ with generators {±1,… ,± 𝑑

2 }.

Consider the following set of size 2𝑛 
𝑑+2 +

𝑑

2 (see Fig. 4):

𝐴0 = {0, 𝑑2 + 1,2( 𝑑2 + 1),… } ∪ {−1,−2,… ,− 𝑑

2 }.

This set is contagious since, by induction, 𝑡 ∈𝐴𝑡 for all 𝑡 = 0,1,… .
For an odd 𝑑, we construct an example for 𝑛 divisible by 𝑑+1: this construction can be slightly modified to fit any size 𝑛. Consider 

the Cayley graph of ℤ2 ×ℤ𝑛∕2 with the generators 
{
(1, 𝑥) ∶ − 𝑑−1

2 ≤ 𝑥 ≤ 𝑑−1
2 
}

.

The set 𝐴0 = {0} ×
({

−1,… ,− 𝑑−1
2 
}
∪ 𝑑+1

2 ℤ𝑛∕2

)
of size 𝑛 

𝑑+1 + 𝑑−1
2 is shown below to be contagious, and the construction is 

depicted in Fig. 5. Since 𝐴0 ⊃ {0} ×
({

0,… ,− 𝑑−1
2 
}
∪
{

𝑑+1
2 
})

,

𝐴1 ⊃ {1} ×
{
1,… ,− 𝑑−1

2 
}
,

and, therefore,

𝐴2 ⊃ {0} ×
({

1,… ,− 𝑑−1
2 
}
∪
{

𝑑+1
2 
})

.

It follows, by induction on 𝑡, that

𝐴2𝑡−1 ⊃ {1} ×
{
𝑡,… ,− 𝑑−1

2 
}
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Fig. 5. A bipartite graph with 𝑛 = 24 and 𝑑 = 3, corresponding to ℤ2 ×ℤ12 , and a minimal contagious set (in white). 

and

𝐴2𝑡 ⊃ {0} ×
({

𝑡,… ,− 𝑑−1
2 
}
∪
{⌊

2𝑡 
𝑑+1 + 1

⌋
𝑑+1
2 
})

,

for every 𝑡 ≥ 1. 

5. Discussion

We study innovation diffusion in the classical product adoption model and provide a lower bound on the seed size, which depends 
on the size of the network and the degree distribution (Theorems 1 and 2). We show that for a wide range of networks of increasing 
size, the bound is linear with respect to the network size, provided that their degree distribution converges (Theorems 3 and 4). 
This linear dependence suggests that, except in specific network structures such as star networks, achieving widespread adoption 
necessitates seeding a substantial fraction of the population—a finding that highlights the inherent resilience of networks to change 
and the significant cost of achieving high penetration. Moreover, we show that this network resilience and the high penetration cost 
can be understood by examining the degree distribution of the network. Finally, for the class of attachment networks, we provide an 
upper bound for the minimal contagious set (Theorem 5), which can be easily extended for other well-structured networks.

Our study sheds light on the dynamics of innovation diffusion, offering practical insights for industries and policymakers striving 
to promote technology adoption and diffusion. By elucidating the minimal contagious set size required for successful innovation 
adoption, we can develop targeted seeding strategies to leverage early adopters and accelerate the diffusion process. In practice, this 
implies that understanding aggregate network characteristics, rather than detailed network topology, serves as a good starting point 
for analyzing market penetration costs.

For our lower bound, we focus on asymptotic results where the network size increases, and we do not assume that the degree 
distribution is bounded. This approach contrasts with previous studies which either considered networks of fixed sizes or sequences of 
networks with growing sizes (including infinite networks) but under the assumption that the degree is uniformly bounded (Candogan, 
2022; Manshadi et al., 2020; Morris, 2000). In addition, we study best-response dynamics on attachment networks, which induce a 
proportional activation threshold.

Our work regarding growing networks focuses on one aspect of this type of network: the converging degree distribution. We do not 
consider other properties of the network, such as the inner connectivity of high-degree vertices. Taking this and other properties into 
account can help close some of the gap between our upper and lower bounds. Future research directions may also include elucidating 
the path of the contagion process inside the network, its convergence time, and the optimal seeding strategy.

Notably, unlike other models [e.g., Amini et al. (2013)], our model is scalable such that, to activate a linear fraction of the network, 
the seed set must itself be a linear fraction of the network; for example, activating half of the network requires at least (an order of) 
0.5ℎ𝜌(𝐺) seeds.

For our upper bound, we do not impose any restrictions on the network or on the activation threshold. Therefore, our upper bound 
can be used for any network with either majority or minority dynamics. Since we assume that the network is an attachment network 
only to obtain the formula in the last step of the proof of Theorem 5, both the theorem and its proof can be applied to non-attachment 
networks that are sufficiently structured, resulting in a different formula. Moreover, the proof provides a simple way to construct 
contagious sets, which can be used to design an improved algorithm to find an approximation to the seed set; this endeavor, however, 
is left to future research.
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