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Abstract
Viewing artificial objects and images that are designed to appear human can elicit a
sense of unease, referred to as the ‘uncanny valley’ effect. Here we investigate neural
correlates of the uncanny valley, using still images of androids (robots designed to look
human), and humans wearing hyper-realistic silicone masks, as well as still images of
real humans, in two experiments. In both experiments, human-like stimuli were harder
to distinguish from real human faces than stimuli that were clearly not designed to mimic
humans but contain facial features (mechanical robots and Halloween masks). Stimulus
evoked potentials (electromagnetic brain responses) did not show convincing differences
between faces and either androids or realistic masks when using traditional univariate
statistical tests. However, a more sensitive multivariate analysis identified two regions of
above-chance decoding, indicating neural differences in the response between human
faces and androids/realistic masks. The first time window was around 100–200 ms post
stimulus onset, and most likely corresponds to low-level image differences between
conditions. The second time window was around 600 ms post stimulus onset, and may
reflect top-down processing, and may correspond to the subjective sense of unease
characteristic of the uncanny valley effect. Objective neural components might be used
in future to rapidly train generative artificial intelligence systems to produce more realistic
images that are perceived as natural by human observers.

Introduction
Many people report an aversion to entities that are superficially human-like, but on closer
inspection turn out to be artificial. Examples include humanoid robots (androids), puppets,
hyper-realistic masks [1], and computer-generated images or movies. The term ‘uncanny val-
ley’ [2] (English translation in [3]) describes the idea that clearly human or clearly artificial
entities do not evoke unease, whereas artificial entities that are human-like are disconcerting.
Understanding these experiences is increasingly important as artificial entities become more
integrated into our everyday lives. However at present relatively little is known about the neu-
ral underpinnings of the uncanny valley effect (for a recent review, see [4]). In particular, the
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root of the uncanny valley effect remains debated: does it arise primarily from bottom-up sen-
Competing interests: The authors have
declared that no competing interests exist. sory conflicts, or from higher-level cognitive processes? Resolving this question is critical to

understanding its fundamental mechanisms.
Neural responses to faces and bodies in general are well-characterised, and there appear

to be specialised brain regions devoted to both (reviewed in [5]). For example, areas of the
occipital lobe [6] and fusiform gyrus [7] respond more to faces than to non-face stimuli, and
sections of extrastriate cortex are responsive to bodies [8]. There are also electromagnetic
event-related potential (ERP) signals associated with face and body stimuli, though their pre-
cise role is still debated [9,10]. It seems highly likely that ‘uncanny’ images will activate these
same processes, yet it is unclear whether the initial cause of the sense of unease they produce
occurs at bottom-up sensory stages [11–13] or is modulated by more top-down cognitive
factors [14,15].

One previous study by [16] measured functional magnetic resonance imaging (fMRI)
responses to moving stimuli designed to elicit an uncanny valley effect. They found repetition
suppression effects (repetition suppression is a phenomenon in which the neural response
to repeated presentations of identical or similar stimuli is reduced relative to the response
on the first presentation) in action-specific brain regions responding to movies of androids
that had a biological appearance, but mechanical motion. These effects were stronger than for
movies of humans or mechanical robots performing the same actions. A more recent elec-
troencephalography (EEG) study [17] identified a difference in the N400 component (the
N400 is an electromagnetic brain potential obtained 400 ms after stimulus onset, typically
over centro-parietal electrodes; it has been proposed to reflect the extent to which the stim-
ulus presented was surprising or unexpected) between dynamic and static conditions using
the same stimuli. Although this difference was strongest over frontal electrodes, source recon-
struction of the N400 itself suggested a left-lateralised source in the temporo-parietal cortex,
consistent with the fMRI results [16]. The authors interpret both of these findings as being
due to the discrepancy between the human-like appearance and the clearly non-biological
motion of the robot.

Our aim was to further investigate neural correlates of the uncanny valley effect, with
the expectation that increased understanding will aid efforts to generate more convinc-
ingly human robots and avatars in the future. We achieved this through two EEG experi-
ments, in which we measured neural responses to static images. Although previous studies
focus on dynamic stimuli, static images allow for a more precise investigation of the neu-
ral mechanisms underlying the uncanny valley effect, particularly by eliminating motion-
related confounds. In the first experiment, the stimuli were still images of humans, machine-
like robots, and human-like robots (see Fig 1a). In the second experiment we aimed to gen-
eralise the finding by using images of people wearing no masks, wearing obvious masks
(e.g. Halloween masks), and wearing hyper-realistic silicone masks [18] (see Fig 1b).
Rather than focus on specific ERP components, we use a multivariate pattern classifica-
tion approach (a machine learning technique in which an algorithm is trained to decode
the neural responses) to identify time windows in which information in the EEG signal
can be used to distinguish between pairs of conditions. Our rationale is that timepoints
where signals evoked by human faces can be distinguished from those evoked by human-like
robots, or hyper-realistic masks, are candidates for a neural signature of the uncanny valley
effect.
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Fig 1. Illustrative stimuli from the same categories as used in Experiments 1 and 2. Row (a) shows a human face,
an android and a robot, all against white backgrounds. Row (b) shows a human face, a hyper-realistic silicone mask,
and a Halloween mask, all against natural backgrounds. Images shown here were taken from a variety of sources that
permit reuse in academic contexts and in most cases were not part of the stimulus set from the experiments. The
silicone mask image was taken by the authors (subject: RJ, image credit: JGS), and was used in Experiment 2. The
individual in this manuscript has given written informed consent (as outlined in PLOS consent form) to publish these
case details (i.e. this image).

https://doi.org/10.1371/journal.pone.0311714.g001

Materials and methods
Participants
A total of 29 participants completed Experiment 1 (12 male, 17 female), and 30 different par-
ticipants completed Experiment 2 (7 male, 23 female). Participants were young adults with no
history of neurological disorder. None of the participants had previously taken part in a study
using these stimuli, and all were naïve to the hypotheses and wore their normal optical cor-
rection if required. Written informed consent was collected before each experiment began,
and all procedures were approved by the Ethics committee of the Department of Psychology
at the University of York. Data collection for Experiment 1 ran from 14th July to 15th Septem-
ber 2022, and data collection for Experiment 2 ran from 12th October 2017 to 14th February
2018.

Apparatus and stimuli
In Experiment 1, the stimulus set consisted of a total of 90 images, evenly split between three
categories: real faces, human-like robots, and mechanical robots. Images all showed the head
and shoulders of the subject, had white backgrounds, and were sourced from the Internet. In
Experiment 2, the stimulus set (first described by [19], but here including additional images)
consisted of a total of 296 images, comprising real faces (148 images), people wearing silicone
masks (74 images), and people wearing obvious masks of the sort typically worn for carni-
vals and Halloween celebrations (74 images). The backgrounds of these images were more
heterogeneous, and showed the natural surroundings of the subject. While the image back-
grounds differed across experiments, we hypothesize that the primary task was not affected,
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as participants focused on the foreground stimuli. In both experiments, images included
examples of both genders, and of varied ethnic backgrounds.

All stimuli were displayed on a ViewPixx display running at 120 Hz, controlled by an
Apple Macintosh computer. The display was gamma corrected using a photometer to ensure
that the luminance output was linear. EEG data were collected using a 64-channel Waveguard
cap and an ANT Neuroscan system, sampling at 1 kHz. The ground electrode was located at
position AFz, and all signals were referenced to the whole head average. Low latency digital
triggers were sent between the display and the EEG amplifier using an 8-bit parallel cable.

Procedure
Experiment 1: Robots. Each participant completed three blocks of the first experiment.

Within each block, all 90 stimulus images were presented twice in a random order. Stimuli
subtended 11× 11 degrees at the viewing distance of 57 cm, and were shown against a mid-
grey background, with a black central fixation cross displayed throughout. The presentation
duration was 500 ms, and participants were asked to press a mouse button to indicate if they
believed each image was of a human or of a robot/android. After each response there was a
random duration blank period with a mean duration of 1000 ms and a standard deviation of
200 ms. Durations were chosen to provide sufficient information for judgment while avoiding
task fatigue. Randomized blank periods were designed to reduce carryover effects and prevent
anticipatory biases. Each block lasted around 6 minutes.

After the EEG experiment, participants also completed a series of questionnaires using the
Qualtrics platform. These involved rating their perception of a subset of the stimuli (8 from
each category), using items from the Godspeed questionnaire [20]. Items were selected that
were expected to be most closely aligned to measuring the sensation of uncanniness. Inspec-
tion time was unlimited. Participants also provided demographic information (age, gender)
and completed the GAToRS [21] and AQ [22] questionnaires, however the results of these
additional questionnaires are not presented here.

Experiment 2: Hyper-realistic masks. Participants were shown all 296 images in a ran-
dom order in each of three blocks. In the first block, stimuli subtended 5.5× 7.5 degrees of
visual angle when viewed at a distance of 57 cm. In the second block, stimuli doubled in size
(width and height), and subtended 11× 15 degrees at the same viewing distance. In the third
block, stimuli doubled in size again, and subtended 22× 30 degrees. The rationale for the size
manipulation was to investigate whether increasing levels of detail made the silicone masks
more identifiable [18,19]. However as that is not the main focus of the current paper, and our
preliminary analyses indicated no differences between size conditions, we collapse results
across size conditions. Stimuli were presented for 250 ms, and participants indicated whether
they thought each image contained a real face or a mask, using a two-button trackball. The
button assignment (whether the left button indicated a face or a mask, and vice versa) was
determined randomly for each participant, but remained constant throughout the whole
experiment. Text reminding the participant of the button assignment was present continu-
ously in the lower right corner of the screen, far from the area of the screen where the stim-
uli were presented. A central fixation cross was also present throughout. After each response
there was a random duration blank period with a mean duration of 1000 ms and a standard
deviation of 200 ms. Each block lasted around 8 minutes.

An independent group of 20 participants also completed an online questionnaire in which
they rated the images along various dimensions. The participants repeated the real face vs
mask judgement from the main experiment, and were additionally asked to rate emotional
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expressiveness, realism, and uncanniness for each image using a 7-point Likert scale. Inspec-
tion time was unlimited for these judgments.

Data analysis
We analysed response data by calculating d-prime (d′) scores for each condition, derived from
the hit rate and false alarm rate [23]. For the human conditions, the hit rate was the propor-
tion of human images correctly identified as human, and the false alarm rate was the pro-
portion of robot or mask images that were incorrectly judged as being human. For the robot
and mask conditions, the hit rate was the proportion of robot/mask images correctly identi-
fied as not being human, and the false alarm rate was the proportion of human images that
were incorrectly judged as being non-human (note that this means the false alarm rate was the
same for the robot and android conditions, and for the silicone and Halloween mask condi-
tions). We capped infinite d-prime values (which occur e.g. when the hit rate is 1) at an arbi-
trary ceiling of 5 to prevent outliers from skewing the results, following established conven-
tions in signal detection theory. We log transformed the reaction times (which typically have
positive skew) and performed all averaging and statistical analysis on the logarithmic values.

EEG signals were recorded during each block and saved to disc for subsequent offline anal-
ysis. We used components of the EEGlab toolbox [24] to import the data into Matlab and col-
late data across blocks. We then used Brainstorm [25] to filter the data using a bandpass fil-
ter (0.5 to 30 Hz), epoch by condition, and subtract a pre-trial baseline (the mean voltage for
the 200 ms before stimulus onset). Five participants were excluded from the EEG analysis of
each experiment due to excessive noise. Our attempts to clean up the data from these partici-
pants using independent components analysis were unsuccessful. Their behavioural data were
unaffected, and are therefore still included in the analysis.

We performed univariate analyses by conducting Bayesian t-tests [26] between ERPs from
pairs of conditions at each time point using a JZS prior, using signals pooled across electrodes
P6, P8, PO6 and PO8, which are typically associated with visual responses to faces. The result-
ing Bayes factor score is a summary of the evidence in favour of either the null hypothesis
(that the waveforms are equal) or the alternative hypothesis (that they differ). We use the
heuristics proposed by Jeffreys [27] that Bayes factors >3 (log10BF10 > 0.5) constitute some
evidence supporting the alternative hypothesis, factors >10 (log10BF10 > 1) constitute strong
evidence, and factors >30 (log10BF10 > 1.5) constitute very strong evidence.

Multivariate pattern analysis (MVPA) was conducted by training a linear support vec-
tor machine algorithm (LibSVM, [28]) to discriminate between patterns of activity across
electrodes at a specific time point. MVPA is a statistical technique that involves training a
machine learning algorithm to identify patterns in data, and then testing its accuracy at clas-
sifying unseen data; in EEG analysis above-chance classification is considered evidence of
distinct patterns of neural activity between two conditions. Previous work has indicated that
EEG data do not typically require more complex nonlinear algorithms [29]. The patterns
came from the human face condition and one of the other conditions, for a single partici-
pant. Four examples of each pattern were calculated by averaging over random subsets of 20%
of the available trials from a given condition, and these were used to train the classifier. The
accuracy of the classifier was tested on the remaining trials (that were not used in training)
for each condition. This process was repeated 1000 times with different trial permutations to
obtain an average accuracy, where chance performance is at 50% correct. The analysis was
carried out at all time points, and for each participant separately. We then averaged classifier
accuracy across participants, and calculated one sample Bayesian t-tests comparing to chance
performance at each time point as described above.
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Data and code availability
Raw data, processed data, and analysis scripts are freely available through the project reposi-
tory at: https://doi.org/10.17605/OSF.IO/5NZ2H

Results
Experiment 1
We first explored the behavioural results for identification of human versus non-human
stimuli. We calculated d-prime scores to compare sensitivity across conditions. Sensitivity
was highest for identifying robots (d′ = 4), but still well above chance for both the human
(d′ = 2.72) and android (d′ = 2.27) conditions. The Bayes factor score for a one-way ANOVA
comparing these three conditions indicated very substantial evidence (log10BF10 = 6.67) for
a difference between conditions, as illustrated in Fig 2a. Pairwise Bayesian t-tests between
conditions indicate very convincing differences in sensitivity between robots and androids
(log10BF10 = 7.15) and robots and humans (log10BF10 = 6.27). The difference between androids
and humans (log10BF10 = 5.58) was also very substantial. The higher d’ values for robots
(Fig 2a) could indicate that these stimuli are more visually salient.

Reaction times also differed between conditions, though the effects were rather smaller.
Reactions were fastest for identifying robots (RT = 688 ms), compared with humans (RT =
803 ms) and androids (RT = 809 ms). The Bayes factor score for a one-way ANOVA com-
paring these three conditions indicated strong evidence (log10BF10 = 1.44) for a difference
between conditions, as illustrated in Fig 2b. Pairwise Bayesian t-tests between conditions indi-
cate very convincing differences in sensitivity between robots and androids (log10BF10 = 5.01)
and robots and humans (log10BF10 = 4.61), whereas the reaction time was equivalent between
androids and humans (log10BF10 = –0.68).

EEG activity showed a clear visually evoked potential over posterior electrode sites (see
Fig 2c), with typical components found in response to visual stimuli pooled across all con-
ditions (the P100, N170 and P200 are indicated in the figure). Pairwise comparisons of con-
ditions are shown in Fig 3a and 3b. In general there is a tendency for the ERP response to
human faces to diverge slightly from the other two conditions [30], however the evidence for
this divergence was not compelling. Bayes factors exceeded 3 for only a small number of time
points around 300–400 ms in the comparison between human and robot images (see yellow
bars at y = –8 in Fig 3a), but these differences were small considering the variance in the data.

We also conducted multivariate pattern analysis independently at each time-point for
the same two comparisons. The evoked responses for human and robot images caused suffi-
ciently distinct patterns of voltages across the scalp that the pattern classifier could distinguish
between them from around 100 ms following stimulus onset, with accuracy up to 72% cor-
rect (see Fig 3c). Bayes factors exceeded 30 for much of the time window between 100 and
800 ms, indicating that the decoding was meaningfully above chance performance (50% cor-
rect). It was also possible to classify between human and android images (see Fig 3d), however
performance was much poorer, with a maximum of 62% correct. Classification accuracy had
an initial peak around 100 ms that provided compelling evidence for above chance classifica-
tion (BF>30), and a later region of above-chance classification between 500 and 700 ms. The
early time window likely reflects rapid processing of low-level visual features, such as edges
or color contrasts, consistent with P100 and N170 components, whereas the later time win-
dow may involve higher-level cognitive processes, such as evaluating emotional content or
judging authenticity. In the Discussion we speculate that these two time periods might corre-
spond to distinct types of signal associated with the uncanny valley. More generally, the high
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Fig 2. Summary of response data and grand mean ERP for Experiment 1. Panel (a) shows d-prime scores for
identifying images of human (blue diamonds), android (green squares) and robot (red circles) faces. Small points
show individual participants, and the larger symbols with error bars indicate the group mean and bootstrapped 95%
confidence intervals. Panel (b) plots reaction times in the same format (note the logarithmic x-axis). Panel (c) shows
the grand mean ERP across all participants and conditions, pooled across electrodes P6, P8, PO6 and PO8 (see inset).
The P100 is a positive evoked potential occurring around 100 ms after onset of a visual stimulus, associated with the
initial (low level) visual response; the N170 is a negative potential at 170 ms that is often associated with faces; the
P200 is a further positive potential linked to attention and stimulus discrimination. The shaded region around the
curve illustrates the 95% confidence interval, and the grey rectangle at the foot indicates the stimulus duration.

https://doi.org/10.1371/journal.pone.0311714.g002

classification accuracy for human vs. robot stimuli may be attributed to the salient mechan-
ical elements of robots, whereas the lower accuracy for humanoids reflects their ambiguous
human-like appearance, leading to confusion.

Finally, we analysed the rating data from a set of 10 questionnaire items for 8 stimuli from
each category. The results are summarised in Fig 4, and in general show differences between
stimulus categories along most dimensions. Of particular note, the U-shaped function pre-
dicted by the uncanny valley effect was apparent for ratings along the Dislike-Like (Fig 4d),
Unfriendly-Friendly (Fig 4e), and Anxious-Relaxed (Fig 4i) dimensions. These are all dimen-
sions with emotional valence, indicating support for the ‘uncanniness’ of our android stimuli.
However we note that the android and robot categories were typically rated as being more
similar to each other than to the real human faces. Following Experiment 1, we sought to
generalise our results to a different stimulus set, and next report the results of Experiment 2
which used hyper-realistic silicone masks.

Experiment 2
The results of Experiment 2 were similar to those of Experiment 1, despite using a quite dif-
ferent stimulus set involving images of humans wearing masks, rather than robots. Sensitivity
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Fig 3. Univariate and multivariate comparisons across image type. Panel (a) shows the ERPs comparing human (blue) and robot (red) face images, and panel (b)
compares human (blue) and android (green) faces. Panels (c) and (d) show multivariate pattern classification accuracy for the same comparisons. Points at y = –8 and
y = 25 indicate Bayes factor scores for comparisons between ERPs (a,b) and comparing classification accuracy to chance (50% correct; c,d).

https://doi.org/10.1371/journal.pone.0311714.g003

was highest for identifying Halloween masks (d′ = 4.01), but still well above chance for
both the human (d′ = 2.52) and silicone mask (d′ = 1.29) conditions. The Bayes factor score
for a one-way ANOVA comparing these three conditions indicated very substantial evi-
dence (log10BF10 = 13.34) for a difference between conditions, as illustrated in Fig 5a. Pair-
wise Bayesian t-tests between conditions indicate very convincing differences in sensitiv-
ity between Halloween and silicone masks (log10BF10 = 9.71) between Halloween masks and
humans (log10BF10 = 11.59), and between silicone masks and humans (log10BF10 = 5.19).
Unlike in Experiment 1, there were no convincing reaction time differences between condi-
tions (log10BF10 = –0.8), as illustrated in Fig 5b.

The grand average ERP waveform for Experiment 2 (see Fig 5c) had similar initial compo-
nents as for Experiment 1. The latter portion of the waveforms differed somewhat, most likely
owing to the difference in presentation duration across experiments (250 ms versus 500 ms).
There was a substantial univariate difference in ERP response between human and Halloween
mask conditions extending from around 170 to 230 ms following stimulus onset (see Fig 6a),
with Bayes factors exceeding 30. Univariate differences between the human and silicone mask
conditions were not compelling (see Fig 6b).

Multivariate pattern analysis revealed extremely high classification accuracy (up to 97%
correct) comparing human faces with Halloween masks. This was convincingly above chance,
with a Bayes factor score exceeding 30 from around 100 ms following stimulus onset, and
extending across the full time window (see Fig 6c). Classification was also convincingly above
chance when comparing human faces with silicone masks (Fig 6d). This timecourse had an
initial peak of high accuracy (up to 76% correct) between 100 and 200 ms after stimulus
onset, followed by a second peak around 600 ms. This replicates the finding from Experiment
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Fig 4. Ratings of stimuli using items from the Godspeed questionnaire. Each rating was on a Likert scale from
1–5, and was the average of ratings from 8 stimulus examples. Dots show individual participant scores, with the larger
symbols indicating the mean and 95% bootstrapped confidence intervals.

https://doi.org/10.1371/journal.pone.0311714.g004
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Fig 5. Summary of response data and grand mean ERP for Experiment 2. Panel (a) shows d-prime scores for iden-
tifying images of human faces (blue diamonds), silicone masks (green squares) and Halloween masks (red circles).
Small points show individual participants, and the larger symbols with error bars indicate the group mean and boot-
strapped 95% confidence intervals. Panel (b) plots reaction times in the same format (note the logarithmic x-axis).
Panel (c) shows the grand mean ERP across all participants and conditions, pooled across electrodes P6, P8, PO6 and
PO8 (see inset). The shaded region around the curve illustrates the 95% confidence interval, and the grey rectangle at
the foot indicates the stimulus duration.

https://doi.org/10.1371/journal.pone.0311714.g005

1 that uncanny valley responses might involve two distinct components at different moments
in time.

We subsequently obtained ratings from an independent sample of 20 participants using
the same stimuli as in the EEG experiment. This time, we asked for explicit ratings of emo-
tional expressiveness, realism, and uncanniness, as well as repeating the binary real face vs
mask rating. Real faces were rated highest for emotional expressiveness (M = 3.9) and realism
(M = 5.9), and lowest for uncanniness (M = 2.7) (Fig 7a–7c). The realistic silicone masks were
rated highest for uncanniness (M = 4.5), however this was not dramatically higher than for
the Halloween masks (M = 4.3). Arguably making judgements of uncanniness is less appro-
priate for masks that are not intended to be realistic, though our data do qualitatively conform
to the U-shaped function expected by the uncanny valley hypothesis. The pattern of d-prime
scores (Fig 7d) was similar to those obtained in the main experiment (Fig 5b), with generally
higher scores attributable to the unlimited inspection time permitted in this online follow-up
experiment.
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Fig 6. Univariate and multivariate comparisons across image type for Experiment 2. Panel (a) shows the ERPs comparing human faces (blue) and Halloween masks
(red), and panel (b) compares human faces (blue) and silicone masks (green). Panels (c) and (d) show multivariate pattern classification accuracy for the same com-
parisons. Points at y = –8 and y = 25 indicate Bayes factor scores for comparisons between ERPs (a,b) and comparing classification accuracy to chance (50% correct;
c,d).

https://doi.org/10.1371/journal.pone.0311714.g006

Discussion
Across two experiments using diverse stimuli, we identified a potential neurophysiological
signature of the ‘uncanny valley’ effect. EEG responses to androids or silicone masks could be
distinguished from responses to human faces at around 100 ms after stimulus onset, and also
in a later time window around 500–800 ms after stimulus onset. There were no clear differ-
ences in the unimodal ERP response at posterior electrodes, but performance of a multivariate
pattern classifier was above chance in these time windows. This is a different pattern from that
observed for more obviously non-human stimuli (robots and Halloween masks), where there
were both univariate and multivariate differences, and the multivariate discrimination accu-
racy was above chance for an extended time window. Perceptual judgements indicated that
identification performance for uncanny valley stimuli was relatively poor, indicating confu-
sion with real human images. We also confirmed that android images were perceived more
negatively than either human or robot images, and that silicone masks were perceived as more
uncanny than human faces. The similarity in results across our two experiments is striking
and constitutes an internal conceptual replication of our main findings, suggesting that the
neural characteristics of the uncanny valley effect are generalizable across stimulus categories.

The early time window when pattern classification is above chance corresponds approxi-
mately to the P100 and N170 components of the ERP. The P100 is typically associated with
low-level visual responses, and is affected by contrast and spatial frequency content of an
image. The N170 component is most often associated with faces, though is also observed
for other image categories, and there is still debate about its precise function [9,10]. Simi-
lar early components have also been investigated in other ERP studies on the uncanny valley
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Fig 7. Additional ratings of mask images, completed by an independent sample (N = 20) with unlimited inspec-
tion time. Images were rated on three dimensions using seven-point scales (panels a–c), and also judged as being
either a real face or a mask, from which d-prime scores were calculated (panel d).

https://doi.org/10.1371/journal.pone.0311714.g007

effect [31,32], and comparing human and robot faces [30]. This time window is unlikely to
be modulated substantially by top-down influences, so we attribute the early component to
image-based differences between stimulus categories [33]. ERP components in later time win-
dows have also been studied in previous work [17,34,35], and may reflect cognitive processing
stages, such as determining whether a stimulus conforms to categorical expectations. Differ-
ences between stimulus categories at these times are more amenable to top-down influences,
and most likely involve higher brain areas outside of occipital cortex. We therefore predict
that ERP components at later time points should correspond with perceptual judgements and
reports of uncanniness - this is a worthwhile hypothesis for future work to investigate.

Our use of hyper-realistic silicone masks is novel in the context of the study of uncanny
valley effects. Previous studies using these masks have demonstrated that they are difficult
to distinguish from real faces [18,19], including in applied settings such as simulated pass-
port control [36,37], and show large individual differences [38]. Image analysis indicates
that good identification performance for silicone masks is typically based on attention to the
region below the eyes [38], however it is plausible that many observers are not explicitly aware
of the cues they use to perform this judgement. This might contribute to both the early and
late components identified in this study, and presumably also to the subjective sensation of
‘uncanniness’ that is characteristic of the phenomenon.

Another increasingly common situation that triggers the ‘uncanny valley’ experience
is in the domain of computer-generated images and movies [39,40]. Artificial intelligence
algorithms are now able to generate images and movies based on text prompts (for example
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“a picture of a girl flying a kite in a field”) that often include human subjects. However, at time
of writing, images of humans often contain errors, such as the presence of too many limbs,
digits, teeth etc. Synthetic movies often contain continuity errors, and have issues reproduc-
ing biological motion. Many of these errors are subtle and take time to spot, but it is also the
case that human observers can report that images look ‘wrong’ without explicitly knowing
why. The neural uncanny valley effect that we report here might prove a useful index of these
instinctive reactions, and could even potentially be used to improve artificial intelligence algo-
rithms. For example, images could be penalised for producing neural responses that differed
from those for natural images.

More generally, the advantage of measuring neural responses to ‘uncanny valley’ stimuli
is that, without requiring conscious awareness or behavioural responses, they can facilitate
detection of near-human stimuli. These types of near-human stimuli are becoming increas-
ingly common in impersonation and identity evasion cases [1]. Simultaneously, we observe
a growing market for reducing the uncanny valley effect for the benefit of android and robot
integration. Exploring the potential of non-invasive brain recordings will benefit various
applied fields as a result.

Conclusion
We have identified neural correlates of the uncanny valley effect that are consistent across two
experiments, using androids and hyper-realistic silicone masks. In both cases, perceptual dis-
crimination from real human faces was possible, but more challenging than discriminating
from mechanical robots or Halloween masks. Univariate differences in the ERP signal were
unconvincing, but a more sensitive multivariate classification analysis identified differences
at both early (100–200 ms) and later (around 600 ms) time points. These findings suggest
the importance of both bottom up and top down influences on the subjective experience of
the uncanny valley. Future work might extend these findings to more dynamic stimuli, and
explore potential applications for improving android and avatar generation.
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