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This study investigates researcher variability in computational reproduction, an activity for which it
is least expected. Eighty-five independent teams attempted numerical replication of results from an
original study of policy preferences and immigration. Reproduction teams were randomly grouped
into a ‘transparent group’ receiving original study and code or ‘opaque group’ receiving only a
method and results description and no code. The transparent group mostly verified original results
(95.7% same sign and p-value cutoff), while the opaque group had less success (89.3%). Second-
decimal place exact numerical reproductions were less common (76.9 and 48.1%). Qualitative
investigation of the workflows revealed many causes of error, including mistakes and procedural
variations. When curating mistakes, we still find that only the transparent group was reliably
successful. Our findings imply a need for transparency, but also more. Institutional checks and less
subjective difficulty for researchers ‘doing reproduction’ would help, implying a need for better
training. We also urge increased awareness of complexity in the research process and in ‘push
button’ replications.

1. Introduction
A basic requirement of science being reliable is computational reproducibility [1]: the capacity ‘for
assessing the value or accuracy of scientific claims based on the original methods, data and code’ [2].
Computational reproduction is a special case of scientific reliability checking because it involves no
research design decision-making. There is no need to specify methods, empirical research questions
or define estimands [3,4]. Moreover, the data are pre-existing and ostensibly identical. Computation-
ally reproducing existing numerical results should thus be straightforward, yet recent findings in
meta-science suggest this is often not the case. Computational reproductions are subject to uncertainty
resulting from the intransparency of an original study; sometimes what should be identical data varies
because of read-in software or version changes. Also, idiosyncrasies across researchers might lead
them to process the data in ways that cause different values in the computing environment. In this
study, we look at computational reproducibility via an experiment in which 85 teams of 1–3 researchers
were randomly split into two groups with more or less access to replication materials from a published
study. They were asked to replicate the numerical results of the original study using the same starting
data and same methods. We observed these researchers with the goal of understanding the reliability
of computational reproductions, and identifying the sources of alarmingly high uncertainty found in
other reproducibility studies.

Reproducibility is currently an intense topic in the academic community [5–7]. The practice of
public code sharing is essential for reproducibility, but access to others’ entire research pipelines is
still somewhat of a pipe dream in many social and behavioural sciences. In a recent survey of active
researchers, only 18% in social science (n = 733) and 17% in business and economics (n = 592) provided
code for their published statistical results [8].1 Another study found that of all social science publica-
tions in the journals Science and Nature between 2000 and 2019, only 20% came with reproducible
materials (usually data and code), and this only increased to 40% when the authors were contacted
personally [9]. In a similar vein, only 38% of authors from over a thousand studies using data from the
European Social Survey shared their code after receiving a request [10]. Although a recent study shows
that social and behavioural scientists overwhelmingly support code sharing, evidence suggests that in
more than half of studies it is not practised [11].

Code sharing alone does not solve all problems of reproducibility. Even with access to replica-
tion materials, computational replication regularly fails [12–14]. For example, the American Journal
of Political Science (AJPS) started checking the reproducibility of all quantitative research results in
papers accepted for publication in 2014. The first 15 studies’ results could not be computationally
reproduced with the materials provided, and it often took multiple communications with authors
before reproduction was possible [15,16]. In the same vein, many studies attempting to computa-
tionally replicate previously published results found striking rates of failure. Hardwicke et al. [17]

1Calculated from their own figure 1.
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attempted to reproduce the numeric results of 35 studies published in the journal Cognition, and even
with author assistance, 37% had at least one effect not statistically reproducible within 10% of the
original. Stockemer et al. [18] failed to reproduce one-third of results among major political behaviour
publications in 2015, with one-quarter not producing any numerical results because the code was
so poorly organized. More recently, Pérignon et al. [19] looked at 168 studies in finance and could
reproduce only 52% of the reported numerical effects. These findings demonstrate that there is still
much to learn and do before computational reproducibility is the norm.

These previous computational replication attempts demonstrate that verifying the numerical
findings of a study is not purely a mechanistic process. It is often possible to achieve replication,
but not in a ‘push-button’ format—not without additional communication, materials and support.
Although push-button replication is technically possible using virtual computing environments, the
skills to build such applications are rare, in particular in the social and behavioural sciences [20]. If
push-button replication of numerical research results is only trivially possible on average, this calls into
question the current reliability of social and behavioural science at a basic level. The goal of this project
is to understand why reproduction fails; hopefully, it holds keys to support developments among
academics, journals and institutions seeking to improve the reliability of science.

2. Methods
The three principal investigators (PIs) launched this experiment in 2018 with the target of a computa-
tional replication of a high-visibility finding from a study using a large multi-level dataset combining
survey data and county-level indicators, one requiring relatively strong computational skills [21]. We
crowdsourced volunteer teams of a maximum three replicators and observed them as they attempted
to verify numerical results from David Brady & Ryan Finnigan’s 2014 article, ‘Does Immigration
Undermine Public Support for Social Policy?’ [22]. This article met several criteria: it is highly cited,
offers freely available data and code, was independently replicable by two of the study’s PIs in Stata
and R and the original authors consented to the use of their work.

We pre-registered our experimental design and plans to qualitatively code the researchers’
workflows on the Open Science Framework [23]. Power analysis to achieve power of 0.95 under a
condition of a small (0.382), medium (0.463) or large (0.518) standardized (Cohen’s d: XY-standardized)
difference in average effect size of one group compared to the point estimates of the original study’s
findings using a one-tailed 95% confidence interval determined that we need at least 76, 52 or 42 total
researchers, respectively. We assumed that we would need only the numerical distance of original and
replication results as the outcome variable, but in what follows we present two additional dichotomous
measures of a successful replication developed post hoc. We also were unable to imagine in advance
all types of errors researchers might make; therefore, our qualitative coding for these emerged directly
from the replication teams’ workflows and includes events beyond our theoretical list of predicted
mistakes in the pre-registration plan.

All participants were offered co-authorship on the final study if they completed all tasks. Of the
initial 105 teams that registered, 99 successfully completed the initial survey. Random assignment of
these 99 teams placed 50 into a transparent group (TG) that received the Brady & Finnigan article,
the original Stata code and published technical appendix. The other 49 teams, the opaque group
(OG), got an anonymized and less transparent version of the study (see electronic supplementary
material, appendix A). Comparison of means for team features reveals balanced group assignment (see
electronic supplementary material, table S1 in appendix B). Thirteen teams dropped out before starting
the replication and one during the replication, leaving 39 teams in the TG and 46 in the OG. All study
materials that can be shared publicly are available in our Project Repository.2

The Brady & Finnigan study used two waves of International Social Survey Program (ISSP) data
containing responses to questions about the government’s responsibility to provide various forms of
social security and welfare. These data were aggregated to the country-wave level and regressed on
stock and flow of immigration measures across different model specifications. To create an intranspar-
ent condition of the study for the OG to replicate, the PIs removed two out of six of the dependent
variables and the individual-level independent variable measuring income (selected because it had no
impact on any effects of interest). The results were presented to the OG in a Methods section written by

2GitHub Project Repository: https://github.com/nbreznau/how_many_replicators.
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the PIs describing the models, and direction and significance of coefficients without the original paper,
numerical results or code (see electronic supplementary material, appendix A3). Our two experimental
conditions were intended to simulate polar extremes in transparency.3 For the purpose of simulating a
real research endeavour, the participants were instructed to use the software they normally use rather
than learn Stata. In the TG, the Stata users were asked to write their own code based on the Stata file
from the original authors.4

Participants had three weeks to complete the replication, with extensions granted upon request.
They were asked to present odds ratios as these were the numerical outcomes reported in the
original study. All teams received an Excel template to help standardize reporting. We recorded teams’
numerical reproductions of four dependent variables regressed on different covariates in a total of 26
models (the first four columns of Brady & Finnigan [22] 5). Four models included both stock and flow
measures of immigration simultaneously (percent foreign-born and net migration), but these were not
given to the OG in another step to disguise the original study. Thus, a total of 48 odds ratios in the
TG and 40 in the OG were reported for analysis. A few models ran into convergence issues, and a few
teams made mistakes that prevented them from arriving at estimates; therefore, not all reported all
effects. The final N was 3695 odds ratios from 85 teams.

Not all study participants consented to have their names revealed in connection with their code, so
we were ethically obligated to redact all identifying features before making it all public (see electronic
supplementary material, appendix C). In our research design, we intentionally did not engage in
quality control or provide workflow guidance other than the template for reporting results. Some
teams submitted in Word or RTF document formats, and others used German-language Excel with
commas instead of decimal points. Hence, we constructed a matrix of all results with some inevitable
copy-pasting from incompatible file formats. We checked on three independent occasions that their
submitted code produced these results. In four teams, parts of the code were missing due to a point-
and-click method or researchers not saving their workflows.6 To incur minimal ecological bias, we did
not demand that these teams produce new code for us. Starting with the teams’ submitted workflows
and results, all work conducted for this article, including analysis of teams’ submissions, production
of figures and analysis of a participant survey, is available in our Project Repository. In addition to
quantifying the uncertainty of computational replications, we qualitatively investigated the content of
each team’s workflow to determine the sources of this uncertainty.

Reproducibility, sometimes labelled as computational replication, or computational or analytic
reproduction, means obtaining the same results as the original study using the same data and code
[2,24]. Practically speaking, this is not always feasible for two reasons. The first is that not all replica-
tors will know how to use or even have access to the software used in an original study, and the second
is that different computing environments may produce different levels of decimal place precision by
default. Nonetheless, at a basic level, reproducibility should occur at least within a few decimal places
and should not depend on the software, so long as identical methods are implemented.

Given the uncertainty in the definition of a successful computational replication [25], we developed
three different measures to quantify our results. The first we call a Directional Reproduction, a dichot-
omy where results simply point in the same direction and match a null hypothesis significance test that
the coefficient is exactly zero with a cut-off of p < 0.05 or not. In this scenario, the exact numbers need
not match for success. This is important, because the discussion of scientific findings often revolves
around the existence of an effect or not. Next, we define a stricter dichotomy of Exact Replication
where results must be within 1% of the original. This reflects precision, an important aspect of science
such that without it, we might not claim reliable results. In this case, our estimand is a numerical
odds ratio. Because odds ratios are numerically asymmetric on either side of 1,7 we divide original
odd ratios by the replicated odds ratio in cases where the replicated odds ratio is smaller than 1
and then multiply by negative one and add one, and we divide the replicated by the original and

3Although the OG condition may seem extreme, we are aware of many published studies in which authors claim they conducted
additional analyses with similar findings without offering any numerical results or code for these.

4This served the following two purposes: (i) it gave the authors some opportunity to make ecologically valid mistakes, and (ii) the
original code contained far more variable constructions and models than were of interest to this study; thus a fresh write-up served
to reduce confusion in the code submitted by the replication teams.

5This refers to their main results in their original tables 4 and 5, which readers can view in our workflow file 01_Data_Prep.html.
6In two cases, further exchanges with the teams were necessary to get their code running because it contained procedural elements
the PIs were not familiar with— once in an R project and another running MLwiN in a Stata shell.

7For example, 0.5 and 2 represent identical changes in odds (1/2 and 2/1, respectively) but are different numerical distances from the
null odds of one.
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subtract one in cases where it is larger. Therefore, values within 0.01 (= 1%) are considered an exact
replication and comparable in size regardless of signage. The third is a continuous variable capturing
Replication Error measured as the absolute value of the ratio difference between the replicated odds
ratio and original. This was selected for theoretical reasons, as we conceived of the uncertainty of
computational reproductions as another plausible estimand that occurs theoretically on a continuum.
Rather than success or failure, this points at the reality of science that can be understood as a process
of identifying more or less uncertainty. Descriptive statistics of these three measures in raw form
are presented in electronic supplementary material, table S1 in appendix B and visualized in figure
1. Further curated and trimmed versions of the results, which we describe shortly, also appear in
electronic supplementary material, appendix B.

Using the results from our participant survey, we constructed variables indicating the disciplinary
background of the replicator team. In 82 of 85 teams, there was a majority discipline. For the three
teams without a majority discipline, we took the discipline of the first team member—the initial
responder to the intake survey, and the person responsible for organizing the team. We collapsed
this into a variable labelled Sociology where sociology = 1 (the largest group of 43 teams) and other
disciplines = 0 (political science (22 teams) and a mix of others like psychology, communications,
methods-focused degrees and economics). We measured a continuous variable Stats-Skill as a latent
factor from four questions on team members’ reported experience with statistics.8 This variable was
particularly important, because it allows us to control for idiosyncratic distribution of skills that were
not randomly assigned. We created a variable called Difficult scored from 0 to 5 from team-mean
responses to the question ‘How difficult did you find the replication task in this first phase?’9 Finally,
we coded statistical software as Stata = 1 (56 teams, the majority) versus other software (= 0, where 22
used R, 4 used SPSS and 3 used Mplus).

We investigated the sources of researcher variability by qualitatively analysing the content of each
team’s code and any comments they provided. Prior to the study, the PIs pre-registered a theoretical set
of categories that might be sources of error (see table 1 in [23]); however, grounded in the qualitative
content and based on the PI’s knowledge of quantitative research and statistical programming, a
total of six coding categories emerged, not all of which were anticipated at the time of pre-registra-
tion: Mistake, Procedural, Mistake-Procedural, Missing Component, Interpretational and Questionable
Method Knowledge. We present the definitions for each category with selected examples below. A
summary of all teams and their category codes is available in electronic supplementary material, table
S6 (in appendix B), all original code redacted for identifying features in electronic supplementary
material, appendix C10 and figure 2 presents the distributions of errors by team.

Because of concerns that the teams’ raw outcomes might lack ecological validity as ‘real-world’
research, we developed a ‘curated’ and a ‘trimmed’ version of the results.

Curated: Although not certain, it may be that more errors occurred in our study than in the standard
research done by some participants. We expect this because the scientific enterprise is competitive
and involves phases of peer review and editorial oversight. Although these vetting procedures do
not guarantee that studies are reproducible or reliable, they should cause lower quality work to be
published less often and/or motivate researchers to submit higher quality work to pass this vetting
process. For curating, we attempted to fix mistakes in a team’s code only if the following two condi-
tions were met: it had to be obvious that it was a mistake and, if so, that we could determine a
counterfactual scenario of what the authors would have done instead had they become aware of the
mistake. We only changed code when we did not have to make any decisions. For example, if a team
omitted a ‘fixed-effect’ for country or wave, we corrected this. If a team forgot to include a country or
added an extra country into the original sample, we adjusted it. However, if we had to make recoding
decisions that necessitated choosing from several alternatives, like how to standardize variables across
countries or combine categories of employment or education to generate and employment status
variable, we did nothing (see detailed coding example in table 2). We left the code untouched if the
directional reproduction rate for that team was higher than 95% under the assumption that most
social scientists would consider a rate between 95 and 100% a successful test. We corrected code in
14 instances in 12 teams’ workflows. This left us with a set of curated results that might better reflect
the quality level of the participating researchers under non-experimental conditions. The process of

8Based on teaching, publications and methods usage; see confirmatory factor analysis in Project Repository.
9The study had a second phase asking the participants to design their own ideal models for testing the same hypothesis as Brady
and Finnigan.

10Also available on Github as appendix C.
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curation was simultaneously a qualitative analysis of each team’s workflow to better understand
the causes of computational replication unreliability. We identified far more than our 14 corrected
mistakes, but in these cases, we were unable to determine what the team would have done had they
been made aware of the mistake.

Trimmed: As we show in our qualitative investigation, three teams might not have had the requisite
skills or experience to successfully complete a computational reproduction of the original study and
have a chance of publication or successful dissemination of results. As this was roughly 5% of the
sample, we considered an alternative form of ecological validity where we trimmed 5% of the results
that were numerically furthest from the original results. This meant completely dropping two teams’
results from each group.

Using the raw, curated and trimmed results, we employed multivariate regression to identify
significant predictors of computational reproducibility (measured as aggregate team average scores
on Directional Reproduction, Exact Replication and Replication Error) and the presence of at least
one identified Procedural or Mistake error source on the team level as gleaned from our qualitative
analysis. Multivariate analysis is only possible at the team level as all independent variables are
measured at this level. For the three outcomes, we ran regressions on the raw (table 4 ), trimmed and
curated (electronic supplementary material, tables S8 and S9 in appendix B) results averaged by team.

3. Results
Figure 1 left column, visualizes the percentage of all effects that were a Directional Reproduction
(figure 1a) or Exact Replication (figure 1b), and in the lower panel, it visualizes Replication Error
(figure 1c) on average by group. Further descriptive statistics are available in electronic supplemen-
tary material, tables S1 and S2 in appendix B. The raw effect-level results indicate a high degree
of reproducibility with successful directional reproduction in 95.7 and 89.3% of the TG and OG
replications, respectively (figure 1a). After curation, these rates jumped to 98.2 and 92.3% (electronic
supplementary material, table S1). Pooling results from both experimental conditions yield 92.5% raw,
95.2% curated and 94.1% trimmed rates. The numbers drop for Exact Replications, with pooled results
at 62.5, 70.2 and 65.1%, respectively (electronic supplementary material, table S1). In the best-case
scenario, with fully transparent materials in the TG, 76.9% of their models were Exact numerical
reproductions. Even after correcting obvious mistakes in the TG, the curated results were still only
84.6% of exact reproductions (electronic supplementary material, table S1).

Considering the idea that an entire team or study might be judged as successful or not, the right
column figure 1d,e presents results dichotomized so that an entire team is a successful replication
only if 95% or more of their models are successful . This suggests that only 79.5% of teams in the TG
successfully verified ‘all’ esults from the original study. This was less for teams in the OG, where 62.5%
achieved complete numerical directional reproduction of the original study. The curated and trimmed
results are only slightly higher (electronic supplementary material, table S1). The difference between
experimental groups at the team-level increases dramatically for Exact Replication where 61.5% of the
TG had at least 95% of their effects within 0.01 of the original but only 6.5% of teams in the OG; in
other words, only 3 out of 46 teams in the OG exactly reproduced the entire set of results from the
original study.

Only 14 teams had 100% exact computational reproductions within 1% of the original, and all of
them were in the TG. This indicates that most teams committed at least one error (86% overall) in their
work—where ‘error’ refers to a failure to achieve an exact computational reproduction. This means
that numerical errors at a very high level of precision occur in many teams and may occur in a single
model in a team that otherwise successfully replicated all other models. In sum, directional reproduc-
tions are relatively consistent independently of the transparency of materials, whereas precision in
computational reproduction strongly depends on transparency.

Turning to Replication Error, we find that in the TG both at the effect-level and team-average levels
results were within 1% of the original odds ratios on average. Error was dramatically higher in the OG
at 32% at the effect level and 33% at the team average level. The density plots below the averages and
standard errors show that outliers were very rare in the TG, whereas some teams in the OG produced
results that differed extremely from the original study. Many were over 100% different, and in rare
cases, this was more than 500% different (see Project Repository).
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3.1. Qualitative investigation of error
Grounded in our qualitative investigation of each team’s workflow, we identified six aspects that
caused errors in their computational reproduction efforts. These errors were distributed across most
teams. As figure 2 shows, roughly 70% of all teams took some action in their workflow that led to
results that did not match those of the original study within a 95% confidence interval.

3.1.1. Mistake (29 instances in 24 teams)

These are steps that teams did not consciously intend to take. Nearly all are coding errors, such as
copy-pasting the same code snippet over and over and forgetting to alter the variable name, reversing
the wave values (1996 instead of 2006), mistakenly recoding all values in a dependent variable to zero,
forgetting variables in the analysis or including the wrong countries in the sample. A few were clerical
errors where teams reported coefficients instead of odds ratios or pasted the wrong set of results into
the result template (see examples in table 1).

3.1.2. Procedural (62 in 39 teams)

Researchers routinely took slightly different coding steps than the original researchers. We see these
steps as ‘procedural’ because we assume this is how the teams always do their research rather than
conscious decisions made uniquely in this particular study. For the OG in particular, this type of error
reflects the team’s best efforts to reproduce models to which they had no original code and minimal
description, presumably left to draw on their own previous procedural experiences. Many procedural
errors had to do with socio-economic status variables. For example, some teams coded an employment
status of ‘helping a family member’ into ‘not in labor force’ when the original study coded this as
‘part-time work’. Others coded this same variable as ‘unemployed’, and some coded ‘unemployed’ as
‘not in labor force’. Two teams disaggregated this variable into ‘full-’ and ‘part-time’ based on a third
variable measuring hours of work per week. In the TG, such departures from the original study in
recoding decisions were less common.

The treatment of missing values was also a common source of variation in both groups. Some
used listwise deletion on all variables prior to running a regression, some only on all four dependent
variables and others removed them uniquely for each model. A peculiar problem arose in some cases

Figure 1. Results of a crowdsourced computational replication from 85 Replicator Teams. Note: The study involved a computational
reproduction of Brady & Finnigan [22]. Only the Transparent Group “TG” (N = 39 teams & 1,872 effects) had access to the original
paper and code, while the Opaque Group “OG” (N = 46 teams & 1,874 effects) had only a description of the methods and no code (see
§2 and appendix A). Left-side are effect-level results (a & c) and right-side are team-level results (b & d). Bars represent two-tailed
95% CIs. Differences between experimental groups on all outcome measures are statistically significant at the effect-level with 99%
confidence (p < 0.01); at the team-level, this is only true of Exact Replication. The between σ2 (the percentage of the total effect-level
variance that occurs between teams, also known as intra-class correlation coefficient [ICC]) are A. DIRECTIONAL REPRODUCTION: TG =
23.9% & OG = 29.4%; B. EXACT REPLICATION: TG = 63.1% & OG = 33.2%; C. REPLICATION ERROR: TG = 39.6% & OG = 93.3%.
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where dummy variables were coded with the object of interest as ‘1’ (like ‘in labor force’) and then all
others (including true missing values) coded as ‘0’ meaning that values were added to the analysis that
were dropped in the original study.

Other influential decisions concerned decimal place reporting and software type. After conducting
this study, we are acutely aware that R’s base programming language uses ‘bankers rounding’ which
rounds last decimals of 5 up or down to achieve a mean as close as possible to the original, while Stata
rounds it up to the next whole decimal. This alone may undermine attempts to find exact replication
at two decimal places across software types. Moreover, teams reported varying degrees of precision
ranging from 1 to 3 decimal places. Other cases included keeping only the Western German sample
and dropping those from the Eastern German sample as representative of Germany. This is a common
practice for studies that include data prior to 1990 or analysing data close to 1990; thus, it is arguably
procedural. We code a team using SPSS and point-and-click methods for data recoding as procedural;
but it also receives a Missing Component categorization if they did not output the code.

Figure 2. Rates of error per team.

Table 1. Selected examples of mistakes and their curations.

team original curation

5

(Stata)

use ZA2900.dta, clear

gen year = 2006                     

use ZA4700.dta, clear                    

gen year = 1996                     

use ZA2900.dta, clear                          

gen year = 1996                           

use ZA4700.dta, clear                          

gen year = 2006                          

10

(R)
data06 <- data06 %>%
 mutate(
  jobs2 = if_else(jobs > 2,1,0),
  unemployment2 = 
    if_else(jobs > 2,1,0),
  income2 = if_else(jobs > 2,1,0),
  retirement2 = 
    if_else(jobs > 2,1,0),   
  housing2 = if_else(jobs > 2,1,0),
  healthcare2 = if_else(jobs > 2,1,0)
 )

data06 <- data06 %>%
 mutate(
  jobs2 = if_else(jobs > 2,1,0),
  unemployment2 = 
    if_else(unemployment > 2,1,0),
  income2 = if_else(income > 2,1,0),
  retirement2 = 
    if_else(retirement > 2,1,0),
  housing2 = if_else(housing > 2,1,0),
  healthcare2 = 
    if_else(healthcare > 2,1,0)
 )

41

(MPlus)
MODEL: 

  jobs on foreignpct

     Y2006 CND FRA GER IRL 

     JPN NZL NOR SPA SWE SWZ 

     GBR USA

We did not curate this code because the team noted: ‘they don't mention
which country was used as the reference category (we used Australia)’.
Therefore, from the team’s perspective this was not a mistake, even
though original Stata code was available to demonstrate the US as
reference category.

Note: Grey highlight indicates actual code snippets; bold indicates mistakes and curations.
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3.1.3. Mistake-procedural (22 in 18 teams)

There are cases where we cannot safely conclude that it was a mistake or a product of a research team’s
standard approach to working with data as defined above. This category is dominated by recode
variations for the socio-economic variables. The TG technically had all the information necessary to
recode variables identically to the original study; however, this information was not entirely presented
in the manuscript itself and required a careful investigation of the original study’s Stata code to
fully grasp. Table 2 lists the most common recodes in this and the Procedural category, and table 3
gives some concrete examples. These same differences in recoding socio-economic status are coded
‘Procedural’ for the OG and ‘Mistake-Procedural’ for the TG.

The Mistake-Procedural category also appeared in the OG in cases where more blatant socio-eco-
nomic status miscoding occurred. One example is Team 84 who recoded ‘less than part time’ as
‘unemployed’ and also ‘other/not in labor force’ as ‘ missing’. Again, this is categorized here because
there may be plausible arguments behind these decisions in the minds of the replicators at that time.
These and others that were larger deviations than those listed in table 2 were coded as Mistake-Proce-
dural rather than Mistake. In three cases, the teams used some form of robust clustering of standard
errors. This was not mentioned in the originally provided Methods section; however, this model
feature is a reasonable assumption when asked to design a model with country and wave dummies
(i.e. a basic multi-level model).

The top row of table 3 provides the original scoring of the variable v205 from the 1996 wave of
ISSP data indicating educational qualification level. The second row is Stata code from the original
study. Below that are example snippets from two different teams. In the third row, we see that Team
39 did not assign a new value for ‘1’ (‘less-than-high-school’), so it was recoded into ‘.’ (missing in
Stata). This is not safely categorized as Procedural as the team was in the TG with access to the original
code. Then again, only the code, not the Methods section of the article offers this information, so they
might have been following the Methods section rather than closely reading the code. Thus, in our
categorization scheme, it is Mistake-Procedural. Team 83 recoded those who had incomplete university
education as ‘3’ having completed university, instead of ‘2’ indicating secondary education completion
(the variable ‘hs’ in the original study). We do not code this as a mistake because the team was in
the OG and did not have access to the original code but had to use their best guess, because precise
definitions of ‘secondary [education]’ were not provided in the Methods section they were given (see
electronic supplementary material, appendix A). By definition, Mistake-Procedural and Procedural are
often identical types of error in the code but fall into different categories based on the information
available to participants.

Table 2. Common procedural recoding variations in socio-economic status variables.

A ‘helping family member’ coded ‘not in LF’ (was ‘part-time’ in original)

B ‘completed primary’ coded ‘ secondary’ (was ‘primary’ in original)

C ‘incomplete university/tertiary’ coded ‘university’ (was ‘secondary’ in original)

D ‘helping family member’ coded using ‘hours worked per week’ variable to split respondents into either ‘full-time’
or ‘part-time’

E ‘unemployed’ coded as ‘not in LF’

F ‘student’ coded as ‘unemployed’

G ‘housewife/-man, home maker’ coded as ‘unemployed’

H Recoded ‘none’ or ‘still in school’ as missing on education

I ‘helping family member’ coded as ‘full-time’

J ‘housewife/-man, home maker’ coded as ‘full-time’

K ‘helping family member’ coded as ‘missing’

Note: Non-exhaustive. Letter denotes these coding rules in electronic supplementary material, table S6 in appendix B.
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3.1.4. Missing component (4 teams)

Four teams had missing parts of their workflow rendering it irreproducible. Some users of SPSS did
point-and-click recoding and merging of their data, and some teams did data pre-processing that
they simply did not save. For these cases, curation is not possible, because asking them to redo their
analyses would contradict the ecological goals of the study.

3.1.5. Interpretational (3 teams)

In three cases in the OG, the team interpreted the description of the models in a manner that differed
from the original study. Two involved the centring of independent variables. Although the Methods
section provided to the OG did not specifically offer instructions for any transformations of continuous
variables such as age, it did not mention not to take this step either. As it is plausible to interpret
a multi-level model as involving centring of some or all continuous variables, this type of error is
categorized as interpretational. The third case involved selecting data based on the Methods section
statement that ‘all thirteen rich democratic welfare states with data for both waves are included’.
The team selected on the provided immigration data, which was available for 17 countries, and then
randomly selected 13, whereas our intention was that they select on available individual-level ISSP
data for which there are only 13 countries in both waves. As this was not explicit and the team even
mentioned this in their workflow notes, we classify this error as interpretational in nature.

3.1.6. Questionable method knowledge (3 teams)

Our call for researchers explicitly asked for basic regression analysis skills, including multi-level
modelling. However, three teams demonstrated that they might not possess such skills. In one case,
the team admitted to using Stata for the first time, which constitutes a lack of software knowledge.
In two other cases, the teams analysed the two separate waves of data in separate regressions, rather
than a pooled model with dummy variables for country and wave. It is perhaps bad luck, or a result
of the less transparent materials, that we have this category, given that both teams who analysed waves
separately were in the OG. However, we suspect that it is most likely a lack of experience, because the
Method section they were given stated, ‘The ISSP data from 1996 and 2006 are pooled and all thirteen
rich democratic welfare states with data for both waves are included […] These models therefore have
dummy variables for countries and years’ (see electronic supplementary material, appendix A).

Table 3. Examples of procedural categorizations.

source coding

original ISSP
1996
data codebook
(p. 118)

v205<DEGREE > R: EDUCATION II: categories
(1) None, still at school
(2) Incomplete primary
(3) Primary completed
(4) Incomplete secondary
(5) Secondary completed
(6) Incompl + compl.semi-higher + incomplete university
(7) University completed

original study
(Stata)

rename v204 edyears

rename v205 edcat

recode edcat (1/3=1) (4=2) (5=3) (6=4) (7=5), gen(degree)

label define edlabels 1 "Primary/less" 2 "Some Secondary" 3 "Secondary" 4

"Some Higher Ed" 5 "University or higher"

label values degree edlabels

recode degree (1/2=1) (nonmiss=0), gen(lesshs)

recode degree (3/4=1) (nonmiss=0), gen(hs)

recode degree (5=1) (nonmiss=0), gen(univ)

team 39
(Stata)

recode v205 (2/4 = 1 "less than secondary")(5=2 "secondary")(6 7 = 3

"higher than secondary")(else=.), gen(edu)

team 83
(R)

rename(education = v205) %>%

mutate(education = recode(education, "Incpl primary" = 1, "Incpl secondary"

= 1, "Primary compl" = 1, "None;still at school,uni" = 1, "Secondary 

compl" = 2, "University compl" = 3, "Semi-higher,Incpl uni." = 3))

Note: Bold are specific sources of error. Top row are the official survey definitions of the variable, second row is the original study’s code
and the bottom two rows are examples of errors.
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3.2. Correlates of errors
Errors were distributed across most teams (figure 2) and about one-third of the variance in whether
a model was a successful reproduction or not took place between teams (figure 1). This variance
allows us to statistically analyse the sources of uncertainty we found in our three replication outcome
measures. This includes attention to the statistical skills and experience of the teams, their perceived
difficulty in completing the task and of course the experimental condition itself (transparency of
materials). table 4 presents the raw results (electronic supplementary material, tables S8 and S9 in
appendix B present curated and trimmed). Pooled results are in the first left column. Although teams
using Stata had a higher Directional Reproduction rate on average, multivariate analysis adjusting for
the potential correlations of other variables suggests very broad confidence intervals (b = 0.14, s.e. =
0.08); that is, these data are as likely to be observed if the statistical effect was truly zero. Statistics skills
and studying or having acquired a sociology degree appear to have no association, neither a sizeable
coefficient nor a rejected null hypothesis. Teams reporting that the task was more difficult were less
likely to succeed (failed NHST; b = −0 .14, s.e. = 0.05, x-standardized). Finally, teams were roughly
25% more likely to succeed if they were in the TG (b = 0.25, s.e. = 0.06 , x dichotomous) all else equal.
We place no interpretational weight on coefficients that are both small and lack a p-value below 0.05.
The adjusted R-square suggests that we can explain about 25% of the team-level variation in results.
Group-specific results suggest that Stata users were far more likely to directionally reproduce than
non-Stata users in the TG, but this effect was absent in the OG. Higher perceived difficulty is also
associated with lower reproducibility in both groups, and given its correlation with statistics skills,
we assume that it absorbs the effects. The experimental condition, perceived difficulty and statistics
skills are all endogenous. These results are similar for Exact Replication, although far less variance is
explained and effect sizes are also smaller. It is important to note that a low-N weakens our capacity
for statistical inference in group-level analyses. Our pre-registered power analysis was only designed
to detect an experimental group difference, not to detect multivariate effects, so this analysis should be
considered exploratory.

What we mostly cannot explain is the degree of error present on average per team. Regressions
on Replication Error yield adjusted R-squared of zero for the pooled sample and the OG. The TG
regression produces results with an adjusted R-squared of 0.21 (roughly 21% variance explained), and
this seems entirely attributable to the tiny effect of using Stata, which on average is associated with a
2% lower error margin; this might be, for example, the difference between an exact replication (error =
0) and an odds ratio that is 2% larger or smaller than the original.

It seems clear that transparent materials are a cause of replication success likelihood. However,
there is a significant negative Pearson correlation of Stata with Difficult in both groups (r = −0.17 TG, r =
−0.39 OG; see electronic supplementary material, table S11, appendix B). With such low case numbers,
we are unlikely to be able to adjudicate clearly between these two variables. We note that the signs for
both mostly pattern as expected despite wider confidence intervals.

Turning to the trimmed and curated results, some statistical associations remain similar. However,
curation rendered the TG to have very little explained variance and no significant coefficients for all
three replication outcome measures. This may relate to the fact that after curation, 98.2% of the variable
Directional Reproduction are zeros, leaving little variance to explain. This is not the case for the
trimmed data where we see a high R-squared. More striking in the curation is a much higher degree of
explained variance in the OG. We attribute this to the curation of major mistakes, which we assume are
somewhat random, and once we remove them, we are left with clearer associations between perceived
difficulty of the task and the accuracy of the outcome. If the curated results are more ecologically
valid than the raw results, we would conclude that error is a product of the researcher’s abilities and
challenges encountered in their research, whereas the raw results suggest that error is mostly random
if they lack access to the original code.

Finally, we investigate our qualitative categories Mistake and Procedural using regression analyses.
For the Mistake outcome, we include only those teams that had at least one instance of the category
Mistake or Mistake-Procedural (= 1) and compare them to all other teams (= 0), with those having
only Procedural being dropped. For the Procedural outcome, we reverse this and drop teams with any
Mistake. Respectively, we drop teams with any Procedural or Mistake errors from the analyses because
we want to isolate the likelihood of committing Mistake or Procedural errors relative to not otherwise
making errors.

Table 5 shows that the perceived difficulty of the replication, and being in the OG led to a much
higher likelihood of Mistake and Procedural errors alike. Keeping in mind the high correlation of Stata
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and Difficult, it is unsurprising that the p-values are above our cutoffs when we run group-specific
regressions. We provide p-values owing to convention, but again do not place a strong stake in them
given sample sizes and a lack of pre-registration. The explained variance in the TG is high and driven
mostly by whether the team used Stata or not. The effect of Difficult is the only variable that mathemat-
ically explains variance in the OG, but confidence intervals still overlap zero even if we drop to 90%
confidence, and overall, the regression explains very little variance. We conclude that both Mistakes
and Procedural errors are more likely if researchers face greater subjective difficulty in completing
their replication tasks, regardless of the transparency of materials. As we doubt that Stata users are
more or less skilled than R users, we speculate that the correlation of Stata and Difficult might result

Table 4. Multivariate analysis of computational reproducibility in 85 teams, raw results.

directional reproduction exact replication replication error

variable pooled TG OG pooled TG OG pooled TG OG

(intercept) 0.45***

(0.06)

0.60***

(0.08)

0.51***

(0.07)

0.89***

(0.03)

0.91***

(0.03)

0.91***

(0.04)

0.44

(0.23)

0.03***

(0.01)

0.56

(0.36)

Stata 0.14

(0.08)

0.24*

(0.10)

0.01

(0.09)

0.04

(0.04)

0.07*

(0.03)

−0 .01

(0.06)

−0 .19

(0.27)

−0 .02*

(0.01)

−0 .33

(0.47)

stat-skill −0 .03

(0.02)

−0 .06

(0.03)

−0 .00

(0.03)

−0 .01

(0.01)

−0 .02

(0.01)

−0 .01

(0.02)

−0 .07

(0.07)

0.00

(0.00)

−0 .14

(0.14)

difficult −0 .14**

(0.05)

−0 .17*

(0.08)

−0 .13*

(0.05)

−0 .06*

(0.02)

−0 .04

(0.03)

−0 .08*

(0.03)

−0 .01

(0.02)

0.01

(0.01)

−0 .02

(0.04)

sociology degree −0 .03

(0.07)

−0 .02

(0.03)

0.01

(0.04)

TG 0.25***

(0.06)

0.05

(0.03)

−0 .06

(0.03)

observations 85 39 46 85 39 46 85 39 46

R2 0.297 0.265 0.164 0.163 0.214 0.138 0.050 0.267 0.049

R2 adjusted 0.252 0.202 0.104 0.110 0.147 0.077 0.000 0.205 0.000

Note: Unstandardized OLS regression coefficients predicting outcomes aggregated to their mean by team; standard errors in
parentheses. Degree omitted from group-specific regressions due to low predictive power and smaller sample sizes. TG =
transparent group with access to all materials and OG = opaque group with no code and less methodological information.

*p < 0.05, **p < 0.01, ***p < 0.001

Table 5. Multivariate analysis predicting qualitatively categorized sources of error.

mistake procedural

pooled TG OG pooled TG OG

(intercept) 0.67***

(0.10)

0.51***

(0.11)

0.58***

(0.14)

0.63***

(0.10)

0.42***

(0.09)

0.51**

(0.15)

Stata −0 .14

(0.11)

−0 .31*

(0.13)

0.01

(0.18)

−0 .07

(0.11)

−0 .29*

(0.10)

0.13

(0.20)

stat skill 0.05

(0.03)

0.10**

(0.04)

−0 .02

(0.05)

0.05

(0.03)

0.10**

(0.03)

−0 .01

(0.06)

difficult 0.20**

(0.07)

0.28**

(0.10)

0.16

(0.10)

0.22**

(0.08)

0.35***

(0.08)

0.21

(0.12)

exp −0 .29**

(0.10)

−0 .38**

(0.10)

observations 77 38 39 72 34 38

R2 0.240 0.366 0.102 0.291 0.543 0.086

R2 adjusted 0.198 0.310 0.026 0.249 0.497 0.006

Note: Linear probability models. Unstandardized OLS regression coefficients predicting outcomes aggregated to their mean by team;
standard errors in parentheses. TG = transparent group with access to all materials and OG = opaque group with no code and less
methodological information.

*p < 0.05, **p < 0.01, ***p < 0.001
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from Stata users having access to the code; however, when they do not, they might be either better
trained or have more experience at this stage in history, because R is much newer in social science.

4. Discussion
When attempting to reproduce the numerical results of a published study, different replicators
obtained different results with varying sources of error. The error rate was exacerbated when there
was less transparency. In other words, less information about data preparation and analytical choices
is available to them. We see no reason to assume our sample is any more or less technically capable
of replication than the population of all social and behavioural scientists; however, it is admittedly
plausible. If we nonetheless hold to our assumption that they are representative of social science
researchers using computationally intensive hierarchical secondary data analysis, then we face a reality
where it might take more than one independent attempt to produce reliable reproduction results.
Averting this reality requires much higher standards of transparency and possibly lower requirements
of precision in numerical computational replication.

We would hope that replicators communicate with the original authors when they do not arrive at
the same results [26]. But sometimes such communication is not possible. As a thought exercise, let us
assume that what we mean by reliability is 95% confidence that the conclusion indicated by a majority
of the observed number of replications matchs the ‘correct’ conclusion. This would mean that for a
single replication to suffice, it would have to be correct at least 95% of the time. If there is a lower
success rate, then more than one replication is necessary to reach the 95% threshold. We simulate this
problem by plotting binomial probabilities of researchers coming to a correct computational replication
by the number of replications needed to achieve a certain critical probability (figure 3).

In real-world research, we do not know in advance what is ‘correct’ or ‘ true’, as this would
undermine the need to conduct research in the first place. This is why computational reproduction
is an important test case, as we can know the correct result in advance, at least within a degree of
rounding error. We assign 51% of n replications arriving at x, the correct answer, as our minimum
definition of majority. Thus, in one replication, x must be equal to 1; in two replications, x = 2; in three
replications, x ≥ 2; in four replications, x ≥ 3 and so forth. We can then calculate the probability P
of arriving at x successful outcomes among n replications when the true likelihood of a successful
replication as p using the Bernoulli trials formula P X ≥ x = f x = xn px 1 − p n − x. Then we can
calculate the minimum value of n for our critical threshold of p = 0.95 (i.e. 95% confidence), and
this tells us how many independent replications it takes to achieve reliability at different theoretical

Figure 3. Simulation of the number of independent replications required to achieve a majority correct at different P cutoffs
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values of p replicability. Figure 3 presents different values of n at theoretical values of p at different P
thresholds.

Figure 3 is a simulation, and p is a mostly unknown property of replications, but if we use the
pooled directional reproduction results of this study (92.5%) as a potential value for p, then it would
take at least three independent replicators to achieve reliability, when this is defined as a majority of
replications verifying a correct result 95% of the time. We encourage use of the pooled rate as our
current best approximation because it lies between two extremes of transparency, possibly something
closer to reality. If we demand 95% of within-team effects be directional reproductions, then it would
take more than 10 replications per study because less than 70% of teams could achieve such three-way
reliability—a binomial probability of a majority of replications, 95% of the time, and 95% of within-
team effects verified. This may sound extreme, but looking back at our literature review, using a 92.5%
value for p is generous when compared to other studies which tended to have it between 50 and 75%
[17–19].

5. Conclusion
How reliable are computational reproductions? Our study makes clear that the answer to this question
depends on several factors. Overall, the rate of directional reproduction of the original results appears
reliable at 92.4%, but does not necessarily meet a common standard alpha of 95%. Only when curating
mistakes made by the replication teams is the 95% threshold crossed. We uncovered much about the
reasons for uncertainty in computational replication. The most important is transparency. A successful
single computational reproduction of a given model is far more likely if the complete, well-annotated
original code is available. The rate of directional reproduction that the results are the same direction
and sign in our experiment was 95.7% for the TG, noticeably higher than the OG at 89.2%, which
received less information about the original study’s methods (see figure 1 ). The precision of the
replication demanded also matters. When demanding exact numerical replication within 1% of the
original odds ratio, the TG success rate was nearly 30 percentage points higher (77.4 versus 50.1%).
The skills of the researcher and the subjective difficulty of the replication are also important. In our
sample of researchers, we could not reliably disentangle these two factors given their correlation (at
around −0 .3) and that the experimental condition gave a seemingly more difficult task to one group
(the OG); however, a one s.d. more difficult replication experience reduced the likelihood of replication
by anywhere from 5 to 15% depending on the demanded precision and handling of outliers. Finally,
if the replicator is ‘ fluent’ in the same software as the original study, this increases the likelihood of
a successful replication by 7 to 24%, towards the higher end of the distribution with more transparent
materials (see table 4 and electronic supplementary material, tables S8 and S9). Crucially, the treatment
effect of our experiment is shown to hold strong after adjusting for other aspects of the replication
teams.

In our example, two of the PIs independently replicated the original study’s effects within two
decimal places in both Stata and R. Their goal was to come to this result, and the one working in R
spent several hours getting to this point. This meant that there was a very high degree of motivation
to arrive at these results that may not have been present in the participants of this study, given that
they were promised publication as long as they completed all tasks assigned to them, regardless of
their outcomes. Although they were asked to approach this study as they would their usual work, our
study might not exhibit ideal ecological validity. We tried to control for less motivated or less skilled
outliers by offering curated and trimmed sets of results. These steps increased the pooled directional
reproduction averages to 95.2 and 94.1% respectively, while the exact replication rate averages came
up to 71.7 and 66.4%. The highest group-specific exact replication rate was only 83.9% in the TG in the
curated set of results. This is a level that is much lower than the 90 or 95% cut-offoften often used as a
standard for a result to be considered reliable.

The studies we reviewed in §1 suggest computational reproducibility might lie between 50 and 75%
of results within and between studies. Thus, our finding looks promising in this light. However, we
need to be cautious about how we define reproduction. If we defined it at the team-level rather than
model-by-model, demanding that at least 95% of all results within a given team are without error is a
necessary condition for a ‘successful’ replication, this yields only a 64.9% success rate (see figure 1 ).
This means that most teams had at least a few models that failed to replicate. Most teams had errors.
Only 14 teams had 100% exact numerical replication, all from the group with transparent access to the
original code. This may owe to another factor that we uncovered in our qualitative coding of the teams’
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workflows. We discovered that there was information in the code of the original study that is necessary
to achieve an exact replication that otherwise cannot be found in the paper or supplementary materials. This
was most evident in minute details relating to the recoding of socio-economic status variables. In this
study, like many in the social sciences, socio-economic status was a key adjustment variable, and its
construction by the original authors required combining responses from various questions from the
original survey data (see table 2). If potential replicators do not have access to or use the same coding
language as the original, it is difficult for them to understand all steps in the code. This means that
Stata users in the TG had the easiest access to additional, but crucial, methodological information about
the study. An argument for more transparency, if not clearer presentation of methods, in future studies.

Without reference to any numeric reproducibility rates, our qualitative investigation shows there is
analytic flexibility, or what Gelman & Loken [27] refer to as ‘researcher degrees of freedom’ leading
them through a garden of forking paths, even in research so narrow as a computational reproduction.
This surely is the case in the TG who were provided with the original analytical code. Gary King
[28] refers to provision of original code as the most elegant way to engage in reproducible research.
Our results demonstrate that truly elegant code should be well-structured, well-documented and
comprehensible for researchers who do not use the software, but even so, might still leave replicators
subject to uncertainty. Our results suggest that this uncertainty may be procedural, as in, idiosyncratic
to the researchers or their research processes. We observed uncertainty in results that were not based
on conscious analytical decisions or mistakes but occurred as the teams engaged in their standard
idiosyncratic research practices and previously learned software routines.

There are three clear implications of our findings. The first is that transparency is critical to
increasing the reliability of science. We understand science to mean repeated testing of scientific
claims to form a set of results that can be trusted as communicating accurate information about
the world [29]. Like many social and behavioural science journals, we did not control the research
process of researchers. We asked them to do work as they normally do and then submit their findings.
This suggests that institutions, journals and teachers should place much higher quality demands on
scientists, because their transparency behaviours are far from ideal [10,30,31]. Our findings underscore
that we would immediately make social and behavioural science far more reliable: if all journals not
only required but checked code. Today some journals hire third parties to provide code checking, but
not all journals are in a financial position to do this. Therefore, we suggest that one reviewer, or elected
person per paper, provides a computational reproducibility check, similar to what the AJPS started in
2015 and what Psychological Science recently adopted [32].

Second, we conclude that transparency is not a cure-all. If the quality of transparent materials
is lower, researchers might be forced to make assumptions that change the results. This was clear
from our qualitative investigation where teams lacking specific step-by-step instructions about how
to recode variables made different ‘guesses’ along the way. Moreover, there is an assumption made
by many researchers that the gold standard for transparency should be a ‘push-button’ replication.
Our own research and knowledge gained from this study suggest that this is an oversimplification.
If a researcher does not know how to use the software needed for a ‘push-button’ replication, they
cannot run it. For example, a truly push-button replication might require installation of Python, R, Stata
and/or Jupyter Notebooks, plus the skills to get them working properly with one another on any given
operating system and version; a good example of push-button replication that requires such skills and
installations is the Jupyter Notebook of a study by Connelly & Gayle, which is perfectly reproducible but
only via multiple software installations and the knowledge required to use them [33]. Also, differences
between operating systems, packages and processors can produce different results [34] like with the
different Stata versus R rounding defaults. In this study, replication teams submitted their results with
different numbers of decimals, and this may have been a product of software or package defaults.
Default settings often change across versions or software packages. Thus, the ‘tacit knowledge’ that
researchers require to execute their studies ‘cannot be fully explicated or absolutely established’ in
practice [35].

Related to this point, if the data cannot be shared and must be sought out by the replicator, this
introduces potential error in a supposed ‘push-button’ replication. Data in repositories often change
over time, and occasionally archivists make these changes without version control [36]. Remedies
for this point are at least twofold. Improved teaching of the many potential pitfalls in scientific
reproducibility and replication as a methodology, even as early as during undergraduate studies,
would reduce errors and the perceived difficulty of reproduction tasks [37]. It would both increase
attention to detail and awareness of key aspects to producing transparent and reliable work [1,38].
Expecting knowledge of virtual computing environments might be overly optimistic, but at least
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sharing of environment and dependencies within the software (sometimes known as a ‘colophon’
or ‘session info’) theoretically gives all necessary information to remove intra-software and package
variation in results. This could be part of teaching programs for cutting-edge analytical pipelines and
replicable research [26,39]. In fairness, many journals are grappling with this exact issue and can
be commended for pushing to adopt code-sharing and ideally push-button replications [40,41]. Not
only are transparency and replication policies difficult to develop given the challenges in creating
something like a push button replication, but clarifying and enforcing them adds an additional layer
to the problem [42]. We certainly support efforts to produce push-button replications as they can be
checked by at least those with requisite knowledge, for example, how to implement older versions of
software and packages. An alternative solution is that scholars themselves can produce reproducible
research via a third-party platform such as Colab or Code Ocean, where users can push-button run the
code in the virtual computing environment. These also can have a DOI to make for easy linking. There
are no quality controls or guarantees that these are long-term viable, but they are an excellent option
when there are no other alternatives.

Finally, our study implies that we should be humbler and more cautious in our communication of
science than currently practised. Social and behavioural science, like all science, may not be as reliable as
previously thought. We have shown here that this may be true even in a task as supposedly decision-free as
computational reproduction. Looking back at our simulation in figure 3, we will likely often need multiple
replications to achieve reliable knowledge production, which in many contexts will not be a viable option.
This need not contribute to a ‘crisis’ narrative but rather a reminder to continuously improve our work and
the institutions supporting it, in particular the journals, their policies and the level of enforcement. It is, after
all, our job as scientists to measure and communicate uncertainty. Therefore and nonetheless, reliance on
a single model, or reporting results as definitive or absolutely truthful based on a single reproduction is
irresponsible, misleading and contrary to the scientific method.

Here our study links to analogous evidence of inter-researcher variability when researchers conduct
similar original research tasks as seen in ‘many analysts’ and multi-analyst studies [14,43–46]. It is
difficult to test how well these findings generalize beyond simple computational reproduction, given
the challenge of obtaining a reliable prior probability of coming to a correct result in any given study.
We do not know if an original study is ‘correct’, mistake-free or using the most theoretically plausible
data-generating models [47]. Prediction markets or z-curves are suggested options to estimate plausible
expected replicability rates [48,49], but any attempt to identify a ‘true’ replicability rate can quickly
digress into a philosophical debate regarding the nature of truth.

Our study is not without limitations. It is possible that the peculiarities of a task involving ISSP data
with a 10-category employment variable and a 7-category education variable (at least in the 1996 wave)
made researchers especially prone to procedural variability. However, we note that macro-comparative
social scientists do a great deal of survey-based research, and most surveys generate data on ISCO
codes, education categories (that often vary by country) and several labour market statuses that are
not always consistent (like respondents reporting being ‘unemployed’ in one question and working
‘part-time’ in another). Moreover, a study with odds ratios as an estimand may have peculiarities.
Logistic regression involves transformation from linear to logit, and then again the coefficients are
transformed into odds ratios. This leaves more steps for error. Moreover, logistic regression is iterative
rather than definitive, and there are various ways that a researcher can engage in iteratively arriving at
the best underlying linear combination, unlike ordinary least squares.

We are also limited in our ability to draw a population inference from our sample. There is no
straightforward way to define the global population of potential replicators. Our sample-N at the
team level split into two groups does not give substantial statistical power, only at the effect level as
pre-registered; therefore, we must be cautious about inference at this level. We invited anyone who
has working knowledge of multi-level modelling and experience with survey and country-indicator
data to join, yet not all had experience in the topical area and some may not have accurately read or
met the qualifications. Follow-up studies should consider limiting participation to experts on the topic,
a particular discipline or other criteria designed to eliminate additional noise likely generated in our
effort to measure inter-researcher reliability.

In our study, the opaque group attempted to replicate under exceptionally intransparent conditions,
without code and without even numerical results. It thus does not come as a surprise that this group
was far less likely to reproduce the original study. This is an extreme case, and we do not expect
studies to be published without their numerical results. Yet it is fair in the sense that many studies
offer footnoted ‘additional analyses’ which often support the findings of the main analyses without
numerical evidence. Moreover, we know that researchers might report false numerical results [50,51],
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which is a case where any replication attempt without also having the code is essentially a new study.
Our study makes loud and clear the fact that when original code is not available, replication error
rates increase markedly. Transparency is a low-cost alternative to larger-scale methods of ‘stabilizing’
estimate uncertainty like the crowdsourced replication we conducted or even larger Metaketa efforts
[52]. If their goal is the efficient and reliable production of collective knowledge, a social scientist
should not need ethical rules or enforcement mechanisms to want to generate and share high quality
code. Their motivation should only increase when informed about the costs of errors and potentially
false claims against their work, not to mention reliability. This same logic applies to social science
journals when writing up and enforcing transparency policies. It is true for all of science.

Ethics. Although there were human subjects involved in this research, no ethical committee or oversight was
necessary. The subjects were collaborative co-authors performing the same tasks that they do in their standard work
as academics. The goals and collaborative nature of the project were clarified to all participants in advance, and they
freely agreed to provide research work in exchange for co-authorship rights. They did not agree to non-anonymous
code sharing, so we have redacted all identifying features.
Data accessibility. We provide all data and workflow on GitHub. For our last submission, the authors had problems
accessing Zenodo; therefore, to ensure scientific reliability, we can no longer trust Zenodo in the peer review
process. Here is our GitHub link for our entire reproducible repository [53].
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