Chapter 1

Smooth manifolds

As mentioned in the preface, spacetime is, on the set-theoretic level, a
collection of points, called events. We want to do calculus on spacetime,
because firstly, the field equation determining the geometry of spacetime
is a partial differential equation on spacetime, and secondly, the geodesic
equation describing motion of matter in spacetime is an ordinary differential
equation on spacetime. It was discovered in the early 20" century that
the appropriate structure to be used to describe spacetime is that of a
Lorentzian smooth manifold. In this chapter, we will first learn about the
notion of a smooth manifold.

Roughly speaking, an m-dimensional smooth manifold is a set M which
can be covered by patches such that in each patch one can introduce coor-
dinates and use them to do calculus. As coordinates are ad-hoc, we need
to make sure that only certain ‘admissible’ coordinates are allowed, so that
the definition of smoothness is independent of the choice of coordinates.
It turns out that this also endows the manifold with a topology, so that
smooth manifolds are special types of topological spaces.

1.1 Charts and atlases

We have prior experience with using coordinates, for example, for the sur-
face of a sphere, one could use polar and azimuthal angles. But then we
realise that in order to obtain an injective mapping from the sphere to the
set of parameter ranges of the coordinates, we must work with patches on
the sphere, instead of the whole sphere in one go. So we anticipate that
also in the case of a manifold, it will need to be covered by patches, and
coordinates need to be set up in each patch.

Before we introduce the notion of a manifold, we explain what we mean
by putting coordinates in a patch. The aim of this section is to introduce
the notions of a ‘chart’ and an ‘atlas’. Roughly speaking, a chart describes
the local coordinates set up in a patch of the manifold, and an atlas is
a collection of such charts so that the union of the patches of the charts
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covers the whole manifold. In order that there is no conflict later on when
defining smooth objects on the manifold, we will demand that the charts
that make up an atlas are ‘compatible’.

First, let us recall the notion of a topological space.

Definition 1.1. (Topological space.)
A topological space (M, O) is a set M together with a collection O of subsets
of M, such that the following hold:

(T1) &, M € O.
(T2) Whenever U;, i € I, belong to O, also |J U; € O.

iel
(T3) Whenever U,V € O, alsoU nV € O.
The elements of O are called open sets, and O itself is referred to as a

topology on M.
Recall that R™ can be equipped with its usual Euclidean topology.

Example 1.1. (Euclidean space R™.)

Let R™ = {x=(a',--- ,2™): 2 € R, 1</ <m} be the real vector space
with componentwise operations of vector addition and multiplication by
real scalars. For vectors x,y € R™, their Euclidean inner product is given
by (x,y) = zly! + .-+ 2™y™. For x € R™, we define the ball B(x,r) with
center x and radius r > 0 by B(x,7) = {y e R : (x —y,x —y) < r?}.
We define O to be the collection of subsets U of R™ with the property that
whenever x € U, there exists an r > 0 such that B(x,r) < U. Then O is a
topology on R™. &

Definition 1.2. (Chart.)
Let M be a set. An m-chart on M is a pair (U, ¢), where U < M, the map
¢ : U — R™ is injective, and ¢(U) is an open subset of R™.

Henceforth, we will often drop the specification ‘m’ in ‘m-chart’, and simply
refer to ‘charts’ for M, with the understanding that for a given M, the m is
fixed. A chart allows us to talk about the coordinates of a point pe U < M,
with respect to the chart (U, ¢), as the m-tuple of numbers ¢(p) € R™.

Example 1.2. (A chart for R™.) Let U = R™, and ¢ : R™ — R™ be the
identity map id. Then (R™,id) is a chart on R™. O

We will see later on that locally a manifold looks like R™ (its tangent space).

In Example 1.1, there is a distinguished point, namely the origin, but
as nature does not provide natural coordinate systems, we also introduce
R™ which has forgotten its origin, namely an affine space.
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Example 1.3. (Affine space.)

An affine space of dimension m consists of

o aset M (of ‘points’),

« an m-dimensional vector space V' (whose vectors ‘translate’ points of M),
e amap MxV 3 (p,v)—>p+veM,

such that the following hold:

(Al) forallpe M,u,veV,p+(u+v)=(p+u)+v,

(A2) forallpe M, p+0 = p,

(A3) for all p,ge M, there exists a unique vpg€V such that ¢g=p+vp,.
Let p € M be fixed and let {e1,- - ,e,,} be a basis for V. Given any q € M,
there exists a unique vector vy, € V such that ¢ = p+ v,q. This vector v,
can be expressed in terms of the basis vectors, giving unique coordinates
o(q) == (21, -+ ,2™) € R™. Thus, ¢ = p + v,y = p + 2'e;. Clearly, ¢ is
injective, and with U := M, p(U) = R™. So (M, ) is a chart on M. <

Exercise 1.1. Show that if p,q,r € M, then vy, = vpq + Vgr.

Example 1.4. (Charts on the sphere S2.) Let

S? = {(x,y,2) e R3 1 2% + y? + 22 =1},
and n = (0,0,1), s = (0,0, —1) denote the north and south poles in S2. Set
Un = S?\{n}, Us = S%\{s}, and define the ‘stereographic’ projections

1
SQ\{n} = Un E] (lL’,y,Z) — @n(mvy,z) = E(m,y) € RQ?

(z,y) € R%.

1
S:\{s} = Us 2 (2,9,2) — ¢s(2,9,2) = 7

()

uﬁ@/

S

Charts (Un, pn) and (Us, ¢s) on 52, Looking at the two similar
triangles in the left picture, we have (1 —z) : 1 = = : v and
(1—-2):1=y:v. Analogously, from the two similar triangles
in the right picture, (14+2):1=z:uand (1+2):1=y:v.
This holds irrespective of the sign of z.

Then (Uy, ¢n) and (Us, @s) are charts on S2. &
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Exercise 1.2. Show that the inverse o' : R? — S?\{n} of the map ¢n is given

1 \ 2 2 2
Pn 2u 20 u? 0% -1 . 2 2 4y 1—=z
— . Hint: = = .

by (U,U) (71,2+7)2+17u2+1)2+17u2+v2+1) wnt: w4 v (1-2)2 (1—-2)2

Exercise 1.3. Let H>={(x,y,t) € R®*:2? + y*> — t*=—1, ¢t>0}. The line joining
the south pole s= (0,0, —1) to a point p € H? meets the zy-plane at x(p)eR>.

Show that ps(p) = IL_‘_t(:v,y)7 p=(z,y,t)e H? and (H?, ys) is a chart on H?.

Exercise 1.4. Show that (R, x — 2*) is a chart on R.

Exercise 1.5. (Cylinder.)

Consider the cylinder C' in R® given by C' = S'xR = {(z,y, z) e R® : 2® +¢* = 1}.
Let Uzt = {(z,y,2) € C : © > 0}, pur(z,y,2) = (y,2). Show that (Up+, Yu+t)
is a chart on C. Similar charts (Uz—, 9a—), (Uy+, @y+) and (Uy—, py—) can be
defined analogously, so that the union of Uz4,Uz—, Uy, Uy— contains C.

A collection of charts for M (with the same m) will form an atlas provided
they cover the set M and satisfy a compatibility condition.

Definition 1.3. (Atlas.)
Let M be a set. A collection of m-charts {(U;, ;) : ¢ € I} on M is called
an m-atlas if it has the following properties:

i€l

(A2) For all 4,5 € I, ¢;(U; n Uj) is open in R™.

(A3) For all 4,j €1, ¢; 0 p; *10;(Ui nU;) — @, (Ui 0 U;) is C.
(The maps p; o ; * are called chart transition maps.)

Compatible charts (U;, ;) and (Uj, ;).

Just as with charts, we will often drop the m, and speak simply of an atlas,
instead of an m-atlas. Note that ¢; 0 07 ' : i(U; nUj) — ¢;(U; 0 U;) is
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a bijection. Recall that a function f: U — R™ is C® on an open subset U
of R™ if the components f* of f, 1 < i < n, have at each point of U, all
partial derivatives of all orders with respect to the variables 7, 1 < j < m,
which are also continuous on U.

The single charts in Examples 1.2, 1.3 and Exercise 1.4 are all atlases
in a trivial manner.

Example 1.5. (S? revisited.)

The charts (Up, ¢n) and (Us, ps) from Example 1.4 form an atlas for S2.
Firstly, Uy U Us = S2. Secondly, ¢n(Un nUs) = R2\{(0,0)} = s (Un N Us).
Finally, @s 0 pnt, onops ! : R2\{(0,0)} — R2\{(0,0)}, the chart transition

maps, are both given by (u,v) — u’gufzz, which is C®. <&

Exercise 1.6. We revisit Exercise 1.3. Defining the projection map p : H*> — R?
by p(z,y,t) = (x,y) for all (z,y,t) € H?, it is easy to see that p is injective and
p(H?) = R%. Thus (H?,p) is a chart for H?. Show that the charts (H?, ps) and
(H?,p), form an atlas for H?.

Exercise 1.7. Show that the four charts in Exercise 1.5 form an atlas for the
cylinder C' in R3.

Example 1.6. (A non-atlas.) With m = 1 in Example 1.2, we get the
chart (R, 1), with the chart map ¢1(z) := « for x € R. On the other
hand, in Exercise 1.4, we had seen that (R, @s := (z — %)) is yet another
chart on R. While they individually form atlases A; := {(R, 1)} and
Az = {(R, ¢2)}, their union A := A4 U Ay = {(R, 1), (R, p2)} does not
form an atlas. Indeed, not all chart transition maps are smooth. Although
w20t = (x — %) is smooth on R, ¢; 0 953 = (z > x'/3) is not C%
everywhere on R since it is not differentiable at = = 0. <&

The previous example motivates the following definition.

Definition 1.4. (Compatible atlases.)
Let M be a set. Two m-atlases A1, Ay are compatible if A; U As is also an
m-atlas on M.

Example 1.7. (Affine space revisited.) It is clear from the chart map defi-
nition given in Example 1.3, that different choices of points p, and of bases
{e1,---,em}, will lead to different coordinates. Consider points p,p’ € M,
and bases B={e1, - ,en}, B'={e}, -+ ,el } for V, giving the chart maps
@, ¢'. Are the atlases {(M, )} and {(M,¢')} compatible? To investigate
this, we compute the chart transition map ¢’ o ¢~! : R™ — R™,
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Change of coordinates.

Given x = (a!,--- ,2™) e R™, ¢ := ¢ 1(x) € M, and we wish to find the
coordinates x’ of this ¢ using the point p’ and the basis B’. So we need
to write ¢ = p’ + vpq, and find X’ by expanding v, using the basis B’.
We have v,q = Vprp + Vpg, and as ¢ = ¢~ 1(x), also v,, = z'e;. Introduce
the change of basis matrix A = [A7] € GL,,(R), where A7 denotes the
entry in the 5 row and i*® column of A, defined by e; = A’ e). Also, let
b= (b!,---,b™) € R™ be defined by v, = bje;. Then
Vg = Vip + Vpg = b€ + ale; = e + ai(Ale)) = (VW + Alxi)el,

1 is the affine linear map given by

and so the chart transition map ¢’ o ¢~
¢’ ol (x) = b+ Ax, for all x € R™, which is C®. Its inverse po (¢')7 ! is
given by ¢ o (¢')71(x) = —A7'b + A7 1x, x € R™. So the atlases {(M, )}

and {(M, ")} are compatible. <&

Exercise 1.8. Show that the set R™ x GL,,(R) is a group with the composition
(]Z)z7 AQ) . (bl, Al) = (b2—|—A2b1, A2A1) for (]:)27 AQ), (]:)17 Al) in R™ x GLm(R).

Exercise 1.9. Prove that compatibility is an equivalence relation on the collec-
tion of all atlases on a set M.

Thus to specify a manifold!, we should work with compatible atlases (so
that in hindsight, there will be no conflict when we define smooth objects
on the manifold), and given that compatibility is an equivalence relation,
we just need to commit to one particular atlas for the set M at hand. We
make this a definition.

IThe name ‘manifold’ comes from the German word ‘mannigfaltigkeit’ used by Riemann
in his doctoral thesis, which contained, among other things, a discussion of multi-valued
complex functions and their (now called) Riemann-surfaces.
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Definition 1.5. (Smooth manifold, dimension of a manifold.)
A smooth manifold (M, [A]) is a set M together with an equivalence class
[A] of compatible m-atlases on M. We call m the dimension of the smooth
manifold M. A chart from an atlas in [A] is said to be admissible for the
smooth manifold. We refer to [A] as a smooth structure on M.

Thus the atlases given in Examples 1.2, 1.3, 1.4 and Exercise 1.5 can be
used to make the respective set M into a smooth manifold. As we will
use it frequently, we will call R™ with the atlas comprising the single chart
(R™,id) as the smooth manifold R™ with the standard smooth structure.

In Example 1.6, the two atlases A; and As are not compatible. Hence,
(R, [A1]) and (R, [A2]) are two different smooth manifolds.

Example 1.8. (Sphere.) Consider the sphere as a smooth manifold with
the smooth structure given by the atlas in Example 1.5. In this example,
we give a different compatible atlas, using one of the charts as the familiar
one with spherical polar coordinates. It can be shown that the map

(0,7) x (0,27) 3 (6, ¢) > ((sin ) cos ¢, (sin §) sin ¢, cos ) € S* = R3
is injective, and hence a bijection onto its image
U=5"\{(z,y,2) e R®:y =0 and = > 0}.
For a point p € U, the angle 6(p) is called the polar angle of p, and the angle
¢(p) is called the azimuthal angle of p. For a point p € U, we define the
map ¢ on U by ¢(p) := (6(p), ¢(p)) € (0,m) x (0,27), where if p = (z,y, 2),

then 0(p) = cos™! z and
cos™! —= if y>0,
-1 y .
d(p) := £ (x,y) := { ™ —sin e if <0,
1 x .
2m — cos mlfy<0.
Here cos™!: (—1,1) — (0,7) and sin™" : (=1,1) — (=%, Z) are the inverse

trigonometric functions. It can be checked that ¢ is well-defined and that
the map R?\{(z,y) e R? : 2 > 0} 3 (z,y) — A (x,y) is C®. Using this, it
can be checked that (U, ¢) is an admissible chart: e.g., if v > 0, then

Pop, 1 ut4?-1 1 u
on(UnnU) 3 (u,v) — (COS wrorr1r O \/m)

is C*, and for all (0, ¢) € (0,7) x (0,27), we have

Ynop ! (sinf) cos¢ (sinf)sin¢p
@(UﬁUn)B(e,(b) - ( 1—cosf® > 1—cosf )

is C°.
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The chart U covers S? except for a ‘slit’, namely the intersection of S$? with
the half plane {(z,y,2) : y=0, > 0}. In order to cover S%, we can take
another chart (V,4), defined in a similar manner, by taking a differently
placed slit, in a plane perpendicular to the one containing the original slit.
Then V together with U, covers S2. More explicitly, V covers S? except
for the intersection of S? with the half plane {(x,y,2) : 2=0, x<0}. V is
the image of the map
(0,7) x (0,27) 3 (0, ¢) — ( — (sin ) cos ¢, cos 6, (sin #) sin ¢) € S? = R3,

and this map is obtained by taking the polar angle with the positive y-axis,
and the azimuthal angle with the negative z-axis counterclockwise in the
y = 0 plane; see the picture above. &

Exercise 1.10. Consider the square S := {(x,y) € R? : |z| + |y| = 1}. Show that
A= {(U+7 §0+)7 (U—7 90—)7 (V+7 ¢+)7 (V—7 ¢—)} is an atlas for 57 where

Upi={(z,y) € S : x>0} o+ (z,y) =y,
U_:={(z,y) e S:x<0} p—(z,y) =y,
Vi={(z,y) e S:y>0} ¢Yi(z,y)=x,
Voi={(z,y) € S:y<0} Y_(z,y)=2z

Thus (5, [A]) is a smooth manifold. So a smooth manifold may not necessarily
‘appear’ smooth.

We now discuss four ‘spacetimes’ by just looking at the underlying smooth
structure. Later on, our examples below will be made ‘Lorentzian’ man-
ifolds, that is, smooth manifolds with some added structure. While we
are not yet ready to specify the added structure, we nevertheless introduce
these by only describing their smooth structures. Thus these are ‘pre-’
spacetimes for now, ripe for becoming legitimate spacetimes later.

Example 1.9. (Minkowski spacetime.) Let V be a 4-dimensional real vec-
tor space. Suppose that M is an affine space over V. Take any p € M,
and a basis {e1, ez, e3,e4} for V, and let ¢ : M — R* be the corresponding
chart as in Example 1.3. Let A := {(M,»)}. Then (M, [A]) is a smooth
manifold, referred to as the Minkowski spacetime. <
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Example 1.10. (Cylindrical spacetime.) Let M = R x S! with the atlas
A comprising the charts defined in Exercise 1.5. Then (M, [A]) is a smooth
manifold, referred to as the cylindrical spacetime. <

Example 1.11. (FLRW spacetime.) Let I := (0,00). Then M := I x R3,
with the atlas {(I x R?,id;.gs)} is a 4-dimensional smooth manifold, called
the FLRW spacetime (after Friedman, Lemaitre, Robertson, Walker). <

Exercise 1.11. (Product of smooth manifolds.) Let M be an m-dimensional
smooth manifold, with an atlas Ay = {(Ui, ¢:),% € I}. Let N be an n-dimensional
smooth manifold, with an atlas Ay = {(Vj,v;),7 € J}. Define for i € I, j € J,

the maps @i x 1 : Ui x V; —> R™" by (i x 1;)(p,q) = (#i(p),;(q)) for all
pe U, qe V;. Show that {(U; x V},¢: x ¢;),i€ I,j € J} is an atlas for M x N,
making it an (m + n)-dimensional smooth manifold.

Example 1.12. (Schwarzschild? spacetime.) Let m >0, and I:=(2m, o).
Let M = Rx1Ix5S?% where S? is the unit sphere in R3. Taking the at-
lases {(R,idr)}, {(,id)}, and {(U, ¢), (V,9)} (Example 1.8), for R, I, S?,
respectively, we see that M is a smooth manifold using the construction
based on Exercise 1.11. We call this 4-dimensional smooth manifold the
Schwarzschild spacetime. &

1.2 Topology on a smooth manifold

We will want to talk about continuous maps between smooth manifolds,
for example a ‘worldline’ in a spacetime (Definition 1.2). The way we equip
a smooth manifold with a topology is by insisting that the chart maps are
homeomorphisms (Theorem 1.2). This is the motivation for the following
definition.

Definition 1.6. (Open set in a smooth manifold.)

Let (M,[A]) be an m-dimensional smooth manifold and {(U;, ¢;),i€ I} €[A].
A set U < M is openif for all i € I, ¢;(U nU;) is open in R™, where R™ is
given its standard Euclidean topology, described by the Euclidean metric

d(x,y) = !

(xz_yz)Z X:(x7'"'7mm)7y:(y7""7ym)€Rm'

M3

i=1

Proposition 1.1. Definition 1.6 of an open set is well-defined, that is, it
does not depend on the choice of the atlas in [A].

Proof. Let Ay ={(Ui,¢i),i€ I} and Ay ={(V},v,),j € J} be atlases in
[A]. Let U ¢ M, and suppose for each i € I, A; := ¢;(U n U;) is open in

2 After Karl Schwarzschild (1873—-1916), a German physicist and astronomer.
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R™. Let j € J. We must show that ¢;(U n V;) is open in R™. We have
i (UnV;) = (UnM)nV;) =3 (Un (U Ui) n Vi) =4 (U(UnTinYj))

i

:U Vi (UnU;nVj). (%)

Set B; := ¢;(U;nVj). Then B, is open, since the charts (U;, ;) and (V}, ¢;)
belong to the atlas A; U As. The intersection of this open B; with the open
set A; = ;(UnU;), is open. Now A; nB; = ¢;(UnU; nV;). (Indeed, D is
trivially true, and < follows from the injectivity of ; on U;.) Consider the
C* (and in particular, continuous) map goiowj_l 2 (UsnV;) — (U0 V).
As the open set A; N B; = ¢;(U nU; n'V;) is contained in the open set
©i(U; 0 V;) € R™, it follows that (¢; 0 ¢; ') (A; n B;) is an open subset
of the open set ¢;(U; n V;) < R™, that is,

(wi oy ) HAi n Bi) = ¥(0; (iU n Ui 0 V) = (U A Ui 0 V)
is open in R™. So wj(UmVj)(;)U Y;(UnU;nV;) is open in R™. 0

We show that calling such sets ‘open’ is justified, as they form a topology
on the manifold.

Theorem 1.1. Let (M, [A]) be an m-dimensional smooth manifold. Then
the collection O := {U < M : U s open in M} is a topology on M.

Proof. Let {(U;,;),i € I} € [A]. Then & = ¢;(& n U;) is open in R™
forallie I, and so @€ O. Also, for all i € I, v;(U;) = ¢;(M nU;) is open
in R™ since (U;, ;) is a chart, and so M € O.

Let U,V € O. Thenforallie I, o;,(UnV)nU;) = p;(UnU;) ng;(VnU;)
(c is always true for any map, and o holds by the injectivity of ¢;). Being
the intersection of open sets, ¢;((U n V) n U;) is open in R™ for all 4 € I,
and consequently, U n'V € O.

Let V; € O for all j € J. Then we have that for all i € I,
ei((UV) nUi) =Uei(V; 0 Uy),
J J

is open in R™, as it is the union of open sets ¢;(V; n U;) in R™. Hence,
L]JV] e O. O

Definition 1.7. (Topology induced by a smooth structure.)

Let (M, [A]) be an m-dimensional smooth manifold. Then the collection
O = {U < M : U is open (Definition 1.6) in M} is called the topology
induced on M by the smooth structure [A].
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Remark 1.1. Often in the literature, a smooth manifold is defined by first
introducing the concept of a ‘topological manifold’, where one starts with
a topological space which can be covered by charts which are homeomor-
phisms to open subsets of R™. We have not adopted this route, since such
an approach forces one to begin with a topology. But we now reconcile our
definition with this prevalent one in the following result. *

Theorem 1.2.

Let (M, [A]) be an m-dimensional smooth manifold, and let
O:={Uc M :U is open in M}

be the topology induced on M by the smooth structure [A]. Suppose that

{(Ui,0;),1 € I} € [A]. Then for each i€ I, p; : U; — ¢;(U;) is a homeo-

morphism.

Proof. LetieI. As (Ui, ;) is a chart, we know that ¢;(U;) is open in
R™ and that ¢; : U; — ¢;(U;) is a bijection. We only need to show the
continuity of ¢; and ¢; . Let V < ¢;(U;) be open. Then ¢; 'V < U;.
We must show that this is an open set in M. For any j € I, we have
0i((p'V)nU;) = (pj007 NV npi(Ui nUj)). As V and @;(U; A U;) are
open in R™, 50 is their intersection. Thus (¢;00; 1) (V ni(U; nU;)), being
the inverse image under the (O and hence) continuous map (¢;op; ') ™! of
the open set Vi (U;nUj) (< ¢;(UinU;)), is open. Hence ;((¢; 'V)nU;)
is open for all j € I, that is, ; 'V is open in M. So ¢; : U; — ¢;(U;) is
continuous.

Let U < U; be open. We want to show that ¢;(U) = (¢; })~'U is
open in R™ (and hence open in ¢;(U;)). The fact that U is open means in
particular that ¢;(U n U;) is open in R™. But ¢;(U n U;) = ¢;(U), since
U < U;. Thus the inverse map <p;1 : ;(U;) — Uj is also continuous. U

Exercise 1.12. Let R™ be equipped with the standard smooth structure. Show
that the topology induced by this smooth structure coincides with the standard
Euclidean topology.

Exercise 1.13. Consider the double cone C = {(x,y,2) e R : 2% +y* = 2?} c R3.
Show that C cannot carry a smooth structure [A] making it a 2-dimensional
smooth manifold such that the topology induced by [A] on C coincides with the
subspace topology on C' (as a subset of R? with its standard Euclidean topology).
If we delete the point 0 = (0,0, 0) from C, i.e., we consider C, := C\{0}, then we
do get a smooth manifold, for example by taking an atlas comprising two charts,
namely ({(z,y,2) € Cyx : z > 0}, 7) and ({(z,y,2) € Cx : z < 0}, ), where the
chart map 7 in each case is just the restriction to these chart domains of the
projection map onto the zy-plane: R? 3 (z,y, z) — (z,y) € R%
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Remark 1.2. (Hausdorff and second countable assumptions on O.)

In order to do analysis, it is desirable to have two additional properties

enjoyed by the topology O:

(H) A topology O on a set M is Hausdorff if for every p,q € M, there exist
U,V € O such that p e U, g € V, and U n'V = . Thus distinct
points possess disjoint neighbourhoods, a type of ‘separation axiom’.
Such a property is quite basic, since otherwise limits of sequences are
not guaranteed to be unique.

(S) A basis for O is a collection B = {B; : i € I} of open sets such that
every open set in O is a union of elements from B. A topology O on
a set M is second countable if there exists a countable basis for O.
When wanting to do ‘integration’ on manifolds, this property will be
needed in order to construct a so-called ‘partition of unity’, which will
essentially mean that we can use m-charts to set up Riemann integrals
of functions defined on the manifold, and patch these contributions to
obtain an integral of the function defined on the whole manifold.

Unfortunately, for a smooth manifold, neither of these properties are guar-

anteed to hold for the topology O from Theorem 1.1. So, in order to proceed

without pitfalls, we will make a standing assumption that whenever we talk
of a smooth manifold in this book, we will mean in addition that the associ-
ated topology O is Hausdorff and second countable. The standard topology
of the Euclidean space R™ generated by the 2-norm || - | satisfies the second
countability assumption since the open balls with centers all of whose com-
ponents are rational numbers, and whose radius is also a rational number,
form a countable basis. Now, if the manifold can be covered by an atlas
in the smooth structure containing countably many charts, then it follows
that (since the chart maps are homeomorphisms) the images of members
of the countable basis for R™ under the inverse of the chart maps will form

a countable basis for the topology of the manifold. All the examples of

smooth manifolds considered in this book will be of this type. %k

Exercise 1.14. Let U be an open subset of a smooth manifold M given by an

atlas A. Let Ay :={(U nV,¢|v~v):(V,9)e A}. Show that Ay is an atlas for U.

Prove that if (W, o) is admissible for M, then (U n W,o|uv~w) is admissible for

(U, [Au]). U is then said to be given the smooth structure induced by (M, [A]).

In particular, if (U, ¢) is an admissible chart for M, then [Av] = [{(U, ¢)}].

As a spacetime M is the collection of all events, the life of a particle can be

modelled by a curve in M by stringing together all the events encountered

by the particle in its lifetime. Let I < R be an interval and M be a smooth
manifold. A continuous map v : I — M is called a curve or a worldline.
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1.3 Smooth maps

The point of the definition of a smooth manifold is to enable the consider-
ation of smooth objects on it, for example, a real-valued smooth function
(think of temperature), a ‘vector field’, etc., in an unambiguous way.

Definition 1.8. (Smooth map.)
Let M, N be smooth manifolds, with dimensions m, n, respectively. A map
f: M — N is said to be smooth if for all pe M,
o there exists an admissible chart (U, ¢) for M such that p € U,
« there exists an admissible chart (V) for N such that f(U) < V
(in particular f(p) € V),
epofoplipU)—>R"is C® on p(U) c R™.
If M is a smooth manifold, and R has the standard smooth structure,

then we use the notation C*(M) to denote the set of all smooth maps
f:M—R.

For a smooth manifold M, the identity map idy; : M — M is smooth.

Example 1.13. (Chart maps are smooth.)

Let (U, ) be a chart from an atlas defining the smooth manifold M. We
now consider U itself to be a smooth manifold, described by the trivial atlas
{(U,)}. Then o(U) < R™ is an open subset of R™. We consider ¢(U)
as a smooth manifold described by the atlas comprising the single chart
(p(U),idy(r)). We claim that the chart map ¢ : U — ¢(U) is smooth. For
each p € U, we take the admissible chart (U, ) for U containing p, and the
admissible chart (V' := ¢(U),id, () for the smooth manifold ¢(U). Then
@(U)=V. Moreover, id, o pop ! =id,w) : ¢(U) = ¢(U) € R™, which
is clearly C*. As p € U was arbitrary, ¢ : U — ¢(U) is smooth. O

Exercise 1.15. Let M, N be smooth manifolds and f: M — N be a smooth map.
Show that f is continuous.

Exercise 1.16. Let M, M2, M3 be smooth manifolds, and let fi2 : M1 — Ma,
f23 : M2 — M3 be smooth maps. Prove that fa3 o fi2 : M1 — M3 is smooth.

Exercise 1.17. Let M, N be smooth manifolds, and M x N be the smooth
manifold described in Exercise 1.11. Let the projection map wa : M x N — M
be given by M x N 3 (p,q) — p € M. Given a g € N, let the injection map
iq: M — M x N be given by M 3p+— (p,q) € M x N.

o Show that s is smooth. (Similarly, M x N 3 (p,q) — g € N is smooth.)

« Show that i, is smooth. (Also, for pe M, N 3¢+~ (p,q) € M x N is smooth.)



14 A Mathematical Introduction to General Relativity

In particular, Exercise 1.17 has the following consequences. Firstly, given
any g € C*®(M), the map M x N 3 (p,q) — ¢g(p) € R, is an element
of C®(M x N), as it is the composition of the smooth maps g and ;.
Secondly, given an f e C®(M x N) and a ¢ € N, the ‘slice map’ f,, given
by M 3 pw— f(p,q) € R is smooth too, since f; = f oi,. We will use these
observations later on to show that the ‘tangent space of M x N at (p,q)’
can be identified with T, M x Ty N in Exercise 2.8.

Exercise 1.18. (Smoothness is a local property.) Let M, N be smooth manifolds.

Show that f : M — N is smooth if and only if for every U openin M, f|ly : U > N
is smooth. Here U has the induced smooth structure from that of M.

The operations +, - : C®(M) x C®(M) — C*(M) are defined pointwise:
(f+9)(p) = f(p)+9(p)
(f-9)(p) = f(p)-9(p)
It can be checked that f+g, f-g € C*(M), and that with these operations,
(C*(M),+,-) is a ring, with the additive identity being the zero function
0 e C®(M) (given by M 3 p — 0(p) := 0 € R), and the multiplicative
identity 1 € C*(M) (given by M 3 p — 1(p) := 1 € R). However, C*(M)
is not a field, since not every® f € C*(M)\{0} will have a multiplicative
inverse. We will see later that the set of ‘smooth vector fields’ on a manifold
has the natural structure of a module over the ring C*(M).
We will meet geodesics later on, which will be the ‘straightest’ possible
curves in the Lorentzian manifold, describing paths of ‘freely falling’” parti-

}for all pe M.

cles. The straight lines in Euclidean space and great circles on the sphere
52 are geodesics. In any case, they are ‘smooth’ curves.

Definition 1.9. (Smooth curve.)

A smooth map v : I — M, where I is an open interval in R, is called a
smooth curve. If I < R is any interval, not necessarily open, then a curve
v : I — M is a smooth curve if there exists an open interval = I, and a
smooth curve 7 : T — M such that Y =".

Just like in linear algebra, where one aim is to classify vector spaces
up to isomorphisms, in differential geometry, the notion analogous to an
isomorphism is that of a diffeomorphism.

Definition 1.10. (Diffeomorphism.)

Let M, N be smooth manifolds. A bijection f : M — N such that f and
f~': N — M are both smooth, is called a diffeomorphism, and M and N
are then said to be diffeomorphic.

3Consider an f € C®(M)\{0} that has a zero at some point. In fact, in Chapter 2, we
will construct nonzero functions that vanish outside a neighbourhood of a point.
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Example 1.14. (Chart maps are diffeomorphisms.) Let (U, ¢) be a chart
from an atlas defining the smooth manifold M, and consider U as a smooth
manifold with the atlas {(U, ¢)}. Recall from Example 1.13 that the chart
map ¢ : U — (U) is smooth. Also, it is a bijection onto the open set
©(U). We show that its inverse ¢! : p(U) — U is smooth too. For all
¢(p) € p(U), with p € U, we take the admissible chart (¢(U),id ) for
©(U) containing ¢(p), and take the admissible chart (U, ) for U. Then
1 (pU)) = U. Moreover, o gL o (idoe) ! = idlp(er : 9(U) = o(U),
which is clearly C*. As this happens with each point in ¢(U), we conclude
that o= : p(U) — U is smooth. &

Exercise 1.19. Let M be an affine space over V', considered as a smooth manifold
in the usual way. For a v € V, define v : R —> M by v (t) = p+ tv, t € R. Show
that vy is a smooth curve.

Exercise 1.20. Let U,V be open subsets of R™ R", respectively. We consider
U,V as smooth manifolds with the smooth structures [{(U,idv)}], [{(V;idv)}],
respectively. Show that f: U — V is smooth if and only if f is C*®.

Exercise 1.21. Let R be equipped with the two incompatible atlases A1 and A2
given in Example 1.6. Prove that (R,[.A1]) is diffeomorphic to (R,[Az2]). (From
our earlier considerations, the incompatibility of A4; with A3 can be expressed
by saying that the identity map fails to be a diffeomorphism between the smooth
manifolds (R,[A1]) and (R,[Az2]). However, this exercise shows that there may
nevertheless be other maps which serve as a diffeomorphism.)

Exercise 1.22. Let M, N be smooth manifolds, and f : M — N be a diffeo-
morphism. If (U,¢) is an admissible chart for M, then it is easy to see that
(f(U), o f 1) is a chart for N. Show that (f(U),po f~!) is an admissible chart
for N.

Exercise 1.23. Let M be a smooth manifold. Show that the set
Diff(M) := {f : M — M| f is a diffeomorphism},
together with the operation o of composition of maps, forms a group.

Exercise 1.24. (Lie group and left-translation diffeomorphisms.) A Lie group is
a group (G,-) equipped with a smooth structure, such that the multiplication
map G x G 3 (p,q) — p-q € G, and the inverse map G 3 ¢ — ¢ ' € G, are
smooth. Given p € G, the left-translation by p is the map L, : G — G defined by
G 3 q+— p-q. Show that L, is a diffeomorphism for each p € G.

Exercise 1.25. (Submanifolds.) Suppose that M is an m-dimensional smooth
manifold. A subset N < M is said to be a submanifold of dimension n < m if
for each p € N, there exists an admissible chart (U, ) of M such that p € U, and
o(U AN) =U x {0} € R* x R"™ = R™, where U is an open subset of R".
Then (U, ¢) is called an allowed chart for N. Let m : R™ — R"™ be the projection
map onto the first n components.
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Prove that

An :={(U n N,mopluan) : (U, p) is an allowed chart for N}
is an atlas for N. So N is a smooth manifold with the smooth structure [Ax].
Show that the inclusion map ¢ : N «— M is smooth.

Exercise 1.26. Let M7, M2 be smooth manifolds and N1, N2 be submanifolds of
My, Ms, respectively. If f: My — M is a smooth map such that f(Ni1) € No,
then show that f|n, : N1 — Nz is also smooth.

Before beginning with the second chapter, we make a remark on some
notation which will be used from now on. For a smooth manifold M, we
will often take for granted that its dimension is denoted by m. Charts will
often be denoted by (U, ¢), but also by (U,x), where the understanding
is that the component functions of the map x : U — R™ are denoted by
z' : U — R, 1 < i < m. Moreover, given a function f : M — R, a point
p € M, and an admissible chart (U, ¢), we will denote the partial derivative
of fop™ :p(U) — R with respect to the i'? variable at the point ¢(p) by

o w1
Wee )iy,



