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Chapter 1

Smooth manifolds

As mentioned in the preface, spacetime is, on the set-theoretic level, a
collection of points, called events. We want to do calculus on spacetime,
because firstly, the field equation determining the geometry of spacetime
is a partial differential equation on spacetime, and secondly, the geodesic
equation describing motion of matter in spacetime is an ordinary differential
equation on spacetime. It was discovered in the early 20th century that
the appropriate structure to be used to describe spacetime is that of a
Lorentzian smooth manifold. In this chapter, we will first learn about the
notion of a smooth manifold.

Roughly speaking, an m-dimensional smooth manifold is a set M which
can be covered by patches such that in each patch one can introduce coor-
dinates and use them to do calculus. As coordinates are ad-hoc, we need
to make sure that only certain ‘admissible’ coordinates are allowed, so that
the definition of smoothness is independent of the choice of coordinates.
It turns out that this also endows the manifold with a topology, so that
smooth manifolds are special types of topological spaces.

1.1 Charts and atlases

We have prior experience with using coordinates, for example, for the sur-
face of a sphere, one could use polar and azimuthal angles. But then we
realise that in order to obtain an injective mapping from the sphere to the
set of parameter ranges of the coordinates, we must work with patches on
the sphere, instead of the whole sphere in one go. So we anticipate that
also in the case of a manifold, it will need to be covered by patches, and
coordinates need to be set up in each patch.

Before we introduce the notion of a manifold, we explain what we mean
by putting coordinates in a patch. The aim of this section is to introduce
the notions of a ‘chart’ and an ‘atlas’. Roughly speaking, a chart describes
the local coordinates set up in a patch of the manifold, and an atlas is
a collection of such charts so that the union of the patches of the charts
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covers the whole manifold. In order that there is no conflict later on when
defining smooth objects on the manifold, we will demand that the charts
that make up an atlas are ‘compatible’.

First, let us recall the notion of a topological space.

Definition 1.1. (Topological space.)
A topological space pM,Oq is a set M together with a collection O of subsets
of M , such that the following hold:

(T1) H,M P O.

(T2) Whenever Ui, i P I, belong to O, also
#
iPI

Ui P O.

(T3) Whenever U, V P O, also U X V P O.

The elements of O are called open sets, and O itself is referred to as a
topology on M .

Recall that Rm can be equipped with its usual Euclidean topology.

Example 1.1. (Euclidean space Rm.)
Let Rm “ tx “ px1, ¨ ¨ ¨ , xmq : x" P R, 1 ď ( ď mu be the real vector space
with componentwise operations of vector addition and multiplication by
real scalars. For vectors x,y P Rm, their Euclidean inner product is given
by xx,yy “ x1y1 ` ¨ ¨ ¨ `xmym. For x P Rm, we define the ball Bpx, rq with
center x and radius r ą 0 by Bpx, rq “ ty P Rm : xx ´ y,x ´ yy ă r2u.
We define O to be the collection of subsets U of Rm with the property that
whenever x P U , there exists an r ą 0 such that Bpx, rq Ă U . Then O is a
topology on Rm. !

Definition 1.2. (Chart.)
Let M be a set. An m-chart on M is a pair pU,ϕq, where U Ă M , the map
ϕ : U Ñ Rm is injective, and ϕpUq is an open subset of Rm.

Henceforth, we will often drop the specification ‘m’ in ‘m-chart’, and simply
refer to ‘charts’ for M , with the understanding that for a given M , the m is
fixed. A chart allows us to talk about the coordinates of a point p P U Ă M ,
with respect to the chart pU,ϕq, as the m-tuple of numbers ϕppq P Rm.

Example 1.2. (A chart for Rm.) Let U “ Rm, and ϕ : Rm Ñ Rm be the
identity map id. Then pRm, idq is a chart on Rm. !

We will see later on that locally a manifold looks like Rm (its tangent space).
In Example 1.1, there is a distinguished point, namely the origin, but

as nature does not provide natural coordinate systems, we also introduce
Rm which has forgotten its origin, namely an affine space.
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Example 1.3. (Affine space.)
An affine space of dimension m consists of

‚ a set M (of ‘points’),
‚ an m-dimensional vector space V (whose vectors ‘translate’ points of M),
‚ a map MˆV Q pp,vq "Ñ p ` v P M ,

such that the following hold:

(A1) for all p P M , u,v P V , p ` pu ` vq “ pp ` uq ` v,

(A2) for all p P M , p ` 0 “ p,

(A3) for all p, qPM , there exists a unique vpq PV such that q“p`vpq.

Let p P M be fixed and let te1, ¨ ¨ ¨ , emu be a basis for V . Given any q P M ,
there exists a unique vector vpq P V such that q “ p`vpq. This vector vpq

can be expressed in terms of the basis vectors, giving unique coordinates
ϕpqq :“ px1, ¨ ¨ ¨ , xmq P Rm. Thus, q “ p ` vpq “ p ` xiei. Clearly, ϕ is
injective, and with U :“ M , ϕpUq “ Rm. So pM,ϕq is a chart on M . !

Exercise 1.1. Show that if p, q, r P M , then vpr “ vpq ` vqr.

Example 1.4. (Charts on the sphere S2.) Let

S2 :“ tpx, y, zq P R3 : x2 ` y2 ` z2 “ 1u,
and n “ p0, 0, 1q, s “ p0, 0,´1q denote the north and south poles in S2. Set
Un “ S2ztnu, Us “ S2ztsu, and define the ‘stereographic’ projections

S2ztnu “ Un Q px, y, zq "!Ñ ϕnpx, y, zq “ 1

1 ´ z
px, yq P R2,

S2ztsu “ Us Q px, y, zq "!Ñ ϕspx, y, zq “ 1

1 ` z
px, yq P R2.

pu,vq pu,vq

px,y,zq

px,y,zq

n

s

1´z

1`z

Charts pUn,ϕnq and pUs,ϕsq on S2. Looking at the two similar
triangles in the left picture, we have p1 ´ zq : 1 “ x : u and
p1 ´ zq : 1 “ y : v. Analogously, from the two similar triangles
in the right picture, p1 ` zq : 1 “ x : u and p1 ` zq : 1 “ y : v.
This holds irrespective of the sign of z.

Then pUn,ϕnq and pUs,ϕsq are charts on S2. !
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Exercise 1.2. Show that the inverse ϕ´1
n : R2 Ñ S2ztnu of the map ϕn is given

by pu, vq
ω´1
n!"Ñ

` 2u
u2 ` v2 ` 1

,
2v

u2 ` v2 ` 1
,
u2 ` v2 ´ 1
u2 ` v2 ` 1

˘
. Hint: u2 ` v2 “ x2 ` y2

p1 ´ zq2 “ 1 ´ z2

p1 ´ zq2 .

Exercise 1.3. Let H2 “tpx, y, tq P R
3 :x2 ` y2 ´ t2 “´1, tą0u. The line joining

the south pole s“p0, 0,´1q to a point p P H2 meets the xy-plane at xppqPR2.

Show that ϕsppq“ 1
1`t

px, yq, p“px, y, tqPH2, and pH2,ϕsq is a chart on H2.

Exercise 1.4. Show that pR, x !Ñ x3q is a chart on R.

Exercise 1.5. (Cylinder.)
Consider the cylinder C in R

3 given by C “ S1ˆR “ tpx, y, zq P R
3 : x2 `y2 “ 1u.

Let Ux` :“ tpx, y, zq P C : x ą 0u, ϕx`px, y, zq “ py, zq. Show that pUx`,ϕx`q
is a chart on C. Similar charts pUx´,ϕx´q, pUy`,ϕy`q and pUy´,ϕy´q can be
defined analogously, so that the union of Ux`, Ux´, Uy`, Uy´ contains C.

A collection of charts for M (with the same m) will form an atlas provided
they cover the set M and satisfy a compatibility condition.

Definition 1.3. (Atlas.)
Let M be a set. A collection of m-charts tpUi,ϕiq : i P Iu on M is called
an m-atlas if it has the following properties:

(A1)
#
iPI

Ui “ M.

(A2) For all i, j P I, ϕipUi X Ujq is open in Rm.

(A3) For all i, j PI, ϕj ˝ ϕ´1
i :ϕipUi X Ujq Ñ ϕjpUi X Ujq is C8.

(The maps ϕj ˝ ϕ´1
i are called chart transition maps.)

ϕi

ϕj

ϕj˝ϕ´1
i

ϕi˝ϕ´1
j

Ui

Uj

Compatible charts pUi,ωiq and pUj ,ωjq.

Just as with charts, we will often drop the m, and speak simply of an atlas,
instead of an m-atlas. Note that ϕj ˝ ϕ´1

i : ϕipUi X Ujq Ñ ϕjpUi X Ujq is
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a bijection. Recall that a function f : U Ñ Rn is C8 on an open subset U
of Rm if the components f i of f , 1 ď i ď n, have at each point of U , all
partial derivatives of all orders with respect to the variables xj , 1 ď j ď m,
which are also continuous on U .

The single charts in Examples 1.2, 1.3 and Exercise 1.4 are all atlases
in a trivial manner.

Example 1.5. (S2 revisited.)
The charts pUn,ϕnq and pUs,ϕsq from Example 1.4 form an atlas for S2.
Firstly, Un YUs “ S2. Secondly, ϕnpUn XUsq “ R2ztp0, 0qu “ ϕspUn XUsq.
Finally, ϕs ˝ϕ´1

n , ϕn ˝ϕ´1
s : R2ztp0, 0qu Ñ R2ztp0, 0qu, the chart transition

maps, are both given by pu, vq "Ñ pu, vq
u2 ` v2

, which is C8. !

Exercise 1.6. We revisit Exercise 1.3. Defining the projection map p : H2 Ñ R
2

by ppx, y, tq “ px, yq for all px, y, tq P H2, it is easy to see that p is injective and
ppH2q “ R

2. Thus pH2, pq is a chart for H2. Show that the charts pH2,ϕsq and
pH2, pq, form an atlas for H2.

Exercise 1.7. Show that the four charts in Exercise 1.5 form an atlas for the
cylinder C in R

3.

Example 1.6. (A non-atlas.) With m “ 1 in Example 1.2, we get the
chart pR,ϕ1q, with the chart map ϕ1pxq :“ x for x P R. On the other
hand, in Exercise 1.4, we had seen that pR,ϕ2 :“ px "Ñ x3qq is yet another
chart on R. While they individually form atlases A1 :“ tpR,ϕ1qu and
A2 :“ tpR,ϕ2qu, their union A :“ A1 Y A2 “ tpR,ϕ1q, pR,ϕ2qu does not
form an atlas. Indeed, not all chart transition maps are smooth. Although
ϕ2 ˝ ϕ´1

1 “ px "Ñ x3q is smooth on R, ϕ1 ˝ ϕ´1
2 “ px "Ñ x1{3q is not C8

everywhere on R since it is not differentiable at x “ 0. !

The previous example motivates the following definition.

Definition 1.4. (Compatible atlases.)
Let M be a set. Two m-atlases A1,A2 are compatible if A1 YA2 is also an
m-atlas on M .

Example 1.7. (Affine space revisited.) It is clear from the chart map defi-
nition given in Example 1.3, that different choices of points p, and of bases
te1, ¨ ¨ ¨ , emu, will lead to different coordinates. Consider points p, p1 P M ,
and bases B“te1, ¨ ¨ ¨ , emu, B1 “te1

1, ¨ ¨ ¨ , e1
mu for V , giving the chart maps

ϕ,ϕ1. Are the atlases tpM,ϕqu and tpM,ϕ1qu compatible? To investigate
this, we compute the chart transition map ϕ1 ˝ ϕ´1 : Rm Ñ Rm.
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p

p1

e1

e1
1

e2

e1
2

ϕ

ϕ1

ϕ1 ˝ ϕ´1

x“ϕpqq

x1“ϕ1pqq

q

M

Rm

Rm

Change of coordinates.

Given x “ px1, ¨ ¨ ¨ , xmq P Rm, q :“ ϕ´1pxq P M , and we wish to find the
coordinates x1 of this q using the point p1 and the basis B1. So we need
to write q “ p1 ` vp1q, and find x1 by expanding vp1q using the basis B1.
We have vp1q “ vp1p ` vpq, and as q “ ϕ´1pxq, also vpq “ xiei. Introduce
the change of basis matrix A “ rAj

i s P GLmpRq, where Aj
i denotes the

entry in the jth row and ith column of A, defined by ei “ Aj
ie

1
j . Also, let

b “ pb1, ¨ ¨ ¨ , bmq P Rm be defined by vp1p “ bje1
j . Then

vp1q “ vp1p ` vpq “ bje1
j ` xiei “ bje1

j ` xipAj
ie

1
jq “ pbj ` Aj

ix
iqe1

j ,

and so the chart transition map ϕ1 ˝ ϕ´1 is the affine linear map given by
ϕ1 ˝ϕ´1pxq “ b`Ax, for all x P Rm, which is C8. Its inverse ϕ ˝ pϕ1q´1 is
given by ϕ ˝ pϕ1q´1pxq “ ´A´1b ` A´1x, x P Rm. So the atlases tpM,ϕqu
and tpM,ϕ1qu are compatible. !

Exercise 1.8. Show that the set Rmˆ GLmpRq is a group with the composition
pb2, A2q ¨ pb1, A1q “ pb2`A2b1, A2A1q for pb2, A2q, pb1, A1q in R

mˆ GLmpRq.

Exercise 1.9. Prove that compatibility is an equivalence relation on the collec-
tion of all atlases on a set M .

Thus to specify a manifold1, we should work with compatible atlases (so
that in hindsight, there will be no conflict when we define smooth objects
on the manifold), and given that compatibility is an equivalence relation,
we just need to commit to one particular atlas for the set M at hand. We
make this a definition.
1The name ‘manifold’ comes from the German word ‘mannigfaltigkeit’ used by Riemann

in his doctoral thesis, which contained, among other things, a discussion of multi-valued
complex functions and their (now called) Riemann-surfaces.
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Definition 1.5. (Smooth manifold, dimension of a manifold.)
A smooth manifold pM, rAsq is a set M together with an equivalence class
rAs of compatible m-atlases on M . We call m the dimension of the smooth
manifold M . A chart from an atlas in rAs is said to be admissible for the
smooth manifold. We refer to rAs as a smooth structure on M .

Thus the atlases given in Examples 1.2, 1.3, 1.4 and Exercise 1.5 can be
used to make the respective set M into a smooth manifold. As we will
use it frequently, we will call Rm with the atlas comprising the single chart
pRm, idq as the smooth manifold Rm with the standard smooth structure.

In Example 1.6, the two atlases A1 and A2 are not compatible. Hence,
pR, rA1sq and pR, rA2sq are two different smooth manifolds.

Example 1.8. (Sphere.) Consider the sphere as a smooth manifold with
the smooth structure given by the atlas in Example 1.5. In this example,
we give a different compatible atlas, using one of the charts as the familiar
one with spherical polar coordinates. It can be shown that the map

p0,εq ˆ p0, 2εq Q pθ,φq "Ñ ppppsin θq cosφ, psin θq sinφ, cos θqqq P S2 Ă R
3

is injective, and hence a bijection onto its image

U “ S2ztpx, y, zq P R
3 : y “ 0 and x ě 0u.

For a point p P U , the angle θppq is called the polar angle of p, and the angle
φppq is called the azimuthal angle of p. For a point p P U , we define the
map ϕ on U by ϕppq :“ pθppq,φppqq P p0,εq ˆ p0, 2εq, where if p “ px, y, zq,
then θppq “ cos´1 z and

φppq :“ >px, yq :“

$
’’’’&

’’’’%

cos´1 xa
x2`y2

if yą0,

ε ´ sin´1 ya
x2`y2

if xă0,

2ε ´ cos´1 xa
x2`y2

if yă0.

Here cos´1 : p´1, 1q Ñ p0,εq and sin´1 : p´1, 1q Ñ p´π
2 ,

π
2 q are the inverse

trigonometric functions. It can be checked that φ is well-defined and that
the map R2ztpx, yq P R2 : x ě 0u Q px, yq "Ñ >px, yq is C8. Using this, it
can be checked that pU,ϕq is an admissible chart: e.g., if v ą 0, then

ϕnpUn X Uq Q pu, vq
ϕ ˝ ϕ´1

n"!Ñ
`
cos´1 u2`v2´1

u2`v2`1
, cos´1 u?

u2`v2

˘

is C8, and for all pθ,φq P p0,εq ˆ p0, 2εq, we have

ϕpU X Unq Q pθ,φq
ϕn ˝ ϕ´1

"!Ñ
` psin θq cosφ

1 ´ cos θ
,

psin θq sinφ
1 ´ cos θ

˘

is C8.
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pp

θ
θ slit

sl
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z z

The chart U covers S2 except for a ‘slit’, namely the intersection of S2 with
the half plane tpx, y, zq : y “ 0, x ě 0u. In order to cover S2, we can take
another chart pV,ψq, defined in a similar manner, by taking a differently
placed slit, in a plane perpendicular to the one containing the original slit.
Then V together with U , covers S2. More explicitly, V covers S2 except
for the intersection of S2 with the half plane tpx, y, zq : z“0, xď0u. V is
the image of the map

p0,εq ˆ p0, 2εq Q pθ,φq "Ñ ppp ´ psin θq cosφ, cos θ, psin θq sinφqqq P S2 Ă R3,

and this map is obtained by taking the polar angle with the positive y-axis,
and the azimuthal angle with the negative x-axis counterclockwise in the
y “ 0 plane; see the picture above. !

Exercise 1.10. Consider the square S :“ tpx, yq P R
2 : |x| ` |y| “ 1u. Show that

A :“ tpU`,ϕ`q, pU´,ϕ´q, pV`,ψ`q, pV´,ψ´qu is an atlas for S, where
U` :“tpx, yq P S : xą0u ϕ`px, yq“y,
U´ :“tpx, yq P S : xă0u ϕ´px, yq“y,
V` :“tpx, yq P S : yą0u ψ`px, yq“x,
V´ :“tpx, yq P S : yă0u ψ´px, yq“x.

Thus pS, rAsq is a smooth manifold. So a smooth manifold may not necessarily
‘appear’ smooth.

We now discuss four ‘spacetimes’ by just looking at the underlying smooth
structure. Later on, our examples below will be made ‘Lorentzian’ man-
ifolds, that is, smooth manifolds with some added structure. While we
are not yet ready to specify the added structure, we nevertheless introduce
these by only describing their smooth structures. Thus these are ‘pre-’
spacetimes for now, ripe for becoming legitimate spacetimes later.

Example 1.9. (Minkowski spacetime.) Let V be a 4-dimensional real vec-
tor space. Suppose that M is an affine space over V . Take any p P M ,
and a basis te1, e2, e3, e4u for V , and let ϕ : M Ñ R4 be the corresponding
chart as in Example 1.3. Let A :“ tpM,ϕqu. Then pM, rAsq is a smooth
manifold, referred to as the Minkowski spacetime. !
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Example 1.10. (Cylindrical spacetime.) Let M “ R ˆ S1 with the atlas
A comprising the charts defined in Exercise 1.5. Then pM, rAsq is a smooth
manifold, referred to as the cylindrical spacetime. !

Example 1.11. (FLRW spacetime.) Let I :“ p0,8q. Then M :“ I ˆ R3,
with the atlas tpI ˆR3, idIˆR3qu is a 4-dimensional smooth manifold, called
the FLRW spacetime (after Friedman, Lemaitre, Robertson, Walker). !

Exercise 1.11. (Product of smooth manifolds.) Let M be an m-dimensional
smooth manifold, with an atlas AM “ tpUi,ϕiq, i P Iu. LetN be an n-dimensional
smooth manifold, with an atlas AN “ tpVj ,ψjq, j P Ju. Define for i P I , j P J ,
the maps ϕi ˆ ψj : Ui ˆ Vj Ñ R

m`n by pϕi ˆ ψjqpp, qq “ pϕippq,ψjpqqq for all
p P Ui, q P Vj . Show that tpUi ˆ Vj ,ϕi ˆ ψjq, i P I, j P Ju is an atlas for M ˆ N ,
making it an pm ` nq-dimensional smooth manifold.

Example 1.12. (Schwarzschild2 spacetime.) Let mą0, and I :“ p2m,8q.
Let M “ RˆIˆS2, where S2 is the unit sphere in R3. Taking the at-
lases tpR, idRqu, tpI, idIqu, and tpU,ϕq, pV,ψqu (Example 1.8), for R, I, S2,
respectively, we see that M is a smooth manifold using the construction
based on Exercise 1.11. We call this 4-dimensional smooth manifold the
Schwarzschild spacetime. !

1.2 Topology on a smooth manifold

We will want to talk about continuous maps between smooth manifolds,
for example a ‘worldline’ in a spacetime (Definition 1.2). The way we equip
a smooth manifold with a topology is by insisting that the chart maps are
homeomorphisms (Theorem 1.2). This is the motivation for the following
definition.

Definition 1.6. (Open set in a smooth manifold.)
Let pM,rAsq be an m-dimensional smooth manifold and tpUi,ϕiq, iPIuPrAs.
A set U Ă M is open if for all i P I, ϕipU XUiq is open in Rm, where Rm is
given its standard Euclidean topology, described by the Euclidean metric

dpx,yq :“
c

m$
i“1

pxi ´ yiq2 x“px1, ¨ ¨ ¨ , xmq, y“py1, ¨ ¨ ¨ , ymq P Rm.

Proposition 1.1. Definition 1.6 of an open set is well-defined, that is, it
does not depend on the choice of the atlas in rAs.

Proof. Let A1 “ tpUi,ϕiq, i P Iu and A2 “ tpVj ,ψjq, j P Ju be atlases in
rAs. Let U Ă M , and suppose for each i P I, Ai :“ ϕipU X Uiq is open in
2After Karl Schwarzschild (1873–1916), a German physicist and astronomer.
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Rm. Let j P J . We must show that ψjpU X Vjq is open in Rm. We have

ψjpUXVjq “ψj

`
pUXMqXVj

˘
“ψj

`
UX

` #
i

Ui

˘
XVj

˘
“ψj

` #
i

pUXUiXVjq
˘

“
#
i

ψjpUXUiXVjq. p‹q

Set Bi :“ ϕipUiXVjq. Then Bi is open, since the charts pUi,ϕiq and pVj ,ψjq
belong to the atlas A1 YA2. The intersection of this open Bi with the open
set Ai “ ϕipU XUiq, is open. Now Ai XBi “ ϕipU XUi XVjq. (Indeed, Ą is
trivially true, and Ă follows from the injectivity of ϕi on Ui.) Consider the
C8 (and in particular, continuous) map ϕi˝ψ´1

j : ψjpUiXVjq Ñ ϕipUiXVjq.
As the open set Ai X Bi “ ϕipU X Ui X Vjq is contained in the open set
ϕipUi X Vjq Ă Rm, it follows that pϕi ˝ ψ´1

j q´1pAi X Biq is an open subset
of the open set ψjpUi X Vjq Ă Rm, that is,

pϕi ˝ ψ´1
j q´1pAi X Biq “ ψjpϕ´1

i pϕipU X Ui X Vjqqq “ ψjpU X Ui X Vjq

is open in Rm. So ψjpUXVjq p‹q“
#
i

ψjpUXUiXVjq is open in Rm.
"

We show that calling such sets ‘open’ is justified, as they form a topology
on the manifold.

Theorem 1.1. Let pM, rAsq be an m-dimensional smooth manifold. Then
the collection O :“ tU Ă M : U is open in Mu is a topology on M .

Proof. Let tpUi,ϕiq, i P Iu P rAs. Then H “ ϕipH X Uiq is open in Rm

for all i P I, and so H P O. Also, for all i P I, ϕipUiq “ ϕipM XUiq is open
in Rm since pUi,ϕiq is a chart, and so M P O.

Let U, V P O. Then for all i P I, ϕippU XV qXUiq “ ϕipU XUiqXϕipV XUiq
(Ă is always true for any map, and Ą holds by the injectivity of ϕi). Being
the intersection of open sets, ϕippU X V q X Uiq is open in Rm for all i P I,
and consequently, U X V P O.

Let Vj P O for all j P J . Then we have that for all i P I,

ϕi

`
p

#
j

Vjq X Ui

˘
“

#
j

ϕipVj X Uiq,

is open in Rm, as it is the union of open sets ϕipVj X Uiq in Rm. Hence,#
j

Vj P O.
"

Definition 1.7. (Topology induced by a smooth structure.)
Let pM, rAsq be an m-dimensional smooth manifold. Then the collection
O :“ tU Ă M : U is open (Definition 1.6) in Mu is called the topology
induced on M by the smooth structure rAs.
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Remark 1.1. Often in the literature, a smooth manifold is defined by first
introducing the concept of a ‘topological manifold’, where one starts with
a topological space which can be covered by charts which are homeomor-
phisms to open subsets of Rm. We have not adopted this route, since such
an approach forces one to begin with a topology. But we now reconcile our
definition with this prevalent one in the following result. ˚

Theorem 1.2.
Let pM, rAsq be an m-dimensional smooth manifold, and let

O :“ tU Ă M : U is open in Mu
be the topology induced on M by the smooth structure rAs. Suppose that
tpUi,ϕiq, i P Iu P rAs. Then for each i P I, ϕi : Ui Ñ ϕipUiq is a homeo-
morphism.

Proof. Let i P I. As pUi,ϕiq is a chart, we know that ϕipUiq is open in
Rm and that ϕi : Ui Ñ ϕipUiq is a bijection. We only need to show the
continuity of ϕi and ϕ´1

i . Let V Ă ϕipUiq be open. Then ϕ´1
i V Ă Ui.

We must show that this is an open set in M . For any j P I, we have
ϕjppϕ´1

i V q XUjq “ pϕj ˝ϕ´1
i qpV XϕipUi XUjqq. As V and ϕipUi XUjq are

open in Rm, so is their intersection. Thus pϕj ˝ϕ´1
i qpV XϕipUiXUjqq, being

the inverse image under the (C8 and hence) continuous map pϕj ˝ϕ´1
i q´1 of

the open set V XϕipUiXUjq (Ă ϕipUiXUjq), is open. Hence ϕjppϕ´1
i V qXUjq

is open for all j P I, that is, ϕ´1
i V is open in M . So ϕi : Ui Ñ ϕipUiq is

continuous.
Let U Ă Ui be open. We want to show that ϕipUq “ pϕ´1

i q´1U is
open in Rm (and hence open in ϕipUiq). The fact that U is open means in
particular that ϕipU X Uiq is open in Rm. But ϕipU X Uiq “ ϕipUq, since
U Ă Ui. Thus the inverse map ϕ´1

i : ϕipUiq Ñ Ui is also continuous. "

Exercise 1.12. Let Rm be equipped with the standard smooth structure. Show
that the topology induced by this smooth structure coincides with the standard
Euclidean topology.

Exercise 1.13. Consider the double cone C “ tpx, y, zq PR
3 :x2`y2 “ z2u ĂR

3.
Show that C cannot carry a smooth structure rAs making it a 2-dimensional
smooth manifold such that the topology induced by rAs on C coincides with the
subspace topology on C (as a subset of R3 with its standard Euclidean topology).
If we delete the point 0 “ p0, 0, 0q from C, i.e., we consider C˚ :“ Czt0u, then we
do get a smooth manifold, for example by taking an atlas comprising two charts,
namely ptpx, y, zq P C˚ : z ą 0u, ωq and ptpx, y, zq P C˚ : z ă 0u, ωq, where the
chart map ω in each case is just the restriction to these chart domains of the
projection map onto the xy-plane: R2 Q px, y, zq !Ñ px, yq P R

2.
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Remark 1.2. (Hausdorff and second countable assumptions on O.)
In order to do analysis, it is desirable to have two additional properties
enjoyed by the topology O:

(H) A topology O on a set M is Hausdorff if for every p, q P M , there exist
U, V P O such that p P U , q P V , and U X V “ H. Thus distinct
points possess disjoint neighbourhoods, a type of ‘separation axiom’.
Such a property is quite basic, since otherwise limits of sequences are
not guaranteed to be unique.

(S) A basis for O is a collection B “ tBi : i P Iu of open sets such that
every open set in O is a union of elements from B. A topology O on
a set M is second countable if there exists a countable basis for O.
When wanting to do ‘integration’ on manifolds, this property will be
needed in order to construct a so-called ‘partition of unity’, which will
essentially mean that we can use m-charts to set up Riemann integrals
of functions defined on the manifold, and patch these contributions to
obtain an integral of the function defined on the whole manifold.

Unfortunately, for a smooth manifold, neither of these properties are guar-
anteed to hold for the topologyO from Theorem 1.1. So, in order to proceed
without pitfalls, we will make a standing assumption that whenever we talk
of a smooth manifold in this book, we will mean in addition that the associ-
ated topology O is Hausdorff and second countable. The standard topology
of the Euclidean space Rm generated by the 2-norm } ¨ } satisfies the second
countability assumption since the open balls with centers all of whose com-
ponents are rational numbers, and whose radius is also a rational number,
form a countable basis. Now, if the manifold can be covered by an atlas
in the smooth structure containing countably many charts, then it follows
that (since the chart maps are homeomorphisms) the images of members
of the countable basis for Rm under the inverse of the chart maps will form
a countable basis for the topology of the manifold. All the examples of
smooth manifolds considered in this book will be of this type. ˚

Exercise 1.14. Let U be an open subset of a smooth manifold M given by an
atlas A. Let AU :“tpU X V,ψ|UXV q :pV,ψqPAu. Show that AU is an atlas for U .
Prove that if pW,σq is admissible for M , then pU X W,σ|UXW q is admissible for
pU, rAU sq. U is then said to be given the smooth structure induced by pM, rAsq.
In particular, if pU,ϕq is an admissible chart for M , then rAU s “ rtpU,ϕqus.

As a spacetime M is the collection of all events, the life of a particle can be
modelled by a curve in M by stringing together all the events encountered
by the particle in its lifetime. Let I Ă R be an interval and M be a smooth
manifold. A continuous map γ : I Ñ M is called a curve or a worldline.
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1.3 Smooth maps

The point of the definition of a smooth manifold is to enable the consider-
ation of smooth objects on it, for example, a real-valued smooth function
(think of temperature), a ‘vector field’, etc., in an unambiguous way.

Definition 1.8. (Smooth map.)
Let M,N be smooth manifolds, with dimensions m,n, respectively. A map
f : M Ñ N is said to be smooth if for all p P M ,
‚ there exists an admissible chart pU,ϕq for M such that p P U ,
‚ there exists an admissible chart pV,ψq for N such that fpUq Ă V

(in particular fppq P V ),
‚ ψ ˝ f ˝ ϕ´1 : ϕpUq Ñ Rn is C8 on ϕpUq Ă Rm.
If M is a smooth manifold, and R has the standard smooth structure,
then we use the notation C8pMq to denote the set of all smooth maps
f : M Ñ R.

For a smooth manifold M , the identity map idM : M Ñ M is smooth.

Example 1.13. (Chart maps are smooth.)
Let pU,ϕq be a chart from an atlas defining the smooth manifold M . We
now consider U itself to be a smooth manifold, described by the trivial atlas
tpU,ϕqu. Then ϕpUq Ă Rm is an open subset of Rm. We consider ϕpUq
as a smooth manifold described by the atlas comprising the single chart
pϕpUq, idϕpUqq. We claim that the chart map ϕ : U Ñ ϕpUq is smooth. For
each p P U , we take the admissible chart pU,ϕq for U containing p, and the
admissible chart pV :“ ϕpUq, idϕpUqq for the smooth manifold ϕpUq. Then
ϕpUq“V . Moreover, idϕpUq ˝ϕ ˝ϕ´1 “ idϕpUq : ϕpUq Ñ ϕpUq Ă Rm, which
is clearly C8. As p P U was arbitrary, ϕ : U Ñ ϕpUq is smooth. !

Exercise 1.15. Let M,N be smooth manifolds and f :M ÑN be a smooth map.
Show that f is continuous.

Exercise 1.16. Let M1,M2,M3 be smooth manifolds, and let f12 : M1 Ñ M2,
f23 : M2 Ñ M3 be smooth maps. Prove that f23 ˝ f12 : M1 Ñ M3 is smooth.

Exercise 1.17. Let M,N be smooth manifolds, and M ˆ N be the smooth
manifold described in Exercise 1.11. Let the projection map ωM : M ˆ N Ñ M
be given by M ˆ N Q pp, qq !Ñ p P M . Given a q P N , let the injection map
iq : M Ñ M ˆ N be given by M Q p !Ñ pp, qq P M ˆ N .

‚ Show that ωM is smooth. (Similarly, M ˆ N Q pp, qq !Ñ q P N is smooth.)

‚ Show that iq is smooth. (Also, for p P M , N Q q !Ñ pp, qq P M ˆ N is smooth.)
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In particular, Exercise 1.17 has the following consequences. Firstly, given
any g P C8pMq, the map M ˆ N Q pp, qq "Ñ gppq P R, is an element
of C8pM ˆ Nq, as it is the composition of the smooth maps g and εM .
Secondly, given an f P C8pM ˆ Nq and a q P N , the ‘slice map’ fq, given
by M Q p "Ñ fpp, qq P R is smooth too, since fq “ f ˝ iq. We will use these
observations later on to show that the ‘tangent space of M ˆ N at pp, qq’
can be identified with TpM ˆ TqN in Exercise 2.8.

Exercise 1.18. (Smoothness is a local property.) Let M,N be smooth manifolds.
Show that f : M Ñ N is smooth if and only if for every U open inM , f |U : U Ñ N
is smooth. Here U has the induced smooth structure from that of M .

The operations `, ¨ : C8pMq ˆ C8pMq Ñ C8pMq are defined pointwise:

pf`gqppq “ fppq`gppq
pf ¨gqppq “ fppq¨gppq

)
for all p P M.

It can be checked that f`g, f ¨g P C8pMq, and that with these operations,
pC8pMq,`, ¨q is a ring, with the additive identity being the zero function
0 P C8pMq (given by M Q p "Ñ 0ppq :“ 0 P R), and the multiplicative
identity 1 P C8pMq (given by M Q p "Ñ 1ppq :“ 1 P R). However, C8pMq
is not a field, since not every3 f P C8pMqzt0u will have a multiplicative
inverse. We will see later that the set of ‘smooth vector fields’ on a manifold
has the natural structure of a module over the ring C8pMq.

We will meet geodesics later on, which will be the ‘straightest’ possible
curves in the Lorentzian manifold, describing paths of ‘freely falling’ parti-
cles. The straight lines in Euclidean space and great circles on the sphere
S2 are geodesics. In any case, they are ‘smooth’ curves.

Definition 1.9. (Smooth curve.)
A smooth map γ : I Ñ M , where I is an open interval in R, is called a
smooth curve. If I Ă R is any interval, not necessarily open, then a curve
γ : I Ñ M is a smooth curve if there exists an open interval rI Ą I, and a
smooth curve rγ : rI Ñ M such that rγ|I “ γ.

Just like in linear algebra, where one aim is to classify vector spaces
up to isomorphisms, in differential geometry, the notion analogous to an
isomorphism is that of a diffeomorphism.

Definition 1.10. (Diffeomorphism.)
Let M,N be smooth manifolds. A bijection f : M Ñ N such that f and
f´1 : N Ñ M are both smooth, is called a diffeomorphism, and M and N

are then said to be diffeomorphic.
3Consider an f P C8pMqzt0u that has a zero at some point. In fact, in Chapter 2, we

will construct nonzero functions that vanish outside a neighbourhood of a point.
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Example 1.14. (Chart maps are diffeomorphisms.) Let pU,ϕq be a chart
from an atlas defining the smooth manifold M , and consider U as a smooth
manifold with the atlas tpU,ϕqu. Recall from Example 1.13 that the chart
map ϕ : U Ñ ϕpUq is smooth. Also, it is a bijection onto the open set
ϕpUq. We show that its inverse ϕ´1 : ϕpUq Ñ U is smooth too. For all
ϕppq P ϕpUq, with p P U , we take the admissible chart pϕpUq, idϕpUqq for
ϕpUq containing ϕppq, and take the admissible chart pU,ϕq for U . Then
ϕ´1pϕpUqq “ U . Moreover, ϕ ˝ ϕ´1 ˝ pidϕpUqq´1 “ id|ϕpUq : ϕpUq Ñ ϕpUq,
which is clearly C8. As this happens with each point in ϕpUq, we conclude
that ϕ´1 : ϕpUq Ñ U is smooth. !

Exercise 1.19. LetM be an affine space over V , considered as a smooth manifold
in the usual way. For a v P V , define γv : R Ñ M by γvptq “ p ` tv, t P R. Show
that γv is a smooth curve.

Exercise 1.20. Let U, V be open subsets of Rm,Rn, respectively. We consider
U, V as smooth manifolds with the smooth structures rtpU, idU qus, rtpV, idV qus,
respectively. Show that f : U Ñ V is smooth if and only if f is C8.

Exercise 1.21. Let R be equipped with the two incompatible atlases A1 and A2

given in Example 1.6. Prove that pR, rA1sq is diffeomorphic to pR, rA2sq. (From
our earlier considerations, the incompatibility of A1 with A2 can be expressed
by saying that the identity map fails to be a diffeomorphism between the smooth
manifolds pR, rA1sq and pR, rA2sq. However, this exercise shows that there may
nevertheless be other maps which serve as a diffeomorphism.)

Exercise 1.22. Let M,N be smooth manifolds, and f : M Ñ N be a diffeo-
morphism. If pU,ϕq is an admissible chart for M , then it is easy to see that
pfpUq,ϕ ˝ f´1q is a chart for N . Show that pfpUq,ϕ ˝ f´1q is an admissible chart
for N .

Exercise 1.23. Let M be a smooth manifold. Show that the set
DiffpMq :“ tf : M Ñ M |f is a diffeomorphismu,

together with the operation ˝ of composition of maps, forms a group.

Exercise 1.24. (Lie group and left-translation diffeomorphisms.) A Lie group is
a group pG, ¨q equipped with a smooth structure, such that the multiplication
map G ˆ G Q pp, qq !Ñ p ¨ q P G, and the inverse map G Q q !Ñ q´1 P G, are
smooth. Given p P G, the left-translation by p is the map Lp : G Ñ G defined by
G Q q !Ñ p ¨ q. Show that Lp is a diffeomorphism for each p P G.

Exercise 1.25. (Submanifolds.) Suppose that M is an m-dimensional smooth
manifold. A subset N Ă M is said to be a submanifold of dimension n ď m if
for each p P N , there exists an admissible chart pU,ϕq of M such that p P U , and
ϕpU X Nq “ rU ˆ t0u Ă R

n ˆ R
m´n “ R

m, where rU is an open subset of Rn.
Then pU,ϕq is called an allowed chart for N . Let ω : Rm Ñ R

n be the projection
map onto the first n components.
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Prove that
AN :“ tpU X N, ω ˝ ϕ|UXN q : pU,ϕq is an allowed chart for Nu

is an atlas for N . So N is a smooth manifold with the smooth structure rAN s.
Show that the inclusion map i : N ãÑ M is smooth.

Exercise 1.26. Let M1,M2 be smooth manifolds and N1, N2 be submanifolds of
M1,M2, respectively. If f : M1 Ñ M2 is a smooth map such that fpN1q Ă N2,
then show that f |N1 : N1 Ñ N2 is also smooth.

Before beginning with the second chapter, we make a remark on some
notation which will be used from now on. For a smooth manifold M , we
will often take for granted that its dimension is denoted by m. Charts will
often be denoted by pU,ϕq, but also by pU,xq, where the understanding
is that the component functions of the map x : U Ñ Rm are denoted by
xi : U Ñ R, 1 ď i ď m. Moreover, given a function f : M Ñ R, a point
p P M , and an admissible chart pU,ϕq, we will denote the partial derivative
of f ˝ϕ´1 : ϕpUq Ñ R with respect to the ith variable at the point ϕppq by

Bpf ˝ ϕ´1q
Bui

pϕppqq.


