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Abstract

Background: Accurate prediction of population-wide depressionincidenceisvital for effective public mental health management.
However, this incidence is often influenced by socioeconomic factors, such as abrupt events or changes, including pandemics,
economic crises, and social unrest, creating complex structural break scenarios in the time-series data. These structural breaks
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can affect the performance of forecasting methods in various ways. Therefore, understanding and comparing different models
across these scenarios is essential.

Objective: Thisstudy aimed to devel op depression incidence forecasting models and compare the performance of autoregressive
integrated moving average (ARIMA) and vector-ARIMA (VARIMA) and temporal fusion transformers (TFT) under different
structural break scenarios.

Methods: We developed population-wide depression incidence forecasting models and compared the performance of ARIMA
and VARIMA-based methods to TFT-based methods. Using monthly depression incidence from 2002 to 2022 in Hong Kong,
we applied diding windows to segment the whole time series into 72 ten-year subsamples. The forecasting models were trained,
validated, and tested on each subsample. Within each 10-year subset, the first 7 years were used for training, with the eighth year
for setting hold-out validation, and the ninth and tenth years for testing. The accuracy of the testing set within each 10-year
subsample was measured by symmetric mean absol ute percentage error (SMAPE).

Results: We found that in subsamples without significant slope or trend change (structural break), multivariate TFT significantly
outperformed univariate TFT, vector-ARIMA (VARIMA), and ARIMA, with an average SMAPE of 11.6% compared to 13.2%
(P=.01) for univariate TFT, 16.4% (P=.002) for VARIMA, and 14.8% (P=.003) for ARIMA. Adjusting for the unemployment
rate improved TFT performance more effectively than VARIMA. When fluctuating outbreaks happened, TFT was more robust
to sharp interruptions, whereas VARIMA and ARIMA performed better when incidence surged and remained high.

Conclusions: Thisstudy providesacomparative evaluation of TFT and ARIMA and VARIMA modelsfor forecasting depression
incidence under various structural break scenarios, offering insightsinto predicting disease burden during both stable and unstable
periods. The findings support a decision-making framework for model selection based on the nature of disruptions and data
characteristics. For public health policymaking, the results suggest that TFT may be a more suitable tool for disease burden
forecasting during periods of stable burden level or when sudden temporary interruption, such as pandemics or socioeconomic

variation, impacts disease occurrence.

(J Med Internet Res 2025;27:€67156) doi: 10.2196/67156
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Introduction

Depression is a major disease burden with substantial unmet
care needs, necessitating urgent attention in health care planning.
The Global Burden of Disease study indicatesthat theincidence
of depression continuoudly increased from 2010 to 2019,
reaching 274.8 million patients with an incidence of 3551.6 per
100,000 population in 2019 [1]. This burden has further
increased since the COVID-19 pandemic rising by 20% to 30%
[2,3]. The rising incidence and prolonged disease duration
impose a significant strain on the health care system and create
an economic burden on society, highlighting the importance of
health policy planning for depression management [4]. A
systematic review showed that the use of health care resources
and the productivity loss or reduction of adult patients with
depression are 2.6 times and 2.3 times that of nondepressed
patients, respectively [5]. In addition, the World Health
Organization reported insufficient spending on mental health
over the total government health expenditure and called for
estimating, planning, and monitoring the expenditure on mental
health services over the long term [6]. An accurate projection
of disease burden is essential for the planning of health care
resources and improving the preparedness of health care systems
to respond to foreseeable demand [7].

Population-wide depression incidence is sensitive to abrupt
socia stressors. For example, events such as pandemics[2,8-10],
economic crises [11-13], social movement [14], and natural
disasters[15] have been associated with observed surgesin the

https://www.jmir.org/2025/1/e67156

incidence and prevalence of depression. Theseisolated historical
events represent inherently unpredictable factors that create
complex interruption scenarios, influencing the performance of
incidence forecasting methods. Depression incidence is also
affected by various demographic factors (eg, the elderly group
is associated with a higher risk of depression) [16],
environmental factors (eg, seasonality and temperature) [10],
and socioeconomic variation [17]. Among this, unemployment
has been reported as the most significant external risk factor for
depression [12,18] and also presents a bidirectional positive
association with depression [19,20]. Research gaps exist in the
current modeling literature on population-based depression
incidence forecasting, particularly in evaluating the impact of
various interruption scenarios caused by historical events on
model performance, and in effectively incorporating predictable
external factors such as unemployment and seasonality.

Thetempora fusion transformer (TFT) isadeep learning—based
time-seriesforecasting tool recently seenin clinical applications
used for health outcomes prediction, such as predicting
population-level emergency attendance [21], individual-level
vital signtrgjectories[22], blood glucose[23], and hypertension
[24]. TFT has been shown to outperform a set of competing
methodsin multihorizon time-seriesforecasting and the handling
of structural breaks in time series [25]. The well-known and
widely used vector autoregressive integrated moving average
(VARIMA) models, the multivariate version of autoregressive
integrated moving average (ARIMA), enables adjustment for
historical data, random effects, and external covariates.
VARIMA also enables the output variables to adjust to each
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other using a simultaneous equations approach to forecasting
cointegrated systems of correlated variables [26]. It has been
proven that VARIMA is effective in forecasting hospital and
emergency admissions [27,28].

In this study, we used a population-based electronic medical
records (EMRs) database in Hong Kong and developed TFT
and VARIMA models for depression incidence forecasting,
taking incidence and unemployment rates as dual outcomesfor
mutual adjustment. We aimed to evaluate the performance of

Yang et a

these models in the presence of unpredictable isolated events
such as pandemics, economic crises, and social movementsand
identify fit-for-purpose models for medium disease burden
forecasting.

Methods

The analytical framework for the comparative components of
different forecasting modelsisillustrated in Figure 1.

Figure 1. Diagram of the streamlined analytical plan for the comparative study of forecasting models. ARIMA: Auto-Regressive Integrated Moving
Average; EMR: electronic medical records, Multivariate TFT: Multivariate Temporal Fusion Transformers; SMAPE: symmetric mean absol ute percentage
error; Univariate TFT: Univariate Temporal Fusion Transformers; VARIMA: Vector Auto-Regressive Integrated Moving Average.
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Data Source and Extraction

The depression diagnosis data source was the Clinical Data
Analysis and Reporting System (CDARS) managed by the
Hospital Authority of Hong Kong. CDARS is aterritory-wide
EMR database covering more than 7 million eligible residents,
which encompassesall publicly funded health care servicesand
manages 76% of chronic medical conditions, including mental
health issues [29]. The database has been used in multiple
epidemiological depression studies and demonstrated its data
authenticity and integrity [3,7,30-32]. New diagnosis records
were identified by diagnosis codes (ICD-9-CM [International
Classification of Diseases, 9th Revision, Clinical Modification]:
296.2, 300.4, 311) and ascertained by backtracking the database
to 1993 to ensure that incident cases were free from depression
before the first diagnosis. We extracted records to confine the
analysis to the population aged 20 years with a new clinical

https://www.jmir.org/2025/1/e67156
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diagnosis of depression between 2002 and 2022. Clinically
diagnosed depression incidence in the overall population
(age-standardized) and age subgroups (20-29, 30-39, 40-49,
50-59, 60+ years) were computed, using 2022 as the reference
year (Figure 2A). Incidence is defined asthe proportion of new
cases occurring within aspecific age group over agiven period,
with the denominator being the total population of that age
group. Unemployment ratesin each age subgroup and the overall
population (Figure 2B) were obtained from the Census and
Statistics Department of Hong Kong Government [33]. Monthly
data granularity was selected to balance the need for sufficient
data points to train and validate the models while effectively
capturing meaningful trends, including seasonality [3]. This
choice also helps ease sparsity issues that can arise in overly
granular data, such as daily data, where zero records would
occur.
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Figure 2. Depression incidence and unemployment rate in Hong Kong between 2002 and 2023. (A) Depression incidence time series for the overall
population (age-standardized) and for specific age subgroups: vertical pink dotted lines represent the breakpoints on the timeseries as indicated by
Chow’stest. (B) Unemployment rate time series for the overall 20 years population and for specific age subgroups. (C) Ten-year sub-timeseries sample
set construction: segmenting the 10-year sub-timeseries (one window) according to year-by-year diding. In the example shown for 2002-2022, there
are 12 dliding windows in total. The first 7 yearsin each sub-timeseries is the training set, the eighth year is the validation set, and the ninth and tenth
year are the testing set. In the database used in this study, we analyzed 72 sub-timeseries datasets (12 samplesx6 groups) from the overall population
and age subgroups. (D) An example of stable period sample. (E) An example of unstable period sample with sharp interruptions. (F) An example of
unstable period sample with level shift.
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Time-Series Analysisto I dentify Structural Breaks

We applied Chow test breakpoint analysis [34] to detect
structural breaksin the time series, which indicateswhether the
slopes and intercepts of outcomesin two adjacent time periods
are identical [34]. We conducted the test for each pair of
adjacent years (each year comprised 12 data pointsfrom January
to December) to test for structural breaks. When the null
hypothesis of the Chow test was accepted, we assumed that the
adjacent 2 years are coherent.

Construction of TFT and VARIMA Models

We devel oped multivariate forecasting models using VARIMA
and multivariate TFT, both adjusting for seasonality as a
covariate. Both unemployment rates and depression incidence
were incorporated as simultaneous outcomes. As an indicator
of socioeconomic stress, the unemployment rates are commonly
or generally known to be nonstationary and related to
socioeconomic variation, which makes them not directly
predictable. Social epidemiological theories can account for
bidirectional causation between population unemployment rates
and depressionincidence. Both TFT [25] and VARIMA models
can incorporate bidirectional adjustment between the
synchronous and lagged values of these 2 outcomes. We used
the seasonal component of additive decomposition for
seasonality adjustment [35], and a set of dummy variables to
label months as independent covariates. Univariate TFT and
ARIMA models that took depression incidence as the single
output variable were also fitted for model comparison. The
testing accuracies of the various models on all the 10-year
sub-timeseries samples were measured by symmetric mean
absolute percentage error (SMAPE) between the forecasted
results and actual value. Features of all the models are shown
in Table S1 in Multimedia Appendix 1.

Modée Training, Parameter Tuning, and Output
Validation

“VARMAX” and “ARIMA” functions from the
“statsmodels.tsa’ package in Python were used for VARIMA
and ARIMA model training. An autocorrelation function plot
was generated for all the training sets of the 10-year sub-time
series to test for data stationarity. Combining the
Kwiatkowski-Phillips-Schmidt-Shin  tests and augmented
Dickey-Fuller test, we determined that both depression and
unemployment were integrated of order 1 and first-order
differencing applied to both variables. We then tested for
significant autocorrelation in thefirst to third datalags. To avoid
overfitting, the combination of the orders of the autoregressive
and moving average components were set in the range from 0
to 3 and from 0 to 2, respectively. The trend parameter had two
options, “n” and “c,” where “n” represents no drift and “c”
represents constant drift in the model.

The TFT models were constructed wusing the
“Tempora FusionTransformer” package developed by Pytorch
(an open-source machine learning framework trademarked by
the Linux Foundation). To optimize model performance, we
used another package called “Optuna’ to fine-tune various
settings such as how much data the model processes at once,
the speed of learning, the size of different parts of the model,
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how often to drop parts of the model to prevent overfitting, and
other important parameters (Table S2 in Multimedia Appendix
1). The validation and testing accuracy were measured by
SMAPE for both ARIMA and VARIMA and TFT models, thus
enabling a fair comparison between the 2 methods. To ensure
consistency between the training and validation steps, the TFT
models were trained using the SMAPE loss function. Thisloss
function proved beneficial for point forecasting, symmetric error
evaluation, and providing easily interpretable and comparable
performance metrics. To prevent overfitting and improve model
generalization, we used dropout regularization and gradient
clipping during training, along with the Adam optimizer and a
learning rate schedule that reduces the learning rate when
improvements stop. Furthermore, we implemented an early
stopping mechanism that monitorsthe validation loss and stops
training if the loss does not improve for a specified number of
consecutive epochs.

Ethical Consider ations

Thisstudy received ethics approval from theinstitutional review
board of The University of Hong Kong Hospital Authority Hong
Kong Western Cluster (UW 20-218). Patient identification was
anonymized to protect confidentiality and patient consent was
not required. No participant compensation was provided for the
study.

Results

Overview

During the study period from 2002 to 2022, we identified
173,865 patients newly diagnosed with depression aged 20 years
or older. The mean age of these patients was 51.6 (SD 17.7)
years and 72% (125,183/173,865) were female. As shown in
Figure 2A, the incidence of depression was aggregated for the
overall population (age-standardized) aswell asfor specific age
subgroups (20-29, 30-39, 40-49, 50-59, 60+ years). The
corresponding unemployment rates were also collected, as
depicted in Figure 2B.

Chow Test to Identify Structural Breaks

According to structural break analysis based on Chow test, the
incidence patterns between 2002 and 2022 differed between
age groups. For example, the subgroup aged 20-29 years had
stable depression incidence before 2018 with only one
breakpoint identified in January 2008 (Figure 2A). However,
breakpoints occurred more frequently in other age groupsduring
the same period. From 2019 to 2022, depression incidence across
the whole population and al age subgroups experienced
significant fluctuations, and January 2020 (corresponding to
the start of the COVID-19 pandemic) became the breakpoint
for al the time series. In the subgroups aged 40-49, 50-59, and
60 years, sharp interruptions occurred in 2019 (corresponding
to the major social movement period in Hong Kong), leading
to outliersin the time series.

By applying a10-year dliding window segmentation to generate
overlapping subsamples of 10 consecutive years (2002-2011,
2003-2012, etc) for each of the 6 age subgroups (Figure 2C),
we identified 72 ten-year subsamples. In each subsample, the
models were trained on data for the first 7 years (training set).
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The corresponding parameters of the forecasting models were
refined based on the model’s accuracy in predicting outcomes
in the eighth year (independent validation set), and the
performance of the models was evaluated using outcomes in
the ninth and tenth years (testing set). In each 10-year
subsample, Chow test breakpoint analysis was performed
between the seventh and eighth year, eighth and ninth year, and
ninth and tenth year. The distribution of breakpoints is
characterized by the coherence of the training, validation, and
testing set in the subsamples. When there was no breakpoint in
between, we assumed that the validation and testing sets were
a smooth extension of the training set. Models were assumed
to be trained to forecast incidence in a “stable period.” An
example of a stable period sample is shown in Figure 2D, in
which no breakpoint existed throughout the last 4 years (from
2011 to 2014). On the other hand, if one or more breakpoints
existed in the last 4 years, such a sliding window was treated
as an “unstable period” sample. Figure 2E is an example of an
unstable period samplewith asharp interruption where January
2020 was a breakpoint. Figure 2F isan example of an unstable
period sample with a level shift in which January 2020 and

Yang et a

January 2021 were identified as breakpoints. Among al the
10-year subsamples, 53 were subsamples classified as unstable
periods within our dataset (Table S3 in Multimedia Appendix
1).

Performance Comparison Between TFT and VARIMA
and ARIMA Models

In the set of stable period samples, multivariate TFT models
significantly outperformed the univariate TFT, VARIMA, and
ARIMA. Among stable periods, t tests comparing the SMAPE
of these 4 models (Figure 3) showed that the average SMAPE
at 11.6% for multivariate TFT was significantly lower than the
SMAPE for univariate TFT at 13.2% (P=.01), for VARIMA at
16.4% (P=.002), and for ARIMA at 14.8% (P=.003) of the same
data. Univariate TFT aso outperformed VARIMA (P=.03),
while there was no significant difference between VARIMA
and ARIMA. For the set of unstable period samples, these 4
methods had no significant difference on the overal testing
accuracy. The average SMAPE of multivariate TFT was at
15.9%, univariate TFT was at 15.8%, VARIMA was at 18.3%,
and ARIMA was at 17.5%.

Figure 3. Testing accuracy comparison between models. (A) Stable periods with no breakpoint between training, validation, and testing periods. (B)
Unstable periods with one or more breakpoints between training, validation, and testing periods. ARIMA: autoregressive integrated moving average;
multiTFT: multivariate temporal fusion transformers; SMAPE: symmetric mean absolute percentage error; uniTFT: univariate temporal fusion

transformers;, VARIMA: vector autoregressive integrated moving average.
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Performance Comparison During Periods With
Breakpoints

Due to the high variation of accuracy in the set of unstable
period subsamples, specific manifestations of structural break
should be considered. Taking the sub-time seriesin the period
of 2013-2022 as an example, significant performance differences
occurred among the VARIMA and ARIMA and TFT models.
Asshownin Figure4, from 2019 to 2022, structural breakpoints
in the time series of depression incidence occurred, representing
aconsistent 4-year ongoing population shock. We observed the
response of different age groupsto the interruption in different
patterns. Incidence in age groups 40-49, 50-59, and 60+ years
showed a sharp increase in 2019 (Figure 4A). After 2019, the
incidence stabilized. However, for younger age groups (20-29
and 30-39 years), no sharp increase occurred in 2019, but a
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significant level shift was found in the 20-29 and 30-39 age
subgroupsin 2020 (Figure 4B).

Table 1 reveded that the performance of TFT and VARIMA
and ARIMA models during the unstable period showed sharp
increases. Comparison forecasts using multivariate and
univariate TFT to VARIMA and ARIMA modelsindicated that
the latter forecast higher depression incidence than observed,
resulting in inaccurate estimates with large SMAPE
(15.3%-43.6% for VARIMA and ARIMA modes vs
11.1%-25.7% of TFT models). The performance of different
models during the unstable period with level shifts was aso
compared (Table 1). The VARIMA and ARIMA models
significantly outperformed the multivariate and univariate TFT
models by capturing the level shift patterns by training and
validation process with SMAPE of 16.2%-18.8% versus
23.1%-27.6%, respectively.
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Figure4. Model performance comparison during unstable periods with asharp interruption or level shift. Training set: 2013-2019; validation set: 2020;
testing set: 2021-2022. (A) Model performance comparison during unstable periods with a sharp interruption in 2019: the red circles highlight the last
pointsin the training set, which heavily influenced the prediction output of the ARIMA/VARIMA models dueto their autoregression mechanism. These
points fall within the sharp interruption period of 2019. (B) Model performance comparison during unstable period with level shift at or after 2020: the
red lines indicate the changes in levels occurring at or after 2020. ARIMA: autoregressive integrated moving average; multivariate TFT: multivariate
temporal fusion transformers; univariate TFT: univariate tempora fusion transformers; VARIMA: vector autoregressive integrated moving average.
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Table 1. Model performance comparison during different structural break scenarios between 2013 and 2022 (on the 10-year sub-time series samples

between 2013 and 2022).
Age group Structural break scenario SMAPE2
(vears)
VARIMAP ARIMA® Multivariate TFTY  Univariate TFT®
All Sharp interruption 16.8 15.3 12.1 11.1f
40-49 Sharp interruption 17.9 17 16.1 15!
50-59 Sharp interruption 25.8 21.6 13.6 13f
60+ Sharp interruption 436 40.7 25.7 13.3f
20-29 Level shift 17.8' 18.6 27.6 258
30-39 Level shift 184 1620 231 232

8SMAPE: symmetric mean absolute percentage error.
BVARIMA: vector autoregressive integrated moving average.
CARIMA: autoregressive integrated moving average.
dMultivariate TFT: multivariate temporal fusion transformers.
€Univariate TFT: univariate temporal fusion transformers.
fLowest SMAPEs.

Discussion

This study sought to answer the research question “How do
deep learning—based TFT models compare to regression-based
ARIMA and VARIMA modelsfor forecasting the medium-term
incidence of depression, particularly under varying structural
break scenarios such as stable periods and periods with abrupt
disruptions?’ We discovered that in the stable periodsin which
there was no breakpoint between training, vaidation, and testing
datasets, multivariate TFT significantly outperformed the
univariate TFT, VARIMA, and ARIMA in incidence
forecasting. Thisfinding not only indicated that in stable periods,
TFT was a better choice to forecast depression incidence than
ARIMA, but also suggested the effectiveness and necessity of
adjusting for unemployment rates in both models to improve
accuracy. The multivariate TFT model presented the ability to
partially capture the bidirectional relationship between
depression incidence and unemployment, showcasing its
potential to model complex interactions between socioeconomic
factors and health outcomes. However, in unstable periods, the
multivariate TFT did not significantly outperform the univariate
TFT. On the other hand, VARIMA did not statistically
outperform ARIMA both in stable and unstable periods, which
indicated that the vector autoregression-based linear model
might not significantly improve incidence forecasting by
adjusting for the unemployment rate.

In subsamples that had one or more breakpoints between the
training, validation, and testing set, the presence and number
of breakpoints varied between different time periods and age
groups. Therefore, a general overall comparison could not
distinguish performance differences between TFT and VARIMA
and ARIMA in different structural break scenarios. After further
exploration of the models' performancein different interrupted
time periods, we found that TFT models were more robust to
outliers, such as abrupt shocks in the time series, where

https://www.jmir.org/2025/1/e67156

incidence surged and then returned to its previous level in a
short period of time. On the other hand, ARIMA and VARIMA
were more sensitive to level shifts, in which the depression
incidence remained high after an increase.

These phenomena could be due to the modeling mechanisms
of the TFT and ARIMA models. VARIMA and ARIMA models
are based on autoregression, which isalinear modeling approach
that relies on past observations over specific time lags of the
training set to make predictions. On the other hand, TFT models
capture long-term dependencies and patternsin the data, which
give rise to sef-attention mechanisms modified from
transformer-based architectures [25]. In our examples shown
in Figure 4A, incidence in 2019 was an outlier in the training
set. Because of autoregression and first-order differencing in
VARIMA and ARIMA models, the 2019 data points contributed
to the time-lagged terms in the model and hence to the
forecasting result. Since these time points were still in the
structural break (outlier) period, this often led to an
overestimation of incidence. However, the multivariate and
univariate TFT modelswere more robust to the outliers and the
forecasted results were closer to the observed incidence. In the
examples of level shift shown in Figure 4B, because the
VARIMA and ARIMA models were more sensitive to recent
time points and the trend parameter was adjusted based on the
accuracy of the validation set, the models were better able to
detect sudden changes in the time series. Therefore, the
VARIMA and ARIMA models could outperform the TFT
modelsin scenarios with level shifts.

This modeling study is the first attempt at comparing the
performance of TFT and ARIMA methodsin forecasting disease
incidence, and we introduce a practical framework for model
evaluation and selection, using a dliding window approach to
systematically assess model performance across various
structural break scenarios. As shown in Figure 1, such a study
design can guide the selection of modelsfor forecasting disease
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burden in stable periods and times of major events with
uncertain effects on disease epidemiol ogy, especially in complex
scenarios involving population shocks, such as the pandemic
and sociopolitical events. The repeated occurrence of stableand
disrupted periods along the time axis in various age subgroups
strengthensthe applicability of our comparative study’sfindings
to diverse structural break scenarios. Putting this into practice
for model selection, TFT models would be more appropriate
for stable periods or events that end relatively quickly. For
events with long-term effects, such as level shifts, ARIMA
models would be a better option.

The study also has limitations. While contributing to
state-of-the-art model selection, we primarily focused solely on
one disease, choosing a disease with a complex time series
containing breakpoints and abrupt changes. However, further
research is warranted to explore the applicability and

Yang et a

unemployment rate was selected as the second outcome in the
multivariate model s dueto its bidirectional effect on depression
and itstimely monthly availability. Nevertheless, future studies
should incorporate additional factors such as socioeconomic
and health care accessibility data to further refine the models.
In addition, our dataset was limited to health care records from
Hong Kong, which may not fully generalizeto other populations.
Differencesin health care—seeking behavior and socioeconomic
characteristics between public and private health care users may
influence depression incidence patterns. Future research could
focus on validating and adapting our modelsin other populations
and applying themodel evaluation framework to diverse datasets
and different patient subgroups, to assess the generalizability
of our findings and refine the models for broader applicability.
Furthermore, hybrid modeling approachesthat integrate ARIMA
and TFT could be explored in future studies to leverage their
complementary strengths, potentially enhancing forecasting

performance of these models in other types of time series or
disease areas, such as communicable diseases and long-term
projections. To account for external risk factors, the

performance across different scenarios. Such hybrid models
may prove particularly valuablein addressing diversetime-series
characteristics, including both stable and unstable periods.
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