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According to chunking theories, children discover their first words by extracting subsequences embedded in
their continuous input. However, the mechanisms proposed in these accounts are often incompatible with
data from other areas of language development. We present a new theory to connect the chunking accounts
of word discovery with the broader developmental literature. We argue that (a) children build a diverse
collection of chunks, including words, multiword phrases, and sublexical units; (b) these chunks have
different processing times determined by how often each chunk is used to recode the input; and (c) these
processing times interact with short-term memory limitations and incremental processing to constrain
learning. We implemented this theory as a computational modeling architecture called Chunk-Based
Incremental Processing and Learning (CIPAL). Across nine studies, we demonstrate that CIPAL can model
word discovery in different contexts. First, we trained the model with 70 child-directed speech corpora from
15 languages. CIPAL gradually discovered words in each language, with cross-linguistic variation in
performance. The model’s average processing time also improved with experience, resembling the
developmental changes observed in children’s speed of processing. Second, we showed that CIPAL could
simulate seven influential effects reported in statistical learning experiments with artificial languages. This
included a preference for words over nonwords, part words, frequency-matched part words, phantomwords,
and sublexical units. On this basis, we argue that incremental chunking is an effective implicit statistical
learning mechanism that may be central to children’s vocabulary development.
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When listening to a conversation in an unfamiliar language, we
find it difficult to pinpoint the individual words as there are no reliable
acoustic boundaries that separate them in fluent speech. Infants
learning their first language face a similar problem. The speech they
hear is mainly produced in concatenated bursts of multiple words
without any pauses (Cole & Jakimik, 1980; Junge, 2017). Yet,
regardless of the specific languages they are learning, infants still

manage to build a lexicon and gradually become productive language
users. By the time they reach their first birthday, most children have
already acquired a small vocabulary of high-frequency content words
that they can recognize in different contexts (Bergelson & Swingley,
2012, 2015, 2018; Lany et al., 2018). This is followed by a rapid
growth in their expressive vocabulary (e.g., McMurray, 2007) and
their ability to recognize familiar words (e.g., Fernald et al., 1998)
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throughout their second year. This means that infants can discover
words in their language input, even though most of the words they
hear are embedded in longer utterances. But how do they do this?
We propose that children use an associative learning mechanism

called chunking (Gobet et al., 2001), where sequences of linguistic
elements are grouped into units (e.g., b, i, d, a, k, u→ bidaku). Unlike
previous accounts that limit the number of chunks stored in long-term
memory (LTM; e.g., Brent & Cartwright, 1996; Perruchet & Vinter,
1998), we argue that children build a diverse collection of chunks,
including words, multiword phrases, and sublexical units. We also
suggest that these chunks have different representational strengths
that determine their processing costs, allowing regularly accessed
chunks to have faster retrieval times, resulting in an interaction
between experience and memory constraints. We implement this
theory as a computational architecture calledChunk-Based Incremental
Processing and Learning (CIPAL) and model word discovery in 70
child-directed speech corpora from 15 different languages. We then
use this architecture to simulate the behavioral patterns observed
in statistical learning experiments with artificial languages. Before
describing these studies in detail, we first review evidence for chunking
as an implicit statistical learning mechanism and how it could over-
come the challenges of word discovery.

Statistical Learning and Word Discovery

There are often multiple ways utterances can be segmented. For
example, the sentence “hi doggie” could be represented with six
phonemes (/h/, /aɪ/, /d/, /ɒ/, /ɡ/, /I/), three syllables (/haɪ/, /dɒ/, /ɡI/),
two words (/haɪ/, /dɒɡI/), or one multiword unit (/haɪdɒɡI/). It could
also be parsed into units that cross word boundaries, such as (/h/,
/aɪd/, /ɒɡI/). Since pauses tend to occur at the boundaries of utter-
ances rather than words, infants need to exploit other sources of
information to find the words among these other possible partitions.
Although many potential cues have been identified (e.g., lexical
stress; Thiessen & Saffran, 2003, 2007), analyses have found that
the most informative features for predicting word boundaries vary
between languages (Jarosz & Johnson, 2013). Since infants do not
know in advance which specific cues are the most informative, they
must discover their first words using features that can be perceived
and exploited in any language without prior knowledge. One option
is the distributional structures that guide how linguistic elements are
organized (Harris, 1954, 1955).
Across different languages, syllable pairs that appear together in

the same word tend to have stronger statistical relationships than
pairs that cross word boundaries (Harris, 1955; Saksida et al., 2017).
There is clear evidence that adults and preverbal infants can recognize
word-like units after listening to continuous input, where statistical
properties are the only differentiating feature. In their seminal study,
Saffran, Aslin, and Newport (1996) trained 8-month-olds with
artificial languages containing four trisyllabic “words” (e.g., golatu,
daropi) that were repeated in a random order for 2min. This exposure
was produced as a continuous streamwith no pauses or prosodic cues
to mark the boundaries between the individual words. After listening
to the language, Saffran, Aslin, and Newport assessed whether the
infants could discriminate the words of the language from foils (e.g.,
tudaro, pigola) built from syllable pairs with weaker statistical re-
lationships than the words. The strength of these relationships was
quantified using transitional probabilities (TPs), which represent the
probability of two syllables (e.g., tu, da) occurring together in the

input. In the forward direction, TPs are calculated by dividing the
frequency of the pair (e.g., tuda) by the frequency of the first syllable
alone (e.g., tu). This means that if tuda occurs five times, and tu is
presented 10 times, then the forward TP (FTP) of tuda is 0.5. To
calculate a backward TP (BTP), the frequency of the pair (e.g., tuda)
is divided by the frequency of the second syllable (e.g., da). In both
cases, TPs quantify the consistency of the pairing; FTPs represent the
probability that tu is followed by da; BTPs represent the probability
that da is preceded by tu. In Saffran, Aslin, and Newport’s study, the
internal TPs of the test items in each direction were identical. They
found that the infants looked for longer when presented with the
low-TP foils (0 or 0.33) compared to the high-TP words (always
1.0), demonstrating that they could distinguish items that differed
in statistical structure. This ability is called statistical learning. It
has been observed in multiple replications of Saffran, Aslin, and
Newport’s work (see Black & Bergmann, 2017) and in other studies
testing different age groups, cognitive modalities, languages, and
populations (see Frost et al., 2019; Saffran & Kirkham, 2018). This
implies that the statistical structure of natural languages could
provide enough information for infants to jumpstart their vocabulary
development. Once they have acquired some words, children may
identify and exploit language-specific cues, such as the dominant
stress patterns or phonotactic constraints on word forms (Mattys et
al., 2005).

While there is consensus that statistical regularities in natural
languages can help infants discover their first words (Aslin, 2017;
Perruchet, 2019; Saffran & Kirkham, 2018), there is debate sur-
rounding the nature of the learning mechanisms involved in this
process (Christiansen, 2019; Endress et al., 2020; Perruchet, 2019;
Perruchet & Pacton, 2006; Thiessen, 2017). One hypothesis is that
infants unconsciously track the statistical patterns in their input to
generate probabilistic evidence of where the boundaries between the
words are located (Aslin, 2017; Endress & Johnson, 2021; Kuhl,
2004; Saffran &Kirkham, 2018; Swingley, 2005). The central claim
of this statistics-based theory is that words are initially represented
as probabilistic links between individual elements rather than as
complete units. High-probability sequences are assumed to be part
of the same word (e.g., A1A2, B1B2), whereas transitions high in
entropy (e.g., A2B1) are interpreted as breakpoints in the speech
stream. These representations may then be used to build psycho-
logical units, like words, in LTM, but this is regarded as a separate
step that comes after learning about the statistical regularities in the
input (McCauley & Christiansen, 2019; Perruchet & Pacton, 2006;
Saffran, 2001; Slone & Johnson, 2018).

The statistics-based theories predominantly emerged from sta-
tistical learning experiments, which routinely use the TPs between
adjacent syllables to assess participants’ sensitivity to different input
languages and test conditions (e.g., Aslin et al., 1998; Pelucchi et
al., 2009a; Saffran, Aslin, & Newport, 1996). Since participants
can discriminate items defined by these statistical properties, the
statistics-based accounts argue that they must be extracting and
building implicit representations of the same statistics (e.g., TPs
between syllables). These accounts also argue that this probabilistic
knowledge provides infants with information that is both necessary
and sufficient to predict the location of words (Aslin, 2017; Aslin et
al., 1998; Endress et al., 2020; Saffran, Aslin, & Newport, 1996). For
instance, Saffran, Aslin, and Newport (1996) suggested that children
learning English can find word boundaries in sequences like pret-
tybaby by tracking the TPs between syllables, since the transition
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from pre to ty has a higher probability than from ty to ba. This idea is
compatible with the mechanisms used in simple recurrent network
models (Elman, 1990), which can be trained to predict the location of
word boundaries by aligning with the TPs of the input (Cairns et al.,
1997; Christiansen et al., 1998;Mirman et al., 2010). Corpus analyses
have also found that pairwise statistics can accurately predict word
boundaries in transcripts of child-directed speech, although different
calculationmethods are informative in different languages (Gervain&
Guevara Erra, 2012; Jarosz& Johnson, 2013; Saksida et al., 2017); for
instance, BTPs are the most effective algorithms for finding word
boundaries in Hungarian and Polish, whereas FTPs are more effective
in Italian.
However, there are several problems with the statistics-based

approach to word discovery. First, the statistical cues that correlate with
word (or morpheme) boundaries vary between different languages, but
it is not clear how the learning mechanism determines which statistics
need to be calculated (e.g., FTPs or BTPs), which primitives or lin-
guistic features should be used in these calculations (e.g., syllables or
phonemes), and how fluctuations in these statistics should be used to
locate words (e.g., absolute/global or relative/local thresholds). Each of
these decisions strongly influences the effectiveness of statistics-based
word discovery across languages (Gervain & Guevara Erra, 2012;
Jarosz & Johnson, 2013; Saksida et al., 2017). Likewise, experiments
with artificial languages have demonstrated that infants can discrim-
inate words from foils that have different TPs in only one direction
(e.g., backward: Pelucchi et al., 2009a; forward: Pelucchi et al., 2009b),
suggesting that they do not rely on one specific statistical property. To
explain these data, statistics-based learning mechanisms would need to
be flexible and capable of targeting the most informative properties in
any given input (Endress et al., 2020; Saffran & Kirkham, 2018), but it
is not clear how they would make this determination without feedback
or prior knowledge of the language.
The results of multiple experiments have also found that participants’

behavior does not always align with statistical variables, which conflicts
with the core predictions of statistics-based theories. For instance,
studies using visual and linguistic stimuli have found that infants and
adults show larger discrimination effects for words (e.g., daku) than
sublexical items embedded within words (e.g., gola from golabu), even
though these sequences have identical TPs and frequencies, so statistics-
based theories would not predict a difference (Giroux & Rey, 2009;
Slone & Johnson, 2018). Participants have also shown stronger pre-
ferences for words than “phantom” (or “illusory”) sequences that have
identical TPs to the words but never appeared in the exposure language
(Ordin, Polyanskaya, & Soto, 2020; Ordin, Polyanskaya, Soto, &
Molinaro, 2020; Perruchet & Poulin-Charronnat, 2012; Polyanskaya,
2022; Slone & Johnson, 2015, 2018; cf. Endress & Langus, 2017;
Endress & Mehler, 2009). Instead, the experimental literature suggests
that participants incrementally build coherent representations of the
sequences they encounter in their input, consistent with the predictions
of chunk-based (or memory-based) statistical learning theories (e.g.,
Perruchet, 2019; Perruchet & Vinter, 1998; Thiessen, 2017).

Chunking Theories of Word Discovery

Chunk-based theories are a broad category that includes many
different accounts of word discovery (see Perruchet, 2019). A general
definition of a chunk is “a collection of elements having strong
associations with one another, but weak associations with elements
within other chunks” (Gobet et al., 2001, p. 236). The idea was first

introduced into memory research by G. A. Miller (1956) to explain
how participants can maximize the amount of information in short-
term memory (STM) by packing information together (see Norris &
Kalm, 2021). The fundamental claims of these theories differ from
the statistics-based approaches in two ways. First, chunk-based
theorists argue that infants discover words by extracting subsequences
that appear in their continuous input, which are stored as atomic
units in LTM rather than as correlational links between elements.
For example, after hearing a sequence such as bidakutupir-
ogolabubidakupadoti, infants might extract bidaku and represent it as
a unified symbol in LTM. They could then use this chunk to partition
the input when they reencounter this sequence again: bidaku tupir-
ogolabu bidaku padoti. This concept of chunked representations is
consistent with the findings of several statistical learning studies (see
Perruchet, 2019; cf. Endress et al., 2020), as well as evidence from the
broader psychology literature suggesting that people learn and utilize
chunks across different cognitive domains (Gobet et al., 2001).

The second core argument of chunk-based theories is that chil-
dren do not perform statistical computations but use other strategies
to find the chunks that correspond to words among the plethora of
other subsequences in their language input.1 One hypothesis is that
chunking is guided by simplicity principles, where new chunks are
created only if they reduce the combined cost of processing the input
and storing the chunks in LTM (e.g., Brent & Cartwright, 1996;
Goldwater et al., 2009; Robinet et al., 2011). Another is that infants
start by building chunks of entire utterances and then use this
knowledge to decompose future input into words, working on the
assumption that short utterances, including single-word utterances,
will often appear as subsequences in longer ones (e.g., Monaghan &
Christiansen, 2010). Other accounts have suggested that infants build
a variety of chunks of different sizes, which are then strengthened
with experience or pruned frommemory if they are not regularly used
(e.g., Alhama & Zuidema, 2017; Perruchet & Vinter, 1998). Thus,
chunking approaches argue that our ability to distinguish sequences
with different statistical properties is a consequence of learning and
not the mechanism that drives it.

Problems With Previous Chunking Models

Computational modeling studies have provided concrete demon-
strations of how infants could use chunking to find words in their input
without relying on statistical computations. Specifically, chunking has
been used to accurately segment naturalistic transcripts of parental
speech (e.g., Brent & Cartwright, 1996; French et al., 2011;
Monaghan&Christiansen, 2010) and replicate the behavioral patterns
observed in experiments with artificial languages (e.g., Alhama &
Zuidema, 2017; French et al., 2011; Perruchet & Vinter, 1998;
Robinet et al., 2011). It has also been used to explain effects reported
in the implicit learning literature, including how participants find

1 Some theories argue that children use statistics to find meaningful chunks
in the language (e.g., the Chunk-BasedLearnermodel uses BTPs;McCauley&
Christiansen, 2019). We argue that these models should be categorized as
statistics-based theories rather than chunking theories in discussions of word
discovery since their predictions are consistent with the former. For instance,
these accounts suggest that participants would not distinguish words from
phantom or sublexical units since they rely on pair-wise statistics to select
chunks. Therefore, we use the term “chunking theories” as an abbreviation
for “chunking-without-statistics theories.”A similar distinction was made by
Perruchet (2019), who described such models as hybrid theories.
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rules in artificial grammars (e.g., Servan-Schreiber & Anderson,
1990), why chess grandmasters can recall board configurations more
accurately than less experienced players (e.g., Gobet, 1998), why
children make certain morphosyntactic errors during development
(e.g., Freudenthal et al., 2007), and why children find it easier to
recall nonword sequences when they resemble real words in their
language (e.g., Jones et al., 2007).
Although these data provide clear evidence to support chunk-based

approaches, the simulations in these studies were conducted with
several distinct modeling frameworks that use different strategies to
extract chunks from the input (e.g., Retention and Recognition:
Alhama & Zuidema, 2017; Truncated Recursive Autoassociative
Chunk Extractor: French et al., 2011; Phonotactics from Utterances
DetermineDistributional Lexical Elements [PUDDLE]:Monaghan&
Christiansen, 2010; PARSER: Perruchet & Vinter, 1998; Minimum
Description Length Chunker: Robinet et al., 2011). These models
often make fundamentally different assumptions and predictions
about the way that infants learn and use chunks, which have
consequences when viewed in a broader developmental context.
For example, the PUDDLE architecture (Monaghan & Christiansen,

2010) assumes that children’s language input is presented in discrete
utterances: A small group of words are produced together in a short
continuous burst, followed by a pause that unambiguously marks the
boundary between different groups of words (i.e., “puddles” of sound).
It also assumes that many of these utteranceswill contain only oneword
(e.g., “where,” “kitty”). On this basis, PUDDLE uses a coarse-to-fine
chunking strategy; themodel initially builds chunks for entire utterances
and uses this knowledge as a stepping stone for learning the individual
words (e.g., “lookkitty”→ “look,” “kitty”). As the model’s knowledge
grows, it will start to recognize familiar chunks in the input—
particularly those extracted from single-word utterances—and will use
these chunks to parse multiword sequences and discover new words.
For example, once PUDDLE has built chunks for “where” and “kitty,”
it will use these chunks to segment “where is kitty hiding” and learn the
unfamiliar parts as new chunks (i.e., “is” and “hiding”). PUDDLE also
exploits utterance boundaries to extract reliable information about the
legal phonotactics of the language, which are used as an additional
constraint on word segmentation. Specifically, the model can only use a
chunk to parse the input when the sequence is flanked by diphones the
model has previously encountered at the beginning or end of words.
Simulations with PUDDLEhave found that it can discover words in

transcripts of naturalistic child-directed speech from many different
languages (Caines et al., 2019; Monaghan & Christiansen, 2010). It
also appears to be more effective than statistics-based approaches that
use TPs or mutual information tofindword boundaries (Cabiddu et al.,
2023; Caines et al., 2019). However, since the model assumes that the
input is structured as a series of discrete utterances, it cannot explain
how participants learn to discriminate words from foil sequences in
experiments with artificial languages (e.g., Aslin et al., 1998; Saffran,
Aslin, & Newport, 1996). In the canonical statistical learning para-
digm, participants listen to a stream of syllables for several minutes
without any pauses (i.e., a “sea” of sound). When the language is
presented as one long utterance, PUDDLE cannot extract the indi-
vidual words or other subsequences. Instead, the model stores the
entire exposure as one chunk.2

In contrast, Perruchet and Vinter (1998) developed the PARSER
architecture to demonstrate that the preferences observed in statistical
learning studies (e.g., Saffran, Aslin, & Newport, 1996; Saffran,
Newport, & Aslin, 1996) could be explained using chunking. The

model assumes that repetitive subsequences in the input are more
likely to be words than foils. It begins by randomly segmenting the
material into groups of 1–3 units (e.g., ba bu pu bu pa da du ta ba→
ba bupubu pada du taba). It then checks whether these random
groupings (e.g., taba) match a chunk in its memory, called the
perception shaper, and creates a new chunk if there is no match.
Since PARSER learns new chunks by randomly clustering the
material it encounters, it needs a way to identify which chunks
correspond to words. To do this, each chunk has a weight that
quantifies its representational strength. When a chunk is used to
segment the input, it is reinforced and becomes stronger, while the
other chunks that are not in use become weaker through decay. The
unused chunks also become weaker through interference, receiving
an additional penalty when they contain any of the elements or
subsequences that also appear in the selected chunks (e.g., ta and
ba become weaker when taba is selected). Ultimately, chunks are
removed from the perception shaper if they are not reinforced before
their weight drops to zero. In the early stages of learning, many of
the chunks in the perception shaper contain sequences that cross
word boundaries. However, through reinforcement, decay, inter-
ference, and a bias for larger chunks, only repetitive sequences
(typically words) are retained by the model with experience.

Several studies have found that PARSER is effective at identifying
words in artificial languages that contain a small number of word
types repeated at regular intervals in a random order (e.g., Giroux &
Rey, 2009; Perruchet & Poulin-Charronnat, 2012; Perruchet &
Vinter, 1998). However, many word types in natural languages have
a low frequency (Piantadosi, 2014) and contain sublexical patterns
that appear in other words (e.g., rhymes, affixes). PARSERwill often
discard chunks for these patterns before they reappear in the input,
since its decay and interference mechanisms retain only the most
frequent and distinctive sequences.3 In general, decay mechanisms
may be detrimental to word discovery in natural languages; pilot
studies with the PUDDLE architecture found that a decay function
resulted in a small lexicon and poor performance with English child-
directed speech (Monaghan & Christiansen, 2010).

A New Chunking Model of Word Discovery

Most computational models of word discovery are calibrated for
either large naturalistic corpora (e.g., PUDDLE) or small artificial
languages (e.g., PARSER). Only a minority of architectures has
demonstrated an ability to find words in both contexts (e.g.,
Truncated Recursive Autoassociative Chunk Extractor: French et al.,
2011). This raises the important question of whether infants are using
different mechanisms to discover words in statistical learning ex-
periments and their native language, given that the artificial languages
used in these studies do not containmany of the features that appear in
natural languages (e.g., utterance boundaries, lexical stress).

To address this issue, Pelucchi et al. (2009a) trained English-
learning 8-month-old infants with a set of 12 carefully selected but

2 We demonstrate this behavior in our additional online material using one
of the artificial languages from Saffran, Aslin, and Newport’s (1996) second
experiment (see notebooks/puddle-examples.html at https://osf.io/fhrxg/).
We also show that PUDDLEwill fail to segment multiword sequences, when
there are no one-word utterances in the input.

3 We demonstrate this in our additional online material using a corpus of
English child-directed speech (see notebooks/parser-examples.html in
https://osf.io/fhrxg/).
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naturalistic Italian utterances, which were produced with the
prosody and intonation contours that characterize infant-directed
speech. Afterward, the infants heard two words that each occurred
six times in the input (e.g., fuga, melo) and two novel Italian words
that did not appear as complete sequences in the exposure (e.g.,
pane, tema). Pelucchi et al. (2009a) observed a reliable familiarity
preference, as the infants showed longer looking times in trials with
familiar words than novel words. This was consistent with the word
and nonword comparisons in studies with artificial languages
(Saffran, Aslin, & Newport, 1996). In another experiment, the same
authors found that infants also showed longer looking times for
high-TP (1.0) than low-TP words (0.33), even though the words in
both conditions occurred 18 times in the training material. This was
similar to the novelty preferences reported in Aslin et al.’s (1998)
experiment with artificial languages, which showed that infants
could discriminate high-TP words from low-TP part words that each
appeared 45 times in the language.
From these findings, it seems likely that infants use the same

learning strategies to discover words both in their native language
and the experimental languages used in statistical learning studies; at
least, there is no concrete evidence to suggest otherwise. If this is
true, then computational models should be capable of simulating
word discovery in both environments. Our aim was to construct a
new computational model that can discover words in both child-
directed speech and artificial languages using chunking mechanisms
that are compatible with the broader developmental literature.
To demonstrate that a model can extract words from child-

directed speech, it is important to test it on a diverse set of languages.
Previous studies using both statistics-based and chunking algo-
rithms have consistently found cross-linguistic variation in per-
formance (Batchelder, 2002; Caines et al., 2019; Fourtassi et al.,
2013; Gervain & Guevara Erra, 2012; Jarosz & Johnson, 2013;
Phillips & Pearl, 2014; Saksida et al., 2017). For example, models
that can identify English words with over 80% accuracy have shown
less than 60% accuracy in other languages (Fourtassi et al., 2013;
Saksida et al., 2017). It is possible that word discovery is intrin-
sically harder in some languages due to differences in average word
length, type–token ratio, linguistic rhythm, syllable complexity, or
other properties (Caines et al., 2019; Gervain & Guevara Erra, 2012;
Saksida et al., 2017). Yet, regardless of the specific languages they
are learning, most children gradually build a lexicon and become
fluent language users within a few years. Their ability to discover
words in continuous speech is robust and can cope with the many
ways in which languages vary. For this reason, our first goal was to
demonstrate that our new chunking framework could extract words
from child-directed speech corpora in several different languages
without making any adjustments to the model.
Following Saffran et al.’s initial studies of infants (Saffran,

Aslin, & Newport, 1996) and adults (Saffran, Newport, & Aslin,
1996), many experiments have investigated statistical learning using
variations of the original paradigm (see Frost et al., 2019; Saffran &
Kirkham, 2018). Our second goal was to simulate some of the most
reliable and influential findings in this literature, including studies
testing the predictions of the statistics-based and chunking accounts.
First, we tested whether the model could distinguish words from
illegal nonwords, low-frequency part words, and high-frequency part
words, using the languages created by Saffran, Newport, and Aslin
(1996) and Aslin et al. (1998). These studies were influential in the
development of statistics-based accounts, as the results imply that

infants are sensitive to distributional cues in the input. We then tested
whether the model could identify words designed to have higher
TPs in either the forward or backward direction, which has been
observed in studies with infants and adults (Pelucchi et al., 2009a,
2009b; Perruchet & Desaulty, 2008). Finally, we tested whether our
new model showed a preference for words over phantom units
(Endress & Mehler, 2009; Perruchet & Poulin-Charronnat, 2012;
Slone & Johnson, 2018) and sublexical units (Giroux & Rey, 2009;
Slone & Johnson, 2018). The statistics-based and chunk-based the-
ories make opposing predictions for these studies, so they are central
to discussions of the nature of statistical learning.

Building on previous work, we developed the CIPAL archi-
tecture. CIPAL is different to other chunking models of word
discovery (e.g., PARSER, PUDDLE) in three important ways.
First, the model incrementally and concurrently accumulates a large
quantity of chunks in a hierarchical LTM, starting with the pho-
nemes of the language before progressing to sublexical, lexical, and
multiword units. Second, each chunk has a dynamic strength
of representation, which is implemented as a processing time that
gets faster whenever the chunks are used to recode the input. These
timings interact with the model’s incremental processing and limited
STM capacity to constrain learning. Finally, the model is designed
to be cognitively plausible and compatible with the broader
developmental literature: CIPAL has a limited STM capacity
(e.g., Cowan, 2001), it processes language incrementally (e.g.,
Tanenhaus et al., 1995), it learns different types of chunks (e.g.,
Jones et al., 2007), and these chunks get faster with experience
(e.g., Fernald et al., 1998).

CIPAL: Chunk-Based Incremental
Processing and Learning

CIPAL is an integrated theory of word discovery, implicit statistical
learning, and speed of lexical processing, implemented as a cognitive
architecture for building process models (Jarecki et al., 2020). It is
based on the EPAM/CHREST framework (Elementary Perceiver and
Memoriser/Chunk Hierarchy and REtrieval STructures; de Groot &
Gobet, 1996; Feigenbaum & Simon, 1984) and the CLASSIC model
of vocabulary development (Chunking Lexical and Sub-lexical
Sequences in Children; Jones et al., 2005, 2007, 2014), with simi-
larities to the PARSER model of statistical learning (Perruchet &
Vinter, 1998). The CIPAL architecture has a STM that temporarily
holds the active stimuli, and a LTM that stores familiar patterns as
chunks. These memory structures work together to process the input
and learn new representations. As new material is presented, it is
recoded using the largest available chunks in LTM (e.g., d, a, k, u→
da, ku) and then stored in STM. If two or more chunks are needed to
represent the input, CIPAL attempts to cluster adjacent units together
and add them to LTM as a new chunk (e.g., da, ku → daku). This
creates a cyclical relationship between processing and learning, where
chunks are used to compress the input stored in STM, and then build
new representations in LTM. Figure 1 provides an overview of how
a trained model would process the word “apple” by passing the
language material between LTM and STM.

The CIPAL theory makes three assumptions about word dis-
covery: (a) When listening to a (natural or artificial) language, we
build chunks of different sizes to represent the patterns in the input at
multiple levels; (b) each chunk has a representational strength (i.e., a
weight or activation level) determined by the number of times it has
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been used to process the input, which manifests as a reaction time
that can be measured in laboratory experiments; (c) chunk learning is
constrained by the interaction of incremental language processing,
rapidly decaying memory traces, and chunk-specific reaction times.
In the following sections, we explain the developmental evidence
for each of these assumptions and describe how they are im-
plemented as cognitive processes in the CIPAL architecture. We then
provide a detailed algorithmic description of the model and examples
of how these processes allow CIPAL to discover words (and other
sequences) in continuous language input. Finally, we explain the

parameter settings that we have used throughout the simulations in
this work.

Assumption 1:We Learn the Patterns of the Language by
Building a Diverse Chunk Hierarchy

Many chunking models of word discovery assume that infants
have an economy of representation and only learn the chunks that will
help them to segment their input (e.g., Brent & Cartwright, 1996;
Goldwater et al., 2009; Perruchet & Vinter, 1998). For instance,
PARSER only preserves repetitive sequences that are regularly ac-
cessed, while neglected chunks are discarded through decay and
interference (Perruchet &Vinter, 1998). These algorithms are effective
at modeling word segmentation since chunks for illegal sequences or
meaningful nonlexical units are either avoided or eventually forgotten.
Consequently, they also predict that most of the chunks that children
retain over time will be words. However, children appear to build
chunks for at least two other aspects of language.

First, several studies have observed that participants are sensitive
to the frequency of multiword sequences, even when controlling for
word-level frequencies (Arnon& Snider, 2010; Bannard&Matthews,
2008; Reali & Christiansen, 2007; Tremblay et al., 2011). For
example, Bannard andMatthews (2008) tested whether 2- and 3-year-
olds could repeat high (e.g., a drink of milk) and low frequency (e.g.,
a drink of tea) multiword sequences, where the final words (milk,
tea) and bigrams (of milk, of tea) occurred with similar frequencies
in child-directed speech. They found that the children in both age
groups were faster and more accurate at repeating the high-frequency
combinations, suggesting that they were sensitive to the familiarity of
the complete utterances and were not just processing the individual
words. This implies that children learn common multiword sequences
as chunks, which show similar frequency effects to other aspects of
language (Ambridge et al., 2015; Brysbaert et al., 2018).

Second, there is evidence that children learn chunks for sublexical
patterns. Mintz (2013) familiarized English-learning infants with
novel words that ended with either the English suffix -ing (e.g.,
lerjoving) or a pseudo-affix (e.g., -ot, -dut). The infants then listened
to the novel stems without the suffix (e.g., lerjov) as their looking
times were measured with the head-turn preference procedure. Mintz
found that 15-month-olds could distinguish items that appearedwith -
ing from those that occurred with the novel suffix, although 8-month-
olds showed no reliable preference. This suggests that children build
chunks for sublexical morphemes that allow them to segment the
unfamiliar stem from the familiar suffix (see also Dahan & Brent,
1999). Other evidence for the importance of sublexical chunks
comes from studies with nonword repetition tasks, where children
are presented with nonsense words and try to repeat them accu-
rately. These studies have found higher repetition accuracy when
the nonwords are built from high-frequency syllable patterns
(Gathercole, 1995; Jones et al., 2007), which suggests that chil-
dren retain sublexical chunks that help them to process and learn
from unfamiliar sequences.

On this basis, the CIPAL theory assumes that people continually
expand their knowledgewith experience and ultimately build a diverse
collection of chunks of different sizes. Through contact with the
language, the model gradually constructs a chunk hierarchy in LTM,
where information is represented at multiple levels. For example, if the
model were repeatedly presented with bidaku as a sequence of syl-
lables, it would first learn the primitives of the sequence (e.g., bi, da,

Figure 1
The Main Components of the CIPAL Architecture

Note. The example model in this figure was trained with the word “apple”
40 times (see notebooks/cipal-examples.html in the additional online
material at https://osf.io/fhrxg/). LTM = long-term memory; STM = short-
termmemory; CIPAL=Chunk-Based Incremental Processing and Learning.
See the online article for the color version of this figure.
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ku) before building progressively larger chunks (e.g., bi → bida →
bidaku) until the entire pattern is represented as a single unit. It does
this by concatenating two adjacent units stored in STM into one larger
chunk (e.g., bi + da→ bida; bida + ku→ bidaku). Unlike PARSER,
CIPAL does not remove any chunks from LTM. Instead, by iteratively
combining two individual chunks into a single unit, the model can
recognize patterns of different sizes in the input and simultaneously
store chunks for lexical (e.g., walked), sublexical (e.g., -ed), and
multiword units (e.g., theywalked). As well as making the model
developmentally plausible, this hierarchy of chunks allows CIPAL to
efficiently recognize patterns as the utterance unfolds. If unknown
sequences are encountered, the model attempts to learn new chunks so
that it can process these patterns more efficiently (i.e., with fewer
chunks) if they reappear in the input.

Assumption 2: Each Chunk Has a Dynamic
Processing Speed

During their second year, children show a rapid increase in the
number of words they can understand and produce (e.g., McMurray,
2007). At the same time, they also become faster and more accurate
at recognizing familiar words (e.g., Fernald et al., 1998). This is often
assessed using the looking-while-listening (LWL) procedure. In a
standard LWL experiment, children are presentedwith images of two
familiar objects on-screen (e.g., a ball and a shoe) and they hear
child-directed speech that names one of the items (e.g., “Where is the
ball?”). The participant’s eye movements are recorded throughout
the experiment and analyzed offline. The latency between the onset
of the target word (e.g., “ball”) and the child’s first fixation to the
corresponding visual image is calculated as their speed of processing
for the trial, with the requirements that they were not already fixating
on the target image and their gaze shift occurred within a pre-
determined window (e.g., 300–1,800 ms).
Many studies have used the LWL task to study the development of

children’s word comprehension abilities alongside their vocabulary.
There are three consistent findings in this research: First, children get
faster and more efficient in responding to familiar nouns as they get
older (e.g., Fernald et al., 1998); second, individual differences in
speed of processing correlate with vocabulary size and growth rate
(e.g., Fernald et al., 2006; Peter et al., 2019); and third, children who
receive larger amounts of child-directed speech and parental inter-
action tend to have faster response times and larger vocabulary sizes
over development (e.g., Hurtado et al., 2008; Weisleder & Fernald,
2013). Some longitudinal studies have observed all three effects
within a single sample. For instance, Hurtado et al. (2008) recorded
18-month-old Spanish-learning children in their homes during a 20-
min interactive play session with their mothers. They measured the
number of words the mothers produced during the session, which
ranged from 168 to 1,204 tokens. Six months later, they tested the
same infants in the LWL task and measured their vocabulary size
with a checklist completed by the parents. The children who heard
more word tokens during the play sessions at 18 months showed
faster reaction times in the LWL task and larger expressive
vocabularies at 24 months. Collectively, the speed of processing
literature suggests that early language experience shapes children’s
vocabulary knowledge and processing skills.
An important feature of the LWL paradigm is that the participants

are tested with high-frequency target words that typically appear in
their early lexicons (e.g., doggie, baby, ball, and shoe). Some studies

have even used parental questionnaires to exclude trials using
words the child does not know (e.g., Fernald et al., 2006). From the
perspective of chunking theories, this means that the children are
likely to have chunks for the items in the task. Yet, these studies
have still observed reliable individual differences in children’s
reaction times that correlate with their language experience and
vocabulary size. This suggests there is meaningful variance in
their lexical processing skills beyond the acquisition of chunks.
One explanation is that children have a central processing ability
that affects their reaction times for all chunks in their LTM
(Donnelly & Kidd, 2020). However, studies with bilingual samples
have found that children’s processing speed correlates with their
level of experience and vocabulary size within each language, with
no reliable correlations in their reaction times across different
languages (Hurtado et al., 2014; Marchman et al., 2010). For this
reason, we argue that LWL latencies are determined by the strength
of the individual chunks used to process the target words rather than
a global processing capacity. We suggest that children become
faster at retrieving specific chunks from LTM when they are used
to process the input. As children become more experienced with
the language, their overall speed of processing will improve, driven
by the average of multiple chunk-specific processing times for
different words in the language.

Several chunking theories have considered the impact of chunk
strength on learning and processing (e.g., Monaghan & Christiansen,
2010; Perruchet & Vinter, 1998; Servan-Schreiber &Anderson, 1990).
For instance, the chunks in PARSER (Perruchet & Vinter, 1998) are
assigned an initial weight (1.0), which increases whenever the chunk is
used to segment the input (reinforcement: +0.5) but also decreases
when it is not in use (decay: −0.05) or when it shares syllables with
the active chunks (interference: −0.005). Units are removed from the
model’s memory (called the perception shaper) when their weight falls
to zero, which means only themost repetitive and distinctive sequences
are stored over time. Similarly, each chunk in PUDDLE (Monaghan &
Christiansen, 2010) has an activation level. New chunks are assigned
an initial activation level of 1 when they are added to the lexicon, which
increases by 1 every time they are used for segmentation. The strongest
chunks have priority during parsing and are more likely to be selected
when there are multiple ways the model can legally segment the
utterance. Unlike PARSER, the activation levels in PUDDLE do not
decrease through decay or interference. Instead, they represent the total
number of times each chunk has been used to process the input.

Like these other accounts, each chunk in CIPAL has a strength
that denotes the model’s familiarity with the sequence. But unlike
these previous models, chunk strength in CIPAL is represented with
processing times (e.g., 200 ms), as we assume that each chunk has a
processing cost that determines the time it takes to recognize the
corresponding pattern in the input. By using these timings, we can
directly map changes in chunk strength to the developmental pat-
terns observed in LWL studies. Although CIPAL does not capture
every aspect of children’s lexical processing, such as the effects of
semantics (e.g., Borovsky et al., 2016), these chunk processing
times make it possible to explore the concurrent development of
word forms and speed of lexical processing within CIPAL, whereas
other frameworks focus solely on word discovery without con-
sidering other processes in language development. Also, connecting
the model’s chunk strength to the reaction times observed in devel-
opmental experiments introduces additional constraints on learning
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and limits the researcher’s degrees of freedom, compared to using
arbitrary weights or activity levels with no empirical grounding.

Assumption 3: Learning Is Constrained by Incremental
Processing and a Finite STM

Languages transmit information sequentially; we do not hear all the
sounds simultaneously but rather one at a time. Visual world studies
have found that our language processing abilities are fast and
incremental, as participants will shift their gaze in response to new
information in an utterance as it unfolds in real time (e.g., Huettig et
al., 2011; Tanenhaus et al., 1995). Yet, the asynchronous nature of
language and comprehension is often overlooked in computational
models of word discovery and vocabulary development. It is common
for entire utterances, or even entire corpora, to be presented all at once
and processed by the model as a single batch of data (e.g., Brent &
Cartwright, 1996; Goldwater et al., 2009; Jones & Rowland, 2017).
As its name suggests, CIPAL processes and learns incrementally.

The model receives language input one phoneme at a time and at-
tempts to integrate new input with earlier material as it arrives. This
incremental processing is implemented using timing parameters that
determine how long critical operations within CIPAL take to com-
plete. There are parameters that control the speech rate (160 ms), the
phonological decay rate (800 ms), and the initial processing time for
new phonemic chunks when they are added to LTM (1,200ms). These
specific parameter settings are explained in the Model Parameters
section. The chunks in LTMalso have individual processing times that
get faster when they are used to recode the input.
The timings and incremental processing features in CIPAL interact

to constrain the model’s learning in two ways. First, since new
phonemes are presented every 160ms and decay after 800ms, CIPAL
can hold a maximum of five chunks in STM, which is consistent with
the storage capacity estimates observed in memory studies (Cowan,
2001, 2010). At first, the model will be limited to storing phonemes,
with STM acting as a sliding window over the input since older
material is lost as new phonemes arrive. With experience, the amount
of language input the model can store will increase as it builds
progressively larger chunks that allow it to compress more infor-
mation into STM. The input will also be active for longer since the
chunks remain in STM until all their constituent phonemes decay,
which means that older material is reactivated when it is integrated
with more recent input. In contrast to the PUDDLE model, which
builds chunks for entire utterances before discovering smaller patterns
(Monaghan & Christiansen, 2010), these STM limitations force
CIPAL to acquire a variety of diphones and sublexical patterns, which
become the foundation for building lexical and multiword chunks.
Consequently, knowledge in LTMhas a hierarchical structure. CIPAL
learns about the input by clustering two existing chunks together, with
the phonemes of the language serving as the root nodes of the network
(see the LTM section of Figure 1).
The second constraint is that CIPAL can only learn from adjacent

chunks once they are both fully retrieved from LTM. In the example
shown in Figure 1, the model would not learn a chunk for the word
apple (i.e., apəl) until the chunks for both ap and əl have been
processed. During the early stages of learning, language material
will often decay from STM before it can be used to build new
chunks. However, the processing times for the chunks used to
recode the input will get faster even if they are not fully retrieved by

the time they decay, so repeated exposure will help the model build
chunks for these patterns. As a chunk’s processing time continues to
get faster with experience, the model will also have more time to
learn new representations before they decay. For instance, if a chunk
has a processing time of 200 ms, the model has 600 ms to learn from
this chunk before it decays (after 800 ms), whereas if a chunk has a
500 ms processing time, the model has only 300 ms. Collectively,
this means that each chunk in CIPAL has a speed of processing that
increases with experience and influences subsequent word dis-
covery, which is consistent with results from longitudinal studies
using the LWL task (e.g., Weisleder & Fernald, 2013).

Figure 1 also shows that chunks at deeper levels of the LTM
hierarchy can have faster processing times than their parent nodes.
This is because processing times are determined by the duration the
chunks are held in STM rather than the frequency of patterns in the
input. When a new chunk is created, it is initially assigned a pro-
cessing time calculated from the average of its two constituent
chunks (e.g., bi = 100 ms, da = 200 ms → bida = 150 ms). Since
CIPAL recodes the input using the largest chunks in LTM, the new
chunk may be used more frequently and ultimately have a shorter
processing time. This is similar to the way that chunk weights
are adjusted in the PARSER model (Perruchet & Vinter, 1998).
However, unlike PARSER, the processing times in CIPAL do not
slow down through the effects of decay and interference.

Algorithm Description

The CIPAL architecture can be understood as a sequence of eight
operations, which are repeated in cycles until the model reaches the
end of the utterance (or exposure, in the case of the artificial lan-
guages used in statistical learning experiments), and the final chunk
decays from STM.

1. Update the current time in the model by 160 ms (or an
alternative value set by the speech rate parameter; see the
Model Parameters section).

2. Present the next phoneme in the utterance, unless the end
of the utterance (or exposure) has been reached.

3. Start retrieving the chunk for the new phoneme from
LTM or create a new chunk for the phoneme if one does
not exist.

4. Add the phonemic chunk to STM.

5. Attempt to learn new chunks from the units that have been
fully retrieved from LTM (i.e., processing time ≤ current
time). This involves concatenating two adjacent and fully
processed chunks stored in STM to create a new chunk in
LTM (e.g., ap, əl → apəl). This learning process is
explained in detail in Example 1.

6. Recode the contents of STM into the smallest number of
units possible using the largest chunks in LTM that match
the input.

7. Remove the decayed sequences from STM (i.e., decay
time ≤ current time). The decay times for each chunk are
taken from its most recent constituent phoneme (e.g., əl
from apəl). This is explained in more detail in Example 2.
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8. Adjust the processing times of the chunks that remain in
STM using a sigmoid function (see the Model Parameters
section).

A video illustrating these processing cycles in detail is available in
the additional online material (see videos/CIPAL.mp4 at https://osf
.io/fhrxg/).

Example 1: Building a Chunk Hierarchy

Figure 2 illustrates how CIPAL gradually builds a hierarchy of
chunks through language experience,4 using a model that was
repeatedly presented with the word apple as a sequence of phonemes
(a, p, əl). Each panel shows the contents of CIPAL’s LTM after a set
number of presentations (between 1 and 40), with the model starting
with an empty LTM at the outset of each simulation. The code,
results, and a video demonstration of each successive presentation is
available in the additional online material (see videos/fig-2.mp4 at
https://osf.io/fhrxg/).
After one presentation of apple (Figure 2A), the model creates

three new chunks for the phonemes in the sequence (e.g., a, p, əl).
Since these phonemes are the basic perceptual elements of the
language, they are added to LTM as root nodes in the chunk hierarchy
with an initial processing time of 1,200ms (see theModel Parameters
section). Themodel then starts transferring these new chunks to STM,
so they can be used to recode the input and build new representations.
Since the memory traces for the phonemes decay 800 ms after their
initial presentation, they become inaccessible before they are fully
processed, so they are not used to construct new chunks. However,
whenever a chunk is being retrieved or actively stored in STM, its
processing time is adjusted using a nonlinear sigmoid function (see
the Model Parameters section). Thus, the processing times for the
phonemic chunks decreased from 1,200 to 1,175 ms, as they were
being transferred to STM, even though their memory traces decayed
before they could be used to build new chunks.
Figure 2A–2D shows the change in CIPAL’s LTM when it is

presented with apple between 1 and 25 times. The model does not
learn any new chunks during this period, but the processing times
for the phonemic chunks continue to improve since they are being
activated by the model each time the word apple is presented. After
25 repetitions, these processing times reach the threshold where they
become fast enough for the model to process and store two phonemic
chunks simultaneously in STM. Thus, on the 26th presentation of
apple (Figure 2E), CIPAL creates a new chunk by combining the first
two phonemes into a single unit (a, p → ap). The mean processing
time of the two phonemes being combined (a, p) is used as the initial
processing time for the new chunk. On the 27th presentation (Figure
2F), it learns the entire word by joining the chunk ap with the
remaining phoneme əl (ap, əl → apəl). To learn these new chunks
with CIPAL’s default parameter settings, the model needs to finish
processing the first unit in less than 800 ms, before the memory trace
decays. But it also needs to process the second unit within a shorter
window of 640 ms. This is because new phonemes are presented
every 160 ms and decay 800 ms later, so the model needs to retrieve
the second element in less than 640 ms, otherwise the first phoneme
will be lost before the second is fully processed (800 ms − 160 ms =
640 ms). This is an important constraint on learning in CIPAL: The
two units being chunked need to be fully processed before the first
unit decays.

In Figure 2A–2D, all three chunks in CIPAL’s LTM have identical
processing times. However, these individual processing times diverge
once the model starts combining phonemes into larger chunks
(Figure 2E–2I), with the larger chunks reaching faster processing
times than those for the primitives of the language. This is because,
as new input is presented, the model searches LTM for the longest
chunks matching the patterns observed in the input. The identified
chunks are then used to recode and compress the input as it is
transferred to STM, maximizing the amount of information the
model can store in STM at any one time (see Norris & Kalm, 2021).
When a chunk is used to recode the input, its individual processing
time gets faster in LTM, similar to the memory reinforcement used
in the PARSER model (Perruchet & Vinter, 1998). This explains
why, after 40 presentations of apple (Figure 2I), the three fastest
chunks in the model’s LTM are a, ap, and apəl; as the utterance
unfolds one phoneme at a time, the model actively recodes the input,
retrieving and reinforcing the chunks matching the patterns on the
left edge of the sequence.

The reason why apəl is ultimately the fastest chunk in the model
after 40 presentations is because it is used in the final parse of the
input and remains active in STM longer than any other chunk. The
shorter chunks for a and ap are only used temporarily and are
displaced as new material is presented (i.e., a → ap → apəl).
However, since apəl represents the entire utterance and cannot be
compressed any further, this chunk is held in STM until the memory
trace decays. This means that the chunks for a and ap are active for
160 ms each, whereas apəl is active for 800 ms and therefore
receives a larger boost in processing speed. This interaction between
incremental language processing and a bias for using the largest
chunks matching the input also explains why the chunk for ap is
faster than the chunk for a; once the model learned ap as a chunk
(Figure 2E), it was selected over the phonemic chunks a and p and
stored in STM for longer.

Another consequence of CIPAL’s incremental learning and
processing mechanisms is that it will sometimes learn patterns in the
earlier parts of the sequence first, depending on the processing times
of the subchunks being combined. This is the reason why the model
in Figure 2E–2I has a chunk for the first bigram in apple (i.e., ap) but
not the second (i.e., pəl). After reaching the point where multiple
phonemes could be held in STM simultaneously, the model learned
the first bigram and immediately used this knowledge to recode the
material into two chunks (ap, əl). The next step was to build a chunk
for the entire sequence rather than learning the second bigram. Thus,
the model does not learn every phonemic n-gram that appears in the
input. Instead, it actively processes and recodes utterances as they
are presented in real time and builds new chunks from the com-
pressed representations of the input.

A video demonstrating the interaction between learning and
processing in CIPAL is available in the additional online material
(see videos/CIPAL.mp4 at https://osf.io/fhrxg/).

4 It should be noted that there were no explicit links between chunks in
our implementation of CIPAL. The learning mechanism is hierarchical
since larger chunks (e.g., bida) are formed by concatenating two smaller
chunks (e.g., bi+ da) already stored in LTM. However, LTM is represented
as a table of chunks and processing times in the CIPAL architecture (as
shown in Table 3). We visualize LTM as an explicit hierarchy in Figures 1
and 2 to help convey the hierarchical nature of CIPAL’s chunk learning
mechanism.
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Example 2: Compressing STM With Chunks in LTM

Table 1 demonstrates howCIPAL incrementally processes language
input—specifically, the child-directed utterance “It’s all gone”—by
recoding the material using the chunks it has stored in LTM. The
columns correspond to four separate CIPAL models, each with a
different set of chunks (listed in Table 2). These four models had
identical chunking mechanisms, STM capacities, and parameter set-
tings. However, Table 1 shows that as CIPAL accumulates new
chunks, it can store more input in STM and hold this information for
longer before it decays. The code and results for the models shown in
Tables 1 and 2 are in the additional online material (see notebooks/
cipal-examples.html at https://osf.io/fhrxg/).
In Model 1, CIPAL’s LTM only contains chunks for the pho-

nemes, which means each element in the utterance is coded with
a separate chunk in STM. However, in Model 2, CIPAL also has
chunks for words and sublexical patterns. It uses this knowledge
to continuously compress the contents of STM into a smaller set of
chunks; at 640 ms, Model 1 uses five phonemic chunks to represent

“it’s all,” whereas Model 2 has recoded the sequence into two lexical
chunks. Building on the second model, CIPAL’s LTM in Model 3
contains an additional chunk for the bigram “it’s all,” which allows
themodel to represent the first twowords of the input with one chunk,
and ultimately recode the entire utterance into two chunks (at 1,120
ms). In the final model, CIPAL has learned the entire utterance as a
multiword unit and can store the full sequence as a single chunk
in STM.

As well as being represented more efficiently (i.e., with fewer
chunks), language input remains active in CIPAL’s STM for longer
when the individual phonemes are recoded into larger units. For
instance, at 1,760ms, only the final phoneme (/n/) is stored in STM in
Model 1, whereas the entire utterance is active in Model 4. This is
because the decay time for each chunk is derived from the final
phoneme in the unit, allowing input that would otherwise decay
from STM to be reactivated when it is chunked with more recent
material. In Model 4, the first phoneme in the utterance (/ɪ/) is
recoded into a new chunk five different times (/ɪ/ → /ɪt/ → /ɪts/ →
/ɪtsɔːl/ → /ɪtsɔːlɡɒn/) and appears in STM for 1,920 ms. In

Figure 2
The Contents of Long-Term Memory for a CIPAL Model Trained With “Apple” as a Stream of Phonemes
(a, p, əl) Between 1 and 40 Times

Note. A video showing the changes in long-term memory after every presentation is available in the additional online
material (see videos/fig-2.mp4 at https://osf.io/fhrxg/). PT = processing time; CIPAL = Chunk-Based Incremental
Processing and Learning. See the online article for the color version of this figure.
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comparison, the same phoneme decays after 800 ms in Model 1,
since it is not chunked with any subsequent material in the input.

Example 3: The Importance of Context Variety

Although CIPAL does not compute statistics, distributional cues
still help the model discover words. In natural languages, words and
morphemes are combined in different ways. This context variability
provides vital information for identifying the meaningful units in the
input, which has been exploited in previous chunking models (e.g.,
Brent & Cartwright, 1996), and it is the underlying motivation
behind statistical approaches like TPs (see Saffran, Newport, &
Aslin, 1996).
To show how CIPAL also uses these distributional cues, we

trained the model with two different input samples. In the first
sample, CIPAL received one utterance repeated 90 times: “Was it
there?” The second input used the same word types as the first,
but they appeared in three different utterances that were repeated

30 times each: “There it was”; “Was it there?”; and “It was there.”
The only difference between the two samples was the variability in
the word order, which can be detected using TPs. In the static word
order condition, every within-word and between-word phoneme
and syllable pair has a TP of 1.0 in both directions. In the variable
word order sample, all the within-word TPs are 1.0, but the average
between-word TP is approximately 0.67.

The model started with an empty LTM before it was trained with
the utterances from one of the two conditions as a continuous stream
of phonemes. To show how the word order variability affects the
representations that CIPAL builds, the full contents of the model’s
LTM after training in each condition are shown in Table 3. In the
static word order condition, the model did not learn chunks for any
of the words in the utterance. Instead, since there was no variety in
the input, the model treated the entire utterance as a complete unit
and learned only a small set of chunks, including a chunk for the
entire sequence. In contrast, when trained with the variable word
order sample, the model learned chunks for all three words. It also

Table 1
The Contents of Short-Term Memory as the Utterance “It’s All Gone” (/ɪtsɔːlɡɒn/) Is Actively Recoded in Four CIPAL Models With
Different Levels of Knowledge (Shown in Table 2)

Time (ms) Model 1: Phoneme Model 2: Word Model 3: Lexical bigram Model 4: Full utterance

0 ɪ ɪ ɪ ɪ
160 ɪ t (ɪt) (ɪt) (ɪt)
320 ɪ t s (ɪts) (ɪts) (ɪts)
480 ɪ t s ɔː (ɪts) ɔː (ɪts) ɔː (ɪts) ɔː
640 ɪ t s ɔː l (ɪts) (ɔːl) (ɪtsɔːl) (ɪtsɔːl)
800 t s ɔː l ɡ (ɪts) (ɔːl) ɡ (ɪtsɔːl) ɡ (ɪtsɔːl) ɡ
960 s ɔː l ɡ ɒ (ɪts) (ɔːl) (ɡɒ) (ɪtsɔːl) (ɡɒ) (ɪtsɔːl) (ɡɒ)

1,120 ɔː l ɡ ɒ n (ɔːl) (ɡɒn) (ɪtsɔːl) (ɡɒn) (ɪtsɔːlɡɒn)
1,280 l ɡ ɒ n (ɔːl) (ɡɒn) (ɪtsɔːl) (ɡɒn) (ɪtsɔːlɡɒn)
1,440 ɡ ɒ n (ɡɒn) (ɡɒn) (ɪtsɔːlɡɒn)
1,600 ɒ n (ɡɒn) (ɡɒn) (ɪtsɔːlɡɒn)
1,760 n (ɡɒn) (ɡɒn) (ɪtsɔːlɡɒn)
1,920

Note. New phonemes are presented every 160 ms. These timings are internal to CIPAL and are not simulated in real time. Chunks containing more than
one element are grouped in parentheses. CIPAL = Chunk-Based Incremental Processing and Learning.

Table 2
The Contents of Long-Term Memory in the Four CIPAL Models Shown in Table 1

Model 1: Phoneme Model 2: Word Model 3: Lexical bigram Model 4: Full utterance

ɪ ɪ ɪ ɪ
t t t t
s s s s
ɔː ɔː ɔː ɔː
l l l l
ɡ ɡ ɡ ɡ
ɒ ɒ ɒ ɒ
n n n n

ɪt ɪt ɪt
ɪts ɪts ɪts
ɔːl ɔːl ɔːl
ɡɒ ɡɒ ɡɒ
ɡɒn ɡɒn ɡɒn

ɪtsɔːl ɪtsɔːl
ɪtsɔːlɡɒn

Note. CIPAL = Chunk-Based Incremental Processing and Learning.

CHUNK-BASED INCREMENTAL PROCESSING AND LEARNING 11



learned all three utterances as multiword chunks, as well as bigrams
like “was it,” “was there,” and “it was.” This shows that CIPAL’s
incremental chunking mechanism and a bias for using the largest
chunks to process the input allowed it to find the sequences that tend
to move around the input as complete units. Thus, the model does
not need to track statistics to be sensitive to the distributional
structure of the input.

Model Parameters

Decay Rate of 800 ms

Throughout this work, we used a fixed decay rate of 800 ms based
on evidence from the mismatch negativity (MMN), a preattentive
auditory event-related potential that occurs when a repetitive sound
sequence is disrupted by a deviant sound that breaks the continuous
pattern (Näätänen, 1992). Critically, the MMN response is only
observed when the regular pattern and the deviant are presented in
close temporal proximity, suggesting that they both need to be
available in STM for the comparison to occur. Cheour et al. (2002)
detected theMMN in newborns when the deviants (a 1,100-Hz tone)
were separated from the standard stimuli (a 1,000-Hz tone) by
800 ms but not 1,500 ms, suggesting that STM could not sustain the
auditory trace over the longer interval. Interestingly, the MMN can
be elicited over progressively longer periods in older children and
adults, which suggests that there may be maturational changes in
auditory sensory memory (Bartha-Doering et al., 2015). Rather than
attempting to model this developmental change, we used a fixed
decay rate parameter of 800 ms, since we are simulating the earliest
stages of language development.

Speech Rate of One Phoneme Every 160 ms

Several studies have found that adult speakers adjust their
articulation speed based on the age and language abilities of the
listener, typically speaking at a faster pace to older children and
adults compared to when they are talking to young children and
preverbal infants (e.g., Ko, 2012; Narayan & McDermott, 2016;
Raneri et al., 2020). To identify an appropriate speech rate for the
present simulations, we calculated the average phoneme duration in
the Soderstrom corpus (Soderstrom et al., 2008) from the CHILDES
database (MacWhinney, 2000), a longitudinal English corpus of two
American mothers talking to their preverbal infants between the
ages of 6 and 13 months. We selected this corpus as it covers the
developmental period where infants begin to discover the first words
of their language. We accessed the transcripts for the Soderstrom
corpus via the childesr 0.2.3 package (Braginsky et al., 2022) for
the R 4.2.3 programming language (R Core Team, 2023) and
phonemized all maternal input using the eSpeak NG Text-to-Speech
(2022) speech synthesizer. Utterances with missing words or those
that consisted solely of babbling sounds were excluded. In a previous
analysis of articulation rate, Ko (2012) used the time stamps in
CHILDES transcripts to calculate utterance durations before dividing
this time by the number of words in the utterance to obtain average
word durations. Following the same procedure, we used the corpus
timestamps to generate average phoneme durations. Consistent with
Ko’s methodology, utterances longer than 10 s were excluded to
reduce the impact of positive skew from items likely to contain
pauses. The resulting data set contained 21,191 maternal utterances,
with median phoneme duration of 165 ms and an interquartile range
of 111–276ms. On this basis, phonemes were presented to CIPAL at

Table 3
The Long-TermMemory Contents of CIPAL After Training With One of Two Input Samples: (a) 90
Repetitions of the Same Utterance (“Was It There?”) With No Variability in Word Order; or (b) a
Rotating Set of Three Utterances (“There It Was,” “Was It There?” and “It Was There”) Each
Repeated 30 Times Using the Same Word Types as the First Sample

Static word order Variable word order

Chunk Processing time Chunk Processing time

w 462 ð 456
ɒ 625 eə 610
z 462 ɪ 456
ɪ 625 t 610
t 462 w 462
ð 625 ɒ 625
eə 610 z 610
wɒ 304 wɒ 453
zɪ 473 zɪ 621
tð 453 tð 621
tðeə 313 ɪt 335
wɒzɪ 192 wɒz 291
wɒzɪtðeə 120 ðeə 380

wɒzðeə 372
ðeəɪt 340
wɒzɪt 381
wɒzɪtðeə 315
ɪtwɒz 315
ðeəɪtwɒz 293
ɪtwɒzðeə 320

Note. CIPAL = Chunk-Based Incremental Processing and Learning.
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a constant 160-ms intervals. Paired with the decay rate parameter
of 800 ms, this meant that five phonemes could be held in STM
simultaneously before the first element was lost.
It should be noted that articulation rate in natural speech is not

uniformly distributed, even within a single utterance (J. L. Miller et
al., 1984). We did not attempt to implement any fine-grained timing
of the phoneme presentations.We also used the same 160-ms speech
rate across every simulation, including the studies with artificial
languages, since our aim was to test word discovery in CIPAL
across different contexts without changing the model in any way.
However, we maintain that calculating a realistic speech rate from
corpus data is preferable to selecting an arbitrary parameter value or
performing grid search optimization, as these would increase the
researcher’s degrees of freedom.

Initial Processing Time of 1,200 ms

Across all our simulations, phonemes were used as the basic ele-
ments of language. Whenever an unfamiliar phoneme was encoun-
tered, CIPAL created a new chunk in LTM to represent it. Since
phonemic chunks were not formed by combining other units and taking
their average processing time, they were given an initial processing
time of 1,200ms.We selected this value based on a survey of the LWL
literature (described in the Results section of Study 1), where we found
that 15-month-old children needed a weighted average of 1,005 ms to
shift their gaze to a named referent.We increased this to 1,200ms, since
our simulations are targeting an earlier stage of language development.
This value is also 50% larger than the decay rate, which means that
CIPAL needed repeated experience with the phonemes before it could
use them to build new chunks.

Nonlinear Decrease in Processing Time With Experience

Whenever CIPAL uses chunks to recode the input, the processing
times for these chunks get faster. Several studies have found that
practice leads to nonlinear improvements in participants’ speed and
accuracy across different tasks and domains (Delaney et al., 1998;
Heathcote et al., 2000; Logan, 1992; Newell & Rosenbloom, 1981).
Specifically, the rate of change in performance as a function of practice
appears to diminish as participants reach faster speeds and higher
accuracy levels. Therefore, we used a sigmoid curve to determine the
magnitude of the processing time adjustments in CIPAL, which is
illustrated in Figure 3. These adjustments ranged from approximately
5ms for the slowest chunks to 1ms for the fastest. For instance, chunks
with a processing time of 1,000 ms decreased by approximately 4.86
ms, whereas those with a time of 200 ms were adjusted by around
1.13 ms. The inflection point of the curve was at 600 ms, which is half
the initial processing time assigned to new phonemic chunks. At this
level, the chunks were adjusted by exactly 3 ms. To prevent negative
processing times, we set a floor of 10 ms, which means that all chunks
in the model had a processing time between 1,200 and 10 ms.
The sigmoid curve also provides a suitable function for modeling

chunk decay, where processing times become slower through lack
of use. This is implemented in the CIPAL architecture using an
inverted version of the curve shown in Figure 3, where the fastest
chunks receive the largest penalty. However, our pilot studies found
that even slow decay rates prevented the model from discovering
new words and led to an overall decrease in mean chunk speed with
experience. Monaghan and Christiansen (2010) observed similar

problems in their pilots with the PUDDLE architecture. Therefore,
the decay parameter is disabled by default in the architecture, and we
did not use it in any of the simulations presented in this work.

Model Development and Implementation

CIPAL was implemented in the Julia 1.10 programming language
(Bezanson et al., 2017). The architecture was developed according to
the theory-driven testing methodology (Lane & Gobet, 2003, 2012),
which emphasizes the use of reproducible tests to show that (a) the
basic functionality works (unit tests); (b) the core theoretical pro-
cesses have been faithfully implemented (process tests); and (c) key
behavioral effects can be simulated (canonical results tests). The unit
and process tests are providedwith the CIPAL source code in anOpen
Science Framework repository (see src/CIPAL and tests/CIPAL at
https://osf.io/fhrxg/). Since this is a new framework, the simulations
presented in this article represent the canonical results tests. Coverage
calculations from the Coverage.jl 1.6.0 package for Julia revealed
that every line of the CIPAL code was accessed during testing (i.e.,
100% coverage). We have also provided an example of how to use
the CIPAL architecture within the R 4.3.2 programming language
(R Core Team, 2023) via the JuliaCall 0.17.5 package (Li, 2019) in
the additional online material (see notebooks/cipal-juliacall.html at
https://osf.io/fhrxg/).

Comparisons With Other Chunking Models

We developed the CIPAL architecture to determine whether
incremental chunking could explain how children discover words in
both natural and artificial languages using a learning strategy that is
compatible with evidence from other areas of language development
research. In Section 1:WordDiscovery in Child-Directed Speech, we
examine whether the model can discover words in continuous child-
directed speech from 15 different natural languages. We then test
whether CIPAL can replicate several influential findings from sta-
tistical learning experiments with artificial languages in Section 2:
Simulating Word Discovery in Artificial Language Experiments. To

Figure 3
The Magnitude of the Processing Time Adjustments Is Determined
by the Chunk’s Current Processing Time Using a Sigmoid Function
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evaluate CIPAL’s performance in each domain, we also ran identical
simulations with other chunking architectures.
For the natural languages in Section 1: Word Discovery in Child-

Directed Speech, we compared CIPAL with the PUDDLE archi-
tecture (Monaghan & Christiansen, 2010) using the same corpora
and target words. We selected PUDDLE as our benchmark as
previous work has found that it is effective at locating words across
different languages and that it has greater precision and recall than
statistics-based approaches (Caines et al., 2019). For the experi-
ments in Section 2: Simulating Word Discovery in Artificial
Language Experiments, we compared CIPAL with the PARSER
architecture (Perruchet & Vinter, 1998). While there are many other
chunking architectures in the statistical learning literature (e.g.,
Retention and Recognition: Alhama & Zuidema, 2017; Truncated
Recursive Autoassociative Chunk Extractor: French et al., 2011;
Minimum Description Length Chunker: Robinet et al., 2011), we
used PARSER, because it is a thoroughly tested framework that has
simulated results from many statistical learning experiments.
Previous studies have used PARSER to show that chunking can
explain why participants can distinguish words from nonwords
(Perruchet & Vinter, 1998), part words (Perruchet & Desaulty,
2008; Perruchet & Vinter, 1998), phantom words (Perruchet &
Poulin-Charronnat, 2012), and sublexical units (Giroux & Rey,
2009). Thus, since PARSER has alreadymodeledmany of our target
effects, the purpose of running these new simulations was to obtain
“apples-to-apples” comparisons with CIPAL to help contextualize
and evaluate the results. The full details of our implementation and
simulations with PUDDLE and PARSER are available in the
Supplemental Materials.

Section 1: Word Discovery in Child-Directed Speech

Study 1: Corpora From 15 Different Languages

Our first study examined whether CIPAL can discover words in
unsegmented transcripts of parental speech. The purpose of this study
was to thoroughly road test themodel on a diverse set of languages, as
previous computational modeling studies have observed substantial
cross-linguistic variation in performance (Batchelder, 2002; Caines et
al., 2019; Fourtassi et al., 2013; Gervain & Guevara Erra, 2012;
Jarosz & Johnson, 2013; Phillips & Pearl, 2014; Saksida et al., 2017).
We trained CIPAL with 15 languages from the West Germanic
(English, German, Dutch), North Germanic (Norwegian, Danish),
Romance (French, Spanish, Portuguese, Italian), Slavic (Croatian,
Czech, Serbian), Uralic (Estonian), Koreanic (Korean), and Celtic
(Irish) families. We predicted that CIPAL would show a gradual
growth in both vocabulary size and speed of processing in all lan-
guages but with cross-linguistic differences in growth rate.

Child-Directed Speech Samples

Samples of child-directed speech were obtained from the
CHILDES database (MacWhinney, 2000) using the childesr 0.2.3
package (Braginsky et al., 2022) in the R 4.2.3 programming language
(R Core Team, 2023). We initially considered all 44 languages with
monolingual samples in the database, but only those that met three
criteria were ultimately included in the study. The first requirement
was that at least one corpus with 10,000 utterances of child-directed
speech was available for the language. This specific quantity was a
compromise between including a variety of languages and having

enough data in each to evaluate CIPAL’s performance. Other
modeling studies of word discovery have used similar corpus sizes
(Batchelder, 2002; Blanchard et al., 2010; Brent, 1999; Brent &
Cartwright, 1996; Caines et al., 2019; Christiansen et al., 1998; French
et al., 2011; Goldwater et al., 2009; Monaghan & Christiansen, 2010;
Venkataraman, 2001). For consistency and quality control, we only
counted utterances directed at children up to 36 months that were
produced by parents or grandparents and did not contain any missing
words. The second criterion, for practical reasons, was that the
language was supported by the eSpeak NG Text-to-Speech (2022)
multilingual speech synthesizer, which we used to produce pho-
nemic codes from the orthographic transcripts. The last requirement
was that each language had an official adaptation of the MacArthur–
Bates Communicative Development Inventory (CDI) Level 2
questionnaire (Fenson et al., 1994).

To reduce the potential impact of random variance, we ran si-
mulations with every corpus that met our inclusion criteria rather than
selecting only one sample per language or mixing samples from
different children. In total, 70 corpora from 15 languages were
included in the simulations (see Table 4).We extracted the first 10,000
utterances from each corpus and converted them into phonemic codes.
Due to the large quantity of data available for English, we ran separate
analyses for the American and British samples (identified as English
U.S. and English U.K., respectively). A complete list of the corpora
used in Study 1 is provided in the additional online material (see
notebooks/data-analysis.html at https://osf.io/fhrxg/).

Using the CDI to Evaluate Word Discovery in CIPAL

Previous modeling studies have designed algorithms to recover
the boundaries between individual words or morphemes after they
have been removed from the input (e.g., doyouseethekitty→ do you
see the kitty). The most widely used metrics for evaluating these
models are precision and recall (e.g., Brent & Cartwright, 1996;
Caines et al., 2019; Christiansen et al., 1998; Goldwater et al., 2009;
Monaghan & Christiansen, 2010). Precision shows howmany of the
tokens, types, or word boundaries suggested by the model also
appear in the corpus, while recall shows how many of the tokens,
types, or word boundaries in the corpus the model could identify.

A problem with these metrics is that they penalize algorithms for
using chunks that do not correspond towords in the corpus. Yet, there
is substantial evidence that children use different types of chunks to
segment and process their input, including sublexical morphemes
(Mintz, 2013) and multiword phrases (Arnon & Christiansen, 2017;
Christiansen & Arnon, 2017; Contreras Kallens & Christiansen,
2022; Theakston & Lieven, 2017). For this reason, CIPAL learns a
variety of lexical, sublexical, and multiword chunks and does not
always segment the input into words. Instead, the model uses the
fewest and largest chunks available to maximize the amount of
information stored in STM; it favors using one multiword chunk
(e.g., theshoe) over separate chunks for the individual words (e.g., the
shoe). This is sometimes described as undersegmentation (Blanchard
et al., 2010; Gervain & Guevara Erra, 2012; Goldwater et al., 2009;
Pearl et al., 2010), which implies that the model has failed to learn
enough information to break down the utterances into words. Clearly,
this is not the case in CIPAL since it starts with chunks for individual
phonemes and builds progressively larger units. Multiword chunks
are a sign of maturity in the model. They are often formed by
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combining two or more word-level chunks into a single unit, which
allows the model to hold more of the input in STM for longer.
Instead of evaluating CIPAL using precision and recall, we used

the vocabulary checklists from the CDI questionnaires (Fenson
et al., 1994) and measured how many of the items were represented
as single chunks in the model’s LTM. The CDI is a questionnaire
given to caregivers containing a checklist of words that are likely to
appear in children’s vocabulary at different ages. The caregivers
are instructed to mark all the words their child can understand but
not yet say and separately mark the words they can both understand
and say on their own. This provides measures of receptive and
expressive vocabulary, respectively. The CDI is a versatile tool
that has helped researchers to estimate vocabulary norms across
different languages and populations (see the Wordbank database;
Frank et al., 2017).
There are over 100 adaptations of the CDI targeting different

languages and populations, including all 15 languages meeting our
inclusion criteria. These CDIs are called adaptations rather than
translations, because it is not possible to use the exact same words
for every language. For example, some of the function words that
appear on the original American English CDI cannot be directly
translated into other languages where these concepts are commu-
nicated differently. Also, many of the common nouns, such as the
words for food items, are not universally relevant and will be less
familiar to infants from different cultures. These words are often
carefully substituted to ensure that the same information is captured.
For instance, peanut butter is on the original American English CDI,
and aceituna (i.e., olive) is on the European Spanish CDI, but not
vice versa. Although the specific items may vary depending on the
language and culture of the target population, the core structure of
the CDI is consistent, as each adaptation includes the same semantic
categories (e.g., actions, clothing, places) and has a similar balance
of nouns, verbs, adjectives, and other words. Thus, the CDI provides
a list of words calibrated for the specific population being studied.
In this study, we used the vocabulary checklists from the CDI-II,

which is typically used tomeasure vocabulary size in children between

15 and 30 months. We used the CDI-II rather than the CDI-I (which is
designed for children aged 8–18 months), because it has a longer
checklist that includes most of the items featured on the CDI-I. We
obtained the word lists for 11 languages from Wordbank: Croatian,
Czech, Danish, English (U.S.), French (France), German, Italian,
Korean, Norwegian, Portuguese (European), and Spanish (European).
Theword lists for the other four languages were taken directly from the
original questionnaires. We also obtained a British English CDI
checklist (Lincoln CDI), which we used for the models trained with
British English corpora. All the CDI checklists used in this study are
officially recognized by the CDI Advisory Board, and the adaptations
always matched the corpus samples (e.g., British English CDI with
British English corpora).

The word lists presented to CIPAL contained between 538 and 911
items. Nearly half of these words were nouns (47%) from various
semantic categories, including animals (e.g., dog, elephant), food/
drink (e.g., apple, milk), and clothing (e.g., shoe, hat). The lists also
included verbs (16%; e.g., bite, sleep), adjectives (9%; e.g., loud,
fast), and function words (12%; e.g.,what, they). Variable items such
as the child’s own name, their babysitter’s name, and their pet’s name
were excluded. We converted the items into phonemic codes using
eSpeak NG Text-to-Speech (2022), with the same language settings
as the corresponding corpora from CHILDES.

We do not attempt to compare CIPAL to data collected with these
measures in infants, as the model does not aim to capture the full
spectrum of knowledge and skills that children acquire during
vocabulary development. In particular, there is clear evidence
showing that the order in which children learn their first words is
guided by semantic properties such as concreteness and arousal
(Braginsky et al., 2019; Tardif et al., 2008). However, CIPAL has no
understanding of what the chunks it is learning mean in the lan-
guage. Instead, we used the CDI as a list of target words that we
expect CIPAL to discover in each language, providing test materials
that are independent of the corpus samples used for training.

Since the target words are not taken from the training sample,
many of the items do not appear in the model’s input (38.4% on

Table 4
Input Characteristics of the Corpora Used in Study 1

Language N Age No. of items on CDI % of CDI items in corpus Token Type % One-word utterances

Croatian 1 17;3–32;8 723 53.5 37,521 3,555 25.8
Czech 1 19;5–32;0 544 59.6 36,908 4,728 22.8
Danish 2 12;26–34;21 713 56.5 37,001 1,926 31.2
Dutch 6 17;9–34;14 888 49.4 43,118 2,546 19.2
English (U.K.) 16 20;22–29;6 701 64.3 39,278 1,862 22.3
English (U.S.) 17 5;30–35;17 668 68.8 40,295 2,086 20.5
Estonian 1 19;24–24;26 657 55.7 41,190 4,564 20.5
French 8 11;17–35;21 682 58.8 43,094 2,880 22.9
German 4 10;1–34;27 580 67.5 44,942 3,035 23.5
Irish 1 17;8–21;28 911 44.6 49,224 2,862 13.0
Italian 1 17;4–25;11 693 65.1 46,346 3,562 13.9
Korean 3 15;8–31;0 638 59.2 37,910 6,915 19.3
Norwegian 1 24;2–27;22 706 62.9 53,354 3,660 16.3
Portuguese 2 17;9–32;9 657 60.3 45,527 2,148 15.3
Serbian 2 18;2–29;23 538 34.9 38,218 3,889 20.5
Spanish 4 11;1–28;16 601 63.3 37,226 2,542 22.8
Pooled data 70 5;30–35;21 686 (81) 61.6 (8.5) 40,934 (6,391) 2,650 (1,250) 21.3 (6.1)

Note. Each sample contained 10,000 utterances. N represents the number of individual corpora run for each language based on the availability of data
meeting the inclusion criteria. Age shows the age range of the target children across all samples in months; days format. Corpus statistics are means (and
standard deviations) across all samples for each language. CDI = Communicative Development Inventory.
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average; see Table 4). Rather than filtering the checklists and only
testing the model on familiar words that appear in the corpora, Study
2 examines CIPAL’s performance with larger training samples for a
smaller number of languages where the majority of the CDI items
appear the model’s input.

Measuring Speed of Processing

To determine speed of processing in CIPAL, we calculated the
model’s mean processing time for the CDI items that appeared in
LTM. Thus, speed of processing was estimated from the words that
the model has already learned as chunks. This is the same procedure
used in the LWL paradigm (e.g., Fernald et al., 1998), where infants’
processing speed is calculated from their reaction times to familiar
words only (based on parental reports). These studies have con-
sistently found that infants with larger vocabularies are faster at
responding to speech containing words that they already know (e.g.,
Fernald et al., 2006; Peter et al., 2019).

Simulation Procedure

We ran 70 separate models, one for each corpus that met the
inclusion criteria. At the start of each simulation, CIPAL had an
empty chunk hierarchy with no knowledge of the target language,
including which phonemes were used as the basic speech elements.
The timing parameters were kept at their default levels and were
identical for every simulation. The models were trained with each
corpus once, and the utterances were presented in developmental
order. After every 50 utterances, we counted the number of words on
the corresponding CDI that CIPAL had learned as one chunk by
searching the model’s LTM. We also computed the mean processing
time for each of the CDI items that were represented with a chunk and
measured the total number of chunks in LTM. In total, 200 mea-
surements of each variable were taken per model, providing high-
resolution data for each simulation. CIPAL did not learn from the

CDI lists, only from the corpus input, so repeated testing did not have
any impact on the results.

Analysis Procedure

To test our hypotheses, the simulated data were analyzed using
frequentist linear mixed-effects models via the lme4 1.1-35 package
(Baayen et al., 2008; Bates, Mächler, et al., 2015) in R 4.4.1 (R Core
Team, 2024). Since Study 1 used corpora from different languages,
the random-effect structure always included language as a random
intercept. As an initial specification, the full fixed-effect structure
was entered as random slopes (i.e., the maximal model; Barr et al.,
2013). Before inspecting the fixed-effect estimates, we conducted a
parsimonious selection process to ensure that the data supported the
maximal random-effects specification (Bates, Kliegl, et al., 2015).
We examined the random-effects variance–covariance matrix and
conducted a principal components analysis to identify instances of
singularity and overparameterization. Where necessary, slopes were
removed until the random-effects specification was supported by the
data, but we did not remove any fixed-effects during this selection
process. Finally, p values were computed using Satterthwaite’s
method via the lmerTest 3.1-3 package (Kuznetsova et al., 2017),
which has been shown to produce accurate Type 1 error rates (Luke,
2017). The code and output for all our analyses are available in
the additional online material (see notebooks/data-analysis.html at
https://osf.io/fhrxg/).

Results: Word Discovery

Since the number of items on the CDI varied between languages
(see Table 4), the dependent variable of our analyses was the
proportion of the corresponding CDI checklist that CIPAL learned
as a chunk. Table 5 shows the average CDI scores for each language
after all 10,000 utterances were presented to the model. Across all
70 simulations, CIPAL acquired chunks for 42.4% (SD = 7.6%) of

Table 5
The Performance of CIPAL and PUDDLE in Study 1 After All 10,000 Utterances Were Presented

Language

CIPAL PUDDLE

% of CDI
chunked

Mean CDI processing
time

No. of chunks
learned

% of CDI
chunked

Mean CDI
activity level

No. of chunks
learned

Croatian 42.9 138 53,298 19.8 68 4,159
Czech 36.6 118 59,401 17.6 104 4,275
Danish 31.5 138 33,306 27.3 94 3,411
Dutch 34.4 120 54,542 27.8 78 3,707
English (U.K.) 45.3 147 36,008 29.5 65 3,794
English (U.S.) 47.8 143 37,697 32.4 64 3,889
Estonian 40.8 131 72,140 23.7 53 4,019
French 38.8 142 43,372 17.8 82 3,934
German 44.3 122 63,302 35.5 86 4,105
Irish 35.3 123 53,306 18.4 81 4,708
Italian 38.7 114 73,683 24.0 78 4,872
Korean 56.8 111 82,269 25.2 89 4,350
Norwegian 43.9 122 69,449 28.8 72 5,730
Portuguese 34.3 139 50,985 28.4 55 3,453
Serbian 21.2 133 55,384 9.3 10 4,420
Spanish 38.3 123 48,116 20.7 90 2,288
Pooled data 42.4 (7.6) 136 (17) 46,347 (17,819) 27.1 (6.6) 71 (19) 3,850 (863)

Note. Statistics show the means (and standard deviations) across all simulations for each language. CIPAL = Chunk-Based Incremental Processing and
Learning; PUDDLE = Phonotactics from Utterances Determine Distributional Lexical Elements; CDI = Communicative Development Inventory.
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the CDI checklists, with substantial cross-linguistic differences in
performance. The highest scores were in Korean, where over half of
the CDI checklist was represented as a chunk in LTM (M = 56.8%).
The lowest scores were in Serbian, where CIPAL learned less than a
quarter of the checklist on average (M = 21.2%).
Figure 4 shows the proportion of the CDI that CIPAL discovered

throughout the simulations. The plot suggests that the model con-
tinuously discovered new words in the input, but this growth rate
slowed down as it acquired chunks for a larger percentage of the CDI.
To confirm this trend, we performed a frequentist growth curve
analysis (Mirman, 2014; Mirman et al., 2008). The fixed-effect
structure contained orthogonalized linear and quadratic slopes for the
number of utterances presented. The data supported the maximal
random effects specification, with language as a random intercept and
the linear and quadratic growth curves as correlated random slopes.
The results confirmed a linear increase in the proportion of CDI items
chunked by CIPAL as more utterances were presented, β = 1.31,
t(16.1) = 24.5, p < .001, paired with a quadratic deceleration in this
growth rate as training progressed, β = −0.36, t(16.0) = 12.7, p <
.001.

Results: Processing Times

In our second analysis, we assessed whether CIPAL’s average
processing times for the chunked CDI items changed with experi-
ence. Many studies using the LWL procedure have found that
children become faster at responding to familiar words as they get
older (Fernald et al., 1998, 2006; Peter et al., 2019), although the
shape of these growth curves varies between studies. To obtain
reliable data for evaluating our simulations with CIPAL, we sur-
veyed the speed of processing literature and extracted the mean
reaction times reported in different experiments.

We conducted a systematic search using Google Scholar by
screening all of the peer-reviewed journal articles that cited Fernald
et al. (1998) or Fernald et al. (2006) with the words “infant” or
“infancy” in the title, key words, or abstract. We chose these articles
as they were the first to investigate developmental changes in
children’s processing speed and its relationship to vocabulary growth
using the LWL task. Our two searches produced 330 and 373 cita-
tions, respectively. Each result was evaluated against several criteria.
First, we only included studies that used the LWL paradigm (also
called intermodal preferential looking). In these tasks, images of two
familiar objects (e.g., a dog and a baby) are presented on-screen,
followed by an utterance that names one of the objects with a familiar
noun (e.g., “look at the dog”). The infant’s looking behavior is
recorded using either a video camera or an eye tracker. For this
analysis, we used the average latency in the infant’s first gaze shift to
the named target picture (in milliseconds) as the measure of pro-
cessing speed. Second, to maximize the homogeneity of the data, we
only included samples of infants that were typically developing, born
full term, and were learning English in a monolingual environment.
Finally, we only included samples from participants aged between
approximately 14 and 30 months (±1 month). This lower boundary
was based on experimental work showing that LWL times from very
young children (<14 months) are often unreliable due to their limited
vocabulary (Fernald et al., 2008).We set the upper boundary because
more complex stimuli are often used to study lexical processing in
older infants (e.g., Peter et al., 2019).

The systematic search identified 35 samples from 16 articles, re-
presenting data from 1,706 infants between the ages of 15 and
31 months. These data are available in our additional online material
(see data/1-raw at https://osf.io/fhrxg/). The sample effects are plotted
in Figure 5A, which shows that children get faster at responding to
their input over time. It also suggests that this relationship is nonlinear;
the children appear to show a slower rate of improvement as they get

Figure 4
The Proportion of CDI Items Discovered by CIPAL for Each Language in Study 1

Note. The legend is sorted by the proportion of CDI items discovered in each language after
training with 10,000 utterances. CDI = Communicative Development Inventory; CIPAL =
Chunk-Based Incremental Processing and Learning. See the online article for the color version
of this figure.
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older, with a plateau around their second birthday. This is consistent
with evidence from previous work suggesting that the benefits of
practice and experience diminish as participants become faster and
more accurate in specific contexts (Delaney et al., 1998; Heathcote et
al., 2000; Logan, 1992; Newell & Rosenbloom, 1981).
To test this nonlinear effect in the LWL studies, we compared the

goodness-of-fit of two mixed-effects models. Unlike our previous
analyses, the data in the model were weighted so that studies with
larger sample sizes had a greater influence on the estimates. Since

some of the studies in the survey provided effect sizes at multiple age
points, we included study as a random intercept. In the first model, the
fixed-effect structure included age (in months) as a continuous linear
variable. Before fitting the model, we subtracted 14 from the infant’s
true age so that the intercept represents performance at age 14months
(rather than at age 0 months), given the parameters of our systematic
search. In this first model, the age estimate shows the change in
the infant’s reaction times for every 1 month increase in age. In the
second model, the age variable was log-transformed (using the

Figure 5
Developmental Changes in Speed of Processing in (A) English-Learning Children and (B)
CIPAL

Note. (A) The average reaction times observed in looking-while-listening studies with English
infants between 15 and 31 months. The points are jittered along the x-axis to avoid overplotting. Their
size represents the study’s sample size (16–118 participants), with larger points indicating larger
samples. The lines represent weighted linear and log-linear regression curves. (B) CIPAL’s average
processing time for known CDI times in each language. The legend is sorted by the proportion of CDI
items discovered in each language after training with 10,000 utterances. CIPAL = Chunk-Based
Incremental Processing and Learning; CDI = Communicative Development Inventory; RT = reaction
time. See the online article for the color version of this figure.
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natural logarithm) to estimate the change in the infant’s processing
speed with every 1% increase in age, which allows for a nonlinear
rate of improvement over development. No transformations were
applied to the dependent variable, which was the weighted sample
mean reaction times. In both models, age (or Log-age) was retained
as a random slope for study. Without checking the fixed-effect es-
timates, we compared the models on several goodness-of-fit mea-
sures. These checks found that the log-linear slope for age provided a
stronger fit to the data (Akaike information criterion = 407; Bayesian
information criterion = 413; root-mean-square error = 48.1) than the
linear slope (Akaike information criterion = 418; Bayesian infor-
mation criterion = 424; root-mean-square error = 51.9). The results
of this log-linear model showed that infant’s speed of processing
improved by 1.32 ms with every 1% increase in age, β = −132,
t(30) = 8.47, p < .001, confirming that children become faster in the
LWL task as they get older, but the rate of this improvement de-
celerates throughout development. On this basis, we used a nonlinear
improvement in processing time as the target for our simulations
with CIPAL.
Figure 5B shows how CIPAL’s average processing time for

chunked CDI items changed with experience in the 15 languages.
The patterns show a strong resemblance to the curve in the infant
data. Since the processing times in CIPAL are adjusted on a sigmoid
curve, the model showed larger improvements during the earliest
stages of training, which gradually decreased throughout the si-
mulations. To confirm this pattern, we fit a mixed-effects model to
the data.We truncated the first 250 utterances from the data since the
model’s vocabulary size was too small to provide stable estimates of
its average processing speed. The fixed-effects structure contained
the number of utterances presented as a continuous predictor, which
was log-transformed using a natural logarithm. The data supported
the maximal random-effects structure, with language as a random
intercept and Log-utterances as a random slope. Consistent with the
growth curves observed in our survey of LWL experiments, the
results showed that CIPAL’s average processing time for chunked
CDI items decreased by approximately 0.76 ms for every 1%
increase in the number of utterances presented, β = −75.8, t(16) =
40.0, p < .001.

Model Comparisons With PUDDLE

The statistics in Table 5 shows that CIPAL discovered a larger
percentage of the CDI than PUDDLE in all 15 languages. PUDDLE
acquired chunks for 27.1% (SD = 6.6%) of the CDI checklists on
average. The highest scores were in German, where 35.5% of the
CDI checklist appeared in the model’s lexicon. As with CIPAL, the
lowest scores were in Serbian, where PUDDLE learned 9.3% of the
target words. We compared the developmental performance of both
architectures using growth curves in a mixed-effects model. The
fixed-effect structure contained orthogonalized linear and quadratic
slopes for the number of utterances presented, crossed with archi-
tecture as an effect-coded factor (CIPAL = 0.5; PUDDLE = −0.5).
The data supported the maximal random effects specification,
with language as a random intercept and the full fixed-effects
structure as correlated random slopes. The results confirmed that
CIPAL reliably chunked more of the CDI words than PUDDLE
across the simulations, β = 0.10, t(16.0) = 8.0, p < .001. The
proportion of CDI items discovered by both frameworks increased
linearly throughout the simulations, β = 1.04, t(16.1) = 21.9, p <

.001, although the quadratic component was significant as well,
showing a deceleration in growth rate over time, β = −0.29, t(16.1)=
13.9, p< .001. These growth curves also interacted with architecture,
as CIPAL produced faster linear growth, β = 0.50, t(15.9) = 9.1, p <
.001 and quadratic deceleration, β = −0.11, t(15.8) = 4.4, p < .001
than PUDDLE.

Despite using different chunking strategies, CIPAL and PUDDLE
produced similar cross-linguistic patterns; both frameworks showed
high CDI scores in English, German, and Norwegian, but the lowest
scores in Serbian. Therefore, we ran a Pearson’s correlation on the
CDI scores generated by the two architectures, which showed a
significant positive relationship, r = .64, t(68) = 6.82, p < .001. This
suggests that some of the cross-linguistic differences observed with
CIPAL were not due to the idiosyncrasies of the architecture but may
reflect typological differences that affect the overall difficulty in
discovering words in different languages. Similar observations have
been made in previous work comparing different models of word
discovery (e.g., Fourtassi et al., 2013).

Discussion

Study 1 demonstrated that CIPAL can discover words in unseg-
mented corpora from multiple languages and simulate the develop-
mental changes in children’s lexical processing abilities. In particular,
the growth curves for the model’s processing speed showed a strong
resemblance to the decrease in processing times observed in LWL
studies across different age groups. The model also chunked more of
the target words than PUDDLE, which suggests that incremental
chunking is amore effectiveword discovery algorithm than a “starting
big” strategy, where chunks for entire utterances are learned first and
then used to find smaller lexical chunks (Arnon, 2021). Taken
together, these results suggest that an incremental chunking process
could explain how children discover words in their input and become
more efficient at recognizing words over development.

Across all 70 simulations, CIPAL learned chunks for 42.4% of the
words from the CDI checklists on average. At first glance, it might
appear that the model performed poorly and failed to learn over half
of the target words. However, on average, only 61.6% of the CDI
items appeared in the training samples (see Table 4), which means
that CIPAL did not have the opportunity to build chunks for over
38% of the words. This could explain why the simulations with
Serbian showed lowest CDI scores; CIPAL built chunks for 21.2%
of the checklists, but only 34.9% of the CDI items appeared at least
once in the corpora. It is likely that CIPAL would continue to
discover new words and acquire a larger proportion of the CDI
checklists when trained with more language input. We test this
hypothesis in our second study, where we used larger input samples
for a smaller number of languages.

Study 2: Large Corpora of English, German, French,
and Serbian

In our first study, CIPAL learned 42.4% of the CDI on average
after processing 10,000 utterances of child-directed speech. Study 2
extends these findings by testing whether CIPAL would continue to
find new words and reach higher CDI scores with larger training
samples. We increased the input size to 200,000 utterances for a
smaller set of languages: English (U.S.), German, French, and
Serbian. CIPAL discovered less than 50% of the CDI for each of
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these languages in our first study (see Table 5), with Serbian
showing the slowest growth and the lowest scores out of all 15
languages (M = 21.4%, SD = 5.0%).

Input and Simulation Procedure

Study 2 followed the same simulation procedure as the previous
study. The corpora were obtained from the CHILDES database
(MacWhinney, 2000) using the same inclusion criteria as Study 1,
except that we raised the input requirements to at least 200,000
utterances per language (not per corpus). For each language, we
pooled all the data meeting the inclusion criteria into a single training
set and retained the first 200,000 utterances. This meant that we ran
one simulation for each language rather than separate simulations for
each individual corpus. To reach the 200,000 utterances requirement
for Serbian, we raised the age limit from 36 to 48 months and
included input produced by the investigator. We made these ex-
ceptions since the Serbian model showed the lowest CDI scores in
Study 1, making this language a strong test of whether CIPAL can
discover most of the target words with more input. Table 6 provides a
summary of the training data, Table 7 shows descriptive statistics for
the simulation results, and Figure 6 shows the change in the model’s
performance over time.

Results: Word Discovery

On average, CIPAL acquired chunks for 82% of the CDI
checklists after all 200,000 utterances were presented (see Table 7).
The highest scores were in German, where the model learned 92.1%
of the items. Serbian still produced the lowest scores, but the model
learned 73.2% of the CDI checklist, compared to 21.2% in Study 1.
The growth curves in Figure 6A suggest that CIPAL continuously

discovered newwords in all four languages, but the rate of improvement
decelerated as the model reached higher CDI scores. To confirm these
trends, we ran a growth curve analysis following the same procedure as
the previous study. The fixed-effect structure contained orthogonalized
linear and quadratic slopes for the number of utterances presented. The
data supported the maximal random-effects structure, with language as
a random intercept and the full fixed-effect specification as correlated
random slopes. The results confirmed that the proportion of CDI items
chunked byCIPAL linearly increased as themodel receivedmore input,
β = 8.68, χ2(1) = 5.01, p = .025, but there was also a quadratic
deceleration in this growth rate throughout the simulation, β = −3.42,
χ2(1) = 13.11, p < .001.

Results: Processing Time

Figure 6B shows the change in CIPAL’s average processing time
for the chunked CDI items with experience. The curves suggest a
more severe deceleration and plateau in the model’s processing times
than in its CDI scores. Since the models were trained with large input
samples, many of its chunks for the CDI items reached fast pro-
cessing times or hit the floor level of 10 ms, so further experience
would not produce big changes in processing speed. To confirm these
trends, we fit a mixed-effects model to the data. Consistent with the
analysis from Study 1, we truncated the first 250 utterances from
the data since the model’s vocabulary size was too small to provide
stable estimates of its average processing speed. The fixed-effects
structure contained the number of utterances presented as a con-
tinuous predictor, which was log-transformed using a natural log-
arithm. The data supported the maximal random-effects structure,
with language as a random intercept and Log-utterances as a random
slope. The results showed that CIPAL’s average processing time for
chunked CDI items decreased by approximately 0.42 ms for every
1% increase in the number of utterances presented, β = −42.5, t(4) =
28.8, p < .001.

Model Comparisons With PUDDLE

Following the same process as Study 1, we ran identical simu-
lations with the PUDDLEmodel using the same corpus samples and
CDI checklists presented to CIPAL. The results of these simulations
are shown in Table 7. We found that CIPAL continued to discover
more words on the CDI than PUDDLE across all four languages.
PUDDLE acquired chunks for 42.1% of the target words on average.
The highest scores were in English, where the model learned 58.4%
of the CDI. However, the model only discovered 22.5% of the items
in Serbian after training with 200,000 utterances.

We compared the growth curves of the two architectures using a
mixed-effects model. The fixed-effect structure contained orthogo-
nalized linear and quadratic slopes for the number of utterances pre-
sented, crossed with architecture as an effect-coded factor (CIPAL =
0.5; PUDDLE = −0.5). The random-effects structure supported by the
data contained language as a random intercept with the linear and
quadratic terms for utterances presented as correlated random slopes.
The results confirmed that CIPAL reliably learned a larger proportion
of the CDI than PUDDLE across the simulations, β= 0.31, t(32,000)=
633, p< .001. The number of CDI items chunked by both frameworks
increased linearly with additional input, β = 6.3, t(4) = 22.5, p < .001,
with a quadratic deceleration in this growth rate over time, β = −2.6,
t(4) = 9.5, p < .001. These growth curves also interacted with

Table 6
The Sample Characteristics for the Corpora Used in Study 2

Language Age No. of items on CDI % of CDI items in corpus Token Type No. one-word utterances

English (U.S.) 3;0–13;13 668 92.5 813,176 9,762 22.7
French 11;17–33;15 682 82.7 881,409 15,230 20.9
German 6;13–29;0 580 97.6 896,785 19,801 22.0
Serbian 17;11–48;5 538 84.6 736,192 22,730 22.7
Pooled data 3;0–48;5 617 (69) 89.3 (7) 831,890 (73,421) 16,881 (5,661) 22.1 (0.9)

Note. The statistics are based on one combined input set per language. All samples contained 200,000 utterances. Age refers to the target children in the
corpora and is presented in months;days format. CDI = Communicative Development Inventory.
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architecture, as CIPAL produced faster linear growth, β = 4.82,
t(32,000) = 157, p < .001 and quadratic deceleration, β = −1.60,
t(32,000) = 51.9, p < .001 than PUDDLE.

Discussion

The results of Study 2 show that CIPAL can discover most of the
CDI checklist in each language with sufficient training. This suggests
that incremental chunking is effective at continuously discovering
words in different languages. The comparatively low scores observed
in Study 1 were due to a lack of opportunity rather than an inability to
learn the items. With larger andmore diverse input samples, there are
more opportunities for the model to learn the different items as
chunks. However, this does not appear to be the case for PUDDLE,
which showed a much smaller improvement in performance than
CIPAL and discovered less than a quarter of the target words in
Serbian.

Section 2: Simulating Word Discovery in Artificial
Language Experiments

In the remaining studies, we tested CIPAL with carefully controlled
artificial languages from statistical learning experiments. Experiments
with artificial languages are the cornerstone of the statistical learning
literature. They have provided insights into the linguistic cues and
learning strategies that participants could use to identify words in
continuous speech and have expanded our understanding of vocab-
ulary development. In the canonical configurationfirst used by Saffran,
Aslin, and Newport (1996; Saffran, Newport, & Aslin, 1996), parti-
cipants listen to a continuous stream of consonant–vowel syllables
(e.g., ba, da, ku, pa, do, ti, go, la, tu, da, ro, pi). This stream is not
random but composed of a small number of three-syllable words (e.g.,
badaku, padoti, golatu, daropi) repeated throughout the exposure in a
pseudorandom order. The words are concatenated into a single string
that is produced in a monotonic voice at a constant tempo, leaving no
pauses or other perceptual cues to identify the word boundaries. After
listening to the artificial language, the participants are then tested on
their ability to discriminate the words of the language (e.g., daropi)
from either part-word foils that include a word boundary (e.g., tudaro)
or nonword foils constructed from syllable pairs that did not appear in
the exposure (e.g., laroda). In infants, this is typically measured using
differences in their looking times in the head-turn preference procedure
(Jusczyk & Aslin, 1995). The most common method in adult studies
is the two-alternative forced-choice test, where a word and a foil are

presented together, and the participants select the item that sounds
most like a word from the language. Studies with infants also tend to
use fewer word types (e.g., four vs. six), shorter exposures (e.g., 45 vs.
300 repetitions of each type), and fewer test trials (e.g., four vs. 36
trials) than experiments with adults.

Saffran, Aslin, and Newport (1996) found that 8-month-olds can
distinguish words from part-word and nonword foils. Specifically, they
observed longer looking times when the infants were presented with
novel foil items than familiar words that occurred 45 times in the
artificial language. This appears to be a reliable effect, as ameta-analysis
that aggregated 17 conceptual replications of this seminal work found a
consistent novelty preference (Black & Bergmann, 2017). Similarly, in
their work with adults, Saffran, Newport, and Aslin (1996) found that
participants correctly identified the words with 65% accuracy for part
words and 76% accuracy for nonwords. Many subsequent studies have
confirmed that participants can discover words in continuous speech
and have explored the boundaries of this ability by varying the char-
acteristics of the artificial languages and test items (e.g., Endress &
Mehler, 2009; Frank et al., 2010; Giroux & Rey, 2009; Isbilen &
Christiansen, 2020;Kurumada et al., 2013; Perruchet&Desaulty, 2008;
Perruchet & Poulin-Charronnat, 2012; Perruchet & Tillmann, 2010).

In this section, we will demonstrate that several results from
statistical learning studies can be simulated in CIPAL. Rather than
targeting the findings of specific experiments, we aimed to simulate
influential effects in the literature, some of which have been rep-
licated multiple times with different samples. We focused on results
that address the nature of the learning mechanisms that support word
discovery, either by contrasting different theories or by controlling
particular cues. Specifically, we test whether the model can reliably
discriminate words from nonwords, part words, frequency-matched
part words, phantom words, and sublexical units. Thus, while the
simulations in Studies 1 and 2 demonstrate that CIPAL can extract
words in samples of natural child-directed speech, Studies 3–9
provide detailed insights into how the model achieves this. Table 8
summarises the artificial languages and the model’s performance
across these simulations. The results for the individual test items
used in each study are available in the additional online material (see
notebooks/data-analysis.html at https://osf.io/fhrxg/).

There were two reasons why we decided to model the behavioral
patterns observed in studies with small artificial languages. First,
we developed the CIPAL architecture to determine whether an
incremental chunking mechanism could discover words in
both natural and artificial languages using learning processes that
are compatible with the broader developmental literature. Most

Table 7
The Performance of CIPAL and PUDDLE in Study 2 After All 200,000 Utterances Were Presented

Language

CIPAL PUDDLE

% of CDI
chunked

Mean CDI
processing time

No. of chunks
learned

% of CDI
chunked

Mean CDI
activity level

No. of chunks
learned

English (U.S.) 85.2 23 825,581 58.4 893 14,973
French 77.4 32 964,680 34.2 1,080 11,874
German 92.1 25 1,353,777 53.3 1,439 14,446
Serbian 73.2 35 1,049,503 22.5 42 15,420
Pooled data 82.0 (8.4) 29 (6) 1,048,385 (223,542) 42.1 (16.7) 863 (593) 14,178 (1,587)

Note. The statistics are based on one simulation per language. CIPAL = Chunk-Based Incremental Processing and Learning; PUDDLE = Phonotactics
from Utterances Determine Distributional Lexical Elements; CDI = Communicative Development Inventory.
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computational models focus on explaining word discovery in either
large naturalistic corpora (e.g., PUDDLE) or small artificial lan-
guages (e.g., PARSER), but not both contexts simultaneously. Also,
these models often make assumptions that conflict with evidence
from other areas of language development; for instance, many
frameworks use strategies that locate words in the input at the
expense of other meaningful sequences that children learn in their
language (e.g., multiword units; Bannard & Matthews, 2008).
The second reason was to address a weakness in the evaluation

procedure used in the previous simulations. In Studies 1 and 2, we
assessed word discovery performance by searching the model’s
LTM for chunks matching the words on the CDI checklists. Under
this testing procedure, the optimal strategy would be to exhaustively
learn every phonemic n-gram in the input. This would involve

building a vast repository of chunks containing all the words in the
training material, as well as chunks corresponding to every diphone,
sublexical sequence, and multiword unit that appeared at least once.
It is possible that CIPAL discovered more words on the CDI than
PUDDLE simply because it extracted more chunks from the
input (see Tables 5 and 7). However, when tested with artificial
languages, this strategy would prevent the learner from discrimi-
nating words from the part-word foils that also appear in the
exposure and often differ from the words by only one syllable (e.g.,
daropi vs. tudaro). In some studies, the frequency of the words and
part-word sequences are equal, yet participants can still reliably
distinguish these items (Aslin et al., 1998; Pelucchi et al., 2009b;
Perruchet & Desaulty, 2008). By simulating these behavioral effects
in CIPAL, we show that the model does not use a naive brute-force

Figure 6
(A) The Proportion of CDI Items Chunked by CIPAL and (B) the Average Processing Time
for the Chunked CDI Items Across the Four Languages in Study 2

Note. CIPAL = Chunk-Based Incremental Processing and Learning; CDI = Communicative
Development Inventory. See the online article for the color version of this figure.
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strategy of learning every subsequence in the input, and that it can
provide a plausible account of the preferences observed in statistical
learning experiments.

Study 3: Words Versus Nonwords

In our third study, we trained CIPAL with the two artificial
languages from Experiment 1 of Saffran, Aslin, and Newport’s
(1996) study with 8-month-old infants. These languages contained
four three-syllable words (e.g., tupiro, golabu, bidaku, padoti)
repeated in a pseudorandom order for 2 min. During the test phase,
the infants’ looking times were recorded as they listened to two
words from the language (e.g., tupiro, golabu) and two nonwords
that never appeared in the input (e.g., dapiku, tilado). As described
in the previous section, infants show longer looking times for
the novel foils compared to the familiar words of the artificial
language, which means they can recognize reoccurring patterns in
the input without ever hearing them in isolation. This has important
theoretical implications, as many of the words in children’s

language input never appear as single-word utterances. Thus, we
tested whether CIPAL could also distinguish words from non-
words. We predicted that the model would need fewer chunks and
less time to process the words of the language.

Training and Test Stimuli

Table 8 provides a summary of the artificial languages used in
Study 3. We used the same stimuli described in the appendix of
Saffran, Aslin, and Newport (1996). In their original experiment, the
participants were randomly allocated to one of two counterbalanced
groups that used different word lists. Both groups heard the same set
of items during the test phase, although the words for Group 1 were
nonwords for Group 2, and vice versa. Thus, we generated 1,000
random exposures for each word list (2,000 in total). The participants
in Saffran, Aslin, and Newport’s study heard each word 45 times. For
our simulations, we increased the exposure length to 100 repetitions.
This increase is justified considering that the human participants had
8 months of experience with their native language prior to the study,

Table 8
Means and Standard Deviations (In Parentheses) Showing the Characteristics of the Test Items and the Performance of CIPAL and PARSER
in Studies 3–9

Test item

Co-occurrence
frequencies

Transitional
probabilities CIPAL PARSER

Syllable Bigram Full FTP BTP No. chunks needed Processing time No. chunks needed

Study 3: Words versus nonwords
(four trisyllabic words)

Word 100 100 100 1.00 1.00 1.46 (0.51) 469 (205) 1.22 (0.51)
Nonword 100 0 0 0.00 0.00 3.03 (0.17) 1,136 (131) 5.80 (0.49)

Study 4: Words versus part words
(four trisyllabic words)

Word 100 100 100 1.00 1.00 1.40 (0.51) 448 (234) 1.36 (0.75)
Part word 100 67 33 0.67 0.67 1.92 (0.65) 726 (271) 5.11 (1.02)

Study 5: Words versus part words with
equal co-occurrence frequencies
(four trisyllabic words)

Word 100 100 100 1.00 1.00 1.29 (0.48) 355 (179) 1.55 (1.12)
Part word 185 142 100 0.77 0.77 1.46 (0.51) 493 (183) 5.23 (1.00)

Study 6: FTP words versus part words
(nine disyllabic words)

Word 200 100 100 1.00 0.33 1.68 (0.47) 580 (194) 1.06 (0.24)
Part word 200 33 33 0.11 0.33 2.37 (0.74) 909 (393) 3.14 (0.56)

Study 7: BTP words versus part words
(nine disyllabic words)

Word 200 100 100 0.33 1.00 1.44 (0.58) 415 (248) 1.09 (0.30)
Part word 200 33 33 0.33 0.11 2.28 (0.55) 884 (267) 3.05 (0.53)

Study 8: Words versus phantom words
(six trisyllabic words)

Word 200 100 100 0.50 0.50 1.16 (0.37) 320 (116) 1.20 (0.46)
Phantom 200 100 0 0.50 0.50 2.08 (0.27) 667 (84) 3.52 (1.12)
Part word 200 86 40 0.43 0.43 1.64 (0.61) 558 (220) 3.77 (1.08)

Study 9a: Words versus sublexical units
(two trisyllabic and four disyllabic words)

Word 50 50 50 1.00 1.00 2.17 (0.53) 1,044 (288) 1.96 (0.97)
Sublexical 50 50 50 1.00 1.00 2.58 (0.86) 1,282 (501) 3.03 (1.01)
Part word 50 10 10 0.20 0.20 3.21 (0.69) 1,732 (384) 3.70 (0.50)

Study 9b: Words versus sublexical units
(two trisyllabic and four disyllabic words)

Word 300 300 300 1.00 1.00 1.68 (0.68) 456 (224) 1.00 (0.04)
Sublexical 300 300 300 1.00 1.00 2.15 (0.93) 706 (483) 3.96 (0.30)
Part word 300 60 60 0.20 0.20 2.98 (0.81) 986 (333) 3.98 (0.13)

Note. CIPAL = Chunk-Based Incremental Processing and Learning; FTP = forward transitional probabilities; BTP = backward transitional probabilities.
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whereas CIPAL was not pretrained with child-directed speech or the
syllables of the artificial language. To allow for direct comparisons
between each study in Section 2: Simulating Word Discovery in
Artificial Language Experiments, we used 100 repetitions for most of
our artificial language simulations (see Table 8). In each simulation,
the words were randomly shuffled and concatenated into a contin-
uous text, with the restriction that the same item was never repeated
twice in a row. For consistency with our previous studies, the words
and foils were phonemized using eSpeak NG Text-to-Speech (2022)
with the American English dialect. Each syllable was phonemized
individually, and the codes contained no stress markers or other
prosodic cues. Since the language only used consonant–vowel
syllables, the words and foils always contained six phonemes. This
meant that each test item could be represented by a maximum of six
chunks (one for each individual phoneme) and a minimum of one
chunk (the entire sequence as a single chunk). The materials and the
code used to generate the exposures are available in the additional
online material (see https://osf.io/fhrxg/).

Simulation Procedure

Study 3 followed a similar simulation procedure to Studies 1 and
2. Separate simulations were run for each of the 2,000 random
exposures generated according to Saffran, Aslin, and Newport’s
design. At the outset of each simulation, CIPAL had an empty LTM,
with no knowledge of the syllables or phonemes used in the lan-
guage. Critically, the parameters were held at their default levels and
were the same for every simulation (see the Model Parameters
section), which means the models used identical learning processes
to the simulations from Section 1:Word Discovery in Child-Directed
Speech. Each exposure language was presented to CIPAL once.
Then, we tested the model with two words and two nonwords and
measured two dependent variables: (a) the number of chunks needed
to represent the items and (b) the total time needed to retrieve these
chunks from LTM (see the Dependent Variables section). The model
did not learn from the items presented at test.

Dependent Variables

In a typical statistical learning experiment, participants are
tested on their ability to distinguish the words of an artificial
language from other sequences (e.g., part words, phantom units).
For instance, adults are often asked to complete a two-alternative
forced-choice test, where two stimuli (e.g., a word and part word)
are presented together and the participants select the sequence
with the greatest resemblance to the material they heard during
the exposure phase (e.g., Saffran, Newport, & Aslin, 1996).
Similarly, studies with infants often measure differences in the
participants looking times while they listen to the words and foil
sequences (e.g., Saffran, Aslin, & Newport, 1996). The use of such
paradigms means that the participants do not need to discover
every unique word type in the artificial language and completely
segment the input, as the knowledge threshold to recognize a
difference between words and foil sequences is much lower. For
this reason, we did not test whether CIPAL acquired chunks for the
words while avoiding other sequences like in previous simulation
studies (e.g., Perruchet & Vinter, 1998). Instead, we assessed
whether the model demonstrated a representational preference for
the words.

We evaluated CIPAL’s preferences using two dependent vari-
ables. The first measure was the number of chunks the model needed
to represent each test item. The core argument of the CIPAL theory
is that children discover words, and other meaningful sequences in
their language, by building progressively larger chunks. They then
recode their input into the smallest number of units possible using
the chunks they have stored in LTM. On this basis, we assume that
participants would favor items that can be processed with fewer
chunks. Our second dependent variable was the amount of time the
model needed to process the test items, which was calculated as the
sum of the individual processing times for the chunks used to represent
each sequence. In CIPAL, chunks become faster when they are used
to process the input, consistent with evidence that children’s lexical
processing times improve with age and their level of experience with
the language (e.g., Peter et al., 2019; Weisleder & Fernald, 2013).
Thus, we interpret a faster processing time as a stronger representation
of the pattern.

Analysis Procedure

The analysis consisted of two regression models, which were fit
using the R 4.4.1 programming language (R Core Team, 2024). The
code and results are available in the additional online material (see
notebooks/data-analysis.html at https://osf.io/fhrxg/). The first anal-
ysis used a Poisson regression to assess the number of chunks CIPAL
needed to represent each of the test items (between one and six
chunks). The second used a linear regression fit to the total processing
time CIPAL needed for each item. Both models included item type
(word vs. nonword) as an effect-coded fixed factor, providing a
centered estimate of the difference between words (−0.5) and
nonwords (0.5). Since each simulation generated two data points for
each condition, we initially fit mixed-effects models with simulation
(1–2,000) as a random intercept. However, we removed the random
effects specification entirely and used fixed-effects regressions, as
the variance associated with the simulation grouping factor was
extremely small and was not supported by the data. This suggests
that differences in the pseudorandom ordering of the words had no
meaningful impact on the model’s learning. For the remaining
studies in this section, we did not include any random effects in our
analyses.

Results and Discussion

Descriptive statistics for the stimuli and results of Study 3 are
presented in Table 8. The results showed that CIPAL needed 2.1
times more chunks for nonwords than words (β = 0.73, t = 45.9, p<
.001, Hedge’s g = 4.16) and retrieved the chunks for the words
667ms faster than nonwords (β= 667, t= 173, p< .001, Hedge’s g=
3.87). Thus, CIPAL showed a preference for words over nonwords,
consistent with the effects observed in experiments with adults and
infants (e.g., Saffran, Aslin, & Newport, 1996; Saffran, Newport, &
Aslin, 1996). The reason the model needed more chunks to process
the nonwords was because there were no opportunities to learn
these items as single chunks since they never occurred as complete
sequences in the exposure (see co-occurrence frequencies in Table 8).
Only the syllables appeared in the input (e.g., da, pi, ku), whereas the
bigrams (e.g., dapi, piku) and the full nonwords (e.g., dapiku) did not.
For this reason, CIPAL used three chunks to process the nonwords on
99.5% of the trials, as it could only build chunks for the syllables in
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these items. This also contributed to the slower processing times for
the nonwords, as CIPAL continuously compresses the input using
the largest chunks in LTM, which become faster while they are stored
in STM. After discovering the bigrams and words of the language,
these larger chunks will be used to recode the input rather than the
individual syllables.

Study 4: Words Versus Part Words

In Study 4, we examined whether CIPAL can distinguish words
from part words using the two artificial languages fromExperiment 2
of Saffran, Aslin, and Newport (1996). Part words are syllable
sequences that span word boundaries in the artificial language. For
example, Saffran, Aslin, and Newport tested 8-month-olds with part
words built from the final syllable of one word and the first two
syllables of another (e.g., words: golatu, daropi; part words: tudaro,
pigola). These foils are a more stringent test than nonwords for
two reasons. First, while nonwords are illegal sequences that never
appear in the language, the participants hear the part-word sequences
throughout the exposure. For example, whenever the word golatu
is followed by daropi, the participants also hear the part word
tudaro. Second, the part words have a closer resemblance to the
words of the language, as they differ by only one syllable (e.g.,
daropi vs. tudaro). Despite this, infants and adults can reliably
discriminate words from part words (e.g., Giroux & Rey, 2009;
Pelucchi et al., 2009a; Perruchet & Desaulty, 2008; Perruchet &
Poulin-Charronnat, 2012; Saffran, Aslin, & Newport, 1996; Saffran,
Newport, & Aslin, 1996).
Since artificial languages are presented as a continuous stream

without pauses or prosodic cues, the participants must exploit other
features to distinguish words from part words. Typically, there are
two features that differentiate the words from the foils. The first is
the frequency of the test items in the exposure. In our simulations,
the words of the language always occurred 100 times, but the part
words appeared 33 times on average (see Table 8). The syllabic
bigrams within each item (e.g., tibu + budo → tibudo) were also
more frequent for words (M = 100) than part words (M = 67). It is
likely that participants are sensitive to these differences, as there
is extensive evidence to show that frequency distributions have a
critical impact on language learning and processing (Ambridge et
al., 2015; Bybee, 2006; Ellis, 2002; Lieven, 2010). The first words
that infants produce are usually high-frequency content words,
while low-frequency types are typically acquired later in devel-
opment (Goodman et al., 2008).
The second feature is the statistical coherence of the items and

how sounds are distributed in the language. In natural languages,
syllables that belong to the same words have stronger statistical
relationships, on average, than sequences that cross word bound-
aries (Harris, 1955; Saksida et al., 2017). TPs are a commonmeasure
for quantifying the co-occurrence of two elements in the statistical
learning literature. They represent the diversity of syllables that
appear before (BTPs) or after (FTPs) a given syllable. A high TP
means that two elements consistently occur together and rarely
appear alone or with different syllables. Although CIPAL was
trained with phonemically coded input in our simulations, we report
TPs computed over syllables, as this is the most common way that
artificial languages are constructed and described in the statistical
learning literature. In the languages designed by Saffran, Aslin, and

Newport (1996), the four trisyllabic words of the language had
higher TPs than part words in both directions (see Table 8).

Stimuli, Simulation, and Analysis Procedure

We followed the same simulation and analysis procedure described
in Study 3.We generated 2,000 random exposures, alternating between
the two counterbalanced languages described in Saffran, Aslin, and
Newport’s (1996) second experiment. Each exposure contained 100
repetitions of four three-syllable words, which were presented in a
randomorder with the constraint that the sameword did not occur twice
in a row. The input characteristics and descriptive statistics for the
languages are shown in Table 8.

Results and Discussion

The results showed that CIPAL needed 1.37 times more chunks to
process the part words than the words (β = 0.31, t = 17.8, p < .001,
Hedge’s g = 0.88) and the chunks used to represent the words were
also 279ms faster than for the part words (β= 279, t= 49.3, p< .001,
Hedge’s g= 1.10). In 23.2% of the part-word trials, themodel needed
only one chunk to recode the sequence. In comparison, 61.5% of
the words were represented with a single chunk. This was because
there were more opportunities for CIPAL to learn and use these
lexical chunks; as shown in Table 8, the words had both higher TPs
and co-occurrence frequencies than the part-word foils. In the next
study, we address this confound by balancing the frequency of the
test items to explore whether CIPAL can identify the words based on
distributional cues alone.

Study 5: Words Versus Part Words With Equal
Co-Occurrence Frequencies

Artificial languages provide a way to isolate different cues and
identify the sources of information that infants could use to discover
words in their native language. In their original statistical learning
experiments with adults (Saffran, Newport, & Aslin, 1996) and
preverbal infants (Saffran, Aslin, & Newport, 1996), Saffran et al.
compared high-TP and high-frequency words against low-TP and
low-frequency foils. To eliminate this confound, Aslin et al. (1998)
used artificial languages where the words and part words presented
during the test phase had equal frequencies but different TPs. The
languages used four trisyllabic words. Two of these words were
presented 45 times (e.g., pabiku, tibudo), while the other two
were presented 90 times (e.g., golatu, daropi). The part-word foils
were built from the two high-frequency words by combining the
final syllable of one word with the first two syllables of the other
(e.g., tudaro, pigola). These high-frequency fragments allowed
Aslin et al. to generate exposures where the part words occurred 45
times. By pairing these part words with the low-frequency words,
they created a test set where the foils had lower TPs but the same
co-occurrence frequency as the words (see Table 8).

Aslin et al. (1998) found that 8-month-olds showed a novelty
preference, similar to their earlier experiments that did not control
for differences in frequency. Subsequent studies have also found
that adults and preverbal infants can discriminate words and foils
when their frequencies are the same, but their forward or backward
TPs are different (e.g., Pelucchi et al., 2009a; Perruchet & Desaulty,
2008). Statistics-based theories have interpreted this result as
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evidence that learners track the distributional properties of the input
(e.g., Endress & Johnson, 2021), as it suggests that word discovery
is guided by more than just the relative frequency of the sub-
sequences. It also has important implications for chunking theories,
which often use the repetitiveness of the words to distinguish them
from other sequences (e.g., Perruchet & Vinter, 1998).
In Study 5, we tested CIPAL with the languages designed by

Aslin et al. (1998). We predicted that CIPAL would use fewer
chunks and have faster processing times for words than part words,
despite their identical co-occurrence frequencies. CIPAL does not
track statistics; it continuously recodes the input into the fewest and
largest chunks possible using the knowledge it has accumulated. On
this basis, there is a processing advantage for parsing the input into
words. To illustrate, consider an artificial language containing the
words pabiku, tibudo, golatu, and daropi. The first two words occur
45 times, and the last two words appear 90 times. This means we
would test the model with the words pabiku and tibudo and the part
words tudaro and pigola. Imagine that the model encounters this
sequence:

p a b i k u g o l a t u d a r o p i t i b u d o

If it discovers the four words of the language and uses these
chunks to parse the input, it can represent this sequence as four
chunks: pabiku golatu daropi tibudo. However, if the model uses
the part word tudaro to parse the input, it needs at least five chunks:
pabiku gola tudaro pi tibudo. This processing advantage for words
would compound over the entire 270-token exposure. It is unlikely
that the model would integrate the gola and pi fragments with their
neighbors (e.g., pabikugola, pitibudo) without a longer exposure
phase, as these sequences have low co-occurrence frequencies.
However, it is possible that the high-frequency part words would
deter the model from discovering the words of the language if these
sequences were learned early. Experiments have found that famil-
iarizing participants with part words before they hear the language
has this effect (Poulin-Charronnat et al., 2017). Thus, in Study 5, we
tested whether CIPAL would show a preference for words over
frequency-matched part words.

Stimuli, Simulation, and Analysis Procedure

We followed the same simulation and analysis process as the
previous studies in this section. Our simulations alternated between
the two artificial languages described in Aslin et al. (1998), which
contained four three-syllable words. We generated 2,000 random
exposures where the words and part words both occurred 100 times.
To do this, we repeated the low-frequency words 100 times and the
high-frequency words 185 times. The words appeared in a pseu-
dorandom order with the restriction that the same words did not
occur twice in a row. It was necessary to reduce the frequency
difference between the low- and high-frequency words to 85%, as
our search algorithm was unable to find a variety of different ex-
posures when the high-frequency words occurred twice as often.
Table 8 provides a summary of these languages and descriptive
statistics for the results of the simulations.

Results and Discussion

The results showed that CIPAL used 14% more chunks (β = 0.13,
t = 6.6, p < .001, Hedge’s g = 0.35) and was 155 ms slower for part

words than words (β = 138, t = 34.1, p < .001, Hedge’s g = 0.76).
Thus, despite having the same co-occurrence frequencies, CIPAL
demonstrated a processing advantage for the words of the language.
This is an important result as it shows that the discrimination effects
observed by Aslin et al. (1998), and other studies that balance the
frequency of the test items (Pelucchi et al., 2009b; Perruchet &
Desaulty, 2008), can be explained with a chunking algorithm that
does not compute statistics. It also shows that such models do not
need to depend exclusively on differences in relative frequency to
discover words. Instead, an incremental process of learning and using
progressively larger chunks is enough to find meaningful sequences
in the input.

Study 6: FTP Words Versus Part Words

Building on the results of the previous simulations, Studies 6 and 7
examine whether CIPAL can distinguish words from part-word foils
in an artificial language where the words are constructed based on
either forward or backward TPs. TPs are a direction-specific measure
of the relationship between two elements (Perruchet & Desaulty,
2008). The FTP represents the probability that X is followed by Y:

FTP = PðY jXÞ = frequency of XY
frequency of X

: (1)

Likewise, BTPs represent the probability that Y is preceded by X:

BTP = PðXjYÞ = frequency of XY
frequency of Y

: (2)

While both of these measures quantify the strength of the rela-
tionship between two elements in a sequence, their effectiveness at
locating word candidates varies across languages. For instance,
Saksida et al. (2017) found that FTP algorithms were between
11.8% and 12.1% more accurate than BTPs at predicting word
boundaries in Italian, whereas BTPs consistently outperformed their
FTP equivalents in Polish by 3.6%–10.2% (based on absolute and
relative thresholds, respectively).

Although the words in statistical learning experiments typically
have higher TPs in both directions, several studies have found that
participants can still distinguish words from part words when only
one of these measures is informative. For example, Perruchet and
Desaulty (2008) recruited two samples of adults and trained each
group with a different artificial language. The first group listened to a
language with nine disyllabic words that were constructed to have
perfect FTPs (1.0) but low BTPs (0.33). The second group was
presented with a mirrored version of the first language, where the
order of the syllables was reversed to create strong BTPs (1.0) but
low FTPs (0.33). The participants were numerically above chance at
recognizing words over part words but only significantly above
chance in the BTP group (BTP:M = 67.20%, SE = 5.59; FTP:M =
60.32%, SE = 5.15). In a second experiment that controlled for
frequency differences between the words and part-word foils, the
participants were significantly above chance at identifying words in
both languages (BTP: M = 61.1%, SE = 5.11; FTP: M = 66.7%,
SE = 4.32).

Developmental studies have similarly found that preverbal infants
can distinguish words from part words, when their TPs are different
in only one direction. In two studies, Pelucchi et al. (2009a, 2009b)
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trained English-learning 8-month-old infants with controlled samples
of Italian child-directed speech. The infants then heard sequences
with either high or low TPs in a head-turn preference task. Regardless
of whether the words were constructed from FTPs (Pelucchi et al.,
2009b) or BTPs (Pelucchi et al., 2009a), the infants looked for longer
at the high-TP than the low-TP items.
Collectively, this work suggests that participants can discover

words with different statistical properties. In Study 6, we assessed
whether CIPAL could distinguish words from part words with
different FTPs but identical BTPs (see Table 8) using the artificial
languages designed by Perruchet and Desaulty (2008). We then
reversed the TP structure of the language in Study 7 to test whether
the model shows a preference for words over foils that have different
BTPs but matched FTPs. Since CIPAL does not track distributional
statistics, we predicted that it would use fewer chunks and have faster
processing times for the words.

Stimuli, Simulation, and Analysis Procedure

We used the same simulation and analysis procedure as the
previous studies. We generated 2,000 random exposures based on
the materials described by Perruchet and Desaulty (2008). Each
language contained nine two-syllable words that were repeated 100
times in a random order. Unlike our previous studies, there was no
restriction on whether a word could occur twice in a row since the
original study did not enforce this constraint. Each word contained
one unique syllable that did not appear in any other type (A, B, C, D,
E, F, G, H, I) and a syllable that appeared in two other words (X, Y,
Z). The shared syllable appeared in the word-final position
(AX, BX, CX, DY, EY, FY, GZ, HZ, IZ). This meant that the first
syllable of each word perfectly predicted the second syllable (FTP=
1). However, the BTP was 0.33, as the second syllable was preceded
by three different elements. Since Perruchet and Desaulty described
their stimuli using letter codes, we built the language from a list
of unique consonant–vowel syllables that were randomly mapped
to one of the letters. Although we constructed the language using
syllables, the exposures were presented to CIPAL as a stream of
phonemes.

Results and Discussion

The results showed that CIPAL used 42%more chunks (β = 0.35,
t= 46.2, p< .001, Hedge’s g= 1.13) and was 328ms slower for part
words than words (β = 328, t = 101, p < .001, Hedge’s g = 1.06).
Since CIPAL discovers words through an incremental chunking
process, it is not dependent on a specific distributional cue. This
means that the model can separate words from part words in lan-
guages where BTPs are not an informative feature, extending the
results of the previous simulations where words have stronger TPs
in both directions.

Study 7: BTP Words Versus Part Words

Building on the results of Study 6, we tested whether CIPAL
would show a preference for words that had stronger BTPs than
the part words, but identical FTPs. Like the previous study, we ran
2,000 simulations using the materials designed by Perruchet
and Desaulty (2008). The only difference is that the TP structure of
the words is reversed, which means that the words had BTPs of

1.0 and FTPs of 0.33. To build the language, we generated a list
of consonant–vowel syllables that were randomly and uniquely
assigned to the following letter codes to create nine disyllabic
words: XA, XB, XC, YD, YE, YF, ZG, ZH, ZI. The syllables for
X, Y, and Z appeared in three words, whereas all other syllables
only appeared in one word.

Compared to the words of the language, CIPAL used 57% more
chunks (β = 0.46, t = 57.9, p < .001, Hedge’s g = 1.49) and was 469
ms slower to process the part words (β = 469, t = 172.7, p < .001,
Hedge’s g = 1.82). Taken together, Studies 6 and 7 demonstrate that
CIPAL is not dependent on the words having stronger TPs in either
the forward or backward direction. This is consistent with the results
of adult and infant studies, which have demonstrated that humans
can learn words with a variety of different statistical compositions
(e.g., Giroux&Rey, 2009; Pelucchi et al., 2009a, 2009b; Perruchet &
Desaulty, 2008; Perruchet & Poulin-Charronnat, 2012).

Study 8: Words Versus Phantom Words

In Study 8, we testedwhether CIPAL could distinguish words from
phantom words, which are foils that never appear in the exposure but
have identical TPs to the words of the language. Phantom units (also
called prototypes or illusory units) were first introduced by Endress
and Mehler (2009) to examine whether participants learn statistics or
word-like units from their language input. In designing their artificial
language, the authors created two phantom units to serve as proto-
types for building the words. For example, the participants heard the
words tazepi, mizeRu, and tanoRu repeated between 75 (Experiment
1a) and 600 times (Experiment 1d) during the training phase. These
were based on the phantom unit ta-ze-Ru, with different syllable pairs
from this prototype appearing in each word (ta-ze-X, X-ze-Ru,
ta-X-Ru). By building the language in this way, with each syllable
occurring in two different words, the TPs (in both directions) were
consistently 0.5 for every pairwise relationship in both the words and
the phantom units.

Across several experiments with a total of 161 adults
(Experiments 1a–1d), Endress and Mehler (2009) did not find any
preference for words over phantom words. When they introduced
additional word–boundary cues, such as pauses (Experiment 3) or
final syllable lengthening (Experiment 4), then a preference for the
words was observed. These results are consistent with the predic-
tions of statistics-based theories of word discovery (e.g., Endress &
Johnson, 2021), which argue that children discover words using a
mechanism that tracks the statistical relationships between suc-
cessive syllables. Since the words and phantoms had identical TPs,
the participants needed additional cues to identify the words in the
input. The findings also conflict with the predictions of chunking
models. For instance, PARSER and Minimum Description Length
Chunker can distinguish words from phantoms in Endress and
Mehler’s language after a brief exposure (Perruchet & Poulin-
Charronnat, 2012).

However, subsequent studies using phantom units tell a dif-
ferent story. Perruchet and Poulin-Charronnat (2012) used the
same artificial language and test stimuli as Endress and Mehler
(2009). Across three separate studies with a total of 108 parti-
cipants, they found a consistent preference for words over
phantom words. Visual studies using sequences of colored shapes
have also observed reliable discrimination effects. For instance,
Slone and Johnson (2018) found that 8-month-old infants looked
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for longer when tested with familiar triplets that appeared in
the visual language 50 times compared to unobserved phantom
sequences with identical TPs. The same authors have similarly
found that adults can accurately identify familiar triplets over
novel phantoms (Slone & Johnson, 2015). On balance, most
experiments have found that participants can discriminate words
from phantom sequences (Ordin, Polyanskaya, & Soto, 2020;
Ordin, Polyanskaya, Soto, & Molinaro, 2020; Perruchet & Poulin-
Charronnat, 2012; Polyanskaya, 2022; Slone & Johnson, 2015,
2018), with a small number of studies reporting null results (Endress
& Langus, 2017; Endress & Mehler, 2009). We, therefore, use the
finding that participants show a preference for words over phantom
words as our target result.

Stimuli, Simulation, and Analysis Procedure

We assessed CIPAL with the artificial language and test stimuli
used by Endress and Mehler (2009) and Perruchet and Poulin-
Charronnat (2012), following the same procedure as the previous
studies in this section. The language contained six trisyllabic words
built from two phantom words (ta-ze-Ru→ tazepi, mizeRu, tanoRu;
fe-ku-la → fekupi, mikula, fenola). We generated 2,000 random
exposures where each word was repeated 100 times. The words
appeared in a random order, but the sameword did not occur twice in
a row. We tested the model with all six words and the two phantom
words. For comparison, we also tested the model with the 12 part-
word foils used in the original experiments (see Appendix A of
Endress & Mehler, 2009). Like the previous studies, we estimated
the effect of item type on the model’s representational preferences.
In all our analyses, item typewas coded with two centered contrasts,
which compared (a) words with phantom units and (b) words with
part words. The input characteristics and descriptive statistics for the
simulations are shown in Table 8.

Results and Discussion

Compared to the words of the language, CIPAL needed 79%
more chunks (β = 0.58, t = 42.1, p < .001, Hedge’s g = 1.06) and
was 346 ms slower to process the phantom units (β = 346, t = 103,
p < .001, Hedge’s g = 0.88). It also used 41% more chunks (β =
0.35, t= 35.1, p< .001, Hedge’s g= 0.43) and was 238ms slower to
process the part words than the words (β = 238, t = 116, p < .001,
Hedge’s g = 0.73). Similar to the nonword foils we used in Study 3,
the phantom units do not appear in the exposure. This means there
are no opportunities for CIPAL (or other chunking models) to learn
these sequences as single chunks. Instead, the model recoded the
phantom units into two chunks on 94% of the trials (e.g., taze Ru),
often by pairing a bigram chunk that appeared in one of the words
(e.g., taze from tazepi) with a syllabic chunk from another word
(e.g., Ru from tanoRu). CIPAL is also slower at retrieving these
chunks, as it is more likely to recode the input using words after it
has discovered these units.

Study 9a and 9b: Words Versus Sublexical Units

Statistics-based and chunking theories of word discovery often
make similar predictions. For this reason, both frameworks have
modeled many of the same findings in the statistical learning liter-
ature (e.g., Endress & Johnson, 2021; French et al., 2011; Perruchet,

2019). However, these theories make different predictions for
whether participants can distinguish words from phantom units (see
Study 8) and sublexical units (e.g., bida from the word bidaku). In
both cases, statistics-based theories argue that participants will not
discriminate these items since their statistical properties are identical.
However, chunking theories predict that participants will distinguish
the words from the foils since they extract complete units from the
input rather than tracking the probabilistic links between elements.
Most experiments have found evidence consistent with the predic-
tions of the chunking accounts (Giroux & Rey, 2009; Perruchet &
Poulin-Charronnat, 2012; Slone & Johnson, 2015, 2018). In the
previous study, we found that CIPAL needs fewer chunks and less
time to process words than phantom units. In our final study, we
examined whether CIPAL shows a similar preference for words over
sublexical patterns.

Several experiments have found that infants and adults can
discriminate words from sublexical (or embedded) units. In their
seminal study of adults, Giroux and Rey (2009) designed an arti-
ficial language with two trisyllabic words (e.g., bidaku) and four
disyllabic words (e.g., gola). The participants listened to the lan-
guage for either 2 or 10 min before completing a two-alternative
forced-choice test with two conditions. First, they heard the
disyllabic words paired with a disyllabic part word (e.g., gola vs.
labi). Then, they heard two-syllable fragments from the trisyllabic
words alongside a disyllabic part word (e.g., bida vs. kugo). In both
cases, the participants were instructed to identify the items with the
greatest resemblance to the input language. Giroux and Rey found
that the participants accurately selected the words and sublexical
units over the part words in both the 2- and 10-min exposure
conditions. Although the effect sizes were similar in the 2-min
condition, the authors observed larger discrimination effects for the
words (M = 75%, SE = 3.9%) than the sublexical units (M = 65.2%,
SE = 4.2%) after a 10-min exposure. This suggests that participants
can recognize patterns of different lengths, but the sequences that
function as complete units in the language become stronger than
their subcomponents with experience. Critically, words and sub-
lexical units had identical co-occurrence frequencies and TPs (see
Table 8). The only difference between the items was whether they
represented a complete word or a fragment of a word. Giroux and
Rey also showed that these results can be simulated by the chunking
mechanisms of PARSER, but not by the statistical computations of
a simple recurrent network. Other studies have also observed a
preference for words over embedded units in both adults and infants
using visual stimuli (Slone & Johnson, 2015, 2018).

In our final study, we tested whether CIPAL shows a preference
for complete words over sublexical units, as well as a preference for
sublexical units over part words, in the artificial languages designed by
Giroux and Rey (2009). Unlike the previous studies in Section 2:
Simulating Word Discovery in Artificial Language Experiments, we
manipulated the length of exposure phase to examine how the model’s
representation preferences changedwith experience. Specifically, each
word type was repeated 50 times in Study 9a, and 300 times in
Study 9b.

Stimuli, Simulation, and Analysis Procedure

We used the same simulation and analysis procedure as the
previous studies in Section 2: Simulating Word Discovery in
Artificial Language Experiments. The language and test items were
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based on the materials described by Giroux and Rey (2009). Each
language contained two three-syllable words (e.g., ABC, DEF) and
four two-syllable words (e.g., GH, IJ, KL, MN). Giroux and Rey
described their stimuli using alphabetic symbols (e.g.,ABC). To build
the language from these blueprints, we created a list of consonant–
vowel syllables (as phonemic codes) that were randomly mapped to
different letters, with each syllable appearing in only one word. In
Study 9a, we generated 2,000 random exposures where each word
was repeated 50 times in a random order, with the constraint that the
same word did not occur twice in a row. For Study 9b, we created
another 2,000 exposures where each word type was repeated 300
times. For our analyses, we used Poisson and linear regression
models to estimate the effect of item type on themodel’s performance.
Item type was codedwith two centered contrasts, which compared (a)
words with sublexical units and (b) sublexical units with part words.
The input characteristics and descriptive statistics for the simulations
are shown in Table 8.

Results and Discussion

When trained with the short exposures in Study 9a, CIPAL
needed 19% fewer chunks for words than sublexical units (β =
0.17, t = 16.8, p < .001, Hedge’s g = 0.96) and 25% fewer chunks
for sublexical units than part words (β = 0.22, t = 23.6, p <
.001, Hedge’s g = 1.15). The model was also 237 ms faster at
processing words than sublexical units (β = 237, t = 37.5, p <
.001, Hedge’s g = 1.05) and 450 ms faster with sublexical units
than part words (β = 450, t = 71.1, p < .001, Hedge’s g = 1.38).
For the longer exposures used in Study 9b, CIPAL needed
28% fewer chunks for words than sublexical units (β = 0.25, t =
21.7, p < .001, Hedge’s g = 1.01) and 38% fewer chunks for
sublexical units than part words (β = 0.32, t = 32.5, p < .001,
Hedge’s g = 1.27). It was also 250 ms faster at processing words
than sublexical units (β = 250, t = 43.6, p < .001, Hedge’s g =
1.02) and 280 ms faster with sublexical units than part words (β =
280, t = 48.7, p < .001, Hedge’s g = 1.07).
CIPAL showed a processing advantage for words over sublexical

units, even though these items had the same co-occurrence frequencies
and TPs (see Table 8). This is because the model continuously recodes
the input using the largest chunks in its LTM (e.g., A, B, C→ AB, C)
before attempting to learn new chunks from the recoded material (e.g.,
AB, C→ABC). The model does not build chunks for every phonemic
n-gram in the input. Instead, it may sometimes need two chunks to
represent a sublexical unit (e.g., B, C) but only one chunk for a word
containing the same sequence (e.g., ABC). For example, if the model
learned the word bidaku by chunking together bida and ku, it would
not automatically have a chunk for the sublexical unit daku. Lexical
chunks were also faster than sublexical units for similar reasons. The
model recodes the input using the largest chunks in LTM, and these
chunks become faster while they are stored in STM. Since the chunks
for the words allow the model to compress more information, the
model is more likely to use these chunks to recode the input. These
processing advantageswere observed even after a short exposure to the
language and increased in magnitude with additional experience.
These findings are partially consistent with the results of Giroux

and Rey’s (2009) original experiment with adults, which observed a
preference for words over sublexical units when the participants
listened to the language for 10 min, but not when they listened for 2
min. The increase in the magnitude of CIPAL’s preferences suggests

that the model gradually learns to distinguish the complete words of
the language from sublexical sequences within these words, but this
could be detected earlier in the model than in the participants of
Giroux and Rey’s experiment. However, in experiments with visual
stimuli, Slone and Johnson (2018) found that 8-month-old infants
could discriminate words from sublexical units after an exposure
phase containing 80 repetitions of each word. This suggests that a
preference for words over sublexical units may emerge earlier than
originally observed in Giroux and Rey’s experiment with adults,
consistent with the predictions of CIPAL in Study 9a. Thus,
additional experiments are needed to clarify when participants begin
to discriminate words from sublexical units.

Model Comparisons With PARSER

The implementation, procedure, and results for the simulationswith
PARSER are described in more detail in the Supplemental Materials.
Table 8 shows the average number of chunks that PARSER needed to
process the different test sequences from each study. The model
produced similar preferences to CIPAL in Studies 3–8, showing a
consistent processing advantage forwords over nonwords, part words,
frequency-matched part words, and phantom units. In Studies 9a and
9b, PARSER responded differently to CIPAL when the length of the
exposure increased. When each word type was repeated 50 times,
PARSER showed a reliable preference for words over sublexical
units, and sublexical units over part words, consistent with empirical
data from experiments with adults (e.g., Giroux & Rey, 2009) and
infants (e.g., Slone & Johnson, 2018). However, when the exposure
was extended to 300 repetitions of each type, the model showed no
meaningful distinction between the sublexical sequences and part
words; specifically, PARSER showed less than 1% difference in the
number of chunks used in each condition. Thiswas because sublexical
chunks were pruned from memory after the model discovered the
words of the language, since they were no longer being used to parse
the input. However, evidence suggests that children retain sublexical
chunks that help them to process and learn from unfamiliar sequences
(Gathercole, 1995; Jones et al., 2007; Mintz, 2013). Thus, while
Section 1: Word Discovery in Child-Directed Speech found that
CIPAL was more effective than PUDDLE at finding words in natural
languages, Section 2: Simulating Word Discovery in Artificial
Language Experiments showed CIPAL was also more effective than
PARSER at reproducing the results of different statistical learning
experiments.5

In Study 8, the two frameworks also made different predictions
on whether participants would find it harder to distinguish words
from phantom units or part words. Although both models showed a
clear preference for words over both foils, CIPAL used fewer and
faster chunks to represent part words than phantom units, whereas

5 It should be noted that, in their original work, Giroux and Rey (2009)
found that PARSER showed a close resemblance to the human data. The
authors trained PARSER with 400 syllables (short exposure) or 2,000
syllables (long exposure) using the same materials presented to the parti-
cipants in their experiment. They assessed the model’s preferences by
presenting a word or sublexical unit paired with a part word. PARSER
selected one item from each pair, preferring items that appeared in the
perception shaper with strong weights (or selecting one at random if neither
was represented). Although it is possible that the use of a different procedure
influenced PARSER’s effectiveness in Study 9, we maintain that CIPAL is a
more robust chunking algorithm that can account for a variety of statistical
learning effects across different contexts.
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PARSER used fewer chunks for the phantom units than part words.
It is unclear from the experimental literature which of these foil
sequences participants are more likely to confuse with the words of
the language. In Perruchet and Poulin-Charronnat’s (2012) third
study, participants were more accurate in trials comparing words
with part words (Cohen’s d = 1.04) than words with phantom units
(Cohen’s d = 0.554). However, in Slone and Johnson’s (2018)
experiments with visual stimuli, 8-month-olds showed a larger
difference in their looking times when comparing words with
phantom units than part-word sequences, although this difference
was not statistically significant. Thus, further research is needed to
test these conflicting predictions.

General Discussion

Evidence from multiple experiments (Giroux & Rey, 2009;
Perruchet & Poulin-Charronnat, 2012) and computational models
(Monaghan&Christiansen, 2010; Perruchet &Vinter, 1998; Robinet
et al., 2011) suggests that children discover words by extracting
chunks embedded in their input (see Perruchet, 2019). To connect
these accounts with the broader language development literature, we
propose an integrated theory of word discovery, implicit statistical
learning, and speed of lexical processing. The theory is implemented
as a computational modeling architecture called CIPAL. The model
receives language input as a continuous stream of phonemes and
attempts to recode the material into larger units using chunks stored
in its LTM. It acquires new chunks by combining adjacent elements
that appear in the input to incrementally build a chunk hierarchy that
represents knowledge at different levels. Each chunk also has a
dynamic processing time that becomes faster with experience,
consistent with evidence from speed of processing experiments (e.g.,
Weisleder & Fernald, 2013).
Across nine studies, we found that the automatic chunking me-

chanisms in CIPAL could discover words in natural languages,
replicate the results of statistical learning experiments with artificial
languages, and model the developmental change in children’s lexical
processing speed. In Section 1: Word Discovery in Child-Directed
Speech, CIPAL was trained with child-directed speech from 15
different languages and tested with word lists from official adap-
tations of the CDI questionnaire. The model gradually discovered
words in all the languages, showing cross-linguistic variation in
performance. In a follow-up study where the model was trained with
a larger sample of 200,000 utterances from a smaller set of languages
(English, German, French, and Serbian), CIPAL extracted chunks for
82% of the target words on average. This was nearly twice the
number of words that the PUDDLE model discovered when tested
with the same materials. The processing times for these lexical
chunks in CIPAL also produced growth curves matching the
developmental trends observed in children with the LWL task. In
Section 2, we found that CIPAL can model a series of influential
findings from statistical learning experiments, showing greater
versatility than the PARSER model. Specifically, CIPAL could
reliably discriminate words from nonwords (Saffran, Aslin, &
Newport, 1996), part words (Perruchet & Desaulty, 2008; Saffran,
Aslin, & Newport, 1996), frequency-matched part words (Aslin et
al., 1998), phantom words (Perruchet & Poulin-Charronnat, 2012),
and sublexical units (Giroux & Rey, 2009).
Previous chunking models of word discovery have attempted

to isolate the words of the language by preventing the model from

learning or retaining other meaningful sequences (e.g., Brent &
Cartwright, 1996; Goldwater et al., 2009; Perruchet & Vinter, 1998).
However, CIPAL builds an extensive chunk hierarchy that includes
lexical, sublexical, and multiword representations. This is consistent
with studies showing that children learn chunks for different aspects of
their native language, including sublexical morphemes (e.g., Mintz,
2013) and multiword phrases (e.g., Bannard & Matthews, 2008).
Several theories have argued that these representations play a critical
role in language development (Christiansen & Arnon, 2017; Jones &
Rowland, 2017; Theakston & Lieven, 2017). For instance, simula-
tions with CLASSIC have found that models with a diverse collection
of chunks are faster at learning new words and show stronger per-
formance on nonword repetition and sentence recall tasks (Jones &
Rowland, 2017). Thus, CIPAL offers a robust chunking mechanism
that can discover words in continuous speech and model the
behavioral preferences observed in statistical learning experiments
without sacrificing these essential nonlexical representations.

As a first approximation, our studies also show that the relationship
between lexical processing speed, language experience, and vocab-
ulary size observed in LWL studies (Hurtado et al., 2008;Weisleder &
Fernald, 2013) can be explained by a chunking model where reaction
times reflect the strength of the individual chunks being used to
process the input. By extension, themodel also predicts that individual
differences in speed of processing emerge from variance in experience
with the specific items used in the task (e.g., doggie, baby, ball, shoe).
We suggest that children who receive larger and more varied input are
more likely to acquire chunks for the items, and these chunks are likely
to have faster processing times. This explanation is consistent with
correlational studies showing that children who hear greater and more
diverse child-directed speech tend to have larger vocabulary sizes
(Hart & Risley, 1995; Huttenlocher et al., 1991, 2010; Rowe, 2012)
and have faster reaction times in the LWL task across development
(Hurtado et al., 2008;Weisleder & Fernald, 2013). However, previous
research is divided on whether lexical processing speed reflects
a global increase in processing ability or chunk-specific decreases
in reaction times (Donnelly & Kidd, 2020). This issue could be
addressed within CIPAL in future work by comparing the perfor-
mance of models that respond to language experience by adjusting the
processing times of all chunks (i.e., global capacity) or just the specific
chunks used to recode the input, as is assumed here.

Although CIPAL can explain how children identify the sound
sequences that correspond to words in their first language, it is not
a comprehensive theory of vocabulary development. Brent and
Cartwright (1996) suggested that vocabulary acquisition involves
learning the phonological form of a word, the semantic concepts
it represents, and the syntactic functions it typically performs.
They argued that word discovery is solved predominantly by the
mechanisms that learn phonological word forms, allowing the
semantic and syntactic components to work with the most likely word
candidates. This has become the default perspective throughout the
word discovery literature. For instance, the artificial languages used
in statistical learning experiments typically have no semantic
content or syntactic structure. Also, most computational models that
operate on child-directed speech corpora, including CIPAL, exploit
the distributional structure but not the syntactic or semantic
information in the data (e.g., Brent &Cartwright, 1996; Christiansen
et al., 1998; French et al., 2011; Goldwater et al., 2009;Monaghan&
Christiansen, 2010). Estes et al. (2007) showed that children can
discover words embedded in a continuous artificial language and
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then use these words as object labels, consistent with the idea that
learning the form and the meaning of words are two separate
processes that can be studied independently.
However, across different languages, the first words that children

can understand and produce are not simply the most frequent pat-
terns, they also tend to have a concrete meaning (Braginsky et al.,
2019; Tardif et al., 2008). For instance, children talk about people,
animals, and food before they start using function words (e.g., that,
how), which do not have clear semantics but are extremely frequent
in their language input. This suggests there is a tight integration
between the different components of vocabulary development. We
suggest that CIPAL could provide the foundation for a unified theory
of vocabulary development that covers the acquisition of phono-
logical word forms, semantics, and morphosyntax (e.g., Gobet et al.,
2007). This would impose additional constraints on the model’s
learning and processing since the different subcomponents would
need to work in unison (Byrne, 2012; Gobet & Ritter, 2000; Newell,
1990). By introducing additional mechanisms that are sensitive to
semantic information, CIPAL would be able to explore how children
connect the meaning of language to the chunks they discover and
how this integration shapes their vocabulary acquisition.

Conclusion

Our goal in this work was to develop a new integrated theory
that aligns chunk-based accounts of statistical learning with research
in other areas of language development. We introduce the CIPAL
architecture, which builds a diverse collection of chunks, including
words, multiword phrases, and sublexical units, from patterns in the
input. The theory also assumes that these chunks have different
representational strengths, where regularly accessed chunks have faster
processing times. Through an extensive set of simulation studies, we
show that CIPAL can explain word discovery, implicit statistical
learning, and speed of lexical processing in different languages and
experimental tasks.We argue that incremental chunking is an effective
statistical learning mechanism that is central to lexical development,
and that children’s sensitivity to the statistics of language is a con-
sequence of learning and not the mechanism that drives it.
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