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Interior point methods are not worse than Simplex

Xavier Allamigeon∗ Daniel Dadush† Georg Loho‡ Bento Natura§

László A. Végh¶

Abstract

We develop a new ‘subspace layered least squares’ interior point method (IPM) for solving linear
programs. Applied to an n-variable linear program in standard form, the iteration complexity of our
IPM is up to an O(n1.5 log n) factor upper bounded by the straight line complexity (SLC) of the linear
program. This term refers to the minimum number of segments of any piecewise linear curve that
traverses the wide neighborhood of the central path, a lower bound on the iteration complexity of any
IPM that follows a piecewise linear trajectory along a path induced by a self-concordant barrier. In
particular, our algorithm matches the number of iterations of any such IPM up to the same factor
O(n1.5 log n).

As our second contribution, we show that the SLC of any linear program is upper bounded by
2n(1+o(1)), which implies that our IPM’s iteration complexity is at most exponential. This is in
contrast to existing iteration complexity bounds that depend on either bit-complexity or condition
measures; these can be unbounded in the problem dimension. We achieve our upper bound by
showing that the central path is well-approximated by a combinatorial proxy we call the max central

path, which consists of 2n shadow vertex simplex paths. Our upper bound complements the lower
bounds of Allamigeon, Benchimol, Gaubert, and Joswig (SIAGA 2018), and Allamigeon, Gaubert,
and Vandame (STOC 2022), who constructed linear programs with exponential SLC.

Finally, we show that each iteration of our IPM can be implemented in strongly polynomial
time. Along the way, we develop a deterministic algorithm that approximates the singular value
decomposition of a matrix in strongly polynomial time to high accuracy, which may be of independent
interest.
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1 Introduction

In this paper, we develop a new interior point method for finding exact solutions to linear programming.
Our method is ‘universal’ in the sense that it matches the iteration complexity of any other interior point
method up to a small polynomial factor. Our analysis also reveals connections between interior point
methods and the simplex method.We consider linear programming (LP) in the following primal-dual
form:

min 〈c, x〉
Ax = b

x ≥ 0 ,

max 〈b, y〉
A⊤y + s = c

s ≥ 0 ,

(LP)

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn, and rk(A) = m ≤ n. We let

P := {x ∈ Rn : Ax = b, x ≥ 0} , D := {s ∈ Rn : ∃y s.t. A⊤y + s = c, s ≥ 0}

denote the primal and dual feasible regions and furthermore

P++ := {x ∈ P : x > 0} , D++ := {s ∈ D : s > 0}

denote the primal and dual strictly feasbible regions. We summarize the notation used in the paper in
Section 2.Throughout, we assume that (LP) is feasible and bounded; consequently, P ,D 6= ∅. We let
v⋆ denote the optimum value of (LP). Our focus is on LP algorithms that find exact primal and dual
optimal solutions.

The simplex method traverses a path formed by vertices and edges of P according to a certain pivot
rule. Albeit efficient in practice, there is no polynomial-time variant known, and there are exponential
worst case examples for several pivot rules. The first such construction was given by Klee and Minty [37]
for Dantzig’s pivot rule.

Breakthrough developments in the seventies and eighties led to the first polynomial-time algorithms
for linear programming: the ellipsoid method by Khachiyan [36], and interior point methods introduced
by Karmarkar [34]. These algorithm run in time poly(n, L), where L denotes the encoding-length L of
the rational input (A, b, c) of (LP).

While the simplex method may require exponentially many iterations, it is never worse: for any non-
cycling pivot rule, the number of pivot steps can be bounded by the number of bases, at most

(
n
m

)
< 2n.

Whereas the bound poly(n, L) is typically much better, the encoding length L may be arbitrarily large.
To the extent of our knowledge, no variant of the ellipsoid or interior point methods have been shown to
admit a bound f(n) on the number of iterations for any function f : N→ N prior to our work.

Even though LPs with exponential encoding length do not frequently appear in practice, there are
examples when the binary encoding is exponential yet one could efficiently implement arithmetic opera-
tions using a different encoding, see Megiddo [43]. The net present value problem in project scheduling is
a particular example of a natural optimization problem that can be reformulated as an LP of exponential
encoding length, see Grinold [29]. From a theoretical perspective, finding an interior point method with
an absolute bound f(n) on the number of iterations connects to the fundamental open question on finding
a strongly polynomial algorithm for linear programming. In such an algorithm, the number of arithmetic
operations is bounded as poly(n), and the algorithm uses polynomial space. This question takes its roots
in the development of the simplex method, and appears in Smale’s list of open problems for the 21st

century [55].

Interior point methods and the central path Whereas the simplex method moves on the boundary
of the feasible region P , interior point methods (IPM) reach an optimal solution by iterating through the
strict interior of P . Path-following interior point methods are driven to an optimal point by following
a smooth trajectory called the central path. In the most standard setting [51], the latter is defined as
the parametric curve µ ∈ (0,∞) 7→ zcp(µ) := (xcp(µ), scp(µ)), where xcp(µ) and (ycp(µ), scp(µ)) are the
unique solutions to the system

Axcp(µ) = b , xcp(µ) > 0

A⊤ycp(µ) + scp(µ) = c , scp(µ) > 0

xcp(µ)is
cp(µ)i = µ for all i ∈ [n] .

(1)

This system arises from the optimality conditions of convex problems obtained by penalizing the original
linear programs with the logarithmic barrier, i.e., respectively adding terms of the form −µ∑n

i=1 log xi

3



and µ
∑n

i=1 log si to the objective functions of the primal and dual (LP). The weight of the penalty
is given by the parameter µ > 0. When µ ց 0, the central path zcp(µ) converges to a pair of optimal
solutions (x⋆, s⋆) of (LP), which can be easily deduced from the fact that the duality gap of zcp(µ) is given
by 〈c, xcp(µ)〉 − 〈b, ycp(µ)〉 = 〈xcp(µ), scp(µ)〉 = nµ. Accordingly, we define the quantity µ(z) := 〈x, s〉 /n
for any feasible point z = (x, s) ∈ P ×D, which we refer to as the normalized duality gap of z.

Interior point methods iteratively compute approximations of the points on the central path associated
with successive values of µ that decrease geometrically; at most O(

√
n log(µ/µ′)) iterations are needed to

decrease the normalized duality gap from µ to µ′. The iterations follow an improvement direction, e.g., a
Newton step, while remaining in a certain neighborhood of the central path, and can be implemented in
polynomial time. The classical analysis yields a bound O(

√
nL) on the number of iterations for solving

(LP) for a rational input (A, b, c) of total encoding length L. There have been significant improvements
in recent years both for general LP as well as for special classes, see Section 1.3.

A running time bound dependent on L requires a rational input; in contrast, the simplex method
can be implemented in 2npoly(n) even in the real model of computation. Whereas standard IPMs use
bit-complexity arguments to terminate, they have also been extended to the real model of computation,
e.g., by Vavasis and Ye [65]. The running time of such algorithms is parametrized by condition numbers
that capture geometric properties of the input. In a remarkable paper, Vavasis and Ye [66] introduced a
layered least squares (LLS) interior point method that runs in O(n3.5 log(χ̄A + n)) iterations, where χ̄A

is the Dikin–Stuart–Todd condition number associated with the kernel of A (but independent of b and
c). As a consequence, they also derive a structural characterization of the central path: there are at most(
n
2

)
‘short and curved’ segments, possibly separated by ‘long and straight’ segments. The LLS directions

are refined Newton steps that can traverse the latter segments.
Lan, Monteiro and Tsuchiya [38] gave a scaling invariant trust region IPM taking O(n3.5 log(χ̄∗

A
+n))

iterations. Here, χ̄∗
A
is the minimum value of χ̄A that can be achieved by any column rescaling. However,

computing the step directions in this algorithm has a weakly polynomial dependence on b and c. In recent
work, Dadush, Huiberts, Natura, and Végh [18] gave a scaling invariant LLS algorithm with iteration
bound O(n2.5 log(n) log(χ̄∗

A
+ n)), where the step directions can be computed by solving linear systems.

We discuss the literature on these IPMs in more detail in Section 1.3.

Lower bounds on interior point methods LLS methods provide strongly polynomial LP algorithms
whenever χ̄∗

A
∈ 2poly(n); this is always the case if the encoding-length of A is polynomially bounded. One

may wonder if some variant of IPM could be strongly polynomial for all LPs. A negative answer to
this question was given in recent work by Allamigeon, Benchimol, Gaubert, and Joswig: they used
tropical geometry to build pathological linear programs on which the number of iterations of IPM has
to be exponential (in m,n) [1, 2]. Their construction shows that, when the entries of A, b, and c are
of very different orders of magnitude, the central path can be significantly deformed to the boundary
of the feasible set. Allamigeon, Gaubert and Vandame later extended this result to the broad class of
path-following IPMs using any self-concordant barrier function [3]; concurrently, Zong, Lee, and Yue [69]
obtained impossibility for short step methods. The paper [3] exhibits a counterexample where the feasible
set is an n-dimensional combinatorial cube and the shape of the central path is analogous to the simplex
paths on pathological instances of LP for the simplex method, akin to the Klee–Minty cube [37].

1.1 Contributions

A ‘near-optimal’ interior point method The papers [1, 2] implicitly rely on the following lower
bound: the trajectory of an IPM performing T iterations in the wide neighborhood of the central path
defines a piecewise linear curve. Hence, the minimum number of pieces of any piecewise linear curve in
the same neighborhood provides a lower bound on the number of iterations. We introduce a new interior
point method based on subspace layered least squared steps (see SLLS-IPM) and show that the number
of iterations of our IPM can be upper bounded in such terms.

The algorithm navigates through the ℓ2-neighborhood of the central path:

N 2(β) :=

{
z = (x, s) ∈ P++ ×D++ :

∥∥∥∥
xs

µ(z)
− 1

∥∥∥∥ ≤ β

}
, (0 < β < 1/4) , (2)

where xs ∈ Rn denotes the coordinate-wise product and 1 ∈ Rn is the n-dimensional all-ones vector.
We also define the wide neighborhood as follows:

N−∞(θ) := {z = (x, s) ∈ P++ ×D++ : xs ≥ (1− θ)µ(z)1} , (0 < θ < 1) . (3)
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We let N 2
(β) := cl(N 2(β)) and N−∞

(β) := cl(N−∞(β)) denote the closures of these neighborhoods.
These also include points z = (x, s) ∈ P+×D+ with µ(z) = 0, i.e., optimal solutions. Our algorithm will

terminate with an optimal solution in N 2
(β). We show the following iteration bound.

Theorem 1.1. Let β ∈ (0, 1/6], θ ∈ (0, 1) and µ0 > µ1 ≥ 0. Let Γ : (µ1, µ0)→ N
−∞

(θ) be any piecewise
linear curve satisfying µ (Γ(µ)) = µ, ∀µ ∈ (µ1, µ0) with T linear segments.

Starting from any point z0 ∈ N 2(β) such that µ(z0) ≤ µ0, the algorithm SLLS-IPM finds a solution

z1 ∈ N 2
(β) with µ(z1) ≤ µ1 within

O

(
n1.5

β
log
( n

β(1 − θ)

)
T

)

iterations.

At a high level, our strategy is to show that any ‘somewhat straight’ segment of the central path,
corresponding to a single straight segment in the wide neighborhood N−∞(θ), can be decomposed into at
most n short segments of length poly(n/(1−θ)) (as measured by the ratio of the start and end parameter),
where consecutive short segments are possibly separated by ‘long and straight’ segments. To traverse the
long and straight segments we develop a novel subspace LLS step, which generalizes prior LLS steps from
coordinate subspaces to general ones. Before describing this in more detail, we present a stronger form
of Theorem 1.1, and two applications.

The max central path and the straight-line complexity We next formulate a slightly stronger
form of Theorem 1.1. The piecewise linear curve Γ in the statement above lives in a 2n-dimensional
space; our next statement argues in terms of 2n separate objects in 2-dimensional space.

Recall that v⋆ denotes the optimum value of (LP). The max central path is defined as the parametric
curve g 7→ zm(g) := (xm(g), sm(g)) ∈ R2n

+ , where xm
i (g) and smi (g) are the optimal values of the following

parametric LPs, respectively:

max xi

Ax = b , x ≥ 0

〈c, x〉 ≤ v⋆ + g ,

max si

A⊤y + s = c , s ≥ 0

〈b, y〉 ≥ v⋆ − g .

(4)

As we show in Section 4, the maps xm
i (g) and smi (g) are piecewise linear concave, and the number of

pieces can be related to the complexity of the simplex method with the shadow vertex rule.
The max central path can be seen as a combinatorial proxy to the central path. In Section 4, we

show the following relationship. The upper bounds are immediate by noting that the duality gap for
(xcp(µ), scp(µ)) is nµ.

Lemma 1.2. For every µ > 0 and the central path point zcp(µ) = (xcp(µ), scp(µ)),

zm(nµ)

2n
≤ zcp(µ) ≤ zm(nµ) .

For each i ∈ [n] and θ ∈ [0, 1), we define the primal and dual multiplicative neighborhoods of the max
central path as

Nmp

i (θ) := {(g, z) ∈ R2
+ : (1− θ)xm

i (g) ≤ z ≤ xm
i (g)} ,

Nmd
i (θ) := {(g, z) ∈ R2

+ : (1− θ)smi (g) ≤ z ≤ smi (g)} .

Definition 1.3 (Straight-line complexity). For i ∈ [n], θ ∈ [0, 1), and 0 ≤ g ≤ g, we define the primal
straight-line complexity w.r.t. coordinate i as the minimum number of linear segments of any piecewise
linear curve traversing the neighborhood Nmp

i (θ) between parameter values g and g, that is,

SLCp
i,θ(g, g) := min

{
p ≥ 1 : ∃(gk, zk)k∈[p+1] ∈ R2

+ , g = g1, g = gp+1 ,

∀k ∈ [p] , [(gk, zk), (gk+1, zk+1)] ⊂ Nmp

i (θ)
}
.

(5)

The dual straight-line complexity w.r.t. coordinate i is defined analogously for the dual neighborhood
Nmd

i (θ).
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x1

x2

Figure 1: The projection of the max central path on the primal coordinates (x1, x2) for the cost function
x1 + x2. Dashed lines correspond to level sets at breakpoints. Note that the max central path does not
lie in the feasible region P .

We note that Lemma 4.4 shows that one would get an equivalent definition by allowing only break-
points of the form (gk, zk) = (gk, x

m
i (gk)), and requiring g1 > g2 > · · · > gp+1; this is simple consequence

of the concavity of g 7→ xm
i (g) shown in Lemma 1.5.

The stronger form of Theorem 1.1 is as follows:

Theorem 1.4. Let β ∈ (0, 1/6], θ ∈ [0, 1) and µ0 > µ1 ≥ 0. Given a starting point z0 ∈ N 2(β) such

that µ(z0) ≤ µ0, the algorithm SLLS-IPM finds a solution z1 ∈ N 2
(β) with µ(z1) ≤ µ1 in

O

(√
n

β
log

(
n

β(1 − θ)

)
min

{
n∑

i=1

SLCp
θ,i(nµ1, nµ0),

n∑

i=1

SLCd
θ,i(nµ1, nµ0)

})

many iterations. If µ1 = 0, letting z1 = (x1, s1) ∈ P ×D, the supports B := supp(x1) and N := supp(s1)
form a partition of [n] and the algorithm additionally outputs (v1, w1) ∈ R2n satisfying

1. v1 ∈ im(A⊤), v1B > 0 and Aw1 = 0, w1
N > 0.

2.
∥∥(x1

Bv
1
B, s

1
Nw1

N )− 1n

∥∥ ≤ β.

The algorithm can be implemented in the real RAM model, moreover, each iteration runs in strongly
polynomial time in the Turing model.

Some remarks are in order. The computational models and the meaning of strong polynomiality in
this context are explained in Section 2.2. The condition for µ1 = 0 means that the final output is near
the analytic centers of the primal and dual optimal faces, along with a certificate of this fact. This is
discussed in Section 2.5. With respect to the iteration bound, the minimum of the primal and dual
straight line complexities is just to make the statement symmetric; however, it can be shown that the
two terms in the minimum are within a constant factor of each other (see Section 4.2).

From the above statement, Theorem 1.1 follows directly; the proof is in Section 7.3 but we already give

the intuition: according to Lemma 1.2, if Γ : (µ1, µ0) → N
−∞

(θ), θ ∈ (0, 1) is a piecewise linear curve
satisfying µ (Γ(µ)) = µ, ∀µ ∈ (µ1, µ0) with T linear segments, then for each i ∈ [n], the projection of Γ
to xi gives a piecewise linear curve in Nmp

i (1− (1− θ)/(2n)) for the interval [nµ1, nµ0], and analogously
for the si’s.

An exponential upper bound on the number of iterations The number of piecewise linear
segments of the curves xm

i (g) and smi (g) yield trivial upper bounds on the straight-line complexities in
Theorem 1.4.
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These can be naturally interpreted in the context of the shadow vertex simplex rule. Originally dubbed
‘parametric simplex’ by Gass and Saaty [25], this is one of the most extensively analyzed simplex rules
from a theoretical perspective. The shadow vertex rule was used in Borgwardt’s average case analysis [8]
and in Spielman and Teng’s smoothed analysis [58]. The interested reader may refer to the recent survey
for a detailed exposition by Dadush and Huiberts [17].

Given a pointed polyhedron P ⊆ Rn and two objectives c(1), c(2) ∈ Rn, the shadow vertex rule consists
in iterating over the vertices of P successively maximizing the objectives (1−λ)c(1)+λc(2) as λ goes from
0 to 1. Under non-degeneracy assumptions, the vertices of the path correspond to those vertices of the
two-dimensional projection {(

〈
c(1), x

〉
,
〈
c(2), x

〉
) : x ∈ P} that maximize some open interval of objectives

(1 − λ)e1 + λe2, λ ∈ [0, 1] (where e1 and e2 are the standard basis for R2). We denote by SP(c(1), c(2))
the number of vertices of the projection of the simplex path in this two-dimensional projection; this
corresponds to the number of non-degenerate pivots.

Recall that (x⋆, s⋆) is the optimal solution of (LP) at the central path limit point. In Section 4, we
show that

Lemma 1.5. The following hold:

(i) ∀i ∈ [n], g 7→ xm
i (g) is a piecewise linear concave non-decreasing function with SP(−s⋆, ei) pieces.

That is, SLCp
0,i(0,∞) = SP(−s⋆, ei).

(ii) ∀i ∈ [n], g 7→ smi (g) is a piecewise linear concave non-decreasing function with SD(−x⋆, ei) pieces.
That is, SLCd

0,i(0,∞) = SD(−x⋆, ei).

As a consequence, we obtain the following bound:

Theorem 1.6. Given a starting point z0 ∈ N 2(1/6), algorithm SLLS-IPM finds an optimal solution
of (LP) in a number of iterations bounded by

O

(
√
n log(n) min

{
n∑

i=1

SP(−s⋆, ei),
n∑

i=1

SD(−x⋆, ei)

})
≤ O

((
n

m

)
n1.5 log(n)

)
.

Theorem 1.6 thus complements the results of [1, 2] by giving a singly exponential upper bound. We
note that the max central path also plays an important if implicit role in the papers [1, 2, 3], as it can
be directly related to the tropical central path by the log-limit, see discussion in Section 1.3.

Theorem 1.6 assumes that a feasible starting point z0 ∈ N 2(β) is given. This assumption can be
removed e.g. by using the standard homogeneous self-dual embedding [67, Section 5.3.1]. Then, the
bounds in the theorem will refer to the shadow vertex paths and the number of vertices in the self-dual
program.

Matching the complexity of any path-following method The second implication of Theorems 1.1
and 1.4 shows that the number of iterations of SLLS-IPM lower bounds, up to a factor n1.5 logn, the
running time of essentially any interior point method.

Let f be a self-concordant barrier over the polyhedron P with complexity value ϑf ; we introduce these
concepts in Section 10. This defines a corresponding central path, with xcp(f)(g) denoting the unique
point of the central path with gap g > 0. Recall that v⋆ denotes the optimum value of (LP). We define
the wide neighborhood w.r.t. the barrier f for a parameter θ ∈ (0, 1) as

N cp(f)(θ) :=
{
x ∈ P : x ≥ (1− θ)xcp(f)(g) where 〈c, x〉 = v⋆ + g

}
. (6)

Note that the ℓ2-neighborhood N 2(θ) and the wide neighborhood N−∞(θ) are defined in the primal-
dual space R2n, whereas N cp(f)(θ) ⊆ Rn is in the primal space. Projecting the neighborhoods N−∞(θ)
to primal variables can be shown to be equivalent to the neighborhoods of the form N cp(f)(θ) for the
logarithmic barrier f = −∑i∈[n] log(xi). We refer to Section 10 for a discussion on the generality of the

neighborhoods N cp(f)(θ).

Theorem 1.7. Let f be a self-concordant barrier over the polyhedron P with complexity value ϑf . Let
β ∈ (0, 1/6], θ ∈ (0, 1), and g0 > g1 ≥ 0. Assume an interior point method proceeds through T straight-line
steps from x0 to x1 inside the wide neighborhood N cp(f)(θ) with g0 =

〈
c, x0

〉
− v⋆ and g1 =

〈
c, x1

〉
− v⋆.

Given any z0 ∈ N 2(β) with nµ(z0) ≤ g0, let T
′ be the number of iterations of SLLS-IPM to reach

the first iterate z1 ∈ N 2
(β) with nµ(z1) ≤ g1. Then,

T ′ = O

(
Tn1.5 log

(
nϑf

1− θ

))
.
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Thus—up to a polynomial factor—our algorithm matches the running time of any IPM for any
self-concordant barrier function staying in the extremely wide neighborhood N cp(f)

(
1− 1/2poly(n)

)
. In

particular, we obtain polynomial-time bounds in case the bit-complexity or a condition number such as
χ̄∗
A

is bounded.

Comparison to the Trust Region IPM SLLS-IPM also has an interesting relation to the Trust
Region IPM algorithm by Lan, Monteiro, and Tsuchiya [38]. The trust region steps are obtained as
optimal solutions to primal and dual quadratic programs (see (8) below). These programs in essence
capture the longest possible step achievable at the current point (up to a certain factor). However, it
is currently not known how to solve these programs to sufficient accuracy in strongly polynomial time
(though this can be done in weakly polynomial time). Lan, Monteiro, and Tsuchiya show in [38] that the
number of iterations of the trust region algorithm can be bounded as O(n3.5 log(χ̄∗

A
+ n)), by adapting

the analysis of the LLS methods [47, 66].
The step directions used by our algorithm are feasible solutions to (8) for a suitable parameter.

This implies that the steps of the Trust Region algorithm are always at least as long as the steps in our
algorithm; as a consequence, the iteration bounds of our algorithm are also applicable to the Trust Region
algorithm. Whereas any individual step of our algorithm could be arbitrarily worse than the one using
the trust region step, Theorem 1.7 implies that overall we may only take O(n1.5 logn) more iterations.
We emphasize that [38] only provides a χ̄∗

A
dependent iteration bound, and we do not see a way to obtain

even an f(n) bound for their algorithm without using the majority of the analysis of SLLS-IPM.

1.2 Techniques

We now explain the key ideas of the algorithm SLLS-IPM and the analysis.

1.2.1 Polarization of the Central Path

The first key idea behind the proof of Theorems 1.1 and 1.4 is the following: every linear segment in the
wide neighborhood gives rise to a polarized segment of the central path. A segment of the central path
CP[µ1, µ0] := {zcp(µ) : µ ∈ [µ1, µ0]}, 0 ≤ µ1 < µ0, is polarized, if it admits a partition B ∪N = [n] such
that the primal variables in B are barely changing while those in N are scaling down linearly with the
parameter µ (vice versa for the dual variables). More precisely, ∀µ ∈ [µ1, µ0], we require

γxcp
i (µ0) ≤ xcp

i (µ) ≤ nxcp
i (µ0) , ∀i ∈ B ,

µ

nµ0
xcp
i (µ0) ≤ xcp

i (µ) ≤ µ

γµ0
xcp
i (µ0) , ∀i ∈ N , (7)

where γ ∈ (0, 1] is a polarization parameter (see Definition 3.1 and Corollary 3.4). By definition of the
central path, the same relation holds for dual variables scp(µ), µ ∈ [µ1, µ0], with the roles of N and B
swapped. We note that the upper bounds on xcp

i (µ) for i ∈ B and the lower bounds on xcp
i (µ) for i ∈ N

hold by the near-monotonicity property of the central path (see Lemma 2.30); the important parts of the
definition are the other two bounds.

For simplicity of notation, let us restrict to line segments between two points on the central path. To
relate polarization to the wide neighborhood, we show that if the line segment [zcp(µ1), z

cp(µ0)] between
central path points is contained in the wide neighborhod N−∞(θ), then the corresponding segment of

the central path is polarized with γ = (1−θ)2

16n3 with respect to some partition B ∪N = [n] (see Lemma 3.6
for the general statement).

One should read this last statement as saying that a segment of the central path is ‘approximately
linear’ if and only if it is polarized (in fact, one can show that segment is 1-polarized if and only if it
is linear). The link between polarization and linearity is surprisingly elementary; it follows from the
analysis of the inequalities of the wide neighborhood (3):

(
(1− α)xcp

i (µ0) + αxcp
i (µ1)

) (
(1− α)scpi (µ0) + αscpi (µ1)

)

≥ (1− θ)((1 − α)µ0 + αµ1) , ∀α ∈ [0, 1] , i ∈ [n] ,

where we recall that zcp(µ0) = (xcp(µ0), s
cp(µ0)), z

cp(µ1) = (xcp(µ1), s
cp(µ1)). For example, if θ = 0, it is

not hard to check that for each i ∈ [n], one must have either xcp
i (µ0) = xcp

i (µ1) and scpi (µ1) =
µ1

µ0
scpi (µ0)

(i.e., i ∈ B) or xcp
i (µ0) =

µ1

µ0
xcp
i (µ1) and scpi (µ1) = scpi (µ0) (i.e., i ∈ N).
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Given the above, the main task in proving Theorem 1.1, namely traversing linear segments in the
wide-neighborhood, can be reduced to traversing γ-polarized segments of the central path. The main
guarantee of our algorithm SLLS-IPM is in fact that it can traverse any γ-polarized segment of the path
in O(n1.5 log(n/γ)) iterations (see Theorem 7.4)

To derive the stronger bound in Theorem 1.4, a key step is to use the max central path to guide the
decomposition of the central path into polarized segments. We will show that one can decompose the
central path into polarized segments where the polarization partitions do not change “too quickly” from
segment to segment. Specifically, the sum of partition changes will be bounded by the sum of straight
line complexities of either the primal or dual. The formal statement is given below:

Theorem 1.8. Let θ ∈ [0, 1) and µ0 > µ1 ≥ 0. The segment CP[µ1, µ0] can be decomposed into a
sequence of 1−θ

4n -polarized segments with partitions (B(k), N (k)), k ∈ [T ], such that

max

{
T∑

k=1

|N (k)∆N (k−1)|, T
}
≤ 2min

{
n∑

i=1

SLCp
θ,i(nµ1, nµ0),

n∑

i=1

SLCd
θ,i(nµ1, nµ0)

}

where N (0) := ∅.
For the sake of symmetry, we state the upper bound above terms of the minimum of either primal

or dual straight line complexities. However, it can be shown that both are equivalent up to a constant
factor (see Lemma 4.5).

We note that polarization plays an important if implicit role in prior layered least squares analyses [18,
48, 66]. In particular, the ‘long and straight’ segments in these works are all polarized. What was unclear
in these works, however, is whether polarization by itself was sufficient to make a segment easy to traverse.
Indeed, these works all crucially rely upon numerical condition numbers of the instance which can be
effectively unbounded in the present context. Beyond the LLS context, we are further unaware of central
path analyses exploiting the tight connection between approximate linearity and polarization, and we
hope this will encourage future study.

As is clear from the definition, polarization provides us extremely useful ‘long-range’ control over the
evolution of variables on a segment. Note that γ-polarization is mostly interesting when the segment
itself is long, namely, when µ0/µ1 ≫ 1/γ. We now explain how to leverage this control to traverse any
γ-polarized segment using subspace LLS steps.

1.2.2 Traversing a Polarized Segment

Let CP[µ1, µ0], 0 ≤ µ1 < µ0, be a γ-polarized segment with partition B ∪N = [n].
For simplicity of presentation, let us assume that given any iterate (x, s) in the narrow neighborhood

N 2(1/6) used in our algorithm, we can jump to the exact central path point zcp(µ) ∈ CP = N 2(0) with
µ = µ(x, s) for free. Let us further assume that the algorithm knows the partition B,N (we discuss how
to effectively compute it at the end) and that we are given the starting point z(0) := zcp(µ0).

Our abstract algorithm will thus compute iterates z(0), z(1), . . . on the central path CP with µ(z(0)) >
µ(z(1)) > . . . . To move from z(t) to z(t+1), we first compute a movement direction

∆z(t) = (∆x(t),∆s(t)) ∈ ker(A) × im(A⊤) =: W ×W⊥,

together with a step-length α(t) ∈ [0, 1], chosen such that z(t) + α∆z(t) ∈ N 2
(1/6), 0 ≤ α ≤ α(t). Lastly,

assume we can jump for free to z(t+1) ∈ CP satisfying µ(z(t+1)) = µ(z(t) + α(t)∆z(t)).
Given this setup, our goal is to compute movement directions and step-lengths, such that after k =

O(n1.5 log(n/γ)) iterations, we have µ(z(k)) ≤ µ1, i.e., that we have traversed the segment. We would
like to emphasize that our algorithm will in fact compute the movement direction ∆z(t) using only local
information at z(t), without any explicit knowledge of the polarized segment.

A natural movement direction is affine scaling used in predictor-corrector methods, see Section 2.6.
This direction guarantees multiplicative 1 − Ω(1/

√
n) decrease in normalized gap per step. Hence, if

µ0/µ1 ≤ poly(n, 1/γ), then simply using
√
n log(µ0/µ1) affine scaling iterations is sufficient for our

purposes.
Thus, we may assume that µ0/µ1 ≫ poly(n, 1/γ). In this case, we will show that the affine scaling

direction (∆xa,∆sa) at the current iterate (x(t), s(t)) reveals the correct partition B ∪N = [n] whenever
a sufficiently long step exists . This is because the standard affine scaling step itself exhibits a polarized

behaviour: we can simply select B as the set of coordinates i where |∆xa
i /x

(t)
i | < |∆sai /s

(t)
i |, i.e., the

relative primal movement is smaller than the relative dual movement (see Definition 5.2).
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Trust Region Programs and Subspace LLS The trust region programs introduced by Lan, Mon-
teiro, Tsuchiya [38] provide a good starting point for defining our movement direction ∆z(t) = (∆x(t),
∆s(t)) ∈ W ×W⊥ from an iterate z(t) = (x(t), s(t)) ∈ CP[µ1, µ0] and a given a partition [n] = B ∪N :

min
∆x∈W

{∥∥∥(x(t)
N +∆xN )/x

(t)
N

∥∥∥ :
∥∥∥∆xB/x

(t)
B

∥∥∥ ≤ ν
}
,

min
∆s∈W⊥

{∥∥∥(s(t)B +∆sB)/s
(t)
B

∥∥∥ :
∥∥∥∆sN/s

(t)
N

∥∥∥ ≤ ν
}
,

(8)

where ν = O(β) is sufficient for the induced step to stay inside the N 2(β) neighborhood. We use the

notation ∆x/x(t) := (∆x1/x
(t)
1 , . . . ,∆xn/x

(t)
n ) and similarly for ∆s/s(i). The norms

∥∥x/x(t)
∥∥ and

∥∥s/s(t)
∥∥

are the so-called primal and dual local norms at x(t) and s(t).1 By definition, the optimal primal trust
region direction ∆x∗ achieves a maximal multiplicative decrease on the coordinates in N while ‘barely
moving’ the coordinates in B as measured in the local norm. The optimal dual direction ∆s∗ achieves
the same on the dual side with the role of N and B swapped.

Note that these directions mesh well with polarization of the segment CP[µ1, µ0]. In particular, they
reflect the idea that the coordinates of xcp(µ) in N should be linearly scaling down while those in B are
staying mostly fixed, and vice versa for scp(µ). As shown in [38] (see also Proposition 5.1), moving in
any direction ∆z(t) = (∆x(t),∆s(t)) corresponding to feasible solutions to (8), the normalized gap can be
reduced as

µ(z(t+1))/µ(z(t)) = O
(∥∥∥(x(t)

N +∆x
(t)
N )/x

(t)
N

∥∥∥+
∥∥∥(s(t)B +∆s

(t)
B )/s

(t)
B

∥∥∥
)
. (9)

That is, we can achieve a drop that corresponds to the sum of primal and dual objective values.
In many ways, the trust region direction can be seen as the ‘optimal’ movement direction. However,

[38] solves the quadratic convex programs in (8) in weakly polynomial time with dependence on the
vectors b and c in (LP). It is not known whether a strongly polynomial algorithm (with dependence only
on n) exists. Further, the analysis in [38] relies on combinatorial progress measures adapted from the
LLS analyses, which are to coarse to directly measure progress on a polarized segment (in these analyses,
combinatorial progress is only guaranteed every Ω(

√
n log(n+ χ̄∗

A
)) iterations).

Instead of optimally solving (8), we introduce what we call subspace LLS steps that yield ‘good
enough’ approximate solutions to make rapid progress along a polarized segment. We restrict the set of
primal and dual directions ∆x ∈ V (t) and ∆s ∈ U (t) for subspaces V (t) ⊆W and U (t) ⊆W⊥ satisfying:

∀ ∆x ∈ V (t),
∥∥∥∆xB/x

(t)
B

∥∥∥ ≤ τ
∥∥∥∆xN/x

(t)
N

∥∥∥ ,

∀ ∆s ∈ U (t),
∥∥∥∆sN/s

(t)
N

∥∥∥ ≤ τ
∥∥∥∆sB/s

(t)
B

∥∥∥ ,

where we set τ = O(ν/
√
n). We call any such subspaces V (t) and U (t) cheap lift subspaces with lifting

cost τ . Note that for any partial vector ∆xN ∈ πN (V (t)) ⊆ πN (W ), the subspace V (t) provides a way to
“lift” ∆xN to a full vector (∆xB ,∆xN ) ∈ W at a “cost” of ‖∆xB/xB‖ ≤ τ ‖∆xN/xN‖. Similarly, U (t)

provides a way to lift partial vectors in πB(U
(t)) ⊆ πB(W

⊥) cheaply into W⊥. We formally define the
associated ‘lifting operator’ in Section 6.2. With a cheap lift subspace at hand, it is not hard to show
that any optimal solution to the subspace constrained trust-region program automatically satisfies the
norm constraints in program (8). Therefore, by restricting ourselves to search directions ∆x ∈ V (t) and
∆s ∈ U (t) as above, we can solve simple unconstrained minimum-norm point problems in the local norms
while still guaranteeing that the computed search directions are feasible for the trust-region program.

There is a lot of flexibility to choose these subspaces. A canonical choice is a lifting of the subspace
spanned by the singular vectors of the ‘lifting operator’ (see Definition 6.4) whose corresponding singu-
lar values are at most τ . While singular values and their corresponding singular subspaces cannot be
computed exactly, they can be closely approximated in strongly polynomial time (see Section 9). Fur-
thermore, as we show in Section 7, even very coarse approximations of the singular values and subspaces
will suffice.

Analyzing Subspace LLS At each iteration, our algorithm computes the affine scaling steps and the
subspace LLS steps as above, and uses the one that enables more progress along the central path. For
simplicity of exposition, we use the canonical cheap lift subspaces U (t), V (t) to compute the subspace LLS
direction ∆z(t) as above.

1Recall the assumption that (x(t)
, s

(t)) is on the central path.
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Let us now explain the key idea in showing that subspace LLS steps can reach the end of the current
γ-polarized segment CP[µ1, µ0] in O(n1.5 log(n/γ)) iterations. Let k = Ω(

√
n log(n/γ)). Given any iterate

z(t) ∈ CP[µ1, µ0], if µ(z
(t+k)) > µ1—i.e., we have not reached the end of the segment—then we show

that both dim(U (t+k)) > dim(U (t)) and dim(V (t+k)) > dim(V (t)). The overall bound follows since this
can occur at most n times.

To get this result, we analyze the evolution of what we call the ‘ideal direction’ at z(t), which we
define to be zcp(µ1)− z(t), i.e., the difference between the current iterate and the end of the segment. A
crucial observation is that if zcp(µ1) − z(t) were a feasible solution to (8), then following this direction
would get to within a poly(n/γ) factor for the end of the segment in one step (though we do not know
how to compute it). Furthermore, the ideal direction is never far from being feasible, in particular, it
is feasible if the bound of ν is replaced by O(n). Subspace LLS steps will allow us to leverage the ideal
direction via the following dichotomy. Given an iterate z(t), either the ideal direction zcp(µ1) − z(t) is
mostly “aligned” with the LLS subspaces U (t) × V (t), in which case the LLS step brings us close to the
end of the segment, or if not, it brings us close to the time where the cheap lift subspaces increase in
dimension. In the latter case, we crucially use the polarization property to analyze the evolution of the
singular values of lifting operators. In both cases, the notion of close will mean that decreasing the gap by
an additional poly(n/γ) will be sufficient enter a new part of the segment. In particular, O(

√
n log(n/γ))

additional iterations will suffice to make the desired progress.
This concludes our overview of the proof of Theorem 1.1; the detailed argument is presented in

Section 7.3. In Section 8, we present an amortized analysis that yields the stronger bound in The-
orem 1.4 in terms of the straight-line complexities. In particular, given a piecewise linear curve in
the central path neighborhood where the subsequent pieces are polarized with partitions (B(1), N (1)),
(B(2), N (2)), . . . , (B(T ), N (T )), we show that the number of iterations can be bounded by

O
(√

n log(n/γ)

T∑

t=1

(|N (t)∆N (t−1)|+ 1)
)
, (10)

with the convention that N (0) = ∅ (see Theorem 8.1). This can be better than the previous bound
O(n1.5 log(n/γ)T ) if the number of indices changing between polarizing partitions in subsequent polarized
segments is small compared to n. The proof of Theorem 1.4 now follows by combining (10) together with
Theorem 1.8.

1.3 Related Work

Interior points methods have been a tremendously active and fruitful research area since the seminal
works of Karmarkar [34] and Renegar [51] in the 80’s. Remarkable advances have been made both in
speed as well as applicability of IPMs. We first briefly review works that—unlike the present paper—
aim for ε-approximate solutions. A key ingredient has been the use of different, self-concordant barrier
functions. Like the logarithmic barrier, every such function gives rise to a notion of central path. In the
general setting, the iteration complexity to get an ε-approximation of the optimal value is bounded by

O(ϑ
1/2
f log ε−1) for the complexity parameter ϑf . General bounds on self-concordant barriers were given

by Nesterov and Nemirovski [49], improved recently by Lee and Yue [41] and Chewi [15]. Specific barrier
functions include Vaidya’s volumetric barrier [60], the entropic barrier by Bubeck and Eldan [9], and the
weighted log-barrier by Lee and Sidford [39, 40].

Recent improvements make use of efficient data structures to amortize the cost of the iterative updates,
and work with approximate computations, see Cohen, Lee and Song [16], van den Brand [61], and van den
Brand, Lee, Sidford, and Song [64]. For special classes of LP such as network flow and matching problems,
even faster algorithms have been obtained using, among other techniques, fast Laplacian solvers [57],
see e.g. [4, 20, 24, 42, 63, 62], culminating in the very recent almost-linear time minimum-cost flow
algorithm [14].

Layered least squares IPMs, initiated by Vavasis and Ye [66] find exact optimal solutions and their
running time bound is independent of b and c. Improved LLS algorithms were given by Megiddo, Mizuno,
and Tsuchiya [44] and Monteiro and Tsuchiya [47, 48]. As discussed previously, scaling invariant algo-
rithms with a χ̄∗

A
dependence are the Trust Region algorithm by Lan, Monteiro, and Tsuchiya [38], and

the LLS algorithm [18] that relies on approximating circuit imbalances.

There is an interesting connection between IPMs and differential geometry. Sonnevend, Stoer, and
Zhao [56] introduced a primal-dual curvature concept for the central path, and related the curvature
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integral to the iteration complexity of IPMs. Monteiro and Tsuchiya [46] showed that a curvature integral
is bounded by O(n3.5 log(χ̄∗

A
+n)). This has been extended to SDP and symmetric cone programming [33],

and it was also studied in the context of information geometry [32].

Relating central paths and simplex paths has been mainly been explored in the context of building
LPs with pathological properties. On top of the construction of [3] that we already discussed, Deza,
Nematollahi and Terlaky [21] built a Klee–Minty cube with exponentially many redundant inequalities
where the central path is distorted into the neighborhood of a simplex path that visits all 2n vertices.

The max central path studied in this paper is related to the tropical central path in [1, 2, 3]. The latter
arises when studying parametric families of LPs where the input (A, b, c) depends on a parameter t > 1.
The tropical central path is defined as the log-limit, i.e., the limit as t→∞ of the image under the map
z 7→ logt z = log z

log t , of the central path of these LPs. In [1, 2, 3], it was shown that the tropical central

path corresponds to the greatest point (entrywise) of the log-limit of the feasible sets of (4). This turns
out to be precisely the log-limit of the max central path.

As stated earlier in the introduction, there is no known polynomial time variant of the simplex method
which traverses the edges of a base polyhedron. Deviating from this model, Kelner and Spielman [35]
gave a weakly-polynomial time LP algorithm which uses the simplex method on random perturbations
of a polyhedron. Specifically, their algorithm determines unboundedness for P := {x ∈ Rn : Ax ≤ 1},
which is strongly polynomially equivalent to general LP. They apply a shadow vertex simplex method
on P with randomly perturbed right hand sides as part of a subroutine which either computes a point
of large norm – used to make P “round” – or computes a suitable certificate of boundedness. While
based on the shadow vertex simplex method, their algorithm is inherently weakly polynomial and does
not admit a running time that only depends on n and m.

1.4 Organization of the Paper

In Section 2, we introduce our notation, the basic tools in linear algebra we require (Section 2.3), as well as
the important properties of the central path and its neighborhoods (Section 2.4). We also discuss the affine
scaling steps used in predictor-correct methods (Section 2.6). Section 3 deals with the polarized segments
of the central path and their connection with linear segments in the wide neighborhood. Section 4 studies
the max central path and shows how to use it to decompose the central into polarized segments, proving
Theorem 1.8. Section 5, proves important properties of trust-region steps, and in particular, how to
identify optimal trust-region partitions. Section 6 develops the theory of subspace layered least squares
directions and cheap lift subspaces, and also gives algorithms for computing them. From the theory side,
the fundamental concept of a lifting operator is introduced in Section 6.2, and the relationship between
cheap lift subspaces and approximate singular subspaces of the lifting operator is given in Section 6.3.
The algorithm Cheap-Lift-Subspaces, used to compute these subspaces, is presented analyzed in
Section 6.4. The algorithm SLLS-IPM is introduced in Section 7, where the analysis for polarized
segments is presented in Section 7.3, proving Theorem 1.1. Section 8 presents an amortized analysis,
leading to the proof of Theorem 1.4. In Section 9, we present a deterministic strongly polynomial
algorithm for computing approximate singular value decompositions, which is needed to compute the
cheap lift subspaces used by the IPM. Finally, Section 10 discusses interior point methods with self-
concordant barrier functions, and proves Theorem 1.7. Omitted proofs are deferred to the Appendix.

2 Preliminaries

2.1 Notation

We let R++ denote the set of positive reals, R+ the set of nonnegative reals, and N = {1, 2, . . .} denote
the natural numbers. For n ∈ N, we let [n] := {1, 2, . . . , n}. B,N ⊆ [n] form a partition of [n] if
B ∪N = [n] and B ∩ N = ∅. We say that (B,N) is a non-trivial partition of [n] if additionally B 6= ∅
and N 6= ∅, and is a trivial partition otherwise. For a ∈ R, ⌈a⌉ ∈ Z is the smallest integer greater
than or equal to a, and ⌊a⌋ ∈ Z is the largest integer less than or equal to a. For a ∈ R++, we let
log(a) denote the natural logarithm of a. For a ∈ R and S ⊆ R, we define 1[a ∈ S] = 1 if a ∈ S and
0 otherwise. Throughout, we consider inequalities of vectors coordinate-wise. Let ei ∈ Rn denote the
ith standard basis vector, and 1n,0n ∈ Rn denote the vector of all ones and all zeros respectively. For
x ∈ Rn, we let supp(x) := {i ∈ [n] : xi 6= 0} denote the support of x. For two points x, y ∈ Rn, we let
[x, y] := {λx + (1 − λ)y : 0 ≤ λ ≤ 1} denote the line-segment connecting x and y. For two sets S, T we
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let S∆T := (S \ T )∪ (T \ S) be the symmetric difference between S and T . If S, T ⊆ Rn, we define their
Minkowski sum S+T := {s+ t : s ∈ S, t ∈ T }. For a vector t ∈ Rn, we let S+ t := S+ {t} for notational
simplicity. For a function f : S → R and T ⊆ S, we let argminx∈T f(x) := {y ∈ T : f(y) = minx∈T f(x)}
denote the set of minimizers of f with respect to T . By convention, argminx∈T f(x) = ∅ if the minimum
value of f inside T is not attained.

The standard inner product between two vectors is denoted by 〈x, y〉 = x⊤y, for x, y ∈ Rn, and the
Euclidean norm by ‖x‖ :=

√∑n
i=1 x

2
i . We further let ‖x‖∞ := maxi∈[n] |xi| denote the ℓ∞ norm, and

‖x‖1 :=
∑n

i=1 |xi| denote the ℓ1 norm.
For a vector x ∈ Rn, we let diag(x) ∈ Rn×n denote the diagonal matrix with x on the diagonal. For

x, y ∈ Rn, we use the notation xy ∈ Rn for the coordinate-wise (Hadamard) product xy = diag(x)y =
(xiyi)i∈[n]. For ξ ∈ Rn

++ and a linear subspace W ⊆ Rn, we use the notation ξW := {ξw : w ∈ W}. For
p ∈ Q and x ∈ Rn, we also use the notation xp ∈ Rn to denote the vector (xp

i )i∈[n], where we will always
ensure that the corresponding coordinates are well-defined. Similarly, for x ∈ Rn and y ∈ Rn

++, we let

x/y ∈ Rn denote the vector (xi/yi)i∈[n]. For vectors x(1), . . . , x(k) ⊆ Rn, we define their linear span as

span(x(1), . . . , x(k)) := {∑k
i=1 λix

(i) : λ ∈ Rk}. For non-empty set I ⊆ [n], we define πI : R
n → RI to be

the coordinate projection onto I, that is πI(x) := xI , ∀x ∈ Rn. By convention, we define R∅ := {0} to be
the trivial subspace, and we let π∅(x) := x∅ := 0, ∀x ∈ Rn. We also define Rn

I := {x ∈ Rn : supp(x) ⊆ I}
to be the set of vectors in Rn with support contained in I.

For a matrix M ∈ Rm×n, we let M⊤ ∈ Rn×m denote the matrix transpose satisfying (M⊤)ji := Mij ,
for i ∈ [m], j ∈ [n]. For subsets S ⊆ [m], T ⊆ [n], we define MS,T to be the matrix with input space
RT and output space RS induced by the columns in T and rows in S of M. We further use the notation
MT := M•,T := M[m],T to index the corresponding columns of M, and MS,• := MS,[n]. By convention,

we let MS,∅ := [0S ], M∅,T := [0T ]
⊤ and M∅,∅ := [0] (recall that R∅ = {0}).

Subspace Formulation of Linear Programming It will be more convenient for our algorithm and
analysis to represent (LP) in an equivalent subspace language. Throughout the paper, we let W =
ker(A) ⊆ Rn denote the kernel of A and W⊥ = im(A⊤) denote the image of the transpose of A (see
Section 2.3 for formal definitions). Using this notation, (LP) can be written in the form

min 〈c, x〉
x ∈W + d

x ≥ 0n,

max 〈d, c− s〉
s ∈W⊥ + c

s ≥ 0n,

(11)

where d ∈ Rn is any solution Ad = b. A natural choice of d is the minimum norm solution, namely,
d = argmin{‖x‖ : Ax = b}.

Note that s ∈ W⊥ + c is equivalent to ∃y ∈ Rm such that A⊤y + c = s. Hence, the original variable
y is implicit. The feasible regions can be written as

P = {x ∈ Rn : x ∈ W + d, x ≥ 0} , D = {s ∈ Rn : s ∈W⊥ + c, s ≥ 0} .

2.2 Models of Computation

As is standard in the interior point literature, our algorithms use the real RAM model of computation.
In this model, the input is given by K real numbers. The algorithm may perform a sequence of basic
arithmetic operations (+, −, ×, /), and comparisons on real numbers. The algorithm is polynomial in
the real RAM model if the total number of such operations is polynomially bounded in K. In the case of
(LP), the input numbers are the entries of (A, b, c) and K = n×m+ n+m. We note that while square
roots appear in the paper, they are only used in the analysis and not in the actual algorithm.

Consider now a problem in the Turing model where the input is given by K integers. An algorithm is
strongly polynomial in the Turing model if it performs poly(K) arithmetic operations and comparisons as
in the real RAM model, and additionally, the algorithm is in PSPACE: the bit-complexity of all numbers
during the computations remains bounded polynomially in the input bit-complexity.

The algorithm in Theorem 1.4 is polynomial in the real RAM model as long as the straight-line
complexity of the underlying linear program is polynomial. Moreover, every single iteration is strongly
polynomial in the Turing model in the following sense. The input of an iteration is given by the current
iterate z = (x, s) and the matrix A. If (x, s) is a rational vector and A is a rational matrix, then all
computations during a single iteration are polynomially bounded in the bit-length of (A, x, s).
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However, even if the total number of iterations is strongly polynomial, this does not suffice for the
entire algorithm to be strongly polynomial. This is because the input of each iterate is the output of the
previous one, and the bit complexity of the current iterate can increase polynomially in every iteration.
Obtaining stronger guarantees in the Turing model requires additional rounding that goes beyond the
scope of this paper.

Strong Polynomial Linear Algebra Throughout the paper, we will strongly make use of the fact
that many basic linear algebraic operations on matrices, such as computing matrix inverses, powers,
products and determinants can be performed in strongly polynomial time. The foundational result from
this perspective is that of Edmonds [23], who showed that Gaussian elimination can be implemented
in strongly polynomial time, where special care is required to maintain reduced representations of ra-
tional numbers without performing greatest common divisor computations (as these are not strongly
polynomial). Further results by Strassen [59] and then Berkowitz [6] showed that one can compute the
determinant of an integer matrix in strongly polynomial time without division, which in particular allows
one to implement Gaussian elimination on a matrix without the need to maintain reduced representations
(the entries of each iterate can be expressed directly as as a ratio of integer matrix determinants). For
an overview of strongly polynomial linear algebra, we refer the interested reader to [30, Section 1.4].

2.3 Linear Algebra Preliminaries

In this section, we review fundamental concepts in linear algebra from an operator theoretic perspective,
including the notion of adjoint and pseudoinverse operators, orthogonal projections, and the singular value
decomposition. Throughout the exposition, we restrict to operators between linear subspaces of Rn where
we fix the standard inner product. The concepts developed here will be needed for the definition of lifting
operators and their duality properties (covered in Section 6.2), for the computation of pseudoinverses, and
to make the relationship between operators and their associated matrices precise. For a more thorough
background, the interested reader may consult the following reference textbooks [68, 11, 5, 7].

For a linear subspace U ⊆ Rn, a basis u1, . . . , ud of U is any maximal subset of linearly independent
vectors in U . The dimension dim(U) := d is the number of vectors in any basis. For any two linear
subspaces V,W ⊆ Rn, we have that dim(V ) + dim(W ) = dim(V ∩W ) + dim(V +W ), that is, dimension
is a modular function over subspaces.

Definition 2.1 (Linear Operator). T : U → V is a linear operator between linear subspaces U ⊆ Rn, V ⊆
Rm if T (ax+ by) = aT (x) + bT (y), for all x, y ∈ U and a, b ∈ R. We will only consider linear operators
defined on linear subspaces of some Rn, on which the standard inner product is always defined. For
x ∈ U , we will often write Tx := T (x) for simplicity of notation.

For a matrixM ∈ Rm×n, the linear operator T (M) : Rn → Rm induced byM is defined by T (M)(x) =
Mx, ∀x ∈ Rn. Similarly, for an operator T : Rn → Rm, there is a unique matrixM(T ) ∈ Rm×n, defined
byM(T )ij = (ei)⊤T (ej), ∀i ∈ [m], j ∈ [n], satisfying T (M(T )) = T . More generally, for T : U → V , we
define M(T ) ∈ Rm×n to be the unique matrix satisfying T (u) =M(T )u, ∀u ∈ U , and M(T )⊤ei ∈ U ,
∀i ∈ [m].

Remark 2.2. Given the correspondence above, in the remainder of the paper, we will identify an m×n
matrix M with its associated operator T (M) : Rn → Rm (noting that M(T (M)) = M). All operator
theoretic definitions will transfer directly to matrices via this identification. Specifically, we will treat the
matrix M as the operator T (M) whenever we need to apply an operator theoretic concept to M.

It is useful to note that the input space U = Rn and output space V = Rm in the definition of the
T (M) are chosen maximally, that is, they consist of the entire ambient input and output spaces. For a
general operator T : U → V , U ⊆ Rn, V ⊆ Rm, note that we may have T (M(T )) 6= T (e.g., T may be
invertible while T (M(T )) : Rn → Rm need not be).

We let IU : U → U denote the identity operator on U , where we use the shorthand In for the identity
on Rn. We let ker(T ) = {x ∈ U : Tx = 0m} and im(T ) = {Tx : x ∈ U} denote the kernel and image of T
respectively, and let rank(T ) = dim(im(T )). A fundamental identity is dim(U) = rank(T )+dim(ker(T )).
T is invertible if there exists a T−1 : V → U satisfying T−1 ◦ T = IU , T ◦ T−1 = IV . T is invertible
if and only if ker(T ) = {0} and im(T ) = V . For a linear subspace S ⊆ U , we define the restricted
operator T

∣∣
S
: S → V to be the operator T restricted to the subspace S. For X ⊇ im(T

∣∣
S
), we also

define T
∣∣X
S

: S → X , which modifies both the input and output space of T (note that the condition on

X ensures that T
∣∣X
S

is well-defined).

14



For two linear subspaces V,W ⊆ Rn, we write V ⊥ W to indicate that V and W are orthogonal,
that is, 〈v, w〉 = 0, ∀v ∈ V,w ∈ W . We define W⊥ := {x ∈ Rn : 〈x, y〉 = 0, ∀y ∈ W} as the orthogonal
complement of W . The orthogonal complement satisfies W +W⊥ = Rn, W ∩W⊥ = {0n}, and (W⊥)⊥ =
W . We say that w1, . . . , wd are orthonormal vectors in W , if 〈wi, wj〉 = 1 whenever i = j and 0 otherwise,
for i, j ∈ [d]. Additionally, w1, . . . , wd form an orthonormal basis of W if d = dim(W ).

The following identities for orthogonal complements will be used throughout the paper. We state
them without proof.

Proposition 2.3. For linear subspaces V,W ⊆ Rn, (V +W )⊥ = V ⊥ ∩W⊥.

Proposition 2.4. For a partition I∪J = [n] and a linear subspace W ⊆ Rn, πI(W )⊥ = πI((W+Rn
J)

⊥) =
πI(W

⊥ ∩Rn
I ) holds.

For every linear operator, there is a corresponding adjoint operator, whose properties we will use
heavily.

Definition 2.5 (Adjoint Linear Operator). For a linear operator T : U → V between linear subspaces
U ⊆ Rn, V ⊆ Rm, we define the adjoint operator ad(T ) : V → U , to be the unique linear map satisfying
〈v, T (u)〉 = 〈ad(T )(v), u〉, ∀u ∈ U, v ∈ V . By uniqueness of the adjoint, note T = ad(ad(T )). The inner
products we use on U and V are the standard inner product on Rn and Rm respectively.

Remark 2.6. Letting M(T ) ∈ Rm×n be the associated matrix as in Definition 2.1 for T : U → V , one
hasM(ad(T )) =M(T )⊤. That is, the adjoint operator corresponds to the transpose of the associated
matrix. This equality follows from 〈v, T (u)〉 = 〈v,M(T )u〉 = 〈M(T )⊤v, u〉 and M(T )⊤v ∈ U by our
assumptions onM(T ) (in particular, im(M(T )⊤) ⊆ U), and the uniqueness of the adjoint.

The following proposition collects relevant properties of the adjoint that we will need. The proof is
given in Appendix A.

Proposition 2.7. Let T : U → V be a linear operator between U ⊆ Rn, V ⊆ Rm. Then, the following
holds:

1. ker(ad(T )) ⊥ im(T ) and ker(ad(T )) + im(T ) = V .

2. ker(T ) ⊥ im(ad(T )) and ker(T ) + im(ad(T )) = U .

3. im(T ) = T (im(ad(T ))) and im(ad(T )) = ad(T )(im(T )).
In particular, rank(T ) = rank(ad(T )).

Definition 2.8 (Orthogonal Projection). For a linear subspace W ⊆ Rn, we define ΠW : Rn → Rn, the
orthogonal projection onto W , to be unique linear operator satisfying that ΠW (x) ∈W and x−ΠW (x) ∈
W⊥, ∀x ∈ Rn.

Remark 2.9. For x ∈ Rn and W ⊆ Rn, since 〈ΠW (x), x− πW (x)〉 = 0, we have that ‖x‖2 = 〈x, x〉 =
‖ΠW (x)‖2 + ‖x−ΠW (x)‖2. In particular, ‖x‖ ≥ ‖ΠW (x)‖.

The following proposition states the important properties of orthogonal projections that will be used
many times throughout the paper. We state it without proof. For a reference proving some of these
properties, see for example [54, Theorem 6.57 and Theorem 6.61].

Proposition 2.10. Let W ⊆ Rn be a linear subspace. Then, the orthogonal projection ΠW : Rn → Rn

satisfies the following:

1. ΠW is self-adjoint, that is, ad(ΠW ) = ΠW . In particular, when interpreted as an n×n matrix, ΠW

is symmetric, that is Π⊤
W = ΠW .

2. In −ΠW = ΠW⊥ .

3. ΠW (x) = argminz∈W ‖x− z‖ = argminy∈x+W⊥ ‖y‖, ∀x ∈ Rn. In particular, ΠW (x) is the unique

point in W ∩ (W⊥ + x).

The following proposition gives an explicit formula for associated matrices of general operators in
terms of projections, and provides some of their basic properties. The proof is given in Appendix A.
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Proposition 2.11. Let T : U → V , U ⊆ Rn, V ⊆ Rm be a linear operator. Then, M(T )ij =

(ei)⊤T (ΠUe
j), ∀i ∈ [m], j ∈ [n], and T (M(T )) = T

∣∣Rm

U
◦ ΠU

∣∣U
Rn , where ΠU : Rn → Rn is the orthogonal

projection onto U . Furthermore, im(M(T )) = im(T ) and im(M(T )⊤) = im(ad(T )).

The next proposition shows that restricting the input to any subspace containing the image of the
adjoint does not change the associated matrix.

Proposition 2.12. Let T : U → V , U ⊆ Rn, V ⊆ Rm be a linear operator. Let Û be a linear subspace
satisfying im(ad(T )) ⊆ Û ⊆ U and let T̂ = T

∣∣
Û
. Then, M(T ) =M(T̂ ).

Proof. By definition, M(T )(u) = T (u) = T̂ (u), ∀u ∈ Û . Then by Proposition 2.11, im(M(T )⊤) =

im(ad(T )) ⊆ Û , and thusM(T ) =M(T̂ ) by uniqueness.

For the task of computing projection matrices, we will require the pseudoinverse operator.

Definition 2.13 (Moore-Penrose Pseudoinverse). Let T : U → V , U ⊆ Rn, V ⊆ Rm be a linear oper-
ator. Then, the Moore-Penrose pseudoinverse T+ : V → U of T is the unique linear operator satisfying
T+T (u) = u, ∀u ∈ im(ad(T )) and ker(T+) = ker(ad(T )).

The following proposition gives the relation between pseudoinverses and projection operators and the
connection to least-squares problems. For a proof, see [5, Statements 6.69, 6.70].

Proposition 2.14. Let M ∈ Rm×n. Then, the following hold:

1. M+M = Πim(ad(M)) and MM+ = Πim(M).

2. M+v = argminu∈U :Mu=Πim(M)v
‖u‖2.

The next proposition shows that pseudoinverses and orthogonal projections can be computed in
strongly polynomial time. For a proof, see for example [11, Theorem 1.3.2 and Algorithm 1.3.1].

Proposition 2.15. Let M ∈ Rm×n be a matrix and let r = rank(M). Then the following holds:

1. If r = m, we have M+ = M⊤(MM⊤)−1.

2. If r = n, we have M+ = (M⊤M)−1M⊤.

3. If r < min{m,n}, then for any rank factorization M = AB satisfying A ∈ Rm×r,B ∈ Rr×n with
r = rank(A) = rank(B), we have

M+ = B+A+ = B⊤(BB⊤)−1(A⊤A)−1A⊤.

In particular, on input M, the linear operators M+, Πim(M) = MM+ and Πim(M⊤) = M+M can be
computed in strongly polynomial time.

We will need the notions of singular values and singular value decompositions defined below.

Definition 2.16 (Singular Value Decomposition). A linear operator T : U → V , where U ⊆ Rn and
V ⊆ Rm are linear subspaces, admits a singular value decomposition (SVD)

M(T ) =

rank(T )∑

i=1

σi(T )viu
⊤
i (12)

where v1, . . . , vrank(T ) ∈ V and u1, . . . , urank(T ) ∈ U are orthonormal vectors in their respective subspaces
and σ1(T ) ≥ · · · ≥ σrank(T )(T ) > 0. We define

σ(T ) := (σ1(T ), . . . , σdim(U)(T )), (13)

where σi(T ) := 0 for i ∈ [dim(U)]\[rank(T )], the complete vector of singular values listed in non-increasing
order, and

σ+(T ) := (σ1(T ), . . . , σrank(T )(T )), (14)

the subvector of positive singular values. We use the shorthand σmax(T ) := σ1(T ) and σmin(T ) :=
σdim(U)(T ). By convention, we let σi(T ) = 0 for i > dim(U), though we do no include this as an entry
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of σ(T ). We will often need to count the number of singular values inside an interval I ⊆ R+. For this
purpose, we use the following notation:

Cσ (T, I) := |{i ∈ [dim(U)] : σi(T ) ∈ I}|.
We will also use the shorthand Cσ (T, t) := Cσ (T, [0, t]) for t ≥ 0. Note that if U = {0}, then rank(T ) = 0
and Cσ (T,R+) = 0.

Remark 2.17. We remark that while the singular value decomposition M(T ) =
∑rank(T )

i=1 σi(T )viu
⊤
i

above need not be unique (i.e., if some of the non-zero singular values are equal), the vector of singular
values σ(T ) does not depend on the choice of singular value decomposition.

We will require the standard relation between the adjoint and the singular value decomposition, which
we state without proof.

Proposition 2.18. Let T : U → V be a linear operator with singular value decomposition M(T ) =∑rank(T )
i=1 σiviu

⊤
i as in Definition 2.16. Then, ad(T ) : V → U has singular value decompositionM(ad(T ))

=
∑rank(T )

i=1 σiuiv
⊤
i and σ+(T ) = σ+(ad(T )).

We will often need to relate the singular values of an operator with the singular values of its restrictions
and its associated matrix. The following direct corollary of Proposition 2.12 gives the precise relations.

Proposition 2.19. Let T : U → V , U ⊆ Rn, V ⊆ Rm a linear operator, and let Û be a linear subspace
satisfying im(ad(T )) ⊆ Û ⊆ U . Then σ+(M(T )) = σ+(T ) = σ+(T

∣∣
Û
).

Proof. By Proposition 2.12, we have that M(T ) = M(T̂ ), and hence both operators have the same
SVD in Definition 2.16. Therefore, the positive singular value vector is identical. The same holds for
σ+(M(T )) := σ+(T (M(T ))).

One of the most useful ways to characterize singular values is via the Courant-Fischer variational
characterization. See for example [7, Corollary III.1.2], which gives the variational characterization for
the eigenvalues of ad(T )T (equal to squared singular values of T ).

Proposition 2.20 (Max-Min Principle for Singular Values). Let T : U → V be a linear operator. Then,
for 1 ≤ i ≤ dim(U), we have that

σi(T ) = min
dim(S)≥dim(U)−i+1

S⊆U

max
x∈S\{0}

‖Tx‖
‖x‖ (15)

= max
dim(S)≥i

S⊆U

min
x∈S\{0}

‖Tx‖
‖x‖ . (16)

where S ranges over the linear subspaces of U .

Remark 2.21. In Proposition 2.20, one can replace the conditions dim(S) ≥
dim(U)− i+ 1 and dim(S) ≥ i with dim(S) = dim(U)− i+ 1 and dim(S) = i respectively. In (15), any
subspace S′ of S of dimension exactly dim(U)− i+ 1 satisfies

max
x′∈S′\{0}

‖T (x′)‖
‖x′‖ ≤ max

x∈S\{0}

‖T (x)‖
‖x‖ ,

and in (16), any subpace S′ of S of dimension exactly i satisfies

min
x′∈S′\{0}

‖T (x′)‖
‖x′‖ ≥ min

x∈S\{0}

‖T (x)‖
‖x‖ .

The flexibility to use different dimensions will be useful in the sequel, however.

Remark 2.22. By Proposition 2.20 above, for any linear subspace S ⊆ U , 1 ≤ dim(S) ≤ dim(U), we
have the useful identities

σmax(T
∣∣
S
) := σ1(T

∣∣
S
) = max

x∈S\{0}

‖Tx‖
‖x‖ ,

σmin(T
∣∣
S
) := σdim(S)(T

∣∣
S
) = min

x∈S\{0}

‖Tx‖
‖x‖ , (17)

where T
∣∣
S
is the operator T restricted to S. If dim(S) = 0, recall that σ1(T

∣∣
S
) = 0 by convention.
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Remark 2.23. LetM(T ) =
∑r

i=1 σiviu
⊤
i , r = rank(T ), be the SVD of T and let U = [u1, . . . , ur]. For

i ∈ [dim(U)], a canonical choice for the subspace attaining the minimum in (15) is im(U≥i) + ker(T )
for i ∈ [rank(T )], and ker(T ) for i > rank(T ). For i ∈ [rank(T )], using that im(U≥i) ⊆ im(ad(T )) and
im(ad(T )) ⊥ ker(T ), this can be verified as follows:

σ1(T
∣∣
im(U≥i)+ker(T )

) = max
w∈im(U≥i),z∈ker(T )

w+z 6=0n

‖T (w + z)‖
‖w + z‖

= max
w∈im(U≥i),z∈ker(T )

w+z 6=0n

‖Tw‖√
‖w‖2 + ‖z‖2

= max
w∈im(U≥i)

w 6=0n

‖Tw‖
‖w‖ = max

x∈R
r−i+1

x 6=0r−i+1

‖T (U≥ix)‖
‖U≥ix‖

= max
x∈R

r−i+1

x 6=0r−i+1

√∑r
j=r−i+1 σ

2
jx

2
j

‖x‖ = σr−i+1,

where the second to last equality uses the orthonormality of v1, . . . , vr ∈ V and u1, . . . , ur ∈ U , and the last
equality uses the non-increasing order of σ. Note further that dim(im(U≥i)+ker(T )) = dim(im(U≥i))+
dim(ker(T )) = (rank(T )− i+ 1) + dim(U)− rank(T ) = dim(U)− i+ 1, and hence the subspace has the
correct dimension. For i ∈ [dim(U)] \ [rank(T )], one trivially has σ1(T

∣∣
ker(T )

) = 0 and dim(ker(T )) =

dim(U)− rank(T ) ≥ dim(U)− i+ 1, as needed.
Similarly, a canonical choice for the subspace attaining the maximum in (16) is im(U≤i) if i ∈

[rank(T )], and U if i > rank(T ) (recalling that σi(T ) = 0 for i > rank(T )).

2.3.1 Approximate Singular Subspaces

In this subsection, we define approximate singular subspaces for general linear operators and collect their
main properties, which will be crucial for the analysis and implementation of our IPM.

Definition 2.24 (Approximate Singular Subspace). Let T : X → Y be a linear operator. A linear
subspace S ⊆ X is a ̺-approximate singular subspace for T , for ̺ ≥ 1, if σ1(T

∣∣
S
) ≤ ̺σdim(X)−dim(S)+1(T ).

Remark 2.25 (Trivial Subspace). The trivial subspace S := {0} ⊆ X is always 1-approximate singular
subspace for T as σ1(T

∣∣
S
) = 0 = σdim(X)+1(T ) = σdim(X)−dim(S)+1(T ) by convention.

When computing approximate singular subspaces, we will use the following lemma to relate ap-
proximate singular subspaces of an operator to those of its associated matrix. The proof is given in
Appendix A.1.

Lemma 2.26. Let T : X → Y , X ⊆ Rn, Y ⊆ Rm be a linear operator and let T̄ =M(T ) be its associated
matrix. Then, for a linear subspace S satisfying ker(T̄ ) ⊆ S ⊆ Rn, the following holds:

1. ker(T ) ⊆ S ∩X = ΠX(S) and σ1(T
∣∣
S∩X

) = σ1(T̄
∣∣
S
).

2. S is a ̺-approximate singular subspace for T̄ of dimension d ≥ 0 if and only if S ∩ X is a ̺-
approximate singular subspace for T of dimension d− dim(X⊥).

Moreover, for any τ ≥ 0, Cσ (T, τ) + dim(X⊥) = Cσ
(
T̄ , τ

)
.

Our definition of an approximate singular subspace S for T of dimension d corresponds to S be an
approximate minimizer of (15), that is

σ1(T
∣∣
S
) ≤ ̺ min

C⊆X,dim(C)=d
σ1(T

∣∣
C
) = ̺σdim(X)−d+1(T ).

Given this, one may ask whether there is a relationship between S and maximizers for the complementary
program (16), that is,

max
D⊆dim(D)=dim(X)−d

σmin(T
∣∣
D
) = σdim(X)−d.

The following lemma shows that in fact the orthogonal complement of S insideX is indeed an approximate
maximizer of (16), under the condition that there is a gap between the singular values σdim(X)−d(T ) and
σdim(X)−d+1(T ). This will be important for the error analysis of subspace LLS steps defined in Section 6.1.
The proof is given in Appendix A.1.
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Lemma 2.27. Let T : X → Y be a linear operator. Let S ⊆ X be a ̺-approximate subspace with
0 ≤ dim(S) < dim(X) for T . Then, for S̄ = X ∩ S⊥, we have that

σmin(T
∣∣
S̄
)2 ≥ σdim(X)−dim(S)(T )

2 − ̺2σdim(X)−dim(S)+1(T )
2.

2.4 Preliminaries on Interior-Point Methods

In this section, we recall standard properties of the central path and IPM that will be required for our
algorithm. To ensure that the central path is well-defined, we assume that P and D admit strictly feasible
solutions, i.e., the sets P++ and D++ are both nonempty. We recall the notation zcp(µ) = (xcp(µ), scp(µ))
to denote the central path point at µ as in definition (1).

Given z = (x, s) ∈ P × D, we recall that the normalized duality gap is defined as µ(z) := 〈x,s〉
n . The

following identity is useful in comparing duality gaps.

Proposition 2.28. Given x, x′ ∈ W + d, s, s′ ∈ W⊥ + c, we have that

〈x, s〉+ 〈x′, s′〉 = 〈x, s′〉+ 〈x′, s〉 .

In particular, if 〈x′, s′〉 = 0, then
〈x, s〉 = 〈x, s′〉+ 〈x′, s〉 .

Proof. Since x− x′ ∈ W and s− s′ ∈ W⊥, we have that

0 = 〈x− x′, s− s′〉 ⇔ 〈x, s〉+ 〈x′, s′〉 = 〈x, s′〉+ 〈x′, s〉 .

The next proposition shows that the normalized duality gap is a linear function for convex combina-
tions of points.

Proposition 2.29 (Linearity duality gap). For x(1), . . . , x(k) ∈W + d, s(1), . . . , s(k) ∈W⊥ + c forming

the sequence z(1) = (x(1), s(1)), . . . , z(k) = (x(k), s(k)) and λ ∈ Rk such that
∑k

i=1 λi = 1, we have that

µ

(
k∑

i=1

λiz
(i)

)
=

k∑

i=1

λiµ(z
(i)) .

Proof. Using that
∑k

i=1 λi = 1 and the orthogonality of x(i)− d ∈W and s(i)− c ∈W⊥ for all i ∈ [k] we
first get

〈
k∑

i=1

λix
(i),

k∑

j=1

λis
(i)

〉
=

〈
k∑

i=1

λi(x
(i) − d) + d,

k∑

j=1

λi(s
(i) − c) + c

〉

= 〈d, c〉+
k∑

i=1

λi(
〈
x(i) − d, c

〉
+
〈
d, s(i) − c

〉
)

=

k∑

i=1

λi(〈d, c〉+
〈
x(i) − d, c

〉
+
〈
d, s(i) − c

〉
)

=

k∑

i=1

λi

〈
x(i), s(i)

〉
.

Division by n yields the respective normalized duality gap.

A key property of the central path is ‘near monotonicity’, formulated in the following lemma, see [66,
Lemma 16].

Lemma 2.30. For the central path points at 0 < µ′ ≤ µ, we have
∥∥∥∥
xcp(µ′)

xcp(µ)
+

scp(µ′)

scp(µ)

∥∥∥∥
∞
≤ n .

In Lemma 2.43, we also present an ℓ1-variant of this bound.
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Central Path Neighborhoods The neighborhoods N 2(β) and N−∞(θ) introduced in (2) and (3)
comprise the points z = (x, s) ∈ P×D such that the centrality error, i.e., the norm of the vector xs

µ(z)−1, is
bounded. They use of the ℓ2-norm and the ℓ∞-seminorm ‖u‖−∞ := max1≤i≤n max(0,−ui), respectively.

We will often use the following proposition which is immediate from the definition of N 2(β).

Proposition 2.31. Let z = (x, s) ∈ N 2(β) for β ∈ (0, 1), and µ = µ(z). Then for each i ∈ [n]

(1 − β)µ ≤ xisi ≤ (1 + β)µ .

Proof. By definition of N (β) we have for all i ∈ [n] that |xisi
µ − 1| ≤

∥∥∥xs
µ − 1

∥∥∥ ≤ β and so (1 − β)µ ≤
xisi ≤ (1 + β)µ.

The following proposition gives a bound on the distance between a point z ∈ N 2(β) in the β-
neighborhood and the corresponding central path point with the same normalized duality gap z(µ) for
µ = µ(z). See e.g., [28, Lemma 5.4] and [47, Proposition 2.1].

Proposition 2.32. Let z = (x, s) ∈ N 2(β) for β ∈ (0, 1/4] and µ = µ(z), and consider the central path
point zcp(µ) = (xcp(µ), scp(µ)). For each i ∈ [n],

xi

1 + 2β
≤ 1− 2β

1− β
xi ≤ xcp

i (µ) ≤ xi

1− β
, and

si
1 + 2β

≤ 1− 2β

1− β
si ≤ scpi (µ) ≤ si

1− β
.

We will need the following lemma regarding the near-optimality of the choice µ(z) as 〈x, s〉 /n for a
point z = (x, s) with respect to minimizing centrality error.

Lemma 2.33 ([47, Lemma 4.4]). For β ∈ (0, 1/4], let z = (x, s) ∈ P++ × D++ and µ′ > 0 satisfy
‖xs/µ′ − 1‖ ≤ β. Then,

(1 − β/
√
n)µ′ ≤ µ(z) ≤ (1 + β/

√
n)µ and z ∈ N 2(β/(1 − β)) .

The next lemma relates a point in the wide neighborhood to the corresponding central path point.

Lemma 2.34. Let z = (x′, s′) ∈ N−∞(θ), θ ∈ [0, 1). Then for µ = µ(z), and the corresponding central
path point zcp(µ) = (xcp(µ), scp(µ)), we have that

1

2n
x′ ≤ xcp(µ) ≤ 2n

1− θ
x′ and

1

2n
s′ ≤ scp(µ) ≤ 2n

1− θ
s′ .

Proof. We only prove the inequalities on x′; the proof of the inequalities on s′ is symmetric. Let (x, s) :=
(xcp(µ), scp(µ)). Using Proposition 2.28, for i ∈ [n] we have that

x′
i

xi
=

x′
isi
µ
≤ 1

µ
(〈x′, s〉+ 〈x, s′〉) = 1

µ
(〈x′, s′〉+ 〈x, s〉) = 2n.

This proves the first inequality; note that this part does not use z ∈ N−∞(θ), but only that z ∈
P++ ×D++. For the second inequality, z ∈ N−∞(θ) by definition implies

xi

x′
i

≤ xis
′
i

µ(1− θ)
≤ 1

µ(1 − θ)
(〈x′, s′〉+ 〈x, s〉) = 2n

1− θ
,

as needed.

2.5 The Central Path Limit

Assume that the polytope P = {x ∈ Rn : x ∈ W + d, x ≥ 0} has a strictly positive solution and is
bounded. Then, the analytic center of P is the point

x̃ := argmax
x∈P

n∑

i=1

log xi .

20



By Lagrangian duality, there exists a vector ṽ ∈ W⊥ such that x̃ṽ = 1n. The limit point z⋆ = (x⋆, s⋆)
of the central path corresponds to the analytic centers of the primal and dual optimal faces. Namely,
assume P++,D++ 6= ∅, and let (B⋆, N⋆) denote the optimal partition, i.e., x ∈ P is optimal if and only
if supp(x) ⊆ B⋆ and s ∈ D is optimal if and only if supp(y) ⊆ N⋆. Let

P⋆ := P ∩ Rn
B⋆ and D⋆ := D ∩ Rn

N⋆

denote the set of primal and dual optimal solutions. Then, πB⋆(P⋆) ⊆ RB⋆

and πN⋆(D⋆) ⊆ RN⋆

are the
projections of the optimal sets to the respective coordinate sets, and the following holds; see e.g., [53,
Theorem I.30]

Theorem 2.35. Assume P++,D++ 6= ∅. Then, the optimal partition (B⋆, N⋆) and the limit (x⋆, s⋆) =
limµց0(x(µ), s(µ)) exist, and x⋆

B⋆ is the analytic center of πB⋆(P⋆), and s⋆N⋆ is the analytic center of
πN⋆(D⋆).

Consider now the output in Theorem 1.4 in the case µ1 = 0. Since B = supp(x1) and N = supp(s1)
form a partition of [n], it follows that the solutions (x1, s1) are primal and dual optimal, and B = B⋆,
N = N⋆. The additional output (v1, w1) in Theorem 1.4 satisfying

∥∥(x1
Bv

1
B, s

1
Nw1

N )− 1
∥∥ ≤ β provides

Lagrange certificates that the solution (x1, s1) is close to (x⋆, s⋆). Namely, v1 ⊆ RB certifies that x1
B is

multiplicatively near the analytic center of πB(P⋆), and w1 ⊆ RN is analogously a certificate for s1N and
πN (D⋆) ⊆ RN (see Proposition 2.32).

2.6 Predictor-Corrector Methods

Given z = (x, s) ∈ P++ × D++, the search directions commonly used in interior-point methods are
obtained as the solution (∆x,∆s) to the following linear system for some ν ∈ [0, 1].

∆x ∈ W (18)

∆s ∈ W⊥ (19)

s∆x+ x∆s = νµ1− xs (20)

Predictor-corrector methods, such as the Mizuno–Todd–Ye Predictor-Corrector algorithm [45], alternate
between two types of steps. In corrector steps, we use ν = 1. This gives the centrality direction, denoted
as ∆zc = (∆xc,∆sc). In predictor steps, we use ν = 0. This direction is also called the affine scaling
direction, and will be denoted as ∆za = (∆xa,∆sa) throughout.

Let z := (x, s) ∈ N 2(β) be our current iterate. In our algorithm, we will first apply a corrector step
to get zc := z +∆zc, which will reduce our centrality error by a factor 2, that is, zc ∈ N 2(β/2), without
changing the gap µ(z). Following this, we apply a predictor step to get z+ := zc+αa∆za, for αa ∈ (0, 1],

which will make progress along the central path while maintaining that z+ ∈ N 2
(β). Here we slightly

abuse notation, by letting ∆za := ∆(zc)a, that is the predictor direction computed from the recentered
iterate zc. The step-length αa > 0 will be chosen such that

αa ≤ sup{α ∈ [0, 1] : ∀α′ ∈ [0, α] : zc + α′∆za ∈ N 2(β)}.

Thus, we conclude z+ = zc + αa∆za ∈ N 2
(β). We remark that the closure allows us to take a step that

goes all the way to an optimal solution. If z+ ∈ N 2(β), i.e., if we have not arrived at an optimal solution,
then z+ remains a valid iterate for the next step.

Remark 2.36. In contrast to predictor-corrector methods such as [45], ours is a ‘corrector-predictor’
method, first performing corrector steps followed by predictor steps in each iteration. While the two
descriptions are equivalent, it is more convenient for the description of the final iterate, i.e., achieve the
termination guarantee in Theorem 1.4 for the same β neighbourhood.

The next proposition summarizes well-known properties of predictor and corrector steps, see e.g. [67,
Section 4.5.1].

Proposition 2.37. Let z = (x, s) ∈ N 2(β) for β ∈ (0, 1/6].

(i) For z ∈ N 2(β), let ∆zc be the corrector direction at z. Then for zc = z+∆zc, we have µ(zc) = µ(z)
and zc ∈ N 2(β/2).

(ii) For the affine scaling step, we have µ(z+) = (1− αa)µ(z) and z+ ∈ N 2
(β).
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(iii) The affine scaling step-length αa can be chosen in the range

0 ≤ αa ≤ max

{
β

2
√
n
, 1− 2 ‖∆xa∆sa‖

βµ(z)

}
.

(iv) After a sequence of
⌈
3
√
n

β log(1/ε)
⌉
, ε ∈ (0, 1], corrector and predictor steps from z, assuming the

affine scaling step-lengths are all at least β
3
√
n
, we obtain an iterate z′ = (x′, s′) ∈ N 2(β) such that

µ(z′) ≤ εµ(z).

Remark 2.38. By (iii), an affine scaling step-length of β
2
√
n
is always valid. Therefore, the assumption

in (iv) that the step-lengths are at least β
3
√
n
is conservative. We use this conservative estimate for purely

computational reasons as β
2
√
n
may be irrational. In particular, this choice is designed to combine with

the step-length computation given by Proposition 2.39 below.

The following proposition explicitly states that the predictor and corrector steps can be computed in
strongly polynomial time, and that we can select appropriate step-lengths. The reason is simply that
computing the steps amounts to solving linear systems based on the data x, s, µ and ν.

Proposition 2.39 (Step Formulas). Let A ∈ Rm×n, rank(A) = m, W = ker(A) and W⊥ = im(A⊤).
Let z := (x, s), where x ∈ W,x > 0, s ∈ W⊥, s > 0 and t ∈ Rn. Then, the solution to s∆x + x∆s = t,
∆x ∈ W , ∆s ∈W⊥ can be expressed as

∆s = A⊤ (A diag (x/s)A⊤)−1
A

t

s

∆x =
t

s
− diag (x/s)A⊤ (A diag (x/s)A⊤)−1

A
t

s
.

Moreover, both the affine scaling step (∆xa,∆sa) and corrector step (∆xc,∆sc), corresponding to t =
νµ(z)1n − xs for ν ∈ {0, 1} respectively, can be computed in strongly polynomial time. Furthermore,
given ∆x,∆s ∈ Rn and β ∈ (0, 1/6], one can in strongly polynomial time compute an affine scaling
step-length αa ∈ (0, 1] satisfying

max

{
β

3
√
n
, 1− 3 ‖∆xa∆sa‖

βµ(z)

}
≤ αa ≤ max

{
β

2
√
n
, 1− 2 ‖∆xa∆sa‖

βµ(z)

}
.

Proof. It is directly verified by inspection that s∆x + x∆s = t and that A∆x = 0 and ∆s ∈ im(A⊤).
Strongly polynomial computability follows since matrix inversion can be done in strongly polynomial
time.

For the affine scaling step-length, note that ⌈a⌉ can be computed strongly polynomially, using O(log n)
comparisons as long as a = poly(n). Thus, we can compute a = β

⌈2√n⌉ , r = ‖∆xa∆sa‖∞ and b =

1 − ⌈2 ‖∆xa∆sa‖ /r⌉r/(βµ(z)). We then return αa := max{a, b}. Since ⌈2√n⌉ ∈ [2
√
n, 3
√
n] and

⌈2 ‖∆xa∆sa‖ /r⌉r ∈ [2 ‖∆xa∆sa‖ , 3 ‖∆xa∆sa‖], we have that β
3
√
n
≤ a ≤ β

2
√
n

and 1 − 3‖∆xa∆sa‖
βµ(z) ≤

b ≤ 1− 2‖∆xa∆sa‖
βµ(z) . Thus, αa satisfies the requirement.

Minimum-Norm Viewpoint We introduce some useful notation for the algorithm, and derive the
minimum-norm interpretation of the affine scaling steps.

Definition 2.40 (Normalized Iterates, Gap Vector and Subspaces). For z = (x, s) ∈ P++×D++, we let

ξ̂(z) :=

√
xs

µ(z)
∈ Rn ,

x̂ := xξ̂(z)−1 =

√
xµ(z)

s
∈ Rn ,

ŝ := sξ̂(z)−1 =

√
sµ(z)

x
∈ Rn .

(21)

We call ξ̂(z) the normalized gap vector and simply use ξ̂ when clear from the context. We call x̂ and ŝ
the normalized primal and dual iterates, respectively. We also define the normalized subspaces

Ŵ := x̂−1W and Ŵ⊥ := ŝ−1W⊥ .
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If z = (x, s) falls on the central path, that is, xs = µ(z)1, then ξ̂(z) = 1, x̂ = x and ŝ = s. The
variables x̂ and ŝ represent natural adjustments for points off the central path. The next statement is
immediate from the definitions, using x̂ŝ = µ(z)1.

Proposition 2.41. The subspaces x̂−1W and ŝ−1W⊥ are orthogonal.

The following is a simple corollary of Proposition 2.31.

Proposition 2.42. For z = (x, s) ∈ N 2(β) for β ∈ (0, 1), we have ‖ξ‖ = √n. Moreover,

√
1− β1 ≤ ξ̂ ≤

√
1 + β1 ,

√
1− βx̂ ≤ x ≤

√
1 + βx̂ and

√
1− βŝ ≤ s ≤

√
1 + βŝ .

We will frequently use the rescaled subspaces x̂−1W and ŝ−1W⊥ that correspond to using the local
geometry at the point z = (x, s). Throughout, we will refer to

∥∥x̂−1w
∥∥ and

∥∥ŝ−1w
∥∥ as the primal and

dual local norms of the vector w ∈ Rn at the point z = (x, s) ∈ P++ ×D++.
Equation (20) for the predictor step (ν = 0) with update direction (∆xa,∆sa) can be written as

x−1∆xa + x−1∆sa = −1 , (22)

or equivalently,
x̂−1∆xa + ŝ−1∆sa = −ξ̂, (23)

which serves the purpose that now x̂−1∆xa ∈ Ŵ and ŝ−1∆sa ∈ Ŵ⊥ are orthogonal vectors (Propo-

sition 2.41). Thus, x̂−1∆xa and ŝ−1∆sa give an orthogonal decomposition of −ξ̂. This leads to the
following formulas:

∆xa = −x̂ΠŴ (ξ̂) ,

∆sa = −ŝΠŴ⊥(ξ̂) .
(24)

Equivalently, we can see ∆za = (∆xa,∆sa) as the optimal solutions of the following minimum-norm
problems:

∆xa = x̂ argmin
δ∈Ŵ

∥∥∥ξ̂ + δ
∥∥∥ ,

∆sa = ŝ argmin
δ∈Ŵ⊥

∥∥∥ξ̂ + δ
∥∥∥ .

(25)

We can rewrite these equivalently as projections in W and W⊥, noting that x̂−1x = ŝ−1s = ξ̂.

∆xa = argmin
∆x∈W

∥∥x̂−1(x+∆x)
∥∥ ,

∆sa = argmin
∆s∈W⊥

∥∥ŝ−1(s+∆s)
∥∥ .

(26)

We will require the following generic monotonicity estimate in terms of local norms. The next lemma
is an ℓ1-variant of Lemma 2.30, and the proof is implicit in the proof of [66, Lemma 16].

Lemma 2.43. Let z = (x, s) ∈ N (β), β ∈ (0, 1), and z′ = (x′, s′) ∈ P ×D. Then, we have that

∥∥(x̂−1x′, ŝ−1s′)
∥∥
1
≤ n√

1− β

(
1 +

µ(z′)

µ(z)

)
. (27)

Proof.

∥∥(x̂−1x′, ŝ−1s′)
∥∥
1
=
‖(ŝx′, x̂s′)‖1

µ(z)
≤ 1√

1− β

‖(sx′, xs′)‖1
µ(z)

=
1√

1− β

〈s, x′〉+ 〈x, s′〉
µ(z)

=
1√

1− β

〈s, x〉+ 〈x′, s′〉
µ(z)

=
1√

1− β

nµ(z) + nµ(z′)

µ(z)

=
n√
1− β

(
1 +

µ(z′)

µ(z)

)
,

where the first inequality follows from Proposition 2.42.
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Step-Length Estimates We will also need good estimates on the size on predictor steps beyond affine
scaling. Our main estimate in this regard is given below. We use the latter part to compute the step-
length associated with layered least squares steps. Note that the algorithm outputs a step-length of 0 in
case the requirements of the step are not satisfied.

Proposition 2.44 (Step-length Estimate for General Directions). Let z = (x, s) ∈ N 2(β/2), µ := µ(z),
β ∈ (0, 1/6]. Consider directions ∆x ∈W , ∆s ∈W⊥ that satisfy

δ :=

∥∥∥∥
∆x∆s

µ

∥∥∥∥ ≤
β

9
, ε :=

∥∥∥∥
(x+∆x)(s+∆s)

µ

∥∥∥∥ ≤
β

9
. (28)

Then (x+α∆x, s+α∆s) ∈ N 2
(β) and µ(x+α∆x, s+α∆s) ∈ [1± 1/8](1−α)µ, for all 0 ≤ α ≤ 1− 8ε

β .
Furthermore, given ∆x ∈ Rn,∆s ∈ Rn, µ > 0, β > 0, one can in strongly polynomial time output a step-

length αℓ ∈ [0, 1] satisfying 1 − 9ε
β ≤ αℓ ≤ 1 − 8ε

β if max{
∥∥∥∆x∆s

µ

∥∥∥ ,
∥∥∥ (x+∆x)(s+∆s)

µ

∥∥∥} ≤ β/9 and αℓ = 0

otherwise.

Proof. Let zα := (x+ α∆x, s+α∆s) for 0 ≤ α ≤ 1− 8ε
β , α < 1. (Note that α < 1 only becomes relevant

in case ε = 0; we will discuss this case later.) We first bound the centrality error using the estimate
(1− α)µ for µ(zα) as follows:

∥∥∥∥
(x+ α∆x)(s + α∆s)

(1− α)µ
− 1

∥∥∥∥

=

∥∥∥∥
(1− α)xs + α(x+∆x)(s +∆s)− α(1 − α)∆x∆s

(1− α)µ
− 1

∥∥∥∥

≤
∥∥∥∥
xs

µ
− 1

∥∥∥∥+
α

1− α

∥∥∥∥
(x +∆x)(s+∆s)

µ

∥∥∥∥+ α

∥∥∥∥
∆x∆s

µ

∥∥∥∥

≤ β/2 +
α

1− α
ε+ αδ ≤ β/2 + β/8 + β/9 <

3

4
β ,

where the last inequality follows since α
1−αε ≤ β/8 for 0 ≤ α ≤ 1 − 8ε/β and α < 1 (needed to ensure

the denominator (1− α) is positive).
By Lemma 2.33 and the above bound, we get that µ(zα) ∈ [1 ± 3

4β/
√
n](1 − α)µ ⊆ [1 ± 1

8 ](1 − α)µ,

and zα ∈ N 2
(

3
4β

1− 3
4β

)
⊆ N 2(β), for β ∈ (0, 1/6]. If ε = 0, letting α→ 1−, we conclude by continuity that

z1 := (x+∆x, s+∆s) ∈ N 2
(β) and µ(z1) = 0, as needed.

For the last part, note that the condition max{ ‖∆x∆s‖
µ , ‖(x+∆x)(s+∆s)‖

µ } ≤ β/9 can be checked in

strongly polynomial time by squaring both sides. If this check fails, output αℓ = 0. Otherwise, compute
r = ‖(x+∆x)(s +∆s)‖∞ and compute ν = ⌈8 ‖(x +∆x)(s+∆s)‖ /r⌉ ∈ [8, ⌈8√n⌉] via binary search
in O(log n) time, and return αℓ = 1 − νr

µβ . For correctness, note that ‖(x+∆x)(s+∆s)‖ ≤ ν(r/8) ≤
9
8 ‖(x+∆x)(s +∆s)‖, and thus the desired inequalities follow recalling that ε := ‖(x+∆x)(s +∆s)‖ /µ.

3 Polarization of the Central Path

We now introduce the notion of polarized segments of the central path. For 0 ≤ µ1 ≤ µ0, the central
path segment between these values is denoted by

CP[µ1, µ0] := {zcp(µ) : µ1 ≤ µ ≤ µ0} . (29)

Definition 3.1 (Polarization). For γ ∈ (0, 1] and µ0 > µ1 ≥ 0, we say that the segment CP[µ1, µ0] is
γ-polarized if there exists a partition B ∪N = [n] such that for all µ ∈ [µ1, µ0]:

xcp
i (µ) ≥ γxcp

i (µ0) , ∀i ∈ B ,

scpi (µ) ≥ γscpi (µ0) , ∀i ∈ N .

Remark 3.2. By continuity of the central path and the condition µ0 > µ1 ≥ 0, we may restrict the
polarization check above to µ ∈ [µ1, µ0], µ > 0. For i ∈ N , since scpi (µ) = µ/xcp

i (µ) for µ > 0, the
condition scpi (µ) ≥ γscpi (µ0) is equivalent to

µ/xcp
i (µ) ≥ γµ0/x

cp
i (µ0) ⇔ xi(µ) ≤

µ

γµ0
xcp
i (µ0). (30)
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Thus, the polarization condition can be stated only in terms of the primal central path. Similarly,
switching the roles of B and N , the polarization condition can also be stated only in terms of the dual
central path.

Remark 3.3. As stated, the notion of polarization requires an inequality to hold for all µ ∈ [µ1, µ0]. At
the cost of losing a factor n however, it is in fact sufficient to check the polarization condition only at
µ = µ1. This follows by the near-monotonicity of the central path (Lemma 2.30):

xcp
i (µ)

xcp
i (µ0)

=
xcp
i (µ)

xcp
i (µ1)

· x
cp
i (µ1)

xcp
i (µ0)

≥ 1

n
· x

cp
i (µ1)

xcp
i (µ0)

, ∀i ∈ [n] ,

The same is true for s(µ) by a symmetric argument.

As a direct consequence of the definition together with near-monotonicity, we deduce the following
crucial corollary:

Corollary 3.4. Let CP[µ1, µ0], 0 ≤ µ1 ≤ µ0, be γ-polarized with respect to the partition B ∪ N = [n].
Then, for all µ ∈ [µ1, µ0], the following holds:

(1) γxi(µ0) ≤ xi(µ) ≤ nxi(µ0), i ∈ B.

(2) γsi(µ0) ≤ si(µ) ≤ nsi(µ0), i ∈ N .

(3) µ
nµ0

xi(µ0) ≤ xi(µ) ≤ µ
γµ0

xi(µ0), i ∈ N .

(4) µ
nµ0

si(µ0) ≤ si(µ) ≤ µ
γµ0

si(µ0), i ∈ B.

Proof. The first inequalities in (1) and (2) are the definition of γ-polarization and the second inequal-
ities are from Lemma 2.30. (3) and (4) are equivalent to (1) and (2) using the central path relations
x(µ0)s(µ0) = µ01 and x(µ)s(µ) = µ1.

Section 7 introduces the algorithm SLLS-IPM that can traverse γ-polarized segments in O(n1.5

log(n/γ)) iterations. Theorem 1.1 follows by combining this algorithm with the following decomposition
result that is the main result of this section; the proof can be found in Section 7.3. The stronger variant
Theorem 1.4 is proved in Section 8 using an additional amortization argument.

Theorem 3.5. Let Γ : (µ1, µ0) → N−∞
(θ), θ ∈ (0, 1), 0 ≤ µ1 < µ0 ≤ ∞, be a piecewise linear

curve satisfying µ (Γ(µ)) = µ, ∀µ ∈ (µ1, µ0) consisting of T linear segments. Then, CP[µ1, µ0] can be

decomposed into T segments that are (1−θ)2

16n3 -polarized.

Theorem 3.5 is a direct consequence of the following key lemma.

Lemma 3.6. For θ ∈ (0, 1), let [z(0), z(1)] ⊆ N−∞
(θ), µ(z(0)) > µ(z(1)). Then, CP[µ(z(1)), µ(z(0))] is

(1−θ)2

16n3 -polarized.

Proof of Theorem 3.5. By assumption, the curve Γ([µ1, µ0]) = ∪Ti=1[z
(i−1), z(i)] ⊆ N−∞

(θ), where µ0 =
µ(z(0)) > µ(z(1)) > · · · > µ(z(T )) = µ1. By Lemma 3.6, each segment CP[µ(z(i)), µ(z(i−1))], i ∈ [T ],

is therefore (1−θ)2

16n3 -polarized with respect to some polarization partition (B(i), N (i)). This proves the
theorem.

It remains to prove Lemma 3.6. The proof requires the following simple technical lemma that allows
us to relate approximate centrality along lines to polarization.

Lemma 3.7. For any u, v > 0,

min
α∈[0,1]

(1− α+ αu)(1 − α+ αv)

1− α+ αuv
= min

{
1,

(√
u+
√
v

1 +
√
uv

)2
}
≤ 2(u+ v) . (31)

Proof. To show the equality, let µ := uv. Note that

min
α∈[0,1]

(1 − α+ αu)(1 − α+ αv)

1− α+ αuv
= min

α∈[0,1]

(1− α)2 + α2µ+ α(1 − α)(u + v)

1− α+ αµ

= 1 + min
α∈[0,1]

(u+ v − (1 + µ))
α(1− α)

1− α+ αµ
.

(32)
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Case I:
(√

u+
√
v

1+
√
uv

)2
≥ 1. In this case, we need to show that the minimum of the expression is 1. It is

easy to see that the condition equivalent to u+ v ≥ 1 + uv = 1+ µ. Thus, the minimum value of (32) is
clearly 1, attained at α ∈ {0, 1}.
Case II:

(√
u+

√
v

1+
√
uv

)2
< 1, or equivalently, u+v < 1+µ. In this case, the minimizer of (32) corresponds to

the maximizer of α(1−α)
1−α+αµ . This function takes value 0 at α ∈ {0, 1} and is strictly positive for 0 < α < 1.

Furthermore, the unique critical point in the interval [0, 1] occurs at α∗ = 1
1+

√
µ , which is thus the

maximizer. The minimum value of (32) is therefore

1 + (u+ v − (1 + µ))
α∗(1− α∗)

1 − α∗ + α∗µ
=

u+ v + 2
√
µ

(1 +
√
µ)2

,

as required. The inequality in the statement follows easily as

(√
u+
√
v

1 +
√
uv

)2

≤
(√

u+
√
v
)2

= 2(u+ v)− (
√
u−√v)2 .

Proof of Lemma 3.6. For α ∈ [0, 1], let z(α) := (x(α), s(α)) := (1 − α)z(0) + αz(1). By Proposition 2.29,
we first note that the normalized gap function µ(z) is in fact linear on [z(0), z(1)]. That is,

µα := µ(z(α)) = (1− α)µ(z(0)) + αµ(z(1)) .

For any i ∈ [n], z(α) ∈ N−∞(θ) implies

x
(α)
i s

(α)
i

(1 − α)x
(0)
i s

(0)
i + αx

(1)
i s

(1)
i

≥ (1− θ)µα

(1− α)x
(0)
i s

(0)
i + αx

(1)
i s

(1)
i

≥ (1− θ)µα

n((1 − α)µ(z(0)) + αµ(z(1)))
=

1− θ

n
.

Note that the above expression is the same as in Lemma 3.7 for u = x
(1)
i /x

(0)
i , v = s

(1)
i /s

(0)
i . Since the

bound is true for any α ∈ [0, 1], the Lemma implies

1− θ

n
≤ 2

(
x
(1)
i

x
(0)
i

+
s
(1)
i

s
(0)
i

)
.

Let

B :=

{
i ∈ [n] :

x
(1)
i

x
(0)
i

≥ s
(1)
i

s
(0)
i

}
, N := [n] \B .

Then, x
(1)
i /x

(0)
i ≥ 1−θ

4n , for all i ∈ B, and s
(1)
i /s

(0)
i ≥ 1−θ

4n for all i ∈ N .
For any α ∈ [0, 1] and i ∈ B,

x
(α)
i

x
(0)
i

= (1− α) + α
x
(1)
i

x
(0)
i

≥ min

{
1,

1− θ

4n

}
=

1− θ

4n
.

Similarly, for i ∈ N , s
(α)
i /s

(0)
i ≥ 1−θ

4n .
For the central path point zcp(µα) = (xcp(µα), s

cp(µα)) at µα, the bounds in Lemma 2.34 relating
points in a neighborhood with central path points give

xcp
i (µα)

xcp
i (µ0)

≥ x
(α)
i /(2n)
2n
1−θx

(0)
i

≥ (1− θ)2

16n3
, ∀i ∈ B .

By a similar argument, we also have scpi (µα)/s
cp
i (µ0) ≥ (1−θ)2

16n3 , ∀i ∈ N . Thus, CP[µ1, µ0] is
(1−θ)2

16n3 -
polarized.
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4 The Max Central Path

In this section, we derive key properties of the max central path and how to use the max central path to
decompose the central path into polarized segments. In particular, we prove Lemma 1.2, Lemma 1.5 and
Theorem 1.8. Given g ≥ 0, we denote by

Pg := {x ∈ Rn : Ax = b , x ≥ 0 , 〈c, x〉 ≤ v⋆ + g} ,
Dg := {s ∈ Rn : ∃y ∈ Rm A⊤y + s = c , s ≥ 0 , 〈b, y〉 ≥ v⋆ − g}

.

We will also use the subspace formulation (11) with d ∈ Rn such Ad = b; in these terms, we can write
Pg = {x ∈ Rn : x ∈W +d , x ≥ 0 , 〈c, x〉 ≤ v⋆+g} and Dg = {s ∈ Rn : s ∈ W⊤+c , s ≥ 0 , 〈d, c− s〉 ≥
v⋆ − g}. the feasible sets of the linear programs in (4). They correspond to the sets of the primal and
dual feasible points (x, s) ∈ P ×D with objective value within g from the optimum v⋆, respectively. By
the assumption that (LP) is feasible and bounded, it follows that Pg and Dg are both non-empty for any
g ≥ 0.

We recall that the duality gap of any pair (x, (y, s)) of primal-dual feasible points of (LP) fulfills
〈c, x〉 − 〈b, y〉 = 〈x, s〉. In particular, we have 〈x, s⋆〉 = 〈c, x〉 − v⋆ and 〈x⋆, s〉 = v⋆ − 〈b, y〉. Thus, the two
sets Pg and Dg are equivalently given by

Pg = {x ∈ P : 〈x, s⋆〉 ≤ g} , Dg = {s ∈ D : 〈x⋆, s〉 ≤ g} .

These expressions are in fact independent of the choice of optimal solutions (x⋆, s⋆). The following claim
is immediate by our assumption that P++ and D++ are non-empty.

Proposition 4.1. For all g ≥ 0, the sets Pg and Dg are bounded.

Proof. We restrict to the proof of the boundedness of Pg, since the proof is analogous for Dg. Let
s◦ ∈ D++ be a strictly feasible point of the dual, and x ∈ Pg. By Proposition 2.28, we have

〈x, s⋆〉+ 〈x⋆, s◦〉 = 〈x, s◦〉+ 〈x⋆, s⋆〉 .

Since 〈x⋆, s⋆〉 = 0, we deduce that 〈x, s◦〉 ≤ g+〈x⋆, s◦〉. As s◦ > 0, this implies that xi ≤ (g+〈x⋆, s◦〉)/s◦i
for all i ∈ [n].

We denote by MCP = {zm(g) : g ≥ 0} the whole max central path. The max central path point
zm(g) = (xm(g), sm(g)) is the entry-wise maximum of the set Pg ×Dg.

While the points of the max central path are not feasible in general, the following theorem shows that
the max central path shares important similarities with the central path:

Theorem 4.2 (Centrality of the max central path). For all g ≥ 0, we have that

g ≤ xm
i (g)s

m
i (g) ≤ 2g ∀i ∈ [n] .

Proof. We first prove the upper bound. For i ∈ [n], let x(i) ∈ argmax{xi : x ∈ Pg} and s(i) ∈ argmax{si :
s ∈ Dg}. Note that x(i), s(i) exist by Proposition 4.1. Then,

xm
i (g)s

m
i (g) = x

(i)
i s

(i)
i ≤

〈
x(i), s(i)

〉
=
〈
x(i), s⋆

〉
+
〈
x⋆, s(i)

〉
≤ 2g ,

where the last equality follows from Proposition 2.28. We now prove the lower bound. We assume g > 0,
since the statement is trivial otherwise.

Note that the dual program of max{xi : x ∈W + d, x ≥ 0, 〈x, s⋆〉 ≤ g} can be expressed as

min
{
αg + 〈u, x⋆〉 : αs⋆ + u ≥ ei, u ∈ W⊥, α ≥ 0

}
,

using that 〈u, x⋆〉 = 〈u, d〉 since d − x⋆ ∈ W , u ∈ W⊥. Similarly, the dual program of max{si : s ∈
W⊥ + c, s ≥ 0, 〈s, x⋆〉 ≤ g} can be expressed as

min
{
βg + 〈v, s⋆〉 : βx⋆ + v ≥ ei, v ∈W,β ≥ 0

}
.

Let us pick optimal (α, u) and (β, v) to these two programs. The product of the objective values is thus
equal to xm

i (g)s
m
i (g); the proof is complete by showing a lower bound g.

We first claim that
〈u, x⋆〉 ≥ 0 and 〈v, s⋆〉 ≥ 0 . (33)
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By symmetry, it suffices to prove the first claim. Recall x⋆ ≥ 0; we show that whenever x⋆
j > 0 then

we must have uj ≥ 0. This follows since by complementary, s⋆j = 0, and that we have the constraint

αs⋆j + uj ≥ eij.
Next, note that the constraints in the two programs imply

1 =
〈
ei, ei

〉
≤ 〈αs⋆ + u, βx⋆ + v〉 = α 〈v, s⋆〉+ β 〈u, x⋆〉 . (34)

Now, the product of the objective values can be written as

xm
i (g)s

m
i (g) = (αg + 〈u, x⋆〉)(βg + 〈v, s⋆〉)

= αβg2 + g (α 〈v, s⋆〉+ β 〈u, x⋆〉) + 〈u, x⋆〉 · 〈v, s⋆〉 ≥ g ,

using (33) and (34). This concludes the proof.

Given the above, we are ready to show

Lemma 1.2. For every µ > 0 and the central path point zcp(µ) = (xcp(µ), scp(µ)),

zm(nµ)

2n
≤ zcp(µ) ≤ zm(nµ) .

Proof. Recall that zcp(µ) = (xcp(µ), scp(µ)) with

〈xcp(µ), scp(µ)〉 = 〈xcp(µ), s⋆〉+ 〈x⋆, scp(µ)〉 = nµ

using Proposition 2.28. Therefore, xcp(µ) ∈ Pnµ and scp(µ) ∈ Dnµ. By definition of the max central
path, zcp(µ) = (xcp(µ), scp(µ)) ≤ (xm(nµ), sm(nµ)) = zm(nµ). For the second inequality, note that

xcp(µ) =
µ

scp(µ)
≥ µ

sm(nµ)
=

µ

xm(nµ)sm(nµ)
xm(nµ)

Thm. 4.2
≥ µ

2nµ
1xm(nµ) =

xm(nµ)

2n
.

By a symmetric argument, scp(µ) ≥ sm(nµ)/2n.

4.1 The Shadow Vertex Simplex Rule

Given a pointed polyhedron P ⊆ Rn (that means that it has at least one vertex) and two objectives
c(1), c(2) ∈ Rn such that maxx∈P

〈
c(1), x

〉
, maxx∈P

〈
c(2), x

〉
< ∞, we recall that the shadow vertex

simplex rule consists in pivoting over vertices of P maximizing the objectives (1−λ)c(1)+λc(2) as λ goes
from 0 to 1. More formally, a sequence of vertices v(1), . . . , v(k) ∈ P is a (c(1), c(2))-shadow vertex path on
P if

• [v(i), v(i+1)] is an edge of P , ∀i ∈ [k − 1],

•

〈
c(2), v(i)

〉
<
〈
c(2), v(i+1)

〉
, ∀i ∈ [k − 1], and

• there exists 0 = λ0 < λ1 ≤ · · · ≤ λk−1 < λk = 1 such that ∀i ∈ [k],
〈
v(i), (1− α)c(1) + αc(2)

〉
=

maxx∈P

〈
x, (1 − α)c(1) + αc(2)

〉
, ∀α ∈ [λi−1, λi].

To analyze shadow vertex paths further, we define the two-dimensional projection

P [c(1), c(2)] :=
{(〈

c(1), x
〉
,
〈
c(2), x

〉)
: x ∈ P

}
=
(
c(1), c(2)

)⊤
· P .

The vertices of P [c(1), c(2)] maximizing an open interval of objectives in (1− λ)e1 + λe2, λ ∈ [0, 1] are
precisely the projections of vertices v(i), i ∈ [k], on the shadow path such that λi−1 < λi.

We define SP (c
(1), c(2)) as the number of vertices of P [c(1), c(2)] maximizing an open interval of ob-

jectives in (1−λ)e1+λe2, λ ∈ [0, 1]. By the preceding observations, we have that SP (c
(1), c(2)) is a lower

bound on the number of vertices of any (c(1), c(2))-shadow vertex path.
In the above, we restricted both starting and ending objectives c(1), c(2) to have finite objective value

on P . It will be useful in the sequel to extend to the case where P might be unbounded in direction
c(2). In this case, we define the shadow vertex path as above, with the only modification being that we
let λk := max{λ ∈ [0, 1] : maxx∈P

〈
x, (1 − λ)c(1) + λc(2)

〉
< ∞}, that is, the simplex path stops just

before reaching an unbounded ray for c(2). In this setting, note that SP (c
(1), c(2)) is still well-defined and

continues to be a lower bound on the number of vertices on any c(1), c(2) shadow vertex path.
We are ready to prove Lemma 1.5.
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Lemma 1.5. The following hold:

(i) ∀i ∈ [n], g 7→ xm
i (g) is a piecewise linear concave non-decreasing function with SP(−s⋆, ei) pieces.

That is, SLCp
0,i(0,∞) = SP(−s⋆, ei).

(ii) ∀i ∈ [n], g 7→ smi (g) is a piecewise linear concave non-decreasing function with SD(−x⋆, ei) pieces.
That is, SLCd

0,i(0,∞) = SD(−x⋆, ei).

Proof. We only prove part (i); part (ii) follows analogously. For i ∈ [n], let Qi = P [s⋆, ei]. We note that
xm
i (g) = max{v2 : (v1, v2) ∈ Qi, v1 ≤ g}. In particular, the map xm

i (g) is a non-decreasing function of g.
Moreover, it is easy to verify that xm

i (g) is concave.
Again by definition, SP(−s⋆, ei) equals the number of vertices of Qi maximizing an open interval of

objectives in O := {−(1− λ)e1 + λe2 : λ ∈ [0, 1]} ⊂ R2.
Define ūi(g) := sup{v2 : (g, v2) ∈ Qi}, which is defined to equal −∞ if {(g, v2) ∈ Qi} = ∅. By

Proposition 4.1, note that ūi(g) < ∞ for all g ≥ 0. By convexity of Qi, ūi is concave function on R+.
Let h = sup{ūi(g) : g ≥ 0}.

Assume h = ∞. By concavity, ūi must be a strictly increasing function on R+. In particular,
ūi(g) = xm

i (g). Given this, we see that the linear pieces of xm
i (g) are in one to one correspondence with

the edges of Qi on the upper convex hull whose projection onto the e1-axis have positive length (i.e.,
excluding the potential edge {(0, v2) ∈ Qi}). Since Qi ⊆ R2

+, every such edge can be uniquely associated
with its left endpoint (which is always a vertex of Qi). It is now easy to check geometrically that the set
of such endpoints exactly corresponds to the set of vertices that are maximizers of the objectives in an
open interval of O.

Assume h < ∞. Let gh := min{g ≥ 0 : xm
i (g) = h}. It is direct to see that xm

i (g) = ūi(g) if g ≤ gh
and that xm

i (g) = h for g ≥ gh. Furthermore, xm
i (g) is strictly increasing on [0, gh]. From this, it is easy

to see geometrically that the number of linear pieces of xm
i is one plus the number of edges of Qi on the

upper convex hull lying in the band {(v1, v2) : 0 ≤ v1 ≤ g}, where the extra linear segment corresponds
to constant segment between gh and ∞. As in the previous case, these linear segments can be uniquely
identified with their left endpoints, which correspond to vertices of Qi. Furthermore, it is easy to check
that these correspond to vertices of Qi maximizing an open interval of objectives in O.

4.2 Decomposition of Straight Line Segments into Polarized Segments

In this section we prove Theorem 1.8. To begin, we provide some simple consequences of the concavity
of the max central path coordinates.

Lemma 4.3. Let g ≥ 0 and α ≥ 1. Then for all i ∈ [n] we have xm
i (αg) ≤ αxm

i (g) and xm
i (

1
αg) ≥ 1

αx
m
i (g).

Proof. We use the concavity of g 7→ xm
i (g) (Lemma 1.5) and deduce that (1− 1

α )x
m
i (0)+

1
αx

m
i (αg) ≤ xm

i (g).
The first inequality of the lemma follows from xm

i (0) ≥ 0. The second inequality follows from the first
applied to g̃ = g

α .

The next lemma shows that the definition of the primal straight-line complexity (Definition 1.3) can
be restricted to breakpoints (gk, zk) = (gk, x

m
i (gk)). By symmetry, the analogous statement for the dual

straight-line complexity also holds.

Lemma 4.4. Let 0 ≤ g < g. We have

SLCp
θ,i(g, g) = min

{
p ≥ 1: ∃(gk)k∈[p+1] ∈ R , g = g1 > g2 > · · · > gp+1 = g ,

∀k ∈ [p] , ∀λ ∈ [0, 1] , (1− λ)xm
i (gk) + λxm

i (gk+1)

≥ (1− θ)xm
i ((1− λ)gk + λgk+1)

}

(35)

Proof. Let g = g1 > g2 > · · · > gp+1 = g. By the concavity of g 7→ xm
i (g), the condition (1− λ)xm

i (gk) +
λxm

i (gk+1) ≤ xm
i ((1−λ)gk+λgk+1) is satisfied for every k ∈ [p] and λ ∈ [0, 1]. We deduce that SLCθ,i(g, g)

is less than or equal to the right-hand side of (35).
We now prove the converse inequality. Let (g1, z1), . . . , (gp+1, zp+1) as in the right-hand side of (5).

Up to removing or shortening segments in the sequence
(
[(gk, zk), (gk+1, zk+1)]

)
k∈[p]

, we can assume that

g = g1 ≥ gk > gp+1 = g for every k ∈ [p]. As zk ≤ xm
i (gk) for all k ∈ [p + 1], we have (1 − λ)xm

i (gk) +
λxm

i (gk+1) ≥ (1 − λ)zk + λzk+1 ≥ (1 − θ)xm
i ((1 − λ)gk + λgk+1) for all k ∈ [p]. It remains us to show

that, up to removing some gk, we can ensure g1 > g2 > · · · > gp+1. Suppose that there is k ∈ [p] such
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that g1 > · · · > gk and gk+1 ≥ gk. We introduce the smallest integer l ≥ k such that gl+1 < gk (l is
well-defined as gp+1 = g < gk). By concavity of xm

i , we have xm
i (gk) ≥ (1 − λ̄)xm

i (gl) + λ̄xm
i (gl+1) for

λ̄ = gk−gl
gl+1−gl

∈ [0, 1]. Then, for all λ ∈ [0, 1],

(1− λ)xm
i (gk) + λxm

i (gl+1) ≥ (1− λ′)xm
i (gl) + λ′xm

i (gl+1)

≥ (1− θ)xm
i ((1− λ′)gl + λ′gl+1)

= (1− θ)xm
i ((1− λ)gk + λgl+1)

where λ′ = λ+ λ̄(1−λ) ∈ [0, 1]. By removing the gk+1, . . . , gl and recursively applying the same argument
on the remaining sequence, we end up with a sequence g = g1 > · · · > gq+1 = g as in the right-hand
side of (35), with q ≤ p. This shows that SLCp

θ,i(g, g) is greater than or equal to the right-hand side
of (35).

In the next lemma, we show that the primal and dual straight line complexity for a single component
of the maximum central path are related up to a factor 2, modulo a slight widening of the neighborhood.
This shows that that primal and dual straight line complexities are essentially equivalent. The proof
proceeds by decomposing straight line segments into polarized segments.

Lemma 4.5. Let L := SLCp
1−α,i(g, g), α ∈ (0, 1], i ∈ [n], and let g = g1 > g2 > · · · > gL+1 = g be the

minimizer of (35). Define φi : [g, g] → R+ so that φi(g) = max{xm
i (gj+1),

g
gj
xm
i (gj)} for g ∈ [gj , gj+1],

j ∈ [L]. Then, φi(g) and
g

φi(g)
are continuous piecewise linear functions on (g, g] with at most 2L pieces,

and

xm
i (g) ≥ φi(g) ≥

α

2
xm
i (g), (36)

smi (g) ≥
αg

2φi(g)
≥ α

4
smi (g), ∀g ∈ (g, g]. (37)

Moreover, SLCd
1−α/4,i(g, g) ≤ 2 SLCp

1−α,i(g, g).

Remark 4.6. For α ∈ (0, 1/2], it can be shown that straight line complexity satisfies SLCd
1−α,i(g, g) ≤

O(1) SLCd
1−α/4,i(g, g). That is, shrinking the neighborhood size by a constant factor can only change the

straight line complexity of a single coordinate of the max central path by a constant factor. In particular,
this implies that SLCd

1−α,i(g, g) ≤ O(1) SLCp
1−α,i(g, g) for α ∈ (0, 1/2]. As this does not have a significant

effect on our iteration bounds, we do not prove this here.

Proof of Lemma 4.5. Noting that xm
i (gj) ≥ gj

gj−1
xm
i (gj−1), j ∈ {2, . . . , L+1}, by Lemma 4.3 and xm

i (gj) ≥
xm
i (gj+1), j ∈ [L], by monotonicity, we have that φ(gj) = xm

i (gj), ∀j ∈ [L+ 1]. In particular, φi is well-
defined. Since each function max{xm

i (gj+1),
g
gj
xm
i (gj)}, i ∈ [L], is continuous piecewise linear with at

most 2 pieces, φi is also continuous with at most 2L pieces. By our assumption that P is strictly feasible,
we have that xm

i (gj) > 0 for j ∈ [L] since gj > gL+1 ≥ 0. In particular, for g ∈ (gj+1, gj ], i ∈ [L], we
have that g

φi(g)
= min{ g

xm

i (gj+1)
,

gj
xm

i (gj)
} if xm

i (gj+1) > 0 and g
φi(g)

=
gj

xm

i (gj)
otherwise. Thus, g

φi(g)
is also

continous piecewise linear with at most 2L pieces on (g, g].
We now prove (36), (37). For j ∈ [L], g ∈ [g, g], let

lji (g) :=

(
xm
i (gj+1)− gj+1

xm
i (gj)− xm

i (gj+1)

gj − gj+1

)
+

xm
i (gj)− xm

i (gj+1)

gj − gj+1
g := aj + bjg,

denote the linear interpolation of xm
i through gj and gj+1. By concavity, monotonicity of xm

i and 0 ≤
gj+1 < gj, the intercept aj and slope bj of lji satisfy

0 ≤ xm
i (0) ≤ lji (0) = aj = xm

i (gj+1)− gj+1
xm
i (gj)− xm

i (gj+1)

gj − gj+1
≤ xm

i (gj+1), (38)

0 ≤ xm
i (gj)− xm

i (gj+1)

gj − gj+1
= bj ≤

xm
i (gj)− xm

i (0)

gj − 0
≤ xm

i (gj)

gj
. (39)
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For g ∈ (gj+1, gj], then by (38) and (39) we get that

φi(g) = max

{
lji (gj+1), g

lji (gj)

gj

}
(40)

≤ max

{
lji (gj+1) + bj(gj − gj+1),

(
1− g

gj

)
lji (0) +

g

gj
lji (gj)

}
= lji (g)

= aj + gbj ≤ xm
i (gj+1) + g

xm
i (gj)

gj
≤ 2φi(g). (41)

Since [(gj , x
m
i (gj)), (gj+1, x

m
i (gj+1))] ⊂ Nmp

i (1− α) by construction, for g ∈ (gj+1, gj] we have that

xm
i (g) ≥ lji (g) ≥ φi(g) ≥

1

2
lji (g) ≥

α

2
xm
i (g).

Since the above holds for all j ∈ [L], this proves (36). To prove (37), we combine (36) with Theorem 4.2
as follows: for g ∈ (g, g],

smi (g) =
xm
i (g)s

m
i (g)

xm
i (g)

≥ g

xm
i (g)

≥ αg

2φi(g)
≥ αg

2xm
i (g)

=
αsmi (g)

2

g

xm
i (g)s

m
i (g)

≥ αsmi (g)

4
.

From here, the moreover SLCd
1−α/4,i(g, g) ≤ 2 SLCp

1−α,i(g, g) follows immediately from (37) and the fact

that αg
2φi(g)

is continuous piecewise linear with a number of pieces bounded by 2 SLCp
1−α,i(g, g) on (g, g]

(note that we can extend αg
2φg(g)

to [g, g] by continuity).

We are now ready to prove Theorem 1.8; we restate it here for convenience.

Theorem 1.8. Let θ ∈ [0, 1) and µ0 > µ1 ≥ 0. The segment CP[µ1, µ0] can be decomposed into a
sequence of 1−θ

4n -polarized segments with partitions (B(k), N (k)), k ∈ [T ], such that

max

{
T∑

k=1

|N (k)∆N (k−1)|, T
}
≤ 2min

{
n∑

i=1

SLCp
θ,i(nµ1, nµ0),

n∑

i=1

SLCd
θ,i(nµ1, nµ0)

}

where N (0) := ∅.

Proof. We only prove the statement for the primal straight-line complexity bound; the proof for the dual
bound follows analogously.

Let g := nµ1 and g := nµ0 denote the gaps at µ1 and µ0. For i ∈ [n], apply Lemma 4.5 on xm
i on [g, g] to

get g = gi,1 > · · · > gi,Li+1 = g, Li = SLCp
θ,i(g, g), and the corresponding piecewise linear function φi(·)

satisfying xm
i (g) ≥ φi(g) ≥ 1−θ

2 xm
i (g), ∀g ∈ [g, g]. For j ∈ [Li], define g+i,j :=

gi,jx
m

i (gi,j+1)
xm

i (gi,j)
∈ [gi,j+1, gi,j ],

which we note satisfies φi(g
+
i,j) = max

{
xm
i (gi,j+1),

g+
i,jx

m

i (gi,j)

gi,j

}
=

g+
i,jx

m

i (gi,j)

gi,j
= xm

i (gi,j+1). From here,

let Gi := {gi,j : i ∈ [Li + 1]} ∪ {g+i,j : i ∈ [Li]} denote the breakpoints of the function φi. For a closed
interval [a, b] ⊆ [g, g] with a < b, we say that [a, b] is type (B) for φi if φi is constant on [a, b] and is

type (N) for φi if φi(g
′) = g′

g φi(g), ∀ g′, g ∈ [a, b], g′ ≤ g and g > 0. By construction of φi and Gi, if

Gi∩(a, b) = ∅, then [a, b] must be either type (B) or type (N) for φi (note that these options are mutually
exclusive).

Define G = ∪ni=1Gi to be the union of the breakpoints of the functions φi, i ∈ [n]. Let g = gT < · · · <
g0 = g satisfy G = {gi : i ∈ {0, . . . , T }}. Since g ∈ Gi, ∀i ∈ [n], we have that

T = |G| − 1 ≤
n∑

i=1

(|Gi| − 1) ≤ 2
n∑

i=1

Li := 2
n∑

i=1

SLCp
θ,i(g, g). (42)

Define (B(0), N (0)) := ([n], ∅), and for k ∈ [T ], define (B(k), N (k)) by

B(k) = {i ∈ [n] : [gk, gk−1] is type (B) for φi},
N (k) = {i ∈ [n] : [gk, gk−1] is type (N) for φi}.
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By construction of G, we have (gk, gk−1) ∩ Gi = ∅, i ∈ [n], and hence (B(k), N (k)) partitions [n]. The
sum of partition differences then satisfies the bound

T∑

k=1

|N (k)∆N (k−1)| =
n∑

i=1

T∑

k=1

|1[i ∈ N (k)]− 1[i ∈ N (k−1)]| ≤
n∑

i=1

T∑

k=1

1[gk−1 ∈ Gi]

=
n∑

i=1

(|Gi| − 1) ≤ 2
n∑

i=1

SLCp
θ,i(g, g). (43)

Define hi := gi/n, i ∈ {0, . . . , T }, where we have h0 = g0/n = g/n = µ0 and hT = gT /n = g/n = µ1.

For k ∈ [T ], we claim that the central path segment CP[hk, hk−1] is γ = 1−θ
4n -polarized with polarization

partition (B(k), N (k)). Together with the claim, the bounds (42) and (43) directly imply theorem.
We now prove the claim for k ∈ [T ]. For µ ∈ [hk, hk−1] = [gk/n, gk−1/n] and i ∈ B(k), by Lemma 1.2

and the guarantees on φi, we have that

xcp
i (µ) ≥ 1

2n
xm
i (nµ) ≥

1

2n
φi(nµ) =

1

2n
φi(gk−1) ≥

1− θ

4n
xm
i (gk−1) ≥

1− θ

4n
xcp
i (hk−1), (44)

where in the first equality we used that [gk, gk−1] is type (B) for φi. Similarly, for i ∈ N (k), we have that

xcp
i (µ) ≤ xm

i (nµ) ≤
2

1− θ
φi(nµ) =

2

1− θ

µ

hk−1
φi(nhk−1)

≤ 2

1− θ

µ

hk−1
xm
i (nhk−1) ≤

4n

1− θ

µ

hk−1
xcp
i (hk−1), (45)

where in the first equality we used that [gk, gk−1] is type (N) for φi. By Remark 3.2, the inequalities (44)
and (45) imply that CP[hk, hk−1] is

1−θ
4n -polarized with polarization partition (B(k), N (k)) as desired.

5 The Trust Region Step

In this section, we prove important properties for the trust-region step of Lan, Monteiro and Tsuchiya [38],
as defined in the program (8) in the introduction. The estimates proved here will play a crucial role in
the analysis of the IPM, and correspond to refinements of existing estimates in [38] and [48] that are
more adapted to our IPM.

Our first estimate, given in Section 5.1 is a general relationship between the parameters of trust-region
directions and the achievable step-length guarantees one can derive from them. The second main result,
given in Section 5.2, regards the computation of the optimal partition (B,N) to use when computing
trust-region directions. We show that if a suitably good trust-region direction exists with respect to some
partition (B,N), then this partition can be read off from the coordinates of the affine scaling direction
(which implies that it is unique). We prove this by showing that the affine scaling direction must be close
to any good enough trust region direction. This is analoguous to a result of [48], who showed that the
same statement holds if we replace the trust-region direction by the layered least squares direction.

We dub the partition induced by the affine scaling direction the associated partition (in [38] this was
called the AS bipartition). With respect to our IPM, the associated partition will be used to identify the
current polarization partition.

5.1 Step-Length Estimates for Trust Region Directions

We now formally link the properties of trust-region program solutions to the achievable step-lengths in
Proposition 2.44. A similar estimate is proved in [38, Lemma 2.7].

Proposition 5.1. Let x, s ∈ Rn
++ satisfy ‖xs/µ− 1n‖ ≤ 1/6, where µ := µ(x, s), and let B ∪N = [n] be

a partition. For ∆x,∆s ∈ Rn, assume that

‖(∆x̂B ,∆ŝN )‖ ≤ δ ≤ 1/6 ,
∥∥∥(ξ̂B +∆ŝB, ξ̂N +∆x̂N )

∥∥∥ ≤ ε ≤ 1/6, (46)

where ξ̂ :=
√
xs/µ, (∆x̂,∆ŝ) := (x̂−1∆x, ŝ−1∆s) and (x̂, ŝ) := (xξ̂−1, sξ̂−1). Then,

∥∥∥∥
∆x∆s

µ

∥∥∥∥ ≤
√
2δ, (47)

∥∥∥∥
(x+∆x)(s +∆s)

µ

∥∥∥∥ ≤
√
2ε. (48)
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Proof. To derive (47) and (48), we prove the following more general statements:
∥∥∥∥
∆x∆s

µ

∥∥∥∥
2

≤‖∆x̂B‖2
(
1 + 1

12 +
∥∥∥ξ̂B +∆ŝB

∥∥∥
)2

+ ‖∆ŝN‖2
(
1 + 1

12 +
∥∥∥ξ̂N +∆x̂N

∥∥∥
)2

, (49)

∥∥∥∥
(x +∆x)(s+∆s)

µ

∥∥∥∥
2

≤
∥∥∥ξ̂B +∆ŝB

∥∥∥
2 (

1 + 1
12 + ‖∆x̂B‖

)2
+
∥∥∥ξ̂N +∆x̂N

∥∥∥
2 (

1 + 1
12 + ‖∆ŝN‖

)2
. (50)

To derive (47), we combine (49) and the assumed bounds (46) as follows:
∥∥∥∥
∆x∆s

µ

∥∥∥∥
2

≤ ‖∆x̂B‖2
(
1 + 1

12 +
∥∥∥ξ̂B +∆ŝB

∥∥∥
)2

+ ‖∆ŝN‖2
(
1 + 1

12 +
∥∥∥ξ̂N +∆x̂N

∥∥∥
)2

≤ ‖(∆x̂B ,∆ŝN )‖2 (1 + 1
12 + ε)2 ≤ δ2(1 + 1

12 + 1
6 )

2 ≤ δ2(54 )
2 ≤ 2δ2.

Similarly, (48) is derived by combining (50) and (46) as
∥∥∥∥
(x+∆x)(s+∆s)

µ

∥∥∥∥
2

≤
∥∥∥ξ̂B +∆ŝB

∥∥∥
2

(1 + 1
12 + ‖∆x̂B‖)2 +

∥∥∥ξ̂N +∆x̂N

∥∥∥
2

(1 + 1
12 + ‖∆ŝN‖)2

≤ ε2(1 + 1
12 + δ)2 ≤ 2ε2.

We now focus on the proofs of (49) and (50).

Proof of inequality (49) To begin, note that
∥∥∥∥
∆x∆s

µ

∥∥∥∥
2

= ‖∆x̂∆ŝ‖2 = ‖∆x̂B∆ŝB‖2 + ‖∆x̂N∆ŝN‖2 .

For the B term on the right hand side, we have that

‖∆x̂B∆ŝB‖2 ≤ ‖∆x̂B‖2 ‖∆ŝB‖2∞
≤ ‖∆x̂B‖2

(∥∥∥ξ̂B
∥∥∥
∞

+
∥∥∥ξ̂B +∆ŝB

∥∥∥
∞

)2

≤ ‖∆x̂B‖2
(
1 + 1

12 +
∥∥∥ξ̂B +∆ŝB

∥∥∥
)2

,

where the last inequality follows since
∥∥∥ξ̂B +∆ŝB

∥∥∥
∞
≤
∥∥∥ξ̂B +∆ŝB

∥∥∥ and

∥∥∥ξ̂B
∥∥∥
∞
≤
∥∥∥ξ̂
∥∥∥
∞

= max
i∈[n]

√
xisi
µ ≤

√
1 + 1

6 ≤ 1 + 1
12 .

By a symmetric argument, swapping the roles of (x,s) and (B,N), we also get that

‖∆x̂N∆ŝN‖2 ≤ ‖∆ŝN‖2
(
1 + 1

12 +
∥∥∥ξ̂N +∆x̂N

∥∥∥
)2

.

Inequality (49) now follows by combining for the B and N bounds above.

Proof of inequality (50) Similar to the above, we have that
∥∥∥∥
(x +∆x)(s+∆s)

µ

∥∥∥∥
2

=
∥∥∥(ξ̂ +∆x̂)(ξ̂ +∆ŝ)

∥∥∥
2

=
∥∥∥(ξ̂B +∆x̂B)(ξ̂B +∆ŝB)

∥∥∥
2

+
∥∥∥(ξ̂N +∆x̂N )(ξ̂N +∆ŝN )

∥∥∥
2

.

As before, we bound the B and N parts separately. For the B part, we have that
∥∥∥(ξ̂B +∆x̂B)(ξ̂B +∆ŝB)

∥∥∥
2

≤
∥∥∥ξ̂B +∆ŝB

∥∥∥
2 ∥∥∥ξ̂B +∆x̂B

∥∥∥
2

∞

≤
∥∥∥ξ̂B +∆ŝB

∥∥∥
2 (∥∥∥ξ̂B

∥∥∥
∞

+ ‖∆x̂B‖∞
)2

≤
∥∥∥ξ̂B +∆ŝB

∥∥∥
2

(1 + 1
12 + ‖∆x̂B‖)2,

where the last inequality from identical to the first part. Again, by a symmetric argument,
∥∥∥(ξ̂N +∆x̂N )(ξ̂N +∆ŝN )

∥∥∥
2

≤
∥∥∥ξ̂N +∆x̂N

∥∥∥
2

(1 + 1
12 + ‖∆ŝN‖)2.

Inequality (50) now follows by combining for the B and N bounds above.
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5.2 The Associated Partition

The trust-region step is applicable for any non-trivial partition B ∪N = [n] and z ∈ N 2(β). Following
[38], we choose a natural partition derived from the size of normalized coordinates of the affine scaling
direction:

Definition 5.2 (Associated partition). For z = (x, s) ∈ N 2(β), let (∆xa,∆sa) be the affine scaling step

as in (24). Let us define the associated partition B̃z ∪ Ñz = [n] as

B̃z :=

{
i :

∣∣∣∣
∆xa

i

xi

∣∣∣∣ <
∣∣∣∣
∆sai
si

∣∣∣∣
}

, Ñz := [n] \ B̃z .

The affine scaling step is the canonical candidate for an improving direction. Namely, for each i ∈ B̃z

the variable si decreases at a faster rate than xi, and vice versa for i ∈ Ñz.
As we show below, as long as the trust-region program admits a sufficiently good solution with respect

to the polarization partition (B,N), then the affine scaling step is close to this trust-region direction and
has associated partition (B,N). This implies that the optimal choice of partition is in fact unique under
the assumption that a long steps exists.

Lemma 5.3. Let z = (x, s) ∈ N 2(β), β ∈ (0, 1/6], µ := µ(z), B ∪N = [n] be a partition. Assume that
there exists (∆x,∆s) ∈W ×W⊥ satisfying

‖(∆x̂B ,∆ŝN )‖ ≤ δ ≤ 1/30,
∥∥∥(ξ̂N +∆x̂N , ξ̂B +∆ŝB)

∥∥∥ ≤ ǫ ≤ 1/30, (51)

where ξ̂ :=
√
xs/µ, (∆x̂,∆ŝ) := (x̂−1∆x, ŝ−1∆s), (x̂, ŝ) := (xξ̂−1, sξ̂−1). Then, the affine scale direction

(∆xa,∆sa) at z satisfies
∥∥∥∥
∆xa∆sa

µ

∥∥∥∥ =

∥∥∥∥
(x+∆xa)(s+∆sa)

µ

∥∥∥∥ ≤ 3.5(δ + ε), (52)

and the associated partition at z satisfies (B̃z , Ñz) = (B,N).

Proof. Recall that the affine scaling step (∆xa,∆sa) is defined by

∆x̂a +∆ŝa = −ξ̂,

where (∆x̂a,∆ŝa) := (x̂−1∆xa, ŝ−1∆sa) ∈ x̂−1W × ŝ−1W⊥ form an orthogonal decomposition of −ξ̂. By
orthogonality, we therefore have that

‖∆x̂a −∆x̂‖2 + ‖∆ŝa −∆ŝ‖2 =
∥∥∥ξ̂ +∆x̂+∆ŝ

∥∥∥
2

.

By the triangle inequality,

∥∥∥ξ̂B +∆x̂B +∆ŝB

∥∥∥
2

≤ 2 ‖∆x̂B‖2 + 2
∥∥∥ξ̂B +∆ŝB

∥∥∥
2

,

∥∥∥ξ̂N +∆x̂N +∆ŝN

∥∥∥
2

≤ 2 ‖∆ŝN‖2 + 2
∥∥∥ξ̂N +∆x̂N

∥∥∥
2

.

Therefore, by (51),

∥∥∥ξ̂ +∆x̂+∆ŝ
∥∥∥
2

=
∥∥∥ξ̂B +∆x̂B +∆ŝB

∥∥∥
2

+
∥∥∥ξ̂N +∆x̂N +∆ŝN

∥∥∥
2

≤ 2(‖∆x̂B‖2 + ‖∆ŝN‖2 +
∥∥∥ξ̂N +∆x̂N

∥∥∥
2

+
∥∥∥ξ̂B +∆ŝB

∥∥∥
2

)

≤ 2(δ2 + ε2).

In particular,

‖(∆x̂a
B ,∆ŝaN )‖ ≤

√
2(δ2 + ε2) + ‖(∆x̂B ,∆ŝN )‖ ≤

√
2(δ + ε) + δ

≤ (
√
2 + 1)(δ + ε) ≤ 1

6
,

∥∥∥(ξ̂N +∆x̂a
N , ξ̂B +∆ŝaB)

∥∥∥ ≤
√
2(δ2 + ε2) +

∥∥∥(ξ̂N +∆x̂N , ξ̂B +∆ŝB)
∥∥∥

≤ (
√
2 + 1)(δ + ε) ≤ 1

6
.
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Therefore by Proposition 5.1, since affine scaling satisfies ∆xa∆sa = (x+∆xa)(s+∆sa), we get that

∥∥∥∥
∆xa∆sa

µ

∥∥∥∥ =

∥∥∥∥
(x+∆xa)(s+∆sa)

µ

∥∥∥∥ ≤
√
2(
√
2 + 1)(δ + ε) ≤ 3.5(δ + ε).

For the last part, notice that |∆xa
i /xi| < |∆sai /si| ⇔ |∆x̂a

i | < |∆ŝai |, ∀i ∈ [n]. By Proposition 2.42, since

β ∈ (0, 1/6], we have that ξ̂ ≥ √1− β1n ≥ (1−1/6)1n. For i ∈ B, using that (
√
2+1)(δ+ε) ≤ 3(δ+ε) ≤

1/3 together with (53) we see that

|∆x̂a
i | ≤ 3(δ + ε) < (1 − 1/6)− 3(δ + ε) ≤ ξ̂i − |∆x̂a

i | ≤ |ξ̂i +∆x̂a
i | = |∆ŝai |.

By a symmetric argument, we also have |∆ŝai | < |∆x̂a
i |, for i ∈ N . Therefore, (B̃z , Ñz) = (B,N).

Remark 5.4. Given that the affine scaling step is always close to a trust-region direction, as long as the
direction yields a sufficiently long step, one may wonder why the trust-region direction, or its approximate
version the subspace LLS direction (defined in the next section), is even needed. At a quantitative level,
this comes from the fact that the trust-region direction assumed to exist in Lemma 5.3 would in fact
allow us to decrease the gap by a factor Θ(ε) (see Proposition 2.44), whereas the “nearby” affine scaling
would only achieve Θ(δ + ε), which can be arbitrarily worse. Indeed, recall that in (8) we only enforce
δ = O(β), that is, proportional to the neighborhood size, while trying to minimize ε.

6 The Subspace LLS Direction and Cheap Lift Subspaces

In this section, we formally define the subspace layered least squares (SLLS) steps and show how to
compute the cheap lift subspaces as described in the Introduction. In Section 6.1, we formally define
the SLLS step and overview its basic computational aspects. Then, in Section 6.2, we introduce the
lifting map and operator and overview their basic properties and give an algorithm to compute them. In
Section 6.3, we define cheap lift subspaces, that will be used for taking subspace LLS steps, as well as the
lifting operators, and show how to construct cheap lift subspaces from approximate singular subspaces (as
defined in Definition 2.24). In Section 6.4, we show how to compute cheap lift subspaces of approximately
maximum dimension using an approximate singular value decomposition (see the ̺-SVD problem).

6.1 The Subspace Layered Least Squares Direction

We now introduce a new update direction, called the subspace layered least squares (SLLS) update
direction, which will allow us to accelerate our IPM over long straight parts of the central path. As
discussed in the previous sections, such straight segments of the central path are in fact polarized according
to a partition B ∪ N = [n] (Definition 3.1). Within this segment, the primal variables indexed by N
scale down linearly with respect to the parameter µ, while the primal variables in B will remain roughly
constant. For the dual, the situation is reversed, the variables in B scale down while the variables in N
remain roughly constant.

As discussed, in the Introduction, the “optimal” step direction that mimics the polarization pattern
is the trust region step of Lan, Monteiro and Tsuchiya (8). To be able to suitably approximate this step
in strongly polynomial time, we require the SLLS update direction, which we formally define below.

Definition 6.1 (Subspace Layered Least Squares direction). Let z := (x, s) ∈ N 2(β), µ = µ(z), B∪N =
[n] be a non-trivial partition. Let V ⊆W , U ⊆W⊥ be linear subspaces satisfying dim(πN (V )) = dim(V ),
and dim(πB(U)) = dim(U). The Subspace LLS (SLLS) update direction (∆xℓ,∆sℓ) ∈ W ×W⊥ at z
with respect to (B,N, V, U) is defined as

∆xℓ := argmin
δ∈V

∥∥∥∥
xN + δN

x̂N

∥∥∥∥
2

, (53)

∆sℓ := argmin
δ∈U

∥∥∥∥
sB + δB

ŝB

∥∥∥∥
2

, (54)

where x̂ :=
√
xµ/s and ŝ :=

√
sµ/x.
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Remark 6.2. Note that ∆xℓ,∆sℓ are indeed well-defined, as our assumption that dim(πN (V )) = dim(V )
and dim(πB(U)) = dim(U) allows to uniquely determine ∆xℓ,∆sℓ from their coordinates in N and B
respectively. In particular, if N = ∅, then V = {0n} and hence ∆xℓ = 0n. Similarly, if B = ∅, then
U = {0n} and ∆sℓ = 0n.

As with affine scaling, one can interpret the SLLS step directions in terms of orthogonal projections.
Using that ξ̂ :=

√
xs/µ = x/x̂ = s/ŝ, in direct analogy with (24) in Section 2.6, (x̂−1∆x)N and (ŝ−1∆s)B

are respectively the orthogonal projections of −ξ̂N and −ξ̂B onto πN (x̂−1V ) and πB(ŝ
−1U). In contrast,

whereas the affine scaling direction minimizes the norm of the primal-dual residual vector (ξ̂+∆x̂, ξ̂+∆ŝ),

the subspace LLS direction instead tries to minimize the norm of (ξ̂N +∆x̂N , ξ̂B +∆ŝB).

Similarly to the affine scaling and corrector direction, the SLLS direction can be computed in strongly
polynomial time, given an appropriate representation of the subspaces. The formulas for the subspace
LLS step directions are given in the next proposition. These are computed by solving the linear system
which sets the gradient of the corresponding quadratic optimization problems to zero.

Proposition 6.3 (Subspace LLS Step Formulas). Let z = (x, s) ∈ R2n
++ be an iterate, B ∪N = [n] be a

non-trivial partition, and MP ∈ Rn×mp ,MD ∈ Rn×md be matrices where V := im(MP), U := im(MD)
satisfy dim(V ) = dim(πN (V )) and dim(U) = dim(πB(U)). Then, the SLLS direction (∆xℓ,∆sℓ) at z
with respect to (B,N,U, V ) can be computed in strongly polynomial time as follows:

∆xℓ = −MP
(
(MP

N,•)
⊤ diag(sN/xN )MP

N,•
)+ (

MP
N,•
)⊤

sN ,

∆sℓ = −MD
(
(MD

B,•)
⊤ diag(xB/sB)M

D
B,•
)+ (

MD
B,•
)⊤

xB.

In the above, by convention, ∆xℓ = 0n if N = ∅ and ∆sℓ = 0n if B = ∅.
Proof. The strong polynomiality follows directly from the fact that computing pseudoinverses is strongly
polynomial. We thus focus on correctness. We prove correctness of the formula for ∆xℓ as the analysis
for ∆sℓ is symmetric. The formula is clearly correct if N = ∅ by convention, so assume N 6= ∅. Let

zx := −
(
(MP

N,•)
⊤ diag(sN/xN )MP

N,•
)+ (

MP
N,•
)⊤

sN ∈ Rmp .

Recalling that V := im(MP), we have that ∆xℓ = MPzx ∈ V . Thus, letting gx(z) =
∥∥∥xN+M

P
N,•z

x̂N

∥∥∥
2

, it

suffices to check that

zx ∈ argmin
z∈R

mp

gx(z)⇔ ∇gx(zx) = 0mp ⇔ 2
(
MP

N,•
)⊤
(
xN +MP

N,•zx

x̂2
N

)
= 0mp

⇔
(
MP

N,•
)⊤ (

sN + diag(sN/xN )MP
N,•zx

)
= 0mp , (55)

where we have used convexity of gx and x̂ :=
√
xµ/s where µ := µ(x, s) > 0. Note that while gx

need not have a unique minimizer (i.e., the columns of MP may be linearly dependent), the condition
dim(V ) = dim(πN (V )) = rank(MP

N,•) indeed ensures that ∆xℓ = MPzx is the unique minimizer to (53)
assuming zx minimizes gx. From here, it suffices to check that zx satisfies (55), and hence minimizes gx.

For this purpose, letting P =
(
MP

N,•
)⊤

diag(sN/xN )MP
N,•, by Proposition 2.14 part (1) and x, s > 0n

(
MP

N,•
)⊤

sN = Π
im

(
(MP

N,•)
⊤
) (MP

N,•
)⊤

sN = Πim(P)

(
MP

N,•
)⊤

sN

= PP+
(
MP

N,•
)⊤

sN ,

where we have used that im
((

MP
N,•
)⊤)

= im
((

MP
N,•
)⊤

diag(sN/xN)MP
N,•

)
.

6.2 Lifting Maps and Operators

The algorithm in Section 7 and the analysis in Section 7.3 will rely crucially on the properties of lifting
maps and operators. These will be used to compute cheap lift subspaces for the purpose of computing
subspace layered least squares directions. These maps have appeared in many prior works on layered
least squares algorithms [66, 47, 19]. In this section, we give a self-contained overview of all their main
properties. Importantly, we show their duality properties and that they can be computed in strongly
polynomial time.
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Definition 6.4. Given a non-trivial partition I ∪ J = [n] and a subspace W ⊆ Rn, we define the lifting
map LW

I : RI → Rn as follows:

LW
I (x) := argmin{‖w‖ : w ∈W,wI = ΠπI(W )(x)}. (56)

We further define the lifting operator ℓWI : πI(W )→ πJ (W
⊥) by

ℓWI (x) := (LW
I (x))J = πJ

(
LW
I (x)

)
, ∀x ∈ πI(W ) . (57)

Note that if x ∈ πI(W ), then w = LW
I (x) = (ℓWI (x), x) is the minimum-norm point in W with wI = x.

By convention, if (I, J) is a trivial partition, we define LW
I := ΠW if I = [n], and define LW

I to be the
linear operator from R∅ := {0} to Rn if I = ∅. We furthermore define ℓWI to be the linear operator from
W to R∅ if I = [n] and from R∅ to W⊥ if I = ∅.

The computation of lifting operators will be crucial to our IPM. The following proposition, whose
proof is deferred to later in the section, gives an explicit formula for the associated matrices of the lifting
map and operator and shows how to compute them in strongly polynomial time.

Proposition 6.5 (Computing Lifting Maps). Let A ∈ Rm×n, rank(A) = m, and I ∪ J = [n] be a
partition. Then, for W = ker(A), one can in strongly polynomial time compute the associated matrices
(as in Definition 2.1) for the lifting map and operator as follows:

M(LW
I ) = P•,I(PI,I)

+, M(ℓWI ) = PJ,I(PI,I)
+,

where P := In−A⊤(AA⊤)−1A is the orthogonal projection onto W , i.e., the matrix associated with ΠW .

Towards proving the above, we first show that LW
I and ℓWI are both well-defined linear operators,

which is not directly obvious from the definitions. Linearity of these operators, as well as other key
properties, is proven in Lemma 6.6 and Lemma 6.7 below.

Lemma 6.6. For a linear subspace W ⊆ Rn, and a partition I∪J = [n], then the function LW
I : RI → Rn

as defined in Definition 6.4 is a linear operator. In particular, for x ∈ RI , w = LW
I (x) is the unique

solution to the following linear system:

w ∈ ΠW (Rn
I ) ,

πI(w) = ΠπI(W )(x).
(58)

Furthermore, πI(W ) = πI(ΠW (Rn
I )).

Proof. If (I, J) is a trivial partition, the characterization follows directly by our convention, so we may
assume that (I, J) is non-trivial.

By construction, the solution set of LW
I (x) is non-empty. Furthermore, the minimum norm solution

exists and is unique by strict convexity of the squared Euclidean norm. Thus, w = LW
I (x) is well-defined.

The definition requires wI = πI(w) = ΠπI (W )(x); we show that subject to this, w = LW
I (x) if and

only if w ∈ ΠW (Rn
I ). By Lagrangian duality, using that the gradient of the squared norm objective is

∇(‖w‖2) = 2w, it follows that w is optimal to the program in the definition (56) if and only if

wI = ΠπI(W )(x) ,

w ∈ W , and

w ⊥ (W ∩ Rn
J) ,

(59)

where we have used that the difference of any two feasible solutions to (56) lives in W ∩ Rn
J . The last

requirement can be written as w ∈ (W ∩Rn
J )

⊥ = W⊥+Rn
I , where the equality follows by Proposition 2.3.

By orthogonal decomposition, we note that ΠW (Rn
I ) = W ∩ (W⊥ + Rn

I ).
Thus, the last two requirements are equivalent to w ∈ ΠW (Rn

I ), completing the proof. Further, since
(59) can be equivalently written as a linear system of equations, it follows that LW

I is a linear map.
We now prove the furthermore: πI(W ) = πI(ΠW (Rn

I )). Since ΠW (Rn
I ) ⊆W , we have πI(ΠW (Rn

I )) ⊆
πI(W ). To show the reverse containment πI(W ) ⊆ πI(ΠW (Rn

I )), take any x ∈ πI(W ). We have that
LW
I (x) ∈ ΠW (Rn

I ) by the first part, and πI(L
W
I (x)) = x. Therefore, πI(W ) ⊆ πI(ΠW (Rn

I )), as needed.
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Lemma 6.7. For a linear subspace W ⊆ Rn, a partition I ∪ J = [n], ℓWI : πI(W ) → πJ(W
⊥) as in

Definition 6.4 is a well-defined linear operator. Moreover, im(ℓWI ) = πJ(W ) ∩ πJ (W
⊥), ker(ℓWI ) =

πI(W ∩Rn
I ) and im(ad(ℓWI )) = πI(W ) ∩ πI(W

⊥).

Proof. If (I, J) is a trivial partition, the lemma follows trivially by the definition of LW
I , so we may

assume that (I, J) is non-trivial. We first prove the moreover statement im(ℓWI ) = πJ (W ) ∩ πJ(W
⊥).

Assuming this, the well-definedness of ℓWI : πI(W ) → πJ(W
⊥) follows immediately from the inclusion

im(ℓWI ) ⊆ πJ (W
⊥). Furthermore, linearity of ℓWI follows from linearity of LW

I , proved in Lemma 6.6,
and the definition ℓWI (x) = πJ(L

W
I (x)), ∀x ∈ πI(W ).

We start by showing the inclusion im(ℓWI ) ⊆ πJ (W ) ∩ πJ (W
⊥). For x ∈ πI(W ), by Lemma 6.6 we

have that LW
I (x) ∈ ΠW (Rn

I ) and ℓWI (x) = πJ (L
W
I (x)). Since ΠW (Rn

I ) = W ∩ (W⊥ + Rn
I ), we see that

ℓWI (x) ∈ πJ (ΠW (Rn
I )) ⊆ πJ(W ) ∩ πJ(W

⊥ + Rn
I ) = πJ(W ) ∩ πJ(W

⊥), as needed. We now show the
reverse inclusion πJ(W ) ∩ πJ (W

⊥) ⊆ im(ℓWI ). Take y ∈ πJ(W ) ∩ πJ(W
⊥). By definition, there exists

w ∈ W such that wJ = y. It now suffices to show that LW
I (wI) = w, since then ℓWI (wI) = y. Clearly

πI(L
W
I (wI)) = wI since w ∈ W . By Lemma 6.6, it suffices to show that w ∈ ΠW (Rn

I ) = W ∩ (W⊥+Rn
I ).

From here, we see that w ∈ W⊥ + Rn
I ⇔ πJ(w) ⊆ πJ (W

⊥ + Rn
I ) = πJ (W

⊥). The inclusion now follows
since wJ = y ∈ πJ(W

⊥) by assumption.
We now characterize the kernel of ℓWI by

ker(ℓWI ) = {x ∈ πI(W ) : ℓWI (x) = 0J} = {x ∈ πI(W ) : (x,0J ) ∈ W} = πI(W ∩ Rn
I ),

as needed. Finally, we characterize im(ad(ℓWI )). By Proposition 2.7, we have that

im(ad(ℓWI )) = πI(W ) ∩ ker(ℓWI )⊥ = πI(W ) ∩ πI(W ∩ Rn
I )

⊥

= πI(W ) ∩ πI((W ∩ Rn
I )

⊥ ∩Rn
I )

= πI(W ) ∩ πI((W
⊥ + Rn

J) ∩ Rn
I ) = πI(W ) ∩ πI(W

⊥),

as needed.

We now have the tools to prove Proposition 6.5.

Proof of Proposition 6.5. To begin, recall that A⊤(AA⊤)−1A is the orthogonal projection onto im(A⊤)
= ker(A)⊥ = W⊥, and hence P = In−A⊤(AA⊤)−1A is the orthogonal projection ontoW . Furthermore,
the inverse (AA⊤)−1 is well-defined since A has full row rank.

To justify the formula for M(LW
I ), it suffices to show that LW

I (x) = P•,I(PI,I)
+x for any x ∈ RI

since the input space of LW
I is RI . By Lemma 6.6, we have that w = LW

I (x) is the unique solution to
wI = ΠπI(W )(x) = x and w ∈ ΠW (Rn

I ) = P(Rn
I ). By Proposition 2.14 part (1), we have PI,I(PI,I)

+x =
Πim(PI,I )x = ΠπI (W )x, where the last equality is πI(W ) = πI(P(Rn

I )) = im(PI,I) in Lemma 6.6. Since
by construction P•,I(PI,I)

+x ∈ P(Rn
I ), by uniqueness we have that w = P•,I(PI,I)

+x as needed.
We now justify the formula forM(ℓWI ). The identity ℓWI (x) = PJ,I(PI,I)

+x, for x ∈ πI(W ), follows
directly from ℓWI (x) := πJ (L

W
I (x)). To conclude the proof, it suffices to show that im((PJ,I(PI,I)

+)⊤) ⊆
im(((PI,I)

+)⊤) ⊆ πI(W ), recalling that ℓWI : πI(W ) → πJ(W
⊥). Since ker((PI,I)

+) = ker((PI,I)
⊤)

by definition of the pseudoinverse, we have that im(((PI,I)
+)⊤) = im(PI,I) = πI(W ), where the first

equality is by Proposition 2.7 part (2). This proves the statement.
For the strongly polynomial computability, this follows directly from the fact that computing matrix

products, inverses and pseudoinverses (Proposition 2.15) is strongly polynomial.

To conclude this section, we give the fundamental duality relation between lifting operators, which
will be crucial to the analysis of the IPM.

Lemma 6.8. For a linear subspace W ⊆ Rn, and a partition I ∪ J = [n], ℓWI = − ad
(
ℓW

⊥

J

)
. In

particular, σ+(ℓWI ) = σ+(ℓW
⊥

J ).

Proof. If (I, J) is a trivial partition, the the statement follows by our definition of ℓWI , so may assume
that (I, J) is non-trivial. To prove the statement, it suffices to show that for all x ∈ πI(W ) that

LW
I (x) =

(
x, ℓWI (x)

)
=
(
x,− ad

(
ℓW

⊥

J

)
(x)
)
.
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Letting z :=
(
x,− ad

(
ℓW

⊥

J

)
(x)
)
, by Lemma 6.6, it suffices to show that z ∈ ΠW (Rn

I )

= W ∩ (Rn
I +W⊥). To show that z ∈ W , we must show that 〈v, z〉 = 0, ∀v ∈ W⊥. For v ∈ W⊥, we see

that

〈z, v〉 = 〈x, vI〉 −
〈
ad
(
ℓW

⊥

J

)
(x), vJ

〉

= 〈x, vI〉 −
〈
x, ℓW

⊥

J (vJ )
〉 (

since vJ ∈ πJ(W
⊥)
)

=
〈
x, vI − ℓW

⊥

J (vJ )
〉
=
〈
LW
I (x), (vI − ℓW

⊥

J (vJ), 0J)
〉

=
〈
LW
I (x), v − LW⊥

J (vJ )
〉
= 0 ,

where the last equality follows since LW
I (x) ∈W and v − LW⊥

J (vj) ∈ W⊥.

The inclusion z ∈ Rn
I +W⊥ follows directly from zJ = − ad

(
ℓW

⊥

J

)
(x) ∈ πJ(W

⊥) by definition of the

adjoint. Thus, ℓWI = − ad
(
ℓW

⊥

J

)
as needed.

The equality of the positive singular values now follows from Proposition 2.18, noting that σ+(ℓWI ) =

σ+(− ad(ℓWI )) = σ+(ℓW
⊥

J ).

6.3 Cheap Lift Subspaces

To argue for the usefulness of the SLLS step direction, and to select suitable subspaces V and U for a
given partition (B,N), we recall the discussion of the trust region step from the Introduction (Section 1).
As long as the step primal and dual directions (∆x,∆s) are feasible to the systems (8) for a suitably
small threshold, we are guaranteed to make progress as measured by the primal and dual objective values
as in (9).

Simply selecting V = W and U = W⊥ would attain the smallest possible objective values; however,
the constraints bounding the local norms of ∆xℓ

B and ∆sℓN in (8) could be arbitrarily violated. We will
select the subspaces V and U so that

∥∥x̂−1∆xℓ
B

∥∥ and
∥∥ŝ−1∆sℓN

∥∥ are guaranteed to be small.
To ensure that the constraints are satisfied, we will restrict the primal and dual movement directions

to cheap lift subspaces V and U . These are formally defined below:

Definition 6.9 (Cheap Lift Subspace). Let W ⊆ Rn be a subspace, Ξ ∈ Rn
++, (B,N) be a partition of

[n]. Then, V ⊆W is a cheap lift subspace for (W,Ξ, B,N) with lifting cost τ ≥ 0 if

‖ΞBxB‖ ≤ τ ‖ΞNxN‖ , ∀x ∈ V.

Remark 6.10. Note that for the above inequality to hold, we must have that dim(πN (V )) = dim(V ),
since otherwise there exists a vector x ∈ V with xB 6= 0B and xN = 0N . In particular, if N = ∅, we
must have V = {0n}, which has lifting cost 0. Furthermore, if N = [n], then V = W is a cheap lift
subspace for (W,Ξ, B,N) with lifting cost 0 of maximum dimension (recall that (Ξx)∅ := π∅(Ξx) = 0 by
convention).

In the context of solving the primal trust-region program, if V ⊆ W is a cheap lift subspace with
respect to (W, x̂−1, B,N) with lifting cost τ = ν√

n
, the primal subspace LLS direction with respect to

(W,V,N,B)
∆xℓ := argmin

∆x∈V

∥∥x̂−1
N (xN +∆xN )

∥∥

automatically satisfies the trust-region constraint
∥∥x̂−1

B ∆xℓ
B

∥∥ ≤ ν. This is because x̂−1
N ∆xℓ

N is the orthog-

onal projection of −x̂−1
N xN = −ξ̂N onto the subspace x̂−1

N πN (V ), and hence
∥∥x̂−1

N ∆xℓ
N

∥∥ ≤
∥∥x̂−1

N xN

∥∥ =√∑
i∈N xisi/µ ≤

√
n. By the lifting cost condition on V , we then have

∥∥x̂−1
B ∆xℓ

B

∥∥ ≤ τ
∥∥x̂−1

N ∆xℓ
N

∥∥ ≤√
nτ = ν, as needed. Analogously, any cheap lift subspace U ⊆W⊥ for (W⊥, ŝ−1, N,B) with lifting cost

at most τ will also suffice for the dual subspace LLS direction ∆sℓ as in Definition 6.1 to be feasible.
While low lifting cost subspaces are sufficient to get feasible solutions to the trust-region program,

they do not necessarily yield useful approximations. In particular, one can always choose the subspace
V = {0}, which is trivially cheap. To make significant progress along a polarized segment, we will require
that the use of cheap lift subspaces of maximum dimension subject to a lifting cost bound τ . These will
allow us to either quickly increase the dimension of the cheap lift subspace, or to get past the end of the
of the polarized segment.
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We now explain how to find these cheap lift subspaces and what their achievable dimensions are. For
this purpose, we will rely on approximate singular subspaces of lifting operator, as defined in Defini-
tion 6.4. The following lemma gives the precise relation between cheap lift subspaces and approximate
singular subspaces of the lifting operator, and will be the main tool underlying the computation of cheap
lift subspaces.

Lemma 6.11. Let W ⊆ Rn be a linear subspace, Ξ ∈ Rn
++, B∪N = [n] be a partition. Let LΞW

N : RN →
Rn and ℓΞW

N : πN (ΞW )→ πB(Ξ
−1W⊥) be the lifting operator and map as in Definition 6.4.

Then, the maximum dimension of a cheap lift subspace V for (W,Ξ, B,N) with lifting cost τ ≥ 0 is

Cσ
(
ℓΞW
N , τ

)
:= |{i ∈ [dim(πN (ΞW ))] : σi(ℓ

ΞW
N ) ≤ τ}|,

the number of singular values of ℓΞW
N of value at most τ as in Definition 2.16. Furthermore, if S ⊆

πN (ΞW ) is a ̺-approximate singular subspace for ℓΞW
N of dimension Cσ

(
ℓΞW
N , τ

̺

)
, then

V := Ξ−1LΞW
N (S)

is a cheap lift subspace for (W,Ξ, B,N) of dimension dim(S) = Cσ
(
ℓΞW
N , τ

̺

)
with lifting cost

σ1

(
ℓΞW
N

∣∣
S

)
≤ ̺σdim(πN (ΞW ))−dim(S)+1(ℓ

ΞW
N ) ≤ τ.

Proof. We first show the upper bound of Cσ
(
ℓΞW
N , τ

)
on the dimension of any cheap lift subspace. Let

V ⊆ W be a cheap lift subpace as above with dim(V ) = d, and let V̂ := ΞV and Ŵ := ΞW . For any

y ∈ V̂ ⊆ Ŵ , by definition of the lifting map and operator, we have that

LŴ
N (y) ∈ Ŵ , (LŴ

N (y))N = yN , and ‖yB‖ ≥
∥∥∥(LŴ

N (yN ))B

∥∥∥ =
∥∥∥ℓŴN (yN )

∥∥∥ ,

where we note that this still holds if (B,N) is trivial as y∅ := π∅(y) = 0 by convention. Therefore,
without loss of generality, we may assume that

V̂ = LŴ
N (πN (V̂ )),

since this can only decrease lifting cost while maintaining the dimension, recalling that dim(πN (V̂ )) =

dim(V̂ ) for any cheap lift subspace. If d = 0 then trivially d ≤ Cσ
(
ℓŴN , τ

)
, and there is nothing left to

prove. So assume d ≥ 1. Then, since πN (V̂ ) ⊆ πN (Ŵ ) and dim(πN (V̂ )) = d, the lifting cost of V satisfies

τ ≥ max
x∈V,xN 6=0N

‖ΞBxB‖
‖ΞNxN‖

= max
y∈V̂ ,yN 6=0N

‖yB‖
‖yN‖

= max
z∈πN (V̂ )\{0N}

∥∥∥ℓŴN (z)
∥∥∥

‖z‖

= σ1(ℓ
Ŵ
N

∣∣∣
πN (V̂ )

) ≥ σ
dim(πN (Ŵ ))−d+1

(ℓŴN ), (60)

where the last inequality follows from (15). Since τ ≥ σdim(πN (Ŵ ))−d+1(ℓ
Ŵ
N ) and the singular values are

in non-increasing order, we have that

d = |{i ∈ [dim(πN (Ŵ ))] : dim(πN (Ŵ ))− d+ 1 ≤ i}|
≤ |{i ∈ [dim(πN (Ŵ ))] : σi(ℓ

Ŵ
N ) ≤ τ}| = Cσ

(
ℓŴN , τ

)
,

as needed.
For the second part, if S ⊆ πN (Ŵ ), then tracing the reduction of the first part backwards, we imme-

diately get from (60) that Ξ−1LŴ
N (S) ⊆W is a cheap lift subspace for (W,Ξ, B,N) of dimension dim(S)

and lifting cost σ1(ℓ
Ŵ
N

∣∣∣
S
). If S is a ̺-approximate singular subspace of ℓŴN of dimension Cσ

(
ℓŴN , τ

̺

)
, then

by definition σ1(ℓ
Ŵ
N

∣∣∣
S
) ≤ ̺σ

dim(πN (Ŵ ))−dim(S)+1
(ℓŴN ) ≤ ̺(τ/̺) = τ , as needed.

We remark that so far we have been treating the tasks of finding primal and dual cheap lift subspaces
separately. Fortunately, it turns out the singular values of the corresponding primal and dual lifting
operators are identical. Thus, the corresponding problems of finding cheap lift subspace on both sides
are intimately linked. In particular, we derive the following relation as a direct corollary of Lemma 6.8.
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Corollary 6.12. Let x̂, ŝ ∈ Rn
++, satisfy x̂ŝ = µ1n where µ = µ(x̂, ŝ). Then, for a subspace W ⊆ Rn

and non-trivial partition B ∪ N = [n], σ+(ℓx̂
−1W

N ) = σ+(ℓŝ
−1W⊥

B ). Furthermore, if
∑r

i=1 σiuiv
⊤
i is the

SVD of ℓx̂
−1W

N , then −∑r
i=1 σiviu

⊤
i is the SVD of ℓŝ

−1W⊥

B .

Given the above, computing cheap lift subspaces for either the primal or dual side is closely tied to
the problem of computing an approximate SVD of the lifting operator.

6.4 Computing Cheap Lift Subspaces

In this section, we explain how to compute cheap lift subspaces.

6.4.1 Approximating the Singular Subspaces

To compute cheap lift subspaces, we will rely on a solver for the ̺-SVD problem defined below, which
provides the requisite approximate singular value decomposition.

Definition 6.13 (̺-SVD problem). For ̺ ≥ 1, the input to the ̺-SVD problem is a matrix M ∈ Rm×n,
and the output is an orthogonal basis B ∈ Rn×n and s ∈ Rn

+, s sorted in non-increasing order, such that

‖Mx‖ ≤ si ‖x‖ , ∀x ∈ im(B≥i), ∀i ∈ [n] , and (61)

̺−1s ≤ σ(M) ≤ s . (62)

Remark 6.14. The requirement that s ≥ σ(M) in (62) is automatically satisfied given (61) and (15).
Furthermore, the requirement that s be sorted in non-increasing order is without loss of generality: if
s satisfies the requirements (61) and (62), then s̄ defined by s̄i = minj∈[i] sj , ∀i ∈ [n], also satisfies the
requirements and is non-increasing.

Remark 6.15. The guarantees of ̺-SVD imply that for each i ∈ [m], the subspace im(B≥i) is a ̺-
approximate singular subspace of M (i.e., of the operator T (M)) of dimension n− i + 1. In particular,
given a threshold τ ≥ 0, letting cτ = |{i ∈ [n] : si ≤ τ}|, the subspace Sτ = im(B≥n−cτ+1) is the subspace
of largest dimension in this collection that satisfies σ1(M

∣∣
Sτ
) ≤ τ under the guarantee of (61).

For the sake of being able to execute each iteration of our IPM in strongly polynomial time, we
will need a ̺-SVD solver that uses a strongly polynomial number of basic arithmetic operations (i.e.,
depending only on the dimension of the underlying matrix), and that is numerically stable, i.e., that
ensures iterates with polynomial bit complexity. In particular, the algorithm cannot rely on computing
square root computations.

In Section 9, we show that for any fixed ̺ > 1, ̺-SVD can be solved in deterministic strongly
polynomial time. Our main theorem is as follows.

Theorem 6.16. For ̺ > 1, there is a deterministic algorithm for solving ̺-SVD that on an input m×n
matrix requires O(n2 max(m,n)3 log(n+ 1

̺−1 )) operations and space polynomial in n,m,max{1, 1
̺−1} and

the bit-encoding length of the input matrix.

We defer the discussion of how this theorem is proved and how it relates to earlier work on approximate
SVDs to Section 9.

Our IPM can be implemented using any ̺-SVD solver (modulo strongly polynomial considerations).
While the iteration complexity of the IPM does depend on the approximation factor ̺, this dependency
is very mild: as we show in Section 7.3, the iteration bound of our IPM will depend only logarithmically
on the approximation factor. The guarantees of our IPM in Theorem 1.4 will be derived by using the
above for ̺ = 2.

6.4.2 The Cheap Lift Subspace Algorithm

We now overview the Cheap-Lift-Subspaces algorithm. At a high level, the algorithm is a direct
algorithmic implementation of Lemma 6.11 applied to both the primal and dual separately. Specifically,
it computes the primal and dual lifting operators, followed by approximate singular subspaces associated
with the singular values smaller than 1, and then lifts them to build the cheap lift subspaces. One
complication however is that the approximate ̺-SVD solver directly computes approximate singular
subspaces for the associated matrices of the lifting operators and not the lifting operators themselves.
The difference here being that the computed subspaces do not necessarily reside in the input spaces of
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Algorithm 1: Cheap-Lift-Subspaces

Input : Matrix A ∈ Rm×n, rank(A) = m, Ξ ∈ Rn
++, partition B ∪N = [n] and SVD

approximation factor ̺ ≥ 1.
Output: Matrices MP ∈ Rn×mp ,MD ∈ Rn×md , mp,md ∈ [n]. Letting W = ker(A) and

ℓ = ℓΞW
N , ℓ⊥ = ℓΞ

−1W⊥

B , the subspaces V = im(MP), U = im(MD) satisfy:

1. W ∩ Rn
N ⊆ V and W⊥ ∩ Rn

B ⊆ U .

2. V is a cheap lift subspace for (W,Ξ, B,N) with lifting cost ̺σdim(πN (W ))−dim(V )+1(ℓ), and

U is a cheap lift subspace for (W⊥,Ξ−1, N,B) with lifting cost ̺σdim(πB(W⊥))−dim(U)+1(ℓ
⊥).

3. Cσ
(
ℓ, 1

̺

)
≤ dim(V ) ≤ Cσ (ℓ, 1) and Cσ

(
ℓ⊥, 1

̺

)
≤ dim(U) ≤ Cσ

(
ℓ⊥, 1

)
.

1 // Compute Primal and Dual Projection Maps

2 P⊥ ← diag(Ξ−1)A⊤(A diag(Ξ−2)A⊤)−1A diag(Ξ−1); P← In −P⊥;
3 if B = ∅ then
4 (MP,MD)← (P, [0n]);

5 else if N = ∅ then
6 (MP,MD)← ([0n],P

⊥);

7 else
8 // Compute Primal and Dual Lifting Maps and Operators

9 (L̄, L̄⊥)← (P•,N (PN,N)+,P⊥
•,B(P

⊥
B,B)

+), associated matrices of lifting maps LΞW
N , LΞ−1W⊥

B ;

10 (ℓ̄, ℓ̄⊥)← (L̄B,•, L̄⊥
N,•), associated matrices of lifting operators ℓΞW

N , ℓΞ
−1W⊥

B ;

11 // Approximate SVDs of ℓ̄ and ℓ̄⊥

12 (C̄, s̄) ← ̺-SVD on matrix ℓ̄ ∈ RB×N ; (C̄⊥, s̄⊥) ← ̺-SVD on matrix ℓ̄⊥ ∈ RN×B;
13 // Number of Small Primal and Dual Singular Values

14 c̄p ← |{i ∈ [|N |] : s̄i ≤ 1}|; c̄d ← |{i ∈ [|B|] : s̄⊥i ≤ 1}|;
15 // Generators of Primal and Dual Cheap Lift Subspaces

16 (MP,MD)← (Ξ−1L̄(C̄≥|N |−c̄p+1),ΞL̄
⊥(C̄⊥

≥|B|−c̄d+1));

17 return (MP, MD);

the lifting operators. Fortunately, the lifting maps automatically correct for this discrepancy as they
first project onto the input space. In the proof of correctness, we justify that these projections yield the
desired approximate singular subspaces using Lemma 2.26.

Remark 6.17. On line 16 of Cheap-Lift-Subspaces, recall that by convention, if c̄p = 0 then
C̄≥|N |−cp+1 = C̄∅ = [0B]. In particular, MP = Ξ−1L̄(C̄≥|N |−c̄p+1) = [0n]. Similarly, if c̄d = 0,

then MD = ΞL̄⊥(C̄⊥
≥|B|−c̄d+1) = [0n]. In a similar vein, the checks on whether B or N are empty are

not strictly speaking necessary. It can be verified that the output of the algorithm is the same without
these checks, however we have decided to include them for the sake of clarity.

Remark 6.18. One may wonder why Cheap-Lift-Subspaces puts the singular value cutoff at 1 instead
of ν/

√
n, ν = O(β), as described in Section 6.1. As the analysis will show, we will only need the cheap

lift subspaces when there is a large multiplicative gap between the singular values less than 1 and greater
than 1. In particular, all the singular values less than 1 in this case will be significantly smaller than the
threshold ν/

√
n.

Remark 6.19. Given the duality lifting operators it is natural to wonder whether the cheap lift subspace
V for (W,Ξ, B,N) outputted byCheap-Lift-Subspaces can be be transformed into a cheap lift subspace
U for (W⊥,Ξ−1, N,B) satisfying the output conditions (and vice versa). Assuming Ξ = 1n for simplicity,

one can in fact show that setting U = LW⊥

B ((ℓW
⊥

B )+(πN (V ))) + (W⊥ ∩ Rn
B) indeed satisfies the desired

conditions. For the sake of keeping the analysis and description of the algorithm as simple as possible
however, we have opted to avoid using and proving this relation here.

We now prove correctness of Cheap-Lift-Subspaces and give its running time guarantee.

Lemma 6.20. Algorithm Cheap-Lift-Subspaces is correct. Furthermore, assuming a strongly poly-
nomial solver for ̺-SVD, Cheap-Lift-Subspaces runs in time strongly polynomial n.
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Proof. The strong polynomiality claim is immediate from the assumption on the ̺-SVD solver and the
strong polynomiality of computing pseudoinverses (Proposition 2.15). We thus focus on correctness.

For correctness, we must show that the outputted matrices MP,MD and correspondings subspaces
V = im(MP), U = im(MD) satisfy the output conditions (1), (2), (3) and that mp,md ∈ [n].

By Proposition 2.15, on line 2 the algorithm computes the orthogonal projection matrices P⊥,P =
In −P⊥ onto Ξ−1 im(A⊤) = Ξ−1W⊥ and (Ξ−1W⊥)⊥ = ΞW = Ξker(A), respectively.

After this line, the algorithm is completely symmetric for the primal and dual, so we restrict to
proving (1), (2), (3) for the primal subspace V and proving mp ∈ [n], recalling the shorthand ℓ := ℓΞW

N .
Let us first assume that (B,N) is a trivial partition. If B = ∅, then N = [n], V = im(P) = W =

W ∩ Rn
N and mp = dim(W ) ∈ [n], which verifies (1) and the requirement on mp. Furthermore, since

ℓ := ℓW[n] : W → R∅, we have dim(V ) = Cσ (ℓ, 0) = Cσ (ℓ, 1/̺) = Cσ (ℓ, 1), which verifies (3). The

lifting cost condition (2) also holds trivially. If N = ∅, then V = im([0n]) = {0n} = W ∩ Rn
∅ and

mp = 1, which verifies (1) and the requirement on mp. From here, since ℓ := ℓW∅ : R∅ → W⊥, we have
dim(V ) = 0 = Cσ (ℓ,R+) = Cσ (ℓ, 1/̺) = Cσ (ℓ, 1), which verifies (3). Again, the lifting cost condition (2)
is trivial.

Now assume that (B,N) is non-trivial. Then by Proposition 6.5, L̄ computed on line 9 equalsM(LΞW
N )

and ℓ̄ computed on line 10 equalsM(ℓΞW
N ), the associated matrix of the primal lifting map and operator.

Let (C̄, s̄) be the ̺-SVD of ℓ̄ ∈ RB×N as computed on line 12 and let c̄p = |{i ∈ [N ] : s̄i ≤ 1}| be as
computed on line 14. By the guarantees of ̺-SVD, we have that σ(ℓ̄) ≤

√
s̄ ≤ ̺σ(ℓ̄), and therefore

Cσ
(
ℓ̄, 1/̺

)
≤ c̄p ≤ Cσ

(
ℓ̄, 1
)
. (63)

Similarly, letting k̄p := dim(ker(ℓ̄)) = Cσ
(
ℓ̄, 0
)
, we have that

σ(ℓ̄)[|N |]\[|N |−k̄p] = s̄[|N |]\[|N |−k̄p] = 0[|N |]\[|N |−k̄p].

By the guarantees of ̺-SVD, this implies that

im(C̄≥|N |−k̄p+1) = ker(ℓ̄), (64)

since σ1(ℓ̄
∣∣
im(C̄≥|N|−k̄p+1)

) = 0 and dim(im(C̄≥|N |−k̄p+1)) = k̄p = dim(ker(ℓ̄)).

Since c̄p ≥ k̄p we get that V̄N := im(C̄≥|N |−c̄p+1) ⊇ im(C̄≥|N |−k̄p+1) = ker(ℓ̄) is a ̺-approximate

singular subspace for ℓ̄ of dimension c̄p containing ker(ℓ̄). Let us use the shorthand X := πN (ΞW ) and

Y := πB(Ξ
−1W⊥), recalling that ℓ : X → Y . Defining V̂N := ΠX(V̄N ), by Lemma 2.26 we have that

V̂N is a ̺-approximate singular subspace for ℓ containing ker(ℓ) of dimension c̄p − dim(X⊥). Again by
Lemma 2.26, for τ ≥ 0 we have Cσ (ℓ, τ) = Cσ

(
ℓ̄, τ
)
− dim(X⊥), and hence we conclude that

Cσ (ℓ, 1/̺) = Cσ
(
ℓ̄, 1/̺

)
− dim(X⊥) ≤ c̄p − dim(X⊥) = dim(V̂N )

≤ Cσ
(
ℓ̄, 1
)
− dim(X⊥) = Cσ (ℓ, 1) . (65)

By line 16, recall that MP = Ξ−1L̄(C̄≥n−c̄p+1). The requirement mp ∈ [n], then follows from mp =
max{1, c̄p} ∈ [|N |] ⊆ [n]. Recalling that LΞW

N (ΠX(·)) = LΞW
N (·) by definition and that L̄ =M(LΞW

N ), we
have that

V := im(MD) = Ξ−1LΞW
N (im(C̄≥n−c̄p+1)) = Ξ−1LΞW

N (ΠX im(C̄≥n−c̄p+1))

= Ξ−1LΞW
N (V̂N ). (66)

By Lemma 6.11, we then get that V is cheap lift subspace for (W,Ξ, B,N) of dimension dim(V ) =

dim(V̂N ) with lifting cost at most

̺σdim(X)−dim(V )+1(ℓ) = ̺σdim(πN (W ))−dim(V )+1(ℓ).

Together with (65) this establishes (2), (3) for V . By Lemma 6.7, we have that πN (ΞW ∩Rn
N ) = ker(ℓ) ⊆

V̂N and therefore
W ∩ Rn

N = Ξ−1LΞW
N (πN (ΞW ∩ Rn

N )) ⊆ Ξ−1LΞW
N (V̂N ) = V,

which verifies (1).
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7 The Subspace Layered Least Squares Algorithm

In this section, we present our SLLS based IPM (SLLS-IPM) and give the proof of Theorem 1.1 from
the introduction. The pseudocode for our IPM is provided in Section 7.1, and its correctness is proved
in Section 7.2. In Section 7.3, we bound the number of iterations needed to traverse a polarized segment
of the central path from which Theorem 1.1 follows directly. We note that the iteration bound depends
only logarithmically on the SVD approximation factor ̺. A more fine-grained amortized iteration bound
is deferred to Section 8.

Algorithm 2: SLLS-IPM

Input : Instance of (LP) with primal constraint matrix A ∈ Rm×n, rank(A) = m, and initial
iterate (x0, s0) ∈ N 2(β), β ∈ (0, 1/6], and SVD approximation factor ̺ ≥ 1.

Output: (x⋆, s⋆, v⋆, w⋆) satisfying:

1. x⋆ ∈ P , s⋆ ∈ D, 〈x⋆, s⋆〉 = 0.

2. B := {i ∈ [n] : x⋆
i > 0}, N := {i ∈ [n] : s⋆i > 0} satisfy B ∪N = [n].

3. v⋆ ∈W⊥ := im(A⊤), v⋆B > 0B, w
⋆ ∈ W := ker(A), w⋆

N > 0N .

4. ‖(x⋆
Bv

⋆
B, s

⋆
Nw⋆

N )− 1n‖ ≤ β.

1 (x, s)← (x0, s0);
2 while µ(x, s) > 0 do
3 Compute corrector direction (∆xc,∆sc) at (x, s);
4 (x, s)← (x+∆xc, s+∆sc);
5 Compute affine scaling direction (∆xa,∆sa) at (x, s);
6 Set αa for (∆xa,∆sa) according to Proposition 2.39 with parameter β;

7 B̃ ←
{
i ∈ [n] :

∣∣∣∆xa
i

xi

∣∣∣ <
∣∣∣∆sai

si

∣∣∣
}
, Ñ ← [n] \ B̃;

8 (M̃P, M̃D)← Cheap-Lift-Subspaces(A, 1
x , B̃, Ñ , ̺);

9 (Ṽ , Ũ)← (im(M̃P), im(M̃D));

10 Compute the subspace LLS direction (∆xℓ,∆sℓ) at (x, s) with respect to (B̃, Ñ , Ṽ , Ũ) using

Proposition 6.3 on input (x, s, B̃, Ñ , M̃P, M̃D);

11 Set αℓ for (∆xℓ,∆sℓ) according to Proposition 2.44 with parameters µ = µ(x, s), β;

12 if µ((x + αa∆xa, s+ αa∆sa)) < µ((x+ αℓ∆xℓ, s+ αℓ∆sℓ)) then
13 (x, s)← (x+ αa∆xa, s+ αa∆sa);

14 else
15 (x, s)← (x+ αℓ∆xℓ, s+ αℓ∆sℓ);

16 (x⋆, s⋆)← (x, s);

17 µ←
〈
x⋆ −∆xℓ, s⋆ −∆sℓ

〉
/n;

18 (v⋆, w⋆)← (−∆sℓ/µ,−∆xℓ/µ);
19 return (x⋆, s⋆, v⋆, w⋆);

7.1 Description of the Algorithm

We are ready to describe the predictor-corrector algorithm SLLS-IPM, shown in Algorithm 2. We are
given a starting iterate z = (x, s) ∈ N 2(β). In each iteration, we compute first compute a corrector step
to move z into the N 2(β/2) neighborhood. We then compute the affine scaling direction (∆xa,∆sa) at

z and identify the associated partition (B̃z , Ñz). Using this partition, we compute cheap lift subspaces

Ṽ and Ũ using Cheap-Lift-Subspaces (Algorithm 1) from Section 6.4.

We then compute the subspace LLS direction (∆xℓ,∆sℓ) for (B̃, Ñ , Ṽ , Ũ). For both directions, we
then compute the feasible step-lengths according to the bounds in Proposition 2.37 and Proposition 2.44,
and use the better of these two possible steps to obtain the next iterate.

Once the algorithm has found optimal solutions (x⋆, s⋆) ∈ N 2
(β), that is, satisfying µ(x⋆, s⋆) = 0,

it uses the direction of the last segment of the central path to compute certificates (v⋆, w⋆) that certify
that the optimal solutions are close to the analytic centers of the respective optimal faces.
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Remark 7.1 (Solving Linear Programs to Target Accuracy ε ≥ 0). One can easily modify SLLS-IPM

to terminate once it has found a primal and dual solution (x, s) with gap 〈x, s〉 ≤ ε, where ε ≥ 0 is
the target accuracy. This is achieved by changing the while loop check on line 1 from µ((x, s)) > 0 to

〈x, s〉 > ε. Once the while loop terminates, if ε > 0, we immediately return (x, s) ∈ N 2
(β) and skip

the computation of the additional certificates (v⋆, w⋆). If ε = 0, the IPM remains unchanged. We prove
approximately optimal iteration bounds for any target gap ε ≥ 0 in Section 7.3, and give more refined
amortized bounds in Section 8.

Remark 7.2 (Choice of Cheap Lift Subspace Scaling). One may wonder why we use the scaling 1/x

instead of the normalized scaling 1/x̂ :=
√

s
xµ(x,s) in the call Cheap-Lift-Subspaces(A, 1

x , B̃, Ñ , ̺) on

line 8, which would have been more adapted to the definition of the SLLS direction computed on line 10.
The main reason is to avoid the need to compute square roots within the algorithm, which is not a
strongly polynomial operation. Relying on the fact that x ≈ x̂ (see Proposition 2.42), this choice of
rescaling is safe and has little additional impact on the analysis or the iteration bound.

7.2 Correctness

In this subsection, we prove that upon termination, the SLLS-IPM satisfies its output requirements,
namely it outputs optimal primal and dual solutions that are close to the analytic centers of the corre-
sponding optimal faces. This will mainly depend on the guarantees on the computed step lengths for
subspace LLS and affine scaling, which are given in Proposition 2.44 and Proposition 2.39.

Lemma 7.3. The output of SLLS-IPM is correct. Furthermore, each iteration of the algorithm runs in
strongly polynomial time.

Proof. We first show that the output (x⋆, s⋆, v⋆, w⋆) satisfies the requirements (1), (2),(3),(4) listed in
the output description.

To argue this, we first claim that during the last iteration of the while loop, either the affine scaling
step length αa or the subspace LLS step length αℓ equals 1. Firstly, by the assumption that µ(x0, s0) > 0,
the algorithm enters the while loop. Secondly, for any iterate (x, s), by Proposition 2.37 part (i) and
(ii), the corrector step leaves µ(x, s) unchanged, whereas the affine scaling step satisfies µ(x+αa∆xa, s+
αa∆sa) = (1−αa)µ(x, s). Similarly, by Proposition 2.44, 9/8(1−αℓ)µ(x, s) ≥ µ(x+αℓ∆xℓ, s+αℓ∆sℓ) ≥
7/8(1− αℓ)µ(x, s). Thus, the only way to exit the loop, corresponding to the condition µ(x, s) = 0, is if
max{αa, αℓ} = 1.

We now further claim that upon exiting the while loop we have max{αa, αℓ} = αℓ = 1. For this
purpose, let (x, s) ∈ N 2(β/2) be the iterate computed on line 4 during the last iteration of the while
loop. From here, let (∆xa,∆sa), (∆xℓ,∆sℓ), be the affine scaling and subspace LLS directions computed

at (x, s), and let (B̃, Ñ), (Ṽ , Ũ) be the corresponding associated partition and cheap lift subspaces at
(x, s). We now claim that if αa = 1, then the affine scaling and subspace LLS directions are equal.
Assuming αa = 1, we have that (x+∆xa, s+∆sa) ∈ P ×D is an optimal primal-dual pair. In particular,
0n = (x + ∆xa)(s + ∆sa) = ∆xa∆sa, where the first equality is by complementary slackness and the

second equality is by the defining equation for the affine scaling direction (20). Recalling that B̃ = {i ∈
[n] : |∆xa

i |/xi < |∆sai |/si}, Ñ = [n]\ B̃ and that x, s > 0n, we conclude that ∆xa = (0B̃ ,−xÑ) ∈W ∩Rn
Ñ

and ∆s = (−sB̃,0Ñ) ∈ W⊥ ∩ Rn
B̃
. Therefore by the output guarantee (1) of Cheap-Lift-Subspaces,

we have that (∆xa,∆sa) ∈ Ṽ × Ũ . Since
∥∥∥(xÑ + xa

Ñ
, sB̃ + sa

B̃
)
∥∥∥ = 0, we must have that (xa, sa) ∈ Ṽ × Ũ

are the (unique) optimal solutions to the subspace LLS programs (53) and (54) at (x, s) with respect

to (B̃, Ñ , Ṽ , Ũ). In particular, (∆xa,∆sa) = (∆xℓ,∆sℓ), as claimed. By Proposition 2.44, using that
0 =

∥∥(x+∆xℓ)(s+∆sℓ)
∥∥ =

∥∥∆xℓ∆sℓ
∥∥, we get αℓ = 1, as needed.

Let (x⋆, s⋆) be the iterate defined right after the while loop on line 16, and let B = supp(x⋆) and
N = supp(s⋆). Since αℓ = 1 by the above, we have that (x⋆, s⋆) = (x + ∆xℓ, s + ∆ℓ) ∈ P × D and
µ(x⋆, s⋆) = 0. Therefore, (x⋆, s⋆) is an optimal primal-dual pair, which proves (1).

Let µ be as defined on line 17. By the above, µ = µ(x, s). By the guarantees of Proposition 2.44 used
on line 11, we must have that

∥∥∆xℓ∆sℓ
∥∥ ≤ βµ/9 and

∥∥(x+∆xℓ)(s+∆sℓ)
∥∥ = 0. For i ∈ [n], using that

|∆xℓ
i∆sℓi | ≤ βµ/9 < (1 − β/2)µ ≤ xisi (Proposition 2.31) and (xi + ∆xℓ

i)(si + ∆sℓi) = 0, we conclude
that either x⋆

i = xi + ∆xℓ
i > 0 and s⋆i = si + ∆sℓi = 0, and thus i ∈ B, or that x⋆

i = xi +∆xℓ
i = 0 and

s⋆i = si + ∆sℓi > 0, and thus i ∈ N . In particular, we see that (B,N) partitions [n]. This verifies the
output guarantee (2).
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Given the above, for (v⋆, w⋆) := (−∆sℓ/µ,−∆xℓ/µ) ∈ W⊥ × W as set on line 18, we have that
v⋆B = sB/µ > 0B and u⋆

N = xN/µ > 0N which verifies (3). We now establish (4) as follows:

‖(x⋆
Bv

⋆
B , s

⋆
Nw⋆

N )− 1n‖ =
∥∥∥∥
((xB +∆xℓ

B)sB , (sN +∆sℓN )xN )

µ
− 1n

∥∥∥∥

=

∥∥∥∥
xs

µ
− 1n −

∆xℓ∆sℓ

µ

∥∥∥∥ ≤
∥∥∥∥
xs

µ
− 1n

∥∥∥∥+
∥∥∥∥
∆xℓ∆sℓ

µ

∥∥∥∥
≤ β/2 + β/9 ≤ β. (67)

For the strongly polynomial bound on each iteration, we must simply show that all the computations
performed within the while loop are strongly polynomial. In particular, we must check the corrector,
affine scaling and subspace LLS steps can all be computed in strongly polynomial, and that the calls to
Cheap-Lift-Subspaces run in strongly polynomial time (under the assumption that the ̺-SVD solver
is strongly polynomial). These claims are verified in Proposition 2.39 (corrector and affine scaling),
Proposition 6.3 (subspace LLS direction), Proposition 2.44 (subspace LLS step length) and Lemma 6.20
(Cheap-Lift-Subspaces). Thus, each iteration runs in strongly polynomial time as needed.

7.3 Bounding the Number of Iterations to Traverse a Polarized Segment

In this section, we prove the following bound.

Theorem 7.4. For µ0 > µ1 ≥ 0, let CP[µ1, µ0] be γ-polarized for γ ∈ (0, 1]. Then, given an iterate
z ∈ N 2(β), β ∈ (0, 1/6], with parameter µ(z) ∈ (µ1, µ0), the algorithm SLLS-IPM (Algorithm 2) takes

O
(

n1.5

β log(n̺βγ )
)
many iterations to find z′ ∈ N 2

(β) such that µ(z′) ≤ µ1.

Together with Theorem 3.5, we obtain the proof of Theorem 1.1.

Proof of Theorem 1.1. As in the statement of the theorem, let Γ: (µ1, µ0) → N
−∞

(θ) be any piecewise
linear curve satisfying µ (Γ(µ)) = µ, ∀µ ∈ (µ1, µ0) with T linear segments. According to Theorem 3.5, the

segment CP[µ1, µ0] of the central path can be decomposed into T segments that are (1−θ)2

16n3 -polarized. By
Theorem 7.4, SLLS-IPM instantiated with the 2-SVD solver (i.e., ̺ = 2) from Theorem 6.16 traverses

these segments in O
(

n1.5

β log
(

n
β(1−θ)

)
T
)
iterations.

The stronger form Theorem 1.4 will be shown in Section 8 by amortizing the running time estimates
over subsequent polarized segments. We now introduce the main potential for the analysis.

Our main focus will be on the analyzing the evolution of the singular values of the lifting operator
in the normalized subspace at the current iterate. We define z := (x, s) to be a basic iterate if it either
corresponds to an iterate computed just after the corrector step on line 4 during the course of the while

loop of SLLS-IPM, in which case z ∈ N 2(β/2), or if it corresponds to the final iterate z ∈ N 2
(β) after

the end of the while loop.
For a basic iterate z ∈ N 2(β/2) with µ(z) ∈ [µ1, µ0], we use the shorthands

ℓz := ℓx̂
−1W

N and ℓ⊥z := ℓŝ
−1W⊥

B

to denote the primal and dual lifting operators with respect to (B,N) in the respective normalized
subspaces, as well as σ(ℓz) to be the vector of singular values of the lifting operator. If µ1 = 0 and

z ∈ N 2
(β) is the basic iterate with µ(z) = 0, let us by convention additionally define ℓz to be the

zero operator πN (W ) to πB(W
⊥) and ℓ⊥z to be the zero operator from πB(W

⊥) to πN (W ). Recall that
σ+(ℓz) = σ+(ℓ⊥z ) by Lemma 6.8, that is, the non-zero singular values of ℓz and ℓ⊥z are identical. Define
the parameter

τ :=
β

256n
.

The combinatorial potential we use to measure progress on the polarized segment is

ζ(z) := Cσ
(
ℓ⊥z , (

τ
̺ ,∞)

)
= Cσ

(
ℓz, (

τ
̺ ,∞)

)
:=
∣∣∣
{
i ≥ 1 : σi(ℓz) >

τ
̺

}∣∣∣ , (68)

the number of singular values of ℓz (and ℓ⊥z ) that are larger than the threshold τ
̺ . Note that if ζ(z) > 0,

then

σζ(z)(ℓz) = σζ(z)(ℓ
⊥
z ) = min

{
σi(ℓz) : σi(ℓz) >

τ

̺
, i ≥ 1

}
.
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By convention, recall that if B = ∅, then ℓz is the unique linear operator from W to {0}, and if N = ∅,
then ℓz if the unique linear operator from {0} to W⊥. In particular, (B,N) is a trivial partition, then
ζ(z) = 0. The key property of SLLS-IPM is given by the following lemma.

Lemma 7.5. Let z ∈ N 2(β), β ∈ (0, 1/6], µ(z) ∈ (µ1, µ0], be a basic iterate on the polarized segment
CP[µ1, µ0] with a polarization partition B ∪N = [n]. Then, there exists a constant Cit ≥ 1, such that for

any basic iterate z′ ∈ N 2
(β) computed after at least ⌊Cit

√
n
β log(n̺βγ )⌋ iterations from z, either µ(z′) ≤ µ1

or µ1 < µ(z′) ≤ µ(z) and ζ(z′) < ζ(z).

Remark 7.6. In the above lemma, if ζ(z) = 0, then z′ must pass the end of segment (µ1, µ0], since
the potential is ζ(z′) a non-negative integer. For convenience, if z∗ denotes the final optimal iterate, we
define the next basic iterate after z∗ to be z∗ itself. In this way, Lemma 7.5 still directly applies if we

reach z∗ before ⌊Cit

√
n
β log(n̺βγ )⌋ iterations after z.

Proof of Theorem 7.4. The potential ζ(z) ≤ rank(ℓz) ≤ n at the start of the segment and decreases by 1

every ⌈Cit

√
n
β log(n̺βγ )⌉ iterations while we remain in the segment by Lemma 7.5.

The rest of the section is dedicated to the proof of Lemma 7.5. We will require the following technical
lemma which describes the evolution of the singular values of the lifting operator along a polarized
segment. The proof is deferred to Section 7.3.1.

Lemma 7.7 (Stability of singular values on polarized segments). Let CP[µ1, µ0] be a γ-polarized segment

of the central path with partition B∪N = [n]. Let z ∈ N 2(β), z′ ∈ N 2
(β), β ∈ (0, 1/6], such that µ := µ(z)

and µ′ := µ(z′) satisfy µ0 ≥ µ ≥ µ′ ≥ µ1. Then we have:

γ2

4n2
· µ

′

µ
σ(ℓz) ≤ σ(ℓz′) ≤ 4n2

γ2
· µ

′

µ
σ(ℓz). (69)

Lemma 7.7 asserts that, up to poly(n/γ) factors, the singular values scale down by a µ′

µ factor.

Recalling that the normalized subspaces for z, z′ are Ŵ = x̂−1W and Ŵ ′ = x̂
′−1W , where x̂ :=

√
xµ/s ≈

x and x̂′ :=
√
x′µ′/s′ ≈ x′, the above relation follows straightforwardly from the polarization guarantee

(xB, x
′
B) ≈ xcp

B (µ0) and (xN , x′
N ) ≈ ( µ

µ0
xcp
N (µ0),

µ′

µ0
xcp
N (µ0)) (up to poly(n/γ) multiplicative factors)

together with the variational characterization of singular values.

The proof of Lemma 7.5 relies on the following concepts. For a segment CP[µ′, µ], 0 ≤ µ′ ≤ µ of the
central path, we say that SLLS-IPM traverses this segment in at most T ≥ 0 iterations, if the number
of iterations from the first iterate zstart ∈ N 2(β) with µ(zstart) ≤ µ to the first iterate zend ∈ N 2(β)
with µ(zend) ≤ µ′ is at most T . Important to the analysis is the distinction between long and short
segments. We say that CP[µ′, µ] is long if µ/µ′ ≥ poly(n̺βγ ) and short otherwise, where γ ∈ (0, 1] is the

polarization parameter. We recall from (iv) in Proposition 2.37, the standard predictor-corrector IPM

traverses CP[µ′, µ] in at most
⌈
3
√
n

β log( µ
µ′ )
⌉
iterations. In particular, short segments can be traversed

in O(
√
n
β log(n̺βγ )) iterations. As SLLS-IPM always takes predictor steps that are at least as long as the

affine scaling steps, the same guarantee holds for our IPM.

Proof of Lemma 7.5. The analysis is divided into two cases.

Case 1: µ1 < µ(z) ≤ µ1
72n1.5

βγ or Cσ (ℓz, (τ/̺, ̺/τ ]) 6= 0 If the first condition holds, the segment

CP[µ1, µ(z)] is short, and hence the IPM passes the end of the polarized segment in at most O(
√
n
β log(n̺βγ ))

iterations, as needed. Let us now assume that Cσ (ℓz, (τ/̺, ̺/τ ]) 6= 0 (note that (B,N) is non-trivial in
this case), or equivalently, that ζ(z) 6= 0 and σζ(z)(ℓz) ∈ (τ/̺, ̺/τ ].

Using the stability of singular values, we will show that the number of large singular values quickly
drops by one as long as we remain in the segment. Let z′ be any basic iterate satisfying µ(z′) ≤
τ2

̺2 · γ2

4n2 · µ(z). If µ(z′) ≥ µ1 and i ≥ ζ(z), then by Lemma 7.7,

σi(ℓz′) ≤ τ2

̺2
· σi(ℓz) ≤

τ2

̺2
· σζ(z)(ℓz) ≤

τ2

̺2
· ̺
τ
=

τ

̺
. (70)

In particular, if µ(z′) ≥ µ1, then ζ(z′) < ζ(z). Since the IPM traverses CP
[
τ2

̺2 · γ2

4n2 · µ(z), µ(z)
]
in at

most O(
√
n
β log(n̺βγ )) iterations, recalling that τ = β

256n , this proves the lemma in this case.
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Case 2: µ(z) > µ1
72n1.5

βγ and Cσ (ℓz, (τ/̺, ̺/τ ]) = 0 We first note that the condition on the singular

values can be restated equivalently as ζ(z) = 0 (that is, Cσ
(
ℓz, (

τ
̺ ,∞)

)
= 0) or ζ(z) > 0 and σζ(z)(ℓz) >

̺/τ . In this case, there is a large gap in the singular values around the threshold, namely, for i > ζ(z),
we have σi(ℓz) ≤ τ/̺, and for 1 ≤ i ≤ ζ(z), we have σi(ℓz) > ̺/τ .

In this setting, an identical analysis as in (70) applies as long as we can quickly compute a basic
iterate z′ such that

µ(z′) ≤ µ̂ :=

{
µ1 , if ζ(z) = 0 ,

max
{
µ1,

1
σζ(z)(ℓz)

· τ̺ ·
γ2

4n2 · µ(z)
}
, if ζ(z) ≥ 1 .

(71)

That is, for any basic iterate z′ as above, either µ(z′) ≤ µ1 or µ1 < µ(z′) ≤ µ(z) and ζ(z′) < ζ(z). Note
that µ(z)/µ̂ may be arbitrarily large in this setting, and thus, we may need to take a huge step down the
central path. It is precisely for this purpose that we require subspace LLS steps.

Let z+ denote the next basic iterate after z. Then, by Lemma 7.8 below, we have that

µ(z+)

µ̂
≤ 11

β

{
4n1.5µ1

γµ̂ , if ζ(z) = 0 ,
4n1.5µ1

γµ̂ + 12n
σζ(z)(ℓz)

µ(z)
µ̂ , if ζ(z) ≥ 1 .

≤ 11

β

{
4n1.5

γ , if ζ(z) = 0 ,
4n1.5

γ + 48n3̺
τγ2 , if ζ(z) ≥ 1 .

(72)

This guarantees that after the next basic iterate z+ after z, at most O(
√
n
β log(n̺βγ )) additional iterations

are needed to obtain z′ as in (71).
Combining the two case analyses, the constant Cit ≥ 1 in the lemma statement can be chosen so that

Cit

√
n
β log(n̺βγ ) iterations is an upper bound on 1 plus the number of affine scaling iterations needed to

divide the normalized gap by a factor

11

β
max

{
̺2

τ2
· 4n

2

γ2
,
4n1.5

γ
+

48n3̺

τγ2

}
≤
(
n̺

βγ

)12

, (73)

where we have used τ := β
256n and β ∈ (0, 1/6]. Thus, by (iv) in Proposition 2.37, the choice Cit =

3 · 12 + 2 = 38 is sufficient.

Lemma 7.8. Let CP[µ1, µ0] be a γ-polarized segment with polarization partition B ∪N = [n]. Let z =

(x, s) ∈ N (β/2), β ∈ (0, 1/6] be a basic iterate satisfying µ := µ(z) ∈ (72nβγ ·µ1, µ0] and Cσ
(
ℓz, (

τ
̺ ,

̺
τ ]
)
= 0.

Then, the next basic iterate z+ computed in SLLS-IPM after z satisfies

µ(z+) ≤ 11

β
·
{

4n1.5µ1

γ , if ζ(z) = 0 ,
4n1.5µ1

γ + 12n
σζ(z)(ℓz)

µ(z) , if ζ(z) ≥ 1 .
(74)

It remains to prove Lemma 7.8. We will show the subspace LLS step from z = (x, s) ∈ N 2(β/2)
achieves (74). We will show this by comparing these steps to the ideal direction, which goes straight to
the end of the polarized segment, as defined below:

Definition 7.9 (Ideal Direction). For an z ∈ N (β), β ∈ (0, 1/6], satisfying µ(z) > µ1, we define the
ideal direction from z towards µ1 to be

∆zideal := zcp(µ1)− z := (xcp(µ1)− x, scp(µ1)− s) =: (∆xideal,∆sideal).

That is, ∆zideal is the direction from the current iterate to the central path point zcp(µ1).

We now recall the notation used for cheap lift subspaces in the algorithm. We define

(MP,MD)←Cheap-Lift-Subspace

(
A,

1

x
,B,N, ̺

)
,

(V, U)←(im(MP), im(MD)), (75)
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to be the output of the call to algorithm Cheap-Lift-Subspaces with respect to the true partition
(B,N). By the guarantees of Cheap-Lift-Subspaces, recall that if (B,N) = (∅, [n]), then (V, U) =
(W, {0n}), and if (B,N) = ([n], ∅), then (V, U) = ({0n},W⊥).

The crux of the argument will be to show that a suitable projection of ∆xideal onto V and ∆sideal onto
U induces a step satisfying (74). We recall the notation ξ̂ :=

√
xs/µ, (x̂, ŝ) := (xξ̂−1, sξ̂−1), µ := µ(z),

Ŵ := x̂−1W , and Ŵ⊥ := ŝ−1W⊥ from Definition 2.40. Similarly, we let V̂ := x̂−1V , Û := ŝ−1U and
(∆x̂ideal,∆ŝideal) := (x̂−1∆xideal, ŝ−1∆sideal).

We now define the projected ideal directions

∆xproj := argmin
v∈V

∥∥x̂−1
N (vN −∆xideal

N )
∥∥ , ∆sproj := argmin

u∈U

∥∥ŝ−1
B (uB −∆sidealB )

∥∥ ,

where we recall that the minimizers are unique since dim(πN (V )) = dim(V ) and dim(πB(U)) = dim(U).
Define the normalized projections by (∆x̂proj,∆ŝproj) := (x̂−1∆xproj, ŝ−1∆sproj). By construction of the
projected ideal directions, note that

(∆x̂proj
N ,∆ŝprojB ) = (ΠπN (V̂ )(∆x̂ideal

N ),ΠπB(Û)(∆ŝidealB )). (76)

Let us now define
V̂ ⊥
N := πN (Ŵ ) ∩ πN (V̂ )⊥ Û⊥

B := πB(Ŵ
⊥) ∩ πB(Û )⊥, (77)

to be the corresponding orthogonal complements inside πN (Ŵ ) and πB(Ŵ
⊥), where we note that

∆x̂ideal
N −∆x̂proj

N ∈ V̂ ⊥
N ∆ŝidealB −∆ŝprojB ∈ Û⊥

B .

Our goal will be to show that (∆xproj,∆sproj) induces a trust-region step achieving the guarantees
of (74). This will then imply that the subspace LLS step (∆xℓ,∆sℓ) also achieves the guarantee in (74).

The analysis relies on two auxiliarly lemmas. The first one exposes basic properties of the ideal
direction, while the second one gives basic properties of the cheap lift subspaces. The proofs are deferred
to subsections 7.3.2 and 7.3.3.

Proposition 7.10. Let CP[µ1, µ0] be a γ-polarized segment with partition B ∪N = [n]. Let z = (x, s) ∈
N (β), β ∈ (0, 1/6], with µ := µ(z) ∈ (72n

1.5

βγ ·µ1, µ0]. Then, the ideal direction ∆zideal towards µ1 satisfies

∥∥(∆x̂ideal,∆ŝideal)
∥∥ ≤ 4n, (78)

∥∥∥(ξ̂N +∆x̂ideal
N , ξ̂B +∆ŝidealB )

∥∥∥ ≤ 2n1.5µ1

γµ
≤ β

36
. (79)

Lemma 7.11. Let CP[µ1, µ0] be a γ-polarized segment with partition B∪N = [n]. Let z = (x, s) ∈ N (β),
β ∈ (0, 1/6]. Let V := im(MP), U := im(MD) be the subspaces returned by Cheap-Lift-Subspaces on

(A, x−1, B,N, ̺) as in (75), and ℓz := ℓx̂
−1W

N , ℓ⊥z := ℓŝ
−1W⊥

B . Then, if Cσ (ℓz, (τ/̺, ̺/τ ]) = 0, we have

1. dim(V ) = dim(πN (W ))− ζ(z), dim(U) = dim(πB(W
⊥))− ζ(z).

2. ‖v̂B‖ ≤ 2̺σζ(z)+1(ℓz) ‖v̂N‖ ≤ 2τ ‖v̂N‖, ∀v̂ ∈ V̂ := x̂−1V , and

‖ûN‖ ≤ 2̺σζ(z)+1(ℓ
⊥
z ) ‖ûB‖ ≤ 2τ ‖ûB‖, ∀û ∈ Û := ŝ−1U .

We are ready to prove Lemma 7.8.

Proof of Lemma 7.8. We show that the subspace LLS step (∆xℓ,∆sℓ) with respect to (B,N) is sufficient
to achieve the guarantees of (74). As we show below, this will correspond to a long trust-region step

and hence Lemma 5.3 will guarantee that (B̃z , Ñz) = (B,N). In particular, the subspace LLS direction
computed by the algorithm will be the same as (∆xℓ,∆sℓ).

We now analyze the norms and residuals of the subspace LLS direction (∆xℓ,∆sℓ) with respect to
(B,N). We first provide sufficient conditions to ensure that zℓ := (x+αℓ∆xℓ, s+αℓ∆sℓ), corresponding
to the subspace LLS step applied to z, satisfies (74). Letting µ := µ(z), we will show below that

∥∥(∆x̂ℓ
B ,∆ŝℓN )

∥∥ ≤ β

18
, (80)

∥∥∥(ξ̂N +∆x̂ℓ
N , ξ̂B +∆ŝℓB)

∥∥∥ ≤
{

2n1.5µ1

γµ , if ζ(z) = 0 ,
2n1.5µ1

γµ + 6n
σζ(z)(ℓz)

, if ζ(z) ≥ 1 .
(81)
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By our assumption that µ > 72n1.5

βγ · µ1 and, if ζ(z) ≥ 1, that σζ(z)(ℓz) >
̺
τ ≥ 256n

β , the upper bound in

(81) is always at most β/18. From Proposition 5.1, we now get

δ :=

∥∥∥∥
∆xℓ∆sℓ

µ

∥∥∥∥ ≤
β

9
and

ε :=

∥∥∥∥
(x+∆xℓ)(s+∆sℓ)

µ

∥∥∥∥ ≤
{

4n1.5µ1

γµ , if ζ(z) = 0 ,
4n1.5µ1

γµ + 12n
σζ(z)(ℓz)

, if ζ(z) ≥ 1 .

,

and ε ≤ β/9. Consequently, Proposition 2.44 is applicable. Choosing 1− 9ε
β ≤ αℓ ≤ 1− 8ε

β , we have

µ(zℓ) ≤ (1 + 1
8 )

9εµ
β ≤

11

β
εµ ≤ 11

β
·
{

4n1.5µ1

γ , if ζ(z) = 0 ,
4n1.5µ1

γ + 12n
σζ(z)(ℓz)

µ , if ζ(z) ≥ 1 .
,

which is precisely the guarantee required for (74). Since (80) and (81) are at most β/18 ≤ 1/30, then

assuming these bounds hold, Lemma 5.3 implies that the associated partition (B̃z, Ñz) = (B,N). In
particular, if the bounds hold, SLLS-IPM correctly computes the subspace LLS direction (∆xℓ,∆sℓ).
Since µ(z+) ≤ µ(zℓ), as we take the better of the AS and subspace LLS step, this will yield the claimed
bound (74).

We now prove (80). By Lemma 7.11 part (2), we have that the subspace LLS direction (∆xℓ,∆sℓ)
satisfies

∥∥(∆x̂ℓ
B ,∆ŝℓN )

∥∥ ≤ 2̺σζ(z)+1(ℓz)
∥∥(∆x̂ℓ

N ,∆ŝℓB)
∥∥ ≤ 2τ

∥∥∥(ξ̂N , ξ̂B)
∥∥∥ = 2τ

√
n ≤ β

18
,

as needed, where the second inequality uses (∆x̂ℓ
N ,∆ŝℓB) = (ΠπN (V̂ )(ξ̂N ),ΠπB(Û)(ξ̂B)) as per Remark 6.2.

We now prove (81). By definition of subspace LLS (Definition 6.1) and the triangle inequality, we
have that

∥∥∥(ξ̂N +∆x̂ℓ
N , ξ̂B +∆ŝℓB)

∥∥∥ ≤
∥∥∥(ξ̂N +∆x̂proj

N , ξ̂B +∆ŝprojB )
∥∥∥

≤
∥∥∥(ξ̂N +∆x̂ideal

N , ξ̂B +∆ŝidealB )
∥∥∥+

∥∥∥(∆x̂proj
N −∆x̂ideal

N ,∆ŝprojB −∆ŝidealB )
∥∥∥

≤ 2n1.5µ1

γµ
+
∥∥∥(∆x̂proj

N −∆x̂ideal
N ,∆ŝprojB −∆ŝidealB )

∥∥∥ , (82)

where the last inequality follows by (79) in Proposition 7.10.
We now bound the second term of (82). Note that if ζ(z) = 0, then by Lemma 7.11 part (1), we have

that πN (V̂ ) = πN (Ŵ ) and πB(Û) = πB(Ŵ
⊥) and hence V̂ ⊥

N = {0n} and Û⊥
B = {0n}. In particular,

∥∥∥∆x̂proj
N −∆x̂ideal

N

∥∥∥ = 0
∥∥∥∆ŝprojB −∆ŝidealB

∥∥∥ = 0.

Thus (81) follows directly from (82). Now assume that ζ(z) ≥ 1. Note that this implies that (B,N) is a

non-trivial partition. By Lemma 7.11, we have that πN (V̂ ) is a (2̺)-approximate singular subspace for

ℓz with dimension dim(πN (Ŵ ))− ζ(z) < dim(πN (Ŵ )). By our assumption that Cσ (ℓz, (τ/̺, ̺/τ ])) = 0,
we have that

σζ(z)(ℓz) >
̺

τ
=

̺2

τ2
· τ
̺
≥ ̺2

τ2
σζ(z)+1(ℓz) ≥ 6̺σζ(z)+1(ℓz).

By Lemma 2.27, recalling that V̂ ⊥
N := πN (Ŵ ) ∩ πN (V̂ )⊥, we therefore have that

σmin(ℓz
∣∣
V̂ ⊥
N

)2 ≥ σζ(z)(ℓz)
2 − (2̺σζ(z)+1(ℓz))

2 ≥ 8

9
σζ(z)(ℓz)

2. (83)

By a symmetric argument, we have that Û⊥
B := πB(Ŵ

⊥)∩πB(ÛB)
⊥ is a ̺-approximate singular subspace

for ℓ⊥ of dimension dim(πB(Ŵ
⊥))− ζ(z) and satisfies

σmin(ℓ
⊥
z

∣∣
Û⊥

B

)2 ≥ 8

9
σζ(z)(ℓ

⊥
z )

2 =
8

9
σζ(z)(ℓz)

2. (84)
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We now bound the second term in (82) as follows:

∥∥∥∆x̂proj
N −∆x̂ideal

N

∥∥∥
2

≤

∥∥∥ℓz(∆x̂proj
N −∆x̂ideal

N )
∥∥∥
2

σmin(ℓz
∣∣
V̂ ⊥
N

)2
≤

∥∥∥∆x̂proj
B −∆x̂ideal

B

∥∥∥
2

σmin(ℓz
∣∣
V̂ ⊥
N

)2

≤
2
∥∥∥∆x̂proj

B

∥∥∥
2

+ 2
∥∥∆x̂ideal

B

∥∥2

σmin(ℓz
∣∣
V̂ ⊥
N

)2

≤
2(2τ)2

∥∥∥∆x̂proj
N

∥∥∥
2

+ 2
∥∥∆x̂ideal

B

∥∥2

σmin(ℓz
∣∣
V̂ ⊥
N

)2

≤ 2
∥∥∆x̂ideal

N

∥∥2 + 2
∥∥∆x̂ideal

B

∥∥2

σmin(ℓz
∣∣
V̂ ⊥
N

)2

=
2
∥∥∆x̂ideal

∥∥2

σmin(ℓz
∣∣
V̂ ⊥
N

)2
≤ 9 · 2

∥∥∆x̂ideal
∥∥2

8σζ(z)(ℓz)2
=

9
∥∥∆x̂ideal

∥∥2

4σζ(z)(ℓz)2
. (85)

By a symmetric argument,

∥∥∥∆ŝprojB −∆ŝidealB

∥∥∥
2

≤ 2
∥∥∆ŝideal

∥∥2

σmin(ℓ⊥z
∣∣
Û⊥

B

)2
≤ 9

∥∥∆ŝideal
∥∥2

4σζ(z)(ℓz)2
. (86)

Combining (85) and (86) together with (78) in Proposition 7.10, we get that

∥∥∥(∆x̂proj
N −∆x̂ideal

N ,∆ŝprojB −∆ŝidealB )
∥∥∥ ≤

3
∥∥(∆x̂ideal,∆ŝideal)

∥∥
2σζ(z)(ℓz)

≤ 3 · 4n
2σζ(z)(ℓz)

=
6n

σζ(z)(ℓz)
. (87)

The desired bound (81) now follows by combining (82) and (87).

7.3.1 Stability of Singular Values on Polarized Segments

We now present the proof of Lemma 7.7 on the evolution of singular values of the map ℓz on polarized
segments of the central path. This will rely on the next lemma that bounds the change in the singular
values under a rescaling of the space.

Lemma 7.12 (Stability of singular values for multiplicative perturbation). Let W ⊆ Rn be a subspace,

and let B ∪ N = [n] be a non-trivial partition. Let y ∈ Rn
++, and let ℓy

−1W
N : πN (y−1W ) → πB(yW

⊥)

and ℓWN : πN (W ) → πB(W
⊥) be defined according to Definition 6.4. Let σ := σ(ℓy

−1W
N ) and σ̂ := σ(ℓWN )

denote their respective singular values. Then, we have that

1∥∥y−1
B

∥∥
∞ ‖yN‖∞

σ ≤ σ̂ ≤ ‖yB‖∞
∥∥y−1

N

∥∥
∞ σ . (88)

Proof. We only prove the second inequality. The first inequality then follows by swapping y with y−1 and

σ with σ̂. We denote ℓ := ℓy
−1W

N and ℓ̂ := ℓWN . Since y ∈ Rn
++, we clearly have that p := dim(πN (W )) =

dim(πN (y−1W )). Therefore σ and σ̂ are both vectors in R
p
+. By (15), recall that for i ∈ [p], we have that

σk = min
S⊆πN (y−1W )
dim(S)≥p−k+1

σ1(ℓ
∣∣
S
), σ̂k = min

Ŝ⊆πN (W )

dim(Ŝ)≥p−k+1

σ1(ℓ̂
∣∣∣
Ŝ
).

To prove the inequality, we will show that for any S ⊆ πN (y−1W ), there exists Ŝ ⊆ πN (W ) with

dim(S) = dim(Ŝ) satisfying σ1(ℓ̂
∣∣∣
Ŝ
) ≤ ‖yB‖∞

∥∥y−1
N

∥∥
∞ σ1(ℓ

∣∣
S
). For this purpose, define Ŝ = yNS, where
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clearly dim(Ŝ) = dim(S) and Ŝ ⊆ yNπN (y−1W ) = πN (W ). From here, we have that

σ1(ℓ̂
∣∣∣
Ŝ
) = max

x̂∈Ŝ\{0}

∥∥∥ℓ̂(x̂)
∥∥∥

‖x̂‖ = max
x∈S\{0}

∥∥∥ℓ̂(yNx)
∥∥∥

‖yNx‖ ≤ max
x∈S\{0}

‖yBℓ(x)‖
‖yNx‖

≤ max
x∈S\{0}

‖yB‖∞
∥∥y−1

N

∥∥
∞
‖ℓ(x)‖
‖x‖ = ‖yB‖∞

∥∥y−1
N

∥∥
∞ σ1(ℓ

∣∣
S
),

where
∥∥∥ℓ̂(yNx)

∥∥∥ ≤ ‖yBℓ(x)‖ follows since (yBℓ(x), yNx) ∈ W and by the optimality of the lift provided

by ℓ̂(yNx). The statement thus follows.

Lemma 7.7 (Stability of singular values on polarized segments). Let CP[µ1, µ0] be a γ-polarized segment

of the central path with partition B∪N = [n]. Let z ∈ N 2(β), z′ ∈ N 2
(β), β ∈ (0, 1/6], such that µ := µ(z)

and µ′ := µ(z′) satisfy µ0 ≥ µ ≥ µ′ ≥ µ1. Then we have:

γ2

4n2
· µ

′

µ
σ(ℓz) ≤ σ(ℓz′) ≤ 4n2

γ2
· µ

′

µ
σ(ℓz). (69)

Proof. Let z := (x, s) and z′ := (x′, s′). Since z ∈ N 2(β), note that µ = µ(z) > 0. If (B,N) is a
trivial partition, then ℓz, ℓz′ are both zero operators on input spaces of the same dimension and hence
the statement trivially holds. If µ′ = 0, then ℓz′ is a zero operator on πN (W ), and hence again the
statement holds trivially. Thus, we may assume that µ′ > 0 and that (B,N) is a non-trivial partition of
[n]. Consequently, z′ ∈ N 2(β).

Let x̂ =
√

xµ
s and x̂′ =

√
x′µ
s′ denote the normalized iterates. To prove the bounds, we apply

Lemma 7.12 to the subspace 1
x̂′W and y := x̂

x̂′ , noting that yx̂′ = x̂. Since z, z′ ∈ N 2(β), these subspaces
are well-defined as x̂, x̂′ ∈ Rn

++. By Proposition 2.42, we have that

√
1− β√
1 + β

x

x′ ≤
x̂

x̂′ ≤
√
1 + β√
1− β

x

x′ . (89)

Combining the above with Proposition 2.32 and Corollary 3.4, we get that

‖yB‖∞ =

∥∥∥∥
x̂B

x̂′
B

∥∥∥∥
∞
≤
√
1 + β√
1− β

∥∥∥∥
xB

x′
B

∥∥∥∥
∞
≤
√
1 + β(1 + 2β)

(1− β)3/2

∥∥∥∥
xcp(µ)B
xcp(µ′)B

∥∥∥∥
∞
≤ 2n

γ
,

∥∥y−1
N

∥∥
∞ =

∥∥∥∥
x̂′
N

x̂N

∥∥∥∥
∞
≤
√
1 + β√
1− β

∥∥∥∥
x′
N

xN

∥∥∥∥
∞
≤
√
1 + β(1 + 2β)

(1 − β)3/2

∥∥∥∥
xcp(µ′)N
xcp(µ)N

∥∥∥∥
∞
≤ 2n

γ
· µ

′

µ
,

(90)

and ∥∥y−1
B

∥∥
∞ =

∥∥∥∥
x̂′
B

x̂B

∥∥∥∥
∞
≤
√
1 + β√
1− β

∥∥∥∥
x′
B

xB

∥∥∥∥
∞
≤
√
1 + β(1 + 2β)

(1− β)3/2

∥∥∥∥
xcp(µ′)B
xcp(µ)B

∥∥∥∥
∞
≤ 2n

γ
,

‖yN‖∞ =

∥∥∥∥
x̂N

x̂′
N

∥∥∥∥
∞
≤
√
1 + β√
1− β

∥∥∥∥
xN

x′
N

∥∥∥∥
∞
≤
√
1 + β(1 + 2β)

(1 − β)3/2

∥∥∥∥
xcp(µ)N
xcp(µ′)N

∥∥∥∥
∞
≤ 2n

γ
· µ
µ′ ,

(91)

using (1+2β)(1+β)1/2

(1−β)3/2
≤ 2 for β ∈ (0, 1/6],

∥∥∥ xcp(µ)B
xcp(µ′)B

∥∥∥
∞

= maxi∈B
xcp(µ)i
xcp(µ0)i

xcp(µ0)i
xcp(µ′)i

≤ n · 1γ and
∥∥∥xcp(µ′)N

xcp(µ)N

∥∥∥
∞

= maxi∈N
xcp(µ′)i
xcp(µ0)i

xcp(µ0)i
xcp(µ)i

≤ µ′

γµ0
· nµ0

µ , together with the the analogous bounds for the remaining inequal-
ities.

Plugging these estimates into Lemma 7.12 yields the result.

7.3.2 Properties of the Ideal Direction

Proposition 7.10. Let CP[µ1, µ0] be a γ-polarized segment with partition B ∪N = [n]. Let z = (x, s) ∈
N (β), β ∈ (0, 1/6], with µ := µ(z) ∈ (72n

1.5

βγ ·µ1, µ0]. Then, the ideal direction ∆zideal towards µ1 satisfies

∥∥(∆x̂ideal,∆ŝideal)
∥∥ ≤ 4n, (78)

∥∥∥(ξ̂N +∆x̂ideal
N , ξ̂B +∆ŝidealB )

∥∥∥ ≤ 2n1.5µ1

γµ
≤ β

36
. (79)
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Proof. We first prove (78)

∥∥(∆x̂ideal,∆ŝideal)
∥∥ =

∥∥∥(x̂−1xcp(µ1)− ξ̂, ŝ−1scpN (µ1)− ξ̂)
∥∥∥

≤
∥∥(x̂−1xcp(µ1), ŝ

−1scp(µ1))
∥∥ +

∥∥∥(ξ̂, ξ̂)
∥∥∥

≤
∥∥(x̂−1xcp(µ1), ŝ

−1scp(µ1))
∥∥
1
+
√
2n

≤ n√
1− β

(1 + µ1/µ) +
√
2n ( by Lemma 2.43 )

≤ 4n,

where the last inequality follows from β ∈ (0, 1/6] and µ ≥ 6µ1.
We now continue with (79),

∥∥∥(ξ̂N +∆x̂ideal
N , ξ̂B +∆ŝidealB )

∥∥∥ =
∥∥(x̂−1

N xcp
N (µ1), ŝ

−1
B scpB (µ1))

∥∥

≤
∥∥∥∥
(
xcp
N (µ1)

xN
,
scpB (µ1)

sB

)∥∥∥∥
∞

∥∥(x̂−1
N xN , ŝ−1

B sB)
∥∥

=

∥∥∥∥
(
xcp
N (µ1)

xN
,
scpB (µ1)

sB

)∥∥∥∥
∞

∥∥∥ξ̂
∥∥∥

≤ 1

1− β

∥∥∥∥
(
xcp
N (µ1)

xcp
N (µ)

,
scpB (µ1)

scpB (µ)

)∥∥∥∥
∞

√
n ( by Proposition 2.32 )

≤ nµ1

(1− β)µγ
· √n ≤ 2n1.5µ1

γµ
, ( by Corollary 3.4 )

≤ β

36
.
(
since µ ≥ µ1

72n1.5

βγ

)

7.3.3 Dimension and Lifting Cost of Cheap Lift Subspaces

Lemma 7.11. Let CP[µ1, µ0] be a γ-polarized segment with partition B∪N = [n]. Let z = (x, s) ∈ N (β),
β ∈ (0, 1/6]. Let V := im(MP), U := im(MD) be the subspaces returned by Cheap-Lift-Subspaces on

(A, x−1, B,N, ̺) as in (75), and ℓz := ℓx̂
−1W

N , ℓ⊥z := ℓŝ
−1W⊥

B . Then, if Cσ (ℓz, (τ/̺, ̺/τ ]) = 0, we have

1. dim(V ) = dim(πN (W ))− ζ(z), dim(U) = dim(πB(W
⊥))− ζ(z).

2. ‖v̂B‖ ≤ 2̺σζ(z)+1(ℓz) ‖v̂N‖ ≤ 2τ ‖v̂N‖, ∀v̂ ∈ V̂ := x̂−1V , and

‖ûN‖ ≤ 2̺σζ(z)+1(ℓ
⊥
z ) ‖ûB‖ ≤ 2τ ‖ûB‖, ∀û ∈ Û := ŝ−1U .

Proof. Assume first that (B,N) is a trivial partition. Recall that ζ(ℓz) = ζ(ℓ⊥z ) = 0. By the guarantees
of Cheap-Lift-Subspaces, we have (V, U) = (W, {0n}) if B = ∅ and (V, U) = ({0n},W⊥) if N = ∅,
and thus (1) and (2) follow directly.

Now assume that (B,N) is a non-trivial partition. We first prove the dimension guarantees for V and

U . By Lemma 7.12, using that x−1W = ξ̂−1x̂−1W , we have that

(∥∥∥ξ̂−1
B

∥∥∥
∞

∥∥∥ξ̂N
∥∥∥
∞

)−1

σ(ℓx
−1W

N ) ≤ σ(ℓx̂
−1W

N ) = σ(ℓz) ≤
∥∥∥ξ̂B

∥∥∥
∞

∥∥∥ξ̂−1
N

∥∥∥
∞

σ(ℓx
−1W

N ).

By Proposition 2.42,
√
1− β1n ≤ ξ̂ ≤ √1 + β1n, and since β ∈ (0, 1/6] we have that

max{
∥∥∥ξ̂−1

B

∥∥∥
∞

∥∥∥ξ̂N
∥∥∥
∞

,
∥∥∥ξ̂B

∥∥∥
∞

∥∥∥ξ̂−1
N

∥∥∥
∞
} ≤

√
1 + β

1− β
≤
√
2.

Applying the same argument to ℓxW
⊥

B and ℓŝ
−1W⊥

B = ℓ⊥z , using that xW⊥ = x
µW

⊥ = ξ̂ŝ−1W , we get that

1√
2
σ(ℓx

−1W
N ) ≤ σ(ℓz) ≤

√
2σ(ℓx

−1W
N ),

1√
2
σ(ℓxW

⊥

B ) ≤ σ(ℓ⊥z ) ≤
√
2σ(ℓxW

⊥

B ), (92)
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where we recall that σ+(ℓz) = σ+(ℓ⊥z ) by Lemma 6.8. By the guarantees of Cheap-Lift-Subspaces

and (92), we have that

Cσ
(
ℓz,

1√
2̺

)
≤ Cσ

(
ℓx

−1W
N , 1/̺

)
≤ dim(V ) ≤ Cσ

(
ℓx

−1W
N , 1

)
≤ Cσ

(
ℓz,
√
2
)
.

Since Cσ
(
ℓz, (

τ
̺ ,

̺
τ ]
)

= 0 and τ
̺ ≤ 1√

2̺
≤
√
2 ≤ ̺

τ , we have dim(V ) = Cσ
(
ℓz,

τ
̺

)
= Cσ

(
ℓz,

̺
τ

)
. In

particular,

dim(V ) = Cσ
(
ℓz,

τ
̺

)
= Cσ (ℓz, [0,∞))− Cσ

(
ℓz, (

τ
̺ ,∞)

)
:= dim(πN (x̂−1W ))− ζ(z)

= dim(πN (W )) − ζ(z).

By a completely symmetric argument on the dual, we get that

dim(U) = Cσ
(
ℓ⊥z ,

τ
̺

)
= dim(πB(W

⊥))− ζ(z).

We now prove the lifting cost guarantees. For v ∈ V and the guarantees of Cheap-Lift-Subspaces, we
have that

∥∥x̂−1
B vB

∥∥ ≤
∥∥∥ξ̂B

∥∥∥
∞

∥∥x−1
B vB

∥∥ ≤
∥∥∥ξ̂B

∥∥∥
∞

̺σdim(πN (W ))−dim(V )+1(ℓ
x−1W
N )

∥∥x−1
N vN

∥∥

≤
∥∥∥ξ̂B

∥∥∥
∞

∥∥∥ξ̂−1
N

∥∥∥
∞

√
2̺σζ(z)+1(ℓz)

∥∥x̂−1
N vN

∥∥ ≤ 2̺σζ(z)+1(ℓz)
∥∥x̂−1

N vN
∥∥

≤ 2τ
∥∥x̂−1

N vN
∥∥ .

By a symmetric algorithm for the dual, for u ∈ U , we have that

∥∥ŝ−1
N uN

∥∥ ≤ 2̺σζ(z)+1(ℓ
⊥
z )
∥∥ŝ−1

B uB

∥∥ ≤ 2τ
∥∥ŝ−1

B uB

∥∥ ,

as needed.

8 Amortized Iteration Bound for SLLS-IPM

In this section we prove Theorem 1.4. For this purpose we will rely on Theorem 1.8, which decomposes
the central path into polarized segments where the sum of partition changes is bounded by the straight
line complexity. The proof of Theorem 1.4 will then follow from the following theorem, which shows that
the number of iterations of our IPM can be upper bounded in terms of a sum of partition changes.

Theorem 8.1. For any T ∈ N let 0 ≤ µ(T ) < µ(T−1) < . . . < µ(1) < µ(0) such that for all 1 ≤ i ≤ T
we have that CP[µ(i), µ(i−1)] is γ-polarized with polarizing partition B(i) ∪N (i), where N (0) := ∅. Then,
SLLS-IPM equipped with a ̺-SVD solver, starting from any point z(0) ∈ N 2(β) such that µ(z(0)) ≤ µ(0),

finds a point z ∈ N 2
(β) such that µ(z) ≤ µ(T ) in

O

(
√
n
β log(n̺βγ )

T∑

i=1

(∣∣∣N (i)∆N (i−1)
∣∣∣+ 1

))
(93)

many iterations.

As explained in the introduction, the above theorem strengthens Theorem 1.1 by reducing the n1.5

factor in the iteration bound for traversing the ith polarized segment down to
√
n
∣∣N (i)∆N (i−i)

∣∣. This
will yield an overall amortized improvement as long as the polarizing partitions do not change too rapidly.

We are now ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4. By Lemma 7.3, the output (x∗, s∗, v∗, w∗) of SLLS-IPM is correct when µ1 = 0.
The (trivial) modification to SLLS-IPM for µ1 > 0, where it only outputs z1 = (x1, s1) with µ(z1) ≤ µ1,
is explained in Remark 7.1. The desired upper bound on the number of iterations to traverse the
segment CP[µ1, µ0] follows directly by combining Theorem 1.8 and Theorem 8.1 with ̺ = 2, where we
use Theorem 6.16 to instantiate the 2-SVD solver.

It remains to prove Theorem 8.1. In Section 8.1, we show that the singular values cannot change too
quickly under a change in polarization partition, and finally we prove Theorem 8.1 in Section 8.2.
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8.1 Stability of Singular Values under a Partition Change

The crucial statement towards proving Theorem 8.1 is the following lemma on lifting operators for different
partitions. This will ensure that we do not lose too much progress, in terms gaining large singular values,
when moving from one partition to another.

Lemma 8.2. Given a subspace W ⊆ Rn and two partitions B ∪ N = [n] and B̂ ∪ N̂ = [n], the lifting

operators ℓ := ℓWN and ℓ̂ := ℓW
N̂

satisfy

σi(ℓ) ≥ σi+|N∆N̂ |(ℓ̂), ∀i ≥ 1 . (94)

Proof. If either B̂ or N̂ is empty, σi(ℓ̂) = 0, ∀i ≥ 1, by convention, and hence the statement is trivial.

If N ∩ N̂ = ∅, then σi+|N∆N̂ |(ℓ̂) ≤ σi+|N̂ |(ℓ̂) = 0 since rank(ℓ̂) ≤ |N̂ |, and hence again the statement is

trivial. Thus, we may assume that (B̂, N̂) is non-trivial and that N ∩ N̂ 6= ∅.
Let Ň := N ∩ N̂ 6= ∅, B̌ := [n] \ Ň = B ∪ B̂ 6= ∅, and define ℓ̌ := ℓW

Ň
. By our assumptions, note that

(B̌, Ň) is a non-trivial partition of [n].
First, we are going to prove that for all i ≥ 1 we have σi(ℓ) ≥ σi+|N\Ň |(ℓ̌). Note that dim(πN (W )) ≥

dim(πŇ (W )). For i > dim(πN (W )), we have σi(ℓ) = σi+|N\Ň |(ℓ̌) = 0. Assume now i ≤ dim(πN (W )).

By (15), there exists a subspace S(i) ⊆ πN (W ), dim(S) = dim(πN (W ))− i+ 1 with

σi(ℓ) = σmax

(
ℓ
∣∣
S(i)

)
. (95)

Consider T (i) := S(i)∩RN
Ň
. Note that dim(πŇ (T (i))) = dim(T (i)) as πN\Ň (T (i)) = {0N\Ň} by definition.

Further, πŇ (T (i)) ⊆ πŇ (W ) by construction. Therefore, we have that

dim(πŇ (T (i))) = dim(T (i)) ≥ dim(S(i))− |N \ Ň |
= dim(πN (W ))− i+ 1− |N \ Ň | ,

(96)

where the inequality follows as T (i) arises from S(i) by adding N \ Ň homogeneous linear equations to
its defining system. Finally, note that for any v ∈ πŇ (T (i)) we have that

∥∥ℓ̌(v)
∥∥ = min

w∈W,wŇ=v

∥∥∥w[n]\Ň

∥∥∥ ≤ min
w∈W,wŇ=v,
wN\Ň=0N\Ň

∥∥∥w[n]\Ň

∥∥∥ =
∥∥∥ℓ(0N\Ň , v)

∥∥∥ , (97)

and so in particular

σmax

(
ℓ̌
∣∣
πŇ (T (i))

)
≤ σmax

(
ℓ
∣∣
T (i)

)
. (98)

From here, since dim(πŇ (W )) ≤ dim(πN (W )) we get that

σi+|N\Ň |(ℓ̌)
(96)

≤ σdim(πN (W ))−dim(πŇ (T (i)))+1(ℓ̌)
(15)

≤ σmax

(
ℓ̌
∣∣
πŇ (T (i))

)

(98)

≤ σmax

(
ℓ
∣∣
T (i)

)
≤ σmax

(
ℓ
∣∣
S(i)

)
= σi(ℓ) .

(99)

It remains to show that we can use similar shift argumentation between the operators ℓ̌ and ℓ̂, that
is, that σi(ℓ̌) ≥ σi+|N̂\Ň |(ℓ̂), ∀i ≥ 1. Using Lemma 6.8, we may equivalently consider the dual operator

ℓW
⊥

B̌
= − ad(ℓW

Ň
), where B̌ = [n] \ Ň , and show that

σi(ℓ
W⊥

B̌
) ≥ σi+|B̌\B̂|(ℓ

W⊥

B̂
) , ∀i ≥ 1. (100)

Since ∅ 6= B̂ ⊆ B̌, the inequality above follows directly from same arguments we used to obtain (99).
Therefore, for all i ≥ 1, by Lemma 6.8 we get that

σi(ℓ̌) = σi(ℓ
W⊥

B̌
) ≥ σi+|B̌\B̂|(ℓ

W⊥

B̂
) = σi+|N̂\Ň |(ℓ̂) (101)

holds, where we used that |N̂ \ Ň | = |B̌ \ B̂|. Combining (99) and (101) gives the result as now

σi(ℓ) ≥ σi+|N\Ň |(ℓ̌) = σi+|N\N̂ |(ℓ̌) ≥ σi+|N\N̂ |+|N̂\Ň |(ℓ̂)

= σi+|N\N̂ |+|N̂\N |(ℓ̂) = σi+|N∆N̂|(ℓ̂), ∀i ≥ 1.
(102)
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8.2 Proof of the Amortized Bound

We need few more preparations to prove Theorem 8.1. First, consider the basic iterates z(0), . . . , z(K)

of the algorithm, where basic is as defined in Section 7.3, with z(K) being the first basic iterate with
µ(z(K)) ≤ µ(T ). Without loss of generality, we may assume that µ(1) < µ(z(0)) ≤ µ(0).

For i ∈ {0, . . . , T }, define ti to be the smallest index of an iterate with µ(z(ti)) ≤ µ(i). With this
definition, note that t0 = 0, tT = K, and for i ∈ [T ], that ti− ti−1 = |{j ∈ [K] : µ(i) < µ(z(j)) ≤ µ(i−1)}|.
Further, define y(i) := zcp(µ(i)), i ∈ {0, . . . , T }, to be the central path point with parameter µ(i).

For z = (x, s) ∈ N 2(β), β ∈ (0, 1/6), let us extend the notation (68) to ℓz,N(i) := ℓx̂
−1W

N(i) and

ζ(i)(z) :=
∣∣∣
{
j ≥ 1 : σj(ℓz,N(i)) > τ

̺

}∣∣∣ = Cσ
(
ℓz,N(i) , ( τ̺ ,∞)

)
. (103)

Proof Overview We start by giving an outline of the proof of Theorem 8.1. Assume for simplicity
of presentation that µ(z(ti))) = µ(i) (i.e., y(i) = z(ti)), i ∈ {0, . . . , T }, which can be achieved by adding
artificial iterates in each segment. Consider the behaviour of the algorithm on the polarized segment
CP[µ(i), µ(i−1)] with partition (B(i), N (i)), which starts with z(ti−1) and ends with z(ti). By Lemma 7.5,

we have that after everyD = Θ(
√
n
β ln(n̺βγ )) iterations, either we decrease the potential ζ

(i)(·) by one or we

pass the end of the segment. Specifically, for k ≥ 1, either ti+ kD > ti+1, or ζ
(i)(zi+kD) ≤ ζ(i)(z(ti))− k.

By Lemma 7.7, for z(t
′), z(t) with ti ≤ t′ < t ≤ ti−1 (i.e., µ(i) ≤ µ(z(t

′)) < µ(z(t)) ≤ µ(i−1)), recall

that σ(ℓz(t′),N(i)) ≤ Γµ(z(t′))
µ(z(t))

σ(ℓz(t),N(i)) where Γ = 4n2

γ2 . Let us assume for now that the inequality holds

for Γ = 1 instead of 4n2

γ2 . Then, under this assumption, the singular values would be non-increasing over

the segment, and hence the potential ζ(i)(z(t)) would be monotonic in t. Therefore, we would have that

ζ(i)(z(ti)) ≤ ζ(i)(z(ti−1))− ⌊(ti − ti−1)/D⌋ ⇒ ti − ti−1 ≤ D(ζ(i)(z(ti−1))− ζ(i)(z(ti)) + 1). (104)

That is, the drop in potential from the start to the end of the segment pays for the number of iterations.
From here, the handover to the next segment is controlled by Lemma 8.2, which implies that ζ(i)(z(ti−1)) ≤
|N (i)∆N (i−1)|+ ζ(i−1)(z(ti−1)) for i ∈ [T ]. Putting these bounds together, we would get

K = tT − t0 =

T∑

i=1

ti − ti−1 ≤
T∑

i=1

D(ζ(i)(z(ti−1))− ζ(i)(z(ti)) + 1)

≤
T∑

i=1

D(|N (i)∆N (i−1)|+ 1) +D(ζ(i−1)(z(ti−1))− ζ(i)(z(ti)))

=

T∑

i=1

D(|N (i)∆N (i−1)|+ 1) +D(ζ(0)(z(0))− ζ(T )(z(tT )))

≤ D

T∑

i=1

(|N (i)∆N (i−1)|+ 1), (105)

where the last inequality follows since ζ(0)(z(0)) = 0 as N (0) = ∅. This is precisely the desired bound in
Theorem 8.1.

Unfortunately, this argument breaks due to the (4n2/γ2) factor in Lemma 7.7. The singular values
may in fact increase on the short term. This would not be a problem on sufficiently ‘long’ segments.
However, on ‘short’ segments, this could lead to an increase in singular values, where there may not be
sufficiently many—D—iterations to compensate. Such increments could even aggregate over a sequence
of short segments.

The proof below works with a more robust version of the potential in (103). The robust potential is
defined as a minimum over parametrized potentials: for i ≥ 0 and z ∈ N 2(β),

ζ̄(i)(z) := min
q≥0

ζ(i)(z, q), ζ(i)(z, q) := Cσ
(
ℓz,N(i) , ( τ̺Γ

q,∞)
)
+ q, for q ≥ 0 , (106)

where Γ := 4n2

γ2 as above.
Each parametrized potential keep track of the singular values above a threshold Γq τ

̺ for some q ≥ 0.
The additional factor represents possible increases accumulated on previous short segments. However, the
contributions |N (j)∆N (j−1)|+1 of these short segments will ‘pay’ for bringing down large singular values
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later, which corresponds to the additive q factor in these potentials. Note that the original potential
in (103) corresponds to the parametrized potential with q = 0.

The following technical lemma shows that the drop in robust potential ζ̄(i)(·) over a polarized segment
indeed pays for the number of iterations, in analogy to (104) in the ideal setting (where we assumed
monotonicity of the potential). With this lemma in hand, the iteration bound in Theorem 8.1 follows
along identical lines to the analysis in (105).

Lemma 8.3. Define Dit := 3⌊Cit

√
n
β log(n̺βγ )⌋, where Cit is as in Lemma 7.5. Let ti, N

(i), y(i), i ∈
{0, . . . , T } be as defined above, let ki := max{0, ⌊(ti − ti−1 − 1)/Dit⌋}, i ∈ [T ]. Then, for i ∈ [T ], the
following holds

(i) ζ̄(i)(y(i−1)) ≤ ζ̄(i−1)(y(i−1)) + |N (i)∆N (i−1)|.

(ii) ζ̄(i)(y(i)) + ki ≤ ζ̄(i)(y(i−1)) + 1.

Proof. We prove (i) and (ii) separately below.

Proof of (i) By Lemma 8.2, σi+|N(i)∆N(i−1)|(ℓy(i−1),N(i)) ≤ σi(ℓy(i−1),N(i−1)), ∀i ≥ 1. This implies

Cσ
(
ℓy(i−1),N(i−1) , (

τ

̺
Γq,∞)

)
+ |N (i)∆N (i−1)| ≥ Cσ

(
ℓy(i−1),N(i) , (

τ

̺
Γq,∞)

)
,

and hence ζ(i)(y(i−1), q) ≤ ζ(i−1)(y(i−1), q) + |N (i)∆N (i−1)|, for q ≥ 0. Therefore, ζ̄(i)(y(i−1)) ≤
ζ̄(i−1)(y(i−1)) + |N (i)∆N (i−1)|.

Proof of (ii) For q ≥ 0, we claim that

ζ(i)(y(i),max{0, q + 1− ki}) + ki ≤ ζ(i)(y(i−1), q) + 1. (107)

Assuming the claim, (ii) follows noting that

ζ̄(i)(y(i)) + ki ≤ min
q≥0

ζ(i)(y(i),max{0, q + 1− ki}) + ki ≤ min
q≥0

ζ(i)(y(i−1), q) + 1

= ζ̄(i)(y(i−1)) + 1 .

To prove (107), we need the following intermediate inequality:

σ(ℓy(i),N(i)) ≤ Γ1−kiσ(ℓy(i−1),N(i)) . (108)

We prove this inequality first. Recall that CP[µ(i), µ(i−1)] is a γ-polarized segment with partition

(B(i), N (i)). Therefore, for z′ ∈ N 2
(β), z ∈ N 2(β), β ∈ (0, 1/6), with µ(i) ≤ µ(z′) ≤ µ(z) ≤ µ(i−1), by

Lemma 7.7 we have that

σ(ℓz′,N(i)) ≤ Γ
µ(z′)

µ(z)
σ(ℓz,N(i)). (109)

Assume that ki = 0. Then, (108) follows from (109) with z′ = y(i) and z = y(i−1), noting that
µ(y(i)) = µ(i) < µ(i−1) = µ(y(i−1)) and Γ = Γ1−ki .

Now assume that ki ≥ 1. Let z(i), i ∈ {0, . . . ,K}, be the basic iterates as defined in the overview,
and let t = ti−1 +Dit/3 and t′ = ti − 1−Dit/3. Since ki ≥ 1, we have that

t′ − t ≥ kiDit − 2Dit/3 ≥ kiDit/3. (110)

By the choice of Cit in (73), Dit/3 = ⌊Cit

√
n
β log(n̺βγ )⌋ iterations are sufficient to divide the normalized

gap by Γ. That is, µ(z(i+Dit/3)) ≤ µ(z(i))/Γ, for i ∈ {0, . . . ,K −Dit/3}. In particular,

µ(z(t
′)) ≤ µ(z(t))/Γ

⌊3(t
′−t)
Dit

⌋ ≤ µ(z(t))/Γki .

Similarly, µ(i) ≤ µ(z(ti−1)) ≤ µ(z(t
′))/Γ and µ(z(t)) ≤ µ(z(ti−1))/Γ ≤ µ(i−1)/Γ. Therefore, by (109) we

have that
σ(ℓy(i),N(i)) ≤ σ(ℓz(t′),N(i)) ≤ σ(ℓz(t),N(i))/Γki−1 ≤ σ(ℓy(i−1),N(i))/Γki−1 , (111)

completing the proof of (108).
We now prove claim (107) by dividing the analysis into two additional cases.
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Case I. ki ≤ q + 1 :

ζ(i)(y(i), q + 1− ki) + ki = Cσ
(
ℓy(i),N(i) , ( τ̺Γ

q+1−k,∞)
)
+ (q + 1− ki) + ki

(108)

≤ Cσ
(
ℓy(i−1),N(i) , ( τ̺Γ

q,∞)
)
+ q + 1

= ζ(i)(y(i−1), q) + 1, as needed.

Case II. ki ≥ q + 2 : Let t̂ = t+(q+1)Dit/3. By our assumption that ki ≥ q+2, using (110) we have
that that t′ − t̂ ≥ (ki − q − 1)Dit/3 ≥ Dit/3. Via an identical calculation to (111), we have that

σ(ℓz(t̂),N(i)) ≤ σ(ℓz(t),N(i))/Γq ≤ σ(ℓy(i−1),N(i))/Γq.

Using the above, we get that

ζ(i)(z(t̂)) = Cσ
(
ℓz(t̂),N(i) , ( τ̺ ,∞)

)
≤ Cσ

(
ℓy(i−1),N(i) , ( τ̺Γ

q,∞)
)

= ζ(i)(y(i−1), q)− q. (112)

By Lemma 7.5, since t′ − t̂ ≥ (ki − q − 1)Dit/3 = (ki − q − 1)⌊Cit

√
n
β log(n̺βγ )⌋, we have that

ζ(i)(y(i), 0) := ζ(i)(y(i))
(111)

≤ ζ(i)(z(t
′))

7.5
≤ ζ(i)(z(t̂)) + q + 1− ki

(112)

≤ ζ(i)(y(i−1), q) + 1− ki. (113)

The claimed bound now follows by rearranging.

Proof of Theorem 8.1. Let ti, y
(i),N (i), i ∈ {0, . . . , T } be as defined in the overview. Recall that N (0) = ∅,

t0 = 0 and tT = K. Let Dit and ki := max{0, ⌊(ti − ti−1 − 1)/Dit⌋}, i ∈ [T ], be as in Lemma 8.3.
Proceeding in a similar manner to (105), we bound the number of iteration as follows:

K = tT − t0 =

T∑

i=1

(ti − ti−1 − 1) + 1 ≤
T∑

i=1

Dit(ki + 1)
(
b+ 1 ≤ a(⌊ ba⌋+ 1), a, b ∈ N

)

≤
T∑

i=1

Dit

(
ζ̄(i)(y(i−1))− ζ̄(i)(y(i)) + 2

)
( by Lemma 8.3(ii) )

≤
T∑

i=1

Dit

(
ζ̄(i−1)(y(i−1))− ζ̄(i)(y(i)) + |N (i)∆N (i−1)|+ 2

)
( by Lemma 8.3(i) )

=

(
T∑

i=1

Dit

(
|N (i)∆N (i−1)|+ 2

))
+Dit(ζ̄

(0)(y(0))− ζ̄(T )(y(T )))

≤
T∑

i=1

Dit

(
|N (i)∆N (i−1)|+ 2

)
,

where the last inequality uses that ζ̄(0)(y(0)) ≤ ζ(0)(y(0)) = 0 since N (0) = ∅.

9 Computing Approximate Singular Value Decompositions

In this section, we give our algorithm for computing approximate SVDs and prove Theorem 6.16.
We begin by presenting a deterministic strongly polynomial method for obtaining a (n2n)-approximate

SVD for matrices M ∈ Rm×n using QR decomposition with greedy column permutations. In the next
subsection, we demonstrate how to enhance the approximation factor to (1+ε) by leveraging the classical
power iteration.

Using QR decompositions to approximate the SVD is a well-established technique that dates back
to the mid-1960s [10, 26]. Many existing approaches focus on finding rank-revealing QR factorizations
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instead of a full ̺-approximate SVD. These methods aim to identify a number k ≤ n such that σk(M)≫
σk+1(M), along with an approximate subspace for the eigenvalues σ1(M), . . . , σk(M). This is achieved
by greedily selecting column permutations, followed by a standard QR factorization. The top k×k block
of the resulting upper triangular matrix provides an approximation of the subspace corresponding to the
top k singular values.

One of the earliest algorithms that utilizes column pivoting and subsequent QR decomposition was
proposed by Chan [12], who attributes the procedure to [27]. He achieves approximation guarantees
similar to ours in Lemma 9.3. Algorithms with tighter bounds (even polynomial instead of exponential)
for rank-revealing QR factorizations can be found in [13, 31, 50].

However, these algorithms are designed to work only for a fixed k, not as the ̺-approximate SVD
requires for all k simultaneously. Further, the initial algorithms [10, 26] critically rely on Householder
reflection, which intrinsically make use of unit vectors in the computations. Unit vectors however, can not
in general be used in the strongly polynomial model as they require the computation of square roots. The
mentioned approach by Chan [12] requires the computation of the smallest singular vector of the matrix.
This again can not be done in strongly polynomial time. More precisely, given a matrix M ∈ Rm×n,
the algorithms requires solving minx∈Rn,‖x‖=1 ‖Mx‖. The algorithm we present in this section, instead
solves the problem minx∈Rn,‖x‖∞=1 ‖Mx‖. As we will see below, this problem can be solved in strongly
polynomial time. Also note, that the objective values of the two minimization problems above, differ by
at most a factor of

√
m. This will explain why our algorithm achieves similar approximation guarantees

as the algorithm of Chan [12].
In general, most works in the literature have not focused on strong polynomiality. Beyond the use of

square roots, many of these results require the computation of orthonormal matrices, which in general
is not achievable in strongly polynomial space. Additionally, it is important to avoid the sequential
computation of Ω(n) Gram-Schmidt orthogonalizations (GSO). While a single GSO can be performed
in strongly polynomial time [30], the size of the numbers may increase by a polynomial factor. It
remains unclear whether a sequence of super-logarithmically many GSO computations can be performed
in strongly polynomial time.

A good overview of QR-type algorithms with column pivoting can be found in [13]. They also present
new algorithms for rank-revealing QR factorizations with improved approximation guarantees. Although
the authors do not emphasize this fact, some algorithms in [13], in particular Greedy-I.1, Greedy-

I.2 and Greedy-I.3, can be implemented in strongly polynomial time. Furthermore, they give similar
approximation guarantees as us in Lemma 9.3 for the algorithm Greedy-I.3.

Nonetheless, we present a self-contained new algorithm here for the sake of completeness and to
focus on achieving strong polynomiality. While the framework of our algorithm fits into the regime of
performing column pivoting and subsequent QR decomposition, we believe that the exact rule for the
column pivoting is novel.

Very recently, Diakonikolas, Tzamos, and Kane [22] also provided a strongly polynomial (1+ε)-singular
value decomposition algorithm based on randomized power iteration (the randomness corresponds to a
random choice of initial basis of the input space). At a high level, our algorithm removes the need for
randomness by using a suitable greedy QR decomposition (see the description below). In constrast to
our algorithm however, the approximate singular value decomposition of [22] outputs a decomposition of

a matrix M̃ (as in Definition 2.16) that is ε-“spectrally close” to M. This provides a somewhat stronger
guarantee than what is needed for our formalization of the (1+ ε)-SVD problem, which only requires an
orthogonal basis inducing a chain of (1 + ε)-approximate singular subspaces. While we expect that one
can extract such a decomposition in a blackbox manner from any (1 + ε′)-SVD solution, for a suitably
chosen ε′ ≪ ε, for the sake of simplicity we do not pursue this direction here.

We proceed by describing our main algorithm on a high level. For a matrix M ∈ Rm×n, we will use
the following procedure (Algorithm 3): For all columns j of M, consider the projection of the column
M•,j onto the orthogonal complement of the span of all the other columns im(M•,[n]\{j}). Then, remove
the column jmin from the matrix for which the norm of this projection is the smallest and recurse on the
remaining matrix M•,[n]\{jmin}. When this process finishes, we obtain a permutation MP of the columns,
given by the order in which they were removed from the matrix. It turns out, that the norms of the
columns of the orthogonal matrix Q obtained from a Gram-Schmidt process on the permuted matrix
MP (the first column removed from M is the last column in its reordering) provide an exponential
approximation of the singular values of the original matrix M. The main observation for the proof is
that the matrix R in the Gram-Schmidt process, uniquely defined by MPR = Q, has only exponential
condition number.

It is not hard to see that the output of Greedy-SVD satisfies that Q is precisely the result of Gram
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Algorithm 3: Greedy-SVD

Input : Matrix M ∈ Rm×n.
Output: Matrix B ∈ Rn×n and a vector s ∈ Rn such that (B, s) is a (n2n)-approximate SVD

(Definition 6.13).
1 Jn ← [n];
2 for t = n down to 1 do
3 for i ∈ Jt do
4 w(t,i) ← 0n;

5 w
(t,i)
i ← 1;

6 w
(t,i)
Jt\{i} ← −[M•,Jt\{i}]

+M•,i ;

7 Kt ← argminj∈Jt

∥∥Mw(t,j)
∥∥ ;

8 π(t)← any element in argminj∈Kt

∥∥w(t,j)
∥∥ ;

9 v(t) ← w(t,π(t));

10 q(t) ←Mv(t);
11 Jt−1 ← Jt \ {π(t)};
12 P← (1i=π(j))i,j∈[n] ;

13 R← P⊤ [v(1) . . . v(n)
]
;

14 Q←
[
q(1) . . . q(n)

]
;

15 B← PR;
16 for i = 1, . . . , n− 1 do
17 B•,i ← B•,i −Πim(B•,>i)(B•,i) ; // Reverse Gram-Schmidt Orthogonalization

18 s← 0n;
19 for i = 1, . . . , n do
20 si ← 2n ‖Q•,i‖1;
21 return (B, s)

Schmidt orthogonalization (GSO) on the matrix MP, i.e., the matrix M after its columns have been
permuted according to P.

Before we begin the analysis, we introduce some additional notation and recall some fundamental
matrix inequalities. For a matrix M ∈ Rm×n, we use ‖M‖2 := σ1(M) to denote the operator norm,

‖M‖F :=
√∑

i∈[m],j∈[n] M
2
ij to denote the Frobenius norm, and ‖M‖∞ := maxi∈[m],j∈[n] |Mij | to denote

the maximum absolute value of any entry. We will use the inequality ‖M‖2 ≤ ‖M‖F, and if M is
invertible, the relation σmin(M) = 1

‖M−1‖2
≥ 1

‖M−1‖F
.

Lemma 9.1. The matrices P, R, and Q constructed in Greedy-SVD(Algorithm 3) have the following
properties:

(i) P ∈ Rn×n is a permutation matrix,

(ii) R ∈ Rn×n is upper triangular,

(iii) Q ∈ Rn×n has orthogonal columns,

(iv) MPR = Q,

(v) ‖Q•,s‖ ≥ ‖Q•,t‖ for all s, t ∈ [n] such that s ≤ t,

(vi) ‖Q•,t‖ = minj∈[t] minx∈Rt,xj=1

∥∥MP•,[t]x
∥∥,

(vii) ‖R‖∞ = 1 and Rt,t = 1, ∀t ∈ [n] .

Proof. It is easy to see that π is a bijection from [n] to [n]. Therefore, by definition of P in line 12 we
obtain (i).
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Let t ∈ [n] and i ∈ Jt, Then, noting that w
(t,i)
i = 1, we have that

Mw(t,i) = M•,Jt\{i}w
(t,i)
Jt\{i} +M•,i

= −M•,Jt\{i}[M•,Jt\{i}]
+M•,i +M•,i

= −Πim(M•,Jt\{i}
)M•,i +M•,i

= Πim(M•,Jt\{i}
)⊥M•,i ,

(114)

where the third equality follows by Proposition 2.14 part (1). This furthermore implies, that

∥∥∥Mw(t,i)
∥∥∥ =

∥∥∥Πim(M•,Jt\{i}
)⊥M•,i

∥∥∥ = min
z∈im(M•,Jt\{i}

)
‖M•,i + z‖

= min
x∈RJt ,xi=1

‖M•,Jtx‖ . (115)

Now, (vi) follows by (115) and the definition of P, which gives M•,Jt = MP•,[t] as π([t]) = Jt. From

here, we also conclude that for any j ∈ Jt \ {i} with w
(t,i)
j 6= 0, we have that [w

(t,i)
j ]−1w

(t,i)
Jt

is a feasible
vector for the minimization problem on the right most side of (115) for index j. Therefore, we have that

∥∥∥Mw(t,j)
∥∥∥ ≤ 1

|w(t,i)
j |

∥∥∥Mw(t,i)
∥∥∥ . (116)

We distinguish two cases for the norm of Mw(t,π(t)). If
∥∥Mw(t,π(t))

∥∥ > 0, then for all j ∈ Jt, the

inequality (116) gives |w(t,π(t))
j | ≤

∥∥Mw(t,π(t))
∥∥ /
∥∥Mw(t,i)

∥∥ ≤ 1 by π(t) ∈ Kt and the definition of Kt.

In the other case we have that
∥∥Mw(t,π(t))

∥∥ = 0. Then, notice that for any j ∈ Jt such that

w
(t,π(t))
j 6= 0, we have by (116) that

∥∥Mw(t,j)
∥∥ = 0 and therefore j ∈ Kt. In particular, we have that

M•,j ∈ im(M•,Jt\{j}). Therefore, by Proposition 2.14 part (2), for j ∈ supp(w(t,π(t)) we obtain

∥∥∥w(t,j)
Jt\{j}

∥∥∥ =
∥∥(M•,Jt\{j})

+M•,j
∥∥

= min
{
‖u‖ : u ∈ R|Jt|−1,M•,Jt\{j}u = Πim(M•,Jt\{j}

)(M•,j)
}

= min
{
‖u‖ : u ∈ R|Jt|−1,M•,Jt\{j}u = M•,j

}
(117)

≤

∥∥∥w(t,π(t))
Jt\{j}

∥∥∥
|w(t,π(t))

j |
,

where the inequality follows by noting that the vector u ∈ RJt\{j} defined as u = −[w(t,π(t))
j ]−1w

(t,π(t))
Jt\{j}

is a feasible solution to the minimization problem in (117) as

M•,Jt\{j}u = −[w(t,π(t))
j ]−1M•,Jt\{j}w

(t,π(t))
Jt\{j} = [w

(t,π(t))
j ]−1M•,jw

(t,π(t))
j = M•,j .

This gives for all j ∈ supp(w(t,π(t))) ⊆ Kt that

|w(t,π(t))
j | ≤

∥∥∥w(t,π(t))
Jt\{π(t)}

∥∥∥
∥∥∥w(t,i)

Jt\{i}

∥∥∥
=

√∥∥w(t,π(t))
∥∥2 − 1

√∥∥w(t,i)
∥∥2 − 1

≤ 1 ,

where the last inequality follows by definition of π(t). We can therefore conclude that
∥∥v(t)

∥∥
∞ =∥∥w(t,π(t))

∥∥
∞ = 1 for all t ∈ [n], recalling that v

(t)
π(t) = w

(t,π(t))
π(t) = 1.

Let us now show the statements for R = P⊤ [v(1) . . . v(n)
]
. As P is a permutation matrix by (i),

we have shown that ‖R‖∞ = 1 and furthermore Rt,t = 1, ∀t ∈ [n], as Rt,t = (P⊤)t,•v(t) = v
(t)
π(t) = 1

for all t ∈ [n]. Therefore, (vii) holds. To show that R is upper triangular, recall that supp(vt) ⊆ Jt and
π([t]) = Jt. Therefore, letting π−1 denote the inverse permutation, we get supp(P⊤v(t)) ⊆ π−1(Jt) = [t]
as needed for (ii).

Further, note that by construction Mv(t) = q(t), t ∈ [n]. Therefore,

MPR = MPP⊤ [v(1) . . . v(n)
]
= M

[
v(1) . . . v(n)

]
=
[
q(1) . . . q(n)

]
= Q,
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as needed for (iv). To see that Q has orthogonal columns, note that for by definition of q(t) we have with
(114) that

q(t) = Πim(M•,Jt\{π(t)})⊥M•,π(t) , (118)

and so in particular q(t) ∈ im(M•,Jt\{π(t)})
⊥. However, since for 1 ≤ s < t we have that q(s) ∈

im(M•,Jt\{π(t)}). We conclude that q(t) is orthogonal to q(s), proving (iii).
To show (v), note that for 1 ≤ s < t ≤ n, the inclusion im(M•,Js\{π(s)}) ⊆ im(M•,Jt\{π(t)}) holds,

and hence

‖Q•,s‖ =
∥∥∥q(s)

∥∥∥

=
∥∥∥Πim(M•,Js\{π(s)})⊥M•,π(s)

∥∥∥ (by (118))

≥
∥∥∥Πim(M•,Jt\{π(t)})⊥M•,π(s)

∥∥∥
(
im(M•,Jt\{π(t)})

⊥ ⊆ im(M•,Js\{π(s)})
⊥)

=
∥∥∥Mw(t,π(s))

∥∥∥ (by (114))

≥
∥∥∥Mw(t,π(t))

∥∥∥ (by choice of π(t) )

=
∥∥∥Πim(M•,Jt\{π(t)})⊥M•,π(t)

∥∥∥ (by (114))

=
∥∥∥q(t)

∥∥∥ (by (118))

= ‖Q•,t‖ .
This proves the lemma.

The following proposition shows that the matrix R computed by Greedy-SVD is “well-conditioned”.

Proposition 9.2. Let R ∈ Rn×n be an upper triangular matrix with diagonal 1n and with entries of
absolute value at most 1. Then, R−1 is upper triangular with diagonal 1n and |R−1

ij | ≤ max{1, 2j−i−1},
i, j ∈ [n], i ≤ j. In particular,

∥∥R−1
∥∥
2
≤ 2n.

Proof. The proof goes by induction on n. The base case n = 1 is trivial, so assume n > 1. Then, it is
directly verifiable that

R−1 =

[
R−1

[n−1],[n−1] −R−1
[n−1],[n−1]R[n−1],n

0⊤
n−1 1

]
.

By the induction hypothesis, it holds that |R−1
ij | ≤ max{1, 2j−i−1}, i, j ∈ [n−1], i ≤ j. Note that R−1 is

upper triangular as claimed. We now prove the coefficient bound for R−1
i,n, for i ≤ n. If i = n, R−1

i,i = 1,
as needed. For i < n, using that R has entries at most 1 we get that

|R−1
in | =

∣∣(R−1
[n−1],[n−1]R[n−1],n)i

∣∣ =
∣∣
n−1∑

j=i

R−1
i,jRj,n

∣∣ ≤
n−1∑

j=i

|R−1
i,j |

≤
n−1∑

j=i

max{1, 2j−i−1} = 1 +

n−i−2∑

l=0

2l = max{1, 2n−i−1},

as needed. For the last statement, by a direct calculation

∥∥R−1
∥∥2
2
≤
∥∥R−1

∥∥2
F
≤

n∑

i=1

n∑

j=i

max{1, 4j−i−1} = 2

3
n− 1

9
+

4n

9
≤ 4n,

as needed.

We now show how Greedy-SVD produces a (n2n)-approximation of the singular values and corre-
sponding subspaces of M.

Lemma 9.3. Let M ∈ Rm×n be a matrix and P, R and Q be the matrices constructed in Greedy-SVD

applied to M. Let V≥i := im(PR•,≥i) and similarly V≤i := im(PR•,≤i) Then, we have that

2−n max
v∈V≥i\{0n}

‖Mv‖
‖v‖ ≤ ‖Q•,i‖ ≤ n min

v∈V≤i\{0n}

‖Mv‖
‖v‖ .

Furthermore, ‖Q•,i‖ ≤
√
nσi(M).
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Proof. For the lower bound on ‖Q•,i‖, we have that

max
v∈V≥i

‖Mv‖
‖v‖ = max

x∈Rn−i+1\{0}

‖MPR•,≥ix‖
‖PR•,≥ix‖

= max
x∈Rn−i+1\{0}

‖Q•,≥ix‖
‖R•,≥ix‖

≤ max
x∈Rn−i+1\{0}

‖Q•,i‖
‖x‖

‖R•,≥ix‖
(Lemma 9.1 (iii), (v))

≤ ‖Q•,i‖
∥∥R−1

∥∥
≤ 2n ‖Q•,i‖ , (Proposition 9.2)

proving the inequality.
For the upper bound on ‖Q•,i‖, note that

min
v∈V≤i

‖Mv‖
‖v‖ = min

x∈Ri\{0}

‖MPR•,≤ix‖
‖PR•,≤ix‖

= min
x∈Ri\{0}

‖Q•,≤ix‖
‖R•,≤ix‖

≥ min
x∈Ri\{0}

‖Q•,i‖
‖x‖

‖R•,≤ix‖
(Lemma 9.1 (iii), (v))

≥ ‖Q•,i‖ ‖R‖−1
2

≥ ‖Q•,i‖
n

. (‖R‖ ≤ n by Lemma 9.1 (vii))

It remains to prove the furthermore statement. By Proposition 2.20, there exists a subspace Ui ⊆ Rn

with dim(Ui) = n − i + 1 such that maxx∈Ui\{0}
‖MPx‖

‖x‖ = σi(MP) = σi(M). By dimension counting,

there exists x̄ ∈ Ui \ {0n} such that supp(x̄) ⊆ [i]. Therefore,

σi(M) ≥ ‖MPx̄‖
‖Px̄‖ ≥

1√
n

‖MPx̄‖
‖x̄‖∞

≥ 1√
n
min
j∈[i]

min
x∈Ri,xj=1

∥∥MP•,[i]x
∥∥ =

‖Q•,i‖√
n

,

where the last equality follows form Lemma 9.1 (vi). This concludes the proof.

Theorem 9.4. Let M ∈ Rm×n be a matrix. The output of Greedy-SVD on M is a (n2n)-SVD approx-
imation of M in the sense of Definition 6.13. Furthermore, the algorithm runs in strongly polynomial
time O(n2 max(m,n)3).

Proof. First, note that B is an orthogonal basis of Rn. Furthermore, im(B≥i) = V≥i. Using Lemma 9.3,
we therefore have that

max
v∈im(B≥i)\{0n}

‖Mv‖
‖v‖ = max

v∈V≥i\{0n}

‖Mv‖
‖v‖ ≤ 2n ‖Q•,i‖ ≤ 2n

√
nσi(M) . (119)

Using the variational characterization of singular values (15) we obtain that

σi(M) ≤ max
v∈V≥i\{0n}

‖Mv‖
‖v‖ ≤ 2n ‖Q•,i‖ (120)

Together with Lemma 9.3, this proves that

1√
n
‖Q•,i‖ ≤ σi(M) ≤ 2n ‖Q•,i‖ . (121)

In particular, by choice of si = 2n ‖Q•,i‖1 for i ∈ [n], we get that

1

2nn
s ≤ σ(M) ≤ s , (122)

as needed for Definition 6.13. The choice of ‖·‖1 instead of ‖·‖2 in definition of s is necessary to ensure
that the output of the algorithm has polynomial bit complexity.
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For the strongly polynomial guarantees, it remains to check that all the intermediate iterates have
polynomial bit complexity. To see this, note first that the columns of R correspond to solutions of a
well-described linear system in the original matrix M, and thus has bit-complexity polynomially related
to that of M. From here, B corresponds to a “reverse order” GSO applied to PR (or again, the columns
are solutions to well-described linear systems in PR), and hence B also has bit-complexity polynomially
related to that of M (see, e.g., [30, Section 1.4] for a thorough overview of the bit-complexity of GSO).

Let us now prove the statment about the running time. Using the characterization in Proposition 2.15
and further noting that the required rank factorization can be computed in O(max(m,n)3), we are able
to compute the pseudoinverse of an m × n matrix as well as the projection onto the image of an m× n
matrix in time O(max(m,n)3). Therefore, a single execution of both Lines 6 and 17 of Algorithm 3
takes O(max(m,n)3). The repeated execution of these lines dominates the overall running time of the
algorithm, hence the overall running time of the algorithm can be bounded by O(n · n ·max(m,n)3) =
O(n2 max(m,n)3).

This completes the proof of the theorem.

9.1 Boosting via the Power Method

In this section, we demonstrate a method to enhance the approximation ratio of any algorithm for the
̺-SVD problem (as in Definition 6.13) to a (1 + ε)-SVD approximation. This is possible provided ̺ =
̺(dim(M)), i.e., the approximation ratio ̺ is a function of the dimension of the matrix only and does not
depend on the matrix’s conditioning. The strategy involves using a low accuracy ̺-SVD approximation
to calculate an approximate SVD of the matrix S := (M⊤M)p. Here, a large power p = O(n/ε · log(̺/ε))
is used to achieve the desired error ε. We will then show that the approximate SVD of S is in fact a
(1 + ε)-approximation of the SVD of M.

Lemma 9.5. Let 0 < ε ≤ 1/2 and ̺ ≥ ε. Then, there is a reduction from (1 + ε)-SVD on an m × n
matrix to ̺-SVD on one n×n and one m×n matrix that runs in time O(mn2+n3 log(log(2+̺)/ε)), and
requires space polynomial in m,n, log(2 + ̺)/ε and the bit-encoding length of ε, ̺ and the input matrix.

Proof. Let M ∈ Rm×n be a m× n matrix. The reduction proceeds as follows. Compute S := (M⊤M)p

for p := ⌈log1+ε/3(̺)/2⌉. Let (B, s) be the output of ̺-SVD on S and (·, s′) be the output of ̺-SVD

on M. For each i ∈ [n], apply binary search to compute ŝi = s′i(1 + ε/3)−2ki , −1 ≤ ki ≤ 2p, satisfying

s
1/(2p)
i ≤ ŝi ≤ (1 + ε/3)s

1/(2p)
i . Finally, return (B, ŝ).

We first proof correctness of the reduction. Consider a singular value decompositionM =
∑r

i=1 σi(M)
uiv

⊤
i of M, where r = rank(M). Fix i ∈ [n]. By definition of B, we have for all x ∈ im(B≥i) \ {0n} that

‖Sx‖2 / ‖x‖2 ≤ si ≤ ̺σi(S), which implies that

r∑

j=1

σj(M)4p〈vj , x〉2 =

∥∥∥∥∥∥

r∑

j=1

σj(M)2pvj〈vj , x〉

∥∥∥∥∥∥

2

= ‖Sx‖2

≤ s2i ‖x‖2 ≤ ̺2σi(S)
2 ‖x‖2 = ̺2σi(M)4p ‖x‖2 . (123)

Therefore, ∀x ∈ im(B≥i) \ {0n}, we have that

‖Mx‖4p =




r∑

j=1

σj(M)2〈vj , x〉2



2p

=


‖x‖2 ·

r∑

j=1

σj(M)2
〈vj , x〉2
‖x‖2




2p

≤ ‖x‖4p
r∑

j=1

σj(M)4p
〈vj , x〉2
‖x‖2

(Jensen’s inequality)

≤ ‖x‖4p s2i
≤ ‖x‖4p · ̺2σi(M)4p (by (123)) , (124)

and so

max
x∈im(B≥i)\{0n}

‖Mx‖
‖x‖ ≤ s

1/(2p)
i ≤ ̺1/(2p)σi(M) ≤ (1 + ε/3)σi(M) . (125)
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From the above, note that (B, s1/(2p)) is already a solution to (1 + ε)-SVD on M. Unfortunately, we
cannot compute the vector s1/(2p) in strongly polynomial time, which motivates the binary search used
to construct the approximation ŝ. By the guarantees of s and s′, we have that

s′(1 + ε/3)−2p ≤ s′

̺
≤ σ(M) ≤ s1/(2p) ≤ (1 + ε/3)σ(M) ≤ s′(1 + ε/3),

and thus the claimed range for ki, i ∈ [n], in the binary search is correct. From here, by the guarantees
on ŝ, since ε ∈ (0, 1/2], we have that

s1/(2p) ≤ ŝ ≤ (1 + ε/3)s1/(2p) ≤ (1 + ε/3)2σ(M) ≤ (1 + ε)σ(M).

Therefore, (B, ŝ) is a valid solution to (1 + ε)-SVD.
We now justify the running time of the reduction. Since p = Θ(log(2 + ̺)/ε), we can compute

S = (M⊤M)p in time O(mn2 + n3 log(p)) = O(mn2 + n3 log(log(2 + ̺)/ε)) by repeated squaring of
M⊤M. For each i ∈ [n], the corresponding binary search requires O(log p) comparisons, where each
comparison are of the form si ≤ (s′)2p(1 + ε/3)−2k for −1 ≤ k ≤ 2p. Lastly, the reduction makes two
̺-SVD calls, one to M ∈ Rm×n and one to S ∈ Rn×n.

It remains to show the claim about the space needed by the algorithm. To this end, it suffices to
show that the matrix S has a bit-encoding length polynomial in log(2 + ̺)/ε−1 and the bit-encoding of
M. To this end, let the input matrix M be given as Mi,j = pij/qij for i ∈ [m], j ∈ [n] with pij ∈ Z and
qij ∈ Z>0. We can write M = k−1M̄, where k = lcmi,j qij and M̄ij = |pij/qij | · lcmi,j qij ∈ Z, where lcm
denotes the least common multiple. In particular, M̄ ∈ Zm×n and

∥∥M̄
∥∥
F
≤∑ij |pij | ·

∏
ij qij . Therefore,

we can write S = (M⊤M)p = k−2p(M̄⊤M̄)p, where
∥∥(M̄⊤M̄)p

∥∥
F
≤
∥∥M̄

∥∥2p
F
≤ (
∑

ij |pij |
∏

ij |qij |)2p. In
particular, the entries of S can be written in a number of bits that is polynomial in p and the number of
bits of M. Recalling that p = O(log(2 + ̺)/ε) finishes the proof.

Theorem 6.16 is a now a simple consequence of Lemma 9.5 and Theorem 9.4.

Theorem 6.16. For ̺ > 1, there is a deterministic algorithm for solving ̺-SVD that on an input m×n
matrix requires O(n2 max(m,n)3 log(n+ 1

̺−1 )) operations and space polynomial in n,m,max{1, 1
̺−1} and

the bit-encoding length of the input matrix.

Proof. Let ε = min{̺− 1, 1/2}, and apply the reduction in Lemma 9.5 with parameters (ε, n2n), where
we use Theorem 9.4 to implement the (n2n)-SVD algorithm. The space guarantees now follow from
the guarantees of Theorem 9.4 and Lemma 9.5. For the running time, observe that Theorem 9.4 re-
quires O(n2 max(m,n)3) operations, while the application of Lemma 9.5 requires O(mn2+n3 log(log(2+
n2n)/min(̺ − 1, 1

2 ))) = O(mn2 + n3 log(n + 1
̺−1 )) operations. The sum of these running times is

O(n2 max(m,n)3 log(n+ 1
̺−1 )), which completes the proof.

10 Self-Concordant Barrier Central Paths

The theory of self-concordant barriers, introduced by Nesterov and Nemirovski [49], is used to describe
interior point methods in a general setting. In this section, we show that the central paths obtained from
self-concordant barriers relate to the max central path, as in the case of the log-barrier. From this, we
deduce a proof of Theorem 1.7.

We follow the presentation of self-concordant barriers made by Renegar [52]. We consider a C2 function
f : D → R with open convex domain D ⊆ E where E = x0 + L is an affine subspace of Rn. We recall
that, for x ∈ D, the gradient ∇f(x) of f at x is the element of L such that for all h ∈ L, 〈∇f(x), h〉 =
limt→0+

f(x+th)−f(x)
t . Moreover, the Hessian ∇2f(x) of f at x is the self-adjoint linear operator from L

to itself such that for all h, k ∈ L,
〈
∇2f(x)h, k

〉
= limt→0+

〈∇f(x+tk)−∇f(x),h〉
t . We assume that ∇2f(x)

is positive definite, i.e.,
〈
∇2f(x)h, h

〉
> 0 for all h ∈ L, h 6= 0. In particular, f is a strictly convex

function on D. Given x ∈ D, we introduce ‖·‖x, the norm over L associated with the Hessian ∇2f(x),

i.e., ‖z‖x :=
( 〈
∇2f(x)z, z

〉 )1/2
for all z ∈ L. We define Bx(y; r) := {z ∈ D : ‖y − z‖x < r}, the open

ball with center y ∈ D and radius r ≥ 0 with respect to the norm ‖·‖x.
The function f is (strongly nondegenerate) self-concordant if, for all x ∈ D, we have Bx(x; 1) ⊆ D,

and for all y ∈ Bx(x; 1) and nonzero vector v ∈ L,

1− ‖y − x‖x ≤
‖v‖x
‖v‖y

≤ 1

1− ‖y − x‖x
.
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We define the complexity value as

ϑf := sup
x∈D

sup
‖h‖x≤1

〈∇f(x), h〉2 .

If ϑf <∞, then f is called a self-concordant barrier.
Let f be self-concordant barrier over the (relative) interior of the polyhedron P . The central path

associated with f is the function that maps µ > 0 to the unique minimizer of the function x 7→ 〈c, x〉 +
µf(x). When f is (the restriction to E of) the log-barrier x 7→ −∑n

i=1 log(xi), the scalar µ is used as
the parameter of the central path. In the case of general barriers, it is more convenient to parametrize
the central path by the optimality gap g. This is made possible by the fact that, if any two points of the
central path have the same optimality gap g, they both minimize the (strictly convex) function f over
{x ∈ P : 〈c, x〉 = g}, thus they are equal. Following this, we denote by xcp(f)(g) the unique point of the
central path induced by the barrier f with optimality gap g > 0.

In the next statement, we generalize Lemma 1.2 to the case of the central path associated with the
self-concordant barrier f .

Proposition 10.1. For all g > 0, we have 1
2(2ϑf+1)x

m(g) < xcp(f)(g) ≤ xm(g).

Proof. The right hand side inequality follows from xcp(f)(g) ∈ Pg. Using [52, Theorem 2.3.4] and the fact
that µ∇f(xcp(f)(g)) + c ∈ L⊥ for some µ > 0, we know that Pg ⊆ Bxcp(f)(g)(x

cp(f)(g); 4ϑf + 1). Since

Pg ⊆ Rn
≥0, [3, Lemma 4] shows that y < 2(2ϑf + 1)xcp(f)(g) for all y ∈ Bxcp(f)(g)(x

cp(f)(g); 4ϑf + 1). We

deduce that xm(g) < 2(2ϑf + 1)xcp(f)(g).

We are now ready to prove Theorem 1.7.

Proof (Theorem 1.7). Let x(0), . . . , x(T ) be the successive iterates of the IPM. We denote by g(0), . . . , g(T )

their respective optimality gap, where g(0) ≥ g0 and g(T ) ≤ g1.

Let i ∈ [n]. We claim that, ∀k ∈ [T ], the segment [(g(k−1), x
(k−1)
i ), (g(k), x

(k)
i )] is included in the

neighborhood Nmp

i (θ′) for θ′ = 1− 1−θ
2(2ϑf+1) . Indeed, for all λ ∈ [0, 1], the point x = (1−λ)x(k−1) +λx(k)

has optimality gap g = (1 − λ)g(k−1) + λg(k). As x ∈ P , we have xi ≤ xm
i (g). Moreover, since x ≥

(1− θ)xcp(f)(g), Proposition 10.1 ensures that xi >
1−θ

2(2ϑf+1)x
m
i (g). Hence, (g, x) ∈ Nmp

i (θ′). We deduce

by Lemma 4.4 that T ≥ SLCp
θ′,i(g1, g0).

Consequently, we have
∑n

i=1 SLC
p
θ′,i(g1, g0) ≤ nT . By Theorem 1.4, the number T ′ of iterations

performed by the algorithm SLLS-IPM is in

O

(
√
n log

(
n

1− θ

)
min

{
n∑

i=1

SLCp
θ,i(g1, g0),

n∑

i=1

SLCd
θ,i(g1, g0)

})
. (126)

This implies that

T ′ = O

(
n1.5 log

(
nϑf

1− θ

)
T

)
.

Theorem 1.7 relates the iteration complexity of general barrier IPMs traversing the wide neighborhood
N cp(f)(θ) as defined in (6) to the iteration complexity of our IPM. Our wide neighborhood definition
is however not entirely standard, and in particular, it does not map directly to the more standard
neighbhorhoods such as those based on the Newton decrement. Furthermore, it does not obviously
capture IPMs using primal-dual neighborhoods.

In [3, Section 4.1] however, it has been shown that all the neighborhoods of self-concordant central
paths used in the literature (including that of the log-barrier central path like the projections of N 2(β),
0 < β < 1/4, and N−∞(θ), 0 < θ < 1, to primal variables) are actually contained in multiplicative
neighborhoods, i.e., sets of form

Mcp(f)(m,m) =
{
x ∈ P : ∃g mxcp(f)(g) ≤ x ≤ mxcp(f)(g)

}
(0 < m ≤ 1 ≤ m) .

The latter turn out to be essentially equivalent to our definition of wide neighborhoods in (6). This is
justified by the following lemma:

Lemma 10.2. We have N cp(f)(θ) ⊆ Mcp(f)
(
1 − θ, 2(2ϑf + 1)

)
for all θ ∈ (0, 1), and Mcp(f)(m,m) ⊆

N cp(f)
( m
2(2ϑf+1)m

)
for all 0 < m ≤ 1 ≤ m.
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Proof. For the first statement, let θ ∈ (0, 1), and x ∈ N cp(f)(θ), and let g = 〈c, x〉 − v∗ denote the
optimality gap of x. The inequality x ≥ (1− θ)xcp(f)(g) follows by the definition of N cp(f)(θ). We have
x ≤ xm(g) since x ∈ P , and so x ≤ 2(2ϑf + 1)xcp(f)(g) by Proposition 10.1.

For the second statement, let 0 < m ≤ 1 ≤ m, and let (g̃, x) be such thatmxcp(f)(g̃) ≤ x ≤ mxcp(f)(g̃).
Let s⋆ ≥ 0 denote a dual optimal solution to (LP). The optimality gap g = 〈c, x〉 − v∗ = 〈s⋆, x〉 of x
satisfies g ≤ m

〈
s⋆, xcp(f)(g̃)

〉
= mg̃ (since s⋆ ≥ 0). Then, we have

x ≥ m

2(2ϑf + 1)
xm(g̃) (by Proposition 10.1)

≥ m

2(2ϑf + 1)m
xm(mg̃) (by Lemma 4.3)

≥ m

2(2ϑf + 1)m
xm(g) (as g ≤ mg̃)

≥ m

2(2ϑf + 1)m
xcp(f)(g). (by Proposition 10.1)

As a consequence, the neighborhoodsN cp(f)(θ) are flexible enough to capture all known neighborhoods
of central paths. Therefore, Theorem 1.7 indeed shows that our IPM is approximately optimal when
compared against essentially any straight-line following IPM.
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√
rank) linear system solves. arXiv

preprint arXiv:1910.08033, 2019.

[41] Y. T. Lee and M.-C. Yue. Universal barrier is n-self-concordant. Mathematics of Operations Research,
46(3):1129–1148, 2021.

[42] A. Madry. Navigating central path with electrical flows: From flows to matchings, and back. In
Proceedings of the 54th Annual Symposium on Foundations of Computer Science, pages 253–262.
IEEE, 2013.

[43] N. Megiddo. Is binary encoding appropriate for the problem-language relationship? Theoretical
Computer Science, 19(3):337–341, 1982.

[44] N. Megiddo, S. Mizuno, and T. Tsuchiya. A modified layered-step interior-point algorithm for linear
programming. Mathematical Programming, 82(3):339–355, 1998.

[45] S. Mizuno, M. Todd, and Y. Ye. On adaptive-step primal-dual interior-point algorithms for linear
programming. Mathematics of Operations Research, 18:964–981, 11 1993.

[46] R. D. Monteiro and T. Tsuchiya. A strong bound on the integral of the central path curvature and its
relationship with the iteration-complexity of primal-dual path-following LP algorithms. Mathematical
Programming, 115(1):105–149, 2008.

[47] R. D. C. Monteiro and T. Tsuchiya. A variant of the Vavasis-Ye layered-step interior-point algorithm
for linear programming. SIAM Journal on Optimization, 13(4):1054–1079, 2003.

[48] R. D. C. Monteiro and T. Tsuchiya. A new iteration-complexity bound for the MTY predictor-
corrector algorithm. SIAM Journal on Optimization, 15(2):319–347, 2005.

[49] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming. SIAM,
1994.

[50] C. Pan. On the existence and computation of rank-revealing lu factorizations. Linear Algebra and
its Applications, 316(1–3):199–222, Sept. 2000.

[51] J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear programming.
Mathematical Programming, 40(1-3):59–93, 1988.

[52] J. Renegar. A Mathematical View of interior point Methods in Convex Optimization. Society for
Industrial and Applied Mathematics, 2001.

69



[53] C. Roos, T. Terlaky, and J.-P. Vial. Interior point methods for linear optimization. Springer Science
& Business Media, 2005.

[54] T. S. Shores. Applied Linear Algebra and Matrix Analysis. Springer, 2018.

[55] S. Smale. Mathematical problems for the next century. The Mathematical Intelligencer, 20:7–15,
1998.

[56] G. Sonnevend, J. Stoer, and G. Zhao. On the complexity of following the central path of linear
programs by linear extrapolation II. Mathematical Programming, 52(1-3):527–553, 1991.

[57] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsi-
fication, and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory
of Computing (STOC), 2004.

[58] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex algorithm
usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

[59] V. Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Mathematik, 264:184–
202, 1973.

[60] P. M. Vaidya. Speeding-up linear programming using fast matrix multiplication. In Proceedings of
the 30th Annual Symposium on Foundations of Computer Science, pages 332–337, 1989.

[61] J. van den Brand. A deterministic linear program solver in current matrix multiplication time.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 259–278. SIAM, 2020.

[62] J. van den Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford, Z. Song, and D. Wang. Minimum
cost flows, MDPs, and L1-regression in nearly linear time for dense instances. In Proceedings of the
53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 859–869, 2021.

[63] J. van den Brand, Y.-T. Lee, D. Nanongkai, R. Peng, T. Saranurak, A. Sidford, Z. Song, and
D. Wang. Bipartite matching in nearly-linear time on moderately dense graphs. In 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages 919–930, 2020.

[64] J. van den Brand, Y. Tat Lee, A. Sidford, and Z. Song. Solving tall dense linear programs in nearly
linear time. In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC),
pages 775–788, 2020.

[65] S. A. Vavasis and Y. Ye. Condition numbers for polyhedra with real number data. Operations
Research Letters, 17:209–214, 06 1995.

[66] S. A. Vavasis and Y. Ye. A primal-dual interior point method whose running time depends only on
the constraint matrix. Mathematical Programming, 74(1):79–120, 1996.

[67] Y. Ye. Interior-Point Algorithms: Theory and Analysis. John Wiley and Sons, New York, 1997.

[68] N. Young. An introduction to Hilbert space. Cambridge university press, 1988.

[69] M. Zong, Y. T. Lee, and M.-C. Yue. Short-step methods are not strongly polynomial-time. Mathe-
matical Programming, July 2023.

A Missing Proofs in Section 2.3

Proof of Proposition 2.7. We show the first part. In particular, we show that ker(ad(T )) = V ∩ im(T )⊥:

ker(ad(T )) = {y ∈ V : 〈ad(T )y, ad(T )y〉 = 0} = {y ∈ V : 〈ad(T )y, u〉 = 0, ∀u ∈ U}
= {y ∈ V : 〈y, Tu〉 = 0, ∀u ∈ U} = V ∩ im(T )⊥.

The second part now follows from the first part, applying the first part with T replaced by ad(T ) and
using that ad(ad(T )) = T .
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For the third part, we must show im(T ) = T (im(ad(T ))) and im(ad(T )) = ad(T )(im(T )). Since
ad(ad(T )) = T , it suffices to prove the first equality. For this purpose, by the first part, we have that

im(T ) = T (U) = T (im(ad(T )) + ker(T )) = T (im(ad(T ))),

as needed. For the in particular, note that the above equality directly implies that rank(T ) = dim(im(T ))
= dim(T (im(ad(T )))) ≤ dim(ad(T )). Using again that ad(ad(T )) = T , we also have rank(ad(T )) ≤
rank(T ), which proves the desired equality rank(T ) = rank(ad(T )).

Proof of Proposition 2.11. Let Mij = (ei)⊤T (ΠUe
j), ∀i ∈ [m], j ∈ [n]. With this definition, clearly

Mx = T (ΠUx), ∀x ∈ Rn, and thus Mu = T (ΠUu) = T (u), ∀u ∈ U . We now check that im(M⊤) ⊆ U .
Since U⊥ = ker(ΠU ) ⊆ ker(M) by construction, we see that im(M⊤) = ker(M)⊥ ⊆ (U⊥)⊥ = U as
needed.

We now show uniqueness: if M̄u = T (u), ∀u ∈ U and im(M̄⊤) ⊆ U , then M = M̄. Let D = M− M̄
and examine DD⊤ei for i ∈ [m]. Since D⊤ei = M⊤ei − M̄⊤ei ∈ U , we have DD⊤ei = MD⊤ei −
M̄D⊤ei = T (D⊤ei)− T (D⊤ei) = 0m. In particular, 0 = (ei)⊤DD⊤ei =

∥∥D⊤ei
∥∥2, and thus D⊤ei = 0n,

∀i ∈ [m]. In particular, D = 0m×n and uniqueness follows. Therefore, M =M(T ), as needed.

The equality T (M(T )) = T
∣∣Rm

U
◦ ΠU

∣∣U
Rn follows directly from the above construction, recalling that

M(T )(x) = T (ΠU (x)), ∀x ∈ Rn.
We now prove the furthermore. Since im(M(T )⊤) ⊆ U by definition, we have U⊥ ⊆ ker(M(T )),

and hence im(M(T )) = M(T )(U + U⊥) = M(T )(U) = T (U) = im(T ), where the second to last
equality follows by definition ofM(T ). By Proposition 2.7, we have Rm = ker(M(T )⊤) + im(M(T )) =
ker(M(T )⊤) + im(T ). In particular, im(M(T )⊤) =M(T )⊤(ker(M(T )⊤) + im(T )) =M(T )⊤(im(T )) =
ad(T )(im(T )), where the last equality follows by Remark 2.6 and im(T ) ⊆ V . Since ker(ad(T ))+im(T ) =
V by Proposition 2.7, we similarly get that ad(T )(im(T )) = im(ad(T )), as needed.

A.1 Approximate Singular Subspaces

We now give the proof of Lemma 2.26, which relates the approximate singular subspaces of an operator
to those of its associated matrix.

Proof of Lemma 2.26. By Proposition 2.11, we have that T̄ (x) = T (ΠX(x)), ∀x ∈ Rn. Therefore, for all
x ∈ X⊥ we have T̄ (x) = T (ΠX(x)) = T (0n) = 0m, and hence X⊥ ⊆ ker(T̄ ).

We begin by proving (1). Firstly, ker(T ) = ker(T̄ ) ∩X ⊆ S ∩X by our assumption that ker(T̄ ) ⊆ S,
which proves the first inclusion. Using that X⊥ ⊆ ker(T̄ ) ⊆ S and orthogonal decomposition, we get the
desired first equality

ΠX(S) = X ∩ (S +X⊥) = X ∩ S.

We now claim that (S ∩X) +X⊥ = S. Using orthogonal decomposition again, this follows by

S ⊆ ΠX(S) +X⊥ = (S ∩X) +X⊥ ⊆ S + S = S. (127)

Using the above and X⊥ ⊆ ker(T̄ ), we get that σ1(T
∣∣
S∩X

) = σ1(T̄
∣∣
(S∩X)+X⊥) via the same argument as

in Remark 2.23. This yields σ1(T
∣∣
S∩X

) = σ1(T̄
∣∣
S
) by (127).

We now prove (2). Firstly, using that Rn = X + X⊥ and S = (S ∩ X) + X⊥, we have n =
dim(X) + dim(X⊥) and dim(S) = dim(S ∩X) + dim(X⊥). In particular,

n− dim(S) + 1 = dim(X)− dim(S ∩X) + 1. (128)

Therefore, using σ1(T
∣∣
S∩X

) = σ1(T̄
∣∣
S
) from part (1), we get that S is a ̺-approximate singular subspace

for T̄ of dimension d ≥ 0 if and only if S ∩ X is a ̺-approximate singular subspace for T of dimension
d− dim(X⊥).

We now prove the moreover. By Proposition 2.19, recall that σ+(T ) = σ+(M(T )) = σ+(T̄ ). Thus,
σ[dim(X)](T ) = σ[dim(X)](T̄ ) and σ[n]\[dim(X)](T̄ ) = 0[n]\[dim(X)]. Therefore, for τ ≥ 0,

Cσ
(
T̄ , τ

)
= Cσ (T, τ) + (n− dim(X)) = Cσ (T, τ) + dim(X⊥).

We now move on to the proof of Lemma 2.27, which shows that the orthogonal complement of an
approximate singular subspace is an approximate maximizer of (16) whenever there is a large enough
gap in the singular values. The proof will require the following two helper lemmas.
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Lemma A.1 (Subspace Projection Adjoints). Let S,U ⊆ Rn be subspaces. Then, ΠU

∣∣U
S
= ad(ΠS

∣∣S
U
). In

particular, σ+(ΠU

∣∣
S
) = σ+(ΠS

∣∣
U
) and if dim(U) = dim(S), then σ(ΠU

∣∣
S
) = σ(ΠS

∣∣
U
).

Proof. Let s ∈ S and u ∈ U . Then,
〈
s,ΠS

∣∣
U
(u)
〉
= 〈s,ΠS(u)〉 = 〈ΠS(s), u〉 = 〈s, u〉
= 〈s,ΠU (u)〉 = 〈ΠU (s), u〉 =

〈
ΠU

∣∣
S
(s), u

〉
.

This proves that ΠU

∣∣U
S
and ΠS

∣∣S
U
are adjoints of one another. The other statements follow from this and

Proposition 2.18.

Lemma A.2 (Singular Subspace Proximity). Let T : X → Y , X ⊆ Rn, Y ⊆ Rm be a linear oper-

ator with singular value decomposition M(T ) =
∑rank(T )

i=1 σi(T )yix
⊤
i as in Definition 2.16. Let S ⊆

X be a ̺-approximate singular subspace for T with dim(ker(T )) ≤ dim(S) < dim(X) and let U =
span(x1, . . . , xdim(X)−dim(S))

⊥ ∩X . Then, for all s ∈ S \ {0n} we have that

1 ≥ ‖ΠU (s)‖22
‖s‖22

≥ 1− ̺2
σdim(X)−dim(S)+1(T )

2

σdim(X)−dim(S)(T )2
.

Proof. The first inequality follows from properties of projections. We now prove the second inequality.
Recalling that rank(T ) + dim(ker(T )) = dim(X) and using that dim(ker(T )) ≤ dim(S) < dim(X), we
have 1 ≤ dim(X) − dim(S) ≤ rank(T ). Let Ū = span(x1, . . . , xdim(X)−dim(S)) = U⊥ ∩ X . Note that
T (Ū) = span(y1, . . . , ydim(X)−dim(S)) ⊥ span(ydim(X)−dim(S)+1, . . . , yrank(T )) = T (U). Therefore, for any
s ∈ S \ {0n} we have that

̺2σdim(X)−dim(S)+1(T )
2 ≥ ‖T (s)‖

2
2

‖s‖22
=
‖T (ΠU (s))‖22 + ‖T (ΠŪ (s))‖22

‖s‖22
≥ σmin(T

∣∣
Ū
)2
‖ΠŪ (s)‖22
‖s‖22

= σdim(X)−dim(S)(T )
2 ‖ΠŪ (s)‖22
‖s‖22

.

(129)

Noting that ‖s‖22 = ‖ΠU (s)‖22 + ‖ΠŪ (s)‖22 and reordering the terms gives the result, where the condition
dim(X) > dim(S) ≥ dim(ker(T )) ensures that σdim(X)−dim(S)(T ) ≥ σrank(T )(T ) > 0.

We are now ready to prove Lemma 2.27.

Proof of Lemma 2.27. If dim(S) < dim(ker(T )), then σdim(X)−dim(S)(T ) ≤
σrank(T )+1(T ) = 0 and there is nothing to prove. So assume dim(S) ≥ dim(ker(T )). Let U be as in

Lemma A.2. Recall that Ū = U⊥ ∩ X satisfies T (U) ⊥ T (Ū) and σmin(T
∣∣
Ū
) = σdim(X)−dim(S)(T ) by

construction. Furthermore, dim(S) = dim(U) and dim(S̄) = dim(Ū) = dim(X)−dim(S). From here, we
get that

σmin(T
∣∣
S̄
)2 = min

s̄∈S̄\{0}

‖T (s̄)‖22
‖s̄‖22

≥ min
s̄∈S̄\{0}

‖T (ΠŪ (s̄))‖22
‖s̄‖22

(
by T (U) ⊥ T (Ū)

)

≥ σdim(X)−dim(S)(T )
2 min
s̄∈S̄\{0}

‖ΠŪ (s̄)‖22
‖s̄‖22

(
as σmin(T

∣∣
Ū
) = σdim(X)−dim(S)(T )

)

= σdim(X)−dim(S)(T )
2

(
1− max

s̄∈S̄\{0}

‖ΠU (s̄)‖22
‖s̄‖22

) (
as S ⊆ U + Ū and U ⊥ Ū

)

= σdim(X)−dim(S)(T )
2

(
1− max

u∈U\{0}

‖ΠS̄(u)‖22
‖u‖22

)
(by Lemma A.1)

= σdim(X)−dim(S)(T )
2 min
u∈U\{0}

‖ΠS(u)‖22
‖u‖22

(
as U ⊆ S + S̄ and S ⊥ S̄

)

= σdim(X)−dim(S)(T )
2 min
s∈S\{0}

‖ΠU (s)‖22
‖s‖22

(by Lemma A.1)

≥ σdim(X)−dim(S)(T )
2

(
1− ̺2

σdim(X)−dim(S)+1(T )
2

σdim(X)−dim(S)(T )2

)
. (by Lemma A.2)

This proves the lemma.
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