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Abstract

Decarbonizing transportation requires a shift from conventional to zero-
emission vehicles. We examine whether congestion pricing with electric vehi-
cle (EV) exemptions accelerates this transition by encouraging a shift toward
cleaner cars. To identify causal effects, we combine administrative data on
car ownership with a triple-differences design that exploits household-level
variation in policy exposure across metropolitan areas and work commutes.
We find that higher rush hour charges for conventional vehicles significantly
increase EV adoption, primarily through replacement rather than fleet expan-
sion. However, responses vary by socioeconomic characteristics, with higher-
income and well-educated households more likely to adopt EVs. Beyond car
ownership, we document behavioral adjustments, including relocation to avoid
tolls, re-routing around the cordon, and shifting travel timing. Overall, con-
gestion pricing reduced traffic volumes and improved air quality. Our findings
offer insights for designing equitable and effective transportation policies.
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1 Introduction

Cordon-based congestion pricing is increasingly used to mitigate air pollution and

traffic congestion in urban centers.1 By imposing higher costs on driving in con-

gested areas – especially during rush hours – these policies ensure that private costs

better reflect overall social costs by accounting for congestion and emission external-

ities. Differentiating charges by vehicle type further incentivizes drivers to switch

to cleaner cars. Electric vehicles (EVs) are often highlighted as a key technol-

ogy for reducing emissions in this hard-to-abate sector, and combining traditional

transportation policies with lower rates for cleaner cars may accelerate the green

transition.2 Such a shift may enhance the benefits of congestion pricing by reduc-

ing emissions beyond the cordon and outside peak hours. However, granting lower

rates or exemptions for EVs may counteract other policy objectives by dampening

congestion reduction and potentially increasing car ownership.

This paper examines the car-ownership effects of a time-varying congestion charge

with exemptions for electric vehicles, by combining individual-level administrative

data with a novel research design. We complement the main analysis with evidence

on various – both intended and unintended – adjustment mechanisms, such as sort-

ing behavior and changes in driving patterns. Specifically, we ask: What are the

impacts of increased rush hour congestion charges on household-level EV adoption

and car ownership? How do household responses vary with socioeconomic charac-

teristics and substitution possibilities? And to what extent do households adjust

through channels other than car ownership?

Increased rush hour rates for conventional vehicles may lead to multiple adjust-

ments. First, individuals may respond by adopting an electric vehicle. The impact

on a household’s car ownership depends on whether they dispose of their exist-

ing vehicle, replace a conventional car with an electric one, or add an EV to their

existing fleet. Household adjustments may also vary based on socioeconomic char-

acteristics, such as the ability to purchase a new car, and substitution possibilities,

such as the quality of public transit. Second, individuals may avoid the congestion

charge by re-routing, changing their departure time, relocating their workplace or

residence, or switching to alternative modes of transportation, such as public tran-

sit, cycling, walking, or working from home. While some of these behaviors align

with policy objectives – such as avoiding rush hours or shifting to public transit –

others, like driving around the toll cordon, are largely unintended. Previous studies

1Major cities such as London, New York, Milan, Singapore, and Stockholm have implemented
a cordon congestion charge, where drivers pay a fee to enter a designated zone within a city.

2Throughout this paper, ”electric vehicles” refer specifically to battery-electric vehicles.
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have shown that policies aimed at mitigating congestion and urban air pollution can

sometimes lead to unintended consequences (Davis, 2008; Auffhammer and Kellogg,

2011; Bento et al., 2014; Gibson and Carnovale, 2015; Barahona et al., 2020), occa-

sionally even resulting in net welfare losses (Davis, 2008). These unintended effects

may arise from drivers’ substitution behavior or the exploitation of policy loopholes.

As a result, the net benefits of rush hour congestion charges with EV exemptions,

as well as their distributional consequences, remain an open question.

To examine the car-ownership effects of congestion charging with EV exemptions,

we take advantage of a sharp increase in rush hour cordon charges in 2016 in the

second largest city in Norway (Bergen). The policy raised the price of entering the

city center toll cordon during rush hours by 80% for gasoline and diesel vehicles.

Before the policy change, toll payments did not vary by time of day. Electric vehicles

have been exempt from paying congestion charges and road tolls in Norway since

1997 and throughout our study period, and the policy hence significantly increased

the relative price of driving a high-emission versus a low-emission vehicle during

rush hours.

The magnitude of the rush hour charges was substantial; for a daily commuter

driving during rush hours, the costs roughly equated to the annual fuel expenses of an

internal combustion engine vehicle (see Appendix Table A.4). Consequently, drivers

of conventional cars had a strong financial incentive to switch to an electric vehicle.

Access to electric vehicles was limited before 2010, and policies favoring these cars

likely had a modest impact on adoption. However, the roll-out of several high-

quality models over the past decade made electric vehicles a viable option, thereby

expanding the opportunity set for drivers (Figenbaum et al., 2015). National tax

exemptions and low electricity prices also made electric vehicles competitive with

conventional cars in the time period analyzed; the total annual ownership cost of a

new electric vehicle was roughly equivalent to that of a 10-year-old gasoline vehicle

before considering the congestion charge (see Appendix Table A.4).

To examine household-level responses to the cordon congestion charge, we exploit

exceptionally detailed data on car ownership and commuting routes. Specifically,

we combine administrative data on the universe of cars in Norway with detailed

socioeconomic information on households, including the workplaces of household

members. By linking data on the locations of individuals’ homes and workplaces

with the locations of cordon toll gates, we identify households that need to cross

the cordon when traveling between home and work. Given that work-related trips

account for approximately one-third of the kilometers driven by commuting house-

holds (Grue et al., 2021), we expect exposure to congestion charges on the work
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commute to be an important factor in households’ car ownership decisions.

To recover causal effects, we construct treatment and control groups in a triple

differences framework. We define the treatment group as households exposed to the

Bergen congestion charge on their way to work in 2014 (paying commuters) and the

first control group as households in Bergen where the 2014-work route did not have

toll gates (non-paying commuters). By including household and neighborhood-year

fixed effects, we compare within-household changes in car ownership for those living

in the same neighborhood, where households are differently exposed to the policy

due to different work locations. Due to different toll exposure in the pre-period,

however, paying commuters had a higher EV acquisition rate also before the policy

change. To address the non-parallel trends, we subtract a similar difference between

paying and non-paying commuters in three control cities that have a toll cordon,

but where rush hour charges did not change. The triple difference framework thus

exploits variation across i) paying versus non-paying commuters, ii) Bergen versus

control cities, and iii) before versus after the increase in congestion charges.

Results from the empirical examination show that households exposed to the

Bergen congestion charge were nearly 3 percentage points more likely to adopt an

electric vehicle. This estimated treatment effect explains more than 1/5 of the

increase in electric vehicle adoption in the treatment group from 2014 to 2017.

The increase in EVs is mirrored by a negative effect on gasoline and diesel vehicle

ownership, resulting in no net change in total car ownership. Hence, on average,

households replaced their fossil fuel car with an electric one.

Examining heterogeneous effects, we find strong disparities across several so-

cioeconomic dimensions. While the policy had no effect on EV adoption among

households in the lowest income quintile, ownership rates in the highest income

quintile increased by 5.4%. Furthermore, treatment effects are larger for university-

educated couples with children and for households with longer commutes and poor

public transit quality. The latter finding suggests that the availability of transporta-

tion substitutes influences household adaptation responses. For the bottom quintile,

however, the probability of adopting an EV remains zero, regardless of education,

age, or public transit quality. While heterogeneous responses may partially reflect

differences in preferences, financial constraints likely play a key role in limiting EV

adoption. During the study period, the second-hand market for electric vehicles was

nearly non-existent, making EV adoption effectively synonymous with purchasing a

new car.

Overall, our findings on car ownership suggest that cordon-based congestion

charging combined with exemptions for electric vehicles can be a powerful tool for
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promoting electric vehicle adoption, though there are substantial differences in how

households respond to the policy.

To gain a more comprehensive understanding of the implications of time-varying

congestion charges, we complement our car ownership analysis with an examination

of their effects on sorting behavior, traffic patterns, and air pollution. Using resi-

dential relocation and job changes as outcome variables, we find evidence of sorting

behavior to avoid the toll cordon. On average, treated households are 0.3 percent-

age points more likely to move out of the toll cordon and 0.7 percentage points

more likely to relocate their workplace outside the cordon. However, these sorting

responses have only a minor impact on our car ownership estimates.

To examine impacts on traffic and air pollution we combine high-frequency sensor

and monitoring station data with a difference-in-differences strategy that compares

outcomes across cities. Results from this supporting analysis indicate that the pol-

icy reduced rush hour traffic into the city center by 14% and daily traffic by 5.5%.

We find evidence of inter-temporal substitution, with increased traffic in the 15–30

minutes before and after rush hours, as well as spatial substitution towards lower-

priced roads. However, the net effect on traffic remains negative and substantial,

suggesting that a significant share of drivers switched to other modes of transporta-

tion or canceled their trips altogether. Furthermore, we find suggestive evidence

that the policy improved air quality, with an 11% reduction in NO2 concentrations

during midday hours and a daily decrease of 9.6% (or 4.1 µg/m3). A similar per-

centage decline is observed for PM10, though estimates are too noisy to draw firm

conclusions.

Taken together, our findings highlight both the effectiveness and limitations of

congestion pricing schemes with EV exemptions. While these policies accelerate

EV adoption, they may also introduce equity concerns and unintended behavioral

responses.

Our findings offer several insights for policymakers. First, we demonstrate that

differentiating driving costs by vehicle type and time of day can encourage a shift

toward cleaner cars. As Norway has been a front-runner in EV adoption, our results

may be particularly relevant for anticipating the future effects of driving-related

incentives in other countries, where EVs are expected to become more competitive

with conventional vehicles. Second, while imposing higher costs on driving often

raises distributional concerns, empirical evidence on how households are differently

affected is often lacking. The richness of our data allows us to shed light on heteroge-

neous responses across household types, providing valuable insights for policymakers

seeking to balance efficiency and equity in transportation policies.
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1.1 Related literature

Our paper contributes to the empirical literature on how governmental policies in-

fluence the adoption of low-emission vehicles, particularly electric vehicles. Existing

studies often focus on purchase-related incentives, such as tax credits and purchasing

subsidies (Gallagher and Muehlegger, 2011; Clinton and Steinberg, 2019; Muehleg-

ger and Rapson, 2022), while a few examine driving-related incentives, including

charging infrastructure (Springel, 2021; Li et al., 2017), low emission zones (Wolff,

2014; Aydin et al., 2024), and vintage-specific driving restrictions (e.g., Barahona

et al., 2020). As far as we are aware, this is the first study to examine the effects

of a rush hour congestion charges with an EV exemption on household-level EV

adoption and car ownership.3 Previous studies also typically focus on new vehicle

registrations, often at the zip code, metropolitan, or state level. In contrast, we

use household-level car ownership data and exploit within-household variation in

policy exposure across metropolitan areas and work commutes, allowing us to more

credibly recover causal effects. By examining car ownership rather than new regis-

trations, we can assess whether EVs replace or expand the vehicle fleet – an essential

distinction for evaluating net environmental and climate benefits. Additionally, the

richness of our data allows us to explore distributional aspects of congestion charg-

ing, extending beyond the existing literature (Börjesson and Kristoffersson, 2018;

West and Börjesson, 2020).

The closest study to ours is Halse et al. (2025), which can be seen as a com-

panion paper. The paper examines the effects of bus lane access and road toll rates

across Norway on car ownership using a fixed effects specification. While road tolls

primarily aim to generate revenue for infrastructure investments in rural and urban

road networks, rush hour charges are designed to address congestion and pollution

externalities in urban areas. As a result, behavioral responses may differ. Addition-

ally, while Halse et al. (2025) primarily rely on cross-sectional variation, we exploit a

substantial increase in congestion charges within a triple-differences framework. By

focusing on cordon-based charging, we are able to examine behavioral adjustments

such as re-routing, departure time shifts, sorting in and out of the cordon, and the

broader effects on traffic and air pollution.

Our paper also complements the empirical literature on the effects of trans-

portation policies on driving-related externalities such as air pollution and traffic

congestion. Previous studies have shown that e.g., low emission zones (Wolff, 2014;

3While some studies examine the effects of congestion charging on car ownership (e.g., Morton
and Ali, 2025; Gonzalez et al., 2021), these policies do not include EV incentives, and the papers do
not analyze EV adoption. Krehic (2022) documents that the EV ownership rate has implications
for the toll rates for diesel and gasoline cars, but does not study how toll rates affect car ownership.
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Gehrsitz, 2017; Pestel and Wozny, 2019; Zhai and Wolff, 2021; Green et al., 2020;

Rivera, 2021; Klauber et al., 2024), road tolls (Fu and Gu, 2017), and congestion

charges (Gibson and Carnovale, 2015; Simeonova et al., 2019) can help improve ur-

ban air quality, with resulting health benefits (Currie and Walker, 2011; Gehrsitz,

2017; Simeonova et al., 2019; Pestel and Wozny, 2019; Klauber et al., 2024). While

these studies provide important estimates on the environmental and health effects

of transportation policies, very few studies examine the underlying mechanisms

through which individuals respond to these policies, as well as how mechanisms

differ across households.

2 Background

The Bergen congestion charge was announced in February 2015 and implemented one

year later, on February 1, 2016. The policy aimed to mitigate rush hour congestion

and reduce inner-city air pollution, particularly NOX concentrations. The stricter

regulations were largely prompted by a 2015 EFTA court ruling, which convicted

Norway of violating the EU’s ambient air quality standards.4 The increased rush

hour rates were also designed to accelerate EV adoption. At the time, Norway

aimed for a 100% EV market share by 2025 (NTP, 2017), and the exemptions from

congestion charges were among several incentives for EV owners (see Appendix A

for a full list of incentives). Since nearly 98% of Norway’s electricity is generated

from renewable sources (Statistics Norway, 2020), EVs cause minimal indirect CO2

emissions from driving.

The Bergen congestion charge was electronically collected via the existing auto-

mated toll gates in and around the city center. Figure 1 illustrates the location of

the toll cordon borders in Bergen, and shows that in order to reach the city center a

driver would need to pass the toll cordon. Vehicles were charged when first entering

the toll cordon, and a vehicle was only charged once when passing the cordon several

times within an hour.

Table 1 presents the details of the congestion charging policy. Prior to February

1, 2016, passenger vehicles passing through the toll cordon paid NOK 25 (approx-

imately $3) regardless of the time of day. After February 1, 2016, passenger cars

faced a rush-hour rate of NOK 45 (approximately $5.40) on weekdays, during the

hours 06:30-09:00 and 14:30-16:30, representing an 80% price increase. Simultane-

4In 2015, Norway was found guilty in the EFTA court for breaching EU ambient air quality
standards in several areas, including Bergen. Most violations were linked to excessive NO2 con-
centrations in urban regions. As a result, Norway was required to implement measures to comply
with the EU Air Quality Directive.
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Figure 1: Toll cordon borders in Bergen

Notes: The figure illustrates the toll cordon borders in Bergen. Red triangles mark the locations of toll gates,
while red lines indicate roads where passing through without encountering a toll cordon is impossible. Thin blue
lines represent the road network in and around Bergen.

ously, the non-rush rate was reduced to NOK 19 (approximately $2.30), reflecting a

24% price decrease. Electric vehicles were exempt from tolls both before and after

the introduction of the time-varying congestion charge. Consequently, the policy

further increased the relative cost of driving a diesel or gasoline vehicle compared

to an electric vehicle.5

5Appendix Figure A.1 depicts the development in toll rates in Bergen from 2005 to the end of
2017. The figure shows that rates were fixed at NOK 15 for all hours of the day from 2005 to 2013.
In 2014, the rate for all hours increased to NOK 25. In 2016, separate rates were introduced for
rush and non-rush hours, set at NOK 45 and 19, respectively, throughout 2017.
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Table 1: Congestion charging in Bergen

Date announced Feb 18, 2015
Date implemented Feb 1, 2016

Morning rush 06:30-09:00
Afternoon rush 14:30-16:30

Price pre Feb 1, 2016 NOK 25 (∼$3)
Price post Feb 1, 2016: rush hour NOK 45 (∼$5.4)
Price post Feb 1, 2016: non-rush NOK 19 (∼$2.3)

Notes: The table provides details of the congestion charging scheme in Bergen, with rates given
in NOK (10 NOK ≈ 1 EUR ≈ 1.2 USD). These rates correspond to the initial implementation
levels and apply to small passenger vehicles (< 3500 kg). For large vehicles (> 3500 kg), the toll
was 50 NOK before February 1, 2016, and increased to 90 NOK during rush hours and 38 NOK
outside rush hours after policy implementation. Electric vehicles were exempt from congestion
charges and tolls throughout the study period, while hybrid electric vehicles were subject to the
same rates as internal combustion engine vehicles (ICEVs). A monthly cap was set on the total
toll costs per vehicle, allowing a vehicle to enter the toll cordon free of charge once the cap was
reached. However, this cap was too high to be binding for regular commuters (60 entries per
month), meaning a vehicle would need to cross the toll cordon more than twice per day for the
cap to take effect.

3 Data

In this paper, we aim to estimate the effects of the congestion charge on household-

level car ownership using rich administrative data. Below, we describe the key

data sources and the approaches used to construct our main outcome variables and

proxies for policy exposure.6

Car ownership: We compile data from the National Motor Vehicle register on

the full population of vehicles registered in Norway between 2011 and 2017. The

register includes technical vehicle details and ownership information, such as dates

of first registration, ownership changes, scrapping, and de-registration. We focus on

privately owned passenger vehicles and vans registered for non-commercial purposes,

measuring ownership as of December 31st each year. Although cars are registered

at the individual level, we treat car acquisitions as a household-level decision. Thus,

our main outcome variable is household-level car ownership. This results in a panel

of car ownership data at the household×year level, with each observation represent-

ing the snapshot of cars owned at the end of each year. From December 2011 to

December 2017, the share of Norwegian households owning an electric vehicle rose

from approximately 0% to 4.5%. By 2017, Norway had the highest ownership share

of electric vehicles globally (IEA, 2018).

Socioeconomic characteristics: We integrate the car ownership data with de-

tailed socioeconomic information on individuals and households, including age, gen-

6For a detailed description of the data sources, see Fevang et al. (2021).
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der, household size (number of adults and children), employment and retirement

status, income, wealth, education, and ownership of a second home (e.g., cabin).

Crucially, the data also includes the location of each residence at the basic statis-

tical unit level, which is the smallest geographical unit at which the micro-data is

available to researchers. We refer to these units as “neighborhoods”. There are

approximately 14,000 neighborhoods in Norway, each with an average population of

around 400 individuals, or fewer than 200 households.7 This granular information

allows us to control for various characteristics that might influence car ownership

and to examine heterogeneous effects of the policy in our empirical analysis.

Work commute and policy exposure: By linking employed individuals to their

employer, we can identify the neighborhood of their workplace. We then combine

this information with road network data (The Norwegian Mapping Authority, 2019)

to determine the fastest route between the centroids of residential and workplace

neighborhoods. Using toll gate coordinates and rates from the Norwegian Public

Roads Administration, we also calculate the toll payments associated with each

route. These toll payments serve as a measure of individual-level exposure to the

cordon congestion charge for work trips. As discussed in Section 1 and 2, work-

related trips are likely a significant factor in households’ responses to the policy.

In addition to toll exposure, we calculate other work trip-related variables such as

driving time, distance to and from work, and door-to-door time when using public

transit. For additional details, see Appendix B.

4 Empirical strategy

To identify causal effects on household-level car ownership, we need to disentangle

the policy effects from other confounding trends, such as the increased supply of

electric vehicles, national EV policies, and expanding charging infrastructure. We

start by defining two groups of households: paying commuters and non-paying com-

muters. Paying commuters are households where at least one individual crosses

the toll cordon between their residence and workplace. Non-paying commuters are

households where none of the working individuals are exposed to toll payments on

their work commute. These definitions are based on residential and workplace lo-

cations in 2014 – one year before the announcement of the time-varying congestion

change – to ensure that treatment status does not change in response to poten-

tially endogenous sorting. The effects on relocation and job changes are analyzed

separately (see Section 7.1).

7See Appendix B.1 for an illustration of neighborhood size.
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Figure 2: Share of households owning an electric vehicle (2011–2017)
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Notes: The figure plots the share of households that own at least one electric vehicle on December 31 each
year over the period 2011-2017, by four different groups. The first observation reflects the electric vehicle share
on December 31, 2011, and the last observation reflects the electric vehicle share on December 31, 2017. The
time-varying congestion charge in Bergen was announced in February 2015 and implemented in February 2016.
Paying commuters are households where at least one individual passes the toll cordon between the residence
and the workplace. Non-paying commuters are households where none of the working individuals are exposed
to toll payments on the home-work route. The definitions are based on the residence and work locations in
2014. Other cities include Stavanger, Kristiansand, and Haugesund; see Appendix B for details.

Based on the two groups of households, a potential identification strategy could

be a Difference-in-Differences (DiD) framework. This approach would absorb any

time-invariant difference between the two groups. However, since paying commuters

were also exposed to road tolls before the sharp increase in rush hour charges,

they might follow a different trend than non-paying commuters in the pre-period.

Specifically, given the increased supply, variety, and quality of electric vehicles over

time, and the fact that electric vehicles have been exempt from toll payments since

the 1990s, we might expect to see a larger increase in electric vehicle ownership

among paying commuters compared to non-paying commuters even in the absence

of the rate increase. This concern is supported by Figure 2, which shows that

paying commuters in Bergen have been acquiring EVs at a faster rate than non-

paying commuters since 2011. Additionally, a dynamic DiD specification comparing

paying to non-paying commuters in Bergen confirms that the difference in pre-trends

persists (see Appendix Figure C.1).8

To address the problem of non-parallel trends, we utilize variation from other

selected cities with a toll cordon around their centers in a triple differences (DiDiD)

8A dynamic DiD specification comparing paying commuters in Bergen to paying commuters in
other cities also reveals non-parallel pre-trends. Results are available upon request.
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framework. During our study period, electric vehicles were exempt from all road

tolls in Norway, allowing them to pass any toll cordon free of charge. We identify

Stavanger, Kristiansand, and Haugesund as suitable control cities due to their size,

location, and the absence of significant changes in their toll rate schemes throughout

our sample period (see Appendix B.2 for details). Figure 2 shows that paying com-

muters in these control cities also increased their electric vehicle ownership beyond

that of non-commuters even in the absence of any toll increase. Estimating a placebo

DiD regression for the control cities confirms this picture (see Appendix Figure C.1).

The DiDiD setup enables us to recover a causal estimate of the increased conges-

tion charges in Bergen by subtracting the estimated difference between paying and

non-paying commuters in the control cities.

More formally, our DiDiD estimator is written as:

yit = βpostt × ci ×Bi + αtci + θnt + ηi +X ′
itγ + εit, (1)

where i indicates household, t indicates year, yit is the household level outcome

variable in a given year, postt is a dummy variable equal to 1 for years after the

policy change, ci is a dummy variable equal to 1 for paying commuters, and Bi is

a dummy variable equal to 1 for households in or near Bergen. The coefficient of

interest, β, reflects the effect of the policy change on paying commuters in Bergen.

The term αtci captures any differential trends in car ownership over time between

paying and non-paying commuters. Since paying commuters are exposed to stronger

EV incentives than non-paying commuters, even in the absence of the treatment,

and because the variety and quality of EVs have improved over time, we expect

paying commuters to adopt EVs at a faster rate. The term αtci will absorb this

trend based on the difference between paying and non-paying commuters in control

cities. The neighborhood × year fixed effects θnt account for any neighborhood-

level variation over time that affects both paying and non-paying commuters. This

includes variations in other local electric vehicle incentives that potentially vary

over time and across neighborhoods, such as the availability of charging stations

and parking spaces.9 We fix n to the households’ 2014 residence location to ensure

that neighborhood fixed effects are not affected by endogenous sorting in response

to the policy. Household fixed effects ηi capture any time-invariant difference across

households, including those related to being a paying commuter in Bergen. We also

9Note that the neighborhood × year fixed effects will not be able to address potential spillover
effects from paying to non-paying commuters within neighborhoods, such as peer effects in car
ownership (see e.g., Isaksen et al., 2022; Tebbe, 2023). If peer effects among neighbors are sub-
stantial, our estimates likely represent a lower bound on the true effect of the congestion charge
on EV adoption.
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include a vector of time-varying household-level controls, X ′
it, to account for other

factors that may influence car ownership, such as income and employment status

(see Appendix B.3 for further details). εit represents the idiosyncratic error term.

A key identifying assumption is that, in the absence of the congestion charge, the

difference in outcomes between paying and non-paying commuters in Bergen versus

other cities would have evolved in a similar manner. This assumption is conditional

on the control variables and fixed effects included in our specification. Although

the parallel trends assumption is inherently untestable, we assess its validity by

estimating a dynamic version of our DiDiD estimator, where treatment effects are

allowed to vary over time. By defining the year prior to the policy announcement

(2014) as the reference year, the dynamic DiDiD estimator can be specified as:

yit =
∑

s∈{T |s ̸=2014}

[
αtci + βtci ×Bi

]
× 1{t = s}+ ηi +X ′

itγ + θnt + εit, (2)

where βt captures the annual treatment effects. Under the parallel trends assump-

tion, we expect βt ≈ 0 for years prior to 2014.

4.1 Interpretation and threats to identification

As our empirical strategy relies on policy exposure on the work commute, our esti-

mated treatment effect should be interpreted as a local treatment effect for the sub-

population of households where at least one individual is employed. For households

where none of the individuals are employed (e.g., students, retirees, unemployed),

the effects of the congestion charge may be very different.

Importantly, our triple differences estimate is an intention-to-treat (ITT) mea-

sure. That is, we do not observe whether households actually paid the congestion

charge; rather, we use their potential exposure based on residential and workplace

locations recorded in 2014. Consequently, some households classified as “treated”

may not regularly use a car for commuting.10 Treated households’ exposure to toll

payments may also evolve over time due to endogenous behavioral responses, such

as relocating or switching jobs to avoid the congestion charge. Any resulting ad-

justments in car ownership are part of the overall treatment effect captured by our

ITT estimate. In Section 7, we explicitly study several other margins of adjustment,

including changes in traffic patterns and households’ relocation choices.

10According to the National Travel Survey 2018/2019 (Grue et al., 2021, Table 7.4), around 43
percent of those living in the city center of Bergen commute by car, while 77 percent of those living
in the suburbs around Bergen commute by car. As we restrict our sample to individuals where the
work commute is more than 5 kilometers (see Section 5), the share of individuals commuting by
car is likely higher in our sample.
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As the policy both increased rush hour rates and slightly lowered non-rush rates,

the average price signal faced by households is uncertain. However, we argue that the

small rate reduction outside peak hours should have negligible effects on our results.

First, while traffic during rush hours was significantly reduced after the congestion

charge was implemented, there was almost no change in traffic during non-rush hours

in the two years after the policy change; see Appendix Figure F.1. We consider it

unlikely that a price change with no impact on traffic would significantly affect car

ownership.

Second, our triple difference estimate is designed to net out confounding effects

from non-work-related trips, which are likely to occur outside peak hours. Specif-

ically, households living in the same neighborhood are likely to have similar local

travel patterns for leisure or errands. By including neighborhood-year fixed effects,

our identification strategy absorbs these within-neighborhood variations in non-work

trip behavior, thereby isolating the effect of the work commute.

Third, those who commute to work will often have limited flexibility to adjust

their travel times due to fixed work schedules or other commitments, such as child-

care or co-commuting with partners. The relatively broad rush hour pricing window

(06:30–09:00 and 14:30–16:30) suggests that even jobs with flexible hours typically

require commuting during peak periods. In Norway, the standard workday is 7.5

hours, and even positions with flexible schedules generally include core working hours

from 9:00 to 15:00. This leaves only 1.5 hours for schedule adjustments, making it

difficult for most workers to entirely avoid rush hour tolls. Additionally, during our

study period (pre-pandemic), the incidence of remote work was low, further limiting

the feasibility of avoiding congestion charges.

Taken together, these patterns suggest that rush hour rates play a more impor-

tant role in influencing car ownership decisions than non-rush rates – in particular

when considering work commutes.

4.2 Heterogeneous effects

To examine how different types of households respond to the congestion charge,

we estimate a variant of the DiDiD estimator that allows treatment effects to vary

across different socioeconomic groups. Let k ∈ K denote a specific group (e.g.,

income quintile). The heterogeneous DiDiD can be expressed as:

yit =
∑
k∈K

[
βkpostt ×Bi × ci + αtkci + δtk

]
1{i ∈ k}

+ ηi +X ′
itγ + θnt + εit, (3)

13



where βk represents the treatment effect for group k. All coefficients, except for

the demographics and neighborhood × year fixed effects, are specific to each group

k. This approach ensures a flexible model that accounts for various group-specific

time-varying factors.

5 Sample restrictions and descriptives

Sample restrictions: In our analysis, we focus on households as the unit of ob-

servation. Based on our empirical strategy, we restrict the sample to households

located within 50 kilometers of Bergen, Stavanger, Kristiansand, or Haugesund in

2014, and where at least one household member was employed in 2014. Further, we

focus on households where the 2014 work distance was between 5 and 50 kilometers

(km). We apply a 5 km cut-off to ensure that driving is a relevant commuting op-

tion. For very short commutes, our proxy for policy exposure may be less applicable,

as households are more likely to use alternative modes of transportation, such as

walking, biking, or public transportation.11

Based on the sample of households with work commutes between 5 and 50 km,

we define paying commuters as households where at least one household member

crosses the toll cordon (in Bergen or the control cities) on his/her way to work in

2014, the year prior to the rush hour congestion charge in Bergen being announced.

We also ensure that these households do not pass additional toll gates. Non-paying

commuters are defined as households where all household members had zero toll

payments on their work routes in 2014. The trimmed sample leaves us with 146,782

households observed over a period of 7 years, resulting in a panel of 717,892 house-

hold × year observations. The sample is unbalanced as our unit of observation is

households, and these may arise and dissolve over time.

Descriptives: Table 2 presents summary statistics for 2014 by city and commuter

group, based on our estimation sample. Panel A illustrates the differences in EV

ownership between paying and non-paying commuters, while Panel B compares toll

rates faced by these groups. For both Bergen and the control cities, the observed

differences are relatively similar.

Panel C provides summary statistics on various socioeconomic variables. In

11For such short distances, households living and working on opposite sides of the toll cordon
are not necessarily more intensively exposed than the control households. Given that we include
neighborhood times year fixed effects, we would then compare treated and control households that
live very close to the toll cordon, making them more likely to be similarly affected. In Appendix
D we estimate a separate DiDiD regression for households with a work commute of less than 5 km
and show that effects for all car-ownership outcomes are small and insignificant, as expected.
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Table 2: Summary statistics by city and commuter group (2014)

Bergen Other cities

Paying Non-paying Paying Non-paying

mean sd mean sd mean sd mean sd

Panel A: Outcomes
Electric vehicle (0/1) 0.047 0.212 0.026 0.160 0.035 0.184 0.018 0.132
Number of electric vehicles 0.049 0.221 0.027 0.167 0.036 0.191 0.018 0.138
Number of ICE vehicles 1.108 0.838 1.397 0.877 1.432 0.846 1.385 0.866
Total number of vehicles 1.157 0.858 1.424 0.883 1.468 0.852 1.403 0.871

Panel B: Journey to work variables
Toll rate (NOK/individual) 30.38 12.76 0.00 0.00 21.11 9.52 0.00 0.00
Toll rate (NOK/household) 42.68 20.72 0.00 0.00 30.49 15.94 0.00 0.00
Driving distance (km) 12.57 7.55 14.00 8.81 14.65 8.15 12.07 7.32
Driving time (min) 13.51 8.39 14.86 9.58 14.75 8.01 12.66 7.68
PT time minus driving time (min) 36.57 23.04 64.63 50.73 52.52 33.34 69.96 74.06
PT time divided by driving time 3.41 0.99 5.32 2.98 4.46 2.06 6.45 6.02

Panel C: Socio-economic variables
Couple (0/1) 0.68 0.47 0.66 0.47 0.74 0.44 0.66 0.47
Children living at home (0/1) 0.39 0.49 0.41 0.49 0.46 0.50 0.41 0.49
Persons in household 2.52 1.33 2.58 1.38 2.75 1.37 2.58 1.39
Age 42.71 12.25 43.71 12.62 42.92 11.79 43.15 12.42
Female (0/1) 0.49 0.29 0.48 0.30 0.48 0.26 0.48 0.30
Owns second home 0.11 0.32 0.10 0.31 0.11 0.31 0.11 0.31
Employed (0/1) 0.94 0.16 0.91 0.19 0.93 0.17 0.91 0.19
Retired (0/1) 0.05 0.19 0.06 0.21 0.04 0.17 0.05 0.19
Income (100,000 NOK/individual) 4.11 2.97 3.85 2.30 4.29 2.45 4.06 2.48
Income (100,000 NOK/household) 6.97 4.85 6.40 4.45 7.47 4.85 6.74 4.83
Wealth (mill NOK/individual) 1.45 5.18 1.20 3.51 1.31 2.92 1.34 4.22
Wealth (mill NOK/household) 2.49 8.12 2.03 6.01 2.32 5.47 2.28 7.99
Education:
Unknown (0/1) 0.19 0.39 0.19 0.39 0.15 0.35 0.19 0.39
Less than high school (0/1) 0.07 0.25 0.12 0.33 0.10 0.30 0.12 0.32
High school (0/1) 0.21 0.41 0.35 0.48 0.31 0.46 0.33 0.47
University <4 years (0/1) 0.30 0.46 0.26 0.44 0.30 0.46 0.25 0.43
University >4 years (0/1) 0.23 0.42 0.08 0.27 0.14 0.35 0.11 0.31
Observations 23616 25538 60238 37390

Notes: The table presents summary statistics for 2014, based on the estimation sample. ”Paying” refers to
paying commuters, while ”Non-paying” refers to non-paying commuters. ”ICE” denotes internal combustion
engine vehicles, and ”PT” represents public transit. All variables, except ”children” and ”number of household
members,” are individual-specific but averaged across spouses. In the empirical estimation, we control for the
following variables: gender (female), employment status, retirement status, second home ownership, presence of
children, education level, household size, two polynomials in age, income, wealth, commuting distance, and driving
time to work. Additionally, we include two polynomials for absolute and relative commuting time differences
between public transit and private car travel. If data for a given variable is missing for one spouse, we use the
other spouse’s value as a proxy for the household average. We allow coefficients for all variables to differ based
on household composition (i.e., whether the household has one or two adult members). For regressions including
household fixed effects, all time-invariant control variables will drop out. More detailed variable descriptions can
be found in Appendix Table B.1.
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Figure 3: Share of population in Bergen that is treated and non-treated (2014)
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Notes: Figure shows the share of households that is classified as “paying” and “non-paying” commuters in Bergen
in 2014, by neighborhood. The maps display neighborhoods located in Bergen Municipality, where Bergen city
center is located in the middle of the maps where neighborhoods are the smallest.

general, paying commuters in Bergen and in the control cities exhibit similar demo-

graphic characteristics. However, paying commuters in the control cities are more

likely to be part of two-adult households and have slightly higher incomes. Com-

pared to non-paying commuters, paying commuters are generally more likely to be

couples and tend to be wealthier with higher educational attainment.

Figure 3 displays the share of the population in each neighborhood of Bergen

Municipality classified as paying (Panel a) or non-paying (Panel b) commuters. The

maps illustrate that the proportion of paying commuters increases with proximity

to the city center. As population density rises closer to the city center, neighbor-

hoods also become progressively smaller. In the inner city center, more than 90%

of residents are classified as paying commuters, whereas in the northern outskirts of

Bergen, the share drops to below 15%. Among paying commuters, 56% commute

into the city center, 14% commute through the toll cordon, and 30% reside in the

city center and commute out of the cordon. In contrast, only 2% of non-paying

commuters live inside the toll cordon.

The maps illustrate that comparing paying and non-paying commuters in Bergen

over time without accounting for the differences in residence location will likely lead

to biased estimates. In our empirical strategy, we absorb all (unobserved) time-
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varying variables across neighborhoods and only use within-neighborhood variation

over time. Further, by including other cities as an additional control group, we

are able to include year fixed effects that are specific to paying commuters. The

maps hence show where the largest share of paying commuters is located, but do

not reflect the variation used for identifying causal effects of the cordon congestion

charge.

6 Results on car-ownership

Figure 4 presents the annual treatment effects estimated from the DiDiD specifi-

cation in Equation 2. Panel (a) indicates that households exposed to the Bergen

congestion charge were approximately 3 percentage points more likely to own an

electric vehicle by the end of 2016 and 2017. We also find a positive and signifi-

cant treatment effect on electric vehicle ownership at the end of 2015, suggesting

that households responded to the policy announcement in February 2015. This

anticipation effect is unsurprising given the durable nature of cars and the fact

that acquisition decisions often account for future expectations. Examination of

the pre-intervention period (2011-2014) shows estimated coefficients close to zero,

supporting the validity of the parallel trends assumption.

Panel (b) shows negative treatment effects on the number of ICE vehicles, which

mirrors the observed positive effect on electric vehicle ownership. Panel (c) shows

point estimates close to zero for the total number of cars owned by a household.

This indicates that, on average, households replaced their conventional vehicles with

electric ones.
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Figure 4: DiDiD estimates on car ownership

(a) Electric vehicle (0/1)
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(b) Number of ICE vehicles
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(c) Total number of vehicles
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Notes: The figure plots coefficients βt estimated from Equation 2, where β2014 is normalized to zero. Gray areas
indicate 95% confidence intervals. Panel (a) shows the annual treatment effect on the probability of a household
owning an electric vehicle. Panel (b) shows the annual treatment effect on the number of internal combustion engine
(ICE) vehicles owned by a household. Panel (c) shows the annual treatment effect on the total number of vehicles
owned by a household. All regressions include the following set of time-varying individual and household-level
controls: employed, retired, second home, children, education level, number of persons registered at the household,
income, and wealth. Standard errors are clustered at the 2014 neighborhood level.

Table 3 presents average treatment effects on car ownership based on Equation

1, excluding the announcement year (2015) from the estimations. The coefficient

in column (1) indicates that the congestion charge led to an average increase of

2.9 percentage points in the probability of owning an EV. To put this effect into

perspective, the congestion charge accounts for over 20% of the increase in EV

ownership for the treatment group from 2014 to 2017.12 The effect on the number

of electric vehicles owned is slightly larger (0.031), reflecting that some households

own more than one electric vehicle. The reduction in the number of ICE vehicles is

12This proportion is derived from the observed EV shares in 2014 and 2017 reported in column
(1) of Table 3 and is illustrated in Appendix Figure C.2.
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Table 3: DiDiD estimates on car ownership

Probability Number of vehicles

Dependent variable: Pr(BEV) BEV ICEV Total
(1) (2) (3) (4)

Post × Paying commuters × Bergen 0.0293∗∗∗ 0.0308∗∗∗ -0.0326∗∗∗ -0.00179
(0.00494) (0.00542) (0.00883) (0.00840)

Observations 707952 707952 707952 707952
Mean depvar 2014 (paying commuters, Bergen) 0.0491 0.0506 1.1427 1.1933
Mean depvar 2017 (paying commuters, Bergen) 0.1800 0.1907 1.1099 1.3006

Paying commuter × year FE (αtci) ✓ ✓ ✓ ✓
Household FE (ηi) ✓ ✓ ✓ ✓
Household characteristics (X ′

itγ) ✓ ✓ ✓ ✓
Neighborhood × year FE (θnt) ✓ ✓ ✓ ✓

Notes: The table plots the coefficient β estimated from Equation 1. The dependent variable is indicated by the
column heading. ”BEV” refers to battery electric vehicles, ”ICEV” refers to internal combustion engine vehicles,
and ”Total” refers to the total number of vehicles owned by the household. The sample is restricted to the years
2011-2017, where 2016-2017 denotes the “post” period and 2015 is excluded due to potential anticipation effects.
Standard errors are clustered at the 2014 neighborhood level (1,786 clusters). * p<0.10, ** p<0.05, *** p<0.01.

0.033 cars (column 3), corresponding to a proportional effect of -2.9%.13 We find a

small and statistically insignificant decrease in total car ownership of -0.002 (column

4), which translates to a proportional effect of -0.15%.

A priori, one might expect that increased congestion charges for ICE vehicles

would lead to a reduction in car ownership by a household. However, as different

adaptation mechanisms pull in different directions, the net effect is an empirical

question. Households might choose to i) dispose of their existing ICE vehicle, ii)

replace their existing ICE vehicle with an EV, iii) or acquire an EV while retaining

their existing car. As we will show in Section 6.2, we observe that some households

indeed fall into the former category: the poorest quintile of households shows no

significant change in EV adoption but a reduction in car ownership. Potential

rationales for falling into the latter category – not getting rid of their existing car

when acquiring an EV – include transaction costs, sentimental value, or “range

anxiety” where the existing car is retained for longer trips that exceed the range of

the EV.14 The null effect of increased costs of driving ICE vehicles on car ownership

is also consistent with concurrent literature (Halse et al., 2025).

In summary, the congestion charge led to a transition from conventional vehicles

to electric vehicles while keeping the total number of cars owned relatively constant.

In the following, we examine the robustness of these findings, as well as heteroge-

neous responses by household type and work-commute characteristics.

13This is calculated as the treatment effect (-0.0326) divided by the 2014 mean for paying com-
muters (1.1427).

14Findings in Johansen and Munk-Nielsen (2022) lend support to the “range anxiety” hypothesis.
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6.1 Robustness

Our main findings are consistent across various robustness checks, including dif-

ferent sample restrictions and specifications. Below, we summarize the key findings

focusing on EV ownership, while additional details on other car-ownership outcomes

are provided in Appendix D.

Sample restrictions: In our main estimation, we drop households with a short

work commute (below 5 km). As discussed in Section 5, our empirical strategy relies

on driving being a relevant option on the work commute. To test the sensitivity of

our main results, we estimate effects for samples with a 4, 3, and 2 km cut-off instead.

Including shorter work commutes monotonically lowers the effect on EV ownership,

from 2.9 pp (5 km) to 2.3 pp (2 km); see Appendix Table D.1. The lower effect could

partly be explained by the intent-to-treat interpretation of our estimate; households

with a short work commute are less likely to actually pay congestion charges.15 By

splitting the sample according to the area of residence (see Appendix Table D.3), we

see that the results are mainly capturing effects for households living outside the city

center – excluding paying and non-paying commuters living inside the toll cordon

gives an estimate that is similar to, and insignificantly different from, our main

estimate. The estimated effect for households living inside the toll cordon is zero.16

As expected, the estimate for pass-through commuters is lower (2.2 pp) compared to

the full sample (2.9 pp). Excluding pass-through commuters gives a slightly higher

estimate (3.2 pp). This is further discussed in relation to circumvention behavior in

Section 7.3.

Fixed effects and controls: In Appendix Table D.4 we show that our main results

are relatively stable across different fixed effects specifications and demographic con-

trols, as long as neighborhood×year fixed effects are taken into account (columns

3-5). The importance of accounting for neighborhood trends comes as no surprise

as the supply of electric vehicles is increasing over time, and the adoption rate is

likely to be affected by several local aspects of residential neighborhoods such as

access to parking and charging stations, accessibility, travel demand, etc. Account-

ing for differential trends across neighborhoods is therefore crucial. When including

neighborhood×year fixed effects, adding household-level and work commute con-

15If we only focus on households with a work commute of less than 5 km we find small and
insignificant effects on car-ownership outcomes - as expected (see Appendix Table D.2). In the
heterogeneity analysis we show that treatment effects are relatively similar across work distances
above 5 km (Figure 5, Panel (e)).

16This estimate is also less precise due to the sample composition: 30 percent of paying com-
muters, but only 2 percent of non-paying commuters in Bergen live inside the toll cordon.
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trols has little impact on the estimated treatment effect. Including household fixed

effects only marginally lowers the treatment effect, from 2.99 pp to 2.93 pp. Lastly,

to account for potentially differential effects of fuel prices across work commutes, we

interact the neighborhood-specific trends with the household-level work commute

distance in 2014 (Appendix Table D.5). These neighborhood-year-specific “work

distance slopes” will absorb any local trends that potentially affect neighborhoods

differentially by virtue of the length of the commute (e.g., local variation in fuel

prices, road congestion, etc.). The estimated effect on EV ownership is slightly

smaller, but this could also be explained by the local trends absorbing parts of the

(true) treatment effect.

6.2 Heterogeneous effects

The estimated average treatment effects may mask heterogeneity. In the following,

we examine how the treatment effects of the congestion charge vary across different

socioeconomic dimensions. Key results are presented in Figure 5, while supporting

results are available in Appendix E.

Income: Allowing the treatment effect to vary by household income reveals a clear

income gradient in electric vehicle adoption. Panel (a) in Figure 5 illustrates that

households in the highest quintile are 4.8 percentage points more likely to adopt an

electric vehicle in response to the policy. In contrast, the likelihood of electric vehicle

adoption for households in the lowest income quintile is nearly zero. This suggests

that higher-income households are more responsive to the policy. Further analysis

in Appendix E shows that the lowest income quintile is the only group where the

effect on total car ownership is significantly different from zero and negative, with a

reduction of approximately 0.04 cars, or 5.3%. This indicates that while wealthier

households predominantly replaced their conventional vehicles with electric ones,

poorer households reduced their car ownership.

The observed income gradient in car ownership responses could have various ex-

planations. First, treatment intensity may differ across income groups. Specifically,

a lower fraction of lower-income households commutes by car compared to higher-

income households. According to a Norwegian travel survey, less than 50% of the

lowest income quintile commutes by car, whereas 57–65% of higher income quintiles

do (Grue et al., 2021, Table 7.5, p. 55). This suggests that treatment intensity is

a relevant factor, but that it is not likely to fully explain the income gradient. The

negative effect on ICE vehicle ownership for the lowest income quintile indicates that

these households are indeed impacted by the policy but adjust along other margins.
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Second, high-income households might have a stronger preference for purchasing

an electric vehicle in response to the policy, whereas low-income households might

prefer to switch to alternative modes of transportation, such as public transit or

cycling. This preference disparity could reflect differences in the utility of electric

vehicles, time value, or preferences for other transportation modes.

Third, financial constraints might limit the ability of low-income households to

purchase electric vehicles. During the study period, acquiring an electric vehicle

typically meant buying a new car, as the market for used electric vehicles was neg-

ligible. Although electric vehicles were cheaper than comparable conventional cars

due to various tax exemptions (see Appendix Table A.3), low-income households

are generally less likely to purchase new cars compared to high-income households

(Fevang et al., 2021). Even if an electric vehicle could be financially advantageous

in the long run (see Appendix Table A.4), the immediate financial outlay might act

as a barrier for lower-income households.

Household type, education, and age: Couples with children show a significantly

higher probability of adopting an electric vehicle in response to the policy (Panel

b). This suggests that households with children may prioritize the benefits of EVs

more highly, perhaps due to the need for frequent, reliable transportation for family

activities. There may also be economies of scale that make it more cost-efficient for

these households to invest in an electric vehicle. Further, the likelihood of adopting

an electric vehicle increases with educational attainment, peaking at households with

up to 4 years of university education (Panel c).17 This trend may reflect a greater

awareness of the benefits of EVs or a higher capacity to navigate the adoption

process among more educated households. Previous literature also suggests that

individuals tend to “undervalue” future fuel savings when purchasing a vehicle (see

e.g., Allcott and Wozny, 2014), a tendency that may diminish with higher levels of

education. Lastly, we find that EV adoption is highest among households in their

30s and lowest among those in the top age quintile. The higher adoption rate among

younger households may be driven by a combination of factors, including financial

stability, openness to new technology, and greater transportation needs.

Since education and age co-vary with income, the observed heterogeneous pat-

terns likely reflect a combined effect of income and the demographic factors in ques-

tion, along with other correlated variables. In an attempt to disentangle the income

channel from other mechanisms, we estimate heterogeneous effects separately for

17This group includes individuals with a Bachelor degree (or equivalent) as well as those with
1 to 4 years of undergraduate credits irrespective of receiving a degree or not. More than 4 years
include those with a Masters degree or higher (Ph.D.).
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Figure 5: Heterogeneous DiDiD: electric vehicle ownership
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Notes: The figure plots the coefficients βk estimated from Equation 3, where k refers to group (e.g., income quintile).
Each panel (a-f) plots coefficients estimates from a separate regression. Whiskers indicate 95 % confidence intervals.
The dependent variable is a dummy variable equal to 1 if the household owns an electric vehicle in year t and
0 otherwise. Groups are based on 2014 demographics. “Income” is summed over spouses, “education” is the
maximum value in each household, and “age”, “work distance” and “public transit quality” are averaged over
spouses. Public transit quality is defined as time to work by public transit minus time to work by car in minutes.
“Uni, long” is more than 4 years of higher education, and “Uni., short” is 1-4 years. The sample is restricted to
the years 2011-2017, where 2016-2017 denotes the “post” period and 2015 is excluded due to potential anticipation
effects. Standard errors are clustered at the 2014 neighborhood level. See Appendix Table E.1 for coefficients in
table format.

the top and bottom income quintile (see Appendix Figure E.1). The findings reveal

that households in the bottom income quintile are unresponsive to the policy, re-

gardless of educational attainment or age. In contrast, for high-income households,

who are more likely to afford a new electric vehicle, treatment effects increase with
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educational attainment and decrease with age. These patterns suggest that age and

education influence EV adoption beyond the income effect.

Public transit and commute distance: Households’ adaptation decisions may

also depend on the quality of transportation substitutes. Here, we proxy public tran-

sit quality by the additional time required to commute by public transit compared

to driving a private car. We find that households with the poorest public transit

connectivity (> 71 minutes) are more than twice as likely to adopt an EV compared

to those in the top quintile of public transit connectivity (< 29 minutes) (Panel

f). However, these estimated treatment effects are not statistically different from

one another. With this caveat in mind, our results suggest that poor public transit

options may drive households to seek alternative, reliable modes of transportation,

such as EVs. Additionally, there is a slight tendency for EV adoption to increase

with driving distance to work (Panel e), although differences across quintiles are

relatively small and statistically insignificant. This implies that commute distance

likely plays a minor role in the decision to adopt an EV.

Again, commuting distance and public transit quality may co-vary with income.

In Appendix Figure E.1, we show that households in the lowest income quintile are

unresponsive to public transit quality and work distance. In contrast, high-income

households with the poorest public transit quality are more likely to purchase an

EV compared to similarly wealthy households with the best public transit options.

For work distance, the difference between the high- and low-income households is

most pronounced for those with the longest work commute.

These findings highlight the varied factors influencing household decisions to

adopt electric vehicles in response to congestion charges. While suggestive, our

findings add to the evidence base suggesting that low-income households are to a

larger extent locked into existing behavioral patterns.

7 Other adjustment margins and outcomes

Our results so far indicate that, on average, the time-varying congestion charge

increased EV adoption while leaving household car ownership levels unchanged.

However, drivers of combustion engine vehicles have several alternative ways to

adapt beyond paying the additional charge or acquiring an EV. Here, we examine

various adjustment mechanisms as well as their implications for interpreting our

main car ownership effects.

First, households can adjust on the intensive margin by reducing their driving
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(Section 7.2), for example, by commuting to the city center via alternative modes of

transportation. This may lead to an extensive margin response, such as disposing

of an existing combustion vehicle. Second, they can shift their departure times to

avoid higher-priced time intervals (Section 7.2). Third, pass-through drivers can

re-route to bypass the toll cordon entirely, albeit at the cost of a longer trip (Section

7.3). Finally, individuals may relocate or change workplaces to avoid the toll charges

(Section 7.1).

If the congestion charge could be easily avoided through some of these mecha-

nisms, we would expect a smaller effect on EV adoption. Lastly, we analyze the

policy’s impact on air pollution concentrations (Section 7.4). Together with our

main analysis on car ownership and the examination of other adjustment margins,

this provides a more comprehensive understanding of the overall effects of the con-

gestion charge.

7.1 Moving and job change

In our main analysis, we define treatment and control groups based on residential

and workplace locations in 2014. This approach ensures that policy-induced sorting,

such as changing residence or workplace to avoid the congestion charge, does not

affect treatment status. Neighborhood fixed effects are also based on 2014 residential

locations to prevent right-hand side variables from being influenced by the congestion

charge. Consequently, any subsequent household responses – such as relocation

to avoid the congestion charge and the resulting changes in car ownership – are

considered part of the policy’s overall impact.

Here, we explicitly test for moving and job change as adaptation mechanisms by

using these behaviors as outcome variables. Panel A of Table 4 presents DiDiD esti-

mates for the probability of moving (column 1), moving into the toll cordon (column

2), and moving out of the toll cordon (column 3). While we find no significant effect

on the overall probability of moving, treated households were 0.4 percentage points

less likely to move into the toll cordon and 0.3 percentage points more likely to move

out. These effects correspond to a 31% decrease and a 25% increase, respectively,

relative to the 2014 mean.

When examining job changes instead of residential moves (Panel B), we observe

a similar pattern: treated households were 1.6 percentage points less likely to move

into the toll cordon and 0.7 percentage points less likely to move out. These effects

correspond to a 19% decrease and a 16% increase, respectively, relative to the pre-

treatment mean.

Overall, these findings suggest a statistically significant and non-trivial sorting
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Table 4: DiDiD estimates on moving and job change

Any- Into toll Out of toll
Dependent variable: where cordon cordon

(1) (2) (3)

Panel A: Moving
Post × Paying commuters × Bergen -0.00326 -0.00422∗∗∗ 0.00275∗∗

(0.00371) (0.00113) (0.00121)

Observations 707952 707952 707952
Mean depvar 2014 (paying commuters, Bergen) 0.0834 0.0137 0.0108

Panel B: Job change
Post × Paying commuters × Bergen 0.00835∗ -0.0158∗∗∗ 0.00714∗∗∗

(0.00435) (0.00265) (0.00226)

Observations 707952 707952 707952
Mean depvar 2014 (paying commuters, Bergen) 0.2661 0.0837 0.0527

Paying commuter × year FE (αtci) ✓ ✓ ✓
Household FE (ηi) ✓ ✓ ✓
Household characteristics (X ′

itγ) ✓ ✓ ✓
Neighborhood × year FE (θnt) ✓ ✓ ✓

Notes: This table reports the coefficient β estimated from Equation 1. The dependent variables indicate changes
in a household’s residential location (Panel A) and changes in the work location of either household members
(Panel B). In column 1, the dependent variable equals one if the location differs from the previous year and zero
otherwise. In column 2 (3), the dependent variable equals one if the new location is inside (outside) the toll
cordon, and the previous year’s location was outside (inside) the toll cordon. The sample is restricted to the years
2011-2017, where 2016-2017 denotes the “post” period and 2015 is excluded due to potential anticipation effects.
Standard errors are clustered at the neighborhood level (1,786 clusters). * p<0.10, ** p<0.05, *** p<0.01.

response induced by the policy change, with paying commuters more likely to relo-

cate out of the city center. This relocation likely results in a lower estimated EV

adoption effect than if work commutes had remained unchanged since 2014, as relo-

cated households have weaker incentives to acquire an EV after moving. However,

as the share of households relocating in response to the congestion charge is small

compared to the share that acquired an electric vehicle, the impact of relocation on

the car ownership estimates is minimal.18

7.2 Driving into the city center

To what extent did drivers respond on the intensive margin by reducing driving to

the city center, or by changing their departure time?

To examine these questions, we move from individual-level registry data to high-

frequency sensor-level traffic data. Specifically, we collect restricted data on the

number of cars passing the city-center toll cordon every 15 minutes for Bergen, Sta-

18Re-estimating the effect on EV ownership using a subsample that excludes households that
moved or changed work locations after 2014 yields a slightly higher treatment effect (3.14 percent-
age points) compared to our main estimate (2.93 percentage points), aligning with expectations.
However, these results should be interpreted with caution, as the sample selection is conditioned
on behavior that is endogenous to the policy.
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vanger, Haugesund, and Kristiansand from a regional road toll company (Ferde).19

The data cover the period 2014 to 2018. We focus on a sample of two years before

and after February 1, 2016. We aggregate the sensor-level data to the city level and

measure the total number of cars passing any toll gate in the direction of the city

center. Appendix F provides additional data details and descriptives.

To identify a causal effect of the policy change on driving into the toll cordon,

we employ a differences-in-differences (DiD) framework where we compare traffic

volumes across Bergen and the three other cities before and after February 1, 2016.

When Bergen is a dummy variable equal to 1 and postt is a dummy variable equal

to 1 after February 1, 2016, the DiD estimator can be written as:

yist = βBergen× postt +X ′
istγ + σs + λywd + θdis + εist, (4)

where yist denotes an outcome (traffic, air pollution) observed at time interval i (15

minutes, hourly) at time t (date) measured at location s (cordon, station, sensor).

While traffic is measured at 15-minute intervals and aggregated to the cordon level,

air pollution (Section 7.4) is measured at hourly intervals at the station level. X ′
ist

is a vector of location-specific weather controls, σs are location fixed effects, λywd

denotes year×week number×day-of-week fixed effects, θdis denotes location-specific

day-of-week×time-of-day fixed effects, and εist is the idiosyncratic error term. The

DiD estimate is captured by the coefficient β. The key identifying assumption is that

changes in omitted time-varying variables, such as unobserved technological trends,

economic activity, and policies, affect Bergen and our control cities in a similar way.

Appendix F.2 provides additional details on the empirical strategy.

Figure 6 shows DiD results for 15-minute time intervals (Panel a), as well as

yearly DiD estimates for rush hours (Panel b). We see a clear decrease in traffic

during rush hours, as well as some inter-temporal substitution towards the 15-30

minutes before and after rush hours. In the remaining hours of the day, the effect of

the congestion charge on traffic is close to zero, despite a decrease in toll rates. The

latter finding suggests that drivers are relatively insensitive to lower rates during

non-rush hours. Overall, we find a daily traffic reduction of 5.5% (Appendix Table

F.1, Panel A).20 This corresponds to a reduction of 8,160 cars per day. The traffic

reduction is primarily caused by fewer passenger vehicles rather than trucks (Ap-

pendix Figure F.3). Figure 6, Panel (b) shows that rush hour traffic was sharply

19The data is split by passenger vehicles (vehicles that weigh less than 3.5 tonnes), and trucks
(vehicles weighing 3.5 tonnes or more).

20If there had been a zero increase in the number of cars during the 30 minutes before and after
rush hours, we would have seen a 6.5 % daily decrease instead of the actual 5.5 % decrease.
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Figure 6: DiD estimates on driving into the city center

(a) DiD effects for 15 min intervals
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(b) Yearly DiD effects for rush hours
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Notes: Panel (a) plots treatment effects estimated from Equation 4, where regressions are run separately for each
15 minute increment. Gray shaded areas indicate rush hours. Traffic is measured as the total number of cars
passing the toll cordon every 15 minutes. Sample period is restricted to 2 years before and 2 years after policy
implementation (Feb 1 2016), and to weekdays. Panel (b) plots the coefficients βt estimated from the following
regression: yist =

∑3
t=−2[βtBergen × yeart] + X′

istγ + σs + λywd + θdis + εist, where the sample is restricted
to weekdays and rush hours. Figure F.4 shows effects for non-rush hours and all day traffic. Standard errors are
clustered on week in both regressions.

reduced in the year of the intervention and remained low in the following two years.

These findings suggest that the policy worked as intended, by lowering driving

and shifting traffic towards non-rush hours. The negative effects on traffic are robust

across various fixed effects specifications (Appendix Figure F.5).

7.3 Driving around the toll cordon

Cars entering downtown Bergen cannot avoid toll charges. However, cars passing

through Bergen can opt for longer alternative routes that bypass the toll cordon

entirely. For transit traffic, there are two main routes to bypass the toll gates,

depending on the direction of travel (Appendix Figure F.6). Vehicles traveling

through Bergen in the north-south direction can take a detour that extends travel

time by around six minutes. Meanwhile, those traveling in the southwest direction

can avoid the toll cordon by taking either a 9-minute detour (for cars arriving from

the southwest) or a 1-minute detour (for cars arriving from the southeast).21

To examine spatial spillovers, we collect publicly available hourly vehicle count

data from traffic sensors located outside the Bergen toll cordon. Our analysis focuses

on sensors located along the two routes where drivers can bypass the toll cordon,

provided they do not need to enter the city center.22 Drivers circumventing the toll

21Detailed descriptions of these routes are provided in a report by the Norwegian Public Roads
Administration (NPRA, 2018).

22Two sensors along these detour routes have pre-treatment data, allowing us to analyze changes
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Figure 7: DiD estimates on driving around the city center

(a) North-south direction
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(b) Southwest direction
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Notes: Figure shows DiD estimates on hourly traffic measured by sensors located along alternative detour routes
around the toll cordon. Coefficients are treatment effects estimated from Equation 4, where β is allowed to vary
by hourly increments. Whiskers indicate 95% confidence intervals. Gray shaded areas indicate rush hours. Traffic
is measured as the total number of cars registered by the traffic censors in both directions each hour. Standard
errors are clustered at the week level.

cordon will need to pass at least one of these sensors, depending on their chosen

route. Note that this traffic includes all drivers passing through Bergen, not just

local traffic from paying and non-paying commuters.

Figure 7 presents hourly DiD estimates of the congestion charge’s impact on

traffic along detour routes, derived from Equation 4. For the north-south direction,

we find no evidence of spatial spillovers during rush hours (Panel a). However,

for the southwest direction, we observe clear spatial spillovers (Panel b), with the

largest treatment effects occurring during morning rush hours. We estimate that

approximately 2,700 vehicles per day and 1,714 vehicles during rush hours used

detour routes instead of entering the toll cordon (Appendix Table F.2).

These findings suggest that around one-third of the reduction in daily traffic

into the city center may be attributable to drivers circumventing the toll cordon.

This substitution pattern does not necessarily represent an undesirable effect of the

policy, as it redirects traffic away from congested roads to areas where it likely has

a smaller impact on overall traffic flows. However, the installation of new toll gates

along the detour routes in 2019 suggests that such circumvention was unintended.23

Additionally, the longer detour routes imply higher emissions.

These traffic spillovers could bias our EV estimates if redirected traffic dispro-

portionately affects the work commutes of non-paying commuters. If the increased

over time. We use data from the sensors “Kr̊akenes” and “Indre Arna EV16”, which can be accessed
at: https://www.vegvesen.no/trafikkdata/start/. Data is available from September 2015 for
the north-south direction and from September 2014 for the southwest direction.

23In April 2019, 15 new toll gates were installed along the alternative routes shown in Appendix
Figure F.6, effectively eliminated the possibility of bypassing the toll cordon.
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traffic makes non-paying commuters less likely to own a car, this would introduce

an upward bias in our EV adoption estimate. However, we consider such spillover

effects on car ownership to be minimal. Congestion is generally less severe outside

the city center, reducing the likelihood of a significant impact. Moreover, since we

compare households within the same neighborhood, treated and control units are

less likely to be differentially affected by these spillovers.

However, the ability to circumvent the toll cordon likely reduces the incentive for

paying commuters to switch to an EV. Based on the administrative data, we find that

approximately 56% of paying commuters in Bergen had a work commute requiring

entry into the toll cordon, 30% required exit through the toll cordon, and 14%

could avoid it entirely, as neither their residence nor workplace was located inside.

Estimating EV ownership effects separately for paying commuters who can bypass

the toll cordon, we find a slightly lower treatment effect of 2.2 percentage points

(Appendix Table D.3, column 5). When excluding pass-through commuters from the

main specification, the treatment effect increases to 3.2 percentage points (Appendix

Table D.3, column 4). While these differences are not statistically significant, the

point estimates suggest that the effect for transit commuters is only two-thirds that

of other commuters. A likely explanation is that some commuters with the option

choose to drive around the city center in a combustion vehicle rather than acquiring

an EV.

In summary, this section provides evidence of circumvention behavior, which

appears to have dampened the policy’s effect on EV ownership for transit commuters,

as expected. Since the impact of congestion charging on EV adoption depends on

how easily the cordon can be bypassed, findings should always be interpreted within

their specific local context.

7.4 Air pollution

To examine the effects of the policy on ambient air quality, we collect hourly at-

mospheric pollution data for the period 2014-2018 from the Norwegian Institute for

Air Research (NILU). Our sample includes 14 municipalities across Norway and 15

monitoring stations, all of which are located near roads.24 Air pollution is measured

in micrograms per cubic meter of air (µg/m3). We focus on pollutants strongly

influenced by traffic: nitrogen dioxides (NO2) and particulate matter (PM10).
25 We

24The municipalities include Bergen, Stavanger, Kristiansand, Bærum, Drammen, Fredrikstad,
Gjøvik, Grenland, Hamar, Lillehammer, Moss, Sarpsborg, Skedsmo, and Tromsø.

25The primary source of NO2 in Norway is exhaust emissions from internal combustion engine
vehicles. In contrast, the main sources of PM10 in urban areas include road wear, tire and brake
abrasion, sand used to increase friction on icy roads during winter, and emissions from wood-fired
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also collect monitor-level weather data from the Norwegian Meteorological Institute

for 2014-2018. See Appendix F.1 for further details on the data and descriptive

statistics.

Figure 8: DiD estimates on NO2 and PM10

(a) NO2: 60 min. intervals
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(c) Yearly rush hour NO2
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Notes: Panels (a) and (b) plot treatment effects estimated from Equation 4, where regressions are run separately
for each 60 minute increment. Sample period is restricted to 2 years before and 2 years after policy implementation
(Feb 1 2016), and to weekdays. Gray shaded areas indicate rush hours. Pollution is measured as micrograms per
cubic meter of air (µg/m3). Panels (c) and (d) plot the coefficient βt estimated from the following regression:
yist =

∑3
t=−2[βtBergen × yeart] + X′

istγ + σs + λywd + θdis + εist, where the sample is restricted to weekdays
and rush hours. Period is restricted to 2 years before and 3 years after policy implementation Standard errors are
two-way clustered on week and station in all regressions.

To estimate the causal effect of the congestion charge on air pollution, we apply

Equation 4 using hourly air pollution concentrations as the outcome variable. Since

we compare air pollution levels within the toll cordon across treated and control

cities, our estimated treatment effect will not be biased by the documented traffic

spillovers to areas outside the cordon. However, because monitors are only located

inside the city, we are unable to measure potential increases in pollution outside the

cordon.

ovens (NILU, 2019).
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Figure 8, Panel (a) presents hourly DiD estimates for NO2. The results indicate

that the congestion charge significantly reduced NO2 concentrations during most

hours between 6 AM and 7 PM. Since air pollutants persist in the air after their

release, we do not expect to see sharp differences between rush hours and non-rush

hours. On average, the congestion charge reduced NO2 concentrations by 4.1 µg/m3

per day, representing a 9.5% decrease (Appendix Table F.3, Panel A). During rush

hours, the reduction was 6.4 µg/m3, corresponding to an 11% decrease.

Figure 8, Panel (c) presents yearly DiD estimates for rush hour NO2 pollution,

and suggests the presence of a pre-trend. The DiD effect on NO2 should therefore be

interpreted with caution. This pre-trend may partly reflect the early shift to EVs,

which began following the policy announcement in February 2015.

For PM10, we observe a treatment effect of similar magnitude to that of NO2;

however, the estimates are noisier and statistically significant only for a few hours

during the day (Figure 8, Panel b). Unlike NO2, there is no indication of a pre-

trend (Figure 8, Panel d). Since PM10 is not generated from exhaust emissions, a

shift toward EVs is expected to have a smaller impact on this pollutant. While we

estimate an average daily reduction of approximately 10.5% (Appendix Table F.3,

Panel B), the imprecision of the estimate makes it difficult to draw firm conclusions.

The findings on air pollution remain relatively robust across different fixed effects

specifications and weather controls (Appendix Figure F.8).

7.5 Trade-offs with multiple policy goals

Congestion charges are typically designed to reduce traffic volumes and air pollu-

tion in inner-city areas during rush hours, addressing both congestion and emission

externalities. However, congestion pricing schemes that exempt EVs may be less

effective at reducing congestion. While we find that the Bergen congestion charge

significantly reduced traffic during rush hours, the decline would likely have been

greater had EVs also been subject to the charge. At the same time, a shift toward

EVs may lower emissions both within the cordon and in neighboring areas, espe-

cially if the transition from ICE vehicles to EVs affects not only work commutes but

also leisure trips. Thus, replacing ICE vehicles with EVs may provide additional

benefits by reducing emissions beyond the cordon.

As EVs constitute an increasing share of the vehicle fleet, the impact of road

tolls on traffic volumes is expected to weaken. Exemptions for EVs will also reduce

toll revenues as the fleet becomes increasingly electric, necessitating an increase in

other taxes. Consequently, optimal tolling rates for EVs will need to be adjusted

over time. This consideration is also reflected in Norway’s electrification strategy,
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where EV incentives are gradually being scaled back.26

8 Conclusion

Electric vehicles are often highlighted as a key technology to decarbonize private

transportation and reduce urban air pollution. This paper demonstrates that differ-

entiating driving costs by vehicle type and time of day can shift the composition of

the vehicle fleet towards electric vehicles while maintaining a constant fleet size. By

exploiting a policy that combined rush hour cordon charging with EV exemptions,

we find that households exposed to the policy were nearly 3 percentage points more

likely to adopt an EV. This effect accounts for over one-fifth of the observed increase

in EV ownership during the study period.

High-income households responded more strongly to the EV incentives, with

responses varying substantially across education, age, and public transit quality.

In contrast, low-income households were unlikely to adopt an EV, regardless of

these factors. Instead, they responded by reducing car ownership. These findings

suggest that financial constraints may drive differential car ownership effects across

income groups, though differences in preferences or treatment intensity could also

contribute. The strong income gradient in EV adoption must also be considered in

light of the negligible second-hand market for EVs at the time.

We also document that households responded to the policy through various ad-

justments – both intended and unintended – including changing their place of resi-

dence and workplace, shifting departure times, reducing trips to the city center, and

rerouting around the toll cordon. While some of these behaviors counteracted the

policy’s objectives, we find an overall negative effect on traffic levels, air pollution,

and fossil-fuel vehicle ownership.

As the share of EVs continues to grow in Norway and globally, the benefits of

a cleaner vehicle fleet must be weighed against its impact on traffic congestion and

toll revenue losses. While optimal tolling rates for EVs will need to adapt over time,

we leave the quantification of these rates across time and vehicle types to future

research. Nonetheless, our findings offer novel insights into household car ownership

decisions and other behavioral adjustments that could inform such calculations.

26Starting in 2018, local governments were permitted to charge EVs up to 50% of the stan-
dard toll rate. In Bergen, EVs remained exempt until April 2019, after which they were charged
approximately one-third of the rate applied to conventional passenger cars (Sand et al., 2022).
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Appendix A Background

Figure A.1: Toll rates in Bergen, 2005-2018
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Notes: The figure illustrates the development of toll rates in Bergen from 2005 to the end of 2017. The time-varying
congestion charge was introduced on February 1, 2016.

Table A.1: Cordon-based congestion pricing in Norway. 2013-2019

Kristiansand Trondheim Bergen Oslo Stavanger

Date implemented Nov 19, 2013 Mar 10, 2014 Feb 1, 2016 Nov 1, 2017 Oct 1, 2018
Morning rush 6:30-9:00 7:00-9:00 6:30-9:00 6:30-9:00 07:00-09:00
Afternoon rush 14:30-17:00 15:00-17:00 14:30-16:30 15:00-17:00 15:00-17:00
Price pre 21 0 25 35 20
Price post: rush hour 21 22 45 54/59* 44
Price post: non-rush 14 11 19 44/49** 22

Notes: The table presents Norwegian cities that implemented a cordon-based congestion charge between 2013 and 2019. Three
of these policies are unsuitable for analysis due to data limitations: for Oslo and Stavanger, post-period car ownership data is
unavailable, while in Kristiansand, the policy did not introduce higher rush hour rates. Prices are listed in NOK (10 NOK ≈ 1
EUR ≈ 1.2 USD) and reflect the rates for small passenger vehicles at the time of implementation. *Gasoline cars: NOK 54, diesel
cars: NOK 59. **Gasoline cars: NOK 44, diesel cars: NOK 49.
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Table A.2: The Norwegian EV incentives (as of January 2020)

Year Instrument Local
incentive?

1990 Exempt from purchase/import taxes
1996 Exempt from annual road tax
1997 Exempted from road toll1 Yes
1997 Exempt from ferry charges2 Yes
1999 Free municipal parking3 Yes
2000 50 % reduced company car tax4

2001 Exempt from 25% VAT on purchase
2005 Access to bus lanes5 Yes
2015 Exempt from 25% VAT on leasing
2018 Fiscal compensation for scrapping fossil car when switching to a zero-emission car
2019 Holders of driver license class B allowed to drive electric car class C1 (light lorries)

Notes: Table lists the different national and local electric vehicles incentives in Norway as of January 2020. At the
national level, electric vehicles are exempt from purchase taxes and value-added tax (VAT). At the local level, electric
vehicles benefit from exemptions from road toll and congestion charges, access to bus lanes, free parking, and free
charging. Source: https://elbil.no/english/norwegian-ev-policy/. Year refers to the year implemented.
1 From 2019: local authorities allowed to impose a rate of maximum 50% of the toll road.
2 From 2018: local authorities allowed to impose a rate of maximum 50% of the ferry fares.
3 From 2018: parking fees for EVs introduced locally. Upper limit of 50% of full price.
4 From 2018: company car tax reduction reduced to 40%.
5 From 2016: local authorities allowed to limit access to bus lanes to EVs that carry one or more passengers.

Table A.3: Vehicle prices (NOK)

Prod. price VAT Reg. tax MSRP

Compact cars
VW Golf Sportsvan (gasoline) 196,456 49,114 73,230 318,800
Nissan Leaf (electric) 245,090 0 0 245,090
Luxury cars
BMW 640i xDrive Coupe (gasoline) 505,434 126,358 503,007 1,134,800
Tesla Model S (electric) 655,000 0 0 655,000

Notes: The table displays prices in NOK for the modal compact electric car (Nissan Leaf, battery range ≈
240 km) and the modal luxury electric car (Tesla Model S, battery range ≈ 460 km) in 2016, as well as
comparable gasoline cars with similar engine effects. The last column is the manufacturer’s suggested re-
tail price (MSRP), publicly accessible at: https://www.skatteetaten.no/globalassets/tabeller-og-satser/

listepris-bil/bilpriser-2016.pdf (accessed August, 2020). Based on the MSRP and national tax rates, we
have backed out the producer’s price excluding taxes, the VAT and the registration tax for the gasoline cars. Both
tax components are zero for BEVs. 10 NOK ≈ 1 EUR and ≈ 1.2 USD.
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Table A.4: Annual private ownership costs

(1) (2) (3)
Cost element New BEV New ICEV Used ICEV

Ownership costs

Purchase price/value (NOK) 245,090 318,080 50,000
Annual depreciation rate (share) 0.12 0.12 0.12
Annual depr. cost, 5 year avg. (NOK) 23,150 30,112 4,723
Ownership tax (NOK) 445 3,135 3,135
Annual ownership cost (NOK) 23,595 33,246 7,858

Driving costs

Driving (km) 11,680 11,680 11,680
Cost per kilometer (NOK) 0.16 0.68 0.76
Annual driving cost (NOK) 1,869 7,942 8,877

Toll payments

Annual toll payments (NOK) 0 9,900 9,900

Total annual cost (NOK) 25,464 51,206 30,605

Value of other BEV incentives

Free parking (NOK) -2,349 0 0
Reduced ferry rates (NOK) -579 0 0
Bus line time savings (NOK) -4,498 0 0
Annual sum of incentives (NOK) -7,426 0 0

Total annual cost incl. incentives (NOK) 18,038 51,206 30,605

Notes: The table presents simplified calculations of the annual cost of car ownership for three different cars;
a new Nissan Leaf (column 1), a new Volkswagen Golf Sportsvan (column 2), and a comparable 10-12 year
old small gasoline car (column 3). See Table A.3 for different price components. We assume a depreciation
of 12 % per year, and calculate annual depreciation as the average annual value loss over a five year period.
Kilometers driven corresponds to average driving per car per year, as reported by Statistics Norway. The number
reflect s the average of all passenger cars registered in Hordaland country in 2016, publicly accessible at: https:

//www.ssb.no/statbank/table/12576/tableViewLayout1/ (accessed August, 2020). Price per kilometer is based
on Norwegian gasoline and kWh prices and fuel/energy efficiency of compact cars. Annual toll payments is for
paying commuters in Bergen when the congestion charge is active, assuming a household member drives to work
each day (45 NOK×220 days). The annual value of other BEV incentives are based on a national survey among BEV
owners in Norway; see Figenbaum and Kolbenstvedt (2016), p. 53 for details. We disregard service, maintenance
and insurance costs, which are not necessarily differentiated by propulsion systems but positively correlated with
the age of the car. 10 NOK ≈ 1 EUR and ≈ 1.2 USD.
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Appendix B Data and descriptives

B.1 Neighborhood size

In our analysis, we compare households in Bergen to those in three control cities:

Stavanger, Kristiansand, and Haugesund. Bergen is the second largest city in Nor-

way (with 255,464 inhabitants in 2017), while Stavanger is the third largest city

(with 222,697 inhabitants in 2017). Kristiansand and Haugesund are smaller cities

(107,157 and 37,166 inhabitants in 2017, respectively). All cities are located in the

south-west of Norway, along the coast.

Figure B.1: Neighborhood borders

(a) Bergen (b) Stavanger

(c) Haugesund (d) Kristiansand

Notes: The figure illustrates neighborhood size in four cities. Black lines denote neighborhood borders, while blue
lines in the background is the road network. The densest urban areas are where the neighborhoods are smallest
and the road network most dense. Small red triangles are the toll gates.

Figure B.1 illustrates the various sizes of neighborhoods across Bergen and the

three control cities. The neighborhoods reflect the level of the geography-year fixed

effects in our main regressions. While some of the neighborhoods in the outskirts of

the cities are several kilometers in diameter (these are typically areas that include
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water, forests, mountains, or green spaces), neighborhoods in the more densely pop-

ulated parts of the cities are often 100 by 100 meters or smaller. On average, there

are around 80 households per neighborhood for the geographical areas included in

our main analysis.

B.2 Toll cordon locations and toll rate developments in four

cities

Figure B.2 illustrates the borders of the toll cordons in Bergen and the three control

cities. A common feature across all four cities is that in order to reach the city center

you need to pass a toll cordon. However, in several cities, these cordons have more

than one layer. This is of limited concern for the interpretation of the estimated

treatment effects due to the hour rule; you only pay once per hour irrespective of

how many toll gates you cross as a part of the toll cordon.

Kristiansand is the only city where the toll cordon only has one ring. Bergen has

two rings, in addition to a toll gate in relation to a bridge over a strait. Stavanger has

toll gates that block off the city center from the northern and southern directions, as

well as additional toll gates to the south that make up a semi-circle around Sandnes,

south of Stavanger. Haugesund has a ring around the city center in addition to

strategically located toll gates at major roads further out.

Figure B.3 compares the toll rates in all four cities during rush hours from 2006

to 2018. In our sample period (end of 2011 to end of 2017), rush hour rates were

constant for Stavanger and Kristiansand (around NOK 20), while there was a very

small increase in the rush hour rates in Haugesund from around NOK 12 to NOK

14. By contrast, there was a large increase in rush hour rates in Bergen in the same

period; first a small jump from NOK 15 to NOK 25 in 2013, then a large jump from

NOK 25 to NOK 45 in 2016. See also Figure A.1 for a more detailed illustration of

the rush and non-rush rates in Bergen.

The small increase in toll rate in 2013 means that estimated treatment effects

might reflect a response to both these jumps in toll rates. If we observe a positive

treatment effect in 2015 on car ownership, this might reflect both anticipation effects

of the congestion charge announcement on February 1, 2015, as well as a potential

delayed response to the small jump in toll rates in the summer of 2013.

5



Figure B.2: Toll cordon borders

(a) Bergen (b) Stavanger

(c) Haugesund (d) Kristiansand

Notes: The figure illustrates the toll cordon borders in four cities. The red lines indicate where it is impossible to
drive through without having to pass a toll cordon. “Paying commuters” live and work on opposite sides of one
or more such lines, while “non-paying commuters” live and work on the same side. Thin blue lines show the road
network in and around each city.
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Figure B.3: Development in rush hour toll rates
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Notes: The figure displays the development in rush hour toll rates over time for the cities Bergen, Stavanger,
Kristiansand, and Haugesund. The toll rate in Bergen outside rush hours is not displayed to enhance read-
ability. Time is presented continuously rather than annual, which means that the points on the x-axis where
the rates change correspond to the actual date. For Kristiansand and Haugesund, the start of the line marks
the date when the toll cordon was introduced. The gray shaded area marks the sample period used in the
analysis.
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B.3 Details on variables and model specification

Table B.1 presents a description of all relevant variables used in our analysis.

Work commute characteristics: We obtained a measure of public transit time

from the Norwegian regional transportation models (RTM). These are national

transportation models frequently used by policy makers. The variable we use is

the sum of time on board, waiting time (calculated as a function of the frequency),

transit time, and access/egress time (i.e. walking to/from stations). For a more

detailed description of how public transit routes are coded in RTM, see Kwong and

Ævarsson (2018). All neighborhood and work commute variables are fixed to 2014

to address potential endogenous sorting.

Control variables: In regressions without household fixed effects, we control for

the following set of variables: Dummy variables for being female, being employed,

being retired, owning a second home, having children below the age of 18, and

separate dummies for education levels (unknown, less than high school, high school,

college, and university). A continuous variable for the number of persons (adults

and children) registered at the household. Two polynomials in age, net income, net

wealth, distance to work, and time to work by car. We also include two polynomials

for two variables that are meant to capture the workplace’s accessibility by public

transit – these are the absolute and the relative time differences to get to work

by public transit versus private car. All variables except “children” and “number

of household members” are individual specific, but averaged across spouses. If a

variable is missing for one of the spouses, the other spouse’s value is used. If a

variable is missing for both spouses, that household is omitted from the regression.

Finally, we let the coefficients for all variables be couple and single specific (i.e.

whether the household has one or two adult members). Our main regressions include

household fixed effects, which means that time-invariant controls such as female,

educational attainment, and (2014) work commute controls will drop out.
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Table B.1: Description of variables

Variable Description

Panel A: Outcome variables
BEVit Dummy variable indicating whether household i owns a battery electric

vehicle
NumBEVit The number of battery electric vehicles owned by household i
ICEVit The number of internal combustion engine vehicles owned by household

i
carsit Total number of vehicles owned by household i

Panel B: Treatment variables
Bi Dummy variable, 1 if household lives in the vicinity of Bergen; 0 if the

household lives in the vicinity of control cities
ci Dummy variable, 1 if at least one household member pass the toll cordon;

0 if no household members are exposed to tolls on their commute
postt Dummy variable for 2016 and later

Panel C: Control variables
coupleit Dummy variable indicating whether there is more than one adult house-

hold member
ageit Average age of adult household members
femaleit Share of adult household members that are females
employedit Share of adult household members that are employed
retiredit Share of adult household members that are retired
secondhomeit Dummy variable for whether household owns second home
personsit Number of household members, adults and children
childrenit Dummy variable for having children <18 years living at home
incomeit Average net income of adult household members. Labor and capital

income net of taxes plus other transfers
wealthit Average net wealth of adult household members. Value of capital stock

(including property) and financial assets net of outstanding debt
educ0it Dummy: all household members have unknown education
educ1it Dummy: highest education in household is less than high school
educ2it Dummy: highest education in household is high school
educ3it Dummy: highest education in household is 1-4 years of university (un-

dergraduate level)
educ4it Dummy: highest education in household is more than 4 years of univer-

sity (gradate and post graduate level)
wdit Average work distance of adult employed household members in kilome-

ters. Fastest route between centroids of working and residence neighbor-
hoods

timeit Time spent in minutes associated with the commute above, according to
the speed limit

PT diffit Time to work by public transit (including expected waiting, transit and
access/egress time) minus time spent by car

PT shareit Time to work by public transit (including expected waiting, transit and
access/egress time) divided by time spent by car

θnt Neighborhood by year fixed effects for the household’s residence location
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Appendix C Supporting results

C.1 Difference-in-differences (DiD) estimates

Here, we show estimated treatment effects from two separate DiD regressions for

Bergen and the control cities, where we use variation over time between paying and

non-paying commuters. These regressions take the following form:

yit =
∑

s∈{T |s ̸=2014}

αtci × 1{t = s}+ ηi +X ′
itγ + θnt + εit (1)

The household fixed effects ηi will absorb any time-invariant household-specific

effects (including the difference between paying and non-paying commuters), θnt

indicates neighborhood × year fixed effects and X ′
it is a vector of demographics and

work route specific controls; see Section 4 for details. The dynamic DiD estimates

are captured by α1
t (α0

t ) and reflect the estimated “paying commuter” effect for

Bergen (control cities) in year t. The triple difference estimate in a given year can

be derived from α1
t − α0

t .

Figure C.1: DiD estimates for Bergen and control cities.
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(b) Number of BEVs
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(c) Number of ICEs
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(d) Number of cars
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Notes: The figure shows coefficients αt estimated from Equation 5, where α2014 is normalized to zero. Grey areas
indicate 95% confidence intervals. The outcome is indicated by the sub-figure heading. Vertical dotted lines denote
the announcement date (Feb 18th 2015), while vertical dashed lines denote the implementation date (Feb 1st 2016).
Standard errors are clustered at the neighborhood level.
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Figure C.1 shows the DiD estimates for Bergen and the control cities. The esti-

mated coefficients in Panel (a) show that paying computers in both cities experience

an increase in the electric vehicle ownership share relative to non-paying computers.

Panel (b) shows a similar pattern when using the number of electric vehicles as the

outcome variable, while Panel (c) shows a declining trend in conventional vehicle

ownership prior to the policy. While the pre-treatment trend for the total number

of vehicles is relatively parallel in the DiD set-up, this trend masks the differential

computational change in car ownership.

By subtracting the estimated effects for the control cities from the true treatment

effects for Bergen (α1
t−α0

t ), we get a triple differences estimate that is approximately

the same as our DiDiD estimates presented in Figure 4 in the main text. In contrast

to the DiD estimates, the triple difference estimates indicate parallel trends in the

pre-treatment period.
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C.2 Predicted electric vehicle ownership

Figure C.2 shows the observed and predicted electric vehicle ownership in the period

2011-2017.

Figure C.2: Observed and predicted levels of electric vehicle ownership
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Notes: The solid line shows the share of households among paying commuters in Bergen that owned an electric
vehicle in the period 2011-2017. The dashed line shows the predicted share of households among paying commuters
in Bergen that would have owned an electric vehicle in absence of the congestion charge, based on the treatment
estimates reported in Figure 4, panel (a). Car ownership is measured at the end of the year The vertical distance
between the two lines indicate the annual treatment effects. The vertical dotted line denotes the announcement
date (Feb 18th 2015) and the vertical dashed line denotes the implementation date (Feb 1st 2016).
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Appendix D Robustness checks

This appendix presents robustness checks of our main results on EV ownership.

D.1 Sample restrictions

Table D.1 shows the sensitivity of our main result to including shorter work com-

mutes. Table D.2 shows results when restricting the sample to work commutes

shorter than 5 km. Table D.3 shows results when focusing on individuals that com-

mute into or through the toll cordon (as opposed to out of the toll cordon).

Table D.1: DiDiD estimates on EV ownership, by different work commute cut-offs

Sample includes workdistances gt.: 2 km 3 km 4 km 5 km

Dependent variable: Pr(BEV) Pr(BEV) Pr(BEV) Pr(BEV)
(1) (2) (3) (4)

Post × Paying commuters × Bergen 0.0232∗∗∗ 0.0264∗∗∗ 0.0283∗∗∗ 0.0293∗∗∗

(0.00393) (0.00432) (0.00467) (0.00494)

Observations 941446 858388 782885 707952
Mean depvar 2014 (paying commuters, Bergen) 0.0442 0.0452 0.0469 0.0491
Mean depvar 2017 (paying commuters, Bergen) 0.1654 0.1694 0.1746 0.1800

Paying commuter × year FE (αtci) ✓ ✓ ✓ ✓
Household FE (ηi) ✓ ✓ ✓ ✓
Household characteristics (X ′

itγ) ✓ ✓ ✓ ✓
Neighborhood × year FE (θnt) ✓ ✓ ✓ ✓

Notes: Table plots the coefficient β estimated from Equation 1. The sample is restricted to the years 2011-2017,
where 2016-2017 denotes the “post” period and 2015 is excluded due to potential anticipation effects. Each
column present results from a different sample. Column (4) presents our main estimates, where we restrict the
sample to households with a work commute distance of at least 5 km. Column (3) presents results when using
a cut-off of 4 km, etc. Standard errors are clustered at the 2014 neighborhood level (1,786 clusters in the last
column). * p<0.10, ** p<0.05, *** p<0.01.
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Table D.2: DiDiD estimates on vehicle ownership for households with a work
commute of less than 5 km

Probability Number of vehicles

Dependent variable: Pr(BEV) BEV ICEV Total
(1) (2) (3) (4)

Post × Paying commuters × Bergen 0.00213 0.00376 0.0101 0.0138
(0.00676) (0.00734) (0.0151) (0.0144)

Observations 336998 336998 336998 336998
Mean depvar 2014 (paying commuters, Bergen) 0.0192 0.0199 0.7059 0.7258
Mean depvar 2017 (paying commuters, Bergen) 0.0926 0.0976 0.7430 0.8406

Paying commuter × year FE (αtci) ✓ ✓ ✓ ✓
Household FE (ηi) ✓ ✓ ✓ ✓
Household characteristics (X ′

itγ) ✓ ✓ ✓ ✓
Neighborhood × year FE (θnt) ✓ ✓ ✓ ✓

Notes: Table plots the coefficient β estimated from Equation 1. The dependent variable is indicated by the
column heading. BEV refers to battery electric vehicles, ICEV refers to internal combustion engine vehicles, and
Total refers to the total number of vehicles owned by the household. The sample is restricted to households
with a work commute distance of less than 5 km, as well as the years 2011-2017, where 2016-2017 denotes the
“post” period and 2015 is excluded due to potential anticipation effects. Standard errors are clustered at the 2014
neighborhood level (1,569 clusters). * p<0.10, ** p<0.05, *** p<0.01.

Table D.3: DiDiD estimates by location of residence and workplace

Base reg. Live outside Live inside No transit Transit

Dependent variable: Pr(BEV) (1) (2) (3) (4) (5)

Post × Paying commuters × Bergen 0.0293∗∗∗ 0.0258∗∗∗ -0.00392 0.0319∗∗∗ 0.0216∗∗∗

(0.00494) (0.00541) (0.0111) (0.00544) (0.00814)

Observations 707952 536859 163496 620010 295684
Mean depvar 2014 (paying commuters, Bergen) 0.0491 0.0587 0.0262 0.0497 0.0480
Mean depvar 2017 (paying commuters, Bergen) 0.1800 0.2059 0.0902 0.1802 0.1850

Paying commuter × year FE (αtci) ✓ ✓ ✓ ✓ ✓
Household FE (ηi) ✓ ✓ ✓ ✓ ✓
Household characteristics (X ′

itγ) ✓ ✓ ✓ ✓ ✓
Neighborhood × year FE (θnt) ✓ ✓ ✓ ✓ ✓

Notes: Table plots the coefficient β estimated from Equation 1.Column (1) replicates our main specification, based
on the full sample. Column (2) excludes paying and non-paying commuters living inside the toll cordon. Column
(3) only includes households living inside the toll cordon. Column (4) excludes paying commuters that live and
work on opposite sides of the toll cordon (i.e., pass-through commuters are excluded). Column (5) only contains
households that live and work outside the toll cordon (i.e., all paying commuters are pass-through commuters).
The sample is restricted to the years 2011-2017, where 2016-2017 denotes the “post” period and 2015 is excluded
due to potential anticipation effects. Standard errors are clustered at the 2014 neighborhood level (725-1,649
clusters, depending on specification).
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D.2 Fixed effects and controls

Table D.4 shows the robustness of our main result across different fixed effects

specifications. Table D.5 shows results when interacting the neighborhood-specific

trends with the household-level work commute distance in 2014.

Table D.4: DiDiD estimates with different fixed effects

DiDiD specification Simple w/year FE w/θnt w/HH ctrl. w/HH FE
(1) (2) (3) (4) (5)

Panel A: Pr(BEV)
Post × Paying commuters × Bergen 0.0127∗∗∗ 0.0134∗∗∗ 0.0290∗∗∗ 0.0299∗∗∗ 0.0293∗∗∗

(0.00488) (0.00485) (0.00481) (0.00479) (0.00494)

Observations 717892 717892 717777 713873 707952
Mean depvar 2014 (paying commuters, Bergen) 0.0471 0.0471 0.0471 0.0471 0.0491
Mean depvar 2017 (paying commuters, Bergen) 0.1800 0.1800 0.1800 0.1800 0.1800

Panel B: Number of BEVs
Post × Paying commuters × Bergen 0.0133∗∗ 0.0140∗∗∗ 0.0306∗∗∗ 0.0316∗∗∗ 0.0308∗∗∗

(0.00523) (0.00519) (0.00527) (0.00525) (0.00542)

Observations 717892 717892 717777 713873 707952
Mean depvar 2014 (paying commuters, Bergen) 0.0485 0.0485 0.0485 0.0485 0.0506
Mean depvar 2017 (paying commuters, Bergen) 0.1906 0.1906 0.1907 0.1907 0.1907

Panel C: Number of ICEVs
Post × Paying commuters × Bergen -0.0206∗∗ -0.0232∗∗ -0.0340∗∗∗ -0.0299∗∗∗ -0.0326∗∗∗

(0.00937) (0.00926) (0.00994) (0.00919) (0.00883)

Observations 717892 717892 717777 713873 707952
Mean depvar 2014 (paying commuters, Bergen) 1.1081 1.1081 1.1083 1.1083 1.1427
Mean depvar 2017 (paying commuters, Bergen) 1.1098 1.1098 1.1099 1.1099 1.1099

Panel D: Number of cars in total
Post × Paying commuters × Bergen -0.00732 -0.00923 -0.00337 0.00171 -0.00179

(0.00848) (0.00845) (0.00999) (0.00914) (0.00840)

Observations 717892 717892 717777 713873 707952
Mean depvar 2014 (paying commuters, Bergen) 1.1566 1.1566 1.1568 1.1568 1.1933
Mean depvar 2017 (paying commuters, Bergen) 1.3004 1.3004 1.3006 1.3006 1.3006

Post ✓
Paying commuter ✓
Paying × Post ✓
Bergen ✓
Bergen × Post ✓
Bergen × Paying commuter ✓ ✓ ✓ ✓
Year FE ✓
Bergen × Year FE ✓
Paying commuter × Year FE ✓ ✓ ✓ ✓
Neighborhood × Year FE (θnt) ✓ ✓ ✓
HH and work commute controls ✓ ✓
Household FE (ηi) ✓

Notes: BEV refers to battery electric vehicles, while ICEV refers to internal combustion engine vehicles. Re-
gression (1) estimates the triple difference with dummies for “post”, “Bergen” and “paying commuters”. Re-
gression (2) makes time controls year-specific, alleviating the need for the “post” dummy. Regression (3) adds
neighborhood×year fixed effects, alleviating the need for a “Bergen” dummy. Regression (4) adds household and
work commute controls, and finally, regression (5) adds household fixed effects, making “Paying commuter×Bergen”
a redundant variable. Regression (5) is the same specification as in Equation 1 and Table 3. Standard errors are
clustered on 2014 neighborhoods (1,786 clusters). * p<0.10, ** p<0.05, *** p<0.01.
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Table D.5: DiDiD estimates: sensitivity to fuel prices

Probability Number of vehicles

Dependent variable: Pr(BEV) BEV ICEV Total
(1) (2) (3) (4)

Post × Paying commuters × Bergen 0.0222∗∗∗ 0.0226∗∗∗ -0.0298∗∗∗ -0.00714
(0.00520) (0.00575) (0.00929) (0.00913)

Observations 707952 707952 707952 707952
Mean depvar 2014 (paying commuters, Bergen) 0.0491 0.0506 1.1427 1.1933
Mean depvar 2017 (paying commuters, Bergen) 0.1800 0.1907 1.1099 1.3006

Paying commuter FE × year FE (αtci) ✓ ✓ ✓ ✓
Household FE ✓ ✓ ✓ ✓
Household characteristics (X ′

itγ) ✓ ✓ ✓ ✓
Neighborhood FE × year FE (θnt) ✓ ✓ ✓ ✓
Neighborhood FE × year FE × work distance (Θntdisti) ✓ ✓ ✓ ✓

Notes: BEV refers to battery electric vehicles, while ICEV refers to internal combustion engine vehicles. Compared
to the main specification, these regressions absorb an additional set of neighborhood × year fixed effects that are
interacted with the work distance of each household (as a continuous variable). These neighborhood-year-specific
“work distance slopes” will absorb any local trends that potentially affect neighbors differentially by virtue of the
length of the commute (e.g. local variation in fuel prices, congestion, etc.). Such local trends might be conflated
with the treatment effect in case there is systematic within-neighborhood work distance variation between paying
and non-paying commuters. Standard errors are clustered on 2014 neighborhoods (1,786 clusters). * p<0.10, **
p<0.05, *** p<0.01.
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Appendix E Heterogeneous effects

Table E.1 shows heterogeneous treatment effects for education, age, public transit

quality and work distance, by the top and bottom income quintile. Table E.1 shows

our main heterogeneous DiDiD estimates in table format. Figure E.2 and E.3 show

heterogeneous DiDiD estimates for ICEV ownership and the total number of cars,

respectively.

Figure E.1: Heterogeneous DiDiD estimates on Pr(BEV), by top and bottom
income quintiles
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(d) Work distance
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Notes: The figure plots the coefficients βk estimated from Equation 3, where groups are defined as interactions
between the top or bottom income quintile, and education level (Panel a), age (Panel b), quintiles of public
transit quality (Panel c), or quintiles of work distance (Panel d). Whiskers indicate 95 % confidence intervals.
The dependent variable is a dummy variable equal to 1 if the household owns an electric vehicle in year t and 0
otherwise. Group allocation is household specific and based on 2014 values. Educational attainment refers to the
maximum level observed within the household, income is summed over spouses and other variables are averaged
across spouses. “Public transit quality” relates to the commute, and is measured as the difference in commute
time between driving a private car and public transit. Households in income quintiles 2-4 are dropped from the
regression. Standard errors are clustered at the neighborhood level.

17



Table E.1: Heterogeneous DiDiD estimates on Pr(BEV)

Dependent variable: Pr(BEV) Estimate for group number:

Measured in percentage points (1) (2) (3) (4) (5)

Panel A: Income†

Post × Paying commuters × Bergen -0.00128 0.0152∗∗ 0.0334∗∗∗ 0.0276∗∗∗ 0.0480∗∗∗

(0.00575) (0.00610) (0.00692) (0.00766) (0.00684)

Mean depvar 2014 0.01 0.02 0.04 0.06 0.10
Mean depvar 2017 0.05 0.10 0.17 0.22 0.30
Household income (1000 NOK) 344.79 495.12 641.47 779.50 1168.43
Households per group 109913 134387 149941 155970 157741

Panel B: Family status††

Post × Paying commuters × Bergen -0.000254 0.00284 0.0177∗∗∗ 0.0454∗∗∗

(0.00572) (0.0123) (0.00592) (0.00673)

Mean depvar 2014 0.01 0.01 0.04 0.08
Mean depvar 2017 0.06 0.10 0.15 0.27
Households per group 155498 28060 228877 295517

Panel C: Education‡

Post × Paying commuters × Bergen 0.0148∗∗ 0.00696 0.0239∗∗∗ 0.0417∗∗∗ 0.0193∗∗

(0.00644) (0.00810) (0.00605) (0.00670) (0.00759)

Mean depvar 2014 0.02 0.02 0.04 0.06 0.08
Mean depvar 2017 0.07 0.09 0.15 0.23 0.23
Households per group 98709 72549 225871 209519 101304

Panel D: Age†

Post × Paying commuters × Bergen 0.0325∗∗∗ 0.0459∗∗∗ 0.0356∗∗∗ 0.0228∗∗∗ 0.00996
(0.00757) (0.00784) (0.00805) (0.00690) (0.00643)

Mean depvar 2014 0.03 0.06 0.07 0.05 0.04
Mean depvar 2017 0.14 0.22 0.23 0.18 0.12
Average age 28.31 35.68 42.38 50.24 60.56
Households per group 110849 139679 152045 156234 149145

Panel E: Work distance†

Post × Paying commuters × Bergen 0.0277∗∗∗ 0.0228∗∗∗ 0.0278∗∗∗ 0.0333∗∗∗ 0.0346∗∗∗

(0.00797) (0.00729) (0.00673) (0.00689) (0.00771)

Mean depvar 2014 0.03 0.05 0.05 0.06 0.07
Mean depvar 2017 0.14 0.17 0.19 0.20 0.21
Work distance (kilometers) 6.10 8.40 11.18 15.34 26.61
Households per group 135798 141078 142657 143676 144743

Panel F: Public transit†

Post × Paying commuters × Bergen 0.0193∗∗∗ 0.0313∗∗∗ 0.0246∗∗∗ 0.0451∗∗∗ 0.0464∗∗∗

(0.00718) (0.00677) (0.00754) (0.00853) (0.0126)

Mean depvar 2014 0.04 0.05 0.06 0.06 0.07
Mean depvar 2017 0.14 0.18 0.20 0.24 0.23
Time public transport minus time car (minutes) 22.87 32.97 42.56 57.95 125.55
Households per group 134114 140444 143787 145017 144590

† Column number refers to quintiles of the population.
†† 1: Single without kids; 2: Single with kids; 3: Couple without kids; 4: Couple with kids.
‡ 1: Unknown; 2: Less than high school; 3: High school; 4: Higher education (≤4 years); 5: Higher education
(>four years).
Notes: The table shows the coefficient βk estimated from Equation 3, where k refers to group (e.g., income quintile).
All coefficients presented in a panel is from the same regression. The dependent variable is a dummy variable equal
to 1 if the household owns an electric vehicle in year t and 0 otherwise. Group allocation is based on 2014 values,
which means that households will not move between groups over time. The sample consists of years 2011-2017,
where 2016-2017 denotes the “post” period and 2015 is excluded due to potential for anticipation effects. Standard
errors are clustered on 2014 neighborhoods (1,786 clusters). * p<0.10, ** p<0.05, *** p<0.01.
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Figure E.2: Heterogeneous DiDiD on ICEV ownership
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Notes: The figure plots the coefficients βk estimated from Equation 3, where k refers to group (e.g., income quintile).
Each panel (a-f) plots coefficients estimated from a separate regression. Whiskers indicate 95% confidence intervals.
The dependent variable is number of internal combustion engine vehicles owned by the household. Groups are based
on 2014 demographics. “Income” is summed over spouses, “education” is the maximum value in each household
and “age”, “work distance” and “public transit quality” are averaged over spouses. Public transit quality is defined
as “time to work by public transit minus time to work by car” in minutes. The sample is restricted to the years
2011-2017, where 2016-2017 denotes the “post” period and 2015 is excluded due to potential anticipation effects.
Standard errors are clustered at the neighborhood level.
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Figure E.3: Heterogeneous DiDiD: Car ownership.
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Notes: The figure plots the coefficients βk estimated from Equation 3, where k refers to group (e.g., income
quintile). Each panel (a-f) plots coefficients estimates from a separate regression. Whiskers indicate 95% confidence
intervals. The dependent variable is the total number of cars owned by the household. Groups are based on 2014
demographics. “Income” is summed over spouses, “education” is the maximum value in each household and “age”,
“work distance” and “public transit quality” are averaged over spouses. Public transit quality is defined as “time
to work by public transit minus time to work by car” in minutes. The sample is restricted to the years 2011-2017,
where 2016-2017 denotes the “post” period and 2015 is excluded due to potential anticipation effects. Standard
errors are clustered at the neighborhood level.
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Appendix F Traffic and air pollution

This appendix provides supporting material and results for the estimated effects of

the time-varying congestion charge on traffic and air pollution.

F.1 Data and descriptives

Driving into the city

Figure F.1 shows how vehicles passing the toll gates in Bergen (Panel a) and the

other cities (Panel b) are distributed over the course of the day two years before

(dashed line) and two years after (solid line) the Bergen congestion charge was

implemented. Panel (a) shows a clear decline in rush hour traffic in Bergen, while

the same is not observed for the control cities. For Bergen, we also see a small

increase in the number of cars right before and after rush hours, suggesting that the

policy induced some drivers to change their departure time to avoid the increased

cost.

Figure F.1: Traffic volume two years before and after Feb 1 2016
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Notes: Figure shows the average number of vehicles passing the toll cordon over the course of a weekday (Monday-
Friday) based on 15 minute intervals. The total number of cars are measured in the direction of the city center.
Panel (a) shows averages for Bergen and Panel (b) shows averages for three control cities (Stavanger, Haugesund,
Kristiansand). Dashed lines indicate averages for the 730 days (2 years) prior to policy implementation. Solid lines
indicate averages for the 730 days (2 years) post policy implementation. Gray shaded areas indicate rush hours
(06:30-09:00 and 14:30-16:30).

Air pollution

Figure F.2 shows how ambient levels of NO2 and PM10 vary over the course of 24

hours in the two years before (dashed line) and after (solid line) policy implemen-

tation for Bergen (Panels a and c) and the control cities (Panels b and d). Gray

shaded areas indicate rush hours. To put the levels of air pollution into context,
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the WHO Air Quality Guidelines for NO2 and PM10 are 40 µg/m3 annual mean

and 20 µg/m3 annual mean, respectively (WHO, 2006). By comparing the average

pollution levels pre and post policy, we see that there is a clear decline in ambient

air pollution for both Bergen and other cities.

Figure F.2: Air pollution two years before and after Feb 1 2016
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(c) Bergen, PM10
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(d) Control cities, PM10
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Notes: Figure shows average ambient air pollution over the course of a day for the pollution monitoring stations
in Bergen (Panels a and c) and other cities (Panels b and d). Values are based on 60 minute intervals. Sample
is restricted to weekdays. Dashed lines indicate averages for the two years prior to policy implementation (Feb 1
2016). Solid lines indicate averages for the two years post policy implementation. Gray shaded areas indicate rush
hours. Pollution is measured as micrograms per cubic meter of air(µg/m3).

Weather

To control for the effects of weather on traffic and air pollution outcomes, we col-

lect monitor-level weather data from the Norwegian Meteorological Institute for the

years 2014-2018. We focus on hourly measures of temperature, precipitation, wind

speed, and wind direction. The weather data is linked to a pollution monitoring

station by calculating the inverse distance weighted average of observations from all

weather stations within a 50-kilometer radius of a pollution monitoring site. Based

22



on hourly wind data, we construct four wind direction categories: northern ∈ [0-45]

and (315,360], eastern ∈ (45,135], southern ∈ (135,225], western ∈ (225,315].

F.2 Empirical strategy: additional details

In the main traffic regressions, yist denotes total traffic volume (passenger vehicles

and trucks) that pass the toll cordon in Bergen during a 15-minute interval. For air

pollution regressions, yist denotes the concentration of NO2 or PM10 measured at

hourly intervals. Both regression specifications include the same vector of weather

controls. The vector of weather controls includes a third-order polynomial of air

temperature, a second-order polynomial of precipitation, the interaction of temper-

ature and precipitation, a second-order polynomial of wind speed, four dummies for

wind direction (north, south, east, and west) as well as their interaction with wind

speed. In the traffic regressions, standard errors are clustered at the weekly level,

while for air pollution, standard errors are two-way clustered on week and station.

We also estimate a dynamic version of the DiD where we allow treatment effects

to vary by year. Specifically, we estimate the following equation:

yist =
3∑

t=−2

[βtBergen× yeart] +X ′
istγ + σs + λywd + θdis + εist, (2)

where the annual DiD estimate is captured by the coefficients βt. The annual DiD

estimates allow us to examine the pre-treatment trends, as well as examine how the

treatment effects unfold over time.

F.3 Results on driving into the city
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Figure F.3: DiD estimates on traffic volume by 15 min. intervals and vehicle type
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Notes: Figure plots treatment effects estimated from Equation 4, where regressions are run separately for each 15
minute increment. Panel (a) shows results for passenger cars and Panel (b) shows results for trucks. Whiskers
indicate 95% confidence intervals. Gray shaded areas indicate rush hours. Traffic is measured as the total number
of cars passing the toll cordon every 15 minutes. Passenger cars: all vehicles < 3500 kg. Trucks: all vehicles > 3500
kg. Standard errors are clustered at the week level and are not adjusted for multiple hypothesis testing.

Figure F.4: Annual DiD effects on traffic. Non-rush hours and all day

(a) Non-rush hours
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Notes: Figure plots the coefficients βt estimated from the following regression: yist =
∑3

t=−2[βtBergen×yeart]+
X′

istγ + σs + λywd + θdis + εist, where the sample is restricted to weekdays. Panel (a) shows effects for non-rush
hours and Panel (b) shows effects for daily traffic. Traffic is measured as the total number of vehicles passing the
toll gates into the city center during a 15-minute interval. Standard errors are clustered on week.
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Table F.1: DiD estimates on traffic volume

Rush hours Non-rush hours

Dependent variable: All day All Morning Evening +/-30 min Other
# vehicles/15 minute interval (1) (2) (3) (4) (5) (6)

Panel A: All cars
Bergen × Post -85.54∗∗∗ -410.2∗∗∗ -380.3∗∗∗ -448.0∗∗∗ 186.8∗∗∗ -33.24∗∗∗

(8.157) (18.48) (21.25) (16.78) (15.71) (5.336)

Mean depvar (pre, Bergen) 1,557 2,877 2,928 2,812 2,189 1,145
Change (%) -5.50 -14.26 -12.99 -15.93 8.53 -2.90

Panel B: Passenger cars
Bergen × Post -83.13∗∗∗ -406.3∗∗∗ -375.9∗∗∗ -444.7∗∗∗ 189.7∗∗∗ -31.28∗∗∗

(7.880) (17.96) (20.65) (16.29) (15.30) (5.154)

Mean depvar (pre, Bergen) 1,451 2,687 2,724 2,641 2,026 1,068
Change (%) -5.73 -15.12 -13.80 -16.84 9.36 -2.93

Panel C: Trucks
Bergen × Post -2.412∗∗∗ -3.892∗∗∗ -4.386∗∗∗ -3.245∗∗∗ -2.951∗∗∗ -1.968∗∗∗

(0.428) (0.896) (1.047) (0.830) (0.792) (0.309)

Mean depvar (pre, Bergen) 106 190 204 172 163 77
Change (%) -2.29 -2.05 -2.15 -1.89 -1.81 -2.55

N 387,456 72,648 40,360 32,288 32,288 282,520
Weather controls (Xist) ✓ ✓ ✓ ✓ ✓ ✓
Station FE (σs) ✓ ✓ ✓ ✓ ✓ ✓
Post ✓ ✓ ✓ ✓ ✓ ✓
Day-of-week × week × year FE (λywd) ✓ ✓ ✓ ✓ ✓ ✓
Day-of-week × time-of-day FE (θdis) ✓ ✓ ✓ ✓ ✓ ✓

Notes: Table shows the β coefficient estimated from Equation 4, running 18 (6 × 3) separate regressions. Dependent
variable is the aggregate number of vehicles passing the toll gates in a city during a 15 minute interval. Column
headings indicate the sample used in each regression. “Rush hours” refer to the intervals 06:30-08:59 (morning)
and 14:30-16:29 (evening). For non-rush hours, “+/- 30 min” refers to the 30 minute intervals right before and
after rush hours. “Other” refers to the remaining non-rush hours (i.e., 9:30-13:59 and 17:00-05:59). Sample is
restricted to 730 days (2 years) pre and post policy implementation. Standard errors clustered at the weekly level
in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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Figure F.5: DiD estimates on traffic volume, by different model specifications

(a) All day
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(b) Rush hours
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Treatment effect

Notes: Figure plots treatment effects estimated from Equation 4. Each panel shows results from 7 separate regressions.
Dependent variable is traffic measured as the number of vehicles during a 15 minute interval. Panel (a) shows daily
average effects as fixed effects are progressively included. while Panel (b) shows results for rush hour traffic. Whiskers
show 95 % confidence intervals. Except for the fixed effects, the model specification is the same as in the main traffic
regression table (Table F.3). DoW is short for day of week. Standard errors are clustered on week.
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F.4 Spatial spillovers

Figure F.6: Alternatives for bypassing toll gates for transit cars

(a) North-south direction (b) South-west direction

Notes: Figure shows the two main routes to avoid toll payments, depending on which direction the car is coming
from. Blue lines are routes around Bergen that avoid the cordon toll completely. The toll gates avoided by the
alternative routes are marked as red triangles. Green circles mark traffic censors from which we obtain traffic data.
Cars passing Bergen in the north-south direction have two alternatives: either driving on E39 through the center
of Bergen city and the cordon toll, or following the road E16/580 to the west of Bergen avoiding the cordon toll
completely. This route is 6 minutes longer. Cars passing Bergen in the south-west direction are also able to avoid
the toll cordon by taking roads E39/556 rather than the direct tunnel under the strait (road 557). This is a detour
of 9 minutes for cars arriving from the south-west. However, for cars arriving from the south-east (e.g. from E39)
this route is only about one minute longer. Source: Google Maps.

Table F.2: DiD estimates on traffic volume on two alternative routes

Dependent variable: All day Rush hours Other

# vehicles per hour 0:00-23:59 Both 6:00-8:59 14:00-16:59 17-06, 09-14
(1) (2) (3) (4) (5)

Panel A: North-south
Bergen × Post 8.499 22.44 23.45 51.51 1.734

(48.86) (125.1) (162.8) (79.75) (28.93)

N 56,957 14,236 7,109 7,127 42,721
Mean depvar (pre, Bergen) 721 1,284 974 1,590 534
Change (%) 1.18 1.75 2.41 3.24 0.32

Panel B: South-west

Bergen × Post 104.1∗∗∗ 263.3∗∗∗ 342.2∗∗∗ 191.9∗∗∗ 49.89∗∗∗

(27.45) (63.14) (80.86) (49.97) (16.97)

N 71,913 17,980 8,989 8,991 53,933
Mean depvar (pre, Bergen) 959 1,771 1,527 2,015 688
Change (%) 10.86 14.86 22.40 9.52 7.25

Weather controls (Xist) ✓ ✓ ✓ ✓ ✓
Station FE (σs) ✓ ✓ ✓ ✓ ✓
Post ✓ ✓ ✓ ✓ ✓
Day-of-week × week × year FE (λywd) ✓ ✓ ✓ ✓ ✓
Day-of-week × time-of-day FE (θdis) ✓ ✓ ✓ ✓ ✓

Notes: Table shows DiD estimates on traffic volume on two alternative routes for selected time intervals. The
dependent variable is the total number of vehicles driving on the road in both directions. The specifications are
the same as the main specifications in Table F.1, but time periods are defined differently since only hourly data is
available. Standard errors are clustered on week. * p<0.10, ** p<0.05, *** p<0.01.
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F.5 Results on air pollution

Table F.3: DiD estimates on NO2 and PM10

24 hours Daytime Midday Rush Evening Night

Dependent variable: 00-23 05-22 06-17 6-9,14-16 18-23 00-05
ambient air pollution (µg/m3) (1) (2) (3) (4) (5) (6)

Panel A: NO2

Bergen × Post -4.126∗∗∗ -5.027∗∗∗ -6.077∗∗∗ -6.363∗∗∗ -3.091 -2.035∗

(1.341) (1.601) (1.673) (1.740) (1.765) (1.072)

N 273,533 204,628 135,480 79,421 69,172 68,881
Mean depvar (pre, Bergen) 43.20 50.40 55.44 57.91 38.73 23.68
Change (%) -9.55 -9.97 -10.96 -10.99 -7.98 -8.59

Panel B: PM10

Bergen × Post -1.847 -2.236 -3.019 -2.665 -0.570 -0.639
(1.452) (1.704) (1.750) (1.683) (1.827) (0.850)

N 295,828 222,072 147,754 86,281 74,417 73,657
Mean depvar (pre, Bergen) 17.65 19.60 20.83 20.54 17.15 11.79
Change (%) -10.46 -11.41 -14.49 -12.97 -3.32 -5.42

Weather controls (Xist) ✓ ✓ ✓ ✓ ✓ ✓
Station FE (σs) ✓ ✓ ✓ ✓ ✓ ✓
Post ✓ ✓ ✓ ✓ ✓ ✓
Day-of-week×week×year FE (λywd) ✓ ✓ ✓ ✓ ✓ ✓
Day-of-week×time-of-day FE (θdis) ✓ ✓ ✓ ✓ ✓ ✓

Notes: Table shows average daily treatment effects (column 1) as well as treatment effects for 5 different time intervals
(columns 2-6) for NO2 (Panel A) PM10 (Panel B). Table shows results from 12 separate regressions. NO2 and PM10 are
measured as mean levels of (µg/m3) during a 60 minute interval. Post × Bergen refers to the coefficient β estimated from
Equation 4. Column headings indicate the sample used in each regression. Rush hours refers to the intervals 06:00-09:59
(morning) and 14:00-16:59 (evening). Non-rush hours, +/- 60 min refers to the 60 minutes right before and after rush
hours (i.e., 05:00-05:59, 10:00-10:59, 13:00-13:59, 17:00-17:59). Non-rush hours, other refers to the remaining non-rush
hours (i.e., 10:00-12:59 and 18:00-04:59). Sample is restricted to 2 years pre and post policy implementation. All fixed
effects are interacted with a holiday dummy. Standard errors are two-way clustered on week and station.

Figure F.7: Annual DiD effects on air pollution.

(a) Daily NO2

-1
5

-1
0

-5
0

5
10

15
N

O
2 

(u
g/

m
3)

2014 2015 2016 2017 2018
Year

(b) Daily PM10

-1
5

-1
0

-5
0

5
10

15
PM

10
 (u

g/
m

3)

2014 2015 2016 2017 2018
Year

Notes: Figure plots βt estimated from the following regression: yist =
∑3

t=−2[βtBergen× yeart] +X′
istγ + σs +

λywd + θdis + εist. Sample is restricted to weekdays and to the years 2014–2018. Panel (a) shows results for daily
NO2 concentrations while Panel (b) shows results for daily PM10. Pollution is measured as micrograms per cubic
meter of air (µg/m3). Standard errors are two-way clustered on week and station.

28



Figure F.8: DiD estimates on rush hour air pollution (µg/m3). Different fixed
effects and weather controls

(a) NO2: fixed effects
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(b) PM10: fixed effects
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(c) NO2: weather controls
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(d) PM10: weather controls
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Notes: Each panel shows results from 7 separate regressions. Dependent variable is rush hour air pollution measured
as mean levels of NO2 or PM10 (µg/m3) during a 60 minute interval. Panels (a) and (b) show robustness across fixed
effects specifications, with additional fixed effects progressively included as one moves down the y-axis. Panels (c) and
(d) show robustness across specifications with different weather controls, with additional controls progressively included
when moving from (1) to (7). Whiskers show 95 % confidence intervals. DoW is short for day of week. Standard errors
are two-way clustered on week and station.
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