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A B S T R A C T

This paper is concerned with upstreamness and downstreamness of industries and countries
in global value chains. Upstreamness and downstreamness measure respectively the average
distance of an industrial sector from final consumption and from primary factors of production,
and they are computed from the most used global Input–Output tables databases, e.g., the World
Input–Output Database (WIOD). Recently, Antràs and Chor reported a puzzling and counter-
intuitive finding in data from the period 1995-2011, namely that (at country level) upstreamness
appears to be positively correlated with downstreamness, with a correlation slope close to +1.
This effect is stable over time and across countries, and it has been confirmed and validated by
later analyses. We first analyze a simple model of random Input/Output tables, and we show
that, under minimal and realistic structural assumptions, there is a natural positive correlation
emerging between upstreamness and downstreamness of the same industrial sector/country,
with correlation slope equal to +1. This effect is robust against changes in the randomness of the
entries of the I-O table and different aggregation protocols. Secondly, we perform experiments
by randomly reshuffling the entries of the empirical I-O table where these puzzling correlations
are detected, in such a way that the global structural constraints are preserved. Again, we find
that the upstreamness and downstreamness of the same industrial sector/country are positively
correlated with slope close to +1, even though the random reshuffling has destroyed any
underlying economic information about inter-sectorial connections and trends. Our results –
rooted in the Complexity Science approach to economic problems – strongly suggest that (i)
extra care is needed when interpreting these measures as simple representations of each sector’s
positioning along the value chain, as the ‘‘curse of the input–output identities’’ and labor effects
effectively force the value chain to acquire additional links from primary factors of production,
and (ii) the empirically observed puzzling correlation may rather be a necessary consequence of
the few structural constraints (positive entries, and sub-stochasticity) that Input/Output tables
and their surrogates must meet, in turn making other proposed measures of sector inter-linkages
more suitable and intuitive.
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1. Introduction

The structure of national and international trade flows has undergone a dramatic transformation in the past decades. Under-
tanding how global value chains shape the exchange of goods and money at different scales (from industrial sectors to countries)
as become of central importance. Researches on these issues usually rely on Input–Output analysis — the field pioneered by
. Leontief (Leontief, 1986, 1936). This level of analysis is facilitated by the increasing availability and development of detailed

Input/Output (I–O) tables for each country (United Nations Department for Economic and Social Affairs Statistics Division, 1999;
Timmer et al., 2015).

To characterize the complexity of global value chains, metrics have been devised that take such empirical I–O tables as starting
point. In particular, Antràs and Chor (2012), Miller and Temurshoev (2015) and Fally (2012) introduced the notions of upstreamness
nd downstreamness to quantify the position of each economic sectors (and countries as a whole) with respect to final demand, and
rimary factors of production, respectively (see Section 2 for details).

In a recent paper that has attracted much attention, Antràs and Chor (2018) reported empirical observations of a puzzling
correlation existing between the upstreamness and downstreamness of several countries1 over many years (already noted in Miller
and Temurshoev (2015)). More precisely, they used data from the World Input–Output Database (WIOD) for the period 1995–2011,
nd observed that ‘‘countries that appear to be upstream according to their production-staging distance from final demand (U) are
t the same time recorded to be downstream according to their production-staging distance from primary factors (D)’’, meaning

that ‘‘countries that sell a disproportionate share of their output directly to final consumers (thus appearing to be downstream in
VCs according to U) tend to also feature high value-added over gross output ratios, reflecting a limited amount of intermediate

nputs embodied in their production (thus appearing to be upstream in GVCs according to D)’’. A scatter plot of upstreamness vs.
ownstreamness at country level shows an evident linear relation with slope close to +1, an effect that persisted in all years of their
ample — and that even intensified between 1995–2011 (see e.g. Figs. 4 and 5 in Antràs and Chor (2018)). Similar effects are then

shown also at the single country-industry level (see e.g. Fig. 10 in Antràs and Chor (2018)).
Several explanatory factors have been put forward in Antràs and Chor (2018) to make sense of these puzzling correlations,

otably the possible persistence of large trade barriers across countries — which is however ruled out, as trade costs were found to
ave fallen off significantly over the period 1995–2011 – and the growing importance of the service sectors, which typically feature
hort production chain lengths and little use of intermediate inputs in production. We also mention that the standard definitions of
pstreamness and downstreamness have been critically re-assessed, e.g. in Wang et al. (2017), and alternative measures put forward

there (see also (Colon et al., 2020) for an alternative proposal based on a dynamical model of supply chains rooted in evolutionary
game theory). Our analysis lends further support to the warning issued in Wang et al. (2017) concerning the subtleties involved in
the traditional measures of upstreamness and downstreamness when interpreted as simple proxies for a sector’s (country’s) mere
positioning along the GVC.

Besides looking at empirical data, it is sensible to corroborate the analysis with a complementary approach, namely the use
f random models of interconnected economies, which have had a long and fruitful history in econometric studies (Peterson and
linick, 1982; McNerney et al., 2021; McNerney, 2012; Kop Jansen, 1994; Kop Jansen and Ten Raa, 1990; Evans, 1954; Quandt,

1958; Simonovits, 1975; West, 1986; Kogelschatz, 2007; Kozicka, 2019; Katz and Burford, 1985; Burford, 1977; Drake, 1976; Phibbs
and Holsman, 1981; Jensen and Hewings, 1985,a; Burford and Katz, 1985b). The rationale is that whatever empirically observed
ffect survives randomization of the pairwise interaction between constituents cannot be due to any tailored and specific piece of
nformation carried by the data, but must instead be generic and only due to global and structural constraints. In this spirit, we
ropose to look at the reported puzzling correlations between upstreamness and downstreamness in Global Value Chains through the

prism of (i) a random model of I–O tables, whose entries are drawn independently at random from a given distribution, preserving a
few minimal structural constraints (essentially, non-negativity of the entries, and row sub-stochasticity2 of a closely related matrix,
see Section 2 below), for which the correlation between upstreamness and downstreamness can be tackled analytically, and (ii) a
randomized process whereby the columns of an empirical I-O table where such correlations were detected are randomly reshuffled,
herefore preserving the row sums of the original matrix. In both cases, we wish to see if randomization of the inter-sectorial

dependencies destroys such correlations, as it would be natural to expect if these were due to finely tuned and subtle economic
considerations. Contrary to our expectations, though, we find overwhelming evidence that it actually does not.

Investigating further the economic factors that lead to correlations as hard to destroy as difficult to make intuitive sense of, we
find that a crucial role is played by the input–output identities expressing the fundamental equilibrium rule that ‘‘outputs + final
demand’’ should perfectly balance ‘‘inputs + value added’’ at the sectorial level. We will refer in the following to such accounting
identity as input–output identity. Such identities not only generate a de facto denser graph of interactions between sectors, which in
turn tends to bring U and D closer to each other, but they also blur the natural interpretation one would expect to assign to these

easures (at least in simple GVC topologies), namely as proxies for the positioning of each sector along the production chain —
o that sectors closer to the final demand should have low 𝑈 but simultaneously high 𝐷, and vice versa for sectors closer to primary
actors of production. We will see that this natural intuition may actually fail even in simple examples, a further indication that
uch measures should collectively be interpreted with much caution.

1 The upstreamness (or downstreamness) of a country is a weighted average upstreamness (downstreamness) of the economic sectors of the country (see
ection 2 for details).

2 This means that the sum of elements in each row is smaller than or equal to 1.
2
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Fig. 1. Scheme of the structure of a single-country input–output table (Timmer et al., 2015; United Nations Department for Economic and Social Affairs Statistics
Division, 1999; Suganuma, 2016).

The paper is organized as follows. In Section 2 we provide the technical background, including the definition and interpretation of
upstreamness and downstreamness, and how these measures are constructed from the I–O table. In Section 3 we will analyze in detail
the simplest case of a linear production chain to show that the input–output identities (in the form of labor injected in the production
process) (i) forces the downstreamness values to deviate from the naïve interpretation of positioning index along the chain starting
from primary factors of production, and (ii) together with the non-negativity constraint on I-O matrix elements, it pushes U and D
to be more aligned with each other, effectively preventing these measures from pointing in opposite directions (as it would be quite
natural to expect) unless the production chain is truly trivialized – a set of consequences that we collectively dub ‘‘the curse of the
input–output identity’’. In Section 4 we first assume that the interaction matrix 𝐴 between sectors is a random matrix, and then we
construct the corresponding Upstreamness and Downstreamness matrices as well as the ‘‘covariance’’ and ‘‘slope’’ observables that
we can monitor numerically and compute analytically in some cases. In Section 5, we provide our analytical results on a random
model with exponential disorder, which shows that the scatter plot between upstreamness and downstreamness of the same sector
has necessarily slope +1 for any matrix size 𝑁 . These results are tested numerically in Section 6, along with numerical tests for other
distributions of the entries of 𝐴, all confirming the same conclusions. In Section 7 we perform our random reshuffling experiment
on empirical I–O matrices, which demonstrates that matrices satisfying the same structural constraints as the original one, but with
any real economic information about inter-sectorial relations being wiped out, still display the same strong correlations between
upstreamness and downstreamness as the original interaction matrix. Finally, in Section 7 we offer some critical discussion and
concluding remarks.

2. Definition of upstreamness and downstreamness

Antràs and Chor (2012) considered a closed economy of 𝑁 industries with no inventories — for instance, corresponding to a
hypothetical single country that does not trade with others. For each industrial sector 𝑖 ∈ {1, 2,… , 𝑁} the value of gross output
indicated with 𝑌𝑖 equals the sum of its use as a final good (𝐹𝑖) and its use as an intermediate input to other industries (𝑍𝑖)

𝑌𝑖 = 𝐹𝑖 +𝑍𝑖 = 𝐹𝑖 +
𝑁
∑

𝑗=1
𝑎𝑖𝑗 (1)

= 𝐹𝑖 +
𝑁
∑

𝑗=1
𝑑𝑖𝑗𝑌𝑗 . (2)

Here, 𝑎𝑖𝑗 is the total value in monetary units (e.g. US dollars) of 𝑖’s output used to produce 𝑗’s output, while 𝑑𝑖𝑗 is the amount of
monetary units of sector 𝑖’s output needed to produce one monetary unit’s worth of sector 𝑗’s output (see schematic structure of a
I–O matrix for a single country in Fig. 1).

Iterating the identity in (2), one obtains an infinite sequence of terms reflecting the use of sector 𝑖’s output at different level in
the value chain

𝑌𝑖 = 𝐹𝑖 +
𝑁
∑

𝑗=1
𝑑𝑖𝑗𝐹𝑗 +

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑑𝑖𝑘𝑑𝑘𝑗𝐹𝑗 + … . (3)

Using the matrix geometric series ∑

𝑘≥0 𝐷
𝑘 = [1𝑁 −𝐷]−1, we can eventually rewrite (3) as

𝒀 = [1𝑁 −𝐷]−1𝑭 , (4)

where 1𝑁 is the 𝑁 ×𝑁 identity matrix, 𝐷 = (𝑑𝑖𝑗 ) is the matrix of monetary units values, and 𝑭 the column vector of final demands.
Antràs and Chor (2012) therefore proposed the following measure of upstreamness of the 𝑖th industry, by multiplying each of

the terms in (3) by their distance from final use, and dividing by 𝑌𝑖

𝑈1𝑖 = 1 ⋅ 𝐹𝑖
𝑌𝑖

+ 2 ⋅
∑𝑁

𝑗=1 𝑑𝑖𝑗𝐹𝑗

𝑌𝑖
+ 3 ⋅

∑𝑁
𝑗 ,𝑘=1 𝑑𝑖𝑘𝑑𝑘𝑗𝐹𝑗

𝑌𝑖
+⋯ =

([1𝑁 −𝐷]−2𝑭 )𝑖
𝑌𝑖

, (5)

where (⋅) indicates the 𝑖th component of the vector.
3

𝑖
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Inserting (4) into (5), we can rewrite the upstreamness vector as

𝑼 1 = [1𝑁 − 𝐴𝑈 ]−1𝟏, (6)

where

𝐴𝑈 = 𝑌 −1𝐴 =

⎛

⎜

⎜

⎜

⎝

𝑎11
𝑌1

⋯ 𝑎1𝑁
𝑌1

⋮ ⋱ ⋮
𝑎𝑁1
𝑌𝑁

⋯ 𝑎𝑁 𝑁
𝑌𝑁

⎞

⎟

⎟

⎟

⎠

(7)

and 𝑌 = diag(𝑌1,… , 𝑌𝑁 ). The matrix 𝐴𝑈 has therefore non-negative elements, and is row-substochastic (∑𝑗 (𝐴𝑈 )𝑖𝑗 ≤ 1 for all sectors
𝑗) because (𝐴𝑈 )𝑖𝑗 = 𝑑𝑖𝑗𝑌𝑗∕𝑌𝑖 is the share of sector 𝑖’s total output that is purchased by industry 𝑗.

The upstreamness is defined in such a way that terms of the sum that are further upstream in the value chain have larger weight.
y construction 𝑈1𝑖 ≥ 1 and is precisely equal to 1 if no output of industry 𝑖 is used as input to other industries, that is the output
f industry 𝑖 is only used to satisfy the final demand.

Antràs et al. (2012) later established an equivalence between their upstreamness measure and a measure – defined in a recursive
ashion – of the ‘‘distance’’ of an industry from the final demand proposed independently by Fally (2012). Fally’s upstreamness 𝑈2
s defined as follows:

𝑈2𝑖 = 1 +
𝑁
∑

𝑗=1

𝑑𝑖𝑗𝑌𝑗
𝑌𝑖

𝑈2𝑗 . (8)

The idea is that 𝑼 2 aggregates information on the extent to which a sector in a given country produces goods that are sold directly
to final consumers or that are sold to other sectors that themselves sell largely to final consumers. Sectors selling a large share of
their output to relatively upstream industries should be therefore relatively upstream themselves. Using the fact that 𝑑𝑖𝑗𝑌𝑗 = 𝑎𝑖𝑗 we
have again that

𝑼 2 = [1𝑁 − 𝐴𝑈 ]−1𝟏, (9)

where 𝐴𝑈 is defined in (7). In Antràs and Chor (2018) an application of those measures for the analysis of empirical data on global
value chains is presented.

On the input-side, there is an input–output accounting identity that sector 𝑖’s total input 𝑌𝑖 be equal to the value of its primary
factors of production (value added) 𝑉𝑖 plus its intermediate input purchases from all other sectors:

𝑌𝑖 = 𝑉𝑖 +𝑍𝑖 = 𝑉𝑖 +
𝑁
∑

𝑗=1
𝑎𝑗 𝑖 = 𝑉𝑖 +

𝑁
∑

𝑗=1
𝑑𝑗 𝑖𝑌𝑗 , (10)

or in vector/matrix form

𝒀 = [1𝑁 −𝐷𝑇 ]−1𝑽 . (11)

Similarly to Antràs and Chor (2012) (see (5)), Miller and Temurshoev (2015) introduced the so-called downstreamness measuring
the average distance between suppliers of primary factors of production and sectors as input purchasers, along the input demand
chain as follows

𝐷1𝑖 = 1 ⋅ 𝑉𝑖
𝑌𝑖

+ 2 ⋅
∑𝑁

𝑗=1 𝑉𝑗𝑑𝑗 𝑖
𝑌𝑖

+ 3 ⋅
∑𝑁

𝑗 ,𝑘=1 𝑉𝑗𝑑𝑗 𝑘𝑑𝑘𝑖
𝑌𝑖

+⋯ =
([1𝑁 −𝐷𝑇 ]−2𝑽 )𝑖

𝑌𝑖
. (12)

As before, using (11), we obtain

𝑫1 = [1𝑁 − 𝐴𝐷]−1𝟏 (13)

with

𝐴𝐷 = (𝐴𝑌 −1)𝑇 =

⎛

⎜

⎜

⎜

⎝

𝑎11
𝑌1

⋯ 𝑎𝑁1
𝑌1

⋮ ⋱ ⋮
𝑎1𝑁
𝑌𝑁

⋯ 𝑎𝑁 𝑁
𝑌𝑁

⎞

⎟

⎟

⎟

⎠

. (14)

Also the matrix 𝐴𝐷 has therefore non-negative elements, and is row-substochastic (∑𝑗 (𝐴𝐷)𝑖𝑗 ≤ 1 for all sectors 𝑗). It is worth noting
hat by construction the matrices 𝐴𝑈 and 𝐴𝐷 share the diagonal elements 𝑎𝑖𝑖∕𝑌𝑖.

Finally, as in the upstreamness case, also for the downstreamness, Fally (2012) introduced an analogous iterative definition of
the form

𝐷2𝑖 = 1 +
𝑁
∑

𝑗=1
𝑑𝑗 𝑖𝐷2𝑗 , (15)

which can be again mapped with simple manipulations into Eq. (13) using 𝑌𝑖𝑑𝑗 𝑖 = 𝑎𝑗 𝑖.
The I–O Table in Fig. 1 can be modified in a conceptually simple way to account for inter-country trade by accommodating

different inter-sectorial blocks (one for each country) – see scheme in Fig. 1 of Antràs and Chor (2018). The upstreamness (or
downstreamness) of a country is then a suitably averaged (aggregate) version of the upstreamness (or downstreamness) of all
industrial sectors of that country. In principle, there are two different ways to perform this aggregation. First, one could take the
4
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Fig. 2. Schematic representation of a production chain of five sectors, where each sector receives goods from a single other sector (or primary factors of
production, in the case of 5), and transfer it to another one (or to the consumer to meet the Final Demand, in the case of 1).

‘‘giant’’ I–O table and collapse its entries at the country-by-country level by computing the total purchases of intermediate inputs by
country 𝑗 from country 𝑖 – and then compute the upstreamness and the downstreamness on the collapsed (aggregate) table. Or, one
could keep working with the giant table, compute the upstreamness and the downstreamness of industrial sectors within a country,
and then perform a suitable average of those at country level. In Antràs and Chor (2018), the two approaches were found to deliver
extremely highly correlated country-level indices of GVC positioning.

3. The curse of the input–output identity

In this Section, we illustrate a few subtleties with the interpretation of upstreamness and downstreamness defined earlier as
simple indicators of a sector’s positioning along the production process by considering the simplest example of a production (linear)
chain, where sectors are arranged as in Fig. 2.

Each sector receives goods as input from a single other sector, while sector 1 sells directly to final consumers, and sector 5
handles primary factors of production directly.

In such a simple geometry, we would expect to be able to read off the upstreamness (𝑼 1 = (1, 2, 3, 4, 5)𝑇 ) and downstreamness
(𝑫1 = (5, 4, 3, 2, 1)𝑇 ) values of each sector by simply identifying their positioning along the production chain with respect to final
consumers and primary factors of production, respectively. However, we will see shortly that this natural expectation is violated
even in this simple geometry due to the input–output identity (i.e. the need to take into account labor injected in the production
chain at every step).

The I-O matrix 𝐴 that corresponds to the chain in Fig. 2 reads

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
𝑎21 0 0 0 0
0 𝑎32 0 0 0
0 0 𝑎43 0 0
0 0 0 𝑎54 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (16)

with corresponding final demand vector 𝑭 = (𝐹1, 0, 0, 0, 0)𝑇 , with 𝐹1 ≠ 0, to reflect the fact that the sector 1 does not transfer output
to any other sectors, but only to the final consumer, while all other sectors do not interact directly with the final consumer. As a
consequence, the matrices 𝐴𝑈 and 𝐴𝐷 defined in Eqs. (7) and (14) read

𝐴𝑈 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(17)

and

𝐴𝐷 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 𝑎21∕𝐹1 0 0 0
0 0 𝑎32∕𝑎21 0 0
0 0 0 𝑎43∕𝑎32 0
0 0 0 0 𝑎54∕𝑎43
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (18)

Interestingly, by imposing the chain topology from the viewpoint of interaction with final consumer (i.e. fixing the vector of final
demands while leaving the value added vector 𝑽 unconstrained), we trivialize the matrix 𝐴𝑈 (killing any parametric dependence
on the actual ‘‘weights’’ of the goods transferred along the chain).

We can now compute the upstreamness and downstreamness vectors 𝑼 1 and 𝑫1 from the definitions in Eqs. (6) and (13) obtaining

𝑼 1 = (1, 2, 3, 4, 5)𝑇 (19)

𝑫1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

1 + 𝑎21
𝐹1

+ 𝑎32
𝐹1

+ 𝑎43
𝐹1

+ 𝑎54
𝐹1

1 + 𝑎32
𝑎21

+ 𝑎43
𝑎21

+ 𝑎54
𝑎21

1 + 𝑎43
𝑎32

+ 𝑎54
𝑎32

1 + 𝑎54
𝑎43

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

. (20)
5
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Fig. 3. Schematic representation of the same production chain of five sectors as in Fig. 2, this time including the value added at each node, for instance in the
form of labor utilized to process goods.

Perhaps unexpectedly, while the upstreamness vector precisely returns the positioning of each vector along the chain with respect
to final consumers, the downstreamness vector has a more complicated and less intelligible structure, which does not match our
naïve expectation 𝑫1 = (5, 4, 3, 2, 1)𝑇 . Incidentally, this point was mentioned in passing also in the paper (Wang et al., 2017), where
the authors stated: ‘‘Curiously, sector rankings by ‘‘upstreamness’’ and ‘‘downstreamness’’ measures do not coincide with each other.
This implies certain inconsistency in the way that these measures are defined’’.

It is interesting to further stress the following:

1. We have so far ignored the input–output identities (1) and (10) that further imply

𝑉𝑖 +
𝑁
∑

𝑗=1
𝑎𝑗 𝑖 = 𝐹𝑖 +

𝑁
∑

𝑗=1
𝑎𝑖𝑗 (21)

for every sector 𝑖. Specializing to our linear chain, we obtain the following set of identities

𝑉1 + 𝑎21 = 𝐹1

𝑉2 + 𝑎32 = 𝑎21
𝑉3 + 𝑎43 = 𝑎32
𝑉4 + 𝑎54 = 𝑎43

𝑉5 = 𝑎54, (22)

which can be visually represented as additional directed links (see Fig. 3).
2. The ‘‘natural’’ downstreamness vector 𝑫1 = (5, 4, 3, 2, 1)𝑇 (representing simply the positioning of sectors along the chain with

respect to primary factors of production) could be obtained from (20) only if 𝑎21 = 𝑎32 = 𝑎43 = 𝑎54 = 𝐹1, which would in turn
imply 𝑉1 = 𝑉2 = 𝑉3 = 𝑉4 = 0 and 𝑉5 ≠ 0 from the input–output identities above. This is a highly degenerate case where sector
5 handles primary factors of production and then transfer them seamlessly along the chain, with all other sectors playing just
the role of ‘‘paper pushers’’ until the unprocessed goods reach the final consumer. In all other cases where sectors actually
operate injecting labor on the incoming goods, the downstreamness level of each sector may get distorted compared to their
basic positioning, to the point that even the relative ordering between sectors (e.g. sector 1 should be more downstream than
sector 3) may be subverted. Take for instance 𝑎21 = 1.5, 𝑎32 = 𝛼 𝑎21, 𝑎43 = 𝛼2𝑎21, 𝑎54 = 𝛼3𝑎21, with 𝛼 = 1∕3 and 𝐹1 = 100. This
choice leads to the downstreamness of sector 1 to be lower than that of sectors 2, 3, 4, which seems paradoxical at first sight.
However, this happens because the input–output identities (22) force 𝑉1 to be ∼ 100 times larger than 𝑉2, and ∼ 1000 times
larger than 𝑉3 and 𝑉4: a large external demand, coupled with a relatively low volume of incoming goods to process, forces a
strong demand for labor at sector 1, which in turn considerably lowers its expected downstreamness value given its position
along the chain (farthest sector from primary factors of production).

In summary, this simple example already shows that 𝑈 and 𝐷 do not simply reflect the positioning of a sector (even along a linear
production chain), since the input–output identities force an effectively denser network geometry, with extra links corresponding
to value added injected at each step (compare Figs. 2 and 3).

Moreover, we can study the 𝑈 -𝐷 Pearson correlation coefficient 𝜌 ∈ [−1, 1]. At least in this simple geometry, we should expect a
(maximally) negative correlation (close to −1), irrespective of the actual production parameters — as sectors closer to final demand
appear to be automatically farther from primary factors of production. Surprisingly, we find that the economic parameters can be
chosen to produce any value of 𝜌 (including positive values!): a sector can therefore be simultaneously quite upstream with respect
to final demand, and quite downstream with respect to primary factors of production, unless there is no value added along the chain
(the ‘‘paper pushers’’ scenario described above), in which the two measures are perfectly anticorrelated (see below).

To make the calculation more transparent, we put ourselves in a simplified scenario and take 𝑎21 as reference point, setting
𝑎32 = 𝑎54 = 𝛼 𝑎21, 𝑎43 = 𝛽 𝑎21, and 𝑎21∕𝐹1 = 𝑡. The input–output identities (22) force the elementary constraints 0 ≤ 𝛼 , 𝛽 , 𝑡 ≤ 1. The
Pearson correlation coefficient 𝜌 has a lengthy but fully explicit expression as a function of 𝛼 , 𝛽 , 𝑡, given by 𝜌 = 𝛺1∕𝛺2, with

𝛺1 = 𝛼 − 2𝛼 𝛽(2𝑡 + 1) − 𝛽(𝛽 + 2(𝛽 + 1)𝑡) (23)

and

𝛺2 = 2𝛽
[

𝛼2
(

2 − 2𝛽
+ 8

)

+
2𝛽2

+ 𝛼
(

8𝛽 − 1 − 3
)

6

𝛽2 𝛼2 𝛽



Journal of Economic Behavior and Organization 233 (2025) 106945S. Bartolucci et al.
Fig. 4. U-D Pearson correlation coefficient 𝜌 for the simplified scenario described in the main text, with 𝑡 = 1∕3, as a function of 𝛼 and 𝛽.

Fig. 5. Minimal value of the 𝑈 -𝐷 Pearson correlation coefficient as a function of 𝑡. For 𝑡 strictly smaller than 1, 𝜌 is lower bounded away from −1.

−
(𝛽 − 4)𝛽

𝛼
+ 𝛽(2𝛽 − 3) + 2𝑡2(2𝛼 + 𝛽 + 1)2 − 𝑡(2𝛼 + 𝛽 + 1) (𝛼2(2𝛽 + 1) + 𝛼 𝛽(𝛽 + 1) + 𝛽2

)

𝛼 𝛽 + 1
]1∕2

,

which can be plotted and analyzed in detail (see Fig. 4 for 𝑡 = 1∕3).
First, we observe that the limit 𝑡, 𝛼 , 𝛽 → 1 corresponds to sending all added values 𝑉𝑖 to zero, reproducing the ‘‘paper pusher’’

scenario described above: in this case, the Pearson correlation coefficient 𝜌 correctly tends to −1, signaling that in this case U and
D are maximally anti-correlated (the closest sector to final demand must be the farthest sector from primary factors of production).

However, a more striking observation is that, for 𝑡 strictly smaller than 1, the minimum value of 𝜌 (while still negative), is
bounded away from −1 (see Fig. 5), which means that having just 𝑉1 strictly larger than zero is already enough to push U and D
closer to each other. Moreover, the maximum value of 𝜌 = 1∕2

√

2 ≈ 0.3535... – obtained for vanishing 𝛽, irrespective of 𝛼 , 𝑡 – is
positive (and all intermediate values are possible). So, even in a perfectly linear chain, where the positioning of a sector according
to final demand should be perfectly specular to its positioning according to primary factors of production, it is eminently possible
to have U and D weakly anti-correlated, uncorrelated, or even positively correlated instead, for instance provided one of the links
is sufficiently weak that the value added at the corresponding node must ‘‘step up’’ to improve the flow along the chain.

In summary, the simple ‘‘chain’’ geometry already shows that the natural interpretation of U and D as measures of each sector’s
positioning along the production process must be handled with care, and that a positive correlation between the two (or at least
a much weaker anti-correlation than one might naïvely expect) may naturally arise because of the effectively denser structure of
the production chain once value added (e.g. in the form of labor) is included in the picture due to the input–output identities (22).
In this context, it is worth highlighting that this ‘‘weakened anti-correlation’’ was precisely at the heart of a different proposal to
measure the relative positioning of a sector within GVC, put forward in Wang et al. (2017). Citing (Wang et al., 2017) again: ‘‘We
propose a new production position measure as the relative distance of a particular production stage (country-sector) to the both ends3

of a value chain. Using our definitions, the sector ranking by upstreamness and downstreamness would be exactly inversely related.

3 Italics added for emphasis.
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This removes one inconsistency with the existing measures in the literature. ’’
In the next sections, we will further investigate these correlations in the framework of randomized GVC models.

4. The random model

Our randomized model is based on the closed-economy paradigm described in Section 2, and it assumes that the 𝑁 × 𝑁
matrices 𝐴𝑈 and 𝐴𝐷 (defined in Eqs. (7) and (14), respectively) are generated from a random interaction matrix 𝐴 between sectors,
.e. without any structural information about the underlying dynamics of goods and prices apart from the constraint that their entries
e non-negative, and that the matrices be row-substochastic. See Section 4.2 for the precise definition of the random model.

4.1. Covariance and slope

Assuming therefore that the underlying model for the interaction matrix 𝐴 is random, the covariance between the upstreamness
𝑼 1)𝑖 and downstreamness (𝑫1)𝑖 (defined in Eqs. (6) and (13), respectively) of the same 𝑖th sector is

Cov((𝑼 1)𝑖, (𝑫1)𝑖) = E
[

(𝑼 1)𝑖(𝑫1)𝑖
]

− E[(𝑼 1)𝑖]E[(𝑫1)𝑖], (24)

where the expectation E[⋅] is taken w.r.t. the joint probability density function (pdf) of the entries of the matrix 𝐴 (from which
𝐴𝑈 and 𝐴𝐷 are constructed). Since the upstreamness and downstreamness are defined in terms of a complicated matrix inversion,
computing the covariance in Eq. (24) is a non-trivial task even for very simple joint pdfs of the entries of 𝐴.

However, we can take advantage of the results in Bartolucci et al. (2025, 2023), which demonstrated that the ‘‘true’’
pstreamness and downstreamness (as defined in Eqs. (6) and (13), respectively) for sufficiently dense matrices are individually
orrelated with simpler rank-1 estimators

�̃�𝑖 = 1 + 𝑟𝑖
1 − (1∕𝑁)

∑

𝑗 𝑟𝑗
(25)

�̃�𝑖 = 1 + 𝑟′𝑖
1 − (1∕𝑁)

∑

𝑗 𝑟
′
𝑗
, (26)

where 𝑟𝑖 =
∑

𝑗 (𝐴𝑈 )𝑖𝑗 are the row sums of 𝐴𝑈 , and 𝑟′𝑖 =
∑

𝑗 (𝐴𝐷)𝑖𝑗 are the row sums of 𝐴𝐷.
It is therefore sufficient to compute the covariance between the simpler estimators

Cov(�̃�𝑖, �̃�𝑖) = E[�̃�𝑖�̃�𝑖] − E[�̃�𝑖]E[�̃�𝑖] (27)

to draw meaningful conclusions about the covariance between upstreamness and downstreamness as originally defined.
Noting that the quantities (1∕𝑁)

∑

𝑗 𝑟𝑗 and (1∕𝑁)
∑

𝑗 𝑟
′
𝑗 quickly converge to their non-fluctuating averages E[𝑟] and E[𝑟′] by virtue

f the Law of Large Numbers (LLN), we make the further simplifying move to replace these quantities with their non-fluctuating
verages directly in the calculation of the covariance Eq. (27).4 Therefore, our covariance of interest reduces to the following object

𝑁 = E[𝑟𝑟′] − E[𝑟]E[𝑟′]
(1 − E[𝑟])(1 − E[𝑟′])

, (28)

where we omitted the 𝑖-dependence (as every sector is statistically equivalent to any other in our random models). Therefore, 𝑟 and
𝑟′ can be viewed as the sum of, say, the first row of 𝐴𝑈 and 𝐴𝐷, respectively.

We check with numerical simulations in Figs. 6 and 7 that indeed our conclusions are not affected by the fact that we considered
simpler estimators in lieu of the original observables, as the former are perfectly correlated with the latter.

The slope 𝑆 of the scatter plot between �̃�𝑖 and �̃�𝑖 is easily determined from Eq. (27) by assuming first that there be a linear
relation between the two, �̃�𝑖 = 𝑆�̃�𝑖, and substituting in the expression for the covariance Eq. (27) we get

Cov(�̃�𝑖, �̃�𝑖) = 𝑆
{

E[�̃�2
𝑖 ] − E[�̃�𝑖]2

}

, (29)

from which we deduce

𝑆 =
Cov(�̃�𝑖, �̃�𝑖)
Var [�̃�𝑖]

, (30)

where Var [�̃�𝑖] = E[�̃�2
𝑖 ] − E[�̃�𝑖]2 is the variance of the approximate upstreamness.

Making again the further approximation that (1∕𝑁)
∑

𝑗 𝑟𝑗 is replaced with its non-fluctuating average E[𝑟] by virtue of the LLN,
nd after simple algebra from Eq. (27), we have that the slope 𝑆 can be approximated by

𝑆 =
𝑁 (1 − E[𝑟])2

E[𝑟2] − E[𝑟]2
. (31)

4 More precisely, we make the approximation E
[

𝑟𝑖
∑

]

≈ E[𝑟] , and similarly for 𝑟′.
8
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Fig. 6. Scatter plot of the approximate upstreamness (Eq. (25)) vs. the ‘‘true’’ upstreamness (𝑼 1)𝑖 for our random model with exponential disorder. The parameters
used are 𝜇 = 1, 𝜇𝐹 = 0.1, 𝑁 = 100, 𝑖 = 7. There are 1000 pairs of points in the figure, each obtained from a different instance of the random matrix 𝐴 with
exponential disorder.

Fig. 7. Scatter plot of the approximate downstreamness (Eq. (26)) vs. the ‘‘true’’ downstreamness (𝑫1)𝑖 for our random model with exponential disorder. The
parameters used are 𝜇 = 1, 𝜇𝐹 = 0.01, 𝑁 = 100, 𝑖 = 7. There are 1000 pairs of points in the figure, each obtained from a different instance of the random matrix
𝐴 with exponential disorder.

Fig. 8. Scatter plot between upstreamness and downstreamness of sector 𝑖 = 7 for the 𝑁 = 200 random model with exponential disorder with parameters 𝜇 = 1,
𝜇𝐹 = 0.005. Each of the 1000 blue [red] points is obtained from one instance of the random ‘‘source’’ matrix 𝐴, and represents the pair of values ((𝑼 1)𝑖 , (𝑫1)𝑖)
[(�̃�𝑖 , �̃�𝑖), respectively]. The thick black line has slope +1. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
9
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4.2. Model definition

In the random model we consider that the entries of 𝐴 are drawn independently from an exponential pdf 𝑝(𝑎) = 𝜇 exp(−𝜇 𝑎) with
mean 1∕𝜇. As such, the entries of 𝐴 are all positive, and no economic or empirically motivated information whatsoever is injected
n the construction of 𝐴. The final demand values 𝐹𝑖 (𝑖 = 1,… , 𝑁) are further modeled as i.i.d. exponential random variables with
ean 1∕𝜇𝐹 . The choice of an exponential pdf for the entries of the random model instead of a fatter distribution, closer to the

empirical one (see Section 7 below) makes the analytical calculations simpler and the interpretation of results more transparent.
However, we tested numerically that the results remain robust even for other distributions (for which we do not provide an analytical
treatment), therefore we can safely conclude that the choice of an exponential pdf is not in any way unduly restrictive or affecting
the trustworthiness of our conclusions.

From the matrix 𝐴, we construct the matrices 𝐴𝑈 and 𝐴𝐷 (see Eq. (7) and (14), together with the definition of 𝑌𝑖 in Eq. (1)) as

(𝐴𝑈 )𝑖𝑗 =
𝑎𝑖𝑗

∑

𝑗 𝑎𝑖𝑗 + 𝐹𝑖
(32)

(𝐴𝐷)𝑖𝑗 =
𝑎𝑗 𝑖

∑

𝑗 𝑎𝑖𝑗 + 𝐹𝑖
, (33)

where we used that ∑

𝑗 𝑎𝑖𝑗 + 𝐹𝑖 =
∑

𝑗 𝑎𝑗 𝑖 + 𝑉𝑖 for all 𝑖, as follows from the input–output identities. Therefore, both 𝐴𝑈 and 𝐴𝐷 as
defined above have non-negative elements, and are row sub-stochastic (as they should), provided that 𝜇𝐹 is sufficiently small. This
condition 𝜇𝐹 ≪ 𝜇 is necessary to ensure that 𝐹𝑖’s will be (typically) large enough to make ∑

𝑗 (𝐴𝐷)𝑖𝑗 in (33) smaller than 1.
For each instance of the random matrix 𝐴 and of the vector of final demands 𝑭 , we construct the matrices 𝐴𝑈 and 𝐴𝐷 as above,

and from those we compute the pairs (𝑼 1)𝑖, (𝑫1)𝑖 and �̃�𝑖, �̃�𝑖 for any sector 𝑖 that we choose. These are all random variables, whose
pairwise covariance is of interest in this paper.

5. Results

Our results are summarized in the theorem and corollary below. We show that even in our completely random model (with
o economic or empirically motivated information whatsoever injected in constructing the I-O table), the upstreamness and
ownstreamness of an industrial sector of a single country are necessarily positively correlated, and that for any 𝑁 the slope of
he scatter plot between the two is always equal to +1.

In Figs. 9 and 10 we further numerically check that our results do not crucially depend on the specific choice of the way the
random matrices 𝐴𝑈 and 𝐴𝐷 are generated, so the positive correlation between upstreamness and downstreamness of economic
sectors – and their correlation slope being +1 – seem to be very robust results and rather insensitive to the fine details of the
inter-sectorial I-O matrix, unless the matrix is exceedingly sparse and/or it represents a very ad hoc structure (e.g. the linear chain
of Section 3), which of course occur with zero likelihood in the random model.

Theorem 1. Let 𝑁 ×𝑁 matrices be defined as

(𝐴𝑈 )𝑖𝑗 =
𝑎𝑖𝑗

∑

𝑗 𝑎𝑖𝑗 + 𝐹𝑖
(34)

(𝐴𝐷)𝑖𝑗 =
𝑎𝑗 𝑖

∑

𝑗 𝑎𝑖𝑗 + 𝐹𝑖
, (35)

where 𝑎𝑖𝑗 are i.i.d. variables drawn from an exponential pdf 𝑝(𝑎) = 𝜇 exp(−𝜇 𝑎), and the 𝐹𝑖’s are i.i.d. variables drawn from an exponential
pdf 𝑝𝐹 (𝐹 ) = 𝜇𝐹 exp(−𝜇𝐹𝐹 ) with 𝜇𝐹 ≪ 𝜇 to ensure that 𝐴𝑈 and 𝐴𝐷 are row sub-stochastic. Let 𝑟 = ∑

𝑗 (𝐴𝑈 )1𝑗 and 𝑟′ =
∑

𝑗 (𝐴𝐷)1𝑗 . Then
the simplified covariance between upstreamness and downstreamness (see Eq. (28))

𝑁 (𝜇 , 𝜇𝐹 ) =
E[𝑟𝑟′] − E[𝑟]E[𝑟′]
(1 − E[𝑟])(1 − E[𝑟′])

(36)

is given by the exact formula 𝑁 (𝜇 , 𝜇𝐹 ) = −𝑁 (𝜙)∕𝑁 (𝜙), where

𝑁 (𝜙) = (𝜙 − 1) [𝑁(𝜙 − 1)B(1, 𝑁 + 1)2 2𝐹1(1, 𝑁 + 1;𝑁 + 2;𝜙)2 + (𝑁 − 1)𝑁(𝜙 − 1)
× B(1, 𝑁 + 1) 2𝐹1(1, 𝑁 + 1;𝑁 + 2;𝜙)(B(1, 𝑁) 2𝐹1(1, 𝑁 ;𝑁 + 1;𝜙) + 1) + (𝑁 + 1)(𝜙 − 1)B(1, 𝑁 + 2) 2𝐹1(1, 𝑁 + 2;𝑁 + 3;𝜙) +𝑁

]

𝑁 (𝜙) = ((𝑁 − 1)(𝜙 − 1)B(1, 𝑁) 2𝐹1(1, 𝑁 ;𝑁 + 1;𝜙) + (𝜙 − 1)B(1, 𝑁 + 1) 2𝐹1(1, 𝑁 + 1;𝑁 + 2;𝜙) + 1)
× (𝑁(𝜙 − 1)B(1, 𝑁 + 1) 2𝐹1(1, 𝑁 + 1;𝑁 + 2;𝜙) + 1),

where 𝜙 = 1 − 𝜇𝐹 ∕𝜇. Here, B(𝑥, 𝑦) = 𝛤 (𝑥)𝛤 (𝑦)∕𝛤 (𝑥 + 𝑦) is the Beta function, and 2𝐹1 is the Gaussian hypergeometric function.

Corollary 1. In the hypotheses of Theorem 1, the slope 𝑆(𝜇 , 𝜇𝐹 ) of the scatter plot between the rank-1 estimators of downstreamness and
upstreamness (see Eq. (31)) is equal to +1 for any 𝑁 , irrespective of the values of 𝜇 , 𝜇𝐹 .

The proofs are deferred to the Appendix.
10
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Table 1
Covariance between Upstreamness and Downstreamness in the random model for 𝑖 = 7 and taken over 𝑚 = 10000 samples.
𝜇 𝜇𝐹 𝑁 Cov((𝑼 1)𝑖 , (𝑫1)𝑖) 𝑁 (𝜇 , 𝜇𝐹 )

1 0.001 200 0.10450 0.10385
2 0.005 400 0.30415 0.29494
3 0.001 300 0.06136 0.06158
1.2 0.001 500 0.17346 0.17260
1.5 0.003 350 0.24224 0.23955

Fig. 9. Scatter plot between upstreamness and downstreamness of sector 𝑖 = 7 for the 𝑁 = 400 random model with log-normal disorder with parameters 𝜇′ = 1,
𝜇′
𝐹 = 6.67. Each of the 1000 light blue [orange] points is obtained from one instance of the random ‘‘source’’ matrix 𝐴, and represents the pair of values

((𝑼 1)𝑖 , (𝑫1)𝑖) [(�̃�𝑖 , �̃�𝑖), respectively]. The thick black line has slope +1. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

6. Numerical simulations

We have performed numerical simulations on our random model, generating 𝑚 instances of the 𝑁 × 𝑁 matrix 𝐴 with i.i.d.
exponential entries with mean 1∕𝜇. We also generate random vectors of final demands 𝑭 of size 𝑁 , with i.i.d. entries with mean
∕𝜇𝐹 (with 𝜇𝐹 ≪ 𝜇).

For each generated instance of the matrix 𝐴, we formed the matrices 𝐴𝑈 and 𝐴𝐷 (as defined in Eqs. (7) and (14)), which have
by construction non-negative elements, and are row sub-stochastic.5

From the matrices 𝐴𝑈 and 𝐴𝐷 so generated, we constructed the vectors of upstreamness 𝑼 1 and downstreamness 𝑫1 values
according to the inversion formulae Eq. (6) and (13), respectively. We then pick a certain sector index 𝑖 (for example, 𝑖 = 7), and
or that index we compute the estimators �̃�𝑖 and �̃�𝑖 according to Eqs. (25) and (26) respectively.

We first show in Figs. 6 and 7 that the ‘‘true’’ upstreamness (downstreamness) of sector 𝑖 – computed from the full inversion
formulae – is perfectly correlated (with correlation slope = +1) with its approximate estimator. It is therefore perfectly justified to
se the approximate estimators (instead of the full definition) to study correlations, as those are much simpler to handle analytically.

Next, in Table 1, we report values of the ‘‘true’’ covariance between upstreamness and downstreamness of sector 𝑖 = 7, obtained
from averaging over 𝑚 = 10000 numerically generated instances of our random model, against the values of 𝑁 (𝜇 , 𝜇𝐹 ) analytically
omputed, and we observe an excellent agreement between the two.

In Fig. 8 we further provide scatter plots of upstreamness vs. downstreamness of sector 𝑖 (both ‘‘true’’ and approximate) - where
ach generated instance contributes a single point to the scatter plot. Again, we observe an excellent collapse onto the diagonal line
ith slope +1, further confirming that a strong positive correlation between upstreamness and downstreamness of the same sector

s a generic feature of ‘‘structure-less’’ matrices — provided they have non-negative entries and are sub-stochastic.
Moreover, in Figs. 9 and 10 we provide the same scatter plots as in Fig. 8, but this time for the ‘‘original’’ matrix 𝐴 (and similarly

or the vector 𝑭 ) having i.i.d. non-negative entries drawn from a log-normal (𝑝(𝑎) = (𝑎
√

2𝜋)−1 exp(−(ln(𝑎) −𝜇′)2∕2)) and uniform (with
mean 1∕𝜇 and 1∕𝜇𝐹 ) pdf, respectively. Although we do not provide analytical results for these cases, these plots further confirm that
the positive correlation with slope +1 between upstreamness and downstreamness keeps holding irrespective of the precise details
of the way the ‘‘source’’ matrix 𝐴 is generated — provided that 𝐴𝑈 and 𝐴𝐷 are non-negative and sub-stochastic.

In other experiments, we have further tested the effect of (random) ‘‘sparsification’’ of the matrix 𝐴, where elements of the
random matrix 𝐴 were set to zero with a certain probability 1 − 𝑝. Computing the Pearson correlation coefficient between U and D

5 For 𝐴 substochasticity is guaranteed by construction. For 𝐴 this is true with overwhelming likelihood provided that 𝜇 ≪ 𝜇.
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Fig. 10. Scatter plot between upstreamness and downstreamness of sector 𝑖 = 7 for the 𝑁 = 400 random model with uniform disorder with parameters 𝜇 = 1,
𝐹 = 0.05. Each of the 1000 light blue [orange] points is obtained from one instance of the random ‘‘source’’ matrix 𝐴, and represents the pair of values

((𝑼 1)𝑖 , (𝑫1)𝑖) [(�̃�𝑖 , �̃�𝑖), respectively]. The thick black line has slope +1. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 11. For the ‘‘sparsified’’ exponential model, Pearson correlation coefficient between U and D of the same sector as a function of the sparsity parameter 𝑝
(matrix 𝐴 gets sparser as 𝑝 gets lower).

of the same sector as a function of the sparsity parameter 𝑝 for the ‘‘sparsified’’ exponential model described above, we find that
the correlation between U and D survives at ∼ 90% level – unless the sparsity increases to unrealistic values (𝑝 ∼ 0.2) – and remains
well above ∼ 60% for a sparsity level as high as 𝑝 ∼ 0.05, where the matrix 𝐴 is essentially entirely dominated by zeros and it is
not even guaranteed that the corresponding GVC remains connected (see Fig. 11 below). This finding is consistent with the ‘‘chain’’
geometry of Section 3: decreasing the sparsity of the chain, up to the extreme case of a fully connected economy, has generally the
effect of increasing the U-D correlation.

Our analyses so far have focused on the properties of an individual economy. To test whether our results hold more generally,
we extended our model to consider the simple case of two interacting countries, represented by a 2 × 2 block matrix. The diagonal
blocks represent interactions within sectors of the same economy, while the off-diagonal blocks represent interactions between
sectors across the two countries.

We assume the diagonal blocks are fully populated, while in the off-diagonal blocks, each link is present with probability 𝑝,
similar to the sparse case considered earlier. The two extreme cases of 𝑝 = 0 and 𝑝 = 1 correspond to two isolated economies and
a ‘fully globalized’ economy, respectively. The results we discussed above apply to these extreme cases: when 𝑝 = 1, the system
behaves as a single, larger economy, whereas for 𝑝 = 0, each country can be analyzed individually.

By tuning 𝑝, we can observe the effect of adjusting the level of integration between the economies, for instance, through trade
arriers, as discussed in Antràs and Chor (2018). As shown in Fig. 12, where we present scatter plots of downstreamness and
pstreamness for different values of 𝑝, we find that the model’s qualitative behavior and the ensuing U-D correlations remain largely

independent of 𝑝.
12
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Fig. 12. Scatter plot between upstreamness and downstreamness of sector 𝑖 = 7 for the 2 × 2 block model. The aggregate matrix is of size 𝑁 = 200, with
ach block of size 100 × 100. Blue dots refer to 𝑝 = 0.1, while red squares to 𝑝 = 0.5 for the off-diagonal blocks. The diagonal blocks are fully populated, and
he non-zero entries of the matrix are drawn from an exponential distribution with parameter 𝜇 = 1, while 𝜇𝐹 = 0.05. The solid black line has slope +1. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7. Random reshuffling of the I-O table

To perform the second series of experiments, we have taken the empirical I–O matrices including 39 countries for the years 1995–
2011 (from WIOD 2013 release). First, in Fig. 13 we plot the empirical pdf of the entries of I–O matrices for three representative
ountries (Poland, France, and U.S.A.) across all available years. The empirical distributions are generally well-fitted by power

laws with exponential cutoffs (𝑌 = 𝑎𝑋𝑏 exp(−𝑋∕𝑐)), with best fitting parameters included inside the plot boxes. The essential
power-law (fatter than exponential) nature of the entry distribution is partly due to a genuine ‘‘multi-scale’’ nature of the typical
interactions among sectors, which span several orders of magnitude, but it is also partly affected by having to lump together matrices
corresponding to different years to obtain a sufficiently meaningful statistics.

Next, for each country and each year, we have computed the upstreamness and downstreamness of that country using Eqs. (9)
and (13) respectively, averaging over sectors.

In Fig. 14, we show the values of upstreamness for all countries in all years, spanning a period identical to that considered in
the paper (Antràs and Chor, 2018). In Fig. 15, we provide the scatter plot of upstreamness vs. downstreamness of each country for
three selected years (1996-2003-2011). As expected, we confirm the general trend observed in Antràs and Chor (2018), namely that
the two measures appear to be strongly correlated with a slope of the scatter plot very close to +1.

In Fig. 16, though, we took the same I–O matrices for the entire period 1995–2011 and we randomly reshuffled the columns of
such matrices according to a random permutation of the set {1,… , 𝑁}. The resulting matrices satisfy the same aggregate constraints
(namely, the row sums) of the orginal, actual matrices, but the interactions between sectors have been randomly scrambled, resulting
in an entirely fictitious Global Value Chain, where all economic forces at play in the real world have been neutralized. Still, and quite
surprisingly, we find that the same linear correlation with slope close to +1 between upstreamness and downstreamness survives. We
have checked that this result is not an artifact of the specific random permutation of columns chosen, but keeps holding irrespective
of what new ‘‘strength’’ of interaction is attributed to pairs of sectors/countries via a random reshuffling of the old, actual one.

The fact that U-D correlations are so strong and stable that they survive a complete overhauling of the actual economic
interactions at play in the real world provides a further strong confirmation that most – if not all – of such correlations cannot
be due to sophisticated and finely-tuned economic factors leading to a specific set of inter-sectorial interactions, otherwise any
random reshuffling would have completely annihilated them. These experiments therefore lend further support to the claim that
U-D correlations are mostly due to structural constraints that the matrices 𝐴𝑈 and 𝐴𝐷 must meet simply because of the way they
are constructed from the interaction matrix 𝐴.

While our work provides an intuition on the origin of correlations between the measures of upstreamness and downstreamness
ntroduced in the literature, the challenge of how to devise a better measure of downstreamness that (i) is not trivially correlated
o the upstreamness, and (ii) complies with the more intuitive notion of measuring the positioning of a sector along the production
hain has been thoroughly addressed in Wang et al. (2017), to which we refer for details (see also (Branger et al., 2023)).

8. Discussion

In summary, we have considered two classes of random Input/Output matrices 𝐴 to test whether the ‘‘puzzling’’ correlation
detected between upstreamness and downstreamness at the sector and country level (Antràs and Chor, 2018) would survive even
if the underlying economic forces and the inter-sectorial dependencies had nothing to do with the real world.
13
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Fig. 13. Probability density function in log–log scale of the entries of WIOD matrices for three countries, obtained by histogramming all the entries of the I–O
matrices across the available 16-years span. In red, the line of best fit with a power-law with exponential cutoff. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Empirical upstreamness vs. empirical downstreamness (averaged over 35 sectors) for 39 countries for the years 1995–2001.

Fig. 15. Empirical upstreamness vs. empirical downstreamness (averaged over 35 sectors) for 39 countries in selected years (1996-2003-2011).

Fig. 16. Upstreamness vs. downstreamness (averaged over 35 sectors) calculated on the empirical and reshuffled matrices for 39 countries for the years 1995–
2001. Blue circles represent values calculated on I–O matrices where columns have been randomly reshuffled. Grey squares are upstreamness/downstreamness
pairs calculated on the original data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

First, we constructed a random model for the matrix 𝐴 that mimics a closed economy composed of 𝑁 economic sectors. We
showed analytically that the resulting upstreamness and downstreamness of a given sector are generically positively correlated, with
a slope of the scatter plot between the two equal to +1, if the entries of the matrix 𝐴 are independently drawn from an exponential
pdf. We also showed numerically that our results do not depend very strongly on the pdf of matrix entries. At least at the level of
single countries, our work provides a comforting ‘‘proof of principle’’ that a strong positive correlation between upstreamness and
downstreamness of individual sectors as originally defined (see Eqs. (6) and (13)) is bound to materialize even on a structure-less
15
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and zero-information I–O matrix: one would have to try very hard to concoct an I–O matrix so extraordinary and finely tuned, that
such correlations were not observed.

Secondly, we started from a real, empirical I–O matrix 𝐴 taken from the WIOD Dataset (2013 Release), which displayed the
same kind of correlations between observables as originally detected in Antràs and Chor (2018). We performed several experiments
where we simply randomly reshuffled the columns of the interaction matrix prior to computing the matrices 𝐴𝑈 and 𝐴𝐷 from
which upstreamness and downstreamness of the same sector can be determined. The resulting shuffled interaction matrix 𝐴′ is a
new, perfectly legitimate interaction matrix, which shares the row sums and all other structural constraints with the original matrix
𝐴, but whose economic fabric and inter-sectorial dependencies are entirely made up: the Global Value Chain that 𝐴′ embodies does
not respond to any realistic economic force nor is connected to any realistic economic scenario. Yet, we find that the correlations
survive unscathed.

By further analyzing a simplified geometry for the economy (i.e. a linear chain) in Section 3, we identified further subtleties with
he standard definitions of upstreamness and downstreamness, which are jointly unable to support – even in such a simple geometry

– the intuitive interpretation in terms of positioning of a sector along the chain with respect to final demand and primary factors of
production, respectively. We were able to trace such less intuitive features of the U-D measures to the input–output identities that
any I–O matrix must satisfy. This ‘‘curse of the input–output identities’’ effectively introduces additional links into the I–O table as
extra value must be added at each node, which in turn leads to uncontrolled effects on the numerical values taken by the U and
D indicator, blurring their natural economic interpretations and pushing one indicator to essentially align with the other (with the
exclusion of special cases constructed ad hoc, e.g. unphysical levels of sparsity, or vanishing value added at each node).

Although derived in the context of a closed-economy I–O table (see Fig. 1), our results are nevertheless also relevant to the more
general setting of international trade considered in Antràs and Chor (2018) and the puzzling correlation highlighted thereof for the
following reasons: (i) the ‘‘giant’’ I–O matrix that includes inter-country trade blocks satisfies the same constraints (non-negative
entries, and row-stochasticity) as the single-country one (and thus as well as the random model we presented). (ii) The model
considered here – after a trivial re-interpretation of the matrix entries – is at the very least expected to mimic rather accurately
what would happen in the more general inter-country setting in the two extreme cases of zero and infinite trade barriers between
different countries. In the former case, the ‘‘giant’’ I–O matrix will have inter-country and intra-country blocks that do not differ much
(statistically), therefore – after country-wise aggregation – the resulting 𝐴 matrix will look very similar to the one we considered
in this paper. In the latter case, the ‘‘giant’’ I–O matrix will be block-diagonal – with inter-country blocks full of zeros due to the
absence of trade – with each non-zero (intra-country) block being an independent replica of the closed economy model proposed
here.

In fact, we carried out simulations for the case when the random matrix 𝐴 has a 2 × 2 block structure to mimic the case of
wo interacting countries. We considered fully dense diagonal blocks to model interactions of the sectors within each country, and
parse off-diagonal blocks to model interactions between countries. In this simple model, the sparsity of off-diagonal blocks can be
hanged to study the effect of different levels of integration between the countries. We found that the positive correlation between
pstreamness and downstreamness we documented for the close economy persists for this more structured economy, pretty much
rrespective of the level of integration among the two countries of our simplified setting.

While a deeper investigation of the intermediate trade barriers setting in the random ‘‘giant’’ model is surely needed, the
aforementioned observations sharply point towards the observed correlation between upstreamness and downstreamness also at
ountry level being simply due to structural and unavoidable algebraic constraints that I–O tables and their surrogates must satisfy.

Our first series of results rest on the following assumptions and simplifications:

1. The correlation between ‘‘true’’ upstreamness and downstreamness of a sector can be faithfully probed by using the rank-1
approximants defined in Bartolucci et al. (2025, 2023). This assumption was tested on empirical I-O data in Bartolucci et al.
(2025, 2023), and on the random model here in Figs. 6 and 7, by showing that the ‘‘true’’ upstreamness (or downstreamness)
is indeed perfectly correlated with its rank-1 approximant. Such rank-1 approximation could only become less reliable if the
true Input/Output matrix were exceedingly sparse, i.e. with a very large number of zero entries (see discussion in Bartolucci
et al. (2023, 2021), Crumpton et al. (2022)), a situation that does not often materialize in practice. By considering national
I–O tables available from the 2013 release of the WIOD (Timmer et al., 2015), we indeed obtain quite high average densities
of nonzero elements — between 0.92 and 0.93 across 40 countries for the years 1995–2011. We have further checked that a
moderate sparsification of our random model does not qualitatively change our conclusions, however in future experiments
it will be appropriate to test the consequences of sparsity more thoroughly.

2. We have assumed that the entries of the matrix 𝐴 were independent and identically distributed (i.i.d.). Some preliminary
results (not shown) where this assumption has been relaxed indicate that heterogeneity in the pdfs of the entries of 𝐴 may
not play a major role and is generally insufficient to change the conclusions of our analysis.

3. We used some simplifications (for instance, appealing to the LLN) to make some progress in the analytical calculations. All
approximations are controlled and have been carefully tested.

Apart from performing a more thorough study on the effect of sparsity and heterogeneity in random models of I–O tables, in
uture studies it will be interesting to try to compute analytically the full covariance Eq. (24) for our random model and for various

different pdfs of the entries of the I-O matrix 𝐴, i.e. without employing any rank-1 proxy and/or LLN approximations. This task will
equire handling the average of (products of) inverse matrices (coming from the definitions of upstreamness and downstreamness,
ee Eq. (6) and (13)), which is possible in some cases using techniques from statistical physics (Bartolucci et al., 2025).
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Appendix. Derivation of Theorem 1 and Corollary 1

We need to compute E[𝑟], E[𝑟′] and E[𝑟𝑟′] separately. We have

E[𝑟] = ∫

∞

0

𝑁
∏

𝑖=1
𝑑 𝑎𝑖𝑝(𝑎𝑖)∫

∞

0
𝑑 𝐹 𝑝𝐹 (𝐹 )

∑

𝑘 𝑎𝑘
∑

𝑘 𝑎𝑘 + 𝐹
, (A.1)

where for simplicity we denoted 𝑎𝑘 ≡ 𝑎1𝑘 and 𝐹 ≡ 𝐹1. Using the identity
1
𝜉
= ∫

∞

0
𝑑 𝑠 𝑒−𝜉 𝑠 𝜉 > 0 (A.2)

we have

E[𝑟] = 𝜇𝑁𝜇𝐹 ∫

∞

0

𝑁
∏

𝑖=1
𝑑 𝑎𝑖 ∫

∞

0
𝑑 𝐹 𝑑 𝑠

∑

𝑘
𝑎𝑘𝑒

−𝜇
∑

𝑘 𝑎𝑘−𝜇𝐹 𝐹−𝑠(
∑

𝑘 𝑎𝑘+𝐹 )

= 𝜇𝑁𝜇𝐹𝑁 ∫

∞

0
𝑑 𝑠

[

∫

∞

0
𝑑 𝑎𝑒−𝜇 𝑎−𝑠𝑎

]𝑁−1

∫

∞

0
𝑑 𝑦 𝑦𝑒−𝜇 𝑦−𝑠𝑦 ∫

∞

0
𝑑 𝐹 𝑒−𝜇𝐹 𝐹−𝑠𝐹

= 𝜇𝑁𝜇𝐹𝑁 𝐽 (𝑁 + 1) (A.3)

where

𝐽 (𝑘) = ∫

∞

0
𝑑 𝑠 1

(𝜇 + 𝑠)𝑘
1

𝜇𝐹 + 𝑠
=

= 1
𝜇𝑘 ∫

∞

0
𝑑 𝑡(1 + 𝑡)−1

(

1 + 𝜇𝐹
𝜇

𝑡
)−𝑘

=

= 1
𝜇𝑘 B(1, 𝑘) 2𝐹1(𝑘, 1; 𝑘 + 1; 1 − 𝜇𝐹 ∕𝜇) (A.4)

from Gradshteyn and Ryzhik (2000), formula 3.197.5 (pag. 335) with 𝜆 = 1, 𝜈 = −1, 𝛼 = 𝜇𝐹 ∕𝜇 and �̃� = −𝑘. Here, B(⋅, ⋅) is the Beta
function, and 2𝐹1 is a hypergeometric function.

Similarly

E[𝑟′] = 𝜇2𝑁−1𝜇𝐹 ∫

∞

0

𝑁
∏

𝑖=1
𝑑 𝑎𝑖𝑝(𝑎𝑖)

𝑁
∏

𝑗=2
𝑑 𝑏𝑗𝑝(𝑏𝑗 )∫

∞

0
𝑑 𝐹 𝑝𝐹 (𝐹 )

𝑎1 +
∑

𝑘≥2 𝑏𝑘
∑

𝑘 𝑎𝑘 + 𝐹

= 𝜇2𝑁−1𝜇𝐹

[

1
𝜇𝑁−1

𝐽 (𝑁 + 1) + 𝑁 − 1
𝜇𝑁 𝐽 (𝑁)

]

, (A.5)

where for simplicity we denoted 𝑎1𝑗 ≡ 𝑎𝑗 (for 𝑗 = 1,… , 𝑁), and 𝑎𝑘1 ≡ 𝑏𝑘 (for 𝑘 = 2,… , 𝑁). To prove this, we write

E[𝑟′] = 𝜇2𝑁−1𝜇𝐹 [𝐼1 + 𝐼2], (A.6)

where

𝐼1 = ∫

∞

0
𝑑 𝑠

[

∫

∞

0
𝑑 𝑥𝑒−𝜇 𝑥−𝑠𝑥

]𝑁−1

∫

∞

0
𝑑 𝑦 𝑦𝑒−𝜇 𝑦−𝑠𝑦

[

∫

∞

0
𝑑 𝑧 𝑒−𝜇 𝑧

]𝑁−1

∫

∞

0
𝑑 𝐹 𝑒−𝜇𝐹 𝐹−𝑠𝐹

= 1
𝜇𝑁−1 ∫

∞

0
𝑑 𝑠 1

(𝜇 + 𝑠)𝑁+1(𝜇𝐹 + 𝑠)
=

𝐽 (𝑁 + 1)
𝜇𝑁−1

(A.7)

and

𝐼2 = (𝑁 − 1)∫
∞

0
𝑑 𝑠

[

∫

∞

0
𝑑 𝑥 𝑒−𝜇 𝑥−𝑠𝑥

]𝑁

∫

∞

0
𝑑 𝐹 𝑒−𝜇𝐹 𝐹−𝑠𝐹

[

∫

∞

0
𝑑 𝑦𝑒−𝜇 𝑦

]𝑁−2

∫

∞

0
𝑑 𝑧 𝑧𝑒−𝜇 𝑧 = 𝑁 − 1

𝜇𝑁 ∫

∞

0
𝑑 𝑠 1

(𝜇 + 𝑠)𝑁 (𝜇𝐹 + 𝑠)

= 𝑁 − 1
𝜇𝑁 𝐽 (𝑁) .
17
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s

Finally

E[𝑟𝑟′] = 𝜇2𝑁−1𝜇𝐹 ∫

∞

0
𝑑 𝐹

𝑁
∏

𝑖=1
𝑑 𝑎𝑖𝑝(𝑎𝑖)

𝑁
∏

𝑗=2
𝑑 𝑏𝑗𝑝(𝑏𝑗 )

∑

𝓁 𝑎𝓁
∑

𝑘 𝑎𝑘 + 𝐹
𝑎1 +

∑

𝑘≥2 𝑏𝑘
∑

𝑘 𝑎𝑘 + 𝐹
=

= 𝜇2𝑁−1𝜇𝐹

[

2
𝜇𝑁−1

𝐿(𝑁 + 2) + 𝑁 − 1
𝜇𝑁 𝐿(𝑁 + 1) +𝑁 − 1

𝜇𝑁−1
𝐿(𝑁 + 2) + (𝑁 − 1)2

𝜇𝑁 𝐿(𝑁 + 1)
]

, (A.8)

where

𝐿(𝑘) = ∫

∞

0
𝑑 𝑠𝑑 𝑡 1

𝜇𝐹 + 𝑠 + 𝑡
1

(𝜇 + 𝑠 + 𝑡)𝑘
=

=
𝜇1−𝑘

𝑘 − 1 − 𝜇𝐹 𝐽 (𝑘). (A.9)

Eq. (A.8) follows from writing ∑

𝓁 𝑎𝓁 = 𝑎1 +
∑

𝓁≠1 𝑎𝓁 , and applying the ‘‘lifting-up’’ identity (A.2) twice, which yields

E[𝑟𝑟′] = 𝜇2𝑁−1𝜇𝐹 [𝐾1 +𝐾2 +𝐾3 +𝐾4], (A.10)

where

𝐾1 = ∫ 𝑑 𝑥1 ⋯ 𝑑 𝑥𝑁𝑑 𝐹1𝑑 𝑦2 ⋯ 𝑑 𝑦𝑁𝑑 𝑠𝑑 𝑡𝑒−𝜇
∑

𝑘 𝑥𝑘−𝜇
∑

𝑘≥2 𝑦𝑘−𝜇𝐹 𝐹1𝑒−𝑠(
∑

𝑘 𝑥𝑘+𝐹1)−𝑡(
∑

𝑘 𝑥𝑘+𝐹1)𝑥2𝑖 =

= 1
𝜇𝑁−1 ∫ 𝑑 𝑠𝑑 𝑡 1

𝜇𝐹 + 𝑠 + 𝑡

[

∫ 𝑑 𝑥 𝑒−𝜇 𝑥−(𝑠+𝑡)𝑥
]𝑁−1

∫ 𝑑 𝑥 𝑥2𝑒−𝜇 𝑥−(𝑠+𝑡)𝑥

= 2
𝜇𝑁−1 ∫

∞

0
𝑑 𝑠𝑑 𝑡 1

𝜇𝐹 + 𝑠 + 𝑡
1

(𝜇 + 𝑠 + 𝑡)𝑁+2
=

= 2
𝜇𝑁−1

𝐿(𝑁 + 2) . (A.11)

𝐾2 = ∫ 𝑑 𝑥1 ⋯ 𝑑 𝑥𝑁𝑑 𝐹1𝑑 𝑦2 ⋯ 𝑑 𝑦𝑁𝑑 𝑠𝑑 𝑡𝑒−𝜇
∑

𝑘 𝑥𝑘−𝜇
∑

𝑘≥2 𝑦𝑘−𝜇𝐹 𝐹1𝑥𝑖
∑

𝑘≥2
𝑦𝑘𝑒

−𝑠(
∑

𝑘 𝑥𝑘+𝐹1)−𝑡(
∑

𝑘 𝑥𝑘+𝐹1) =

= (𝑁 − 1)∫ 𝑑 𝑠𝑑 𝑡 1
𝜇𝐹 + 𝑠 + 𝑡

[

∫ 𝑑 𝑥 𝑒−𝜇 𝑥−(𝑠+𝑡)𝑥
]𝑁−1

∫ 𝑑 𝑥 𝑥𝑒−𝜇 𝑥−(𝑠+𝑡)𝑥
[

∫ 𝑑 𝑦𝑒−𝜇 𝑦
]𝑁−2

∫ 𝑑 𝑦 𝑦𝑒−𝜇 𝑦

= 𝑁 − 1
𝜇𝑁 ∫

∞

0
𝑑 𝑠𝑑 𝑡 1

𝜇𝐹 + 𝑠 + 𝑡
1

(𝜇 + 𝑠 + 𝑡)𝑁+1
=

= 𝑁 − 1
𝜇𝑁 𝐿(𝑁 + 1) . (A.12)

𝐾3 = ∫ 𝑑 𝑥1 ⋯ 𝑑 𝑥𝑁𝑑 𝐹1𝑑 𝑦2 ⋯ 𝑑 𝑦𝑁𝑑 𝑠𝑑 𝑡𝑒−𝜇
∑

𝑘 𝑥𝑘−𝜇
∑

𝑘≥2 𝑦𝑘−𝜇𝐹 𝐹1𝑥𝑖
∑

𝓁≠𝑖
𝑥𝓁𝑒

−𝑠(
∑

𝑘 𝑥𝑘+𝐹1)−𝑡(
∑

𝑘 𝑥𝑘+𝐹1) =

= (𝑁 − 1)∫ 𝑑 𝑠𝑑 𝑡 1
𝜇𝐹 + 𝑠 + 𝑡

[

∫ 𝑑 𝑥 𝑥𝑒−𝜇 𝑥−(𝑠+𝑡)𝑥
]2 [

∫ 𝑑 𝑥 𝑒−𝜇 𝑥−(𝑠+𝑡)𝑥
]𝑁−2 [

∫ 𝑑 𝑦𝑒−𝜇 𝑦
]𝑁−1

= 𝑁 − 1
𝜇𝑁−1 ∫

∞

0
𝑑 𝑠𝑑 𝑡 1

𝜇𝐹 + 𝑠 + 𝑡
1

(𝜇 + 𝑠 + 𝑡)𝑁+2
=

= 𝑁 − 1
𝜇𝑁−1

𝐿(𝑁 + 2) . (A.13)

𝐾4 = ∫ 𝑑 𝑥1 ⋯ 𝑑 𝑥𝑁𝑑 𝐹1𝑑 𝑦2 ⋯ 𝑑 𝑦𝑁𝑑 𝑠𝑑 𝑡𝑒−𝜇
∑

𝑘 𝑥𝑘−𝜇
∑

𝑘≥2 𝑦𝑘−𝜇𝐹 𝐹1
∑

𝑘≥2
𝑦𝑘

∑

𝓁≠𝑖
𝑥𝓁𝑒

−𝑠(
∑

𝑘 𝑥𝑘+𝐹1)−𝑡(
∑

𝑘 𝑥𝑘+𝐹1) =

= (𝑁 − 1)2 ∫ 𝑑 𝑠𝑑 𝑡 1
𝜇𝐹 + 𝑠 + 𝑡

[

∫ 𝑑 𝑥 𝑥𝑒−𝜇 𝑥−(𝑠+𝑡)𝑥
] [

∫ 𝑑 𝑥 𝑒−𝜇 𝑥−(𝑠+𝑡)𝑥
]𝑁−1 [

∫ 𝑑 𝑦𝑒−𝜇 𝑦
]𝑁−2

∫ 𝑑 𝑦 𝑦𝑒−𝜇 𝑦

=
(𝑁 − 1)2

𝜇𝑁 ∫

∞

0
𝑑 𝑠𝑑 𝑡 1

𝜇𝐹 + 𝑠 + 𝑡
1

(𝜇 + 𝑠 + 𝑡)𝑁+1
=

=
(𝑁 − 1)2

𝜇𝑁 𝐿(𝑁 + 1) . (A.14)

Collecting all terms and simplifying, we arrive at the formula announced in Theorem 1. Plotting the covariance formula as a
function of 𝑁 for different values of 𝜇 , 𝜇𝐹 reveals that the covariance is always positive and increasing (see Fig. A.17).

To prove Corollary 1, we need to further compute E[𝑟2] and then simplify the resulting expression for the slope (31), yielding a
lope = +1 for any 𝑁 .
18
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Fig. A.17. Covariance 𝑁 (𝜇 , 𝜇𝐹 ) between the approximate upstreamness and downstreamness for the random model (exact formula in Theorem 1). The parameters
(𝜇 , 𝜇𝐹 ) are (1, 0.1) (blue), (2, 0.1) (orange), (2, 0.05) (green), (2, 0.01) (red). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

E[𝑟2] = ∫

∞

0

𝑁
∏

𝑖=1
𝑑 𝑎𝑖𝑝(𝑎𝑖)∫

∞

0
𝑑 𝐹 𝑝𝐹 (𝐹 )

[
∑

𝑘 𝑎𝑘
∑

𝑘 𝑎𝑘 + 𝐹

]2

= 𝜇𝑁𝜇𝐹 ∫ 𝑑𝒂𝑑 𝐹 𝑑 𝑠 𝑠𝑒−𝜇
∑

𝑘 𝑎𝑘−𝜇𝐹 𝐹

(

∑

𝑘
𝑎𝑘

)2

𝑒−𝑠(
∑

𝑘 𝑎𝑘+𝐹 )

= 𝜇𝑁𝜇𝐹

[

𝑁 ∫ 𝑑𝒂𝑑 𝐹 𝑑 𝑠 𝑠𝑒−𝜇
∑

𝑘 𝑎𝑘−𝜇𝐹 𝐹 𝑎21𝑒
−𝑠(

∑

𝑘 𝑎𝑘+𝐹 ) + (𝑁2 −𝑁)∫ 𝑑𝒂𝑑 𝐹 𝑑 𝑠 𝑠𝑒−𝜇
∑

𝑘 𝑎𝑘−𝜇𝐹 𝐹 𝑎1𝑎2𝑒
−𝑠(

∑

𝑘 𝑎𝑘+𝐹 )
]

= 𝜇𝑁𝜇𝐹𝑁 ∫

∞

0
𝑑 𝑠 𝑠

[

∫ 𝑑 𝑥𝑒−𝜇 𝑥−𝑠𝑥
]𝑁−1

∫ 𝑑 𝑦 𝑦2𝑒−𝜇 𝑦−𝑠𝑦 ∫ 𝑑 𝐹 𝑒−𝜇𝐹 𝐹−𝑠𝐹 + 𝜇𝑁𝜇𝐹 (𝑁2 −𝑁)∫

∞

0
𝑑 𝑠 𝑠 ×

×
[

∫ 𝑑 𝑥𝑒−𝜇 𝑥−𝑠𝑥
]𝑁−2 [

∫ 𝑑 𝑦 𝑦𝑒−𝜇 𝑦−𝑠𝑦
]2

∫ 𝑑 𝐹 𝑒−𝜇𝐹 𝐹−𝑠𝐹

= 2𝜇𝑁𝜇𝐹𝑁 ∫

∞

0
𝑑 𝑠 𝑠

(𝜇 + 𝑠)𝑁+2
1

𝜇𝐹 + 𝑠
+ 𝜇𝑁𝜇𝐹 (𝑁2 −𝑁)∫

∞

0
𝑑 𝑠 𝑠

(𝜇 + 𝑠)𝑁+2
1

𝜇𝐹 + 𝑠

= 𝜇𝑁𝜇𝐹 (𝑁2 +𝑁)𝐿(𝑁 + 2) ■

Data availability

The datasets analysed in thi study are publicly available at https://www.rug.nl/ggdc/valuechain/wiod/wiod-2013-release?lang=
en. The codes written for the analysis will be made available upon request to the corresponding author.
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