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Abstract. Let D = (V, A) be a digraph whose underlying graph is 2-
edge-connected, and let P be the polytope whose vertices are the inci-
dence vectors of arc sets whose reversal makes D strongly connected. We 
study the lattice theoretic properties of the integer points contained in 
a proper face  F of P not contained in {x ∶ xa = i} for any a ∈ A, i ∈ {0, 1}. 
We prove under a mild necessary condition that F ∩ {0, 1}A contains an 
integral basis B, i.e., B is linearly independent, and any integral vector 
in the linear hull of F is an integral linear combination of B. This result 
is surprising as the integer points in F do not necessarily form a Hilbert 
basis. In proving the result, we develop a theory similar to Matching 
Theory for degree-constrained dijoins in bipartite digraphs. Our result 
has consequences for head-disjoint strong orientations in hypergraphs, 
and also to a famous conjecture by Woodall that the minimum size of a 
dicut of D, say  τ , is equal to the maximum number of disjoint dijoins. 
We prove a relaxation of this conjecture, by finding for any prime num-
ber p ≥ 2, a  p-adic packing of dijoins of value τ and of support size at 
most 2|A|. We also prove that the all-ones vector belongs to the lattice 
generated by F ∩ {0, 1}A , where F is the face of P satisfying x(δ+ (U )) = 1 
for every minimum dicut δ+ (U ). 

1 Introduction 

Let D = (V, A) be a digraph whose underlying undirected graph is 2-edge-
connected. A strengthening set is an arc subset J such that the digraph obtained 
from D after reversing the arcs in J is strongly connected. Observe that J ⊆ A 
is a strengthening set if, and only if, its indicator vector x satisfies the following 
generalized set covering inequalities:

∑

a∈δ+(U ) 

xa +

∑

b∈δ−(U ) 

(1 − xb) ≥ 1 ∀U ⊂ V, U � = ∅  . (CUT) 

In words, (CUT) asks that after reversing the arcs of J in D, every nonempty 
proper vertex subset U has at least one incoming arc. Observe that (CUT) can  be  
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rewritten as x(δ+(U))− x(δ−(U)) ≥ 1 − |δ−(U )|; as the right-hand sides correspond 
to a crossing supermodular function, the system above may be viewed as a 
supermodular flow system. Let  

SCR(D) ∶=[0, 1]A 
∩ {x ∶ x satisfies (CU T )} . 

It is well-known that SCR(D) is a nonempty integral polytope, and so its 
vertices are precisely the indicator vectors of the strengthening sets of D ([ 9], 
see [ 17], §60.1). This polytope and its variants have played an important role in 
graph orientations, combinatorial and matroid optimization; see ([ 17], Chapters 
60–61) and ([ 10], Chap. 16). 

In this paper, we study the lattice theoretic properties of the integer points 
in SCR(D). Given a rational linear subspace S ⊆ RA, an  integral basis for S is 
a subset B ⊆ S ∩ ZA of linearly independent vectors such that every vector in 
S ∩ ZA is an integral linear combination of B. 

Theorem 1. Let D = (V, A) be a digraph whose underlying undirected graph 
is 2-edge-connected. Let F be a nonempty family over ground set V such that 
∅, V  /∈ F , and the following face of SCR(D) is nonempty: 

F ∶= SCR(D) ∩
{
x ∈ RA 

∶ x(δ+(U)) − x(δ−(U)) = 1 − |δ−(U)|, ∀U ∈ F}
. 

Suppose gcd{1 − |δ−(U)| ∶ U ∈ F}  = 1. Then  F ∩ {0, 1}A contains an integral 
basis for lin(F ). 

Above, lin(F ) refers to the linear hull of F . It can be readily checked that 
the GCD condition is necessary for F ∩ {0, 1}A to contain an integral basis for 
lin(F ). Theorem  1 is a consequence of a more general theorem about the lattice 
generated by the integer points in any face of SCR(D) where the GCD condition 
is replaced by ‘1 − |δ−(U)| ≠ 0 for some U ∈ F ’. This theorem is stated in Sect. 3. 

Theorem 1 is best possible in two different ways. First, the result does not 
extend to faces F involving both 0 ≤ x ≤ 1 and (CUT) inequalities. Secondly, for 
the face F from Theorem 1, the integer points in F do not necessarily form a 
Hilbert basis, so the result cannot be strengthened in this direction either. These 
points are explained further in the full version of this extended abstract [ 2]. 

1.1 Three Applications of the Main Theorem 

Woodall’s Conjecture. Let D = (V, A) be a digraph whose underlying undirected 
graph is connected. A dicut is the set of arcs leaving a nonempty proper vertex 
subset with no incoming arc, i.e., it is of the form δ+(U) where U ⊂ V, U ≠ ∅  
and δ−(U) = ∅. A  dijoin is an arc subset whose contraction makes the digraph 
strongly connected. Subsequently, every strengthening set is a dijoin. It can be 
readily checked that J is a dijoin if, and only if, J intersects every dicut at least 
once. 

A famous conjecture by Douglas Woodall states that the maximum number 
of disjoint dijoins is equal to the minimum size of a dicut [ 19]. This conjecture
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has a convenient reformulation that appears in an unpublished note by Lex 
Schrijver. 

Conjecture 2 ([ 16]). Let τ ≥ 2 be an integer, and let D = (V, A) be a digraph, 
where every dicut has size at least τ . Then  A can be partitioned into τ strength-
ening sets. 

Note the difference between the original formulation of Woodall’s conjecture 
and Conjecture 2. While the former is concerned with packing dijoins, the latter 
seeks a partition into strengthening sets. This subtle difference comes from the 
key distinction that while every superset of a dijoin is also a dijoin, a superset 
of a strengthening set may not necessarily remain a strengthening set. 

As a consequence of Theorem 1, we obtain the following relaxation of this 
conjecture. For a subset J ⊆ A, 1J ∈ {0, 1}A denotes the indicator vector of J . 

Theorem 3. Let τ ≥ 2 be an integer, and let D = (V, A) be a digraph where the 
minimum size of a dicut is τ . Then there exists an assignment λJ ∈ Z to every 
strengthening set J that intersects every minimum dicut exactly once, such that∑

J λJ1J = 1, 1�λ = τ , and
{
1J ∶ λJ ≠ 0

}
is an integral basis for its linear hull. 

Observe that Conjecture 2 states that one can replace λJ ∈ Z by λJ ∈ Z≥0 in 
this theorem. This result does not extend to the capacitated setting [ 2]. 

p-Adic Programming. Given a prime number p ≥ 2, a rational number is (finitely) 
p-adic if it is of the form r/pk for some integer r and nonnegative integer k, 
and a vector is p-adic if each entry is a p-adic rational number. The 2-adic, or 
dyadic, rationals are important for numerical computations because they have 
a finite binary representation, and therefore can be represented exactly on a 
computer in floating-point arithmetic. Recent research has characterized when 
a linear program admits an optimal solution that is p-adic, and furthermore, it 
has provided a polynomial algorithm for solving a linear program whose domain 
is restricted to the set of p-adic vectors [ 1]. 

Theorem 1 implies, for any prime number p ≥2, the existence of a sparse p-adic 
optimal solution to a linear program related to packing dijoins. To elaborate, let 
D = (V, A) be a digraph whose underlying undirected graph is connected. Denote 
by M the matrix whose columns are labeled by A, and whose rows are the 
indicator vectors of the dijoins of D. Consider the following pair of dual linear 
programs, 

(P ) min
{
1�x ∶Mx ≥ 1, x  ≥ 0

}
(D) max

{
1�y ∶M�y ≤ 1, y ≥ 0

}

where 1, 0 denote the all-ones and all-zeros vectors of appropriate dimensions, 
respectively. A seminal theorem is that the primal linear program (P ) models 
exactly the minimum dicut problem, i.e., (P ) admits an integral optimal solu-
tion ([ 14], see [ 5], §1.3.4). Woodall’s conjecture equivalently states that the dual 
linear program (D), in turn, computes the maximum number of pairwise disjoint
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dijoins, that is, (D) admits an integral optimal solution [ 19]. The main result of 
this paper implies some number-theoretic evidence for this conjecture, as it has 
the following consequence. A † means the proof appears in [ 2]. 

Theorem 4 (†). For any prime number p ≥ 2, (D) admits a p-adic optimal 
solution with at most 2|A| nonzero entries. 

Observe that Carathéodory’s theorem guarantees an optimal solution to (D) 
with at most |A| nonzero entries. Theorem 4 guarantees a p-adic optimal solution 
to (D), all the while losing only a factor 2 in the guarantee for the number of 
nonzero entries. 

This theorem does not extend to the capacitated setting. More specifically, if 
the objective function of (P ) is replaced by c�x for a nonnegative integral vector 
c, then  (D) may not necessarily have a p-adic optimal solution, for any prime 
number p ≠ 2 [ 2]. Interestingly, it has very recently been shown that (D) always 
admits a dyadic optimal solution in the capacitated setting [ 12]; the techniques 
do not seem to yield a guarantee on the number of nonzero entries of a solution. 

Hypergraph Orientations. Let H = (V, E) be a hypergraph. An orientation of H 
consists in designating to each hyperedge E ∈ E a node inside as the head of E, 
i.e., it is a mapping O ∶ E → V such that O(E) ∈ E for each E ∈ E . The orientation 
is strongly connected if for each X ⊂ V, X ≠ ∅, there exists a hyperedge whose 
designated head is inside X, and has at least one node outside X. 

Two orientations of H are head-disjoint if no hyperedge has the same head 
in both orientations. It is well-known that a graph, which is simply a 2-uniform 
hypergraph, has 2 head-disjoint strongly connected orientations if, and only if, 
the graph is 2-edge-connected. The following unpublished conjecture by Bér-
czi and Chandrasekaran attempts to extend one direction of this to general 
τ -uniform hypergraphs. 

Given two subsets X, E ⊆ V , we say that X separates E if E ∩ X ≠ ∅  and 
E � ⊆ X. For  X ⊆ V , denote by dH(X) the sum of |X ∩ E| ranging over all 
hyperedges E ∈ E separated by X. 

Conjecture 5 Let H = (V, E) be a τ -uniform hypergraph such that dH(X) ≥ τ 
for all X ⊂ V, X ≠ ∅. Then  H has τ pairwise head-disjoint strongly connected 
orientations. 

For τ = 3, a weaker form of this conjecture appears explicitly in ( [ 10], Conjec-
ture 9.4.15). We prove the following relaxation of Conjecture 5; the conjecture 
states that one can replace λO ∈ Z by λO ∈ Z≥0 below. 

Theorem 6 (†). Let τ ≥ 2 be an integer, and let H = (V, E) be a τ -uniform hyper-
graph such that dH(X) ≥ τ for all X ⊂ V, X ≠∅. Then there exists an assignment 
λO ∈ Z to every strongly connected orientation O ∶ E → V such that

∑
(λO ∶ strongly connected orientation O, O(E) = v) = 1 ∀E ∈ E , ∀v ∈E, 

and |{O ∶ λO ≠ 0}| ≤ (τ − 1)|E| + 1.
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1.2 The Dijoin Polyhedron and Digrafts 

Theorem 1 is a consequence of a lattice theoretic result about the dijoin polyhe-
dron of bipartite digraphs. To this end, for a digraph D = (V, A), let  

DIJ(D) ∶=
{
x ∈ RA 

∶ x(δ+(U)) ≥ 1, ∀ dicut δ+(U ); x ≥ 0
}

. 

It is known that DIJ(D) is an integral polyhedron, and its vertices are precisely 
the indicator vectors of the (inclusionwise) minimal dijoins of D ([ 14], see [ 5], 
§1.3.4). 

A digraph is bipartite if every node is a source or a sink. Recent research 
has demonstrated the importance of bipartite digraphs in studying Woodall’s 
conjecture, by reducing the conjecture to nearly regular bipartite digraphs [ 3]. 
We follow this approach by studying faces of DIJ(D) of a bipartite digraph D. 

Definition 7 (digraft). A digraft is a pair (D = (V, A), F) where D is a bipartite 
digraph, the underlying undirected graph of D is 2-edge-connected, and F is a 
family over ground set V such that (a) ∅, V  /∈ F , (b)  if  U ∈ F then δ−(U ) =∅, (c)  
V ∖ v ∈ F for every sink v of D, and (d) the following face of DIJ(D) is nonempty: 

F (D, F) ∶= DIJ(D) ∩
{
x ∈ RA 

∶ x(δ+(U)) = 1, ∀U ∈ F}
⊆ [0, 1]A . 

The choice of the ‘digraft’ terminology mirrors that of a ‘graft’, an object 
that shows up in the context of the minimum T -join problem, and is loosely 
related to the minimum dijoin problem (see [ 5], §1.3.5). We prove the following 
theorem about digrafts. 

Theorem 8. Let (D = (V, A), F) be a digraft. Then F (D, F) ∩ {0, 1}A contains 
an integral basis for lin(F (D, F)). 

Theorem 1 and Theorem 8 are in fact equivalent. To de-mystify the connec-
tion between these results, let (D = (V, A), F) be a digraft. As the underlying 
undirected graph of D is 2-edge-connected, every minimal dijoin is a strengthen-
ing set (see [ 17], Theorem 55.1). Furthermore, every strengthening set that has 
exactly one arc incident with every sink, is also a minimal dijoin. Subsequently, 
F (D, F) = SCR(D) ∩

{
x ∈ RA 

∶ x(δ+(U)) − x(δ−(U )) = 1 − |δ−(U)|, ∀U ∈ F}
. Fur-

thermore, gcd{1 − |δ−(U )| ∶ U ∈ F}  = 1. Thus,  Theorem  8 follows from Theorem 1. 
The converse implication is shown in Sect. 3, after we prove Theorem 8 directly. 

We find Theorem 8 more convenient to work with than Theorem 1. At the  
highest level, one explanation for this is that every point in F (D, F) ∩ {0, 1}A 

is the indicator vector of an arc subset J that has degree one at every sink of 
D, and degree at least one at every source of D; so that  J may be viewed as 
a perfect bJ -matching in a bipartite graph, for some degree vector bJ . Fixing 
the degree of  J at each sink to one has advantages: first, the cardinality of J 
becomes invariant and equal to the number of sinks of D; secondly, in this case, 
J is a minimal dijoin if and only if it is a strengthening set, an equivalence which 
we utilized above.
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2 Proof Overview of Theorem 8 

Let us provide an overview of the proof of Theorem 8. To this end, let (D = 
(V, A), F) be a digraft. Our goal is to find an integral basis in F (D, F) ∩ {0, 1}A 

for lin(F (D, F)). 

Dicut Contractions. A dicut  δ+(U) is tight for (D, F) if F (D, F) ⊆ {x ∶ 
x(δ+(U )) = 1}. A tight dicut δ+(U) is non-trivial if 1 < |U | < |V | − 1, otherwise it 
is trivial. The proof proceeds by first decomposing the digraft into ‘basic’ pieces 
along non-trivial tight dicuts. Once we find integral bases for the basic pieces, 
then by composing the bases together in a natural manner, we obtain an integral 
basis in F (D, F) ∩ {0, 1}A. Though this part of the proof is fairly routine for the 
most part, there are some subtle points about when and how a digraft can be 
decomposed; let us give a following flash summary of these subtleties. A dicut 
δ+(U) is contractible for (D, F) if 1<|U |<|V |−1 and F (D, F)∩{x∶x(δ+(U))=1}≠∅. 
The closure of F for (D, F) is the family of subsets U ⊂V, U ≠∅ such that δ−(U)=∅ 
and F (D, F) ⊆ {x ∶ x(δ+(U)) = 1}. 

Definition 9. ((U, V ∖U )-contractions). Suppose δ+(U) is a contractible dicut 
of (D, F). Let  F be the closure of F ∪ {U} for the digraft (D, F ∪ {U}). Let  
U1 ∶=U and U2 ∶=V ∖ U . Let  Di = (Vi, Ai) be the bipartite digraph obtained from 
D after shrinking Ui to a single node ui; so  Vi = {ui} ∪ U3−i. Let  

Fi ∶={W ∶ W ∩ Ui = ∅,W ∈ F}  ∪ {(W ∖ Ui) ∪ {ui} ∶ Ui ⊆ W, W ∈ F}. 
We refer to (Di, Fi), i = 1, 2 as the (U, V ∖ U)-contractions of (D, F). 

Thus, a digraft can be decomposed along not only non-trivial tight dicuts 
but any contractible dicut; this will be particularly useful in Phase 3 of the 
proof. More specifically, a (U, V ∖ U)-contraction decomposes the digraft (D, F), 
as well as the 0, 1 points in F (D, F) ∩ {x ∶ x(δ+(U)) = 1}, into digrafts (Di, Fi), 
and 0, 1 points in F (Di, Fi), respectively. Furthermore, thanks to our careful 
choice of Fi, i  = 1, 2, we can ensure that under some mild conditions, two 0, 1 
points in F (Di, Fi), i  = 1, 2 can be composed to give a  0, 1 point in F (D, F) ∩ {x ∶ 
x(δ+(U )) = 1}. This composition is crucial in the following summary of a more 
technical ingredient that appears in the full version of this article [ 2]. 

Lemma 10. (†). Let (D = (V, A), F) be a digraft, and suppose δ+(U) is a con-
tractible dicut. Let (Di = (Vi, Ai), Fi), i = 1, 2 be the (U, V ∖ U)-contractions of 
(D, F). Suppose  Bi ⊆ F (Di, Fi) ∩ {0, 1}Ai is an integral basis for lin(F (Di, Fi)), 
i = 1, 2. Then there exists an integral basis B ⊆ F (D, F)∩ {0, 1}A 

∩ {x ∶ x(δ+(U)) = 1} 
for lin(B) where |B| = |B1| + |B2| − |δ+(U)|. Moreover, if δ+(U) is a tight dicut, 
then lin(B) = lin(F (D, F)). 

The proof of Theorem 8 is inductive and divided into three phases. Before 
explaining this, note that without loss of generality we may assume that when-
ever δ+(U) is tight for (D, F), then  U ∈ F ; otherwise we add U to F with-
out changing F (D, F). (Maximality of F ensures we obtain a basic digraft in 
Phase 1.)
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Phase 1. In this phase, we look for a non-trivial tight dicut. If there is one, say 
δ+(U), then let  Di = (Vi, Ai), i  = 1, 2 be the (U, V ∖ U)-contractions of (D, F). By  
induction, F (Di, Fi) ∩ {0, 1}Ai contains an integral basis Bi for lin(F (Di, Fi)), 
for i ∈ {1, 2}. Then by Lemma 10, there exists B ⊆ F (D, F) ∩ {0, 1}A that is an 
integral basis for lin(B) = lin(F (D, F)), thus completing the induction step, and 
proving Theorem 8 in this phase. 

Otherwise, (D, F) has no non-trivial tight dicut, thus yielding the following. 

Definition 11. (basic digraft). A digraft (D, F) is basic if every tight dicut 
δ+(U) is trivial and U ∈ F . 

The challenge for the next two phases is to find an integral basis for a basic 
digraft. Here comes a key idea of the proof: to study the facet-defining inequalities 
of F (D, F). 

Definition 12. (basic robust digraft). A basic digraft (D =(V, A), F) is robust 
if every facet-defining inequality for F (D, F) is equivalent to xa ≥ 0, a ∈ A, or  
x(δ+(u)) ≥ 1 for some source u of D. 

Phase 2 (Base Case). In this phase, which is the base case of our induction, 
we assume that the basic digraft is robust. In this case, we prove that F (D, F) 
is a very special polyhedron. To elaborate, for a polyhedron P ⊆ Rn and k ≥ 0, 
define kP as the set of all points of the form

∑
p∈P λpp where λ∈ RP 

≥0 and 1�λ = k. 
P has the integer decomposition property if for every integer k ≥ 1, every integral 
point in kP can be written as the  sum of  k integral points in P . The inequality 
description of F (D, F), along with a classic result of de Werra [ 18] on balanced 
edge-colourings of bipartite graphs, allows for the following theorem. 

Theorem 13. (†). Let (D = (V, A), F) be a basic robust digraft. Then F (D, F) 
has the integer decomposition property, and aff(F (D, F)) = {x ∶ Mx  = 1} for some 
M ∈ Zm×n with m ≥ 1. 

Theorem 8 for basic robust digrafts now follows from the following general-
purpose result about polyhedra with the integer decomposition property. The 
theorem below is obtained by first proving that P ∩ Zn forms an integral gener-
ating set for a cone, better known as a Hilbert basis, and then using a result of 
Gerards and Sebő [ 11] about such sets to finish the proof. 

Theorem 14. (†). Let P ⊆ Rn be a pointed polyhedron with the integer decom-
position property, where aff(P ) = {x ∶ Ax = b} for A ∈ Zm×n , b  ∈ Zm such that m ≥ 1, 
b ≠ 0, and  gcd{bi ∶ i ∈ [m]} = 1. Then  P ∩ Zn contains an integral basis for lin(P ). 

Phase 3. Thus comes the most challenging yet insightful part of our proof, 
where the basic digraft (D = (V, A), F) is not robust, so there is a facet-defining 
inequality x(δ+(U)) ≥ 1 that is not equivalent to x(δ+(u)) ≥ 1 for any source 
u. We decompose (D, F) along the contractible dicut δ+(U ) into two smaller 
digrafts. By the induction hypothesis and Lemma 10, we then compose  the two
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integral bases of the (U, V ∖ U)-contractions to obtain a linearly independent 
set B′

⊆ F (D, F) ∩ {0, 1}A. However, there are two key challenges to turn B′

into an integral basis B for lin(F (D, F)). First, B′ is at least one vector away 
from forming a linear basis for lin(F (D, F)), and a priori, we do not know the 
number of extra vectors we would need to add. Secondly, a linear basis is a long 
way from an integral one, so we need to extend B′ very carefully. We have two 
lemmas that address these issues. 

Phase 3, Issue 1. The first issue stems from the fact that the two (U, V ∖ U)-
contractions are not necessarily basic digrafts. This can be fatal as we could lose 
our guarantee on the size of |B ∖ B′|. However, we will be able to prove that 
both of these pieces share a key property with basic digrafts, thus allowing us 
to guarantee that |B ∖ B′| = 1. To describe this property, we need a few notions. 
A node  u ∈ V is tight for the digraft if F (D, F) ⊆ {x ∶ x(δ(u)) = 1}; the node is 
active for the digraft if it is not tight. Note that all sinks of a digraft are tight. 

Definition 15. (affine critical digraft). Let (D = (V, A), F) be a digraft, and 
let V t be the set of tight nodes. The digraft is affine critical if aff(F (D, F)) ={
x ∶ x(δ(v)) = 1, ∀v ∈ V t

}
. 

In particular, a basic digraft is affine critical (the converse does not necessarily 
hold). The following important lemma addresses the first issue. 

Lemma 16 (Affine Critical Lemma †). Let (D = (V, A), F) be a basic digraft 
that is not robust. Let x(δ+(U))≥1 be a facet-defining dicut inequality for F (D, F) 
not equivalent to x(δ+(u)) ≥ 1 for any active source u. Then  (D, F) and its 
(U, V ∖ U)-contractions (Di, Fi), i  = 1, 2 are affine critical digrafts each of which 
contains at least one active source. Furthermore, for i ∈ {1, 2}, every active source 
for (D, F) in U3−i is an active source for (Di, Fi), and vice versa. 

This lemma is a byproduct of a careful analysis of the dimension of 
F ∶=F (D, F). Let  V t be the set of tight nodes. Define κt(D, F) to be 1 if V = V t, 
and 0 otherwise. Denote by dim(F ) the dimension of the affine hull aff(F ), which  
satisfies the inequality |A| − |V t| + κt(D, F) ≥ dim(F ). 

Definition 17 (slack). The slack of (D = (V, A), F) is 

s(D, F) ∶=|A| − |V t| + κt(D, F) − dim(F (D, F)) ≥ 0. 

The slack is a characteristic quantity associated with a digraft, which has 
an intuitive interpretation. The affine hull of F (D, F) is described by two 
types of constraints: x(δ(v)) = 1, ∀v ∈ V t, and  x(δ+(U)) = 1 for a non-trivial 
tight dicut δ+(U). The slack computes the additional contribution of non-trivial 
tight dicuts—in terms of rank increase—in defining the affine hull. In partic-
ular, a digraft is affine critical if and only if it has slack zero. Furthermore, if 
s ∶= s(D, F) ≥ 1, then there exists a cross-free family of s non-trivial tight dicuts, 
which can be used to decompose the digraft into s + 1 pieces partitioning the 
active sources of (D, F) into s + 1 nonempty parts, such that each piece of the 
form (D′, F ′) satisfies s(D′, F ′) = κt(D′, F ′) = 0.
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Phase 3, Issue 2. The Affine Critical Lemma guarantees that to turn B′ into 
a linear basis for lin(F (D, F)), we just need to add one more vector b from 
F (D, F) ∩ {0, 1}A, which must inevitably satisfy b(δ+(U)) > 1. However, we 
need not just a linear basis but an integral one. As it turns out, integrality of 
the basis can be guaranteed if b(δ+(U)) = 2, whose existence is implied by the 
following lemma. 

Lemma 18 (Jump-Free Lemma †). Let (D= (V, A), F) be a digraft, let δ+(U) 
be a dicut, and let x, y ∈ F (D, F) ∩ {0, 1}A where λ1 ∶=x(δ+(U)) < y(δ+(U)) = ∶λ2. 
Then for any integer λ ∈ (λ1, λ2), there exists z ∈ F (D, F) ∩ {0, 1}A such that 
z(δ+(U)) = λ. 

To prove this lemma, we map F (D, F) ⊆ RA to a base polyhedron in RV via 
a suitable affine function f , which also maps F (D, F) ∩ {0, 1}A to an M -convex 
set in ZV . The exchange axiom for M -convex set then allows us to construct a 
‘jump-free’ sequence from f(x) to f(y) in ZV . From there, the theory of perfect 
b-matchings in bipartite graphs allows us to construct a (not necessarily unique) 
inverse to f , thus obtaining a jump-free sequence from x to y in F (D, F)∩{0, 1}A, 
and proving the Jump-Free Lemma. 

Now that we have dealt with the two issues, we are ready to prove Theorem 
8 for basic non-robust digrafts. Recall that the basic digraft (D = (V, A), F) is not 
robust, and x(δ+(U )) ≥ 1 is a facet-defining inequality that is not equivalent to 
x(δ+(u)) ≥ 1 for any active source u. Let  (Di = (Vi, Ai), Fi), i  = 1, 2 be the (U, V ∖ U)-
contractions of (D, F). By the induction hypothesis, F (Di, Fi) ∩ {0, 1}Ai contains 
an integral basis Bi for lin(F (Di, Fi)), i  = 1, 2. Then by Lemma 10, there exists 
B′
⊆ F (D, F) ∩ {0, 1}A forming an integral basis for lin(B′). 
By the Jump-Free Lemma, there exists b ∈ F (D, F) ∩ {0, 1}A such that 

b(δ+(U)) = 2. We claim that B ∶=B′
∪ {b} ⊆ F (D, F) ∩ {0, 1}A is an integral basis 

for lin(F (D, F)), thus finishing the proof. 
First, we prove that B is a linear basis for lin(F (D, F)). Linear independence 

can be checked through a routine argument. To show that B is a linear basis, 
we count the linear dimension of F ∶=F (D, F), which  is  d ∶=1 + dim(F ). We claim 
that d = |B|. To this end, let Fi ∶=F (Di, Fi), i = 1, 2 and di ∶=1 + dim(Fi), i = 1, 2. 

By the Affine Critical Lemma, (D, F), (Di, Fi), i = 1, 2 are affine critical 
digrafts each of which contains an active source. Thus, κt(D, F) = κt(D1, F1) = 
κt(D2, F2) = 0, and  s(D, F) = s(D1, F1) = s(D2, F2) = 0. Subsequently, by the slack 
formula in Definition 17, d = 1 + |A| − |V t|, d1 = 1 + |A1|− |V t 

1 |, and  d2 = 1 + |A2| − |V t 
2 |, 

where V t , V  t 
i , i = 1, 2 denote the sets of tight nodes of (D, F), (Di, Fi), i = 1, 2, 

respectively. By the Affine Critical Lemma, V t 
1 ∪ V t 

2 = V t 
∪ {u1, u2}, implying in 

turn the first equality below: 

d = d1 + d2 − |δ+(U)| + 1 = |B1| + |B2| − |δ+(U)| + 1 = |B′| + 1 = |B|. 
The third equality follows from Lemma 10. 

It remains to prove that B is an integral basis. To this end, pick an integral 
vector f in lin(F (D, F)). We now know that f can be expressed as a linear 
combination of the vectors in B; let  λz ∈ R be the coefficient of z ∈ B. Given
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that f is integral, f(δ+(U )) is an integer, which can be calculated alternatively 
as follows, where we have used z(δ+(U)) = 1 for all z ∈ B′, guaranteed by Lemma 
10. 

f(δ+(U)) =
∑

z∈B 

λzz(δ+(U)) = 2λb +

∑

z∈B′
λz = λb + 1�λ. 

As B ⊆ F (D, F), we have  z(δ(v)) = 1, ∀z ∈ B for any fixed tight node v. 
Subsequently, 1�λ =

∑
z∈B λz = f(δ(v)) is an integer, implying in turn that 

λb = f(δ+(U)) − 1�λ is an integer. Now let f ′
∶=f − λbb ∈ ZA. Evidently, 

f ′
∈ lin(B′) ∩ ZA, so given that B′ is an integral basis for its linear hull, f ′ is 

an integer linear combination of the vectors in B′, implying in turn that λ is an 
integral vector. Thus, B ⊆ F (D, F) ∩ {0, 1}A is an integral basis for lin(F (D, F)), 
thereby completing the induction step, hence proving Theorem 8. ��

3 Proofs of Theorem 1 and Theorem 3 

In this section, we prove a general theorem about proper faces of SCR(D) not 
contained in proper faces of the unit hypercube. We then prove Theorem 1 and 
one of the three applications, namely Theorem 3. We start off with a useful 
mapping of the strengthening sets of a digraph to dijoins of another digraph. 
The mapping is routine and has appeared before in the literature, e.g., [ 6, 16]. 

Theorem 19 (†). Let D = (V, A) be a digraph whose underlying undirected graph 
is 2-edge-connected. Let F be a family over ground set V such that ∅, V  /∈ F , 
and the following face of SCR(D) is nonempty: 

F ∶= SCR(D) ∩
{
x ∈ RA 

∶ x(δ+(U)) − x(δ−(U)) = 1 − |δ−(U )|, ∀U ∈ F}
. 

Then there exists a digraft (D′, F ′) such that the mapping x �→ (
x 

1−x

)
defines a 

bijection between the face F of SCR(D) and the face F (D′, F ′) of DIJ(D′). 

Primer on Integer Lattices. Let us recall some basic concepts of the theory 
of integer lattices; for a reference textbook we recommend ([ 15], Chap. 1). A 
subset L ⊆ RA is a lattice if it is the set of integer linear combinations of finitely 
many vectors. Alternatively, L is a lattice if it forms a subgroup of RA under 
addition that is discrete, that is, there exists an ε >  0 such that every pair of 
distinct vectors in L are at distance ≥ε. Given a finite subset G ⊂ RA, the  lattice 
generated by G, denoted lat(G), is the set of all integer linear combinations of 
the vectors in G. A  lattice basis for L is a set B of linearly independent vectors 
that generates the lattice, i.e., L = lat(B). A nontrivial fact is that a lattice basis 
always exists. 

Suppose now L is an integer lattice, that is,  L is a lattice and L ⊆ ZA. Let  
L ∶= lin(L) ∩ ZA which is another integer lattice that contains L. Note that L is 
the ‘densest’ integer lattice in lin(L). It is known that L can be partitioned into 
a finite number of lattices, each of which is an integral shift of L, i.e., of the form 
L + w ∶={v + w ∶ v ∈ L} for some w ∈ lin(L) ∩ ZA. We refer to the number of parts in
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this partition as the index of L and denote it by ind(L) ∈ Z≥1. Thus, the smaller 
the index of L, the denser the lattice is. Of particular interest is the case when 
L is densest possible. Observe that L has index 1 if, and only if, L contains an 
integral basis for lin(L). 

Theorem 20. Let D = (V, A) be a digraph whose underlying undirected graph 
is 2-edge-connected. Let F be a family over ground set V such that ∅, V  /∈ F , 
1 − |δ−(U )| ≠ 0 for some U ∈ F , and the following face of SCR(D) is nonempty: 

F ∶= SCR(D) ∩
{
x ∈ RA 

∶ x(δ+(U)) − x(δ−(U)) = 1 − |δ−(U)|, ∀U ∈ F}
. 

Then the following statements hold: 

1. The lattice generated by F ∩{0, 1}A has a lattice basis contained in F ∩{0, 1}A. 
2. Let g ∶= gcd{1− |δ−(U)| ∶ U ∈ F}. Then  gx ∈ lat

(
F ∩ {0, 1}A

)
for all x ∈ lin(F ) ∩ 

Z
A. 

Proof. Let L be the lattice generated by F ∩ {0, 1}A, L ∶= lin(F ) ∩ ZA, and  
g ∶= gcd{1−|δ−(U)|∶U ∈F}. By Theorem  19, there exists a digraft (D′

=(V ′, A′), F ′) 
such that for F ′

∶=F (D′, F ′), the mapping f ∶ F → F ′ defined as f(x) =
(

x 
1−x

)
is 

a bijection. Let L′ be the lattice generated by F (D′, F ′) ∩ {0, 1}A′
. By Theorem  

8, there is an integral basis B′
⊆ F ′

∩ {0, 1}A′
for lin(F ′). 

Claim. Let w be an integral vector in lin(F ), expressed as w =
∑

x∈F λxx. Then 
1�λ is 1 

g -integral. Furthermore, if w = 0, then 1�λ = 0. 

Proof of Claim.  Let τ ∶=
∑

x∈F λx. Note that 

w(δ+(U)) − w(δ−(U )) =
∑

x∈F 

λx(1 − |δ−(U )|) = τ (1 − |δ−(U)|) ∀U ∈ F . 

As w is integral, we have τ(1 − |δ−(U )|) ∈ Z for all U ∈ F , and so since gcd{1 − 
|δ−(U )| ∶ U ∈ F}  = g, it follows that τ is 1 g -integral. Furthermore, if w = 0, then as  
1 − |δ−(U)| ≠ 0 for some U ∈ F , we have  0 = w(δ+(U)) − w(δ−(U)) = τ(1 − |δ−(U)|), 
implying in turn that τ = 0. 

Let B be the pre-image of B′ under f . Observe that B ⊆ F ∩ {0, 1}A. We shall  
prove that (a) B is linearly independent, (b) B is a lattice basis for L, and  (c)  
gw ∈ L for all w ∈ lin(F ) ∩ ZA. 

(a) Suppose
∑

b∈B λbb = 0. It follows from the claim above that 1�λ = 0, so∑
b∈B λbf(b) = 0. The linear independence of B′

= {f(b) ∶ b ∈ B}, along  with  
the bijectivity of f , implies that λ = 0. 

(b) By (a), it suffices to show that lat(B) = L. Clearly, lat(B) ⊆ L. For the 
reverse inclusion, let w ∈ L. Then  w =

∑
x∈F ∩{0,1}A λxx for some integers 

λx, x  ∈ F ∩ {0, 1}A. Let  w′
∶=

∑
x∈F ∩{0,1}A λxf (x). As  λ is integral, w′

∈ L′, so  
w′
=

∑
b∈B αbf(b) for some integers αb, b ∈ B. Restricting to the coordinates 

in A, we obtain that w =
∑

b∈B αbb ∈ lat(B).
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(c) Let w ∈ lin(F ) ∩ ZA. Write w =
∑

x∈F ∩{0,1}A λxx, and  let  τ ∶=1�λ which 
is 1 g -integral by the claim above. Let w′

∶=

∑
x∈F ∩{0,1}A λxf (x), which  is  1 g -

integral as τ ∈ 1 
g Z. Subsequently, gw′ is an integral vector in lin(F ′), so  

gw′
=

∑
b∈B αbf(b) for some integers αb, b ∈ B, as  B′ is an integral basis for 

lin(F ′). Restricting to the coordinates in A, we obtain that gw =
∑

b∈B αbb ∈ L, 
as promised. 

Observe that (b) proves part (1), and (c) proves part (2) of the theorem. ��
Let us point out a subtle detail about part (1) of Theorem 20. A set  G of 

generators may not necessarily contain a lattice basis for lat(G). For instance, 
lat({2, 3}) = Z, yet  {2, 3} does not contain a lattice basis for Z. Thus, the claim 
that F ∩ {0, 1}A contains a lattice basis is non-trivial. 

Let’s look at part (2) of Theorem 20. This part equivalently states that, for 
L ∶= lat

(
F ∩ {0, 1}A

)
and L ∶= lin(F ) ∩ ZA, the quotient group L/L is an abelian 

group where the order of every element divides g. Subsequently, every elementary 
divisor of L/L divides g. This implies in turn that ind(L) is the product of some 
divisors of g. Furthermore, if  g is a prime number, then L/L is an elementary 
p-primary group. For more on concepts relating to group theory, we refer the 
interested reader to [ 7], more specifically, Chap. 5, Theorem 5. 

We are ready to prove the main theorem. 

Proof of Theorem 1. Let  D = (V, A) be a digraph whose underlying undirected 
graph is 2-edge-connected. Let F be a nonempty family over ground set V such 
that ∅, V  /∈ F , and the following face of SCR(D) is nonempty: 

F ∶= SCR(D) ∩
{
x ∈ RA 

∶ x(δ+(U)) − x(δ−(U)) = 1 − |δ−(U )|, ∀U ∈ F}
. 

Suppose gcd{1 − |δ−(U)| ∶ U ∈ F}  = 1. It then follows from Theorem 20 part (1) 
that the lattice L generated by F ∩ {0, 1}A has a lattice basis B ⊆ F ∩ {0, 1}A. 
Furthermore, by part (2), L = lin(F ) ∩ ZA, so  ind(L) = 1, implying in turn that 
B is an integral basis for lin(F ) contained in F ∩ {0, 1}A. ��

We are also ready to prove one of the applications of the main theorem. 

Proof of Theorem 3. Let  τ ≥ 2 be an integer, and let D = (V, A) be a digraph where 
the minimum size of a dicut is τ . We will prove that there exists an assignment 
λJ ∈ Z to every strengthening set J intersecting every minimum dicut exactly 
once, such that

∑
J λJ1J = 1, 1�λ = τ , and

{
1J ∶ λJ ≠ 0

}
will be an integral basis 

for its linear hull. 
Let F be the family of sets U ⊂ V, U ≠ ∅ such that δ−(U) = ∅  and |δ+(U)| = 

τ . Let  F ∶= SCR(D) ∩ {x ∶ x(δ+(U)) − x(δ−(U)) = 1 − |δ−(U)|, ∀U ∈ F}. Observe 
that F ∩ {0, 1}A corresponds to the strengthening sets of D that intersect every 
minimum dicut exactly once. 

Since every dicut of D (if any) has size at least τ , it follows that |δ+(U)| + 
(τ − 1)|δ−(U )| ≥ τ for all U ⊂ V, U ≠ ∅, implying in turn that x�

∶= 1 τ 1 ∈ F . 
Since F ≠ ∅, then  gcd{1 − |δ−(U)| ∶ U ∈ F}  = 1, so we may apply Theorem 

1 to conclude that F ∩ {0, 1}A contains an integral basis B for lin(F ). This
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implies that 1 = τx�
∈ τF  is an integral linear combination of the vectors in B, say∑

b∈B λb ·b. Furthermore,  1�λ= τ , because 1�λ =
∑

b∈B λb ·b(δ+(U )) = 1(δ+(U)) = τ 
for any given U ∈ F . Given that B is an integral basis for lin(F ), it follows that 
{b ∶ λb ≠ 0} is also an integral basis for its linear hull, so we are done. ��
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