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SUMMARY

Recurrent event time data arise in many studies, including in biomedicine, public health,
marketing and social media analysis. High-dimensional recurrent event data involving many
event types and observations have become prevalent with advances in information tech-
nology. This article proposes a semiparametric dynamic factor model for the dimension
reduction of high-dimensional recurrent event data. The proposed model imposes a low-
dimensional structure on the mean intensity functions of the event types while allowing for
dependencies. A nearly rate-optimal smoothing-based estimator is proposed. An informa-
tion criterion that consistently selects the number of factors is also developed. Simulation
studies demonstrate the effectiveness of these inference tools. The proposed method is
applied to grocery shopping data, for which an interpretable factor structure is obtained.

Some key words: Counting process; Factor analysis; Information criterion; Kernel smoothing; Marginal mod-
elling.

1. Introduction

As information technology advances, high-dimensional recurrent event data are becom-
ing increasingly common. For example, such data are commonly seen in market basket
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2 F. Chen et al.

analysis, which often tracks customers’ purchasing behaviour over time to develop personal-
ized recommendation strategies. In this case, each customer can be viewed as an observation
unit, and their shopping history can be viewed as a multivariate counting process, wherein
the elements of the process correspond to a large number of merchandise items and the event
times correspond to the times at which the items are purchased. Another example is text data
from social media platforms (e.g., Liang et al., 2018; Bogdanowicz & Guan, 2022). In such
data, a user’s dynamics correspond to a multivariate counting process, where event times
record the occurrence of words or phrases in posts. The user dynamics are often analysed
for user profiling, opinion mining, or understanding and predicting the information cascade
on a social media platform. High-dimensional recurrent event data also arise in human-
computer interactions such as simulated problem-solving tasks in educational assessment
(Chen, 2020), where event times are the time stamps of different types of actions. Data of a
similar structure also occur in medicine and public health, finance, and insurance (e.g., Sun,
2006; Cook & Lawless, 2007; Yang, 2022).

We propose a dynamic factor model for analysing high-dimensional recurrent event time
data. The model introduces low-dimensional time-varying factors in a continuous time
domain to capture the dynamic trends underlying a multivariate counting process while
keeping the constant event-type-specific parameters, known as the loadings, to strengthen
interpretability. The model is specified based on only the mean rate functions (Lin et al.,
2000), allowing for a flexible conditional dependence structure among the processes. This
is crucial in applications such as consumer shopping behaviour analysis, where recurrent
events could be highly dependent owing to population heterogeneity. Model identification
is studied, based on which rotation methods for exploratory factor analysis (Browne, 2001;
Rohe & Zeng, 2023) can be applied to the model to obtain an interpretable factor structure.
Simultaneous estimation of factors and loadings is proposed based on a kernel-smoothed
pseudolikelihood function. We further propose an information criterion for determining the
number of factors. Desirable asymptotic properties are established as the number of event
types and the sample size grow to infinity. In particular, we show that the proposed informa-
tion criterion consistently selects the number of factors, and the estimation is consistent and
nearly rate-optimal. The proposed method is applied to a large grocery shopping dataset.
The analysis finds interpretable customer factors that provide insight into grocery shopping
behaviours.

The proposed method is related to frailty models for recurrent event data (e.g., Abu-
Libdeh et al., 1990; Chen et al., 2005). These models introduce correlated event-type-specific
random effects (frailties) into the intensity functions to capture the dependence among
events. With many event types, the traditional frailty model has to introduce many random
effects and specify their joint distribution, making the model specification and parameter
estimation challenging. The proposed model is also related to dynamic factor models for
irregularly spaced longitudinal data (Lu et al., 2015; Tang et al., 2017; Chen & Zhang,
2020), where the dynamic factors are treated as stochastic processes and Bayesian or empir-
ical Bayesian inferences are performed. The proposed method may also be viewed as an
extension of high-dimensional factor analysis methods (Bai & Li, 2012; Wang et al., 2019;
Chen et al., 2020, 2021; He et al., 2023; Liu et al., 2023). In these methods, the latent
factors are treated as unknown parameters rather than random variables during
parameter estimation, which avoids distributional assumptions on the latent factors and
makes the estimation computationally more affordable. Based on this estimation frame-
work, information criteria are developed for determining the number of factors (Bai & Ng,
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Dynamic factor analysis of high-dimensional recurrent events 3

2002; Chen & Li, 2022). The present work is similar in spirit but involves a more challenging
task of estimating low-dimensional functions of dynamic factors.

For a matrix X = (xij)N×J , let ||X||F = (
∑

i,j x2
ij)

1/2 and ||X||2→∞ = sup||α||2=1 ||Xα||∞

denote its Frobenius norm and two-to-infinity norm, respectively. For two real num-
bers a and b, we write a ∧ b = min{a, b} and a ∨ b = max{a, b}. For two sequences
of real numbers {an} and {bn}, we write an ≪ bn or, equivalently, an = o(bn) if
limn→∞ an/bn = 0, write an = O(bn) (or an ≲ bn) if there is a positive constant M
independent of n such that |an|⩽M|bn| for all n, and write an ≍ bn if there are two pos-
itive constants M1 and M2 independent of n such that M1|bn|⩽ |an|⩽M2|bn|. We use the
standard Op(·) notation for stochastic boundedness in probability. We let L2

N×J[0, 1] =

{(fij(t))N×J : 0⩽ t⩽ 1, ||fij||L2[0,1] < ∞ for all i and j} be the space of (N × J)-dimensional
square-integrable matrix-valued functions on [0, 1].

2. Proposed method

2.1. Model

Consider multivariate recurrent event data from N independent observation units on
a standardized time interval [0, 1]. The data from observation unit i can be described by
Yi(t) = (Yi1(t), …, YiJ(t))T, where J is the number of event types and each component
Yij(t) is a right-continuous counting process. We introduce a factor model to reduce the
dimensionality of the data and to further identify and interpret the factors underlying
the observed processes. A marginal modelling approach (Lin et al., 2000) is adopted to
accommodate a more flexible conditional dependence structure among the processes. This
approach specifies the mean rate function for each event type j as

E{dYij(t)} = f {Xij(t)} dt, (1)

where f : R → [0, ∞) is a prespecified link function and Xij(t) is an unknown function with
a low-dimensional structure. Specifically, Xij(t) is parameterized as

Xij(t) =

r∑
k=1

ajkθik(t), (2)

where the θik(·) are functions that may be interpreted as unobserved dynamic factors, the
ajk are referred to as the loading parameters, and r is the number of factors. We let 2(t) =

(θik(t))N×r, A = (ajk)J×r and X(t) = (Xij(t))N×J . Rewriting (2) in matrix form, we have
X(t) = 2(t)AT, where both 2(·) and A are to be estimated.

Remark 1 (Link function). The link function f is needed to ensure that the mean rate func-
tion is nonnegative. For simplicity, we let f be known and set f (x) = exp(x) in the numerical
analysis. Extensions to the setting with unknown f can be obtained by estimating the link
function nonparametrically, for example via nonnegative basis function approximations.

Remark 2 (Intensity formulation). As an alternative to the mean rate specification (1),
one can model the intensity functions as E{dYij(t)|Ft} = f {Xij(t)} dt for a suitable right-
continuous filtration {Ft}0⩽ t⩽ 1 that leads to a martingale structure (Andersen et al., 1993).
As pointed out by Lin et al. (2000), the mean rate specification (1) is more versatile than
the intensity specification in that it allows arbitrary dependence structures among recurrent
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4 F. Chen et al.

events. For example, in the analysis of customer purchasing behaviour, multiple merchandise
items may be purchased simultaneously and thus have the same event time. When analysing
user dynamics on a social media platform, multiple words or phrases often appear in the
same post and thus have the same event time. The intensity specification implies independent
increments, i.e., dYij(t) (j = 1, …, J) are conditionally independent given Ft. As a result,
dYij(t) = 1 can only occur to one of the J event types for a specific time t, which does not
align with the real-world situations mentioned previously. The mean rate specification does
not have this restriction.

Remark 3 (Connection with factor models). The proposed model is closely related
to the Poisson factor model for count data. Consider a special case of (1) where the
Yij(t) (j = 1, …, J) are independent Poisson processes with static factors θik, i.e., f {Xij(t)} =

f
( ∑r

k=1 ajkθik
)
. In this case, the counts {Yij(1) : i = 1, …, N; j = 1, …, J} constitute a

sufficient statistic for the unknown parameters, with the Yij(1) following a Poisson distri-
bution with rate f

( ∑r
k=1 ajkθik

)
. This model for count data is known as the Poisson factor

model (Wedel & Kamakura, 2001; Chen et al., 2020), where the ajk are known as the loading
parameters and the θik are interpreted as the unobserved factors. In this sense, the proposed
model (1) and (2) can be viewed as an extension of the Poisson factor model. The Poisson
factor model can be estimated by a constrained joint maximum likelihood estimator (Chen
et al., 2020), which is consistent and minimax rate-optimal under suitable regularity condi-
tions. Our model is also closely related to matrix factor models (Wang et al., 2019; He et al.,
2023) in that the data at each time can be viewed as a matrix. A major difference is that our
model is posed on a continuous time domain, with the observed data being very sparse at
each time. In contrast, the matrix factor models assume a discrete time domain.

Remark 4 (Indeterminacy of 2(·) and A and a rotated solution). In our model, 2(·) and
A are not determined, in the sense that for any r × r invertible matrix Q, the model remains
unchanged if we replace the factors by 2(t)(QT)−1 and the loadings by AQ. Similar inde-
terminacies occur in other factor models (see, e.g., Bai & Li, 2012). To interpret the factor
structure, one must fix the transformation Q, which may be done by using an analytic rota-
tion method (Browne, 2001; Rohe & Zeng, 2023). However, the current setting is slightly
different from standard exploratory factor analysis settings, as the factors here are func-
tions of time t. To apply existing analytic rotation methods, we could first aggregate the
factors by calculating 2̄ =

∫ 1
0 2(t) dt and then apply an analytic rotation method to 2̄AT.

In the real data analysis in § 5, a varimax rotation method (Kaiser, 1958; Rohe & Zeng, 2023)
is applied to fix the transformation.

Remark 5 (Time-varying loadings). The flexibility of the model can be further enhanced
by letting the loading parameters be time-varying, i.e., Xij(t) =

∑r
k=1 ajk(t)θik(t). How-

ever, this model is far less determined than the current model as X(t) = 2(t){A(t)}T
=

2(t){Q(t)T
}
−1

{A(t)Q(t)}T for any r × r invertible matrix-valued function Q(t). Deter-
mining this transformation function Q(t) is more challenging than determining the time-
independent transformation discussed in Remark 4. Consequently, it is hard to identify and
interpret the factor structure. In our grocery shopping application, each event type cor-
responds to a merchandise item, and each observation corresponds to a customer. In this
context, the loading parameters can be viewed as a summary of item characteristics, and the
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Dynamic factor analysis of high-dimensional recurrent events 5

factors can be interpreted as a summary of customer preferences. Because item character-
istics tend to be stable while customer preferences often vary over time, treating the loading
parameters as static and the factors as dynamic is sensible. Therefore, this work focuses on
the static loading and dynamic factor setting.

2.2. Estimation

We introduce a kernel-based approach to estimating the unknown parameters. Kernel
smoothing borrows information from nearby time-points because the observed events are
very sparse at each single time-point in the continuous time domain. Let K(x) be a kernel
function with sufficient smoothness, satisfying K(x)⩾ 0, K(−x) = K(x) and

∫
∞

−∞
K(x) dx =

1. For a smoothing bandwidth h > 0, we further define Kh(x) = (1/h)K(x/h). We consider
the following kernel-smoothed pseudolikelihood function:

Lh(2,A) =

N∑
i=1

J∑
j=1

∫ 1−h

h

[∫ 1
0 Kh(t − s) dYij(s)∫ 1

0 Kh(t − s) ds
log f {Xij(t)} − f {Xij(t)}

]
dt, (3)

where Xij(t) is a function of 2 and A as defined in (2). We consider the parameter space G =

{(2,A) : supt∈[0,1] ||2(t)||2→∞ ⩽M1/2, ||A||2→∞ ⩽M1/2
}, where M > 0 is a prespecified

constant. We define (2̂, Â) as a constrained maximizer of (3),

(2̂, Â) ∈ arg maxLh(2,A) such that (2,A) ∈ G. (4)

Since the parameter space G is compact and Lh(2,A) is continuous with respect to the
norm ||(2,A)|| := supt∈[0,1] ||2(t)||2→∞ ∨ ||A||2→∞, the existence of at least one solution

is guaranteed. Therefore, (2̂, Â) is well-defined.

Remark 6. The pseudolikelihood (3) ignores the possible dependence between event types
that is allowed under the mean rate specification (1). If (1) is replaced by an intensity
specification, i.e., E{dYij(t)|Ft} = f {Xij(t)} dt, and we let h go to 0, then (3) becomes the
loglikelihood function for recurrent event time data (Cook & Lawless, 2007).

Remark 7. In practice, we can only obtain an approximate solution to (4), as the opti-
mization involves infinite-dimensional functions. When the resolution of the approximation
is carefully chosen, this approximate solution can achieve the same error rate as that of (4).
More specifically, the approximate solution is obtained by a two-step procedure. In the first
step, we discretize the interval [h, 1 − h] by equally spaced grid points t1, …, tq and solve

(2̃(t1), …, 2̃(tq), Ã) ∈ arg max Lh{2(t1), …, 2(tq),A}

such that ||2(tl)||2→∞ ⩽ M, ||A||2→∞ ⩽M (l = 1, …, q),

where

Lh{2(t1), …, 2(tq),A}

=

N∑
i=1

J∑
j=1

q∑
l=1

[∫ 1
0 Kh(tl − s) dYij(s)∫ 1

0 Kh(tl − s) ds
log f {Xij(tl)} − f {Xij(tl)}

]
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6 F. Chen et al.

is the pseudolikelihood defined on the grid points. In the second step, based on 2̃ we find
an approximation to 2̂ on [h, 1 − h] by interpolation, such as a linear interpolation. By
choosing the number of grid points to be inversely proportional to the error rate of (4), the
approximate solution is guaranteed to achieve the same error rate. An efficient projected
gradient descent algorithm is developed to obtain the approximate solution. This algorithm
handles the constraints based on the two-to-infinity norm with an easy-to-compute projec-
tion operator. The details of the algorithm and its convergence properties are given in the
Supplementary Material.

2.3. Determining the number of factors

In practice, the number of factors r is unknown and needs to be chosen. We propose

an information criterion for choosing r. To avoid ambiguity, we let (2̂
(r)

, Â(r)) denote the
estimator (4) to emphasize its dependence on the number of factors. The proposed infor-

mation criterion takes the form ic(r) = −2Lh(2̂
(r)

, Â(r)) + v(N, J, r), where v(N, J, r) is a
penalty term that increases with N, J and r. The conditions on v(N, J, r) for consistent model
selection will be determined in § 3.2. Given v(N, J, r), we choose the number of factors by
r̂ = arg minr∈Ric(r), where R ⊂ N is a candidate set for the number of factors. As shown
in § 3, under suitable conditions on the penalty term and additional regularity conditions,
r̂ consistently selects the number of factors. In our implementation, the pseudolikelihood

Lh(2̂
(r)

, Â(r)) in ic(r) is replaced by its discretized version as discussed in Remark 7.

3. Theoretical properties

3.1. Consistency and rate of convergence

We present our main theoretical results about the estimator proposed in § 2.2. When
deriving these results, the number of factors is assumed to be correctly specified. To avoid
ambiguity of notation, we let 2∗(·) and A∗ denote the true parameters and further let
X∗(t) = 2∗(t)(A∗)T. To avoid the complications arising from the indeterminacy of 2(·)

and A, we focus on evaluating the estimation accuracy of X̂(t) := 2̂(t)ÂT. Let m⩾ 1 be a
positive integer. We assume the following regularity conditions.

Condition 1. The link function f is m times continuously differentiable. Moreover, for
x ∈ [−M, M], f (x) and f ′(x) are bounded away from 0.

Condition 2. The matrix function X∗(·) ∈ G is m times continuously differentiable on
[0, 1].

Condition 3. The kernel function K satisfies the following properties: (i) it is a Lipschitz
function of order m with compact support on [−1, 1]; (ii) it attains its unique maxi-
mum at x = 0; (iii) it is twice continuously differentiable in a neighbourhood of 0 and
(log K)′′(0) < 0.

Condition 4. (i) The multivariate point processes {Y1j(·) : j ∈ [J]}, …, {YNj(·) : j ∈ [J]}

are independent. (ii) There exists λ > 0 such that for any i, j, k and 0 < s1 < · · · < sk < 1,
E{dYij(s1) · · · dYij(sk)}⩽ λk ds1 · · · dsk. (iii) For any i, there exists a partition Bi,1, …, Bi,Wi

of {1, …, J} and a function φ(J) = o(J) satisfying maxi=1,…,N maxk=1,…,Wi |Bi,k|⩽φ(J)
such that {Yij(·) : j ∈ Bi,1}, …, {Yij(·) : j ∈ Bi,Wi} are independent.
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Dynamic factor analysis of high-dimensional recurrent events 7

Remark 8. In Condition 1, both f (x) and f ′(x) are assumed to be nonzero in [−M, M].
This requirement is rather mild. In particular, it is automatically satisfied when f (x) is strictly
positive and monotone increasing (or decreasing), including when f (x) = exp(x).

Remark 9. Condition 2 requires the true model to lie in the same parameter space G as
the one used to regularize our estimator (4). This requirement, together with Condition 1,
implies that the mean rate function f {Xij(t)} is nonnegative and uniformly bounded away
from zero for all i, j and t. In the context of our grocery shopping application, it means
that the proposed method is most suitable for analysing customers who shop frequently
and items that are frequently purchased. The size of this parameter space plays a key role
in the theory about model estimation and selection. Condition 2 also imposes a smoothness
requirement that is standard in nonparametric regression models (Györfi et al., 2002).

Remark 10. Parts (i) and (ii) of Condition 3 are standard assumptions for kernel functions.
Condition 3(iii) assumes log-concavity at the maximum point.

Remark 11. Condition 4(i) assumes that the observed dataYi(t) = (Yi1(t), …, YiJ(t))T are
independent across observational units i = 1, …, N. Condition 4(ii) assumes nondegeneracy
of the counting process. Condition 4(iii) assumes a blockwise-independent structure, which
substantially relaxes the independence assumption among different event types. We restrict
the maximum block size rather than assuming the blockwise-independent structure to be the
same across observations i = 1, …, N. Condition 4(iii) can be further relaxed. Instead of
requiring the processes in all the blocks to be independent, the results in Theorems 1 and 3
are still valid if only {Yij(·) : j ∈ Bi,1}, …, {Yij(·) : j ∈ Bi,Wi−1} are independent. This relaxed
condition allows the processes in Bi,Wi to be dependent on all the rest of the processes.
Condition 4(iii) can be seen as a condition for the low-rank structure X(t) to be identifiable,
as it excludes the noise in the data having a low-rank structure through the independence or
blockwise-independence assumption. The assumption of blockwise independence is similar
in spirit to the weakly dependent error assumption adopted in approximate factor models
(e.g., Chamberlain & Rothschild, 1983; Bai & Ng, 2023) and may be seen as a version of the
weakly dependent error assumption for factor models of high-dimensional recurrent event
data.

Theorem 1 (Upper bound). Under Conditions 1–4, the following results hold.

(i) (Dependent case) Assume J = O(N) and recall φ(J) from Condition 4(iii). For
any δ > 0, choose h ≍ {J/φ(J)}−1/(2m+1)+δ/m. Then, as N and J go to infinity,

1
NJ

∫ 1−h

h

∥∥X̂(t) − X∗(t)
∥∥2

F dt = Op
[
{J/φ(J)}−m/(2m+1)+δ

]
.

(ii) (Independent case) Assume that φ(J) = 1 in Condition 4(iii) and log(N ∨ J) ≪

N ∧ J. For any δ > 0, choose h ≍ [(N ∧ J)/{log2(N ∧ J)}]−1/(2m+1). Then, as N and
J go to infinity,

1
NJ

∫ 1−h

h

∥∥X̂(t) − X∗(t)
∥∥2

F dt = Op
{
(N ∧ J)−2m/(2m+1)+δ

}
.
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8 F. Chen et al.

To show the near optimality of the proposed estimator, we derive the minimax lower
bound under the independent Poisson process setting in the following theorem.

Theorem 2 (Lower bound). Assume that the Yij are independent Poisson point processes
and φ(J) = 1 in Condition 4(iii). Further assume that sup|x|⩽M f ′(x)2/f (x) <∞. Then there

is an absolute constant C > 0 such that for any estimator X̂(t) ∈ L2
N×J[0, 1] there exists an

X∗(t) satisfying Condition 2 such that

pr

{
1

NJ

∫ 1

0

∥∥X̂(t) − X∗(t)
∥∥2

F dt⩾C(N ∧ J)−2m/(2m+1)

}
⩾

1
2

.

Hence, this information-theoretic lower bound matches the upper bound in Theorem 1
only up to an arbitrarily small exponent under the independence assumption, which implies
the near minimax optimality of our estimator.

Remark 12. When the blockwise-independent structure is the same across observations
(i.e., Wi = W and Bi,w = Bw for i = 1, …, N and w = 1, …, W ), we can sharpen the rate in
Theorem 1(i) from −m/(2m + 1) + δ to −2m/(2m + 1) + δ and establish its near minimax
optimality.

Remark 13. Because of the rotational indeterminacy mentioned in Remark 4, the esti-
mated loading matrix Â is not guaranteed to converge to the true loading matrix A∗.
However, it can be shown that the maximum principal angle between the column spaces of
Â and A∗ converges to zero in probability under the same conditions as in Theorem 1 and
an additional regularity condition on the singular values of X∗(t). See the Supplementary
Material for more details.

3.2. Model selection consistency

As introduced in § 2.3, v(N, J, r) is the penalty function in the information criterion. As
v(N, J, r) is required to be increasing in r, we write u(N, J, r) = v(N, J, r)−v(N, J, r−1) > 0.
Further, for any t ∈ [0, 1], let σ1,t ⩾ σ2,t ⩾ · · · ⩾ σr∗,t be the nonzero singular values of X∗(t).
Theorem 3 provides sufficient conditions on u(N, J, r) for consistent model selection.

Theorem 3 (Model selection consistency). Assume that the candidate set R has a finite
number of elements and r∗

∈ R. Under Conditions 1–4, the following results hold.

(i) (Dependent case) Assume J = O(N) and that the function u satisfies u(N, J, r) =

o
( ∫ 1−h

h σ 2
r∗,t dt

)
and NJ{J/φ(J)}−m/(2m+1)+δ

= o{u(N, J, r)} for any sufficiently
small δ > 0 and any r ∈R as N and J go to infinity. Choose h ≍ {J/φ(J)}−1/(2m+1)+δ/m.
Then limN,J→∞ pr(r̂ = r∗) = 1.

(ii) (Independent case) Assume that φ(J) = 1 in Condition 4(iii), log(N ∨J) ≪ N ∧J, and
the function u satisfies u(N, J, r) = o

( ∫ 1−h
h σ 2

r∗,t dt
)

and NJ (N ∧ J)−2m/(2m+1)+δ
=

o{u(N, J, r)} for any sufficiently small δ > 0 and any r ∈ R as N and J go to infinity.
Choose h ≍ [(N ∧ J)/{log2(N ∧ J)}]−1/(2m+1). Then limN,J→∞ pr(r̂ = r∗) = 1.

Remark 14. The two conditions on u(N, J, r) in both the dependent and the indepen-
dent cases are needed to ensure the existence of a suitable penalty that guards against both

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/3/asaf028/8111905 by guest on 22 July 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf028#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf028#supplementary-data


Dynamic factor analysis of high-dimensional recurrent events 9

overselection and underselection of the number of factors. For such a function u to exist,∫ 1−h
h σ 2

r∗,t dt cannot be too small. The first condition u(N, J, r) = o
( ∫ 1−h

h σ 2
r∗,t dt

)
requires

that u(N, J, r) be smaller than the integral of the gap between nonzero singular values and
zero singular values of X∗(·). It ensures that the probability of underselecting the number
of factors will be small. The second condition requires that u(N, J, r) grow faster than the
upper bound of the estimation error, which guarantees that, with high probability, we do
not overselect the number of factors.

Remark 15. The results in Theorems 1 and 3 can be extended if it is of interest to use a
kernel function supported on the whole real line, such as the Gaussian kernel. In such cases,
Condition 3 needs to be modified. The details are given in the Supplementary Material.

Remark 16. The results of Theorems 1 and 3 can also be extended to a missing data setting
under an ignorable missingness assumption. Let ωij be a binary random variable indicating
the missingness of {Yij(t) : t ∈ [0, 1]}, where ωij = 1 means that {Yij(t) : t ∈ [0, 1]} is
observed and ωij = 0 means that {Yij(t) : t ∈ [0, 1]} is missing. We can still establish results
corresponding to Theorems 1 and 3 under suitable conditions based on a pseudolikelihood
function that replaces the summations over all i and j in (3) by summations over i and j such
that ωij = 1.

4. Simulation study

We evaluate the proposed estimator and information criterion with a simulation study.
In this study, we generate data from the proposed model, where the number of factors is
set to r∗

= 3 and the numbers of observation units and event types satisfy N = 2J. We
consider three patterns for the dynamic component 2∗(t), denoted by C1, C2 and C3, in
which 2∗(t) is constant, changes linearly and changes periodically, respectively. We further
consider two different settings for generating A∗, denoted by S1 and S2, resulting in two
different signal-to-noise levels, where setting S1 has a stronger signal than setting S2. We
vary the number of event types J by setting J = 100, 200, 400 and 800. Finally, we consider
data generation under the dependent and independent settings in Theorem 1. The factors
discussed above lead to a total of 24 simulation settings. For each setting, 50 independent
replications are generated. The proposed method is compared with the Poisson factor model
discussed in Remark 3, which ignores the dynamic nature of the process and is concerned
only with the total event counts on the entire time interval. Following a similar proof to that
for Theorem 1, the likelihood-based estimator under the Poisson factor model is consistent
even under the dependent-event-type settings where 2∗(t) is constant. As the Poisson factor
model involves fewer parameters, it is expected to be statistically more efficient than the
proposed estimator in the settings where 2∗(t) is constant. In the other settings, the Poisson
factor model has biases as it ignores the dynamic nature of the event data.

We now elaborate on the data generation and results in some settings with dependent
event types. Further details about the simulations are given in the Supplementary Material.
More simulations are performed in the Supplementary Material under additional settings,
including those with independent event types, more event types than observation units,
and modified specifications for 2∗(t) and A∗ that lead to even weaker signals. While the
results vary across settings, their patterns are consistent with the results of the simulations
reported here.
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Table 1. Mean estimation error among 50 independent replications based on the proposed
estimator and the estimator under the Poisson factor model in 24 simulation settings

S1 S2

Kernel-based method C1 C2 C3 C1 C2 C3
J = 100 0.1006 0.1174 0.1048 0.1371 0.1606 0.1407
J = 200 0.0536 0.0630 0.0562 0.0692 0.0806 0.0727
J = 400 0.0291 0.0350 0.0308 0.0378 0.0437 0.0398
J = 800 0.0159 0.0190 0.0170 0.0205 0.0240 0.0217

Poisson factor model C1 C2 C3 C1 C2 C3
J = 100 0.0154 0.9743 0.7518 0.0192 0.6928 0.5530
J = 200 0.0073 0.9785 0.7611 0.0091 0.6830 0.5458
J = 400 0.0036 0.9773 0.7442 0.0046 0.6911 0.5442
J = 800 0.0018 1.0012 0.7542 0.0023 0.6955 0.5491

We set φ(J) = J1/3 and generate data {Yij(t) : t ∈ [0, 1]} as follows. First, we divide the
event types j = 1, …, J into ⌊J/φ(J)⌋ blocks of approximately equal sizes B1, …, B⌊J/φ(J)⌋,
where ⌊J/φ(J)⌋ denotes the greatest integer less than or equal to J/φ(J). Second, for the kth
block, we generate a Poisson process with intensity function fk(t) := maxj∈Bk f {X∗

ij (t)} =

f {maxj∈Bk X∗
ij (t)} and denote the generated event times by 0 < tk,1 < · · · < tk,pk < 1. Finally,

using a thinning algorithm (Chen, 2016), for each i = 1, …, N and each j ∈ Bk we accept
tk,1, …, tk,pk with probabilities f {X∗

ij (tk,1)}/fk(tk,1), …, f {X∗
ij (tk,pk)}/fk(tk,pk) independently

and let the accepted time-points be the event times of Yij(t). The resulting processes are
guaranteed to follow the proposed model. We choose the Epanechnikov kernel function
K(x) = 0.75(1 − x2) for −1⩽ x⩽ 1, with kernel order m = 2. It is easy to verify that the
chosen kernel function satisfies Condition 3. The link function is f (x) = exp(x). We set
h = 0.1{J/φ(J)}−0.19 and M = 36. Our estimation is based on a discretized likelihood
with 31 evenly distributed time-points t1, …, t31 on [h, 1 − h]. A sensitivity analysis is per-
formed in the Supplementary Material with respect to the number of grid points, which
suggests that the choice of 31 is sufficient for our simulation settings. After the estimation,
we obtain X̂(t) for t ∈ [h, 1 − h] by a linear interpolation. The estimation error is evaluated
by

∫ 1−h
h ||X∗(t) − X̂(t)||2F dt/(NJ). Under the Poisson factor model, we obtain Â and 2̂.

We compute
∫ 1−h

h ||X∗(t) − X̂(t)||2F dt/(NJ) as its estimation error, where X̂(t) = 2̂ÂT is
constant over time.

The results regarding the estimation errors are given in Table 1. They show that for each
combination of Si and Cj, with i = 1, 2 and j = 1, 2, 3, the estimation error of the proposed
method decays as N and J grow. In settings where 2∗(t) is constant (i.e., C1), the estimator
given by the Poisson factor model has smaller errors than the proposed estimator. In the
rest of the settings, the proposed estimator yields substantially smaller estimation errors
than those under the Poisson factor model. In the Supplementary Material, the two models
are also compared in terms of recovering the loading matrix A∗. Because of the rotational
indeterminacy mentioned in Remark 4, we measure the accuracy by the principal angles
between the subspace spanned by the column vectors of A∗ and that spanned by those of Â.
The results show that the proposed method provides substantially more accurate estimates
of A∗ in settings where the Poisson factor model is misspecified and yields similar but slightly
less accurate estimates when the Poisson factor model is correctly specified.

Finally, we evaluate the accuracy in selecting the number of factors. We set the penalty
term to v(N, J, r) = 40rNJh1.99 and select r from the candidate set {1, 2, 3, 4, 5}. According to
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Table 2. Products with large positive factor loadings for each of the three factors
Factor 1 yogurt (10), salad (3), herbs (parsley, cilantro) (3), organic fruit/vegetable (3),

blueberry (3), mushroom (2), tropical fruit (mango, pineapple) (2), beans (2),
pepper (2), cheese (2)

Factor 2 soft drink (11), cold cereal (5), hot sauce (5), refrigerated drink (4), chicken wings (4),
frozen meat (3), dinner sausage (3), candy (3), frozen pizza (2), cigarette (2),
potato chips (2), canned pasta (2)

Factor 3 cheese (7), milk (5), white bread (4), fruit (banana, grape, strawberry) (4), egg (4),
vegetable (cucumber, celery, cabbage, corn) (4), onion (4), salad (3), soft drink (2),
hamburger bun (2), beef (2), tomato (2), potato (2)

our simulation results, the number of factors is always correctly selected in all the simulation
settings, except for three settings where J = 100 and the signal-to-noise level follows S2. For
these three cases (i.e., C1–C3), 13, 29 and 10 out of 50 replications mis-select the number of
factors. Overall, the proposed information criterion shows effective performance.

5. Application to grocery shopping data

5.1. Background, data processing and analysis

We apply the proposed method to a grocery shopping dataset available at https:
//www.dunnhumby.com/source-files. It contains transaction records collected by a
retailer over two years about its frequent shoppers. We discard the first 15% of the obser-
vation period since the number of transactions is significantly lower than in the rest of the
period, likely due to late entries. The remaining period is then standardized to the interval
[0, 1]. After pre-processing, we obtain a dataset with N = 1978 shoppers and J = 2000
products. The dataset contains information on each product regarding its type (e.g., cheese,
chips); it also contains demographic information on 796 shoppers, including age, income
and whether or not they have children. This information is not used in the proposed model
but is used for validating and interpreting our results. Here, the matrix-valued function 2(·)
may be interpreted as the dynamic customer factors, and the matrix A may be interpreted
as the attributes of the products. We apply the proposed information criterion with the can-
didate set {1, 2, 3, 4, 5}, which selects r = 3 factors. Following the discussion in Remark 4,
we apply a varimax rotation for the selected three-factor model to obtain an interpretable
factor structure.

5.2. Interpretation of factors

We interpret the factors based on the estimated loading matrix after rotation. Specifically,
let Ã = (ãij)J×r be the loading matrix after rotation. We say that a product j dominantly
loads on factor k if ã2

jk/(
∑r

l=1 ã2
jl) is large, i.e., ãjk is dominant in magnitude over the rest

of the loadings. We investigate the top 60 products that dominantly load on each factor.
Table 2 lists the types of these products. Many products with dominant loadings on the
same factor tend to be of a small number of types. These types are presented only once in
the table, followed by the corresponding number of products of this type in parentheses.
Product types that appear only once for each factor are omitted for brevity.

Table 2 shows that the items with dominant loadings on the first factor are mostly fresh
and healthy food products suitable for vegetarian diets. Items with dominant loadings on the
second factor contain unhealthy (e.g., soft drinks, candy, potato chips), fast food (e.g., cold
cereal, frozen pizza) or budget-friendly (e.g., frozen meat) products. Finally, items that load
dominantly on the third factor are mostly basic food products of daily need, including bread,
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Table 3. Coefficients when regressing the factors on demographic variables
Factor 1 (R2

= 0.13) Factor 2 (R2
= 0.17) Factor 3 (R2

= 0.02)

age –0.007 (p = 0.00) 0.006 (p = 0.00)
income1 0.006 (p = 0.00) –0.005 (p = 0.02)
income2 0.015 (p = 0.00) –0.021 (p = 0.00)
child –0.007 (p = 0.01) 0.010 (p = 0.00)
income2 × child 0.009 (p = 0.01)

eggs, milk and beef. While these products include many fresh and healthy food products
similar to those loading on the first factor, they tend to be more budget-friendly. Given
these features, we may interpret the three factors as healthy food consumption, unhealthy
food consumption and basic food consumption factors, respectively.

We further investigate the three factors by regressing them on the three demographic
variables of age, income and child. Here, ‘age’ is an ordinal variable referring to the estimated
age range of the shopper. For simplicity, we transform it into a binary variable which takes
value 1 if the shopper is aged over 55 and 0 otherwise. The variable ‘income’ is an ordinal
variable recording the shopper’s household income level. We simplify it to a variable with
three categories: under $35 000 (income1 = 0, income2 = 0), $35 000–$75 000 (income1 = 1,
income2 = 0) and above $75 000 (income1 = 0, income2 = 1). Finally, the variable ‘child’ is
a binary variable indicating whether the shopper’s household has children. We run a linear
regression model for each factor by regressing the factor scores on age, income1, income2,
child, and the interactions between child and income1 and income2. The interaction terms
are added because it is suspected that the child effect differs between high- and low-income
households.

The results from these regression models are reported in Table 3, where the statistically
significant coefficients and their p-values are presented and the R-squared values of the
three models are given. As the coefficients for the interaction between the dummy variable
income1 and child are insignificant in all three models, the corresponding row is not pre-
sented. All the terms are statistically significant for the first factor, except for age and the
interaction between income1 and child. In particular, the coefficients associated with the
summary variables for income are all positive, meaning that the consumption of healthy
food increases with household income, controlling for the rest of the variables. In addition,
the coefficient for child is negative, and the coefficient for the interaction between income2
and child is positive and larger in absolute value than the coefficient for child. This means
that households with lower income (up to $75 000) tend to buy less healthy food when they
have children, while those with higher income (above $75 000) tend to buy more healthy
food when they have children.

All the coefficients are significant for the second factor, except those associated with the
two interaction terms. The coefficient for age is negative, suggesting that the older group
tends to consume less unhealthy food than the younger one, controlling for the rest of the
variables. The coefficients for income are also negative, suggesting that households with
higher income tend to consume less unhealthy food when controlling for the rest of the vari-
ables. On the other hand, the coefficient for child is positive, meaning that households with
children tend to consume more unhealthy food. This may be because this food category con-
tains most soft drinks and snacks such as candy and potato chips that children often favour.

Regarding the third factor, only the coefficient for age is statistically significant, and the
R-squared value is quite low. The positive coefficient means that older people consume more
basic food products. Taken together with the results for the second factor, this may indicate
that older people tend to have a healthier lifestyle. Although they do not seem to consume
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Fig. 1. Quartiles of the variability of the most frequently purchased product types: (a) first quartile; (b) second
quartile, i.e., median; (c) third quartile.

more healthy food associated with the first factor, they may cook more frequently using
basic food products and eat less unhealthy food than the younger group.

5.3. Investigating purchase dynamics

We further investigate the dynamic trend that the model captures. In particular, for each
pair consisting of consumer i and product j, we measure the variability in the personal
purchasing rate by the total variation of Xij(·), i.e.,

∫ 1
0 |X ′

ij(t)| dt, where X ′
ij(t) denotes the

derivative of Xij(t). A larger total variation implies a higher variability. Under the estimated
three-factor model, we estimate this variability based on the finite differences between X̂ij(t)
for time t at adjacent grid points.

The variability measure is computed for 1019 products of 18 product types that are most
frequently purchased. For each product type, we look at the empirical distribution of the
estimated total variations based on all the shoppers and all the products of this type and
compute its quartiles, i.e., the 25%, 50% (i.e., median) and 75% percentiles. The results are
displayed in Fig. 1, where the 18 product types are organized in descending order for each
quartile. The ranking of product types is reasonably stable across the three quartiles and
consistent with our understanding of their sales pattern. We remark that dimension reduc-
tion is important for the proposed method to produce these results. One cannot obtain
sensible results by averaging the sales of the products over shoppers because of the high
level of noise in the data.

Vegetables, tropical fruits, yogurt and soft drinks are product types with consistently high
variability scores across all three quartiles. The price and quality of many vegetables and
fruits depend on their growing seasons. In addition, tropical fruits are imported products
whose price and supply depend on additional factors that fluctuate over time, such as trans-
portation costs. Owing to the previously mentioned factors, these products show higher
variability in their sales. On the other hand, the higher variability of yogurt and soft drinks
may be due to seasonal shifts in consumer demand. The demand for these products tends
to increase during warmer months and decrease during colder months when warming foods
and drinks are preferred.

Dairy products, eggs, beef and candy displayed at the checkout lane are product types
with consistently low variability. These are staples in many people’s diets. Their supply and

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/3/asaf028/8111905 by guest on 22 July 2025



14 F. Chen et al.

demand are typically stable throughout the year. The sales of candies displayed in the check-
out lane are expected to be stable because of their constant high visibility, accessibility and
affordability, which are barely affected by economic conditions or other seasonal factors.

6. Discussion

The theoretical results for the proposed estimator in the dependent event setting could be
improved. There is a gap between the error rates in the dependent and independent settings
in Theorem 1, and in particular the convergence rate is slower when φ(J) is of a constant
order in the upper bound for the dependent setting than for the independent setting. This
could be an artefact of our proof strategy, as certain random matrix results that are key
to establishing the upper bound for the independent setting do not apply to the dependent
setting. As discussed in Remark 12, the gap can be filled when the blockwise-independent
structure does not vary across individuals. Under the more general individual-specific block-
wise structure in Condition 4, this gap may still be filled with a more refined analysis. We
leave this problem for future investigation.

The current method is not specifically designed for forecasting, though it still has some
prediction power. For example, one could predict events associated with the existing obser-
vation units and event types at a future time-point (i.e., t > 1) based on f {X̂(1 − h)}. Such a
prediction would be sensible if the model still holds after time 1, and X∗(1−h) and X∗(t) are
close to each other owing to the smoothness of the function. We can improve the prediction
power of the proposed method by further assuming a stochastic model, such as a Gauss-
ian random field model, for the latent process X(t) and estimating it based on our estimate
X̂(t). Such a model may allow us to better predict future events, even if they are associated
with new observation units or event types not used in the model training, as long as the new
observation units and event types are from the same populations as the existing ones.

A useful application of the proposed method is for detecting changes in each observation
unit, which may be of interest in many applications. For example, in the grocery shopping
application, a change in the dynamic factor of a household may imply a structural change
in consumer behaviour, based on which an individualized marketing strategy may be devel-
oped. Although we currently require each θik(t) to be sufficiently smooth, this requirement
can be relaxed to allow each θik(t) to be a piecewise-smooth function. Using the proposed
method, changes can be detected based on the estimated functions, which is closely related
to change-point detection in the nonparametric regression literature (e.g., Xia & Qiu, 2015).
Methods and theories remain to be developed for optimally localizing the changes based on
the estimated functions.
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Supplementary material

The Supplementary Material includes proofs of the theoretical results, the computational
algorithm, details of the simulation settings and additional simulation results. The code
for our simulation study and real data analysis is available at https://github.com/
Fangyi-Chen98/CountingProcessFactor.
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