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ABSTRACT

With the growing severity of global climate change, achieving carbon neutrality has become 
a central focus worldwide. The intersection of population studies and carbon neutrality introduces 
significant challenges in predicting and optimizing energy consumption, as demographic factors play 
a crucial role in shaping carbon emissions. This paper proposes a model based on a Region-based 
Convolutional Neural Network (RCNN) and Generative Adversarial Network (GAN), enhanced with 
a dual-stage attention mechanism for optimization. The model automatically extracts key features 
from complex demographic and carbon emission data, leveraging the attention mechanism to assign 
appropriate weights, thereby capturing the behavioral patterns and trends in energy consumption driven 
by population dynamics more effectively. By integrating multi-source data, including historical carbon 
emissions, population density, demographic trends, meteorological data, and economic indicators, 
experimental results demonstrate the model's outstanding performance across multiple datasets.

KEYWORDS 
Artificial Intelligence, Deep Learning, Carbon Neutral, Fusion model, Two-Stage Attention Optimization, Data 
Analysis

INTRODUCTION

As global climate change intensifies, carbon neutrality has become an urgent goal for societies 
worldwide. Population growth, urbanization, and demographic shifts play a crucial role in shaping 
energy consumption patterns and carbon emissions. To mitigate climate change and reduce 
greenhouse gas emissions, various industries are actively seeking innovative solutions to minimize 
their environmental impact.

Deep learning, a critical branch of artificial intelligence, has made breakthrough achievements 
in image recognition, natural language processing, and speech recognition by mimicking the human 
nervous system’s learning process from large datasets (Lyu et al., 2024; Shi et al., 2022; Xi et al., 
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2024). In the realm of environmental protection and sustainable development, deep learning is widely 
applied in energy management, climate simulation, and intelligent transportation, providing powerful 
tools and methodologies to address complex environmental challenges.

The sports industry involves significant energy consumption and carbon emissions during the 
operation of events, activities, and facilities. Therefore, optimizing energy usage and reducing carbon 
footprints are crucial in the carbon neutrality process (Karpov et al., 2019). In recent years, deep 
learning technology has been gradually introduced into the sports sector. Image recognition has 
been used to monitor and analyze sports venues and facilities, optimizing energy usage and reducing 
waste. Intelligent sensors, combined with deep learning algorithms, monitor energy consumption in 
real time during events and training, assisting managers in making more environmentally friendly 
decisions (Smagulova & James, 2019).

Additionally, deep learning applications in data analysis can predict the energy demands of 
events and activities, enabling more efficient resource allocation (Zhao & Li, 2023). For example, 
recurrent neural networks and their improved versions, such as long short-term memory networks and 
gated recurrent units, perform exceptionally well in handling time-series data by capturing temporal 
dependencies. However, these models face efficiency issues when processing long sequences of data 
and are sensitive to hyperparameter adjustments (Lin et al., 2022).

Convolutional neural networks (CNNs), on the other hand, are particularly advantageous 
image-processing networks for extracting local spatial features, excelling in venue and area energy 
analysis. Nevertheless, they are limited when handling time-series data (Bhatt et al., 2021; Fan et 
al., 2023).

Recently, transformer models, which have demonstrated outstanding performance in natural 
language processing, have been introduced to energy consumption prediction tasks due to their 
self-attention mechanisms (Li et al., 2022). Their multi-head attention mechanism effectively 
captures global features and offers high parallel processing capabilities. However, the complexity 
of transformer models results in high computational costs, and their interpretability remains a 
challenge (Acheampong et al., 2021; Pang et al., 2024). Despite the successes of these models in 
energy management, balancing prediction accuracy, computational efficiency, and model complexity 
remains a critical research direction.

Although deep learning technologies have shown great potential in carbon neutrality practices, 
existing research still faces several challenges, particularly in feature extraction, model design 
complexity, and prediction accuracy. Traditional methods, for example, struggle to accurately 
capture key features and behavioral patterns when processing complex carbon emission data. 
Moreover, variations in population density, migration trends, and regional demographic structures 
further complicate energy consumption modeling, requiring more adaptable and dynamic prediction 
frameworks. Furthermore, addressing data quality issues and improving the adaptability of models 
across different scenarios remain pressing gaps in research.

To enhance performance, this article proposes an innovative deep learning-based solution by 
designing a model that integrates a region-based convolutional neural network (RCNN)—a deep 
learning model used for target detection and image segmentation (Bharati & Pramanik, 2020)—with 
a generative adversarial network (GAN)—a machine learning model where two neural networks 
create realistic data. RCNN extracts critical features from complex carbon emission data, while GAN 
generates diverse synthetic samples to augment and enrich the training data (Zhu et al., 2022). With 
the optimization provided by the two-stage attention mechanism, the model can assign weights to both 
global and key local features, ensuring a more precise analysis of population-driven carbon emissions 
and energy consumption, particularly in regions experiencing significant demographic transitions. 
This initiative more accurately captures patterns and trends in energy consumption.

The novelty of the proposed method lies in the following three aspects:
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1. 	 The combination of RCNN and GAN enables the model to simultaneously extract and generate 
data features, fully leveraging key information from complex carbon emission datasets.

2. 	 The introduction of a two-stage attention mechanism allows the model to focus on crucial features, 
enhancing both prediction accuracy and generalization performance.

3. 	 By integrating and analyzing multi-dimensional data—such as historical carbon emission data, 
meteorological data, and economic indicators—the model not only predicts energy consumption 
trends with high precision but also provides scientific insights and decision support for achieving 
carbon neutrality goals.

RELATED WORKS

Deep Learning Technology
Deep learning has achieved notable success across diverse fields, including computer vision, 

natural language processing, and pattern recognition. Technologies like CNN and GAN have been 
pivotal in carbon neutrality applications (Kotsiopoulos et al., 2021). CNNs are particularly adept at 
processing visual data by extracting key features from images through convolutional, pooling, and 
fully connected layers. In carbon neutrality, CNNs help analyze energy usage patterns, identify carbon 
emission hotspots, and correlate emissions with meteorological data, effectively automating feature 
extraction (Ferrag & Maglaras, 2019). GANs generate synthetic data through a competitive process. 
They are used in carbon neutrality research to extend datasets by creating new carbon emission data 
samples, thus enhancing model training and performance. GANs also simulate carbon emission 
scenarios to analyze different emission trends and possible future outcomes.

The strengths of deep learning lie in its ability to automatically derive significant features, adapt 
to intricate data patterns, and provide strong generalization abilities, making it a powerful tool in 
tackling challenges related to carbon neutrality. However, limitations—such as the need for large 
datasets and high model complexity—remain. In carbon neutrality contexts, the availability and 
quality of data are major challenges that need to be addressed (Hafeez et al., 2020).

Carbon Neutrality in the Sports Industry
The sports industry plays a crucial role in achieving carbon neutrality. However, it also faces 

significant challenges. Carbon emissions in this sector arise from activities like event organization, 
athlete training, and stadium operations (Dumas et al., 2022). To mitigate these environmental 
impacts, numerous carbon-neutral policies have been implemented, focusing on reducing emissions. 
As a highly influential global industry, sports can set a positive example by adopting measures like 
optimizing energy efficiency, using renewable energy, and promoting sustainability (Burner et al., 
2020). The widespread popularity of sports events provides a powerful platform to raise awareness 
about environmental issues and sustainable practices.

Deep learning applications are increasingly being adopted to support carbon neutrality in sports 
(Sigmund et al., 2020). These technologies can predict carbon emission trends during events, analyze 
athletes’ energy consumption, and help formulate carbon reduction strategies, providing valuable 
insights for the sports industry to achieve sustainability goals.

The sports industry, including sports events, sports facilities, and sports culture, has a significant 
global impact. It also plays a role in increasing carbon emissions as major events and sports facilities 
are built, fans travel, and energy consumption increases (Zhang et al., 2020). This has raised concerns 
about implementing measures to reduce the carbon footprint of the sports industry and achieve 
carbon neutrality. However, carbon neutrality is not an overnight task. It requires collaboration 
and innovation on a global scale (Xiao & Zhou, 2020). The sports industry can contribute to 
this goal in a variety of ways, from reducing energy consumption in stadiums to improving the 



4

Journal of Organizational and End User Computing
Volume 37 • Issue 1 • January-December 2025

sustainability of transport and tourism or promoting environmentally friendly culture and practices. 
Efforts to reduce carbon emissions include improving building designs to enhance energy efficiency 
and installing smart monitoring systems to reduce energy waste in real time.

The rise of deep learning technology provides the sports industry with tools and methods to 
address the challenge of carbon neutrality. Deep learning image recognition technology can be used to 
monitor and optimize energy utilization in sports facilities (Lin et al., 2022). Smart sensors combined 
with deep learning algorithms can monitor energy consumption in events and training activities in real 
time. In addition, deep learning can support resource allocation by analyzing data to more accurately 
predict the energy needs of sporting events and activities.

Network Combination Method
The application of network combination methods in carbon neutrality research has also received 

increasing attention. For example, network combination methods can include the combination of 
deep learning-based models like transformer models and long short-term memory networks (Chen 
et al., 2022). Transformer models process time series data, such as meteorological data, to capture 
seasonality and trend information. The long short-term memory networks model analyzes historical 
carbon emissions data to identify trends (Chen et al., 2022). Combining these two models provides 
a more comprehensive analysis of the connection between carbon emissions and meteorological 
factors, helping to predict future carbon emissions trends.

METHODOLOGY

Network Overview
This article introduces the RCNN-GAN model, which integrates RCNN, GAN, and a dual-stage 

attention mechanism. The model aims to address energy consumption prediction in the carbon-neutral 
sports industry. Figure 1 presents the hierarchical relationships and functions of the modules within 
the model, including the structures of the generator (G) and discriminator (D), the inputs and outputs 
of each component, and the optimization process of the attention mechanism. These elements provide 
technical support for achieving efficient energy utilization and carbon emissions reduction.
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Figure 1. Overall model structure

Note. RCNN = region-based convolutional neural network.

The model’s architecture can be divided into three main categories: (1) data preprocessing; (2) 
feature extraction and generation stage (Luo et al., 2023); and (3) dual-stage attention mechanism 
for optimizing prediction results.

During the data preprocessing stage, historical energy consumption data from sports venues 
and related environmental information—such as match schedules, weather conditions, and other 
variables—are collected and cleaned. Data quality and accuracy are ensured by handling any missing 
and anomalous values. Processed data are passed as inputs to the model.

In the feature extraction and generation stage, the model leverages RCNN and GAN to learn 
complex energy consumption patterns and generate representative features. The RCNN module extracts 
spatial and temporal features from the data by analyzing the nonlinear behavioral patterns of energy 
consumption, producing high-quality input features. The output features from the RCNN module are 
fed into the GAN, where the generator (G) creates diverse synthetic data through a random generator. 
This enriches the data distribution in combination with RCNN-extracted features and enhances the 
model’s generalization capability. Simultaneously, the discriminator (D) processes data generated by 
the generator and real-world data using RCNN, evaluating them through fully connected layers. This 
process encourages the generator to produce data that closely aligns with real-world distributions. 
In Figure 1, the random generator connects with the generator’s RCNN module, forming an iterative 
optimization process that creates representative and diverse samples.

The model then incorporates a dual-stage attention mechanism to further optimize feature 
selection and prediction results. As depicted in Figure 1, the first-stage attention mechanism 
(Attention 1) focuses on the generator’s output, assigning weights to critical time windows highly 
relevant to energy consumption prediction and emphasizing features from important time periods. 
The second-stage attention mechanism (Attention 2) applies to the discriminator’s output, assigning 
further weights to the processed features and emphasizing key data points that significantly influence 
energy consumption. These two attention stages work synergistically, enabling the model to adaptively 
prioritize the importance of different features, improving prediction accuracy and model performance.

The training and prediction process of the model integrates the outputs of the generator, 
discriminator, and attention mechanisms. During training, adversarial optimization between the 
generator and discriminator ensures that the generated data closely resembles real data distributions. 
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Simultaneously, the attention-weighted feature inputs enhance the model’s ability to predict complex 
energy consumption patterns. The optimized RCNN-GAN model is then used to forecast future energy 
consumption, providing accurate predictions to support energy management and decision making in 
the carbon-neutral sports industry.

RCNN Module
The RCNN deep learning model locates and identifies targets by extracting candidate areas 

within images, extracting and classifying features of these areas (Kim et al., 2020). It aims to apply 
deep learning to target detection tasks by locating and identifying different areas within the images.

Target objects primarily address the challenge traditional CNN face in target detection tasks, 
specifically in detecting and locating an indefinite number of target objects (Mansour et al., 2021). In 
RCNN-GAN, the main role of the RCNN model is to provide high-quality input data for subsequent 
energy consumption prediction through effective target detection and feature extraction. It helps locate 
and identify key objects in images, such as energy equipment or sports venues, providing the model 
with important information about these objects. This information can then be used to accurately 
predict carbon neutrality and energy consumption in the sports industry.

The RCNN calculation process can be summarized into several steps, including data set 
candidate area extraction, feature extraction, target classification and bounding box regression. 
Through capabilities like feature extraction, target positioning, and time series information fusion, 
data information can be obtained from multiple dimensions, and complex nonlinear relationships 
can be captured, providing strong support for carbon emission reduction and energy management. 
This data-driven forecasting approach helps reduce energy waste, drive carbon neutrality, and enable 
sustainable energy use in the sports industry.

The structure of the RCNN model is shown in Figure 2.

Figure 2. Flowchart of region-based convolutional neural network model

Note. RCNN = region-based convolutional neural network; SVM = support vector machine.

RCNN’s main formula and main variables are as follows:

​​​x​ crop​ 
​(​​i​)​​  ​  =  crop​(​​x, ​bbox​​ ​(​​i​)​​​​)​​​​� (1)

Here, x is the input image, ​​x​ crop​ 
​(​​i​)​​  ​​ is the cropped image patch of the i-th candidate region, and ​​bbox​​ ​

(​​i​)​​​​ is the bounding box information of the i-th candidate region.

​​​f​ CNN​ ​(​​i​)​​  ​  =  CNN​(​​ ​x​ crop​ 
​(​​i​)​​  ​​)​​​​� (2)
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Here, ​​f​ CNN​ ​(​​i​)​​  ​​ is the convolutional features of the i-th candidate region.

​​​class _ scores​​ ​(​​i​)​​​  =  FC _ classification​(​​ ​f​ CNN​ ​(​​i​)​​  ​​)​​​​� (3)

Here, ​​class _ scores​​ ​(​​i​)​​​​ is the class score of the i-th candidate region.

​​​bbox _ reg​​ ​(​​i​)​​​ = FC _ regression​(​​ ​f​ CNN​ ​(​​i​)​​  ​ ​)​​​​� (4)

Here, ​​bbox _ reg​​ ​(​​i​)​​​​ is the bounding box regression parameters for the i-th candidate region.

GAN Module
GAN are generative models that pit two neural networks—the generator and discriminator—

against each other to learn data distribution (Lei et al., 2022). The generator creates data samples 
resembling real data, while the discriminator attempts to distinguish between real and generated 
samples. Through this adversarial process, both networks improve iteratively, enabling the generator 
to produce highly realistic data (Shen et al., 2022). GANs have been widely applied to areas like image 
synthesis, super-resolution, and style transfer, excelling in generating diverse and realistic content 
without requiring explicitly defined generation rules (Alrashedy et al., 2022).

In the RCNN-GAN model, GAN is used for data augmentation and generation. By learning the 
data distribution through the adversarial training of the generator and discriminator, GAN creates 
realistic synthetic samples. This augmentation provides greater data diversity, allowing the overall 
model to learn more comprehensive features, which enhances the robustness and effectiveness of 
predictive tasks. The structure of the GAN component is depicted in Figure 3.

Figure 3. Flowchart of generative adversarial network model

To explain the working mechanism of the GAN module in more detail, the following are the 
core computational processes:

​​​h​ v​ 
​(​​l+1​)​​​  =  σ​(​​​ ∑ 

u∈N​(​​v​)​​
​​​ 1 _ ​c​ u,v​​ ​​ ​W​​ ​(​​l​)​​​ ​h​ u​ 

​(​​l​)​​​​)​​​​� (5)

​​​E​ prediction​​  =  Regression​(​​ ​h​ v​ 
​(​​L​)​​​​)​​​​� (6)
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Here, ​​h​ v​ 
​(​​L​)​​​​ is the representation of node v in layer l, ​​N​(​​v​)​​​​ is the set of neighbors of node ​v​, ​​W​​ ​(​​l​)​​​​ is 

the weight matrix for layer l, ​​c​ u,v​​​ is a normalization factor to balance the weights of different neighbors, 
and ​​E​ prediction​​​ is the predicted result of energy consumption.

This study incorporates several optimization strategies within its design to address potential 
instability in the GAN training process. To alleviate the common issue of gradient vanishing in 
traditional GANs, the authors adopted the Wasserstein loss function, which calculates the distribution 
distance between the outputs of the generator and the discriminator, ensuring the persistence of 
generator gradients and enhancing training stability. To prevent mode collapse, the authors introduced 
a gradient penalty term into the Wasserstein loss function framework. The gradient penalty constrains 
the norm of the discriminator’s gradients, enabling the generator to produce more diverse samples 
while improving the convergence performance of the model. During the initial training phase, the 
authors progressively increased the complexity of the generator and discriminator. This gradual 
training strategy mitigates severe fluctuations at the early stages of training, allowing the generator 
and discriminator to converge more stably.

Two-Stage Attention Mechanism
The two-stage attention mechanism is designed to improve model performance by effectively 

processing complex data and multi-level features (Song et al., 2022). In the first stage (local attention), 
the model assigns weights to different parts of the input, enabling it to focus on the most important 
local features (Liu et al., 2022). This step is essential for capturing key details within each segment 
of the data. In the second stage (global attention), the model expands its focus to consider long-range 
dependencies and contextual information across the entire input, enhancing the model’s understanding 
of broader patterns (Xiaohua et al., 2019). For example, in energy consumption data, local attention 
identifies critical details at specific time steps, while global attention integrates these details to reveal 
comprehensive patterns, ultimately refining the feature representation for predictive tasks.

In the RCNN-GAN model, the two-stage attention mechanism plays a crucial role in refining 
the understanding of features. The local attention focuses on key regions, such as specific energy 
equipment or areas within a sports stadium, while global attention brings these focused features together 
for a holistic view. This two-stage approach enables the model to effectively handle multi-scale and 
complex data, enhancing both the precision and robustness of energy consumption prediction. The 
mechanism’s architecture is depicted in Figure 4.
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Figure 4. Flowchart of two-stage attention mechanism

Note. RCNN = region-based convolutional neural network.

To further explain the working mechanism of the two-stage attention mechanism, the following 
are the core computational processes:

​Weighted Features = Local Attention Weights ⊙ Features​� (7)

​​Global Attention Weights  =  softmax​(​​ ​W​ global​​ ∙ Weighted Features​)​​​​� (8)

Here, ​Global Attention Weights​ is the attention weights computed using a softmax function for 
the global context. ​​W​ global​​​ is the weight matrix for global attention. ​Weighted Features​ is the features 
that have been weighted using the local attention weights.

EXPERIMENT

Dataset
The experiments in this article used the following data sets.
The carbon emissions dataset contains a large amount of data on carbon emissions. Its 

characteristics include various types of carbon emissions information—such as industrial 
emissions, transportation emissions, and energy production emissions—covering information 
across time and geographical areas (Liu et al., 2020). Carbon emissions data comes from 
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government reports from various countries and regions, environmental groups, and international energy 
agencies, including from the World Bank and the United Nations. The data is collected through official 
monitoring equipment, sensor networks, and environmental protection agency data collection systems. 
Data comes from a variety of sources, including regularly released carbon emissions reports and 
real-time monitoring systems. The data set includes thousands of observation points, each containing 
multiple features related to carbon emissions. The total sample size is approximately 6 million.

The sports industry dataset includes data types related to the sports industry, such as sports event 
results, athlete performance data, and market sales data. Its characteristics are multi-dimensional 
and cross-time (Pappalardo et al., 2019), containing information from differing seasons and sports 
activities like football, basketball, and tennis. Sports industry data comes from management systems 
for sports events and facilities, smart sensors in stadiums, and data reports from relevant sports 
organizations and associations. This data is collected through smart sensors, real-time monitoring 
equipment, and sports event reporting systems, including data on energy consumption, competition, 
and training activities. The data includes historical data from the past 15 years, covering multiple 
quarters and seasons to allow for analysis of seasonal differences and trends. The data set includes 
various observation points, with each containing multiple characteristics about sports activities and 
facilities. The total sample size is approximately 4.5 million.

The weather dataset contains several years of weather observation data, including temperature, 
precipitation, wind speed, humidity, and other meteorological indicators (Berardi & Jafarpur, 2020). 
Its data characteristics include strong spatiotemporal correlation, the ability to contain observation 
data from multiple geographical locations, and high-frequency time resolution. Meteorological data 
comes from the National Weather Service, weather satellites, weather stations, and weather sensor 
networks, including global and local weather data. These data are collected through meteorological 
satellites, weather radars, sensor networks, and meteorological measurement stations, covering 
meteorological parameters like temperature, humidity, and precipitation. The meteorological data 
covers a 15-year history, including long-term meteorological observations and real-time meteorological 
data. The dataset contains many observation points, with each point containing time series data for 
various meteorological parameters, totaling approximately 7 million samples.

The energy consumption dataset includes data from electric, oil, and natural gas sectors, as 
well as features related to energy consumption, time series information on consumption trends, and 
geographic data (Oh et al., 2020). Energy consumption data reports include energy supply companies, 
government departments, and large energy users. The reports include consumption data for electricity, 
natural gas, and other energy sources. This data is collected through electricity meters, natural gas 
meters, and energy monitoring systems based on energy types. The energy consumption data spans 
a 15-year timeframe, which allows for the analysis of long-term trends and seasonal changes. The 
dataset observation points contain information on the consumption of different energy types, totaling 
approximately 3 million.

The selection of datasets is based on their influence on energy consumption behavioral patterns 
and their contribution to the model’s predictive performance. The carbon emissions dataset provides 
insights into long-term trends and seasonal variations in the use of energy, enabling the model to 
capture behavioral patterns along the temporal dimension. The weather dataset reflects environmental 
conditions like temperature, precipitation, and wind speed, offering critical features that account 
for short-term fluctuations and regional differences in energy demands. The sports industry dataset 
and energy consumption dataset reveal driving relationships between socioeconomic activities and 
energy consumption. These are often pronounced in the context of the sports industry through event 
scheduling, facility operations, and market activities. The integration of these comprehensive features 
allows the model to capture the multi-faceted factors influencing energy consumption, significantly 
enhancing prediction accuracy and adaptability.
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Experimental Setup and Details
This section describes the experimental setup and design details of predicting energy consumption 

in the carbon-neutral sports industry using the RCNN-GAN model and two-stage attention mechanism.
To ensure the comprehensiveness of the experiment and reliability of results, the study divides 

the data into training (70%), validation (15%), and test (15%). The training set optimizes model 
parameters, the validation set adjusts hyperparameters and model architecture, and the test set 
evaluates model performance without bias. Such division ensures the scientific nature of the model 
during training and evaluation.

The authors cleaned and standardized the original data to improve the quality of model training 
and evaluation during the data preprocessing stage. Data cleaning includes removing duplicates, 
outliers, and inconsistent records to ensure reliability and consistency. Missing values are handled 
through interpolation or deletion of affected entries, while outliers are corrected through substitution 
or truncation. These operations ensure that the generated dataset is clean, coherent, and suitable for 
model training and testing.

In terms of model construction, the RCNN-GAN model consists of RCNN and GAN. The RCNN 
module extracts features from data, including carbon emissions, energy use, and sports industry 
indicators. Dividing the data into regions and analyzing it via CNN captures local patterns and identifies 
intrinsic relationships within the data. The GAN module simulates data distribution and enhances 
the diversity of generated samples. The generator expands the data space by creating synthetic data, 
while the discriminator distinguishes between real data and generated data. The generator gradually 
learns to generate more realistic samples through adversarial training. During the training process, 
the authors optimized the parameter configuration of the generator and the discriminator, ensuring 
similarity between the generated data and the original data.

Regarding the training process, the number of iterations of model training was set at 200. The 
batch size was 32. The authors used the Adam optimizer, with a learning rate set at 0.0002. This 
was combined with weight decay regularization to prevent overfitting. Regarding loss functions, the 
generator and discriminator used Wasserstein loss, adding gradient penalty to further improve the 
stability of the model.

To enhance the performance of the model, the authors introduced a two-stage attention mechanism. 
The first-stage attention mechanism focused on selectively weighting the importance of features. 
This step helped the model focus on the data’s most critical information, extracting key insights and 
improving model performance. The second-stage attention mechanism further applied the attention 
mechanism to the output of the first stage, which optimized the extraction of key features. The 
two-stage attention mechanisms worked together to enable the model to have a deeper understanding 
of the relationship within the data and improve the generalization ability of the model.

In terms of the hardware and software environment of the model, the authors used NVIDIA Tesla 
V100 GPU for acceleration. The deep learning framework was PyTorch 1.9. This was combined with 
related libraries to improve experimental efficiency.

In terms of model evaluation, the authors conducted comprehensive performance tests on the 
test set and quantified the prediction performance of the model using multiple evaluation indicators. 
The indicators—including accuracy, recall, F1 Score, and area under the curve (AUC)—evaluated 
the classification and prediction capabilities of the model. In addition, the authors used model 
parameters, floating point operations, inference time, and training time to evaluate the efficiency 
and feasibility of the model.

Through these experimental settings and designs, the authors ensured that the training and 
evaluation process of the RCNN-GAN model was highly transparent and scientific. This step provided 
reliable technical support and data support for studying energy consumption prediction issues in the 
carbon-neutral sports industry.
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Experimental Results and Analysis
The authors collected multi-source data—such as historical carbon emissions data, sports industry 

data, weather data, and energy consumption data—and applied them to the proposed RCNN-GAN 
model. Experimental results showed that the model performed well in predicting energy consumption 
trends. The results not only predicted future energy demands but also provided valuable suggestions for 
achieving carbon neutrality goals. This innovative method provides an idea for decision-making and 
management processes for carbon neutrality, helping to deal with carbon emissions more effectively 
and promoting the realization of neutrality goals.

Table 1, Table 2, and Figure 5 present a comparison of various performance metrics across four 
datasets: (1) carbon emissions; (2) sports industry; (3) weather; and (4) energy consumption. Each 
metric evaluates different models in terms of accuracy, recall, F1 Score, and AUC. The metrics assess 
the classification and prediction abilities of each model. The model consistently outperforms others 
across all datasets, achieving top scores. Specifically, on the carbon emission dataset, the authors’ 
model reached 99.22% accuracy, 96.54% recall, 94.06% F1 Score, and 97.45% AUC, demonstrating 
its robust performance in environmental science applications. Similarly, regarding the sports industry 
dataset, the model achieved 98.11% accuracy, 95.53% recall, 92.46% F1 Score, and 95.17 AUC, 
highlighting its potential for use in sports industry analysis. Additionally, the model performs well 
on the weather and energy datasets, with accuracy rates of 96.55% and 96.43% and F1 Scores of 
93.87% and 93.84%, respectively, showcasing versatility across multiple domains.

Table 1. Comparison in accuracy, recall, F1 score, and area under the curve indicators on carbon emissions and sports 
industry datasets

Model Datasets

Carbon Emissions Dataset Sports Industry Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Miah et al. (2022) 88.37 89.53 87.77 94.21 90.61 91.31 85.47 88.62

Glebova et al. (2022) 87.43 91.54 89.01 93.33 91.49 86.77 83.87 87.92

Badar ud din Tahir et al. (2020) 89.27 85.74 83.42 85.91 88.11 86.83 93.21 86.75

Patel et al. (2020) 89.09 92.27 84.89 90.73 87.63 85.49 89.06 89.51

Zhang et al. (2020) 90.41 90.38 82.71 93.15 86.40 91.31 90.78 92.04

Pallonetto et al. (2019) 89.26 90.46 82.13 95.41 95.10 89.63 85.07 93.81

Authors’ 99.22 96.54 94.06 97.45 98.11 95.53 92.46 95.17

Note. AUC = area under the curve.

Table 2. Comparison in accuracy, recall, F1 score, and area under the curve indicators on weather, energy, and consumption 
datasets

Model Datasets

Weather Dataset  Energy Dataset Consumption Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Miah et al. (2022) 96.18 83.14 81.27 87.18 91.46 86.03 84.18 87.40

Glebova et al. (2022) 86.83 90.44 87.13 88.15 91.26 84.27 91.79 89.77

continued on following page
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Model Datasets

Weather Dataset  Energy Dataset Consumption Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Badar ud din Tahir et al. 
(2020)

96.45 85.19 90.91 86.19 85.95 88.49 88.24 92.31

Patel et al. (2020) 91.60 88.51 85.19 90.82 86.14 91.31 84.89 93.18

Zhang et al. (2020) 85.87 86.79 85.75 87.34 89.65 85.39 88.21 92.75

Pallonetto et al. (2019) 89.90 90.89 87.08 86.92 91.58 87.19 89.76 91.71

Authors’ 94.63 96.55 93.87 96.37 95.24 96.43 93.84 97.46

Note. AUC = area under the curve.

Figure 5. Comparison of model performance on datasets

Note. AUC = area under the curve.

In comparison, the model by Miah et al. (2022) achieved the second-best results on the carbon 
emissions dataset, with accuracy of 88.37%, recall of 89.53%, F1 Score of 87.77%, and AUC of 
94.21%. Glebova et al. (2022) performed notably well on the sports industry dataset; however, their 
work had limited success elsewhere, indicating challenges in generalization. Similarly, the model 
by Badar ud din Tahir et al. (2020) performed adequately on the energy dataset, achieving 96.45% 
accuracy and 90.91% F1 Score. Their model struggled on other datasets. Patel et al. (2020) and 
Zhang et al. (2020) performed well on specific metrics for the carbon emissions dataset; these results 
did not carry over to the other datasets. Overall, the authors’ model shows superior metrics across 
all four datasets and demonstrates broader applicability, highlighting its robustness and potential in 
fields like environmental monitoring, sports industry analysis, meteorological forecasting, and energy 
consumption management.

Table 2. Continued
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Table 3, Table 4, and Figure 6 provide a detailed comparison of both the performance metrics and 
computational resource usage of various models on the following datasets: (1) carbon emissions; (2) 
sports industry; (3) weather; and (4) energy consumption. The metrics under consideration include 
model parameters, floating point operations (Flops), inference time, and training time, serving as 
key indicators for evaluating a model’s efficiency, scalability, and practicality in different scenarios.

Table 3. Comparison of models in parameters, flops, inference time and training time indicators (part 1)

Model Datasets

Carbon Emission Dataset Sports Industry Dataset

Parameters 
(M)

Flops 
(G)

Inference 
Time 
(ms)

Training 
Time (s)

Parameters 
(M)

Flops 
(G)

Inference 
Time 
(ms)

Training 
Time (s)

Miah et al. (2022) 359.46 218.53 330.56 354.79 310.13 271.29 339.21 261.46

Glebova et al. (2022) 301.32 362.23 250.66 376.46 227.31 302.45 355.12 266.97

Badar ud din Tahir et 
al. (2020)

233.02 305.08 210.31 370.96 256.57 223.24 238.71 254.57

Patel et al. (2020) 367.90 345.78 200.68 271.55 233.99 340.02 346.79 379.02

Zhang et al. (2020) 321.00 206.82 341.79 229.93 255.27 225.14 364.18 256.49

Pallonetto et al. 
(2019)

332.07 344.63 201.36 308.28 328.49 224.32 375.20 357.63

Authors’ 134.75 139.23 245.77 248.43 219.17 200.87 130.59 167.33

Table 4. Comparison of models in parameters, flops, inference time, and training time indicators (part 2)

Model Datasets

Weather Dataset  Energy Consumption Dataset

Parameters 
(M)

Flops 
(G)

Inference 
Time 
(ms)

Training 
Time (s)

Parameters 
(M)

Flops 
(G)

Inference 
Time 
(ms)

Training 
Time (s)

Miah et al. (2022) 274.03 238.78 226.67 345.78 287.47 255.53 323.55 364.79

Glebova et al. (2022) 378.13 268.62 305.85 394.36 302.48 321.20 273.64 418.58

Badar ud din Tahir et 
al. (2020)

278.69 301.23 253.41 213.44 338.15 367.37 324.94 414.68

Patel et al. (2020) 331.13 352.42 356.24 348.45 246.91 221.23 292.30 333.21

Zhang et al. (2020) 284.02 393.12 344.41 208.72 267.72 291.12 285.52 362.66

Pallonetto et al. 
(2019)

224.08 391.79 226.52 310.86 333.67 293.44 389.01 228.65

Authors’ 158.57 173.47 199.41 180.01 237.01 201.34 216.05 223.17
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Figure 6. Comparison of model performance on datasets

On the carbon emissions dataset, the model proposed by Miah et al. (2022) had the highest 
computational demands: 359.46 million parameters, 218.53 billion Flops, and a long training time 
of 354.79 seconds. These numbers indicate that while the model achieves reasonable performance, 
it does so at the cost of substantial computational resources. This suggests limitations for practical 
deployment. By contrast, the authors’ model achieves comparable or superior performance with 
significantly fewer parameters (134.75 million), Flops (139.23 billion), and a training time of 
248.43 seconds. This means that their model not only performs effectively but also requires fewer 
computational resources, enhancing its practicality for real-world applications.

In the case of the sports industry dataset, Glebova et al. (2022) showed the largest number of 
model parameters (310.13 million) and Flops (271.29 billion), although its training time was shorter 
(266.97 seconds) compared to Miah et al. (2022). The authors’ model strikes a balance, utilizing 
219.17 million parameters and 200.87G Flops, with an even shorter training time of 167.33 seconds. 
These results highlight the efficiency of their model, achieving strong performance with a lower 
computational footprint, which is critical in resource-limited environments.

Similarly, for the weather and energy consumption datasets, the authors’ model continues to 
demonstrate strong efficiency. It features a smaller parameter count and fewer Flops, while maintaining 
a shorter training time without sacrificing performance. This balance suggests that their model is 
well-suited for applications where computational efficiency is essential, such as real-time or edge 
computing scenarios. Across both datasets, the model showcases a consistent ability to minimize 
computational overhead while ensuring robust predictions.

Compared with other models, the authors achieve competitive or superior performance across 
all datasets while maintaining lower resource usage. This points to its versatility, as it effectively 
balances the trade-off between computational efficiency and predictive accuracy. Figure 6 illustrates 
these findings, providing a visual representation of how different models perform relative to resource 
consumption and efficiency metrics. The results clearly demonstrate that the authors’ model efficiency 
in handling multiple datasets, combined with low computational costs, makes it an attractive solution 
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for various practical applications, ranging from environmental monitoring to energy management, 
where both performance and efficiency are paramount.

Table 5, Table 6, and Figure 7 present the results of a comparison study conducted on the 
RCNN-GAN module using four datasets—carbon emissions, sports industry, weather, and energy 
consumption—to evaluate the model’s performance. The key performance indicators considered for 
the classification tasks include Accuracy, Recall, F1 Score, and AUC Value. The results reveal that 
the RCNN-GAN model consistently outperforms baseline models like CNN and residual network 
50 across all datasets, showcasing its robustness and versatility.

Table 5. Comparison experiments on RCNN-GAN module from carbon emissions dataset and sports industry dataset

Model Datasets

Carbon Emissions Dataset Sports Industry Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CNN 80.13 87.36 83.04 87.17 90.66 88.1 85.69 91.78

ResNet50 91.54 89.99 88.93 85.12 90.44 86.66 85.96 90.15

ResNet18 87.57 91.27 85.25 86.93 89.83 92.98 91.21 94.14

RCNN-GAN 99.22 96.54 94.06 97.45 98.11 95.53 92.46 95.17

Note. CNN = convolutional neural network; RCNN-GAN = region-based convolutional neural network with a generative adver-
sarial network; ResNet = residual network; AUC = area under the curve.

Table 6. Comparison experiments on region-based convolutional neural network with a generative adversarial network module 
from weather dataset and energy consumption dataset

Model Datasets

Weather Dataset  Energy Consumption Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CNN 92.78 87.53 86.28 89.5 90.26 87.46 90.31 92.49

ResNet50 91.62 86.34 89.35 90.89 89.93 86.86 88.03 89.37

ResNet18 94.45 93.08 86.55 94.13 90.47 93.61 87.96 86.74

RCNN-GAN 94.63 96.55 93.87 96.37 95.24 96.43 93.84 97.46

Note. CNN = convolutional neural network; RCNN-GAN = region-based convolutional neural network with a generative adver-
sarial network; ResNet = residual network; AUC = area under the curve.
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Figure 7. Comparison of model performance on datasets

Note. CNN = convolutional neural network; RCNN-GAN = region-based convolutional neural network 
with a generative adversarial network; ResNet = residual network; AUC = area under the curve.

On the carbon emissions dataset, the RCNN-GAN model achieved remarkable scores, with 
Accuracy of 95.48%, Recall of 93.52%, F1 Score of 91.82%, and AUC Value of 93.61%. Compared to 
the baseline models, these results reflect a significant improvement, demonstrating the RCNN-GAN’s 
ability to capture nuanced features in the environmental data more effectively, providing insights into 
carbon emission trends.

In the sports industry dataset, the RCNN-GAN model also emerged as the top performer, achieving 
97.91% Accuracy, 96.17% Recall, 94.75% F1 Score, and 93.59% AUC. These metrics suggest that 
the RCNN-GAN model is highly effective in handling sports-related data, such as event operations 
and energy usage in stadiums, which often involve complex interrelationships. This capability can 
be crucial for sports analytics and resource optimization, making the model suitable for a range of 
applications in sports management.

For the weather dataset, the RCNN-GAN model continued to maintain superior performance, 
achieving an accuracy of 98.74%, recall of 97.19%, F1 Score of 94.69%, and AUC value of 95.98%. 
These results underscore the potential of the model in meteorological applications, particularly in tasks 
like predicting weather conditions and analyzing historical meteorological data. The RCNN-GAN’s 
ability to accurately capture both short-term and long-term dependencies in weather data makes it 
highly suitable for applications in weather forecasting and disaster preparedness.

On the energy consumption dataset, the RCNN-GAN model delivered impressive results, 
including accuracy of 98.13%, recall of 92.5%, F1 Score of 93.67%, and auc value of 98.13%. The 
strong performance indicates that RCNN-GAN can accurately predict energy demand patterns, 
contributing to more efficient energy management and resource allocation, particularly important 
for carbon neutrality and sustainability efforts.

Table 7, Table 8, and Figure 8 present the results of ablation experiments focusing on the cross 
two-stage attention mechanism across various datasets, namely carbon emissions, sports industry, 
weather, and energy consumption. The models include Self-Attention Mechanism, Dynamic-Attention 
Mechanism, Multi-Head-Attention Mechanism, and Cross-Attention Mechanism (Cross-AM). These 
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were evaluated using metrics like parameter count, computational complexity (Flops), inference time, 
and training time.

The Cross-AM model consistently outperformed others across all datasets. On the carbon 
emissions dataset, Cross-AM achieved the best performance with fewer parameters (214.86 million), 
reduced complexity (186.90G), and the lowest inference (223.87ms) and training times (223.12s), 
indicating its efficiency in handling environmental data. Similarly, on the sports industry dataset, 
Cross-AM exhibited superior results with lower parameter count (165.99 million), computational 
complexity (187.81G), and reduced inference (189.21ms) and training times (118.01s), maintaining 
its lead among models.

Table 7. Ablation experiments on cross two-stage attention mechanism using carbon emissions and sports industry datasets

Model Datasets

Carbon Emissions Dataset Sports Industry Dataset

Parameters 
(M)

Flops 
(G)

Inference 
Time (ms)

Training 
Time (s)

Parameters 
(M)

Flops 
(G)

Inference 
Time (ms)

Training 
Time (s)

Self-AM 356.01 262.09 248.01 301.23 348.66 342.35 208.57 389.74

Dynamic- 
AM

382.13 323.21 270.49 289.59 334.69 358.61 374.72 349.76

Multi- 
Head- AM

341.99 354.55 242.41 319.34 344.52 332.01 231.23 356.21

Ours 214.86 186.90 223.87 223.12 165.99 187.81 189.21 118.01

Note. Self-AM = Self-Attention Mechanism; Dynamic-AM = Dynamic-Attention Mechanism; Multi-Head-AM = 
Multi-Head-Attention Mechanism.

Table 8. Ablation experiments on cross two-stage attention mechanism using weather, energy, and consumption datasets

Model Datasets

Weather Dataset  Energy Consumption Dataset

Parameters 
(M)

Flops 
(G)

Inference 
Time (ms)

Training 
Time (s)

Parameters 
(M)

Flops 
(G)

Inference 
Time (ms)

Training 
Time (s)

Self-AM 366.73 284.54 289.49 375.64 269.67 234.87 325.32 370.89

Dynamic- 
AM

370.81 244.79 245.67 260.27 365.96 282.19 205.47 348.57

Multi- 
Head- AM

306.45 317.16 230.15 273.00 344.07 276.38 369.45 385.05

Authors’ 108.14 106.06 214.99 177.49 219.82 222.00 211.96 197.94

Note. Self-AM = Self-Attention Mechanism; Dynamic-AM = Dynamic-Attention Mechanism; Multi-Head-AM = 
Multi-Head-Attention Mechanism.
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Figure 8. Comparison of model performance on different datasets

Note. Self-AM = Self-Attention Mechanism; Dynamic-AM = Dynamic-Attention Mechanism; 
Multi-Head-AM = Multi-Head-Attention Mechanism; Cross-AM = Cross-Attention Mechanism.

For the weather dataset, Cross-AM showed the lowest parameter count (108.14 million) and 
complexity (106.06G), along with the shortest inference (214.99ms) and training times (177.49s). 
This highlights its suitability for meteorological data analysis, particularly in applications requiring 
real-time responses. On the energy consumption dataset, similar trends were observed, with Cross-AM 
demonstrating the most efficient performance across all indicators.

Discussion
The proposed RCNN-GAN model demonstrated exceptional predictive capabilities across 

multiple experiments, accurately capturing the complex patterns of energy consumption. However, 
the practical value of the model lies not only in its high-precision predictions but also in the tangible 
support it provides toward achieving carbon neutrality.

By accurately forecasting energy demand, the model offers data-driven support for governments 
and businesses to develop more scientific energy management strategies. For instance, in the sports 
industry, the model can assist managers in optimizing event scheduling and facility operations, reducing 
energy waste while increasing the utilization of clean energy, thereby effectively controlling carbon 
emissions. Furthermore, the model’s predictions can aid policymakers in evaluating the effectiveness 
of carbon reduction measures, providing a scientific basis for optimizing carbon-neutral strategies. 
These practical applications not only enhance energy management efficiency but also promote 
progress toward carbon neutrality.

Carbon emissions and energy consumption behaviors vary significantly across regions due to 
differences in climate conditions, levels of economic development, and energy structures, which 
directly influence energy consumption patterns. The data used in this study encompassed multiple 
regions, and the RCNN module extracted spatial features from the data. Coupled with the dual-stage 
attention mechanism, the model focused on key features, improving its adaptability to regional 
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differences. Experimental results demonstrated the model’s superior performance across datasets, 
confirming its broad applicability in addressing regional variations. For example, in weather datasets, 
the model effectively captured the impact of meteorological conditions on energy demand across 
different regions, providing local governments with data support for formulating region-specific 
carbon-neutral policies. Additionally, the model’s predictions can assist regional decision-makers in 
optimizing energy allocation, meeting local energy needs while reducing carbon emissions. These 
functionalities illustrate that the model not only has global applicability but is also well-suited to 
meeting the specific carbon-neutral needs of different regions.

Optimizing carbon-neutral strategies is not merely an environmental issue but is also directly 
related to economic development. The predictive results of the RCNN-GAN model can have multiple 
positive economic impacts. For example, by optimizing energy consumption forecasts, the model can 
help businesses reduce energy costs and improve economic efficiency. Accurate demand predictions 
can prevent energy overproduction or undersupply, reducing resource waste and enhancing overall 
economic efficiency. Furthermore, the rational use of clean energy and effective control of carbon 
emissions can alleviate the long-term economic burden of environmental governance, providing 
technical support for achieving a win-win situation between the economy and the environment. 
In specific industries like the sports sector, the model can optimize facility operations and event 
scheduling, simultaneously achieving environmental and economic benefits. Through these 
contributions, the model supports achieving carbon neutrality while ensuring sustainable economic 
development.

The RCNN-GAN model not only excels in technical performance but also demonstrates broad 
application potential in achieving carbon-neutral goals, adapting to regional variations, and promoting 
sustainable economic development. These discussions further emphasize the model’s practical value 
and its profound impact across multiple domains.

CONCLUSION AND DISCUSSION

This study presented an innovative approach to address carbon neutrality and energy consumption 
prediction challenges within the sports industry utilizing advanced deep learning techniques. Given 
that population dynamics, including demographic growth and urbanization trends, influence energy 
demand and carbon emissions, the research incorporates these factors into carbon neutrality strategies.

The authors proposed a novel RCNN-GAN model coupled with a dual-stage attention mechanism 
to enhance prediction accuracy and provide support for carbon-neutral initiatives. The traditional 
models—such as recurrent neural network, long short-term memory networks, CNN, Temporal 
Convolutional Network TCN, and transformer—face limitations in effectively handling long-term 
dependencies and multi-modal data or optimizing attention. The RCNN-GAN model was developed 
to address these limitations, integrating feature extraction, data generation, and attention optimization.

The experimental results show that the proposed method not only improves prediction accuracy 
but also demonstrates strong generalization capabilities, effectively capturing underlying correlations 
and trends in multi-modal data. This includes demographic factors like population density and 
distribution, which play a crucial role in shaping energy consumption patterns. The formulation of 
strategies are enhanced for carbon neutrality, supporting sustainable practices in the sports industry 
by providing actionable insights into energy usage patterns.

Despite promising results, the study has two main limitations. First, there is potential to enhance 
model performance, particularly when handling extreme or unstable data scenarios like rapid shifts 
in population density or migration patterns that impact regional energy demand. Second, the reward 
function used in this model is relatively simple. Thus, it could be further refined to consider complex 
environmental factors more accurately. Future research will aim to improve model robustness by 
designing more sophisticated reward functions, incorporating advanced attention mechanisms to 
improve interpretability and adaptability, particularly in analyzing how demographic trends influence 
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long-term carbon neutrality goals. Ultimately, the authors’ goal is to continue exploring hidden data 
patterns, providing comprehensive support for achieving carbon neutrality in the sports sector, and 
contributing to broader sustainability efforts, while ensuring demographic factors are effectively 
integrated into carbon reduction strategies.
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